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Abstract

Hyper-Spectral Small Satellite for Ocean Observation (HYPSO) is a space mission at the Small-
SatLab at NTNU in Trondheim with the mission to provide rapid and continuous capturing and
monitoring of the Norwegian coast. The first mission was HYPSO-1 launched in 2022, which is a
6U CubeSat containing a Hyperspectral Imaging (HSI) Payload. HYPSO’s mission includes a lot
of high-complexity tasks concerning onboard data handling or processing that consist of machine
learning and artificial applications. This is mainly supported by the use of Commercial off-the-
shelf products (COTS) like FPGAs (Field Programmable Gate Array) which are high-density
programmable logic devices that are very popular in space projects because of their reconfigurable
characteristic. One of the challenges that HYPSO missions and space missions in general face is the
possibility to change the hardware logic with the aim to update, remove or interchange the existing
logic with a new one. This thesis adds this functionality to the HYPSO mission by providing a
dynamic reconfiguration approach. Besides the reconfiguration functionality, this thesis provides
another approach to increase the flexibility and efficiency of the on-board compression algorithm
by allowing the change of the image dimensions dynamically, since based on the previous master
thesis it was noted that the compression core cannot be used for varied hyperspectral images.
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CHAPTER 1
Introduction

1.1 Motivation

In the last decades, CubeSats have been a trend in space missions, used exclusively in Earth Orbit
but now they are also being used in interplanetary missions. CubeSats are small satellites, with the
first design proposed in late 1990 by professors Jordi Puig-Suari of California Polytechnic State
University and Bob Twiggs of Stanford University [1] with the intent of making space science
accessible to education. Because of their low cost and their small physical size, nowadays they
are being used in many space projects including academic but also commercial ones. CubeSat
projects include a lot of high-complexity tasks concerning onboard data handling or processing
that consist of machine learning and artificial applications. This is generally supported by the use
of Commercial off-the-shelf products (COTS). FPGAs (Field Programmable Gate Arrays) that
are high-density programmable logic devices are very popular in space projects due to their recon-
figuration nature, allowing modifications based on user requirements. However, the configuration
process poses some challenges such as time consumption, execution interruption, and temporary in-
crease in power consumption. To mitigate these issues, dynamic partial reconfiguration of FPGAs
can be used to enable selective modification of specific portions of the FPGA while the remaining
system continues operation. By leveraging dynamic partial reconfiguration, the configuration time
is minimized, execution continuity is maintained, and opportunities for power optimization are
realized.

1.2 Hyperspectral Imaging and Processing

Hyperspectral Imaging is a powerful technique that allows capturing of high-resolution images of
objects and scenes with hundred or thousand spectral bands. This provides detailed information
about the composition and physical properties of materials, allowing for a detailed analysis of
complex substances such as minerals, vegetation, and pollutants. This principle is achieved by the
hyperspectral sensors, that by measuring light absorption and reflection at different wavelengths,
create data cubes with spectral bands for each image pixel. Hyperspectral Imaging has found a
great application in space exploration because it allows for geological and mineralogical mapping
of planetary surfaces through high-resolution spectral data.

1.3 HYPSO Mission

Hyper-Spectral Small Satellite for Ocean Observation (HYPSO) is a space mission at the Small-
SatLab at NTNU in Trondheim with the mission to provide rapid and continuous capturing and
monitoring of the Norwegian coast. The first mission was HYPSO-1 launched in 2022, which
is a 6U CubeSat containing a Hyperspectral Imaging (HSI) Payload. The mission objectives of
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HYPSO-1 include gathering, monitoring, and analyzing ocean color data with a focus on detecting
the presence of algae blooms, micro-organisms, and chemical substances. The following mission
will be the launch of HYPSO-2 which will include a Software Defined Radio (SDR) with the goal
of improving Arctic communication infrastructure in order to enable data retrieval from different
remote sensor nodes.

1.4 Dynamic Reconfiguration

Dynamic reconfiguration refers to the ability to modify the hardware configuration of an FPGA
device while it is in operation. This allows for the implementation of flexible and adaptive systems
that can be reconfigured to meet changing requirements without interrupting operation. Dynamic
reconfiguration enables the replacement or addition of modules, the modification of interconnects,
and the adjustment of device parameters, all while the system is running [2].

Dynamic reconfiguration enables FPGA-based systems to adapt and respond to evolving require-
ments and changing operating conditions in real time. Unlike traditional reprogramming meth-
ods that require system interruption, dynamic reconfiguration allows for on-the-fly changes to
the FPGA’s functionality. This capability opens up new possibilities in various domains such as
aerospace, telecommunications, software-defined radio, and adaptive computing.

This thesis focuses on exploring the potential of dynamic reconfiguration in FPGA-based sys-
tems. It aims to explore the profound impact of dynamic reconfiguration on performance, resource
optimization, and run-time adaptability.

1.5 Specialisation Project

This thesis is a continuation of the specialization project with the topic ”Onboard image pro-
cessing pipeline and on-flight FPGA reconfiguration for hyperspectral remote sensing CubeSats”.
The project aimed to gain a comprehensive understanding of the HYPSO-1 systems, which include
the onboard processing pipeline and the onboard processing unit. In the initial phase of the pro-
ject, significant emphasis was placed on examining the onboard processing pipeline and validating
the functionality of various implemented modules, such as classification, dimensionality reduction,
smile detection, and keystone correction. Subsequently, the project delved into exploring diverse
methodologies for achieving run-time reconfiguration of the FPGA. Based on knowledge and find-
ings from the specialization project, the focus of this master thesis will be to perform dynamic
partial reconfiguration of the FPGA based on the CCSDS-123 compression algorithm.

1.6 Main contributions

The project assignment for the master thesis encompasses two primary tasks, which are as follows:

• Conducting a thorough analysis of the CCSDS-123 compression algorithm and modifying
its implementation to support the compression of images with various dimensions, thereby
enhancing its versatility and applicability.

• Establishing a comprehensive data flow model that enables dynamic reconfiguration of the
FPGA, specifically focusing on performing partial configurations based on the CCSDS-123
compression algorithm.

Firstly, during the HYPSO mission, it is necessary to perform the compression on different cube-
size dimensions which until now was not possible. One approach to support this is to perform full
reconfiguration of FPGA by changing the generic parameters X, Y, and Z, and then creating the
boot files based on the changed hardware specification. A more efficient approach is to change the
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cube size dimension by writing and reading the cube size dimension from registers in hardware
implementation without needing to perform full reconfiguration. Additionally, the second and
main part of this master thesis is to perform dynamic partial reconfiguration on-flight based on the
CCSDS-123 compression algorithm. Partial reconfiguration offers the opportunity to interchange
different modules in the FPGA without affecting the other functional modules in FPGA. In the case
of the CCSDS-123 algorithm, the FPGA can be reconfigured to perform compression on different
cube dimensions based on the partial bitstream that will be used.

1.7 Structure of the Thesis

This thesis is organized into seven chapters to provide a comprehensive exploration of the topic.
The structure of the thesis is as follows:

• Chapter 2: Background
This chapter establishes the necessary foundation by presenting background information on
key aspects such as FPGAs, algorithms, reconfiguration concepts, and other relevant factors
essential for the development, implementation, and testing of dynamic partial reconfiguration.

• Chapter 3: Programmable Logic Reconfiguration
This chapter presents information regarding PL reconfiguration and also includes a literature
review of the proposed reconfiguration controllers.

• Chapter 4: Cube Dimension Controller Module
In this chapter, the implementation of a custom AXI4-Lite component for changing the Y-
dimension of the HSI cube is presented, providing detailed insights into the implementation
process.

• Chapter 5: Dynamic Partial Reconfiguration using PCAP
This chapter outlines a step-by-step flow that can be followed to perform partial reconfig-
uration using the CCSDS-123 compression algorithm. It delves into the methodology and
techniques employed during the process.

• Chapter 6: Dynamic Partial Reconfiguration Testing
In this chapter, the testing flow conducted to verify the functionality of the presented ap-
proach to perform partial reconfiguration is described in detail.

• Chapter 7: Experimental Results
This chapter evaluates the results obtained from the experiments and analysis conducted in
the previous chapters. It offers a comprehensive evaluation of the performance and efficacy
of the presented approach.

• Chapter 8: Conclusion
This chapter provides a short summary of this master thesis, by also mentioning the conclu-
sions based on the experimental results. Finally, it also includes recommendations for future
work.
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CHAPTER 2
Background

2.1 CubeSats

The concept of CubeSats was developed at the Department of Aeronautics and Astronautics at
Stanford University in collaboration with Jordi Puig-Suari at the Aerospace Department at Cali-
fornia State Polytechnic University in 1999 [3], with the aim to develop a design that can be built
by students in short time with low cost. The physical standard of CubeSats is based on a 10 x 10
x 10 cm cube, with a mass of around 1.33 kg, referred to as one unit ”1U” CubeSat. However,
they come in several sizes such as 1.5U, 2U, 3U, 6U, or 12U [4]. In Figure 2.1 an example of 1U
and 3U CubeSats are shown.

Figure 2.1: 1U(left) and 3U (right) CubeSat

Source: [4]

CubeSats are used in a wide range of missions, such as Earth observation, technology demon-
stration, communication, and scientific missions. Besides these applications, one popular usage
of CubeSats that is supported by their low cost is the studying of Earth’s atmosphere and space
weather monitoring.

2.2 Hyperspectral Data Representation

A digital image is a rectangular array made up of a certain number of rows and columns, each
containing a single pixel value associated with a specific coordinate in the image. In contrast,
three-dimensional images, such as hyperspectral images (HSI), consist of a series of contiguous
narrow wavelength intervals, forming a cube-like structure with dimensions defined by the number
of rows, columns, and spectral bands [5]. Hyperspectral images have many more bands (features)
than traditional RGB images, which only consist of red, green, and blue color channels. Figure
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2.2b illustrates the structure of a hyperspectral image cube, where the X and Y axes represent
the spatial dimensions of the image, while the Z-axis corresponds to the spectral dimension, and
Figure 2.2a shows a hyperspectral data cube.

(a) A hyperspectral data cube. (Credit:
NASA / JPL)

Y

X

Z

(b) HSI Cube dimensions

Figure 2.2: Hyperspectral Image Cube

Hyperspectral images (HSI) are characterized by two main features: a large number of spectral
bands, up to 1000, and the fact that each pixel in the image is represented by a complete spectrum
with associated spectral interpretation, transformation, and data analysis [5]. HSI images are
known for their high spectral resolution and strong correlation among adjacent bands, which can
provide valuable insights for various applications [6].

2.2.1 Component Orderings

The ordering of components in a three-dimensional HSI cube is important for streaming, storing,
and processing purposes. Three are the most common component orderings: Band Interleaved by
Pixel (BIP), Band Interleaved by Line (BIL), and Band Sequential (BSQ).

Row 0 Row 1 Row 2

Band 0 Band 1 Band 2

Pixel 0 Pixel 1 Pixel 2

Band 0

Band 1

Band 2

Row 0

Row 1

Row 2

Row 0

Row 1

Row 2

Band  0 Band 1 Band 2

BSQ

BIL

BIP

Figure 2.3: Illustration of the three different sample orderings of spectral images

Source: [7]

In the BSQ ordering scheme, components within a hyperspectral data cube are arranged in a
manner where all components within each spectral band are grouped together. This arrangement
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starts from the upper-left pixel and proceeds to the lower-right pixel. On the other hand, the
BIL ordering scheme also organizes components separately for each band, but within each line.
Specifically, the components of each pixel in the first line are ordered sequentially, followed by
the components of the second line, and so on throughout the entire data cube. This pattern is
replicated for subsequent lines within the cube. In contrast, the BIP ordering scheme ensures that
all components of a pixel are contiguous. This means that the components of the upper-left pixel
are immediately followed by the components of the pixel to its right, and this sequence continues
until reaching the lower-right pixel [7]. Figure 2.3 visually illustrates these three orderings using a
sample image with dimensions of 3 x 3 x 3, providing a clearer representation of the arrangement
methods.

