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Abstract

Typically, important electrochemical parameters are derived from empirical data. This is

largely due to the fact that analytical models, such as various forms of the Butler-Volmer

equation, often fall short in accurately capturing the important features. Unfortunately,

obtaining these polarization curves requires utilization of time consuming instruments.

Therefore, employing machine learning could prove advantageous. In this work, machine

learning was applied in the attempt of predicting important polarization curves and some

of their important features in various pH environments on an aluminium alloy AA6060

+ 0.0043 wt% nickel. The polarization curve features under investigation were (i) the

corrosion potential, (ii) the cathodic Tafel slope, (iii) the corrosion current density and

(iv) the critical pitting potential.

Determining the most suitable machine learning algorithm for a specific task can be chal-

lenging. Therefore, in this study, five distinct algorithms were employed. These included

four decision tree algorithms, namely Random Forest, Categorical Boosting, eXtreme

Gradient Boosting, and Light Gradient Boosting Machine, along with an Artificial Neu-

ral Network. The results delivered by these algorithms were comparable, though the

Random Forest algorithm demonstrated a slight edge in terms of both accuracy and

training speed. Random Forest’s marginally enhanced predictive abilities were explained

by the small input feature dimension of solely pH and electrochemical potential. This

lead to large amounts of unknown behaviour in the training data set as variables such as

surface cracks and segregation were not accounted for. As a result, the error observed on

unseen data was considerably larger, reaching many multiples of the error observed on the

training data. The large variation in data lead to a smaller effect of the applied hyperpa-

rameter tuning of certain models. Thus, viability of using an Artificial Neural Network

for the given machine learning task came under scrutiny, given its need for extensive hy-

perparameter tuning, which, despite the effort, only yielded average results compared to

the other algorithms.

Finally, the algorithms demonstrated intriguing results, achieving a mean absolute per-

centage error of roughly 7% for the logarithmic current density (the target output) over

the applied potential range. Furthermore, the algorithms showed strong predictive abil-

ities for the features under investigation, with average errors of 5%, 13% and 19% for

the corrosion potential, cathodic Tafel slope and corrosion current density, respectively.

Additionally, the algorithms located the pitting potential with perfect precision. More-

over, the algorithms proved high capability of capturing key transitions in the polarization

curves, such as the occurrence of meta-stable pitting at certain pH regions. Therefore, the

results underscore the potential of these algorithms to effectively replace time-consuming

instruments.
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Sammendrag

Vanligvis er viktige elektrokjemiske parametere hentet fra empiriske data. Dette skyldes i

stor grad at analytiske modeller, som ulike former av Butler-Volmer-ligningen, ofte kom-

mer til kort i nøyaktig å fange de viktige egenskapene. Dessverre krever innhenting av

disse polarisasjonskurvene bruk av tidkrevende instrumenter. Derfor kan bruk av maskin-

læring være fordelaktig. I dette arbeidet ble maskinlæring brukt i forsøket p̊a å forutsi

viktige polarisasjonskurver og noen av deres viktige egenskaper i forskjellige pH-miljøer

p̊a en aluminiumslegering AA6060 + 0.0043 vektprosent nikkel. Polariseringskurveegen-

skapene som ble undersøkt var (i) korrosjonspotensialet, (ii) den katodiske Tafel-hellingen,

(iii) korrosjonsstrømtettheten og (iv) det kritiske potensialet for gropkorrosjon.

Å bestemme den mest passende maskinlæringsalgoritmen for en spesifikk oppgave kan

være utfordrende. Derfor ble fem forskjellige algoritmer brukt i dette arbeidet. Disse

inkluderte fire beslutningstrealgoritmer, nemlig Random Forest, Categorical Boosting,

eXtreme Gradient Boosting, og Light Gradient Boosting Machine, sammen med et kunstig

nevralnettverk. Resultatene som disse algoritmene leverte var sammenlignbare, selv om

Random Forest-algoritmen viste en liten fordel i b̊ade nøyaktighet og treningshastighet.

Random Forests marginalt forbedrede prediktive evner ble forklart ved at den lille di-

mensjonen til treningsdata kun var pH og elektrokjemisk potensial. Dette førte til store

mengder ukjent oppførsel i treningsdatasettet da variabler som overflatesprekker og segre-

gasjon ikke ble tatt hensyn til. Som et resultat var feilen observert p̊a usett data betydelig

større, og n̊adde mange ganger feilen observert p̊a treningsdataene. Den store variasjo-

nen i data førte til en mindre effekt av den anvendte hyperparameterjusteringen av visse

modeller. Derfor ble det konkludert usikkert hvorvidt det kunstige nevralnettverket var

passende for maskinlæringsoppgven under vurdering, gitt dets behov for omfattende hy-

perparameterjustering, som, til tross for innsatsen, kun ga gjennomsnittlige resultater

sammenlignet med de andre algoritmene.

Til slutt viste algoritmene motiverende resultater, og oppn̊adde en gjennomsnittlig ab-

solutt prosentvis feil p̊a omtrent 7% for den logaritmiske strømtettheten (variablen som

skulle predikere) over det anvendte potensialomr̊adet. Videre viste algoritmene sterke

prediktive evner for de undersøkte egenskapene, med gjennomsnittlige feil p̊a 5%, 13% og

19% for korrosjonspotensialet, den katodiske Tafel-hellingen og korrosjonsstrømtettheten,

respektivt. I tillegg kunne algoritmene identifisere potensialet for gropkorrosjon med

perfekt presisjon. Videre viste algoritmene høy evne til å fange opp nøkkeloverganger i

polarisasjonskurvene, som forekomsten av meta-stabil gropkorrosjon i visse pH-omr̊ader.

Derfor understreker resultatene potensialet til disse algoritmene til effektivt å erstatte

tidkrevende instrumenter.
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1 INTRODUCTION

1 Introduction

Aluminium is the third most abundant metal in Earth’s crust and is extensively utilized

for many applications due to its low density and ability to withstand corrosion in many

environments [1]. However, on its own, aluminium presents challenges due to its low

strength. Thus, aluminium is often alloyed with other metals. Unfortunately, this can

simultaneously present electrochemical complications.

Aluminium and aluminium alloys are generally resistant to severe corrosion in neutral en-

vironments due to the immediate formation of a protective alumina layer on their surfaces.

However, in solutions rich in chloride or of acidic or alkaline nature, this alumina layer

can break down, leaving the aluminium or aluminium alloys unprotected and susceptible

to corrosion. Understanding the rate of corrosion is crucial when selecting materials for

various applications. For a comprehensive understanding of the ongoing surface reactions,

polarization curves are extensively analyzed. Unfortunately, these polarization curves are

derived from time-consuming empirical experiments. Therefore, the use of machine learn-

ing to generate these polarization curves and subsequently discern significant features,

trends, and transitions is highly desirable.

As technology advances, machine learning has seen significant development in recent years.

However, choosing the appropriate model can be a complex task, given the unique nature

of every data set. In this work, several prominent machine learning algorithms from recent

years will be utilized to predict the polarization curves of AA6060 + 0.0043 wt% nickel

in varying pH environments. From these polarization curves, the algorithms will aim

to estimate the corrosion potential, cathodic Tafel slope, corrosion current density, and

pitting potential. Additionally, the same models will attempt to identify significant trends

and transitions in the polarization curves, such as pinpointing regions where meta-stable

pitting occurs.

1



2 THEORY

2 Theory

2.1 Electrochemistry

2.1.1 Background and corrosion of aluminium and aluminium alloys

aluminium is the third most abundant metal in the Earth’s crust, making up over 8%

of its weight [1]. Aluminium is not found pure in nature, but usually in minerals such

as bauxite and cryolite. Due to aluminium’s versatile properties, it is widely utilized in

e.g. packaging, cans, and even for components in cars. Aluminium is the second most

used metal after iron, and on average, the global demand for aluminium per person is

estimated to be 11 kg [1;2]. Compared to other metals, aluminium exhibits low density,

approximately one third of the density of iron, making it attractive for use in a broad

variety of applications.

An important characteristic of aluminium is its ability to resist corrosion under normal cir-

cumstances. Corrosion resistance is achieved by the rapid formation of an alumina film on

the surface of aluminium, which provides protection against further oxidation. This film

is stable under pHs ranging from approximately 5 to 8. Outside of this range, corrosion

products besides aluminium oxide are formed [3]. This phenomenon is also demonstrated

in the Pourbaix diagram of aluminium, as shown in Figure 2.1, where the reduction po-

tential of aluminium is lower than that of the cathodic reactions involving the hydrogen

evolution reaction (HER) and oxygen reduction reaction (ORR), implying that oxidation

of aluminium is preferred over reduction of Al3+.

Pure aluminium often does not possess sufficient mechanical properties for many ap-

plications, and therefore, aluminium is often alloyed with other metals to enhance its

mechanical properties. There are two types of aluminium alloys, wrought and cast alloys.

Wrought alloys are formed through mechanical methods such as rolling, forging, and ex-

trusion, while cast alloys are directly cast into the final shape [1]. Wrought aluminium

alloys exhibit several excellent properties, such as low density, high strength-to-weight ra-

tio, and great corrosion resistance in various environments. However, like pure aluminium,

aluminium alloys face challenges in acidic and alkaline media with chloride causing de-

passivation of the surface [4].

Localized corrosion is a great concern as intermetallics may act as cathodic sites relative

to aluminium, resulting in corrosion of the latter. One such form of localized corrosion is

pitting corrosion. Pitting corrosion takes four stages: (i) processes occuring on the passive

film and the solution; (ii) reactions inside of the passive film where no visible microscopic

alterations are observed in the film; (iii) formation of meta-stable pits which can grow

for a brief duration below the pitting potential Epit; and (iv) the growth of stable pits,

which occurs above a specific potential referred to as the pitting potential Epit
[3]. An

example of how Epit may be visualized graphically is shown in Figure 2.2, detected by a

rapid change in anodic slope.

2



2 THEORY

0 2 4 6 8 10 12

pH

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

P
o
te
n
ti
a
l
E

v
s
R
ef
.
[V

]

Al3+

(Active)

Al

(Immune)

α-Al2O3

(Passive)

AlO−
2

(Active)HER

ORR

Figure 2.1: Pourbaix diagram of α-aluminium with passive, immune and active regions

included. The applied activity of Al3+ is 10-6 mol L-1 [5]
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Figure 2.2: The pitting potential Epit is seen by a sharp decline in the anodic Tafel slope
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2.1.2 Electrochemical reactions

As depicted in the pourbaix diagram of aluminium, in acidic and alkaline media,aluminium

undergoes oxidation through Eq. 2.1 (acidic) and Eq. 2.2:

Al −−⇀↽−− Al3+ + 3 e−, (2.1)

Al + 2H2O −−⇀↽−− AlO−
2 + 4H+ + 4 e−. (2.2)

Possible cathodic reactions except reduction of aluminium are Hydrogen Evolution Reac-

tion (HER) and Oxygen Reduction Reaction (ORR). The reversible potential of ORR is

higher for any given pH relative to HER and thus thermodynamically more likely than

HER [6]. In reality, the ORR is complex and can involve multiple reactions and reaction

steps [7]. Common net reactions are Eq. 2.3 and Eq. 2.4:

O2(g, dissolved) + 4H+(aq) + 4 e− −−⇀↽−− 2H2O(l). (2.3)

O2(g, dissolved) + 2H2O(l) + 4 e− −−⇀↽−− 4OH−(aq). (2.4)

Furthermore, HER takes two different forms in acidic and alkaline media, given as [6]:

2H+ + 2 e− −−⇀↽−− H2, (2.5)

2H2O+ 2 e− −−⇀↽−− H2 + 2OH−. (2.6)

2.1.3 Charge transfer controlled kinetics

Assuming charge transfer controlled kinetics, the net electrode current density inet can

be given by the simplest form of the Butler-Volmer (BV) equation [6]:

inet = i0 ·
{
exp

[
αanF

RT
(ηact)

]
− exp

[
−αcnF

RT
(ηact)

]}
, (2.7)

where i0 is the exchange current density, α is the charge transfer coefficient for the anodic

(a) and cathodic (c) reaction, R is the universal gas constant , T is the temperature, and

nact is the activation overpotential.

Figure 2.3 depicts a polarization curve of a fictitious reaction under kinetics limited by

charge transfer with equal charge transfer coefficient α for the anodic and cathodic reac-

tion, resulting in symmetry around the reversible potential Erev.
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Figure 2.3: Polarization curve of a fictive reaction controlled by charge transfer kinetics.

Both anodic and cathodic α is 0.5, making the cathodic and anodic part symmetrical. Erev

= -0.60 V, n = 2. [5]

2.1.4 Charge transfer and mass transport kinetics

Kinetics controlled solely by charge transfer is not realistic for most environments. The

generalized BV equation accounts for both charge transfer and mass transport kinetics

and is given by [6]:

inet = i0

{
cR,s

cR,b
exp

[
αanFη

RT

]
− cO,s

cO,b
exp

[
−αcnFη

RT

]}
, (2.8)

where cR,s, cR,b, cO,s and cO,b represent the concentration of the reduced (R) and oxidized

(O) species on the surface (s) and in the bulk (b). The surface concentrations of the

reactive species are complex to derive and will depend on the cathodic reaction that

occur [7]. Nevertheless, by assuming diffusion limited kinetics, the relation between the

surface and bulk concentration of a species B can be given as [6]:

cB,s

cB,b
= 1− i

ilim
. (2.9)

where ilim is the limiting current density, known as the maximum net current on an

electrode due to limited transport of reactive species to the electrode surface. The limiting

current density ilim is graphically demonstrated in Figure 2.4 by the vertical asymptote

at the cathodic branch, and is mathematically approximated as:
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ilim = −nFDBcB,b

δ
, (2.10)

where DB is the diffusion rate of the reactive species on the electrode surface, F is

Faraday’s constant, δ is the Nernst layer thickness, cB,b is the concentration in the bulk

and n is the number of electrons transferred.

By utilizing Eq. 2.10 for both the anodic and cathodic reaction, Eq. 2.8 is transformed

into [6]:

inet =
i0 exp

[
αanF
RT η

]
1 + i0

ilim, a
exp

[
αanF
RT η

] − i0 exp
[−αcnF

RT η
]

1 + i0
ilim, c

exp
[−αcnF

RT η
] . (2.11)

The net current density following Eq. 2.11 is depicted in Figure 2.4. From Eq. 2.8 it is

noted that for large negative overpotentials, the cathodic term dominates relative to the

anodic current contribution. When the concentration at the surface cO,s becomes infinitely

small, the net current density inet converges to zero for any change in overpotential. Thus,

the diffusion limited current density ilim, c is obtained. Similarly, for large positive η, the

anodic limiting current density ilim, c is attained.
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Figure 2.4: Polarization curve with diffusion controlled kinetics. The limiting current den-

sities are observed by the vertical asymptotes. [5]

Eq. 2.8 does not elaborate the surface concentration of oxidizing and reducing agents for

kinetics deviating from the first order. The kinetics behind this is complex and will not

be derived. However, T. Shinagawa et al. (2015) [7] performed a comprehensive study

investigating the higher order kinetics for reactions like HER and ORR. Their results

supported that the BV equation (Eq. 2.8) in most cases fails to accurately describe the
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kinetics on an electrode surface as that requires a series of assumptions regarding the

surface coverage and rate determining steps, neglecting higher order kinetics. However,

BV is often a suitable first approximation.

2.1.5 Tafel slopes

The Tafel equation applicable under charge transfer controlled kinetics simplifies the BV

equation (Eq. 2.7) for large overpotentials (|η| > 0.1 V) and thus outlines the linear

parts of the polarization curve. By solving for the activation overpotential, ηact, the net

overpotential, ηact,net, can be obtained with bc and ba being the cathodic and anodic Tafel

slope, respectively [6]:

ηact,net = ηact,c + ηact,a

≈ −ln(10)RT

αcnF
log10

( |ic|
i0

)
+

ln(10)RT

αanF
log10

(
ia
i0

)
,

(2.12)

with bc and ba representing the cathodic and anodic Tafel slope, respectively. A more

general expression of the potential E applicable for any case of linearity no matter the

rate determining reactions is given as:

E =
∂E

∂log10(|i|)
log10(|i|) + B, (2.13)

where ∂E
∂log10(|i|) is the Tafel slope of either the anodic or cathodic part of the polarization

curve, and where B represents the intercept on the axis of E. A clear Tafel region is

defined when the slope is the same for over at least one decade, as multiple reactions may

occur at various potentials [8].