2.3 Heterogeneous Platforms

Heterogeneous platforms refer to computer systems that encompass diverse processors, memory ar-
chitectures, and communication structures, thereby delivering potent computing capabilities across
various application domains like machine learning, big data analytics, and scientific computing.
The strength of these platforms lies in their utilization of disparate processors such as CPUs,
GPUs, FPGAs, and ASICs interconnected through communication networks.

Application-Specific Integrated Circuits (ASICs) are custom-designed circuits, optimized for spe-
cific tasks or applications that are used in many fields of industries such as aerospace, medical,
automotive, and customer electronics. ASICs are known for their high performance, low power con-
sumption, and high level of integration. However, ASIC development can be time-consuming and
costly, and ASICs are less suitable for applications that require flexibility or quick time-to-market.

On the other hand, Field-Programmable Gate Arrays (FPGAs) are versatile hardware devices that
offer the capability to be reconfigured for specific applications. These devices include programmable
logic blocks, configurable interconnects, and programmable I/Os, allowing them to be programmed
using hardware description languages (HDL). FPGAs can be realized using diverse semiconductor
technologies, such as SRAM-based or Flash-based approaches [8].

Graphics Processing Units (GPUs) are hardware components specifically designed for optimized
graphics rendering and parallel processing having the capability to execute thousands of threads
concurrently, making them highly efficient for parallel computing tasks. The embedded GPU
configurations are diverse since these configurations can have different characteristics, including
the size of caches, the number of shader cores, and the number of Arithmetic Logic Units (ALUs)
per shader core[9].

2.3.1 Comparison of ASICs, FPGAs, CPUs, and GPUs

When it comes to hardware accelerators for various applications, it is important to compare the
characteristics of ASICs, FPGAs, and GPUs. Table 2.1 presents a comparison based on vari-
ous characteristics, reproduced from [10]. As presented, CPUs exhibit moderate flexibility during
development and high flexibility after development, allowing for versatile programming and re-
programming capabilities. However, their parallelism and performance levels are relatively low
compared to other architectures. On the other hand, FPGAs offer high flexibility during develop-
ment and after development, making them suitable for a wide range of applications. They excel
in parallelism and provide moderate performance. ASICs, specialized chips designed for specific
applications, offer very high flexibility during development and low flexibility after development.
They deliver high performance and low power consumption but incur high development and pro-
duction setup costs. Lastly, GPUs provide low flexibility during development but high flexibility
after development, enabling efficient parallel processing for tasks like graphics rendering and ma-
chine learning. They offer moderate performance and high power consumption. This comparison
highlights the trade-offs between these architectures, helping guide the selection of the most suit-
able computing platform for specific application requirements.
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Table 2.1: Comparison of CPU, FPGA, ASIC, and GPU

Characteristics CPU FPGA ASIC GPU
Flexibility during development Medium High Very High Low
Flexibility after development High High Low High
Parallelism Low High High Medium
Performance Low Medium High Medium
Power consumption High Medium Low High
Development cost Low Medium High Low
Production setup cost None None High None
Unit cost Medium High Low High
Time-to-market None Medium High Medium

Source: [10]

2.4 FPGA Architecture

2.4.1 The Logic Fabric

To fully understand the capabilities of Zynq devices, it is important to have a clear understanding
of the various components that make up the programmable logic (PL) portion of the device. The
Programmable Logic (PL) of a Zynq device is generally composed of general purpose logic FPGA
logic fabric that consists of slices and Configurable logic Blocks (CLBs) which can be configured
to perform various logic operations based on the design requirements. Furthermore, the PL also
includes Input/Output Blocks (IOBs) that allow the device to interface with external devices or
systems. The PL part of the Zynq device together with its components is illustrated in Figure 2.4.

Figure 2.4: The logic fabric of a Zynq device

Source: [11]

The Configurable Logic Blocks (CLBs) are fundamental building blocks in an FPGA that contains
a number of resources such as lookup tables (LUTs), and flip-flops and carry logic that can be
configured to implement custom logic circuits. They are connected to other resources via program-
mable interconnects. A sub-unit of CLB is a slice that is used as the basic unit for implementing
logic functions. Slices can contain resources like LUTs which are small memory components used
to implement combinatorial and sequential logic circuits. They are used typically in combination
with other logic elements such as flip-flops, to implement complex digital circuits. Flip-flops are
circuit elements used to store a single bit of information that can be used to implement different
logics, such as a function of up to six inputs, a small Read-Only Memory (ROM), a small Random
Access Memory (RAM), or a shift register [11]. The Switch Matric is a collection of program-
mable switches that are used to connect various components of an FPGA device, responsible for
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routing signals between different functional blocks. IOBs (Input/Output Blocks) are specialized
components that are used to interface with external devices that provide flexible I/O capabilities.
Carry logic are a chain of routes and multiplexers that are used to link slices in a vertical column.
Apart from general logic fabric, FPGAs have two special purpose components: Blocks RAMs for
accommodating high-density memory requirements and Digital Signal Processing (DSP) slices for
high-speed arithmetic. Both of those resources are placed in columns within the logic array, near
each other, since computation-intensive tasks and memory storage operations are often intercon-
nected. Another important concept is the Clock Management Tile (CMT) which is a dedicated
hardware block that provides clock generation and distribution, by managing clock signals within
the FPGA design.

Depending on the organization, fine-grained and coarse-grained refer to the level of granularity or
size of the programmable logic blocks. In fine-grained FPGAs, the logic elements are small and
highly configurable such as LUTs, or CLBs. On the other hand, coarse-grained FPGAs have a
larger pre-designed logic block, such as IP blocks or predefined functions. Coarse-grained FPGAs
offer a higher level of abstraction and can simplify the design process by providing pre-designed
blocks for common functions.

2.4.2 Zynq-7000 SoC

The Zynq-7000 is an integrated system-on-chip (SoC) platform created by Xilinx that combines
a dual-core ARM Cortex-A9 processor with programmable logic (PL) in a single device. The
architecture of the Zynq-7000 SoC, as depicted in Figure 2.5, comprises a single or dual-core
ARM Cortex-A9-based processing system (PS) and a programmable logic (PL) section integrated
into a single device [12]. The PL utilizes Xilinx’s 28nm programmable logic technology, enabling
the incorporation of tailored hardware accelerators. Interconnecting the PS and PL is the Ad-
vanced eXtensible Interface (AXI), a high-bandwidth interconnect facilitating efficient and rapid
communication between the two components. The PS encompasses memory controllers, external
interfaces, and system-level features essential for executing software applications. In contrast, the
PL comprises programmable logic resources such as CLBs, DSP blocks, and BRAMs [12]. These
resources can be configured to implement customized hardware accelerators. Additionally, the
Zynq-7000 SoC includes various features that support system-level functionality, including Ether-
net interfaces, a USB controller, and more.

Figure 2.5: Zynq-7000 SoC Architecture Overview

Source: [12]

The Zynq-7000 SoC is used in different applications such as embedded systems, automotive, indus-
trial automation, and networking. In embedded systems, the platform finds extensive application
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in real-time control and signal-processing tasks. The automotive industry utilizes it for advanced
driver assistance systems (ADAS) and engine control units (ECUs), while industrial automation
benefits from its use in process control and monitoring. In the networking domain, the platform
plays a crucial role in packet processing and network acceleration. Besides the many advantages
that this platform provides, it has its limitations as well. One of the most important ones is
the complexity of the system, which requires specialized expertise in hardware-software co-design.
Also, it requires careful management of power consumption to avoid overheating.

2.4.3 Zynq UltraScale+ MPSoC

The Zynq UltraScale+ MPSoC, a product of Xilinx, represents an extensively integrated System
on Chip (SoC) that combines a quad-core ARM Cortex-A53 processor with a programmable lo-
gic subsystem. This cutting-edge generation builds upon its predecessor, the Zynq-7000 SoC, to
deliver enhanced capabilities. The MPSoC showcases advanced memory and storage subsystems,
encompassing DDR4 memory controllers and High-Speed Serial I/O interfaces. Supporting both
32-bit and 64-bit operating systems, it finds utility in diverse applications such as embedded sys-
tems, networking, and automotive domains. In contrast to conventional SoC solutions, the Zynq
UltraScale+ MPSoC demonstrates exceptional programmability, flexibility, high performance, and
low power consumption. Additionally, it features secure boot, encrypted bitstream programming,
and tamper detection to address security concerns.

Figure 2.6: Zynq UltraScale+ MPSoC CG Architecture Overview

Source: Xilinx

2.4.4 Fabric Structure and Reconfiguration

This section will discuss the general architecture of an Xilinx FPGA device. FPGAs typically
include CLBs, IOBs, and logic cell arrays (LCAs). The FPGA architecture is composed of columns
of IOBs, CLBs, DSPs, CMTs, and BRAMs. As illustrated in Figure 2.7, FPGA horizontally is
divided into two halves, the top half and the bottom half, represented by TOP(0) and Bottom(1),
respectively. In each of those halves, there can be one or several horizontal clock rows (HCLK),
based on the FPGA family and producer. For example, Figure 2.7, is illustrated the structure of
the ZynQ SoC FPGA, and as it can be observed, each half includes four HCLKs. Furthermore,
each of those HCLKs consists of a number of CLBs, BRAMs, DSPs, and IOBs depending on the
specific device.

Each HCLK row represents a major row and is divided by regional clock resources into an upper
and lower half. The height of an HCLK row corresponds to the CLB column (50 CLBs), and its
width matches the device width. Each HCLK row contains different numbers of CLBs, BRAM,
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DSPs, and I/Os based on the device width. A CLB column consists of 400 LUTs, with each
CLB containing four LUTs per slice. The LUTs in the seven-series architecture are capable of
implementing six-input boolean functions with a 64-bit initialization value, and they can also be
used as dual five-input LUTs with shared inputs.
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Figure 2.7: FPGA architecture of the ZedBoard

To dynamically reconfigure a system at run-time, the location of the logic resource needs to be
known in both the XY coordinate system and the configuration memory space. The XY coordinates
of the target slice, specified in a constraint file, can be mapped to the corresponding frame address
in the configuration memory using the frame address register (FAR), which is a 32-bit value. The
LUT location is defined as a pair of (X, Y) coordinates and a BEL value, where X represents
the row, Y represents the column of a slice, and BEL specifies the LUT position within the slice
(LUTA, LUTB, LUTC, or LUTD).

2.5 FPGA Design Flow

The FPGA design flow is the process of creating a digital circuit using an FPGA device. The flow
consists of several stages, as shown in Figure 2.8. The first stage is the definition and specification
of the design requirements. Following the design specification, the high-level design stage begins,
employing hardware description languages (HDLs) like VHDL or Verilog. This stage involves rep-
resenting the circuit’s structure and functionality using block diagrams or modular representations.
The high-level design allows designers to capture the overall architecture and functionality before
diving into the implementation details.
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Figure 2.8: Simplified design flow of FPGA

Source: [13]

2.5.1 Design Entry

Design Entry is the stage of FPGA design flow where the design is described using hardware
description languages (HDL) like VHDL or Verilog. Hardware description languages are used to
specify the behavior and the structure of the design. In some cases, this code can be generated using
high-level synthesis (HLS) tools. In order to enable the partial reconfiguration of the design, some
changes are required at this stage. First, the reconfigurable modules need to be incorporated into
the overall system design, by also identifying the boundaries and defining the necessary interfaces
between them and static region. Secondly, other changes that can be done in this stage are related
to the configuration path that will be used for partial reconfiguration. This includes the addition
of the IP, representing the hardware controller, that facilitates this process.

2.5.2 Behavioral Simulation

Behavioral simulation is a crucial step in the design process as it allows for the testing and validation
of the functionality of a circuit. This testing is performed using simulation tools, where the
HDL code is simulated with input test vectors. The purpose of this simulation is to verify that
the circuit behaves as intended and meets the desired requirements. By subjecting the HDL
code to simulation, designers can observe the behavior of the circuit and identify any logical or
functional errors that may be present. This process helps in detecting and resolving issues before
moving forward with subsequent stages of the design flow. In terms of DPR (Dynamic Partial
Reconfiguration), this stage plays an important role in creating additional reset scenarios that
should be considered to validate the correct behavior and the interaction of the reconfigurable
modules with the static region.
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2.5.3 RTL (Register Transfer Level) Synthesis

RTL synthesis involves translating a high-level design description into a gate-level representation.
The RTL code is analyzed and optimized by synthesis tools to generate a netlist consisting of gates
and flip-flops that represent the circuit’s behavior. This gate-level representation serves as a basis
for further implementation steps. During the DPR, this stage will handle the synthesis of both the
static and the reconfigurable partitions of the design.

2.5.4 Netlist Generation

After RTL synthesis, a netlist is generated, capturing the circuit’s structure and connectivity
information. The netlist represents the circuit in terms of gates, flip-flops, and interconnections.
It provides a structural representation that serves as input for subsequent implementation steps,
such as placement and routing. In the DPR, this stage is modified to generate separate netlists for
the static and reconfigurable portions of the design. The netlist for the static portion represents
the always-operating components, while the netlist for the reconfigurable portion represents the
modules that can be dynamically loaded and swapped in and out during runtime.

2.5.5 Placement and Routing

Placement and routing involve mapping the circuit’s netlist onto the physical resources of the
FPGA device. Placement determines the optimal location for each logic element on the FPGA,
while routing establishes the interconnections between these elements. Placement and routing
tools consider various factors like performance, timing, and power consumption to optimize the
circuit’s layout and ensure efficient utilization of FPGA resources. This stage is also impacted
during the partial reconfiguration since the placement and routing should consider the interaction
between the static and reconfigurable modules. The placement must ensure that the static region
is placed and routed efficiently, while also reserving sufficient space for the reconfigurable modules.
However, a crucial role in the DPR plays floorplanning, which is the definition of where the
reconfigurable modules will be placed. Before the placement and routing phase, some analysis
regarding the placement of the static region can be performed, in order that the floorplanning of
the reconfigurable modules to be defined considering the short interaction time between the two
portions.

2.5.6 Bitstream Generation

A Bitstream is a binary file containing a sequence of bits that includes all the configuration in-
formation for a specific FPGA. It also contains commands that can control the functionality of
the chip. There are two types of bitstreams: full and partial. Full bitstreams configure the entire
FPGA, while partial bitstreams only configure specific sections of the device. The size of a partial
bitstream is proportional to the size of the region that it is reconfiguring. This is because partial
bitstreams have the same structure as full bitstreams, but are limited to specific address sets to
program only part of the device.

A Bitstream file consists of three main parts: Header Packets, Configuration bits, and Trailer
Packets. Header Packets are used for configuration preparation, Configuration bits are a sequence
of data packets that contain configuration information, and Trailer Packets are used to clean up the
configuration process. There are different formats for bitstreams, but they all contain these three
parts. The most commonly used formats are .bin and .bit. The .bit format includes a text header
(usually 129 bytes) that provides information about the bitstream name, user ID, or FPGA board.
Besides the .bit format, the bitstream can be found in the .bin format that is used for configuring
Xilinx FPGAs. However the .bin format, in contrast to the .bit format, does not include a text
header.

This stage is the most affected one while the DPR is used. The bitstream generation stage is
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modified to generate both the configuration bitstream for the static portion of the design and
the partial bitstreams for the reconfigurable modules. The configuration bitstream includes the
necessary information to initialize the static region of the FPGA. The partial bitstreams contain
the configuration data for the reconfigurable modules and are dynamically loaded into the FPGA
during run-time.

2.5.7 Configuration and Testing

In this stage, the generated bitstream file is loaded onto the FPGA device to configure the device
so that it can operate according to the designed circuit. After the FPGA is programmed, the
next step is to perform testing and validation in order to ensure the correctness and if it meets
the specified requirements. In this step, test vectors or test benches are used in order to test
functionality or performance. During partial reconfiguration, the configuration and testing stage
is also modified to accommodate the dynamic loading and unloading of partial bitstreams. Instead
of configuring the entire FPGA with a single bitstream, only the relevant sections of the FPGA
are configured using partial bitstreams. The partial bitstreams containing the configuration data
for the reconfigurable modules are loaded into the FPGA during run-time, allowing for dynamic
changes to the circuit functionality.

2.6 AXI4-Lite Interface

The AXI4-Lite interface is a bus protocol, used in the field of digital design and system-on-chip
(SoC) integration that provides a simple type of communication between the processor and peri-
pheral devices within an SoC. As the name suggests, it is based on the Advanced eXtensible
Interface (AXI) standard developed by ARM. This section will give a brief introduction to the pro-
tocol and communication flow, highlighting its features, advantages, and relevance in hyperspectral
image applications.

2.6.1 Introduction to AXI4 Protocol

AXI is a part of the ARM AMBA family of microcontroller buses. It was first introduced in 1996
and has undergone several versions, including AXI4, which was included in AMBA 4.0 released
in 2010. The AXI4 interface includes three types: AXI4 for high-performance memory-mapped
requirements, AXI4-Lite for simple low-throughput memory-mapped communication with control
and status registers, and AXI4-Stream for high-speed streaming data [14]. AXI4 has become the
go-to interface in Xilinx product offerings, and it brings a lot of benefits that boost productivity,
flexibility, and availability. Firstly, by adopting the AXI interface, developers can focus on learning
just one protocol for IP, saving time and effort. Secondly, AXI4 offers different versions tailored
to specific applications. AXI4 provides high-performance memory-mapped interfaces, supporting
lightning-fast data transfers in bursts. On the other hand, AXI4-Lite is a lightweight, user-friendly
interface perfect for quick and simple memory-mapped communication. Another advantage is the
wide availability of AXI, as it has become an industry-standard protocol [14].

2.6.2 AXI4-Lite Communication Flow

The AXI4-Lite interface comprises five communication channels: Read Address, Read Data, Write
Address, Write Data, and Write Response. Figure 2.9 illustrates the AXI4 read and write trans-
actions. As illustrated, the data can move in both directions between the master and slave sim-
ultaneously. However, it should be noted that Figure 2.9 illustrated burst transfers, which is a
characteristic of AXI4, but AXI4-Lite allows only one data transfer per transaction [14]. The
AXI4 interface includes a VALID/READY handshake process across all five transaction channels
to facilitate the transfer of address, data, and control information. This mechanism allows both
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the master and slave components to regulate the flow rate of information between them. The mas-
ter generates a VALID signal to indicate the availability of address, data, or control information,
while the slave generates a READY signal to signify its readiness to receive the information. The
handshake process is considered successful when both the VALID and READY signals are asserted
concurrently during a rising clock edge. This ensures efficient and synchronized communication
between the master and slave, enabling controlled information transfer.

(a) AXI4 Read Transaction

(b) AXI4 Write Transaction

Figure 2.9: AXI4 Read and Write Transaction

Source: [14]

In an AXI4-Lite read transaction, as shown in Figure 2.9a the master initiates the process by
sending a valid address on the Read Address channel and asserting the ARVALID and RREADY
signals. The slave responds by asserting the ARREADY signal, indicating its readiness to receive
the address. Upon the next rising clock edge, the handshake occurs, and both the ARVALID and
ARREADY signals are de-asserted, indicating successful address transmission. The slave then
provides the requested data on the Read Data channel, asserting the RVALID signal to indicate its
validity. Once the RREADY and RVALID signals are both asserted, the transaction is completed,
and the RREADY and RVALID signals can be de-asserted.

Similarly, in an AXI4-Lite write transaction, illustrated in Figure 2.9b the master sends the ad-
dress and data on the Write Address and Write Data channels while asserting the AWVALID
and WVALID signals. It also asserts the BREADY signal, indicating its readiness to receive a
response. The slave responds by asserting the AWREADY and WREADY signals, completing the
handshakes, and acquiring the write address and data. The slave then provides a response on the
Write Response channel, asserting the BVALID signal to indicate its validity. The transaction
is completed on the next rising clock edge when both the ready and valid signals on the Write
Response channel are high.
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2.6.3 Features and Advantages of AXI4-Lite

The AXI4-Lite interface offers a simplified and streamlined version of the AXI4 interface, specific-
ally designed for simple, low-throughput memory-mapped communication. The advantages of the
AXI4 protocol interface include:

• Simplicity: It provides a simpler and more lightweight design and offers an interface for
low-throughput applications.

• Resource Efficiency: It has a smaller logic footprint, making it suitable for resource-constrained
designs.

• Reduced Complexity: It supports only single transactions, simplifying communication between
components.

• Easier Integration: It can be easily integrated into SoC designs

• Lower Power Consumption: It consumes less power compared to AXI4, benefiting power-
sensitive applications.

• Faster Development time: Due to its simplicity and availability of resources lead to quicker
development times for low-throughput applications.

In general, AXI4-Lite offers a more streamlined and efficient approach for memory-mapped com-
munication with low data transfer needs, when compared to AXI4. Its benefits lie in its simplicity,
resource efficiency, compatibility, and reduced complexity, making it the preferred option for ap-
plications that require less data throughput.

2.7 Design Tools and Environments

This section provides an overview of the most commonly used tools and environments in FPGA
design. These tools are integral to the FPGA design flow, providing support in different stages
such as circuit creation, simulation, synthesis, optimization, and implementation

• Xilinx Vivado Vivado is a comprehensive software suite developed by Xilinx for designing,
implementing, and optimizing digital designs for Xilinx FPGAs and SoCs. It offers features
like design entry, simulation, synthesis, place-and-route, and bitstream generation which were
described in the previous sections [15].

• Vitis SDK
Vitis Software Development Kit (SDK) is another tool provided by Xilinx that is designed
to facilitate the creation of applications that leverage the power of FPGA and SoC devices.
Vitis SDK helps to design accelerated applications by integrating hardware accelerators with
embedded software that executes on the CPU. This tool supports programming languages
such as C, C++, or OpenCL making it very accessible to a wide group of developers. Fur-
thermore, it includes a set of development tools such as compilers, debuggers, profilers, and
libraries that help during the software development process. This tool is integrated with
other Xilinx development tools and platforms, such as Vivado Suite, which helps to facilitate
the development process [16].

• Vivado HLS
Vivado HLS (High-Level Synthesis) simplifies FPGA design by converting high-level code
(C, C++, or SystemC) into optimized RTL code suitable for FPGA implementation. It
automates analysis, applies optimizations, and generates RTL code that can be further syn-
thesized and implemented using Vivado. Vivado HLS reduces design time and effort by
automating complex RTL design tasks. It enables designers to explore design options, op-
timize performance, and evaluate trade-offs between performance, area utilization, and power
consumption [17].
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• Version Control System
A Version Control System (VCS) is essential for code management and collaboration. Git,
a distributed VCS, is widely used for its features and integration with platforms like Git-
Hub. Git tracks code changes, allowing offline work and collaboration among geographically
dispersed teams. GitHub provides a centralized platform for code sharing, issue tracking,
and collaboration, promoting open-source development and facilitating knowledge sharing in
software development projects [11].

2.8 Embedded Operating System

An operating system is a crucial software component responsible for the management of the com-
puter system’s hardware [18]. In the context of embedded systems, the operating system plays a
vital role in enabling these systems to perform their designated tasks within a larger framework.
An embedded operating system is a specialized software system designed to run on embedded
devices with limited computing resources such as a microcontroller, single-board computer, or
custom-designed hardware. The main component of the operating system is the kernel, which is a
program responsible for managing computer system resources and allocating them between differ-
ent processes and users. The kernel operates at the privileged level of the processor so that the user
code cannot access certain hardware resources. Overall, the kernel’s functions include managing
resources, controlling hardware access, and facilitating context switching between processes [18].

Today exist different types of operating systems, with many specific characteristics, however, some
of the general characteristics that embedded operating systems have, based on [18], include:

• Subsystem of a device or machine: Embedded systems are components within more board
systems, such as engine management systems or microprocessors, and can also exist as stan-
dalone devices like access points or routers.

• Dedicated application: Embedded systems are designed to perform specific tasks, though
modern devices may support multiple applications.

• Small footprint: Embedded systems are typically designed with a minimal footprint, driven
by the specific task they perform.