As addressed in Section 2.1.4, neglecting mass transfer kinetics is incorrect in most elec-

trochemical environments. Therefor, incorporating the concentration of species on the

electrode surface when expressing the Tafel slope yields a more accurate description of

the kinetics rather than solely through charge transfer controlled kinetics. Determining

the reaction rate on the electrode surface is however a very complex task, which is why

Tafel slopes often are estimated empirically [7].

As depicted in Figure 2.4, interpreting a valid Tafel region can be complicated due to

rapid change in slope caused by diffusion limitations. The cathodic Tafel slope constantly

becomes more negative when approaching the limiting current as the oxygen deposits on

the surface become infinitely low.

2.1.6 Influence of pH on electrochemical properties

Results from: (i) B. Zaid et al. on their study of AA6061 in various chloride rich acidic,

neutral and alkaline electrolytes; (ii) B. Tilak and C. Chen on their study of HER in
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alkaline media and (iii) M. F. Li et al. and their investigation of the ORR in alkaline media

are applied to provide insight on how pH affects important corrosion properties [4;9;10].

Data is susceptible to variations and should not be treated deterministically, but work as

plausible outcomes.

• Corrosion potential, Ecorr: In both acidic (pH = 2) and neutral (pH = 6)

solutions, it is anticipated that the corrosion potential will be relatively similar,

approximately -0.75 V vs SCE, and relatively unaffected by chloride content for a

concentration ≥ 0.1 mol/L, suggested by B. Zaid et al. [4]. Ecorr is not expected

to change substantially during polarization, as the measured corrosion potential

is similar to the Ecorr measured during as a function of time. Contrary, Ecorr is

expected to decrease in a significant manner in strong alkaline media (pH = 12)

to ≈ -1.4 V vs SCE, either due to thinning of the surface caused by hydroxide ion

attack or due to complete absence of the surface film. In less alkaline environments,

Ecorr could reach -0.7 V vs SCE.

• ORR Tafel slopes, bc: The ORR Tafel slopes are expected to vary between -60

and -120 mV/decade depending on the rate determining reactions [10].

• Corrosion current density, icorr: The study by B. Zaid et al. [4] demonstrated

higher cathodic current densities outside of the passive region of aluminium. In a

3.5 wt% ( ≈ 0.6 mol/L) solution, the cathodic current density for pH = 6 varied

between 10−6 to 10−5 A/cm2. A pH of 2 implied almost 10 times higher cathodic

current density, while for pH = 12, the cathodic current density could reach as high

as 10−2 A/cm2. This also resulted in a much higher corrosion current density icorr,

where the weight loss of aluminium was approximately five times higher for pH =

12 compared to pH = 2 in a 2.5 wt% (≈ 0.43 mol/L) chloride solution. Further,

the weight loss in the pH 6 solution was insignificant in comparison, making up less

than a third of the weight loss as for a solution of pH = 2.

• Pitting potential, Epit: B. Zaid et al. [4] found that the pitting potential Epit is

expected to be unaffected by the change in pH [4]. In a ≈ 0.6 mol/L solution, Epit

was approximately -0.75 V vs SCE and expected to decrease with an increase in

chloride content.
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2.2 Machine Learning

Machine learning (ML) and artificial intelligence are widely applied for solving real time

problems in fields like health care, finance, industry, military and scientific fields such as

chemistry problems [11]. A category within ML is supervised learning, a learning method

attempting to imitate human intelligence by training on labeled data [12]. In ML, the

amount and quality of the data is the key to success. However, a developer can increase

the chances of succeeding by applying a suitable model with correct architecture. In this

section, five algorithms that have gained traction during recent years is discussed. These

consist of four decision tree (DT) algorithms and an Artificial Neural Network (ANN).

The four DT algorithms under examination are Random Forest (RF), eXtreme Gradi-

ent Boosting (XGBoost), Light Gradient Boosted Machine (LightGBM), and Categorical

Boosting (CatBoost). RF, the oldest of these algorithms, was first developed in 2001 [13].

The remaining DT algorithms XGBoost, LightGBM, and CatBoost, were introduced in

2014 [14], 2017 [15], and 2017 [16], respectively. All four DT algorithms are ensembles of

DTs, serving as weak learners. The key difference between them is that while RF builds

independent trees, the other three utilize the residual between the predicted and em-

pirical value to construct the next tree in the sequence. Consequently, the latter three

algorithms are called Gradient Boosted Decision Trees (GBDTs). GBDTs have the ability

to outperform RF for a few reasons discussed in section 2.2.1.

The invention of Artificial Neural Networks (ANNs) dates back to 1952 when Rosenblatt

introduced a perceptron element with a single neuron to solve linear problems [17]. An

ANN is unique in its architecture, but shares certain similarities with DTs. In the follow-

ing sections, the fundamental aspects of the four DT algorithms and ANNs are elaborated.

To begin with, a general introduction to DTs and GBDTs is provided, followed by an

overview of common techniques used to enhance machine learning performance.

2.2.1 Decision trees and gradient boosting

Decision provide predictions by recursively splitting initially randomly sampled non-

normalized data from the total available training data into two or more nodes [18]. In

this process, data can be selected less or more than once. This allows each tree to be

trained on a unique subset of data and variables, which can be a great technique to

capture general trends in the training data. This does howver also face challenges, as

randomly drawing samples can make less significant data influence the learning process in

an unwanted manner. On the other hand, important data can be picked more frequently.

Various algorithms have methods to tackle this particular issue of random sampling by

continuing learning on those samples providing highest negative error gradient and filter

out less significant data, which will be explained further under each algorithm’s section.

Figure 2.5 depicts an example of a simple decision tree with three decision nodes and

four leaf nodes. The parameter x represents the sampled variable, whereas y denotes the
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predicted output. Assuming this was real training, it was determined that splitting data

based on x < 1, x > 3, and x > 2 yielded the lowest prediction error. When splitting

nodes, the decision tree identifies the optimal split to obtain the most information gain

and minimize the output error [18]. Decision trees contain several nodes with different

tasks. Each decision tree includes a root node, which consists of one or more samples

from the original data set. The two other types of nodes are decision and leaf nodes [19].

Decision nodes divide the sampled data into two, while leaf nodes are terminal nodes that

do not divide the data further, but provide the final prediction. In regression analysis, the

outputs are numerical values. In the situation of multiple outputs in the terminal node,

the average is returned as long as the expected shape of the output is a single value.

x <1 ?

y = 5 x >3 ?

y = 14 x >2

y = 9

Figure 2.5: Regression tree illustration for a ficticious data set. Blue and orange corresponds

to leaf/decision and terminal nodes, respectively.

Decision trees are widely utilized in machine learning due to their simple architecture [19].

Multiple DTs are often combined into ensembles to obtain better performance. One such

ensemble algorithm is RF. RF utilizes multiple decision trees and returns the mean across

all trees to obtain better generalization abilities compared to using solely one DT [13], and

will be more comprehensively discussed in Section 2.2.3. On the other hand, GBDTs are

constructed on a different basis, where the idea is to sequentially add more trees to the

ensemble to train on the error of the whole ensemble so far [18]. By directly optimizing the

next tree in the ensemble to maximize the negative error gradient, GBDTs can outperform

RF, but risk adapting too well to training data, a term called overfitting, which is discussed

in Section 2.2.2. Conversely, utilizing an insufficient number of iterations can induce

underfitting, which occurs when the model has not reached its maximum potential to

adapt to the training and validation data.

The main difference between the various GBDT algorithms is the employed tree and tree

growing structure. While decision trees with LightGBM and CatBoost are by default

built in a leaf-by-leaf fashion, the trees in XGBoost are built level-by-level by default.

The difference between them is depicted in Figure 2.6, where the blue node represents
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the next node to build on. In the leaf-by-leaf tree growing structure, the tree is further

developed from the node with the maxmimum error gradient [20;21]. Leaf-by-leaf allows for

greater computational efficiency as well as being capabable of adapting greater to data,

but are subsequently more susceptible to overfitting. On the other hand, level-by-level

growth decreases the chance of overfitting as more regularization are applied by limiting

the tree depth.

Leaf-by-leaf

· · ·

Level-by-level

· · ·

Figure 2.6: Leaf-by-leaf compared to level-by-level tree growing structure. The blue node

represents the node to build on at the next iteration. While decision trees with LightGBM

are built leaf-by-leaf, the trees in XGBoost are built level-by-level. Leaf-by-leaf allows for

greater computational efficiency as well as being capabable of adapting greater to data. On

the other hand, level-by-level growth decreases the chance of overfitting as more regularization

are applied by limiting the tree depth [20;21].

GBDTs have shown to be highly successful for a large variety of machine learning tasks,

being highly adjustable to the specific problem [18]. A great strength towards RF is the

plausibility to stop training early if no improvement is observed over a certain iteration

window, and thus avoid overfitting. This phenomenon is called early stopping and is

one of many widely utilized regularization techniques for iterative algorithms, included

GBDTs and ANN. Another regularization technique to reduce likelihood of overfitting is

the implementation of a penalty term added to the objective function, e.g. Mean Squared

Error (MSE), Root Mean Squared Error (RMSE), to lower the learning rate, and thus

improve the chance of finding the lowest loss with the drawback of increased training

time. The learning rate determines how fast the model adapts to new information during

training [22]. Commonly applied regularization techniques are L1 and L2 regularization

where penalty terms to the loss function. In L2, extreme values are punished as the

added penalty term is proportional to its magnitude, while in L1 sparse data (0 or no

value at all) are favored as all other objectives are penalized equally [23]. Thus, applying
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both L1 and L2 in unison is a popular strategy to prevent overfitting. Contrary, utilizing

L1 and L2 incorrectly by penalizing excessively can lead to high training time and lower

likelihood of convergence, inducing underfitting. In combination with early stopping, this

could indeed enhance training time to a significant degree.

2.2.2 Overfitting and underfitting

Overfitting and underfitting are unwanted phenomena that apply for all iterative machine

learning algorithms [24;18]. Overfitting is recognized by a model that adapts well to training

data, but generalizes poorly on unseen data. Contrary, underfitting is the opposite,

where the algorithm has yet to adapt to training data, seen by a declining training and

validation error. The algorithm learns from the training data, while a fraction of the data

is delegated to work as validation data, which is unseen data the model is evaluated against

to measure the performance. As discussed, a commnon way to tackle both underfitting

and overfitting is through utilizing regularization techniques such as early stopping and

added penalty terms to the loss function, in combination with a high number of iterations

to avoid underfitting. These regularization techniques should be applied on the validation

data [24]. In case of very noisy data, there is little to do to increase accuracy [24].

In Figure 2.7, a typical learning curve for an iterative machine learning algorithm is

shown. Prior to optimal fit, the algorithm underfits to training data, which is observed

by a declining validation error. When the optimal fit is reached, the validation error

starts to increase and overfitting territory is reached. A plausible outcome of underfit,

overfit and good fit for a regression problem is depicted in Figure 2.8a, 2.8b and 2.8b,

respectively.

Iterations

E
rr
or

Training Loss
Validation Loss

Under-

fitted

Over-

fitted
Min.

Figure 2.7: A quantitative illustration of underfitting and overfitting
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(a) Underfit (b) Overfit

(c) Good fit

Figure 2.8: Underfit, overfit, good fit
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2.2.3 Random Forest

As discussed in Section 2.2.1, Random Forest (RF) is an ensemble learning algorithm

with decision trees with random structures from pre-defined possible architectures as

base learners. The combination of multiple decision trees enables the algorithm to achieve

enhanced generalization performance by reducing the impact of individual decision trees’

errors on the final prediction [13]. Contrary to GBDT algorithms, node splits are done by

considering a random subset of features which drastically reduces likelihood of overfitting

to training data. The error is expected to decrease rapidly by adding more trees for small

number of trees, but tends to converge if many trees are already added.

The RF algorithm has become increasingly popular due to its success in addressing both

classification and regression problems and its ability to handle noisy data [25;13]. It is effi-

cient for both small and large-scale problems while maintaining statistical efficiency, and

its architecture is easily adaptable. Furthermore, RF can handle a wide range of problems

and has a simple architecture, resulting in fewer parameters to tune. Another strength of

the algorithm is its ability to handle small datasets with high-dimensional feature spaces.

In addition, it is well-suited to handle missing values. Another great feature about RF is

that it is less susceptible to overfitting compared to iterative algorithms, as the variance

between the trees grow for a large number of trees [25]. Training time does however become

larger for a higher number of trees in the forest.

Despite the widespread use of RF, the algorithm has certain limitations. One of the major

drawbacks is that each decision tree is learned independently, preventing the exploration

of additional information across trees [26]. The approach of using independent trees may

result in decent performance for many tasks, but it may not achieve top-tier accuracy like

a GBDT algorithm can.

Table 2.1 provides the key hyperparameters of RF algorithm together with their respec-

tive definitions and default values obtained from RandomForestRegressor class in Scikit-

learn [27]. A hyperparameter is defined as a parameter the developer has to assign prior to

training [24]. Regarding hyperparameter tuning, empirical studies have indicated that pur-

suing enhances performance through hyperparameter tuning for RF may not be worth

the time spent doing so [28]. However, scikit-learn RandomForestRegressor developers

suggest that testing various values of number of trees (n estimators) and maximum num-

ber of variables to consider for each split (max features) should enhance the performance

the most [29]. Additionally, applying many trees in the forest may be necessary to reliably

determine feature (input variable) importance [30].
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Table 2.1: Important hyperparameters in RF [30]. Hyperparameters are collected from the

RandomForestRegressor class in scikit-learn [27], where description, importance and default

values are also gathered.

Parameter Description Importance Default

n estimators

Number of

trees in the

forest.

High values increase

training time

and likelihood of

overfitting.

Opposite for small

forests: low training

time, but more likely

to underfit.

100

max features

Maximum

number of

features to

consider when

looking for the

best node split.

Low values result in

unique and less

correlated trees,

lower variance, but

higher bias, and thus

enhanced probability

of underfitting to data.

Few features also

decrease training time.

1

2.2.4 eXtreme Gradient Boosting

eXtreme Gradient Boosting (XGBoost) is a GBDT algorithm that by default builds de-

cision trees in a level-by-level fashion [31]. It is one of the most widely utilized algorithms

in this category and has been found to provide high performance with minimal hyperpa-

rameter tuning requirements. The algorithm was initially developed by T. Chen and C.

Guestrin to address scalability and sparse data set issues [32].

As XGBoost is a GBDT algorithm, overfitting may pose a challenge if excessive iterations

are applied. To address this issue, XGBoost uilizes regularization techniques to limit

the rate of learning [32]. Additionally, XGBoost may not be the best choice for high-

dimensional feature data sets, as it can be computationally inefficient in those scenarios.

With the development of new machine learning algorithms such as LightGBM (Section

2.2.5) and CatBoost (Section 2.2.6), XGBoost faces competition regarding training time.

On mutliple machine learning tasks, LightGBM and CatBoost have shown equal or better

accuracy with lower training time, computational power, and memory usage [16;21].

Regarding hyperparameter tuning, XGBoost developers acknowledge that optimal hyper-

parameters depends on the specific task [33]. The developers have multiple recommen-

dations with regards to training time, overfitting and underfitting. With high and low
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training and testing data accuracy, respectively, there is a great probability that the model

has overfitted to training data. They suggest two methods to combat this problem, (i)

control the model complexity by adjusting max depth, min child weight and gamma and

(ii) to add randomness through changing subsample, colsample bytree and eta. If under-

fitting is observed by not seeing any convergence, adjusting the parameters in opposite

direction as to when overfitting is observed, is a good strategy. Regarding training time,

XGBoost developers recommend setting tree method tree method to hist or gpu hist. hist

is a tree method similar to LightGBM’s leaf-by-leaf growth. Gpu hist applies hist with

GPU implementation. The parameters mentioned above are elaborated in Table 2.2,

along with default values in the Python xgboost library.