• Low power consumption: Embedded Systems in most cases are battery-powered and require
energy-efficient operation.

• Interaction with the physical world: Embedded systems are involved in physical computing,
sensing, and responding to the analog world.

• Single board computers (SBCs): Entire computer systems can be built on a single printed
circuit board, known as SBCs, which are commonly used as platforms for embedded systems.

These characteristics collectively define the general aspects of embedded operating systems, how-
ever, it is important to note that there are many other characteristics specific to embedded systems
that can vary based on their intended applications.

2.8.1 Types of Embedded Operating Systems

• Real-Time Operating Systems (RTOS)
Real-Time Operating System is an operating system designed for the real time-applications
where a timely response to events is critical. One of the distinguishing features of an RTOS
is its ability to provide precise timing guarantees. There are two categories of RTOS: hard
RTOS and soft RTOS, each offering different levels of assurance. A hard RTOS ensures that
critical tasks consistently meet their deadlines, thereby minimizing the potential for severe
consequences in the event of a missed deadline. On the other hand, a soft RTOS provides
reliable responses for the majority of tasks, although occasional deadline misses may not have
significant consequences [19].
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• Linux-based Operating Systems
Linux-based operating systems are operating systems built upon the Linux Kernel, which is an
open-source operating system that follows Unix-like architecture created by Linux Torvalds.
Those operating systems inherit the principles of Linux and can be run on various devices
and platforms because they are open-source operating systems. Some of them are Ubuntu,
Buildroot, Yocto Project, OpenEmbedded, etc.

• Microcontroller Operating Systems
Microcontroller operating systems (MCOS) are specifically designed for microcontrollers,
which are small and low-power integrated circuits that contain a processor core, memory,
and peripheral interfaces on a single chip.

2.8.2 Yocto Project

The Yocto Project is a collaborative open-source initiative that offers a comprehensive set of
templates, tools, and methodologies to facilitate the creation of customized Linux-based systems for
embedded products, irrespective of the underlying hardware architecture [20]. It offers a collection
of recipes, configuration values, and dependencies that enable the creation of a tailored Linux
run-time image. Unlike desktop distributions, Yocto allows to choose packaging formats and init
systems based on their specific requirements. It supports deb, rpm, ipk, or tar package formats
by default and provides flexibility to add custom formats. Similarly, selecting between sysvinit or
system init systems can be easily configured. A Yocto build initially constructs native utilities the
build system requires to minimize dependencies on the host OS and ensure a known set of package
versions. It then builds a cross-compilation environment before proceeding to build binaries for
the target platform. The build process, managed by the bitbake 1 executive, involves multiple
phases (fetch, compile, install, package) and necessitates the specification of run-time and build-
time dependencies. Parallel execution of tasks is determined by host system resources and task
interdependencies [22].

2.8.3 PetaLinux

PetaLinux is a Software Development Kit(SDK) specifically designed for embedded Linux systems
deployed on FPGA-based system-on-chip designs. The PetaLinux tool includes essential compon-
ents such as the Yocto Extensible SDK (eSDK), XSCT (Xilinx Software Command-Line Tool),
toolchains, and Petalinux Command-Line Interface (CLI) tools that help developers to effectively
build, customize, and validate embedded Linux systems [23]. PetaLinux is built on top of the Xilinx
Yocto Project, so it leverages the power of Yocto build systems that enable efficient construction
of Linux images with a high degree of customization. The PetaLinux tool incorporates a CLI that
offers a range of commands for effective management and customization of embedded Linux sys-
tems. One of the commands, petalinux-create allows users to create new PetaLinux projects,
while petalinux-config enables customization of specific projects by adjusting their config-
urations. The petalinux-build command facilitates the building process of either a specified
component or the entire embedded Linux system. Additionally, the petalinux-util command
provides supplementary services to support various PetaLinux workflows. In order to package the
PetaLinux projects into deployable formats the petalinux-package command can be used, and
the petalinux-upgrade command allows for workspace upgrades. The petalinux-devtool
command employs the Yocto devtool for building, testing, and packaging software. Lastly, the
petalinux-boot command is utilized to boot MicroBlaze™ CPU, Zynq® devices, Versal®
ACAP, and Zynq® UltraScale+™ MPSoC with PetaLinux images through JTAG/QEMU.

1BitBake is a main component of Yocto Project that is used to build images [21]
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2.8.4 Device Drivers

Device drivers are software programs that serve as an intermediate level between the operating
system and the hardware devices [24]. The purpose of the device driver is to make sure that the
operating system can interact with the hardware device when it is connected. In Linux, device
drivers are represented by loadable modules that are loaded during the boot process and facilitate
the communication between OS and the hardware.

Device drivers are responsible for managing the control and status registers (CSRs) of hardware
controllers, which can differ between devices. By centralizing the code for managing hardware
controllers, Linux avoids duplication in applications. Linux’s device drivers are shared libraries
that contain low-level hardware handling routines. They handle the specific operations on the
devices they manage, abstracting the complexities of device handling from applications. Linux
supports three main types of hardware devices: character devices, block devices, and network
devices. Through the utilization of device drivers, Linux provides a unified and efficient approach
to interacting with these hardware devices. In order to provide consistent and streamlined device
management in Linux, the operating system is divided into two spaces: kernel and user space. In
user space the processor and user applications run, and on the other hand, the kernel space is a
privileged part that contains the kernel. This is why the device driver resides in kernel space so
that they can provide the necessary interface for the user applications, which make system calls
to the kernel, that then communicates with the respective device driver to perform operations on
hardware.

2.8.5 Device Tree Overlay (DTO)

As discussed in the previous subsection the device tree is a data structure constructed as a hardware
description of FPGA components by providing a hierarchical representation of hardware compon-
ents. In some cases, during the reconfiguration process, it is necessary to change the device tree
in order to include the new hardware components that are added or removed. Specifically, the
device tree overlay is the mechanism that allows modification of the device tree in order to support
dynamic reconfiguration. The device tree is represented by a textual format that consists of nodes
and properties. The nodes include their name and their unit address as illustrated below:

label: node_name@node_address {
/* properties */

};

The label is used during the compilation process, and it can be used as a reference in other device
nodes. The node name serves as the identifier and the node address represents the base address
of the device register. Properties in the device node are used to provide specific information and
configuration parameters for the corresponding hardware component. As the name suggests the
device tree is a tree structure, where the root node is the starting point of the tree marked by ”/”
and it contains all other nodes. The basic format of the device tree is as below:

/dts-v1/;

/ {
label: node_name@node_address {

reg = <node_address>;
property-1 = "";
property-2 = <>;
property-3 = 1;

};

// rest of the devices
};

18



˜

The Device Tree Overlay is a method that allows the dynamic modification of the device tree in
a live Linux kernel environment. It enables the insertion of device tree fragments, which can add
or remove hardware components or modify their properties, without the need to rebuild the entire
device tree. The main purpose of the DTO is to modify the kernel’s live tree by modifying it in a
way that reflects the required changes [25].

The device tree overlay is defined in a .dts file, which follows a specific format. In the device
tree overlay, the overlay node contains the fragments that will be added to the device tree.
Each component is defined using the fragment@X syntax, where X is a unique identifier. The
target/target-path property specifies the location in the device tree where the fragments should be
added.

When using PetaLinux, there are some considerations to keep in mind. PetaLinux creates the
device tree by combining the Board Support Package (BSP) and Vivado export files into a single
system.dts file during the build process. Each hardware component has its own device tree,
specified in .dtsi files, which are then integrated into the final system.dtb file by PetaLinux.
Configuring the PL in PetaLinux involves modifying the appropriate .dtsi file for the target
hardware component. The PetaLinux project should already be created and in use on the board
before making these modifications.

2.8.6 Integration of Embedded Operating Systems with Dynamic Par-
tial Reconfiguration

Another important aspect of the partial reconfiguration is the integration with an embedded op-
erating system which includes considerations and challenges. Firstly, hardware abstraction is an
important aspect since it establishes a unified interface between the embedded operating system
and the reconfigurable hardware components. This abstraction can be used to facilitate high-level
programming. This abstraction level can be ensured by implementing Application Programming
Interfaces (APIs). Secondly, the device driver can be customized to facilitate the dynamic loading
and unloading of IP (Intellectual Property) components, the reconfiguration process, and the com-
munication between the reconfigurable modules and operating system. Another important aspect
is the implementation of fault tolerance mechanisms and error handling strategies in order to de-
tect and recover from errors that may occur during the reconfiguration process. In conclusion, the
integration of embedded operating systems with dynamic partial reconfiguration enhances system
flexibility, scalability, and adaptability by leveraging the capabilities of the operating system while
utilizing reconfigurable hardware modules.

2.9 Boot and Configuration

FPGAs offer a compelling solution for high-performance computing in space applications, particu-
larly in the realm of data processing. By employing reconfigurable FPGA devices that incorporate
processors, a versatile hardware and software co-design architecture can be achieved. This design
approach enables the updating of processing algorithms during missions, proving particularly ad-
vantageous for space endeavors demanding intensive onboard computations, such as the HYPSO
mission for hyperspectral images.

2.9.1 Boot Image

Figure 2.10 shows a basic format for a boot image, consisting of several headers: Boot Header,
headers required by the First Stage Boot Loader (FSBL), PMU Firmware Image, and FSBL image.
The Boot Header is a plain text header that provides information about the FSBL location, length,
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and system initialization details. The Partition Header is an array of structures that contains
information for each partition, such as partition size, address, and load address in RAM.

Boot Header

Partition Header

PMU Firmware (PMU FW) Image

FSBL Image

2232 B

≤ 128 KB

≤ 168 KB

Figure 2.10: Simple form of Boot Image with FSBL and PMU Firmware

Source: [12]

The PMU Firmware, which contains a MicroBlaze processor, loads executable code from 32 KB
ROM and 128 KB RAM into flat memory space and controls the power-up, reset, and resource
monitoring within the system. The FSBL is responsible for configuring the FPGA with hardware
bitstream and loading the Operating System (OS) Image Standalone (SA) Image or Second Stage
Boot loader Image from the non-volatile memory. It handles the booting process, starting with PS
block initialization, locating the boot image in storage media, encrypting or decrypting and moving
the partition to its destination, and finally handing off execution. U-Boot acts as a secondary boot
loader that loads the Linux and configures the rest of the peripherals in the processing system
based on board configuration.

2.9.2 Boot Process Stages

While the boot process for the Zynq-7000 device follows a similar pattern to most Xilinx devices,
in this discussion, this paragraph focuses on the boot process of the UltraScale+ devices, spe-
cifically the Zynq UltraScale+ MPSoC. The reason for this choice is to highlight the additional
complexities and components involved in the boot process of the UltraScale+ architecture, provid-
ing a comprehensive understanding of its unique features. The Zynq UltraScale+ MPSoC uses two
components, the Platform Management Unit (PMU) and the Configuration Security Unit (CSU),
to manage the boot process. The PMU powers up and down peripherals and processors, generates
and handles system reset signals, and power sequences the different domains in the platform. The
CSU manages secure and non-secure system-level configurations.

To boot Linux on the MPSoC, three files are required: BOOT.BIN, image.ub, and boot.src.
BOOT.BIN contains PMU firmware, First and Second Stage BootLoader, ARM Trusted firmware-
A, and can optionally contain the bitstream file. Image.ub is U-Boot’s Flattened Image Tree (FIT),
containing the Linux Image and device tree. Finally, boot.src is the U-Boot Boot script. Trusted
firmware-A (TF-A) is an open-source reference implementation of the ARM Trusted Firmware
(ATF) specification. TF-A ensures a secure and trusted boot process for Arm-based devices by
establishing a trusted execution environment, providing security services, and maintaining the
integrity and confidentiality of system operations.