Table 2.2: Important hyperparameters in XGBoost [34]. Default values are collected from

XGBoost documentation [35].

Parameter Description Importance Default

eta

Controls how

fast the model

learn by adding

penalty term to

the loss function.

Increase eta to prevent overfitting.

However, a small laerning

rate could enhance

accuracy. Higher eta results

in larger training time. Adjust

iterations in the forest (num round)

reversely when changing eta.

0.3

max depth

The maximum

number of node

levels in the

tree

Enhanced depth will make

the model more likely

to overfit. Contrary, a very low

depthmay induce

overfitting

6

min

child

weight

A treshold value

that determines

whether or not

a node should

be split further.

1 implies purity.

Low value may induce overfitting

as it the model could fit too well

to data. Contrary, a high value

increases likelihood of

underfitting.

Low value increases training time.

1

gamma

Minimum loss

reduction for a

leaf to be split.

Low gamma enhances overfitting

probability. Conversely, high

gamma make the model more

conservative and prone to

underfitting.

Low value increases training time.

0
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colsample

by tree

Determines

the fraction of

features to train on.

Lower values induce more

randomness and less likelihood

of overfitting. Contrary, increases

risk of underfitting.

1

num round

Number of

iterations/trees

built

Underfitting is tackled by

increasing iterations. Contrary,

decrease iterations if

overfitting is observed

100

subsample

Determines the

fraction of

randomly sampled

data applied for

training. Counts

for each trees in

the forest. Must be

larger than 0.

1: All data used

0.01: 1% used.

Lower values enhances

randomness and regularization

and thus decrease likelihood

of overfitting. Contrary,

may leave out important data.

High values have opposite effect.

Lower values reduces

training time.

1

2.2.5 Light Gradient Boosted Machine

Light Gradient Boosted Machine (LightGBM) is a GBDT algorithm using a leaf-wise tree

structure, contrary to the level-wise growth in XGBoost [15]. LightGBM addresses the issue

of scalability and efficiency for large data sets by introducing Gradient-based One-Side

Sampling (GOSS) and Feature Bundling (EFB). LightGBM is proven to provide superior

performance relative to XGBoost in terms of computational efficiency and memory usage,

while sustaining same level of accuracy. GOSS works by filtering out data providing less

information, and thus train on less and more important data. Consequently, training time

is decreased. EFD bundles related features together to decrease the number of features

without hurting the accuracy to a significant degree.

Regarding hyperparameter tuning, the developers of LightGBM (Microsoft Corporation)

provide a set of recommendations [36]. Given LightGBM’s low relative training time, it

may be advantageous to prioritize tuning for improved accuracy and mitigating overfitting.

To enhance accuracy, the developers suggest tuning max bin, learning rate, num leaves or

dart. For tackling overfitting, many of these parameters can be adjusted in the opposite

direction. Table 2.3 depicts these critical hyperparameters in LightGBM, along with

their explanations and default values collected from LGBMRegressor class in lightgbm

scikit-learn API [37].
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Table 2.3: Important hyperparameters in LightGBM [36]. Default values are collected from

LightGBM’s documentation [38].

Parameter Description Importance Default

max bin

(this is

not directly

interpretable

in Scikit-

learn)

Categorizes

feature values

into bins or

intervals based

on their value.

Higher bin value

means shorter

interval in the bin.

Higher maximum bin can

enhance accuracy with the

drawback of larger training

time.

max bin is not directly

accessable in Scikit-learn

LGBMRegressor. Increase

num leaves instead.

N/A

num

leaves

Max number of

leaves in one tree.

Large and small values

may induce overfitting and

underfitting, respectively.

31

min

data

in leaf

(min child

samples in

Scikit-learn)

min child

samples is the

minimum number

of data needed

in a leaf.

Small and large values

may result in overfitting and

underfitting, respectively.

20

learning

rate

See ”eta” in

XGBoost.
See ”eta” in XGBoost. 0.1

boosting

type(”dart”)

Trains solely

on a random

subset of the

existing tree.

Increases randomization,

and have thus proven to

enhance accuracy.

N/A

2.2.6 Categorical Boosting

Categorical Boosting (CatBoost) is a GBDT machine learning algorithm that has demon-

strated superior performance to other gradient boosting algorithms such as XGBoost and

LightGBM in various machine learning tasks [16]. Prokhorenkova et al. (founders of Cat-

Boost) demonstrated this in their paper comparing CatBoost, LightGBM, and XGBoost

on several known machine learning tasks [16]. CatBoost significantly outperformed Light-

GBM and XGBoost in all cases, while LightGBM and XGBoost performed relatively

similarly. For some tasks, XGBoost and LightGBM were beaten by a logarithmic error

21% higher than CatBoost.

CatBoost employs symmetric binary decision trees with leaf-wise growth by default [16].

Symmetric and asymmetric trees are compared in Figure 2.9. As the splitting criteria are

the same at the same level in symmetric trees, they tend to be more balanced and less likely
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to overfit, as well as requiring less computational power. CatBoost has gained popularity

due to their enhanced capability of handling categorical data, while still providing great

performance in predicting numerical outputs.

Symmetric Tree

Q1

Q2

R Q3

Q2

R Q3

Asymmetric Tree

Q1

Q2

R Q4

Q3

R Q5

Figure 2.9: Comparison of symmetric (upper) and asymmetric (lower) decision trees. Q and

R represent question and residual, respectively, where the question is the optimized splitting

criteron. In the symmetric tree, the node splitting criteria is equal across the whole tree level.

This is not the case or an asymettric approach, where all nodes can exhibit distinct splitting

criteria.

Regarding hyperparameter tuning, CatBoost developers provide recommendations on how

to optimize your model for the specific task [39]. Initially, they suggest analyzing the vali-

dation data for any obvious signs of underfitting or overfitting. To tackle the underfitting

and overfitting simultaneously, they recommend implementing early stopping combined

with a high number of iterations. In Table 2.4, the developers highlight the most im-

portant parameters to tune. CatBoost developers also suggest testing with multiple tree

structures, e.g. asymmetric trees.

Table 2.4: Recommended parameters to tune are collected from CatBoost documenta-

tion [39]. Default values are collected from lightgbm library [40].

Parameter Description Importance Default

n estimators
See ”num round”

in XGBoost.

See ”num round”

in XGBoost.
1000
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learning

rate

See ”eta” in

XGBoost.

See ”eta” in

XGBoost.

Assigned

automatically

depending

on

num trees.

0.3 when

1000 iterations.

Decreases for

each iteration.

l2 leaf reg

Coefficient

in the L2

regularization.

Higher value

discourages the model

to learn too complex

relationships and thus

prevent overfitting.

Contrary, increases

training time as

the information gain

from each tree becomes

smaller.

3

random

strength

Amount of

randomness

when scoring node

splits. A

random score

with mean 0 and

decreasing variance

for each iteration

is added to the

score. A value ”1”

does however not

mean 1 is added, just

that randomness

increases.

Higher value prevents

overfitting, but

increases training time

as the model

will converge slower.

1
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border

count

The number

of splits for

numerical features,

i. e. put that

amount of data

into separate bins.

Higher value enhances

overfitting probability

as leaf nodes become

more pure. However,

higher accuracy can be

reached. A higher value

will enhance training

time.

CPU: 254

GPU: 32/128

2.2.7 Artificial Neural Network

Artificial Neural Networks (ANNs) are class of supervised machine learning algorithms

that attempts to optimize neuron-to-neuron connection parameters to minimize predic-

tion error by modelling the human brain [24]. ANNs are well-suited for complex machine

learning tasks with non-linear relationships and have been highly successful on platforms

like Kaggle [41]. ANNs have a more complex architecture compared to decision tree algo-

rithms. In this work, feed-forward structure (no cycle learning) is discussed. ANNs with

dense layers with a sequential structure is considered, which refers to a stack of layers

(sequential) where all neurons in layer i are connected to all neurons in layer i+1 (dense)

with each neuron receiving and returning one tensor.

ANNs consist of a series of three layers: an input layer (IL), one or multiple hidden layers

(HL), and an output layer (OL) [42]. The IL is where training data is provided. The HLs

are responsible for solving non-linearities in the data, and the number of HLs required

depends on the complexity of the problem being solved. Finally, the OL provides the

output and prediction of the target variable(s). It is important to adapt the design of the

network to the specific problem, and the optimal number of HLs is difficult to interpret,

and should be explored through hyperparameter tuning. However, a common thumb rule

is having a number of hidden layers greater than 2 [43].

ANNs are iterative algorithms that aim to decrease the prediction error for each iteration

through the network based on common loss functions such as MSE and MAE [44]. The

optimization process involves finding optimal neuron-to-neuron connection parameters,

where each neuron in the previous layer is connected to every neuron in the next layer, and

a neuron’s output is a prediction based on the given input variable(s) [24]. The parameters

that are optimized are known as weights (w) and biases (b) [42]. Weights w are scalar

values that determine the influence of each variable on the output. The bias b is a

constant adjustment value unique to each layer and is used to shift the neurons toward

activity or inactivity. The values of w and b are initially assigned random values or guessed

qualitatively by the developer and then adjusted through training during each iteration.

The output from the previous neuron is multiplied with w associating those two neurons,

with a unique b added to it. As neurons accepts array-like objects, this calculation is
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executed element-wise.

Figure 2.10 shows an ANN architecture designed for electrochemistry applications, where

the input variables are pH and potential E. Each neuron in the IL contains n data points

from a unique variable, which are fed as array-like objects. The weights (w) in the IL are

assigned a value of 0.5 by the ANN, while biases are represented by b1 and b2. Weights

and biases are updated after the completion of one cycle, known as an epoch, where all

batches have been processed once. A batch is a fraction of the training data. Common

utilized batch sizes are > 16 with intervals of 16 [45]. The batch size is a parameter assigned

initially by the developer and remains constant throughout the training process.

E1, E2,

. . . , En

pH1, pH2,

. . . , pHn

H1
1 , H

1
2 ,

H1
n

H1
1 , H

1
2 ,

H1
n

i1, i2,

. . . , in

0.3

0.2

0.3

0.2

0.5

0.5

IL HL: b1

OL: b2

Figure 2.10: A schematic representation of the architecture of an Artificial Neural Network

(ANN) with potential (E) and pH as input features. In the IL, the data associated with

each variable are placed into their respective variable neuron. The activation function is then

applied to the weighted sum of the neuron outputs, producing the output in the HLs. Initially,

weights are assigned either randomly or qualitatively. Subsequently, the weights are adjusted

with each batch using an optimizer of choice. The activation function processes the output

generated by the hidden layers to produce the current density output in the output layer.

This output is subsequently assessed against a set of validation data based on a selected loss

function. Training continues as long as an optional stopping criteria is not met.

The input data to the two neurons in the HL in Figure 2.10 can be described mathemat-

ically through Eq. 2.14 and 2.15 [46]. H1 and H2 are a value H in neuron 1 and 2 with

x being a value between 0 and n, where n represents the length of the array provided

in each neuron in the IL.. i represents the node under consideration in layer j. For any

value x in the first neuron in the HL:

H1
x =

i=n∑
i=1

[
X i

j=0 · w(X i
j=0, H

1
j=1) + bj=1 + (Y i

j=0 · w(Y i
j=0, H

1
j=1) + bj=1

]
, (2.14)
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and for any value x in the second neuron in the HL:

H2
x =

i=n∑
i=1

[
X i

j=0 · w(X i
j=0, H

1
j=1) + bj=1 + (Y i

j=0 · w(Y i
j=0, H

1
j=1) + bj=1

]
. (2.15)

X and Y in this context represent potential (E) and pH. In order to improve training

performance, features should be scaled (independently) as they can vary by orders of

magnitude [24]. This can e.g. be done by min-max-scaling, where the features are scaled

to a number between e.g. 0 and 1.

As previously mentioned, the bias b plays a role in shifting neurons towards activity

or inactivity. Whether a neuron is considered active or inactive is determined by the

activation function, which is also called a transferring function as it transforms the input

of a neuron to an output [46]. Multiple activation functions can be applied depending

on layer, however it is most common to apply the same activation across all neurons in

one layer. The scalar obtained from the weighted sum of input data is passed through

this activation function, which transforms it into values the ANN can process. A popular

activation function is the Rectified Linear Unit (ReLU) because of its enhanced speed and

accuracy [24]. Unlike other activation functions such as the sigmoid and tanh function,

ReLU sustains a constant gradient, eliminating the problem of vanishing gradients [24;47].

The mathematical expression for the ReLU activation function is shown in Eq. 2.16:

f(x) = max (0, x) , (2.16)

where x represents each neuron’s output (before fed to the activation function).

Eq. 2.16 implies that the ReLU activation function returns only positive values. Hence,

the bias can be used to make the neuron inactive (as 0 is returned) by being a sufficiently

negative value.

Furthermore, the weights and bias are optimized to minimize the error using the optimizer,

which finds the optimal values by adjusting the weights and bias iteratively with a defined

learning rate. The choice of optimizer is important and problem-specific, but Adaptive

Moment Estimation (ADAM) remains a popular choice due to its superior performance

in many cases [48]. As for the GBDT algorithms, a low learning rate could result in getting

trapped in local error minima, while a high value could lead to the optimizer failing to

find the global minimum. These phenomena are demonstrated in Figure 2.12. In Figure

2.11, a good learning rate is recognized by a lower error gradient, but where the error

ultimately converges to a lower value for a large number of epochs. Utilization of a lower

learning rate will however indeed increase training time as the learning process is slower.
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Figure 2.11: Comparison of different learning rates and their impact on the error
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Figure 2.12: Too high (upper left), too low (upper right) and suitable (bottom) learning

rate for an iterative machine learning algorithm

After each epoch, the model performs one prediction based on what it has learnt so far.

This prediction is compared with unseen data based on the loss function. The unseen

data is known as validation data. Prior to training, all data is divided into training and

validation, with common percentage splits of 70/30, 80/20 and 90/10 (train/test), where

the best split depends on the nature of the underlying data and the amount of data

available [49]. The fraction of validation data plays a significant role, as an excessively

24



2 THEORY

high or low proportion can lead to underfitting or overfitting, respectively [50].

ANNs are highly complex and require the specification of many parameters. Selecting

appropriate parameters is as discussed a challenging task, and thus parameter tuning

techniques like Random Search (RS) and Grid search (GS) are applied. These methods

will be discussed more comprehensively in Section 2.2.8.

2.2.8 Hyperparameter tuning

When training any machine learning algorithm, selecting appropriate model parameters

before training is crucial to obtain optimal performance [51]. For certain problems, the

hyperparameter combination can be the difference between a horrible and great model.

For instance, in a structural design problem executed by X. Du et al., an Artificial Neural

Network (ANN) achieved a 45.2% reduction in Root Mean Square Error (RMSE) following

hyperparameter optimization [51].

Determining optimal hyperparameters for a machine learning algorithm is a challenging

task and often requires a trial-and-error approach. Doing this manually can be time-

consuming and counter productive. Thus, developers often use optimization methods,

such as Random Search (RS) and Grid Search (GS). Both methods test a set of hyper-

parameter combiations and return the combination providing the lower error [52]. GS and

RS do however have differing approaches. GS tests all combinations within a predefined

search space, while RS randomly samples and tests hyperparameter combinations. Each

method has its own set of advantages and disadvantages. For instance, if the objective

is to comprehensively explore all combinations in the search space, GS could be a more

beneficial approach. On the other hand, if the search space is large, RS may offer a more

computationally efficient solution due to its random sampling strategy.

Developers of machine learning algorithms provide optimized default values for their al-

gorithms. For many tasks, using these can provide great results [16]. However, doing

a detailed hyperparameter search is likely to enhance the predictability and should be

executed if the trade-off between accuracy and training is acceptable. For GBDTs, a

good way in the event where tuning is not affordable, utilizing regularization techniques

such as early stopping is beneficial, as outlined in Section 2.2.1. For RF however, this

is not suitable. Furthermore, neural net libraries such as Keras require the developer

to determine all hyperparameters pre-training, as no default values are provided. Hence,

hyperparameter tuning when using ANNs is highly important [51]. The necessity of tuning

RF and the GBDTs algorithms discussed is attempted clarified in the following sections.

However, it is important to keep in mind that all machine learning tasks should be treated

independently. It is not possible to provide a definitive answer regarding the necessity

of tuning. One potential approach is to initially apply default values and subsequently

fine-tune the model.
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2.3 Statistics for non-distributed data

In many instances, the data set does not follow a certain distribution or known function.

In these cases, constructing trend lines can be of interest. One such method is by applying

a Simple Moving Average (SMA), which is constructed by calculating an average for a

predetermined window of the total data set. The SMA mathematical formula is given by

Eq 2.17 [53]:

SMAn =
1

n

k∑
i=k−n+1

f(xi), (2.17)

where n is the fixed number of data points in the window, i equals the data point under

consideration, and k is the relative position of the window being under consideration. A

benefitial effect of the SMA is capturing local trends in the data, as well as getting a

better understanding of likely future outcomes. The SMA weighs all data points equally.
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3 Experimental

3.1 Electrochemical experiments

2 x 2 pieces of extruded AA6060 + 0.0043 wt% nickel were cut from billets provided by

Norsk Hydro ASA. The acidic and alkaline electrolytes were formed by using hydrochloric

acid and sodium hydroxide together with necessary sodium chloride to obtain 0.1 M

chloride solutions. The pH range under consideration was pH between 2.0 and 12.0 with

steps of 0.2, resulting in 51 experiments. No electrolyte was reused in order to prevent

contamination. Conversely, due to sample limitations, it was necessary to apply the same

AA6060 sample multiple times as long as it did not exhibit a substantial degree of pitting.

Platina (Pt) and Standard Calomel Electrode (SCE) were used as counter and reference

electrode, respectively. The cell setup is depicted in Figure 3.1. No salt bridge was applied

as 0.1 M chloride content was assumed to provide satisfactory conductivity. The experi-

ment sequence was initiated with a measurement of the corrosion potential Ecorr, lasting

one hour or when it reached stability. The sequence was proceeded by cyclic voltammetry

(CV) with a lower and upper scan limit of -0.35 and 0.35 V vs Ecorr, respectively. A

sampling period of 0.1 seconds was applied to obtain an appropriate amount of training

data. Empirical data obtained from laboratory can be found in Appendix F (Ecorr) and

E (CV).

Figure 3.1: Electrochemical cell setup with Pt as Counter Electrode (CE), Standard calomel

electrode (SCE) as Reference Electrode (RE) and AA6060 + 0.0043 wt% asWorking Elecrtode

(WE) [5].
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3.2 Machine Learning in Python

The total amount of available data for training was 707913 data points. Training and

testing data was organized according to Table 3.1, having pH and potential (E) as input

features, and logarithmic absolute current density (log10(|i|)) as output. The full training
data set can be found in training data.csv on Github main branch1.

The applied classes or libraries for creating instances of models were sklearn.ensemble.

RandomForestRegressor [27] (Random Forest), catboost.CatBoostRegressor[16] (Cat-

Boost), xgboost.XGBRegressor[54] (XGBoost), lightgbm.LGBMRegressor [37] (LightGBM)

and Keras (running on top of TensorFlow, for ANN [55]).

Data was filtered prior to training. Data from t = 0 seconds until the reverse cathodic

scan began (potential minima) were removed for a smoother output. The filtering process

can be found in src/filter raw data.py on Github main branch1. In addition, obvious noise

from the potentiostat were removed. At the shift in 10-based logarithm, small rapid shifts

over a short period were observed and deleted from the data set. The result of the filtering

process can be observed in Appendix E.

Post filtering, data was separated into training and testing with a 80/20% split. The

same split was applied for all algorithms such that they would train and validate on the

same data. No further preprocessing step was applied in the case of DT algorithms. On

the other hand, normalization using MinMaxScaler in scikit-learn was employed as a

pre-processing step prior to training of the ANN. A feature range of [0, 1] was utilized as

all output values (log10(|i|) had equal sign. Code is found in src/data preprocessing.py on

main branch on Github1.

Furthermore, hyperparameter tuning was employed on several algorithms. Hyperparam-

eter tuning was not applied to CatBoost or XGBoost, but it was implemented on Light-

GBM due to its faster training times per iteration. Solely one GBDT algorithm was

tuned as they have comparable architectures. Instead, early stopping with 10000 iter-

ations were employed in order to terminate training before overfitting to training data.

For RF, early stopping was not an option due the different training architecture. Hence,

manual hyperparameter tuning according to the suggestions of thescikit-Learn devel-

opers, given in Section 2.2.3, was employed. This included testing different amount of

trees in the forest (n estimators) and the maximum number of features to consider in

each split (max features). For the ANN, RandomSearch class in Keras was applied2. For

LightGBM, GridSearchCV in scikit-learn was utilized3.

The ANN hyperparameters were tuned successively by narrowing down the search space

for each tuning attempt. The applied hyperparameters for all models can be found in

1Githup repository : https://github.com/matsssk/AA6060_ML/tree/main
2keras tuner.RandomSearch: https://keras.io/api/keras_tuner/tuners/random/
3sklearn.model selection.GridSearchCV:https://scikit-learn.org/stable/modules/

generated/sklearn.model_selection.GridSearchCV.html
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Appendix A, along with the hyperparameter tuning results of RF, LightGBM and ANN.

Tuning related data can be found on Github1. Code for training models are given in

src/train models.py on Github1.

Table 3.1: Training data sorted into labeled tabular data

CV Input Output

E [V] pH log(|i|)
E1

1 2.0 log(|i11|)
E1

2 2.0 log(|i12|)
...

...
...

CV 1

E1
n 2.0 log(|i1n|)

E2
1 2.2 log(|i21|)

E2
2 2.2 log(|i22|)
...

...
...

CV 2

E2
n 2.2 log(|i2n|)

...
...

...
...

E51
1 12.0 log(|i511 |)

E51
2 12.0 log(|i511 |)
...

...
...

CV 51

E51
n 12.0 log(|i511 |)
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4 Results

4.1 Polarization curve predictions

Figure 4.1 illustrates the comparison between experimental data (Exp.) and the predicted

polarization curves, as a function of both potential E and pH, generated by all algorithms

for each set of test data at pH levels of 2.2, 6.6, 7.4, and 11.6. In Table 4.1, a comparison

is made for each individual model against the corresponding empirical data. The values

representing the minimum and maximum Mean Absolute Percentage Error (MAPE) at

each pH level are distinctly highlighted in green and red, respectively. The algorithms

demonstrated a generally robust capability for adapting to the training data, with the

average of the Mean Absolute Percentage Error (MAPE) of the target output being

approximately 7%.
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Figure 4.1: Experimental data compared with the predicted polarization curves, with Exp.

short for Experimental (Continued on next page).
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Figure 4.1: (Continued from previous page) Experimental data compared with the predicted

polarization curves, with Exp. short for Experimental.
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Table 4.1: The prediction error of log10(|i|) for each algorithm, quantified in both Mean

Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE), is reported. The

lowest and highest average MAPE values across models and pH levels are denoted in red and

green, respectively.

RF
Cat-

Boost

XG-

Boost

Light-

GBM
ANN Mean

pH

MAPE

(RMSE)

[log10(|i|)]

MAPE

(RMSE)

[log10(|i|)]

MAPE

(RMSE)

[log10(|i|)]

MAPE

(RMSE)

[log10(|i|)]

MAPE

(RMSE)

[log10(|i|)]

MAPE

(RMSE)

[log10(|i|)]

2.2
3.46

(0.248)

3.45

(0.243)

8.46

(0.438)

3.46

(0.241)

5.54

(0.282)

4.87

(0.290)

6.6
2.48

(0.258)

2.46

(0.257)

2.41

(0.257)

2.43

(0.257)

5.55

(0.391)

3.07

(0.284)

7.4
11.57

0.713)

11.54

(0.710)

11.96

(0.712)

24.61

(1.03)

14.21

(0.722)

14.78

(0.778)

11.6
6.72

(0.371)

8.18

(0.465)

6.71

(0.370)

8.18

(0.464)

3.16

(0.187)

6.59

(0.371)

Mean
6.06

(0.398)

6.41

(0.419)

7.39

(0.444)

9.67

(0.498)

7.12

(0.395)

7.33

(0.431)
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4.2 Individual model comparison with empirical data

In Figures 4.2, 4.3, 4.4, 4.5, 4.6, each model, created with optimized hyperparameters, is

individually compared with the empirical data. Each figure includes the estimated Tafel

slope obtained through linear regression, accompanied by their respective 99% confidence

intervals (CI).

For the purpose of calculating cathodic Tafel slopes at pH 2.2 and 7.4, potentials greater

than -1.05 V vs SCE were used due to a small, observable shift in slope around this

potential, possibly due to HER. At pH 6.6, the cathodic Tafel slope was estimated using

potentials greater than -1.1 V vs SCE, because a slope change was detected at potentials

more negative than -1.1 V vs SCE. However, at pH 11.6, the same behaviour in slope

change was not observed as the cathodic current was considerably large, showing signs of

approaching the limiting current density ilim.

In addition, only potentials lower than -0.15 V below Ecorr were used for the Tafel line

to ensure that the readings were sufficiently below Ecorr. It is important to note that the

narrow linear regions may suggest that a valid Tafel region is not definitively observed as

ideally, the Tafel region should be calculated over at least one decade. To achieve this,

the lower potential limit would have to be more negative than -0.35 V with respect to the

corrosion potential Ecorr. Then, on the other hand, the Tafel slope could be susceptible

to change.

A normality test was performed on the residuals from the Tafel line to ascertain the

validity of implementing a CI. Normality turned out to be a reasonable assumption,

verified in the normality test in Figure C2a along with its standardization to obtain Figure

C2b in Appendix C. For this normality test, the residuals were assumed independent on

the Tafel slope, which was necessary to combine them into one single normality test.

Details with utilized hyperparameters for each specific model, along with the associated

outcomes from the tuning process (if tuning was executed), can be found in Appendix A.

In Table 4.2, 4.3, 4.4 and 4.5, the estimated corrosion potential Ecorr, cathodic Tafel slope

bc and corrosion current density icorr with their respective 99% CIs are given. The sign

of the Percentage Error (PE) indicates for simplicity a lower (more negative) and higher

(more positive) value compared to the empirical data. Additionally, take note that the

PE of Ecorr would indeed change depending on the applied reference electrode (RE). Still,

a PE is provided for easier distinction between the empirical and predicted Ecorr. The

mean MAPE across all pH is given in Table 4.6. As the anodic reaction was unsuitable

for measuring icorr, the intersect between Ecorr and the cathodic Tafel line was utilized

instead. Furthermore, in Table 4.3, the measured pitting potentials Epit are provided as

pitting was observed at pH 6.6.

The linear regression used to calculate the cathodic Tafel slopes demonstrated considerable

reliability, as evidenced by the narrow range of the 99% confidence interval. This resulted
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in a relatively high level of certainty when measuring the corrosion current density icorr.

However, the validity of the ANN Tafel slopes depicted in Figure 4.6a, 4.6b, 4.6c can

be questioned. These cathodic branches showed untypical behavior, with rapid shifts in

current that were not observed in the empirical data.
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Figure 4.2: The RF results are compared to the empirical (Emp.) data for all test data.

Included are the estimated Tafel line with a 99% confidence interval (CI), the corrosion

potential Ecorr, and the corrosion current density icorr.
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Figure 4.3: The CatBoost results are compared to the empirical (Emp.) data for all test

data. Included are the estimated Tafel line with a 99% confidence interval (CI), the corrosion

potential Ecorr, and the corrosion current density icorr.
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1(c) LightGBM, pH = 7.4
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Figure 4.4: The LightGBM results are compared to the empirical (Emp.) data for all test

data. Included are the estimated Tafel line with a 99% confidence interval (CI), the corrosion

potential Ecorr, and the corrosion current density icorr.
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1(d) XGBoost, pH = 11.6

Figure 4.5: The XGBoost results are compared to the empirical (Emp.) data for all test

data. Included are the estimated Tafel line with a 99% confidence interval (CI), the corrosion

potential Ecorr, and the corrosion current density icorr.
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1(b) ANN, pH = 6.6
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Figure 4.6: The ANN results are compared to the empirical (Emp.) data for all test

data. Included are the estimated Tafel line with a 99% confidence interval (CI), the corrosion

potential Ecorr, and the corrosion current density icorr.
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Table 4.2: Polarization curve features at pH 2.2

Tafel slope bc with

99% CI [mV/dec]

icorr with

99% CI [µA/cm2]Ecorr

[mV] [b̄c − zσ̄, b̄c + zσ̄] Pred [̄i− zσ̄, ī+ zσ̄] Pred

RF -663.0 [-437.3, -436.7] -437.0 [36.86, 36.79] 36.83

CatBoost -665.4 [-435.2, -434.6] -434.9 [37.12, 37.05] 37.09

XGBoost -632.6 [-446.7, -443.9] -445.3 [10.69, 10.6] 10.65

LightGBM -664.2 [-435.7, -435.0] -435.4 [36.93, 36.86] 36.89

ANN -661.4 [-274.9, -206.1] -240.5 [8.641, 4.182] 6.332

Mean ML ≈ -661 N/A ≈ -399 N/A ≈ 26

Exp. data ≈ -680 [-367.5, -365.8] ≈ -367 [36.04, 35.78] ≈ 36

PE [%] ≈ 3 N/A ≈ -9 N/A ≈ -29

Table 4.3: Polarization curve features at pH 6.6

Tafel slope bc with

99% CI [mV/dec]

icorr with

99% CI [µA/cm2]
Ecorr

[mV]

Epit

[mV]
[b̄c − zσ̄,

b̄c + zσ̄]
Pred

[̄i− zσ̄,

ī+ zσ̄]
Pred

RF -785.4 ≈ -650 [-414.1, -411.7] -412.9 [1.045, 1.037] 1.041

CatBoost -785.9 ≈ -650 [414.6, -412.0] -413.3 [1.050, 1.042] 1.046

XGBoost -785.4 ≈ -650 [-413.5, -410.9] -412.2 [1.043, 1.034] 1.038

LightGBM -786.5 ≈ -650 [-413.5, -410.8] -412.1 [1.049, 1.041] 1.045

ANN -781.3 N/A [-431.3, -415.7] -423.5 [1.788, 1.706] 1.747

Mean ML ≈ -789 ≈ -650 N/A ≈ -415 N/A ≈ 1.2

Exp. data ≈ -809 ≈ -650 [-417.8, -414.7] ≈ -416 [1.106, 1.096] ≈ 1.1

PE [%] ≈ 3 0 N/A 0.3 N/A ≈ 8
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Table 4.4: Polarization curve features at pH 7.4

Tafel slope bc with

99% CI [mV/dec]

icorr with

99% CI [µA/cm2]Ecorr

[mV] [b̄c − zσ̄, b̄c + zσ̄] Pred [̄i− zσ̄, ī+ zσ̄] Pred

RF -865.8 [-253.1, -252.0] -252.5 [0.2933, 0.2914] 0.2924

CatBoost -868.6 [-248.1, -240.6] -244.4 [0.2924, 0.2788] 0.2856

XGBoost -865.9 [-256.8, -251.7] -254.3 [0.3009, 0.292] 0.2965

LightGBM -822.0 [-415.4, -409.7] -412.5 [0.698, 0.688] 0.6939

ANN -825.2 [-570.5, -559.5] -565.0 [0.757, 0.7458] 0.7514

Mean ML ≈ -829 N/A ≈ -346 N/A ≈ 0.46

Exp. data ≈ -726 [-521.4, -519.3] ≈ -520 [0.6460, 0.6433] ≈ 0.65

PE [%] ≈ -14 N/A ≈ 34 N/A ≈ -28

Table 4.5: Polarization curve features at pH 11.6

Tafel slope bc with

99% CI [mV/dec]

icorr with

99% CI [mA/cm2]Ecorr

[mV] [b̄c − zσ̄, b̄c + zσ̄] Pred [̄i− zσ̄, ī+ zσ̄] Pred

RF -1492.6 [-553.0, -548.0] -550.5 [1.137, 1.126] 1.131

CatBoost -1393.8 [-525.5, -516.7] -521.1 [0.6637, 0.6485] 0.6561

XGBoost -1492.8 [-553.0, -548.1] -550.6 [1.138, 1.126] 1.132

LightGBM -1392.6 [-517.7, -509.4] -513.6 [0.6485, 0.6339] 0.6413

ANN -1460.1 [-616.7, -610.9] -613.8 [1.010, 1.000] 1.005

Mean ML ≈ -1450 N/A ≈ -550 N/A ≈ 0.91

Exp. data ≈ -1470 [-518.1, -512.2] ≈ -515 [0.8474, 0.8357] ≈ 0.84

PE [%] ≈ 1 N/A ≈ -7 N/A ≈ 9

Table 4.6: The average MAPE across all test data (pH) of the estimated polarization curve

features

Ecorr

vs SCE
bc icorr

Mean MAPE [%] 5 13 19
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4.3 Training time

Figure 4.7a shows the total training time of each optimized model. In Figure 4.7b, training

times per iteration prior to termination for the DT algorithms is depicted. RF demon-

strated fastest overall training time, while LightGBM and CatBoost proved superior per-

formance in terms of time per iteration/tree.
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(a) Training time for all optimized models with

the DT algorithms and ANN marked in blue
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(b) Training time per tree for DTs

Figure 4.7: Training times for all models (left, 4.7a) and training time per iteration/tree

for the GBDT algorithms (right, 4.7b).