The boot process has three stages: pre-configuration, configuration, and post-configuration. During
the pre-configuration stage, the PMU ROM code is executed after the power-on reset (POR) and
initializes the system. During the configuration stage, the CSU ROM code executes and performs
On-Chip Memory (OCM) initialization, determines boot mode, interprets the boot image header,
and loads the FSBL from the boot image in the OCM for execution by the selected processor. The
CSU also loads PMU FW from the boot image into PMU RAM, however, this step is optional.
During the post-configuration stage, the CSU monitors tamper signals from the system and detect if
the secure boot process is correct. The CSU also provides hardware services like file authentication
and decryption, secure key management and storage, and PL configuration via the PCAP interface.
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Figure 2.11: Detailed Boot Flow Example

Source: [26]

Finally, the FSBL handles other boot operations such as loading the PMU Firmware (if CSU Boot
Room didn’t load it previously), bitstream for the PL, and software executable for the APU and
RPU (Raid Processing Unit) processors.

2.10 FPGA Manager

The FPGA manager is a tool that enables the loading and programming of bitstreams onto an
FPGA within a Linux environment by providing an interface for users to interact with the FPGA.
It includes a set of functions specifically designed for programming the FPGA with new config-
urations. One of the main features of FPGA Manager is the support for partial reconfiguration
of FPGA. The FPGA Manager consists of three key entities: Managers, Bridges, and Regions.
Managers handle FPGA programming, Bridges separate regions during reconfiguration, and Re-
gions represent programmable parts of the FPGA. The FPGA Manager provides functionalities
such as full and partial bitstream loading, encrypted and authenticated loading, and read-back of
configuration registers and the bitstream itself [26]. This section explores the FPGA Manager in
detail and its role in facilitating FPGA reconfiguration.

2.10.1 Overview

The FPGA Manager subsystem consists of several components that work together to enable FPGA
programming. It follows a multilayered architecture where the upper layer provides a platform-
agnostic API, hiding platform-specific details and the lower layer consists of an FPGA driver
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implementing the operations. The interface between layers includes operations for loading bit-
streams onto the FPGA. Flags are used by the FPGA Manager to specify properties like support
for partial reconfiguration, external configuration, encryption, and compression [27, 28]. Figure
2.12 illustrates the functionality of FPGA Manager to perform full reconfiguration

Processor FPGA

Programming
Interface

FPGA Fabric

FPGA Manager

Bridges

Figure 2.12: System organization in case of full reconfiguration using FPGA Manager

The key entities within the FPGA Manager include:

• Managers: These entities handle the programming process for the FPGA. They encapsulate
the necessary logic and functionality to load different types of bitstreams onto the FPGA. The
Managers interact with other components to facilitate the programming process effectively.

• Bridges: The FPGA Manager employs Bridges to isolate different regions within the FPGA
during reconfiguration. Their purpose is to prevent irrelevant signals from propagating out-
side the intended region, ensuring safe and controlled reconfiguration.

• Regions: FPGA Regions represent specific portions of the FPGA that can be programmed
independently. Depending on the reconfiguration requirements, the FPGA Manager can
target either the entire FPGA logic or specific partial regions for programming. Regions are
connected to the FPGA Manager and their associated Bridges.

Figure 2.13 provides a high-level overview of how these components communicate.

The FPGA is divided into two main sections: the PS and the PL. The PS contains the program-
ming interface that communicates with the FPGA Manager, enabling the processor to control the
reconfiguration process. On the other hand, the PL is divided into regions, where each region
represents a distinct portion of the PL that can be independently reconfigured. As illustrated in
Figure 2.13, these regions communicate with their respective bridge in the PL.

A bridge acts as an interface between a region and the rest of the system, providing the necessary
communication channels and protocols for controlling the reconfiguration process. It ensures that
the reconfiguring section is decoupled from the other logic, maintaining isolation. This component
includes three main sub-components: configuration memory, configuration access port (CAP), and
the configuration controller. The configuration memory stores the configuration bitstreams for
the static region and the reconfiguration regions. The CAP is the interface that allows writing
the configuration data into the memory, and finally, the configuration controllers manage the
reconfiguration process by coordinating the loading of the configuration data and ensuring the
correct execution of the reconfiguration steps.

During partial reconfiguration, the FPGA is reprogrammed using a base image to create the slots
represented by the regions shown in Figure 2.13. Bridges are employed to decouple the reconfiguring
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Figure 2.13: Partial Reconfiguration using FPGA Manager

Source: [29]

slot from the rest of the logic, ensuring proper isolation and avoiding unintended behavior. To
facilitate communication between the bridges in the PL and the bridge component in the PS, all
three bridges are connected to the main API. This connection allows the processor to access and
control the PL regions and bridges throughout the reconfiguration process.

Overall, bridges play a crucial role in enabling communication and managing data flow between
the regions in the PL and the rest of the system during partial reconfiguration. They provide
the necessary interfaces and isolation to ensure seamless reconfiguration while maintaining the
integrity of the overall FPGA design [29].

2.10.2 Functionalities

The FPGA Manager offers a range of functionalities to accommodate various programming scen-
arios. Some of the main features provided by the FPGA Manager include:

• Full bitstream loading: It supports loading complete bitstreams onto the FPGA and thus
allowing the full reconfiguration.

• Partial bitstream loading: In scenarios where only specific regions of the FPGA need to be
reconfigured, the FPGA Manager allows for the loading of partial bitstreams.

• Encrypted full/partial bitstream loading: It supports the loading of the encrypted bitstream,
for both full or partial reconfiguration, in order to enhance security.

• Authenticated full/partial bitstream loading: It provides functionality for loading authentic-
ated bitstreams, ensuring the integrity and authenticity of the programming data during the
reconfiguration process.

• Read-back of configuration registers: Users can read back the configuration register values
from the FPGA using the FPGA Manager. This feature helps to debug and to monitor the
FPGA state after reconfiguration.

• Read-back of the bitstream: It enables users to read back the bitstream from the FPGA as
a mechanism for verifying and analyzing the programmed configuration.
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All those functionalities that FPGA Manager provides, make it a powerful tool for reconfiguring
the FPGA within a Linux environment.

2.10.3 FPGA Manager Execution Flow

In order to successfully reconfigure the FPGA using the FPGA Manager, it is important to under-
stand its execution flow, which involves the following steps:

1. Write Initialization (.write init): This function prepares the FPGA to receive the image
data by allocating the required memory and initializing the necessary data structures where
initially, a buffer of size equal to .initial header size bytes is provided. During this phase, the
FPGA is prepared to receive the configuration data and in order to facilitate this process this
buffer is allocated in memory. The buffer serves as a storage space where FPGA Manager
can organize the data before transferring it to the FPGA. The allocation of the buffer and
the initialization of the data structures, are necessary to ensure that the required memory
resources are available and properly configured to receive the image data.

2. Write Operation (.write or .write seg): The .write function is responsible for writing
the buffer that contains the entire FPGA image onto the FPGA. This function can be called
multiple times if the image is too large to fit in a single buffer. Alternatively, the .write seg
function can be used, which takes a scatter list as input. A scatter list is a list of array
pointers and lengths used by DMA to transfer several buffers in a single operation [27].

3. Write Completion (.write complete): After the image data has been written, the .write complete
function is called to put the FPGA into operational mode, allowing it to utilize the newly
programmed configuration. Additionally, the .state function can be used to determine the
current state of the FPGA.

During execution, the FPGA Manager performs several tasks. It includes the allocation of memory
and utilization of the Embedded Energy Management Interface (EEMI) API to load the bitstream
onto the FPGA. Subsequently, the FPGA Manager waits for a response from Trusted Firmware-A
(TF-A). Upon receiving the response, the FPGA Manager passes it from the FPGA core layer to
the application. To initialize the Programmable Control and other necessary hardware components,
the FPGA Manager relies on the xilfpga library [26].

2.11 Design Constraints

Design constraints have an important role in the design and implementation of FPGA-based sys-
tems since they ensure that the systems meet the target performance, timing requirements, and
power requirements but they can also define the pin requirements. Constraints are utilized to exert
influence over the implementation tools of FPGA design, such as the synthesizer and place-and-
route tools. Their purpose is to guide and shape the behavior and decisions made by these tools
during the design process. This section will describe the main design constraints that are used
during FPGA design.

• Timing Constraints
Timing constraints are used to specify the timing characteristics of the design and are usually
defined in terms of clock periods that are essential in design operation. Timing constraints
in FPGA designs can be broadly classified into two categories: global and path-specific
constraints. Global timing constraints encompass all paths within the logic design, while
path-specific constraints are tailored to address specific paths [30]

• Power Constraints
Power constraints are used to optimize the power consumption of the FPGA design. These
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constraints encompass various aspects, including maximum power consumption limits, aver-
age power limits, or specific power profiles that the system must adhere to. By imposing these
constraints, designers are guided in making architectural decisions, implementing algorithmic
optimizations, and incorporating low-power design techniques throughout the design process.

• I/O Constraints
I/O (Input/Output) constraints, referred also as pin assignments, define the characteristics
and requirements of the system’s interfaces with the external devices. They are used to
assign a signal to a specific I/O pin but can be also used to specify parameters such as
voltage levels, signals timing, data rate limits, etc. So they ensure the proper communication
of the FPGA with the external devices. Pin assignment in FPGA design plays a crucial role
in determining the location of resources within the device. When it comes to pin assignment
there are several factors that should be taken into consideration. The tools generally aim to
spread functionality across available resources to avoid routing congestion.

• Area Constraints and Floorplanning
Area constraints have also an important role in the FPGA design since they provide guidance
and control over the placement of the design elements. By defining the allowable region for
placement, these constraints significantly reduce the implementation time of place-and-route
tools. This process, known as floorplanning, involves strategically arranging multiple design
blocks on the target FPGA architecture. By applying area constraints, the tools can avoid
the time-consuming search for suitable locations for block elements. Early floorplanning can
yield benefits if approached with a comprehensive understanding of the design and target
architecture, along with ample design margin. Floorplanning not only facilitates the place-
ment of specific design elements, such as block memories but also enables the optimization
of data flow within the FPGA. By carefully considering the interfaces between design blocks
and their intended implementation locations, interleaved logic from multiple blocks and dis-
tributed memory implementations can be effectively accommodated [30]. As it will be seen
in the later sections, floorplanning plays a crucial role in partial reconfiguration flow.

2.12 FPGA Cores and Primitives

FPGA cores and primitives are fundamental building blocks used in the implementation of efficient
and optimized algorithms for data processing in embedded systems and space applications. These
cores and primitives provide essential functionality and enable the development of complex systems
on FPGA platforms. This section focuses on two specific algorithms: CubeDMA and CCSDS-123
compression, which have been implemented by students from the HYPSO team as part of their
master’s thesis projects over the years, to facilitate the efficient processing and compression of HSI
cube in the HYPSO mission.

2.12.1 CubeDMA core

The CubeDMA core is a specialized DMA (Direct Memory Access) core designed for use in hy-
perspectral imaging applications. It is capable of efficiently processing data in various streaming
orders, including BSQ (Band Sequential), BIP (Band Interleaved by Pixel), and other formats
commonly used in hyperspectral data processing. The CubeDMA core plays a crucial role in
this process by facilitating high-speed data transfer between different components of the system,
such as the image sensor, memory, and processing units. The CubeDMA algorithm implemented
within the core optimizes data transfer and processing, resulting in improved overall system per-
formance. By efficiently managing the movement of data between memory and processing units,
the CubeDMA core minimizes latency and maximizes the utilization of system resources. The
core’s ability to handle different streaming orders, such as BSQ and BIP, allows it to adapt to
the specific data formats commonly encountered in hyperspectral imaging applications. This flex-
ibility ensures compatibility with different processing algorithms and data organization schemes,
making the CubeDMA core a versatile and valuable component in HYPSO mission but also in
hyperspectral image applications.
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Direct Memory Access (DMA)

DMA is a hardware module that provides high-speed memory transfer between memory and peri-
pherals, without involving the CPU by helping thus offloading data transfers from the CPU and
improving the system performance since the CPU is able to perform other tasks while the DMA
performs the data transfers. The DMA module is controlled by the DMA controller that sets up
and manages the data transfers and can act as both a bus master and bus slave. In its role as a
bus master, the DMA controller manages communication with the memory controller and performs
arbitration for the bus. Meanwhile, when functioning as a slave, the DMA controller responds to
requests from bus masters such as the processor to establish memory transfers. This subsection
describes the CubeDMA, which is implemented by previous students of the HYPSO mission.