4.4 Learning curves

Figure 4.8a displays the learning curves of the GBDT algorithms with vertical black bars

marking the iteration where early stopping was triggered. The Training Error (TE) and

Validation Error (VE) are given in RMSE, as RMSE was set as the evalution metric for all

algorithms. Together with the learning curves, the 3 window SMA of the validation error

gradient over 100 iterations for each GBDT algorithm is provided to display the general

trend. It can be observed that the error decreased substantially for smaller number of

iterations, while converging to a lower limit for higher iterations, with XGBoost showing

enhanced ability to adapt to training data.

In Figure 4.8b, the learning curve of the optimal ANN model is presented. The error

is given in RMSE of the predicted normalized logarithmic current density. At the 16th

epoch, training was terminated as a new global error minima was not achieved over the

early stopping criteria of 4. As seen from the figure, the validation error (VE) did however

find a new error low at the epoch of termination, which indicates that training was stopped

prematurely.
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(a) Training and validation error measured in RMSE for GBDT algorithms (primary y-axis). The 3

window SMA of the error gradient over 100 iterations is also provided (secondary y-axis). TE and VE are

short for Training Error and Validation Error, respectively.
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4.5 Error on known data compared to unseen data

Figure 4.9 presents the ratio of the average error across all pH levels for LightGBM,

CatBoost, and XGBoost to the validation error (VE) at the point of training termination.

The large contrast between errors on known and unknown data suggests presence of

unexpected behavior within the training and validation sets. Solely based on Figure

4.9, one might infer overfitting to the training data as a possible explanation. However,

overfitting is deemed less probable. This hypothesis is discussed further in Section 5.3.

Data from RF and ANN is not included in Figure 4.9 as they were not accessible. RF does

not utilize validation data, and thus the comparison with the GBDT algorithms would

indeed be incorrect. In the case of ANN, the target output was the normalized value

of the logarithmic current density. Consequently, the error at termination in relation

to the non-normalized value is not available. This would require training on the non-

normalized value, which would not provide an accurate error conversion, as training on

non-normalized data is expected to enhance the training and validation error.
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Figure 4.9: The average error across all pH for LightGBM, CatBoost and XGBoost divided

by the validation error (VE) at termination of training. The fraction is dimentionless, as both

errors are measured in RMSE.

4.6 Analysis of empirical data

To achieve a comprehensive understanding of the machine learning results, a thorough

analysis of the training data is executed. Consequently, exploring the consistencies and

inconsistencies in both Ecorr and empirical polarization curves is essential.
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4.6.1 Corrosion potential measurements

Typically, the corrosion potential Ecorr behaved relatively stagnant during the last third

of the measurement period, as depicted in Figure D2. This observation is in line with

findings by B. Zaid et. al. considering AA6061 [4], where the OCP in acidic, neutral

and alkaline media reached stability after an approximate duration of one hour. Due to

the stagnant behaviour, a normality test was assessed to investigate the assumption of

normally distributed residuals from the mean. The results are shown in Figure C1a and

C1b. The results imply that the assumption of normally distributed residuals from the

mean is reasonable. Thus, it was concluded that Ecorr on a general basis reached stability

before polarization was initialized.

However, relying solely on the Ecorr residuals to describe the trends is inadequate. This

is because certain measurements exhibit clear deviations from normality, observed by

distinct change in potential in either direction. Such trends can e.g. be observed in

Figure F3, F7, F11, and F12 for pH values of 4.2, 7.2, 10.4, and 10.8, respectively. These

polarization curves show clear deviation from normality by exhibiting clear positive or

negative Ecorr gradients during the last third of the measurement period. Thus, potential

inaccuracies in the measured Ecorr is plausible as a stable state was not reached.

Figure D1a show that Ecorr fluctuated especially to a large extent in the passive region,

possibly due to meta-stable pitting induced by chloride attacks, depassivating the surface.

The fluctuating characteristic of Ecorr had a noticeable impact on the prediction error of

Ecorr at pH = 7.4, as outlined in Figure 4.1c. At this pH, the mean prediction error of

Ecorr was approximately 14%. A likely explanation for this error is the unstable Ecorr

seen in Figure F7 and F8 at pH 7.2, 7.4 and 7.6. At t = 3600 seconds, the Ecorr recorded

at pH 7.4 exhibited a significantly higher value compared to pH 7.2 and pH 7.6. As a

result, the initial Ecorr during polarization showed high variation at this pH range. This

is observed in Figure E14 and E15. Justifying these variations is difficult, however a case

could be made that these samples possibly demonstrated different surface conditions,

a consequence of either or both re-usage of samples or scratches obtained through e.g.

physical transport. On the other hand, in acidic media at pH < 3.6, as depicted in Figure

F1 and F2, the Ecorr measurements displayed a relatively stagnant behavior within the

range of -0.65 to -0.70. Consequently, the average error of Ecorr at pH 2.2 was only

approximately 3%.

In certain cases, Ecorr underwent large changes during cathodic polarization, as outlined

in Figure D1c and Table A8. at pH 4.4, the value of ∆Ecorr was observed to be -0.197

V. As depicted in Figure D1c, this was however untypical behaviour. These observations

are expected to have a negative impact on the predictive capability. Therefore, further

examination of the empirical polarization curves is necessary.
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4.6.2 Polarization curves

As discussed, this work attempted to predict corrosion potential Ecorr, cathodic Tafel

slopes bc, corrosion current density icorr, and pitting potential Epit. For simplicity, the

Ecorr at time = 0 seconds in the polarization is denoted Ecorrt0 , while Ecorr post cathodic

scan is abbreviated Ecorrth .

The findings presented in Appendix E indicate that the Butler-Volmer (BV) equations do

not accurately describe reality. The BV equation considering mass transport (Eq. 2.11),

with the theoretical polarization curve in Figure 2.4, demonstrates in some instances a

reasonable depiction of the kinetics, particularly observed at pH 4.0 (E6), where the ca-

thodic current density is limited by insufficient oxygen transport to the electrode surface,

resulting in an infinitely negative cathodic Tafel slope bc. On the other hand, BVdiff

fails to adequately represent the cathodic branch in numerous cases where a diffusive

current limitation is absent. Furthermore, BVdiff obviously falls short in determining the

pitting potential and regions where meta-stable pitting may occur. Consequently, these

observations emphasize the utility of machine learning to estimate important features of

polarization curves, such as Ecorr, bc, and Epit.

Empirical values of Ecorr aligned well with theoretical expectations (≈ -0.75 V vs SCE),

as seen in Table 4.2, 4.3, 4.4 and 4.5. In Figure D1, Ecorr is depicted as a function of

pH, both prior to polarization (Figure D1a) and post cathodic scan (Figure D1b). The

measured Ecorrt0 is generally in line with Ecorrth , with an average difference of only 7

mV. However, a notable deviation from this trend is observed at pH = 4.4, where the

difference between Ecorrt0 and Ecorrth is nearly -0.2 V, as outlined in Figure D1c and

Table A8. Justifying the larger ∆Ecorr of -0.2 V with certainty is challenging. However,

a plausible explanation is impurities on the aluminium alloy surface. Metallic ions such

as magnesium could be dissolved and thus act anodic towards aluminium, increasing

Ecorr of aluminium. Additionally, the pH in the solution is changed throughout cathodic

polarization as both ORR and HER will change the pH, as seen in the electrochemical

reactions in Section 2.1.2. Another interesting observation with respect to ∆Ecorr in

Figure D1c is the delta as a function of pH. The delta was observed significantly larger in

strong alkaline media at pH 10-11. However, it is further discovered that the percentage

change is relatively independent on pH. Thus, the Ecorr delta measured in percentage is

not generally changing with pH, local deltas are indeed observered, e.g. at pH 4.4 as

discussed above.

In strong alkaline media, Ecorr was substantially decreased. In Table A8, it can be dis-

cerned that Ecorr was ≈ -1.5 V vs SCE at pH 12, surpassing the Ecorr of -1.4 V vs SCE

in 3.5 wt% (≈ 0.6 mol/L) chloride [4]. The slightly higher Ecorr of -1.5 V vs SCE obtained

in this work is difficult to clarify, as Ecorr was suggested relatively independent of chlo-

ride content. The more negative Ecorr of -1.5 V vs SCE does however indicate that the

extruded AA6060 aluminium alloy apploy in this work is more likely to corrode in strong
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alkaline media compared to the AA6061 alloy investigated in the work by B. Zaid. et

al. [4].

The large negative Tafel slopes in Tables 4.2 - 4.5 deviate significantly from theoretically

expected ORR Tafel slopes of -60 to -120. The estimated Tafel slope of up to -520.3

mV/decade at pH = 7.4 indicates unexpected surface behaviour as neither of the empirical

polarization curves at test pHs (2.2., 6.6, 7.4 and 11.6) exhibit clear limiting currents.

Conversely, at e.g. pH 4.0 (Figure E6) a limiting current ilim is detected initially for

potentials closer to Ecorr at the cathodic branch. Furthermore, the cathodic Tafel slopes

were seemingly largely influenced by the electrode surface condition, which plausibly was

fairly inconsistent across the samples.

Moreover, HER is not explicitly found in test data at neither pH 2.2, 6.6, nor 7.4 (Figure

E1, E12 and E14). This is because ORR is more dominant at higher potentials for

negative overpotentials. Nevertheless, there are minor indications of HER at pH 6.6 and

pH 7.4 at -1.1 and -1.05 V vs SCE, as the Tafel slopes become less steep, as outlined in

Section 4.2. At pH 11.6 (Figure E25), distinguishing between ORR and HER is obviously

challenging, as both reactions are thermodynamically feasible. In general, the empirically

observed high cathodic Tafel slopes verify the importance of utilizing machine learning,

as analytically interpreting Tafel slopes proves to be a challenging task due to complex

kinetics of ORR and HER.

In this work, the corrosion current density icorr was empirically estimated by use of the

corrosion potential Ecorr and the cathodic Tafel line, as previously discussed at the be-

ginning of this section. The anodic branch typically suffered from pitting in acidic and

neutral environments and was therefor not utilized to find icorr. Additionally, in highly

alkaline environments (pH ≥ 10.4), an anodic limiting current was observed. A limit-

ing current may have occurred as a result of enhanced concentration of hydroxide ions

(through ORR and HER in alkaline media, Eq.2.4 and Eq. 2.6), causing oxidated alu-

minum to react with these hydroxide ions to form aluminium hydroxide. Anodic current

limitations are also observed at pH 11.6 (Figure E25), which also exhibit untypical be-

haviour by shifts to lower currents. The reason for this is difficult to interpret. However,

a plausible explanation could be the dealloying of aluminium induced by the high pH.

Consequently, the current observed may indeed represent the passive current. A similar

shift in anodic current density to obtain the passive current was empirically found by B.

Zaid et al. in their study of AA6061 [4].

Tables 4.2 to 4.5 provide empirically estimated values for the corrosion current density

icorr. The observed results align well with theoretical expectations [4]. It is observed

that in strong alkaline environments, the corrosion current densities increase significantly

(approximately 0.84 mA/cm2 at pH 11.6) compared to both acidic and neutral conditions.

Furthermore, in strong acidic electrolytes (pH = 2.2), the corrosion current density is

considerably higher than in neutral media (pH = 6.6 and pH = 7.4). The empirically
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estimated icorr of 36 µA/cm2 at Ph 2.2 is approximately 36 times larger than at pH =

6.6 and 56 times larger than at pH = 7.4, respectively. The elevated corrosion current

densities in acidic and alkaline media are consequences of the larger cathodic currents.

The current densities at negative overpotentials align well with theoretical expectations [4],

where the highest current densities were observed in strong alkaline media, surpassing 1

mA/cm2. The enhanced current density could be justified by increased HER and ORR

reaction rates caused by the lower Ecorr. Additionally, in strong alkaline electrolytes,

the depassivated surface area is expected to increase due to enhanced dissolution rate of

aluminium through Eq. 2.2, leaving a larger available electrode surface area unprotected.

Thus, increasing the surface concentration of oxidized species in Eq. 2.8 and consequently

the net current density.

The pitting potential Epit, is most visible in test data at pH = 6.6 (Figure E12) at ≈
-0.65 V vs SCE. Epit is not clearly visible at pH = 2.2, as shown in Figure E1, since Ecorr

is ≈ -0.68 V vs SCE, only 60 mV lower than Epit. At pH = 7.4, Epit is not visible as

Ecorr was ≈ -0.726 V vs SCE, as obtained from Table A8. At this potential, aluminium

oxidation is likely the main anodic reaction.

The average Epit, as found in Figure D1d, was determined by plotting Epit against pH, if

Epit was clearly visible. Aligning with theory, Epit did not exhibit any clear trend with pH

and stayed relatively constant with an average of Epit, avg = -0.66 V vs SCE, as depicted

in Figure D1d. The outlier at -0.7 V vs SCE at pH = 5.2 could be explained by distinct

surface conditions such as cracks and segregation, propagating pitting. The average of

-0.66 V vs SCE is higher than the measured ≈ -0.75 V in a 3.5 wt% (0.6 mol/L) chloride

solution and aligns well with expectation that Epit should decrease for larger chloride

content [4].
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5 Discussion

5.1 Introductory remarks

Generally, the machine learning algorithms performed similarly with an average MAPE

of approximately 7% of the logarithmic current density across all pH. RF and LightGBM

was the top and worst performer with MAPE of 6.06% and 9.67%, respectively, as seen in

Table 4.1. The fact that the GBDT algorithms did not outperform RF contradicts with

theory, and can be explained by the noisy data set as a significant larger error was observed

on unseen data, as seen in Figure 4.9. This is further explained in the coming paragraphs.

The highest prediction error was observed at pH 7.4, as the polarization curves around

this pH varied significantly. The corrosion potential Ecorr, cathodic Tafel slope bc and

corrosion current density icorr were estimated with an average MAPE across all pH of

5.23%, 12.3% and 18.2%, respectively, as found in Table 4.6. The estimated cathodic

Tafel slopes bc and corrosion current densities icorr exhibit small regression uncertainty,

as seen in the narrow 99% CIs. In addition to accurately predict the magnitudes of Ecorr,

bc and icorr, the algorithms were highly capable of capturing important pH dependent

transitions in the polarization curves, such as the pitting potential Epit. In addition,

XGBoost showed promising potential of locating meta-stable pitting.

The fastest algorithm was RF, using solely 2.91 seconds to train, as seen in Figure 4.7a.

This can be attributed to the fact that only five trees were utilized in the forest, as seen

in Table A5. LightGBM was the most efficient algorithm per tree/iteration, using only

0.008 seconds, as depicted in Figure 4.7b. Moreover, ANN was the slowest algorithm using

3 hours and 45 minutes to train in total. A lot of effort was put into hyperparameter

tuning of ANN with the result of being the average performer across all algorithms. The

applicability of ANN, for what was proven a data set with a large degree of unknown

behaviour, is therefor questioned as the trade-off between time and accuracy was poor

relative to the other algorithms. A brief assessment of the proposed algorithms to employ

moving forward is provided in the conclusive remarks in Section 6.

It was observed that the algorithms typically adapted well to training data, but struggled

to predict unseen data with same accuracy, as depicted in Figure 4.9. As early stopping

and built-in L1 and L2 regularization were utilized for the iterative algorithms, and be-

cause only 5 iterations were applied in RF, overfitting to training data was not considered

a likely explanation for any algorithm. A more probable explanation is non-optimal model

architectures in combination with large amounts of unknown behaviour in the data set.

The observed unknown behaviour may be attributed to the limited use of pH as the sole

input feature. In this work, characteristics such as cracks or segregation of certain alloy

elements are not accounted for. Additionally, the re-usage of samples across experiments

has indeed caused changed surface structure, which is not accounted for in the data set.

It was however observed that pH did indeed influence the predicted results, as the average

pH feature importance (for GBDTs) was 36% (potential E: 64%), as shown in Figure B2.

49



5 DISCUSSION

The feature importances in the ANN was not obtained as Keras does not provide feature

importance data.

Section 4.6 provided a comprehensive analysis of the empirical data. In the following

paragraphs, the feature importance of E and pH, the outcomes of performed hyperpa-

rameter tuning, and the obtained learning curves is discussed. Additionally, individual

algorithms are examined at each pH.

5.2 Feature importances

Examination of Figure B2 revealed that pH was, on average, less important (36%) during

the training process compared to potential (64%). The purpose of calculating the feature

importance is however to get a more comprehensive understanding of how important

pH is compared to the potential E for the observed current density. Interestingly, RF,

with its lower number of trees, predicted the lowest importance for pH, whereas the

GBDT algorithms estimated a higher average pH importance. As explained in section

2.2.3, a larger number of iterations is typically required to accurately determine feature

importances. Thus, it is reasonable to assign greater weight to the feature importances of

the GBDT algorithms presented in Figure B2. However, Figure B1 challenges this theory,

as the feature importances calculated by RF did not undergo significant changes with the

number of trees in the forest. The feature importances of ANN was not provided as Keras

does not support this feature.

It is assumed that the importance of pH and E may vary significantly to those estimated

by the DT algorithms due to the different model architectures. In a research conducted

by A. S. Dyer et. al [56], the feature importances in XGBoost and ANN was examined for

a task of predicting the remaining useful life of offshore operating platforms. The study

revealed that a particular parameter held over 80% importance in XGBoost’s prediction

model, while its significance dropped to less than 30% within the ANN framework. A

similar result was obtained by G. K.F. Tso et al. [57] on electricity energy consumption,

where high contrast between the feature importances of ANN and DT were detected.

Therefore, it is reasonable to anticipate contrast between feature importance of pH and

potential E in this work. However, it is concluded that pH did indeed influence the

optimal node splitting criteria, and thus, the prediction of the logarithmic current density

log10(|i|).

5.3 Hyperparameter tuning and learning curves

Generally, the effect of hyperparameter tuning in this work is questioned. CatBoost had

the second lowest MAPE of 6.41% without any tuning. That being said, the default

learning rate of 0.3 was substituted with 0.35 as a learning rate of 0.3 made the model

incapable of converging over a period of 10000 iterations. This may have affected the

prediction ability of CatBoost negatively. A comprehensive research conducted by C.
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Bentéjac et al. [58] revealed that tuning CatBoost hyperparameters had minimal effect on

the result of various classification tasks. This is attributed to the change in learning rate

throughout the iterative training process. Thus, the optimal value is expected to be close

to the default. Hence, the applied value of 0.35 compared to default (0.3) in this work may

have lead to unwanted higher error. It is however noted that the study by C. Bentéjac et

al. considered decision trees for classification. Nevertheless, the architecture is similar to

regression trees [59]. Thus, it is assumed that the results conducted by C. Bentéjac et al.

can be utilized for CatBoost regression as well.

In contrast to CatBoost, the RF, LightGBM, and ANN models each underwent varying

levels of hyperparameter tuning. The hyperparameter tuning of ANN was indeed the

most time consuming tuning process, requiring days to tune. Several rounds of tuning

were applied by filtering down the search space after each tuning session. The complete

search spaces with the optimized hyperparameters are found in Table A1. Additionally,

the complete csv files containing the validation loss of each hyperparameter combination

for each trial can be found in tuning results ANN on Github1. In the penultimate tuning

round, all individual hyperparameter’s effect on the training error was thoroughly studied

by plotting the error as a function of hyperparameter combinations with only one distin-

guishing hyperparameter. From these results, as depicted in Figure A1, it was concluded

that more neurons and HLs were preferred, as the error decreased for larger values. The

fact that more neurons and HLs were preferred indicates a complex data set. Addition-

ally, the results indicated that both a decrease in batch size and the utilization of MSE as

loss function were beneficial. However, this result was not employed into further tuning,

as the number of samples utilized to obtain these plot were assumed insufficient to make

any conclusions on the effect of batch size and loss function.

After the penultimate tuning session, smaller neurons (50 and 100) were removed and

1200 neurons was added in the search space. Additionally, 4 HL was removed while 9

was added. Unfortunately, this did not improve the results in the ultimate tuning session

relative to the penultimate, seen in Table A2, where the validation loss at the penultimate

round (N -1) was lower than the last tuning session (N), RMSE of log10|i| at 0.010337

compared to 0.01149, respectively. Thus, the hyperparameter combination of the best

combination in the penultimate tuning experiment was utilized for training.

The ANN learning curve can be found in Figure 4.8b. The validation loss of 0.0124

represents the RMSE of the normalized absolute value of the logarithmic current density.

The learning curve does not indicate obvious signs of underfitting nor overfitting. This

assumption is however contradicted in Figure 4.6, where the ANN model seems to underfit

to data by exhibiting untypical polarization curve shapes. It is likely that the found

hyperparameter combination through tuning was indeed not the optimal combination, or

that the early stopping criteria of 4 iterations were too low, resulting in a pre-mature

termination of training.
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From the ANN learning curve, it is further detected that the validation error is smaller

than the training error. This is untypical behaviour, as the model learns from the training

set, and should thus perform better on training data. This implies large variations in

data set and insufficient description of the training data by the input features, potential

E and pH [60]. This assumption is reinforced by the results from the learning curve, where

the validation error demonstrates larger fluctuations. Another observation is that the

validation loss of approximately 0.0124 is substantially higher than the validation loss

obtained through tuning (≈ 0.0103). This is surprising, as both these models utilized the

same hyperparameter combination. A shift in error from the tuning phase to the training

phase could generally be explained by different employed training and validation splits,

as this would change the data the model trains and validates on. However, this was not

the circumstance in this study, as the same split was utilized for both tuning and final

training.

A probable explanation for the observed error difference could be that the weights and

biases, assigned prior to and during training, varied between the tuning and final training

processes. Consequently, the two training processes may have terminated at a different

epoch. Such detailed tuning history is unfortunately not available information in this

work. From the learning curve of ANN, it can be observed that this is not an unlikely

scenario as the validation loss fluctuated significantly and may have been terminated pre-

maturely due to the small applied early stopping criteria of 4. Furthermore, if this is true,

the ANN has underfit to data and has room to learn if a larger early stopping criteria is

applied. This could probably be advantageous given the fluctuations in validation error

indicating much unknown behaviour (treated as randomness) in the data set.

The hyperparameter tuning processes for LightGBM and RF were significantly more ef-

ficient compared to the ANN, in terms of execution time. Specifically, LightGBM and

RF required only hours and minutes, respectively, while the ANN tuning process was

performed over several days. The RF was tuned manually by testing only a few com-

binations of various number of trees in the forest (n estimators) and maximum features

(max features) to consider at each split, as previously discussed in section 2.2.3. The

search space and complete result of the process can be found in Appendix A.3. Interest-

ingly, the training error did not typically decrease for larger iterations, contradicting with

theory. This may be explained by large amounts of unknown behaviour (randomness) in

traning data, as discussed above. The optimal max features was determined to be the

default value 1, indicating that using all available features yielded the best results. This

assumption is supported by C. Bentéjac et al. who also identified that the lowest errors

were obtained by applying default values in RF [58]. This aligns with the presented theory

in section 2.2.3 that RF shows minimal added accuracy post tuning. The optimal value

of 1 (using both pH and E) supports the assumption of a complex data set with large

unknown behaviour. As the data set already contained a large degree of randomness,

further added randomness by utilizing only one feature (max features = 0.3) was not
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favored.

Furthermore, LightGBM was tuned as this model proved the lowest training time per

iteration, aligning well with the expectations of computational efficiency. The goal of

tuning LightGBM in this work was to find the slowest learner in the attempt of locating

the global error minimum. However, this was unsuccessful, as the hyperparameter com-

bination working as the slowest learner showed a higher error relative to default values.

The complete search space and tuning process can be found in Table 2.3 and A3.

As recommended by the LightGBM developers and discussed in Section 2.2.5, dart, a large

number of leaves (num leaves), and a low learning rate (0.001) was the hyperparameters

under consideration. The slowest learner was the model employing dart, num leaves =

61 and with a learning rate of 0.001. As observed in Figure A2, this LightGBM model

was unsuccessful as the RMSE was greater than 0.1 for more than 400 iterations, after

a total of ≈ 71000 iterations, before manual termination was executed. Training had

to be terminated manually as GridSearchCV in Scikit-learn does not provide this

feature. The model was additionally way slower compared to default values, which was

terminated by the early stopping criterion after 4245 iterations. Utilizing dart together

with 61 maximum leaves in combination with a learning rate of 0.001 seems to have lead

to excessively regularization limiting the model to adapt to training data. The model

does however show a large degree of generalization on the validation data set, proved by

the small delta between training and validation error.

Upon examination of the GBDT learning curves in Figure 4.8a, a noticeable trend is

observed. XGBoost significantly outperformed both CatBoost and LightGBM in terms of

minimized training and validation errors. Conversely, when evaluating the performance on

unseen data, CatBoost demonstrated lowest RMSE of the GBDT algorithms (6.41%), as

shown in Table 4.1. The generalization ability of CatBoost aligns well with expectations

provided in Section 2.2.6.

By considering XGBoost as an example, the validation loss at termination of training

was 0.0305, as depicted in Figure 4.8a. Contrary, the average RMSE across all pH was

approximately 0.444, by employing the RMSE of XGBoost in Table 4.1. Thus, the RMSE

on unseen data is 14.56 times higher than the validation RMSE obtained through training,

as depicted in Figure 4.9. This indicates decent ability to adapt to the training set, while

struggling with generalizing on unseen data. Furthermore, from the learning curves of the

GBDT algorithms (Figure 4.8a) and ANN (Figure 4.8b), it is not detected any clear signs

of neither underfitting nor overfitting, which indicates that the proper hyperparameter

combinations are yet to be found. It is detected that all GBDT algorithms have relatively

small loss gradients for > 2000 iterations. It is thus possible that the error minima are not

reached, suggesting that decreasing learning rate and adding more complexity/greediness

to the trees could be beneficial. By utilizing more leaves in the trees, while decreasing the

maximum number of numerical values in the terminal nodes, the algorithms may have
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adapted slightly better to training data, though require higher training time.

Furthermore, the predicted polarization curves and lack of smoothness by ANN indicate

underfitting to training data. As 7 HLs with 900 neurons in total were applied, outper-

forming both 8 and 9 HLs combined larger number of neurons (Table A2), underfitting is

suprising. To tackle this problem, the number of epochs before early stopping is triggered

could be increased. From the learning curve in Figure 4.8b, the validation error exhibits

large spikes and was finally stopped at 16 epochs. Increasing the patience parameter to

e.g. 6 could provide lower training and validation error, but on the other hand increase

the chances of overfitting to data.

5.4 Evaluation of polarization curve at pH 2.2

At pH = 2.2, the average MAPE was approximately 5%. It is observed that XGBoost and

ANN exhibit higher error compared to the other algorithms. While all algorithms provide

comparable anodic branchs as the empirical output, they typically struggle to a greater

extent with accurately predicting the cathodic region of the polarization curve. This

observation is particularly noticeable for XGBoost, which estimates a current density

below 10−4 A/cm2 at the potential minimum, whereas the empirical current density

exceeds 3·10−4 A/cm2 at the same potential.

The high XGBoost error is difficult to justify as XGBoost provides the second lowest

average error across all test data, as seen in Table 4.1. However, upon examination of the

empirical data for pHs below and above pH 2.2, it could be argued that the algorithms

weighted training data differently during training. XGBoost, which exhibit a distinctive

polarization curve shape relative to the other algorithms (Figure 4.1a), seems to have

weighted pH 2.4 heavier during training, while the other algorithms except ANN plausibly

assigned more importance to pH 2.0. The underlying cause of this is difficult to clarify.

However, it is possible that XGBoost utilizing pH 2.4 over pH 2.0 is simply a result of

random chance, considering the nature of decision trees. On the other hand, XGBoost

exhibits a distinguishing learning curve, while the shapes of LightGBM and CatBoost are

comparable. Therefore, the contrast between XGBoost and LightGBM and CatBoost can

plausibly be explained by the different tree structures. The level-wise growth is only found

in XGBoost, while both CatBoost and LightGBM utilize a leaf-wise growth strategy.

A distinct polarization curve of XGBoost compared to CatBoost and LightGBM is also

observed at pH 11.6 (Figure 4.1d), which indicates that the contrasts in tree growing

structure have indeed affected the results at certain pH. The level- and leaf-wise methods

make the algorithms choose samples differently. All nodes are split in the level-wise struc-

ture, while in the leaf-wise structure only the node with the most negative error gradient

are built on further [21]. Thus, the employed samples for training will also vary signifi-

cantly, which is supported in the different feature importance outputs in Figure B2. The

feature importances are explained more comprehensively in Section 5.2. Another inter-
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esting observation is that RF predicted a similar polarization curve as both CatBoost and

LightGBM. RF, which is solely an averaging ensemble DT algorithm, splits by randomly

selecting features and therefor without searching for optimal splits. Thus, it presents a

compelling observation that the algorithms most susceptible to overfitting (CatBoost and

LightGBM) are indeed those that predict the same polarization curve shape as RF, which

is notably less prone to overfitting. The combination of generalization and accuracy from

these algorithms imply that RF, CatBoost and LightGBM are indeed preferable in strong

acidic media. Furthermore, ANN indicates signs of underfitting as the cathodic branch

exhibits unknown behaviour not seen in training data. This will be further elaborated at

the end of this section, as underfitting is observed across all pH for ANN.

In terms of predicting Ecorr, icorr and bc at pH 2.2, it is observed that CatBoost yields

the most accurate values for the corrosion potential Ecorr and bc. On the other hand, RF

exhibits the lowest error for the corrosion current density icorr. The average Ecorr value

of -661 mV deviates by approximately 3% from the empirically determined Ecorr value of

-680 mV. It is worth noting that XGBoost predicts the most positive Ecorr, which may

be attributed to the higher Ecorr observed at pH 2.4 compared to pH 2.0, as shown in

Table A8.