Overview of CubeDMA core

The implemented CubeDMA core consists of Memory Map to Stream (MM2S) and Stream Memory
Map (S2MM) channels, that are configured using a common register interface. The MM2S channel
reads data from memory and streams it into the accelerator. The S2MM channel, on the other hand,
receives a data stream from the accelerator and writes the incoming stream of data sequentially in
the memory [7].

DataMover or TinyMover Unpacker

Register decoder

MM2S controller

S2MM controller

DataMover Packer

AXI Read Channels
(from memory)

AXI Stream
(to accelerator)

AXI Stream
(from accelerator)

AXI Write Channels
(to memory)

AXI Lite
(register access)

Figure 2.14: Overview of CubeDMA core

Source: [7]

Figure 2.14 provides an overview of the Cube DMA system. The CubeDMA can handle component
sizes that are not multiples of bytes. In the MM2S channel, packed data from memory is unpacked
into separate components and streamed to the accelerator. In the S2MM channel, components
from the accelerator are packed into 64-bit words before being stored in memory.

The MM2S channel of the CubeDMA provides flexibility for both BIP-ordered and BSQ-ordered
transfers, which can be selected during run-time through register configuration. In BSQ mode,
components from different planes can be streamed in parallel, meaning that components from the
same pixel but in different planes are output simultaneously in each transfer beat. Similarly, in
BIP mode, multiple components from the same pixel can be transferred in parallel. The number
of planes (for BSQ) or pixel components (for BIP) to transfer in parallel is determined by generic
parameters when setting up the DMA core.

On the other hand, the S2MM channel of the CubeDMA writes incoming stream data sequentially
to memory. It supports data words of varying sizes and collects the data into 64-bit packets that
are stored in memory. The S2MM channel continues storing data until the TLAST signal, which is
used to indicate the end of the transfer, of the incoming stream is asserted. The number of bytes
received can subsequently be read from the register interface [31].
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As illustrated in 2.14, the MM2S (Memory-Mapped to Stream) channel consists of three key
components: the DataMover/TinyMover, unpacker, and controller. The DataMover/TinyMover
is an advanced IP core provided by Xilinx that specializes in high-speed data transfers that with
its support for interfaces like AXI and AXI4-Stream, it ensures optimal performance and minimal
latency. In the CubeDMA module, the DataMover IP is utilized for BIP transfers, while the
TinyMover is specifically designed for BSQ transfers, both of which have been modified and adapted
for seamless integration with the CubeDMA module [32]. The Unpacker component plays a crucial
role in aligning and correcting word sizes, ensuring that the transferred data is accurately processed.
Lastly, the controller oversees and manages the operations of the DataMover/TinyMover and
Unpacker, generating a control stream that is vital for the proper functioning of the CubeDMA
module. Together, these components work harmoniously to enable efficient and reliable data
transfer within the CubeDMA module.

The S2MM channel operates in a manner analogous to the MM2S channel but with reversed
functionality. In this channel, data is received from a stream and undergoes packing to ensure
proper word sizes before being forwarded to the Datamover. The DataMover then sequentially
writes the packed data to memory using the AXI bus. Throughout this process, the controller
assumes the responsibility of managing and coordinating the operations of the DataMover and
Packer modules [32].

CubeDMA Operation

In summary, CubeDMA is used to perform direct memory accesses, offloading the CPU from those
operations. The module consists of memory-mapped registers, such as control registers, status
registers, base address and cube dimension, and row size registers. The control register enables
the initiation of the DMA engine for starting data transfers. The status register indicates the
completion of a transfer or any triggered errors. To ensure proper access to the DDR memory
shared by the DMA and CPU, a base address register defines the starting point for DMA reads.
The cube dimension register determines the number of addresses to be read, representing the size
of the hyperspectral image in terms of width, height, and depth (X, Y, and Z axes) where the row
size, obtained by multiplying X and Z, is crucial for the CubeDMA to operate correctly.

2.12.2 Compression Algorithm

Compression schemes can be divided into two major classes: lossless compression schemes and
lossy compression schemes. The difference between the two is that data compression using lossless
compression schemes can be recovered to the original data, but using lossy compression this cannot
be done since it introduces some loss of information [33]. The compression algorithm implemented
in the HYPSO mission is based on the CCSDS-123 algorithm. The CCSDS-123 is a compression
algorithm standardized by the Consultative Committee for Space Data Systems (CCSDS) designed
for lossless compression of hyperspectral images. The lossless source coding technique helps to
remove redundancy from the input data source while preserving the data accuracy [34]. In this case
during decoding, the original hyperspectral image can be reconstructed by restoring the removed
redundancy. The following description of the algorithm is based on the CCSDS Recommended
Standard given in [35].

CCSDS-123 Algorithm Overview

The high-level schematic of the CCSDS-123 algorithm is shown in Figure 2.15. The compressor
takes as input, a three-dimensional image, represented as an array of integer sample values sz,y,x,
where x and y represent the spatial dimensions and z represents the spectral dimension. The struc-
ture of the compressed image is composed of the header that encodes the image and compression
parameters, followed by a body that encodes the image samples. As illustrated in Figure 2.15 the
compressor is composed of two main stages: prediction and encoding.
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Figure 2.15: CCSDS-123 compressor Schematic

Source: [35]

During the prediction stage, the module calculates estimates for each component by analyzing
preceding components that are located nearby in the cube and have similar spectral characteristics.
The difference between the actual component values and these estimates which are called residuals
is transformed into variable-length code words that will serve as input for the encoding stage.

In order to describe the CCSDS-123 algorithm is important to introduce the terminology and
definitions that will be used in the upcoming sections.

• Samples
Samples refer to individual components in an HSI cube that can be unsigned or signed
integers with a bit resolution given by the parameter D and have lower and upper-value
limits denoted by smin and smax, respectively.

• Cube Size
The size of an HSI cube is denoted by the symbols NX , NY , and NZ , and samples within
the cube can be addressed by their x, y, and z coordinates in the form sz,y,x, or by the index
t = y ·NX + x.

Predictor

The prediction component in the CCSDS-123 algorithm is responsible for performing the prediction
process based on the input hyperspectral data. Before describing the prediction process it is
important to define what a sample is.

A sample is an individual component in an HSI cube and is denoted by s. For example sz,y,x
referees to the sample in the respective cube dimensions denoted by x, y, and z. Also, in order
to define the bit resolution of the sample a D parameter is used which takes values from 2 to
16. The stage of prediction calculates approximations of individual parts using a 3D space sample
surrounding the analyzed part. The dissimilarity between the approximation and the factual value
of the part, known as the prediction residual, is subsequently encoded using the entropy encoder.
The bitstream initially encodes various parameters such as cube size, output word size, scanning
order, sample type, dynamic range, sub-frame interleaving depth, and entropy encoder type.

Encoder

The entropy encoder in the CCSDS-123 algorithm is responsible for compressing the prediction
error data generated by the predictor step. This is achieved by assigning shorter codes to frequently
occurring prediction error values and longer codes to less frequently occurring values. The entropy
encoder uses variable-length coding, which means that each prediction error value is assigned a
variable-length code, where more probable values are assigned shorter codes and less probable
values are assigned longer codes.
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2.12.3 Pipeline Implementation

Figure 2.16 displays the structure of one pipeline in a multiple pipeline implementation of the
CCSDS-123 algorithm. The diagram illustrates the flow of data through the design, with thick
gray lines indicating the data path. The predictor stage consists of the first four blocks, while
the encoding stage is represented by the last block. In the predictor stage, local differences are
computed, multiplied by a weight vector, and passed to the predictor block for calculating predicted
values. Mapped prediction residuals are then computed and sent to the encoder stage.

Figure 2.16: CCSDS-123 pipeline implementation

Source: [7]

In a multiple-pipelined implementation, multiple pipelines are used to process samples concurrently.
The pixels enter the sample delay block where they are held until all the samples for a specific
neighborhood have arrived, following a BIP ordering. Since the central local differences remain
consistent across pipelines, they are stored in shared storage accessible by all pipelines. The same
applies to weight and accumulator values. The packer component organizes the data from the
pipelined implementation into specified-length words and outputs them. Furthermore, the design
can be configured to process samples ”on the fly,” meaning that samples are streamed directly
to the compressor without any input data control, which can be suitable when the data rate is
predetermined or when synchronization is not feasible, for example when connected directly to a
camera sensor.

2.13 Summary

This section provided background information that was necessary to understand and analyze before
starting with the partial reconfiguration process. An important part of this chapter was focused
on the FPGA architecture and structure in order to define in detail all the necessary concepts
that play an important role in a successful reconfiguration. Furthermore, a description of the
FPGA design flow was given, highlighting the changes that are necessary to be done in each
phase. This chapter also provided an overview of FPGA cores and primitives, highlighting their
importance in implementing optimized algorithms for data processing in embedded systems and
for the HYPSO mission. It focuses on two specific implementations: the CubeDMA core and the
CCSDS-123 compression algorithm. The CubeDMA core facilitates high-speed data transfer for
HSI image cubes, while the CCSDS-123 algorithm is a lossless compression algorithm designed for
hyperspectral images.
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CHAPTER 3
Programmable Logic Reconfiguration

As mentioned in the previous chapters, one of the main characteristics of FPGAs that makes
them popular is their ability to reconfigure hardware at runtime. However, full reconfiguration of
an FPGA can be time-consuming and resource-intensive, particularly for larger designs. Partial
reconfiguration (PR) offers a solution to this problem by allowing specific portions of the FPGA to
be reconfigured independently, while the rest of the system continues to operate. This section will
describe how the PL reconfiguration is performed, by also making a literature review of proposed
controllers.

3.1 Types of Configuration

There are three main types of FPGA configuration: static reconfiguration, static partial reconfig-
uration, and dynamic partial reconfiguration (DPR). Static reconfiguration involves loading the
entire FPGA with a full bitstream, which requires stopping the execution of the FPGA. Static
partial reconfiguration allows for a portion of the FPGA to be reconfigured while the rest of the
system continues to run, but the execution is paused to load the partial bitstream. Dynamic partial
reconfiguration, on the other hand, enables part of the FPGA to be reconfigured while the rest
of the system continues to operate without interruption. This technique is useful for applications
that require continuous operation and the ability to update or add functionality to the FPGA
design without affecting the entire logic. Figure 3.1 illustrates the difference between using full
and partial bitstreams for FPGA configuration.

FPGA configuration types are important considerations for designers when implementing hardware
designs. The choice of configuration method depends on the specific requirements and constraints of
the application. For example, static reconfiguration is suitable for applications that do not require
continuous operation, while static partial reconfiguration and DPR are useful for applications that
require partial reconfiguration or on-the-fly updates [2].

FPGA design1.bit
design2.bit
design3.bit
design4.bit

(a) Full configuration using full bitstreams

FPGA

Reconfigurable 
Block A

A1.bit

A2.bit

A3.bit

A4.bit

(b) Partial configuration using partial bitstreams

Figure 3.1: Illustration of FPGA configuration using full and partial bitstreams
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3.2 Partial Reconfiguration in FPGAs

The motivation behind partial reconfiguration stems from several key factors, including area op-
timization, security and robustness, and shorter configuration time. One of the main benefits of
PR is area optimization. By dynamically swapping out unused logic blocks, designers can reduce
the size of the FPGA logic required to implement a given function, resulting in less power con-
sumption and reduced cost. This is particularly useful when only a portion of the FPGA is being
utilized at any given time, as it allows for more efficient use of resources.

Another key motivation for PR is security and robustness. With the ability to dynamically swap out
logic blocks, designers can implement new techniques related to design security. For example, if a
PL accelerator for encryption and decryption is not required at all times, its area can be configured
with dummy logic to ensure security. Additionally, PR can help to improve the robustness of
FPGA-based systems by allowing faulty blocks to be swapped out and replaced without the need
for a full system reconfiguration.

Finally, PR offers a shorter configuration time compared to full reconfiguration. Since only a
portion of the bitstream needs to be modified, the total reconfiguration time is shortened, which
can be particularly beneficial for time-critical applications.