Despite XGBoost underperforming relative to the other algorithms, the cathodic Tafel

slope of approximately -445 mV/decade is only 21% more negative compared to the em-

pirically determined cathodic Tafel slope of approximately -367 mV/decade. As depicted

in Figure 4.5a, this is due to utilizing the Tafel slope at lower potentials instead of the

diffusion limited current region at higher potentials. Furthermore, the mean approxmated

cathodic Tafel slope bc across all models was was -399 mV/decade, 9% higher than the

empirical bc of -367 mV/decade. By examining Figure 4.6a, it becomes evident that the

ANN poorly estimates the cathodic Tafel slope bc. This can be justified by the distinctive

change in current at approximately -0.9 V vs SCE. Moreover, the validity of the ANN

cathdic Tafel slope is questioned, as the 99% CI indicates large regression uncertainty.

Due to XGBoost’s significantly lower prediction of the cathodic current, the predicted

corrosion current density icorr is consequently much lower than the empirical value of 36

µA/cm2. In contrast, RF performs reasonably well in estimating the empirical icorr with

a MAPE of only 2.6%.

5.5 Evaluation of polarization curve at pH 6.6

At pH 6.6, the average MAPE was approximately 3%, representing the lowest error across

all pH by significant margin. The performance of the ANN was inferior to that of the DT

algorithms, which showed comparable performance. XGBoost provided the lowest error

with MAPE of 2.4%. At pH 6.6, the pitting potential Epit, at ≈ -650 mV, was visible and

predicted to detail by all algorithms. This is however not overly surprising as Epit stayed

relatively constant over the pH range, shown in Figure D1d. The mentioned results is
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indeed relevant to practical applications, as neutral pH is commonly encountered.

From the comparable polarization curve shapes, seen in Figure 4.1b, it can be deduced

that the different tree growing methods have not affected the optimal splitting criteria

during training. Clearly, the polarization curve of pH 6.4 was weighted heavier during

training, as the corrosion potential Ecorr at pH 6.4 (-785 mV, Table A8) is indeed similar

to the mean predicted Ecorr of -789 mV (Table 4.3). The predicted Ecorr does however

differ from the empirical determined Ecorr of -809 mV. The error in Ecorr can be attributed

to the larger spread in Ecorr in the passive region, as observed from Figure D1b.

Furthermore, the average predicted cathodic Tafel slope bc at a pH of 6.6 was -415

mV/decade, which is only a marginal 0.3% more positive than the empirically derived

bc. Yet, one could contend that the mean Tafel slope should be calculated by excluding

the prediction made by the ANN, as no clear Tafel region is located due to the untypical

shift in current density at approximately -1.1 V vs SCE, increasing the upper and lower

band of the 99% CI. Excluding ANN bc would however unfortunately result in a larger

discrepancy between the empirical bc and the mean bc predicted by the machine learning

algorithms.

In Table A8, the Tafel slopes at pH 6.4 and 6.8 are given as -384 and -753 mV/decade.

As the predicted Tafel slopes at pH 6.6 were indeed similar to that of pH 6.4, the idea

that the algorithms utilized pH 6.4 to a greater extent is reinforced. Additionally, it can

be shown in Table A8 that the cathodic Tafel slope of pH 6.8 was untypical over the pH

range from pH 5.6 to 7.2, which made data samples of pH 6.8 unsuitable as node splitting

criteria.

As a result of the precise prediction of the cathodic Tafel slope bc, the estimated corrosion

current density icorr also exhibited a high level of accuracy. The mean predicted corrosion

current density icorr of 1.2 µA/cm2, as seen in Table 4.3, was comparable to the empirical

value 1.1 µA/cm2, with a difference of solely 8%.

5.6 Evaluation of polarization curve at pH 7.4

The highest prediction error was observed at pH 7.4, characterized by an average MAPE

of approximately 15%, as shown in Table 4.1. The higher error could by justified by the

variation in Ecorr at this pH range, as previously discussed in Section 4.6.1. As shown in

Table A8, Ecorr at pH 7.2 and 7.6 were larger than expected at approximately -820 mV

and -866 mV vs SCE, respectively. The predicted Ecorr was ≈ -829 mV vs SCE, and thus

within the range of pH 7.2 and 7.6. Conversely, an elevated empirical Ecorr of ≈ -726 mV

vs SCE was observed at pH 7.4 due to the high fluctuations in Ecorr in neutral media,

as discussed in Section 4.6.2. The large spread in Ecorr apparently caused uncertainty

the algorithms were not able to predict and thus reinforces the assumption that utilizing

solely pH as an input feature (in addition to potential E) is insufficient to accurately

describe the polarization curves.
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An interesting observation is that RF, CatBoost and XGBoost predict relatively compa-

rable polarization curves at pH 7.4, while LightGBM and ANN exhibit unique shapes.

XGBoost allegedly weighted pH 7.8 (Figure E15) to a higher degree compared to the other

algorithms as XGBoost predicts meta-stable pitting below Epit (Figure 4.5c). It is also

observed that the empirical Ecorr of ≈ -866 mV vs SCE at pH 7.6 (Table A8) is indeed

similar to the predicted Ecorr by XGBoost, CatBoost and RF. Additionally, as RF and

CatBoost exhibit relatively similar polarization curve shapes, it is likely that these two

algorithms also utilized pH 7.8 more frequently during training, however to a lower degree

as no meta-stable pitting is observed in Figure 4.2c (RF) and Figure 4.3c (CatBoost).

An explanation to why solely XGBoost predicted meta-stable pitting is difficult to inter-

pret, but it can be observed that pitting was a typical phenomena in empirical data in

the passive region. Consequently, XGBoost provided enhanced generalization at this pH

range by predicting meta-stable pitting, while determining Ecorr by use of pH values close

to 7.4. However, it is observed in the empirical data that meta-stable pitting is clearly

less visible at pH 7.4 compared to e.g. pH 7.8. CatBoost, with its leaf-wise structure

and approximately 3000 additional training iterations compared to XGBoost does not

predict meta-stable pitting. This outcome may be attributed to CatBoost’s larger tree

depth, which emphasizes specific details to a greater extent but potentially overlooks the

typical trends if the tree is grown too deep. Surprisingly, Random Forest (RF) also fails

to predict meta-stable pitting despite the expectation that utilizing only five trees would

lead to better generalization. It appears that RF underfits the data by not capturing the

typical behavior of meta-stable pitting. It is however possible that the RF model treated

meta-stable pitting as noise.

The learning curves depicted in Figure 4.8a demonstrate that, overall, XGBoost performs

better on both training and validation data. It is worth considering that the fact that

XGBoost predicts meta-stable pitting while the other decision tree algorithms do not,

may be purely a result of random variations during the data sampling processes. On the

other hand, the ability to predict meta-stable pitting with some precision is important

for many applications in corrosion science, which favors XGBoost.

Moreover, LightGBM and ANN demonstrate better accuracy in predicting Ecorr compared

to the other algorithms. LightGBM and ANN predict Ecorr of approximately -822 and

-825 mV vs SCE, respectively, whereas the empirical value was -726 mV vs SCE, as

displayed in 4.4. On the other hand, LightGBM inaccurately predicts a shift in current

at approximately -0.54 V vs SCE, a feature seen at pH 7.0 (Figure E13). Consequently,

LightGBM had the highest MAPE of 24.51%. The cause of this is difficult to clarify

with certainty. Nevertheless, it is possible that the weakness of LightGBM’s EFD and

GOSS are exploited at this pH range due to the broad variety of empirical polarization

curve shapes at neutral pH. Notably, the anodic current density at pH 7.0 (Figure E13)

is significantly lower than that of pH 6.8 (Figure E13), pH 7.6 and 7.8 (Figure E15). Due

to the high contrast, the GOSS feature of LightGBM may have utilized data samples of
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pH 7.0 more frequently as adapting to pH 7.0 plausibly increased the loss gradient. This

can be visualized in Figure 4.4c by the substantially lower anodic current of LightGBM

compared to empirical data and the other algorithms, plausibly a consequence of the lower

anodic current at pH 7.0 relative to e.g pH 6.8 and 7.6. Additionally, and another possible

explanation, is the removal of necessary information by the EFD feature of LightGBM.

Furthermore, at pH 7.4, the average cathodic Tafel slope of -346 mV/decade was 34%

lower than the measured empirical Tafel slope of -520 mV/decade. The large error is on

the other hand not too surprising due to the big variety of cathodic behaviour at neutral

pH. ANN and LightGBM provided the best predictions with approximately -565 and -413

mV/decade, respectively. Yet, the cathodic branch of ANN did not show a clear Tafel

line and the potential range applied for the linear regression were relatively small as a

consequence of the big shift in gradient at ≈ -0.97 V vs SCE in combination with the

lower limit to avoid HER kinetics. LightGBM predicted the cathodic Tafel slope more

accurately than the other DT algorithms due to the plausibly higher weighting of pH 7.0

(Figure E13), which exhibited a Tafel slope of approximately -439 mV/decade, as found

in Table A8. The Tafel slopes of RF, CatBoost and XGBoost were indeed comparable to

the empirical Tafel slope of -253 mV/decade at pH 7.6 seen in Table A8, which reinforces

the assumption made previously that these tree algorithms weighted data at pH 7.6 in a

more significant manner.

The large general errors in Ecorr and cathodic Tafel slope |bc| induced an overall icorr

prediction error of -28%. Interestingly, LightGBM had the definite largest MAPE overall,

but had the lowest error in both Ecorr and icorr as it was largely penalized by utilizing

anodic features of pH 7.0 (Figure E13).

5.7 Evaluation of polarization curve at pH 11.6

From Table 4.1, it is recognized that the average MAPE at pH 11.6 was approximately

7%, with ANN outperformning the other algorithms with a MAPE of 3%. An interesting

observation in Figure 4.1d is that while CatBoost and LightGBM provide very similar

polarization curves at this pH, so does XGBoost and CatBoost. The polarization curve

predicted by ANN exhibit a distinct shape.

Interestingly, it appears that CatBoost and LightGBM have incorporated the empirical

data from pH 11.4 (Figure E24) into their predictions to a larger extent, as their predicted

polarization curves exhibit numerous similarities with the empirical curve at pH 11.4.

Conversely, XGBoost and RF seem to have given more weight to the polarization curve

at pH 11.8 (Figure E25). An interesting observation can be made regarding the step-wise

shape present in the polarization curves of CatBoost and LightGBM, which contrasts

with the smoother curves generated by the other algorithms. Such step-wise behaviour

appears as a sign of underfitting. However, none of the other predicted polarization

curves by LightGBM nor CatBoost are exhibiting similar shape. Thus, it is not clear
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what causes the step-wise appearance. It is not observed any enhanced complexity of

the polarization curves in alkaline media, so the oddly shaped polarization curves by

LightGBM and CatBoost at pH 11.6 must be a cause of the tree architecture, if not solely

a consequence of the random data sampling where alkaline training data were sampled less

frequently. However, error caused by the random sampling is unlikely as LightGBM and

CatBoost predict comparable polarization curve shapes. The anodic branches predicted

by LightGBM and CatBoost at pH 11.6 exhibit similar behaviour as observed in pH 11.4

(Figure E24, which demonstrates unique appearance seen by the rapid shifts in current

for larger potentials. Thus, it appears that CatBoost and LightGBM managed to predict

the overall trend, albeit with lack of smoothness - a typical sign of underfitting. From

the learning curve in Figure 4.8a, it is however observed that neither LightGBM nor

CatBoost demonstrate significant more learning potential from 1000 iterations and out,

as the validation loss gradients represent declining trends. Consequently, it appears that

the optimal hyperparameter combinations are yet to be found, or that XGBoost is a more

suitable algorithm, solely concluded by observing the learning curves. This assumption is

however not supported by the errors demonstrated on test data, as depicted in Table 4.1.

Furthermore, regarding the polarization curve features at pH 11.6, the empirical Ecorr at

pH 11.6 was -1470 mV vs SCE, as given in Table 4.5. LightGBM and CatBoost predicted

similar corrosion potentials at -1393 and 1394 mV vs SCE, respectively. On the other

hand, XGBoost, RF and ANN predicted much higher corrosion potentials, with only small

deviations from Ecorr of pH 11.8 (-1493 mV vs SCE). In total, the average prediction of

Ecorr (-1450 mV vs SCE) was 1% higher than the empirical Ecorr of -1470 mV vs SCE.

Furthermore, all algorithms predicted the cathodic branch reasonably well, resulting in

an average Tafel slope of -550 mV/decade, only 7% lower than the empirical value of

-515 mV/decade. Consequently, a low error in the estimated icorr of 0.91 mA/cm2 was

observed, only 9% higher than the empirical icorr of 0.84 mA/cm2.
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6 Conclusions and further work

Generally assessed, the algorithms proved similar predictive abilities with an average

Mean Absolute Percentage Error (MAPE) of approximately 7% for the predicted loga-

rithmic current density. Additionally, the corrosion potential, cathodic Tafel slope, and

corrosion current density were estimated with average MAPE across all pH testing data of

approximately 5%, 13% and 19%, respectively. These results illustrate the algorithms’ ca-

pabilities to capture the pH dependency of pivotal polarization curve features on AA6060

+ 0.0043 wt% nickel. In addition, the algorithms show potential to pinpoint important

transitions, for instance the occurrence of meta-stable pitting, while also accurately lo-

cating the pitting potential. The results emphasize the substantial advantage of utilizing

machine learning as a time-saving alternative for identifying critical pH dependent fea-

tures, traditionally achieved through lengthy testing procedures.

It is further recognized that the use of Artificial Neural Networks (ANN) may not neces-

sarily yield the desired payoff, given its time-intensive tuning process, while only obtaining

average results compared to the other algorithms. The fastest algorithm, the Random

Forest (RF), was also the top performer. This was assumed a consequence of using only pH

(in addition to electrochemical potential) as input feature and thus neglecting the surface

condition. Overlooking features such as cracks or segregation resulted in a data set with

a high degree of unaccounted behaviour. Consequently, the algorithms struggled with

adapting to the training data, favoring use of the Random Forest algorithm as it provides

great ability to handle noisy data sets. The restrictive use of pH as the sole input feature

was further evidenced by large contrast between the errors on known data compared to

those on unseen data, which differed by several multiples. For future applications, im-

plementing surface condition, prior to and post polarization, into the feature space may

prove advantageous. These data can for instance be obtained through a scanning electron

microscope, and further convert the grey scales pixels to integers between e.g. 0 and

1. By incorporating surface features into the training data set, the effect of re-usage of

aluminum samples across multiple experiments would have been comprehended.

Furthermore, there are several adjustable parameters like the sampling period and scan

rate during polarization that could have been increased to enhance the smoothness of the

polarization curves. Nonetheless, while this approach could streamline the data collection

process, it could have reduced the predictive abilities of features such as meta-stable pit-

ting and the pitting potential. Like with any other machine learning task, given sufficient

time, it could be beneficial to add more empirical data for training. Instead of using the

0.2 interval employed in this work, more detailed polarization curves could be predicted

by having intervals of 0.1. Furthermore, if features like the corrosion current density are

of particular interest, it could be beneficial to exclude the anodic curve from the training

data. This would shift the focus towards the cathodic branch. However, this would also

require the utilization of the corrosion potential and not the anodic curve for calculating
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the corrosion current density.

Further improvement of the predictive capabilities may be achievable by expanding the

search spaces in the hyperparameter tuning processes, while employing tuning of all iter-

ative algorithms. However, this will indeed be time consuming and the trade-off between

accuracy and training time must be considered. The obtained learning curves, displaying

the training and validation at each iteration, imply that all iterative algorithms had room

for improvement, as the error converged to a value shortly after training was initiated.

Applying smaller learning rates and increase the complexity of the trees by e.g. allowing

for more nodes may be beneficial to enhance the likelihood of finding the error minima.