3.2.1 Terminology

In order to describe the concept of partial reconfiguration it is important to understand some terms
that will be used throughout this section. The below terms are defined based on Xilinx Partial
Reconfiguration User Gide in [36].

Static Logic

Reconfigurable
Partition (RP)

RM1

RM2

Reconfigurable
Modules (RM)

Figure 3.2: Partial Reconfiguration Notations

• Partitioning
Partitioning is a way of dividing the design into logical sections, defined by the user at a
hierarchical level, with the aim of reusing these sections.

• Reconfigurable Partition
Reconfigurable Partition (RP) is a characteristic assigned to an instance, indicating that it
can be reconfigured. It refers to the physical or logical division of an FPGA into separate
regions or sections, as illustrated in Figure 3.2.

• Reconfigurable Module
A Reconfigurable Module (RM) is a description or a netlist written in HDL, which is imple-
mented when instantiated by an instance that has the Reconfigurable Partition attribute.

• Static Logic
Static logic refers to logical components that are not included in a Reconfigurable Parti-
tion, that are always active, and cannot be partially reconfigured while the RPs are being
reconfigured.
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• Configuration
Configuration in a PR project refers to a complete design that consists of one Reconfigur-
able Module for each Reconfigurable Partition. Multiple configurations can exist within the
project, with each configuration generating both a full and a partial BIT file for every RM.
The combination of static and each RM, forming a configuration, is illustrated in Figure 3.3.

Static Logic

RM1

Static Logic

RM2

Configuration 1 Configuration 2

Figure 3.3: Concept of configurations in Partial Reconfiguration

3.2.2 General Concept of Partial Configuration

FPGAs are reconfigurable devices that offer the possibility to change their logic whenever it is pos-
sible. Generally, to change the logic of FPGA it is used a process called full reconfiguration which
allows uploading a modified or updated design on the board. Even though the full configuration
allows reconfiguring FPGAs, it is not the best suitable option possible. This process requires the
pause of the current operation and it consumes time which is dependent on the size of the logic.

Partial Reconfiguration is the process of configuring part of FPGA logic blocks by using a partial
bit file without affecting the other logic of FPGA. The unaffected part is referred to as the static
part and the other part is called the reconfigurable logic. During the reconfiguration process, the
static part continues to function without being affected, and only the logic in the reconfigurable
logic is changed. Figure 3.1b shows a design with the partially reconfigurable region which is used
interchangeably by four configurations.

In Figure 3.1b, the gray area represents the static logic and the white block notated as Reconfigur-
able Block A, represents the reconfigurable logic. FPGA partial reconfiguration can be performed
in two different approaches, in regard to the states of FPGA logic while the reconfiguration is
performed, static and dynamic. When the operation is performed in a static state, it means that
FPGA logic is in the reset state. On the other hand, the dynamic approach means that reconfig-
uration is performed while logic is running in FPGA [36].

3.2.3 Partial Reconfiguration Methodologies

The two major methodologies for performing PR are module-based and difference-based. The
module-based approach involves implementing reconfigurable modules separately and constraining
their components to be placed at a given location. The complete bitstream is then built as the
sum of all partial bitstreams, each corresponding to a specific reconfigurable module. In contrast,
the difference-based approach involves implementing complete bitstreams separately, with fixed
and reconfigurable parts with components constrained at the same location within all bitstreams.
The difference between two complete bitstreams is then computed to obtain the partial bitstream
needed to move from one configuration to the next context. Both methodologies have their own
advantages and disadvantages, and the choice of methodology depends on the specific application
requirements, the available hardware resources, and the designer’s preference. In the difference-
based approach, the number of frames to be written in case the frames are identical in both designs
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is less compared to the module-based approach. In this thesis, the focus will be on module-based
partial reconfiguration.

3.2.4 Partial Reconfiguration Challenges

One of the main challenges of partial reconfiguration flow is that it is more complex than the
standard FPGA design flow. The complexity relies on the fact that designers must plan and create
the partitions in the design. Designers can choose to have one or more partitions based on the
modules that will be reconfigured and then decide the hardware resources for each of them. This
makes the partitioning task more time-consuming and it is a very important step in the flow of
dynamic partial reconfiguration since it has an impact on reconfiguration time but also on the area
allocated. Choosing a large partition to be configured, increases the configuration time needed
to interchange logic in the partition design. On the other hand, choosing to have more than one
partition decreases the time needed to reconfigure it but as a consequence, it results in more area
used. The process of dynamic partial reconfiguration mostly consists of automatic steps that can
be performed using tcl commands. Besides the task of deciding the partition in the design, another
manual step in the flow is floorplanning, which is discussed in the section 3.3.

3.3 Floorplanning

Floorplanning is the process of arranging and placing components in an integrated circuit (IC)
design to meet specific performance, power, and area requirements. In most cases, floorplanning
is a technique used to help a design meet timing. Floorplanning can help improve the setup slack
(TNS, WNS) by reducing the average routed delay, but it should be considered that floorplanning
can only improve the setup slack. The designer, using floorplanning, can physically place different
components of the design in a way that optimizes the timing of the critical paths. The placement
of elements like flip-flops, multiplexers, and combinational logic on FPGA can have a significant
impact on the timing of the design because the delay of signals propagating through the routing
resources can vary depending on their physical distance and topology [37]. This process can
be performed through the high-level hierarchy layout or through detailed gate placement. In
this context there are multiple approaches to perform floorplanning, each of them with its own
advantages and disadvantages.

One approach is detailed gate-level floorplanning that consists of placing individual leaf cells in pre-
cise locations on the device, taking into account various design constraints and requirements. This
process involves placing each individual logic gate and interconnecting them to form a complete
design. One of the main advantages of this technique is the ability to achieve high performance by
minimizing the interconnect delays between gates since the designer can choose to place gates that
are connected near each other, thus reducing the length of interconnect wires and minimizing signal
delay. However, this advantage can be a huge disadvantage sometimes, taking into consideration
the level of control, since it can increase the design time and design complexity.

The second technique, hierarchical floorplanning, is dividing the design into smaller sub-blocks
and then assigning those blocks to physical locations. This technique in contrast to gate-level
floorplanning, allows the designer to work only on specific smaller blocks at a time, reducing thus
design complexity and improving design time. One of the main advantages of this technique is
the ability to reuse modules across multiple designs. Also, this dividing of the design into smaller
sub-blocks simplifies the design verification, allowing each block to be verified independently.

Floorplanning plays a vital role in the partial reconfiguration flow since the placement of the
module that will be reconfigured should be done taking into consideration timing and interconnect
constraints. In order to achieve the best performance it is important to make an analysis of the
proper area where Vivado places the static logic without restriction. This task, however, is not part
of the floorplanning process, but it helps the designer to find a better placement for the module
that will be reconfigured.
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3.4 PL Reconfiguration Paths

The ability to reconfigure the programmable logic (PL) portion of a Field-Programmable Gate
Array (FPGA) while the device is in operation is a powerful feature that enables a wide range
of dynamic functionality. However, in order to effectively use this capability, it is important
to understand the different paths through which the PL can be reconfigured. In this section are
explored the various reconfiguration paths available for Xilinx FPGAs, with a focus on the different
interfaces used to access the configuration memory of the device. Specifically, we will discuss the
JTAG, PS PCAP, and ICAP interfaces, providing an overview of how each interface works and
the benefits and limitations of each. This information will provide a foundation for understanding
the different options available for configuring and reconfiguring the PL portion of a Xilinx FPGA,
enabling more efficient and effective use of this powerful capability. The below subsection refers to
the Xilinx technical reference manual document provided by Xilinx in [12]. The PL configuration
paths are illustrated in Figure 3.4

PL Configuraton Module

TAP Controller PCAP Controller ICAP Controller

Multiplexer1 0

Multiplexer1 0

DevC with DMA ACI_HWICAP

PL/PS SoftwarePS Software

JTAG Debug

serial interface

PCAP Path ICAP Path

devc.CRTL [PCAP_PR]

devc.CRTL [PCAP_MODE]

Figure 3.4: PL Configuration Paths

Source: [12]

3.4.1 JTAG

The JTAG interface is a widely-used boundary scan technique that enables easy hardware debug-
ging, testing, and programming of programmable logic devices such as Xilinx FPGAs. JTAG can
be used to fully or partially reconfigure Xilinx FPGAs, provided that support for Partial Recon-
figuration (PR) is configured on the device. When using JTAG for PR, a specific sequence of
JTAG instructions must be executed to program the PR region with the new bitstream data while
keeping the rest of the device operational.

The main benefit of the JTAG interface for the partial configuration is that it is easy to integrate
into the existing designs. Furthermore, besides the development, JTAG is widely used for in-circuit
debugging and reconfiguration, and streamlining the development process. However, the serial
interface of JTAG can lead to slower bitstream transfer rates, limiting its efficiency. Additionally,
JTAG is a shared resource, meaning that it can only be used by one device at a time, causing
delays in multi-device systems.

Despite its limitations, JTAG provides a reliable and established interface for reconfiguring Xilinx
FPGAs, including Partial Reconfiguration. With proper device configuration and a well-designed
JTAG sequence, designers can take advantage of this interface for efficient and effective FPGA
reconfiguration. However, this configuration path is not used for partial reconfiguration but is is
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used also to support the testing phase of this process.

3.4.2 PS PCAP

The PS PCAP interface is a fast connection that lets the main processor (PS) access the configur-
ation memory of the FPGA. It allows us to change the FPGA’s programming while it’s running.
This interface has its own special bus for transferring the configuration data quickly and with a
lot of capacity. We can control the PS PCAP interface using software, which gives us flexibility
and efficiency in managing the configuration process. When it comes to partial reconfiguration, we
can use the PS PCAP interface to load specific parts of the FPGA’s programming, enabling us to
change only certain sections of the device while the rest continues to run. The configuration process
in this case is carried out by software, so the need for the hardware IP components is not necessary.
However, since during the reconfiguration process, the behavior of the reconfigurable partitions can
be random, it is necessary to control the reset and clock signals for each RP. This task can be
accomplished by leveraging the capabilities of the AXI GPIO (General Purpose Input/Output)
interface. The AXI GPIO interface offers an input/output interface specifically designed for in-
tegration with the AXI (Advanced eXtensible Interface) interface. Within the ZYNQ block, this
interface is an integral part of the DevC (Device Configuration) component, as illustrated in Figure
2.5.

The device configuration interface (DevC) serves as an intermediary between the configuration
source, which can be an external memory device or a microcontroller, and the configuration logic
of the FPGA. Its primary functions include configuring the programmable logic (PL), managing
device security, and accessing the Xilinx Analog-to-Digital Converter (XADC) through three logic
modules as outlined in the Xilinx Technical Reference Manual [12]. Moreover, the DevC encom-
passes a collection of control and status registers, as well as the capability to generate interrupts.
These interrupts can originate from any of the three modules and play a role in determining the
PL’s state, monitoring the activity of the DMA controller in the PCAP bridge, and facilitating
XADC operations.

The PCAP bridge is a vital component that facilitates access to the programmable logic (PL)
configuration module and decryption unit by the FSBL/User code software. The configuration
module plays a crucial role in processing the bitstream and subsequently loading the SRAM within
the PL. On the other hand, the decryption unit serves the purpose of decrypting the encrypted
bitstream and code files. It is important to note that the PL must be powered up for the PCAP
bridge to function properly.

Regarding the data paths associated with the PCAP bridge, there are four commonly used paths.
The first path involves the transmission of non-secure, unencrypted bitstreams. The second path
deals with the handling of secure bitstreams and software boot images that are encrypted. The
third path facilitates the readback of the PL bitstream from the PL itself. Lastly, the fourth path
encompasses a loopback mechanism specifically designed for boot image transfers.

3.4.3 ICAP

The Internal Configuration Access Port (ICAP) is a unique feature of Xilinx FPGAs that allows
for Partial Reconfiguration (PR) from within the device’s own logic fabric. What makes ICAP
particularly appealing is its flexibility in sourcing bitstream data. As long as the data is available
to the FPGA logic that feeds the ICAP, it can be used for reconfiguration.