Ultimately, it may prove beneficial to concentrate on tuning just one Gradient Boosted

Decision Tree (GBDT) algorithm, given their overall comparable performance, with no

observed distinction between the leaf- and level-wise tree growing structures. Categorical

Boosting (CatBoost) emerges as a natural choice for further development, as it exhibited

the lowest average error across all pH for the GBDT algorithms in combination with

being the second fastest algorithm per iteration. Furthermore, considering Random Forest

(RF) may also prove beneficial, considering its enhanced performance compared to the

other algorithms, both in terms of precision and training time. On the other hand,

by expanding the input feature dimension to limit unknown behaviour in the data set,

CatBoost or another GBDT algorithm discussed in this work could potentially exhibit

improved performance given their ability to correct for errors across trees in the ensemble.
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APPENDICES

Appendices

A Hyperparameter search space and applied hyperparameters

A.1 ANN

Table A1: Applied hyperparameters for ANN with search space in the random search

Param Search space Optimal

Epochs applied, terminated N/A 80, 16

Early stopping

(iterations)
N/A 4

Hidden layers Z ∈ [2, 9] 7

Neurons
[20, 50, 70, 100, 150, 200,

300, 400, 600, 900, 1200]
900

Optimizer Adam Adam

Learning rate [log10] [-3, -2, -1] 0.001

L2 coefficient [log10] [-4, -3, -2] 0

Batch size [16, 32, 64, 128] 16

Activation function [ReLU, sigmoid, tanh] ReLU

Loss function [MSE, MAE] MAE

Train/val split [%] N/A 80/20

Table A2: ANN tuning results from RandomSearch. N denotes the last tuning session

Validation error

(RMSE)
Neurons HLs

Loss

function

Batch

size

N-1 N N-1 N N-1 N N-1 N N-1 N

0.010337 0.01149 900 900 7 6 MAE MSE 16 32

0.010513 0.01180 300 300 8 7 MAE MSE 64 32

0.011082 0.01190 50 900 6 8 MAE MSE 16 32

0.011168 0.01224 400 900 6 5 MAE MAE 64 32

0.011237 0.01234 900 1200 6 8 MAE MSE 128 64
...

...
...

...
...

...
...

...
...

...

0.016791 0.01494 100 200 6 6 MSE MSE 32 64

0.017971 0.01635 200 200 7 8 MSE MSE 128 64

0.018367 0.01637 200 400 4 7 MSE MSE 64 32

0.021087 0.01644 50 300 4 7 MAE MSE 32 64

0.024818 0.01709 50 1200 4 5 MAE MSE 64 64
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Figure A1: The exploration of one independent hyperparameter’s effect on the validation

error/loss by variation in solely one hyperparameter. Data in the second last tuning exercise

(N - 1 in Table A2) are used to construct the output. The data set can be found in src/tun-

ing result ANN/df results 8 HL.csv on Github1.

1Githup repository: https://github.com/matsssk/AA6060_ML/tree/main
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A.2 LightGBM hyperparameter tuning and applied hyperparameters

Table A3: LightGBM applied hyperparameters together with search space. Star (*) marks

default value. See lightgbm.LGBMRegressor for the remaining model parameters4.

Parameter Search space Applied

n estimators 1000 105

Early

stopping

criteria

(iterations)

N/A 50

num leaves [21, 31, 41, 51, 61] 31*

learning rate [0.001, 0.01, 0.1, 0.5] 0.3*

boosting type [gbdt, dart] gbdt*

Table A4: LightGBM tuning results. The three slowest and fasted learners are included as

the purpose was to outline the most likely hyperparameter combination to find the local error

minimum. None of these hyperparameter combinations were applied in the final LightGBM

model.

num

leaves

learning

rate

boosting

type

Mean test score

(closer to 0 : less error)

Three slowest learners

61 0.001 dart -3.1021

51 0.001 dart -3.0997

31 0.001 dart -3.0986

Three fastest learners

21 0.1 gbdt -0.7567

21 0.5 dart -0.7535

21 0.1 dart -0.7514

4LGBMRegressor documentation: https://lightgbm.readthedocs.io/en/latest/pythonapi/

lightgbm.LGBMRegressor.html
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Figure A2: LightGBM training and validation loss before termination where the slowest

learner was applied. num leaves = 61, learning rate = 0.001, boosting type = dart. This

hyperparameter combination was not applied as the error was too high compared to that of

default values.
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A.3 Random Forest hyperparameter tuning and applied hyperparameters

Table A5: Applied hyperparameters with search space for Random Forest. All the possible

hyperparameter combinations were examined in a Grid Search-style manner. The remaning

hyperparameters for sklearn.ensemble.RandomForestRegressor can be found in the doc-

umentation5.

Parameter Search space Optimal

n estimators [1, 5, 10, 100, 200] 5

max features [0.3, 1.0] 1*

Table A6: RF tuning results

Feature importancesTrees

(n estimators)

Max features

(max features)

Average RMSE

across all test

data

Potential (E) pH

5 1.0 0.3975 0.8061 0.1939

10 1.0 0.3976 0.6460 0.3540

100 1.0 0.3977 0.7129 0.2871

200 1.0 0.3977 0.6488 0.3512

1 1.0 0.3979 0.6841 0.3159

1 0.3 0.4047 0.6479 0.3521

100 0.3 0.4158 0.7317 0.2683

200 0.3 0.4167 0.6477 0.3523

5 0.3 0.4201 0.7245 0.2755

10 0.3 0.4245 0.6479 0.3521

5RandomForestRegressor https://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.RandomForestRegressor.html

71

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html


APPENDICES

A.4 CatBoost and XGBoost applied hyperparameters

Table A7: CatBoost and XGBoost applied hyperparameters. Default values are marked

with star (*). The remaining hyperparameters and their default values can be found in the

documentations56

Parameter
CatBoost

applied

XGBoost

applied

Iterations 105 105

Learning

rate
0.35 0.3*

Early

stopping

criteria

(iterations)

50 50

5CatBoostRegressor default: https://catboost.ai/en/docs/references/training-parameters/

common
6XGBoostRegressor default: https://xgboost.readthedocs.io/en/stable/parameter.html
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B Feature importances
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Figure B1: Feature importances in RF as a function of trees (n estimators) depicted as a

fraction potential (E) divided by pH.
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C Normality tests
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Figure C1: Residuals from the mean for the last third of corrosion potential data for each

Ecorr measurement (left, C1a). The residuals were standardized to obtain C1b including the

quantiles corresponding to a 99% CI α = 0.005.
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Figure C2: Residuals from the Tafel line obtained by linear regression. The residuals from all

polarization curves were merged into one plot. Figure C2a depicts the standardized residuals

with the quantiles corresponding to a 99% CI α = 0.005.
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D Trends in corrosion potential and other features
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(b) Corrosion potential Ecorr post cathodic scan,

denoted Ecorrth
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cathodic polarization
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Figure D1: Evaluation of corrosion potential Ecorr prior to and post cathodic polarization
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Figure D2: The average 30 seconds change in corrosion potential Ecorr. The mean is given

by the dashed gray horizontal line at ≈ 1.4 mV.
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Table A8: Comparison of important polarization curve features at various pH. Ecorrt0 and

Ecorrth are Ecorr observed prior to and post cathodic polarization.

pH Ecorrt0 Ecorrth ∆ Ecorr Epit
Tafel slope bc

[mV/dec]
Lin.reg. R2

2.0 -0.671 -0.664 -0.007 N/A -436 0.9999

2.2 -0.681 -0.680 -0.001 N/A -367 0.9966

2.4 -0.654 -0.633 -0.022 N/A -453 0.9917

2.6 -0.702 -0.693 -0.008 N/A -504 0.9990

2.8 -0.655 -0.755 0.100 -0.65 -336 0.9963

3.0 -0.663 -0.693 0.031 -0.66 -377 0.9991

3.2 -0.659 -0.674 0.016 N/A -439 0.9970

3.4 -0.659 -0.652 -0.007 N/A -574 0.9988

3.6 -0.696 -0.722 0.026 -0.66 -436 0.9985

3.8 -0.669 -0.660 -0.009 N/A -1113 0.9844

4.0 -0.685 -0.679 -0.006 N/A -820 0.8942

4.2 -0.728 -0.716 -0.011 -0.65 -617 0.9988

4.4 -0.850 -0.652 -0.197 N/A -645 0.9982

4.6 -0.667 -0.656 -0.011 N/A -442 0.9985

4.8 -0.800 -0.755 -0.043 -0.66 -280 1.0000

5.0 -0.672 -0.639 -0.032 N/A -525 0.9971

5.2 -0.800 -0.844 0.045 -0.7 -263 0.9987

5.4 -0.675 -0.662 -0.012 N/A -710 0.9725

5.6 -0.786 -0.752 -0.034 -0.66 -440 0.9976

5.8 -0.703 -0.724 0.022 N/A -459 0.9982

6.0 -0.710 -0.736 0.026 N/A -420 0.9998

6.2 -0.744 -0.748 0.005 N/A -416 0.9984

6.4 -0.783 -0.785 0.003 -0.65 -384 0.9968

6.6 -0.824 -0.809 -0.014 -0.65 -377 0.9955

6.8 -0.700 -0.695 -0.004 -0.65 -753 0.9833

7.0 -0.739 -0.733 -0.006 -0.67 -439 1.0000

7.2 -0.875 -0.819 -0.055 -0.65 -411 0.9922

7.4 -0.724 -0.726 0.004 N/A -52 0.9979

7.6 -0.826 -0.866 0.042 -0.67 -253 0.9995

7.8 -0.726 -0.719 -0.017 -0.67 -626 0.9593

8.0 -0.746 -0.736 -0.010 -0.64 -417 0.9962

8.2 -0.677 -0.649 -0.027 N/A -540 0.9985

8.4 -0.663 -0.650 -0.012 N/A -429 0.9978

8.6 -0.670 -0.686 0.016 N/A -514 0.9316

8.8 -0.830 -0.731 -0.097 -0.65 -397 0.9941

9.0 -0.717 -0.707 -0.020 N/A -662 0.9950

9.2 -0.733 -0.706 -0.027 -0.64 -552 0.9982
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9.4 -0.749 -0.722 -0.026 N/A -437 1.0000

9.6 -0.675 -0.709 0.034 N/A -449 0.9941

9.8 -0.730 -0.723 -0.006 N/A -828 0.9993

10.0 -0.742 -0.684 -0.058 N/A -484 0.9995

10.2 -0.872 -0.774 -0.097 -0.67 -320 0.9997

10.4 -1.124 -1.141 0.018 N/A -165 0.9989

10.6 -1.204 -1.249 0.045 N/A -173 0.9989

10.8 -1.208 -1.286 0.079 N/A -185 0.9968

11.0 -1.343 -1.318 -0.023 N/A -252 0.9567

11.2 -1.416 -1.416 0.001 N/A -306 0.9727

11.4 -1.436 -1.392 -0.043 N/A -429 0.9692

11.6 -1.525 -1.470 -0.054 N/A -515 0.9758

11.8 -1.529 -1.493 -0.036 N/A -555 0.9850

12.0 -1.532 -1.505 -0.026 N/A -568 0.9771
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E Empirical polarization curves
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Figure E1: Empirical polarization curve #1.
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Figures E2: Empirical polarization curve #2.
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Figures E3: Empirical polarization curve #3.
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Figures E4: Empirical polarization curve #4.
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Figures E5: Empirical polarization curve #5.
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Figures E6: Empirical polarization curve #6.
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Figures E7: Empirical polarization curve #7.
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Figures E8: Empirical polarization curve #8.
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Figures E9: Empirical polarization curve #9.
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Figures E10: Empirical polarization curve #10.
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Figures E11: Empirical polarization curve #11.
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Figures E12: Empirical polarization curve #12.
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Figures E13: Empirical polarization curve #13.
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Figures E14: Empirical polarization curve #14.
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Figures E15: Empirical polarization curve #15.

10−9 10−7 10−5 10−3

−1.0

−0.8

−0.6

−0.4
pH = 8.0

10−9 10−7 10−5 10−3

−1.0

−0.8

−0.6

−0.4
pH = 8.0, filtered

10−9 10−7 10−5 10−3

−1.0

−0.8

−0.6

−0.4
pH = 8.2

10−9 10−7 10−5 10−3

−1.0

−0.8

−0.6

−0.4
pH = 8.2, filtered

Absolute value of current density (|i |) [A/cm2]

P
ot
en
ti
al

(E
)
v
s
S
C
E
[V

]

Figures E16: Empirical polarization curve #16.
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Figures E17: Empirical polarization curve #17.

10−9 10−7 10−5 10−3

−1.2

−1.0

−0.8

−0.6

pH = 8.8

10−9 10−7 10−5 10−3

−1.2

−1.0

−0.8

−0.6

pH = 8.8, filtered

10−8 10−6 10−4 10−2

−1.0

−0.8

−0.6

−0.4 pH = 9.0

10−8 10−6 10−4 10−2

−1.0

−0.8

−0.6

−0.4 pH = 9.0, filtered

Absolute value of current density (|i |) [A/cm2]

P
ot
en
ti
al

(E
)
v
s
S
C
E
[V

]

Figures E18: Empirical polarization curve #18.
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Figures E19: Empirical polarization curve #19.
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Figures E20: Empirical polarization curve #20.
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Figures E21: Empirical polarization curve #21.

10−9 10−7 10−5

−1.4

−1.2

−1.0

−0.8 pH = 10.4

10−9 10−7 10−5

−1.4

−1.2

−1.0

−0.8

pH = 10.4, filtered

10−8 10−6 10−4

−1.4

−1.2

−1.0

pH = 10.6

10−8 10−6 10−4

−1.4

−1.2

−1.0

pH = 10.6, filtered

Absolute value of current density (|i |) [A/cm2]

P
ot
en
ti
al

(E
)
v
s
S
C
E
[V

]

Figures E22: Empirical polarization curve #22.
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Figures E23: Empirical polarization curve #23.
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Figures E24: Empirical polarization curve #24.
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Figures E25: Empirical polarization curve #25.

10−6 10−4 10−2

−1.8

−1.6

−1.4

−1.2 pH = 12.0

10−6 10−4 10−2

−1.8

−1.6

−1.4

−1.2 pH = 12.0, filtered

Absolute value of current density (|i |) [A/cm2]

P
ot
en
ti
al

(E
)
v
s
S
C
E
[V

]

Figures E26: Empirical polarization curve #26.
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F Corrosion potential measurements
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Figure F1: Empirical corrosion potential measurement #1.
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Figures F2: Empirical corrosion potential measurement #2.
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Figures F3: Empirical corrosion potential measurement #3.
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Figures F4: Empirical corrosion potential measurement #4.
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Figures F5: Empirical corrosion potential measurement #5.
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Figures F6: Empirical corrosion potential measurement #6.
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Figures F7: Empirical corrosion potential measurement #7.
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Figures F8: Empirical corrosion potential measurement #8.

0 1000 2000 3000

−0.75

−0.70

−0.65

−0.60

pH: 8.4

0 1000 2000 3000

−0.9

−0.8

−0.7

−0.6 pH: 8.6

0 1000 2000 3000

−0.90

−0.85

−0.80

−0.75

−0.70
pH: 8.8

0 1000 2000 3000

−0.85

−0.80

−0.75

−0.70

−0.65 pH: 9.0

Time [s]

P
ot
en
ti
al

E
v
s
S
C
E
[V

]

Figures F9: Empirical corrosion potential measurement #9.
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Figures F10: Empirical corrosion potential measurement #10.
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Figures F11: Empirical corrosion potential measurement #11.

98



APPENDICES

0 1000 2000 3000

−1.3

−1.2

−1.1
pH: 10.8

0 1000 2000 3000

−1.5

−1.4

−1.3

pH: 11.0

0 1000 2000 3000

−1.6

−1.5

−1.4

−1.3
pH: 11.2

0 1000 2000 3000

−1.6

−1.5

−1.4

pH: 11.4

Time [s]

P
ot
en
ti
al

E
v
s
S
C
E
[V

]

Figures F12: Empirical corrosion potential measurement #12.
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Figures F13: Empirical corrosion potential measurement #13.
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