Additionally, the ICAP interface can be used to reconfigure an RP of the PL while the rest of
the device continues to operate. This can result in significant time and resource savings, as only
the portion of the device that needs to be reconfigured is taken offline. In order to use the ICAP
interface for PR, a specific piece of FPGA logic must be dedicated to the task of loading the
bitstream. This is because the loading process must remain intact throughout the reconfiguration
process. However, with proper design and implementation, the benefits of using the ICAP interface
can far outweigh any limitations.
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Overall, the ICAP interface provides a powerful and flexible option for performing Partial Recon-
figuration in Xilinx FPGAs. As shown in Figure 3.4, in the ICAP Path, the software communicates
with a PL logic that is represented by AXI HWICAP which is a primitive offered by Xilinx.

Figure 3.5: Xilinx ICAP Primitive

Source: [38]

The ICAP (Internal Configuration Access Port) primitive, illustrated in Figure 3.5, serves as an
interface to the configuration memory of an FPGA [38]. This interface facilitates access to the
FPGA’s configuration section by incorporating separate input and output data ports dedicated to
reading from and writing to the configuration memory. Key input signals include chip enable (CE)
and write enable (WRITE), while the busy/ready (BUSY) output signal and clock (CLK) input
are also part of the interface. The output signals play a crucial role in reading back the bitstream
from the FPGA fabric, enabling access to runtime reconfiguration information.

It is important to consider the ICAP interface’s operational specifications. It can be clocked with a
maximum frequency of 100 MHz and features a 32-bit wide data interface. These attributes result
in a maximum default reconfiguration speed of 400 MB/s, which is theoretically speed. However,
the HWICAP IP that uses the ICAP configuration port, can reach a throughput of 19 MB/s
because of the complex state machine and the communication overhead.

3.5 Review of Proposed Custom PR Controllers

The following section presents a literature review exploring various possibilities and approaches
for dynamic partial reconfiguration. Those approaches are primarily focused on using ICAP or
PCAP configuration paths. Building upon the background information provided in the previous
chapter, the objective of this review is to give an analysis of the existing research and industry
efforts related to partial reconfiguration techniques. This examination of the literature will give an
insight into different methodologies, tools, and frameworks proposed in the field. Furthermore, the
comparison of those approaches will be given based mostly on the reconfiguration throughput they
provide. Finally, this chapter will identify emerging trends and trends in the research industry.

Throughout the years, several custom controllers have been proposed for performing and managing
partial reconfiguration using the ICAP (Internal Configuration Access Port) IP. These controllers
aim to provide efficient and flexible mechanisms for managing the reconfiguration process on FPGA
platforms. This section will discuss some of the proposed approaches, which include both hardware
implementations and software routines or drivers. The advantages and disadvantages of each
approach will be highlighted based on the findings presented in the specific papers.

3.5.1 AC ICAP

In the paper [39] a controller AC ICAP is proposed, similar to the AXI HWICAP provided by
Xilinx. However, in contrast to the AXI ICAP which requires performing some tasks as software
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routines, the proposed controller is implemented completely in hardware. Some of the functional-
ities that support includes functions to read and write frames, modify LUTs, and load the partial
bitstreams from the flash or BRAM memory. The controller supports run-time reconfiguration of
LUTs, eliminating the need for precomputed partial bitstreams and facilitating fine-tuned hard-
ware modifications based on dynamically generated values, a characteristic very important for the
self-adapted systems. As mentioned in the paper this controller was first developed using a board
equipped with Virtex-5 LX110T FPGA and then the same implementation flow was repeated for
the Xilinx 7-series family. The controller then was verified for both FPGAs, managing to load
bitstreams, read and write frames and also modify the LUTs. Another benefit of this controller
is that it can be easily included in systems with embedded processors using the PLB (Processor
Local Bus), FSL (Freescale Semiconductor Bus), and AXI (Advanced eXtensible Interface) links
[39].

3.5.2 HSDPRC

HSDPRC (High-Speed dynamic partial reconfiguration controller) is a soft IP core presented in [40]
that uses the LocalLink DMA and the Xilinx 32b-ICAP primitives. The core utilizes the LocalLink
DMA and Xilinx 32b-ICAP primitives, with the hard DMA (HDMA) and ICAP connected via the
Xilinx Virtex-5 hard crossbar primitive. Similarly, the Soft DMA (SDMA) and ICAP are linked
through the Xilinx multiport Memory Controller (MPMC) Soft IP core. To enhance usability, the
controller incorporates internal ICAP functions that enable users to perform tasks such as reading
specific addresses in the FPGA and configuring internal read and write masks. In the following
section, we will explore the approach employed in the development of the HSDPRC [40]. The
controller was able to avoid the use of the PLB bus during the dynamic partial reconfiguration
allowing thus the processor full access during the DPR process.

3.5.3 ZyCAP

In the paper [41] a custom controller called ZyCAP was proposed together with its corresponding
driver was developed. The authors in this paper improve the configuration speed by connecting
the AXI HwICAP to the hard DRAM controller to transfer bitstreams. ZyCAP consists of two
interfaces: an AXI-Lite interface connected to the PS through a GP (General Purpose) port, and
an AXI4 interface connected to an HP (High-Performance) port. Internally, ZyCAP employs a
soft DMA controller, an ICAP manager, and the ICAP primitive. Through the AXI-Lite interface,
the DMA controller is configured with the PR bitstream’s starting address and size. Bitstreams
are then efficiently transferred from external memory (DRAM) to the controller via the high-speed
AXI4 interface on the HP port, supporting burst-capable operations. The ICAP manager converts
the streaming data from the DMA controller into the appropriate format for the ICAP primitive.
Once the complete bitstream has been transferred to the ICAP, ZyCAP triggers an interrupt. In
order to support the run-time management of partial reconfiguration, together with the IP, in
this paper a ZyCAP software driver is proposed, that includes functionality such as transferring
bitstream to DRAM, memory management, bitstream caching, interrupt synchronization, etc. The
driver internally manages information about partial bitstreams, including their names, sizes, and
locations in DRAM. When a configuration command is received, the driver checks if the bitstream
is cached in DRAM. If it is, the ZyCAP soft DMA controller is configured to trigger reconfiguration.
If the bitstream is not cached, it is transferred from non-volatile memory to DRAM and a data
structure is created. If all DRAM bitstream slots are full, the least recently used bitstream is
replaced.

3.5.4 MiCAP and MiCAP-PRO

MiCAP is another custom controller proposed in [42] that is built with an optimized state machine,
compared to the HWICAP primitive. The optimized state machine improves the reconfiguration
speed of the Xilinx primitive. This controller is composed of two asynchronous FIFO buffers, the
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state machine, and the ICAP Primitive. On the other hand, MiCAP-PRO is an improved version
that increases the reconfiguration throughput. This is done by adding another DMA engine with
an HP port.

3.5.5 Tiny ICAP Controller

This is a recently presented controller in [43] that combines different components like PicoBlaze,
Dual Port RAM, Configuration RAM, ICAPE2, FRAME ECC2, and Scan Monitor. What sets it
apart is its smart control system, led by PicoBlaze, which efficiently manages the process of recon-
figuring data from the dual port RAM to the configuration RAM. Compared to older controllers,
this one stands out for its efficient use of resources. One of the reasons for its success is the smooth
coordination between the dual port RAM and configuration RAM, ensuring the easy configuration
of the partial bitstream. This controller is designed to perform various tasks without requiring
too many resources. It can read information, detect and correct errors, map physical addresses
to linear addresses, generate address maps for readback CRC frames, read specific frames using
ICAP, store them in the RAM buffer, write information frames to the configuration memory, and
even handle Single Event Upsets (SEUs).

3.5.6 DyRACT

DyRACT is a framework proposed in [44] that provides the loading of partial bitstreams over
the PCIe interface. This framework encompasses both hardware and software components, en-
abling seamless communication between the host and accelerator while maximizing throughput.
The DyRACT framework comprises two key components: the control logic and the user logic.
The control logic is responsible for managing interfaces, controlling reconfiguration processes, and
handling clock management to ensure seamless operation. On the other hand, the user logic fo-
cuses on implementing a customized hardware accelerator that brings specific functionality to the
system. The control logic remains in the static region, while the user logic resides in a partially
reconfigurable region (PRR), which allows for dynamic reconfiguration at runtime using the PCIe
interface.

3.5.7 VR-ZYCAP

VR-ZYCAP is a controller presented in [45], that is a controller implemented in PL of Zynq SoC
enabling flexible and fine-grained incremental reconfiguration of FPGA logic (LUTs and FFs) in
run-time. Compared to the other proposed controllers, it reduces the processor dependency, and it
has less resource utilization. It stands apart from existing controllers that focus on coarse-grained
reconfiguration and achieves faster results by handling LUT and FF reconfiguration directly in
hardware while preserving the static logic. Instead of relying on pre-generated bitstreams, VR-
ZyCAP generates partial bitstreams dynamically during the run-time read-modify-write cycle,
eliminating the need for time-consuming compilation using FPGA design tools. The controller
initially uses the PCAP for configuration downloading and subsequently utilizes the ICAP config-
uration ports for reconfiguration, avoiding the repetitive loading of partial bitstreams from external
memory.

3.5.8 Comparative Analysis

A comparison of the throughput achieved by each controller is given in Figure 3.6, however, it is
essential to consider other factors for a comprehensive analysis. One crucial aspect is the frequency
at which the controllers are operating. In the case of most controllers, they utilize a frequency of
100MHz, except for HSDPC which operates at 133MHz, and DyRACT at 250MHz. The frequency
at which a controller operates can significantly impact its performance and throughput.
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Figure 3.6: Comparison of Partial Reconfiguration Controllers

The figure illustrates various controllers and their corresponding throughput capabilities. The
ICAP, with a theoretical throughput of 400 MB/s, is limited to the ZynQ board. It is important
to note that this maximum throughput may not be achievable in practical scenarios. Compar-
atively, the HWICAP controller offers a relatively low throughput of 19 Mb/s when compared
to other controllers. On the other hand, ZyCAP boasts a high throughput of 382 MB/s. Al-
though it lacks explicit support for specific features, ZyCAP efficiently transfers bitstreams from
external memory to the controller. AC ICAP provides a throughput of 378 MB/s and supports
fine-grain reconfiguration. Meanwhile, HSDPRC achieves a high throughput of 418.5 Mb/s by
utilizing the LocalLink DMA and Xilinx 32b-ICAP primitives. This enables the processor to have
full access during the reconfiguration process. DyRACT facilitates the loading of partial bitstreams
over the PCIe interface, promoting seamless communication between the host and accelerator for
maximizing throughput. RT-ICAP supports bitstream compression and utilizes SPM memory,
although specific throughput information is not available in the provided table. The Tiny ICAP
controller efficiently utilizes resources, enabling seamless coordination between the dual-port RAM
and configuration RAM. It performs various tasks with minimal resource requirements and effect-
ively handles Single Event Upsets (SEUs). Lastly, VR-ZYCAP allows fine-grained incremental
reconfiguration of FPGA logic, reducing processor dependency. It dynamically generates partial
bitstreams during runtime, eliminating the need for pre-generated bitstreams and time-consuming
compilation. The PCAP configuration path was selected for performing partial reconfiguration in
this master’s thesis for two primary reasons: flexibility and resource usage. Firstly, PCAP takes
advantage of the existing processor interface and infrastructure, simplifying the design process.
Secondly, it avoids additional resource consumption as it doesn’t necessitate dedicated hardware
components.

3.5.9 Emerging Trends and Future Directions

Due to its benefits, the DPR is being applied to different applications, including space applications,
software-defined radio, real-time accelerators, and security or machine learning applications. How-
ever, the flow to perform reconfiguration is sometimes complex and time-consuming, since it needs
to be supported by hardware and software applications. As described in this section, many control-
lers are being developed in order to make this process easy, and also to achieve a high throughput.
However, there is more to be done to the reconfiguration flow in general. First and foremost, one
trend of partial reconfiguration can be to reduce the element that can be reconfigured, fine-grained
reconfiguration. Fine-Grained reconfiguration allows the reconfiguration of smaller sub-modules or
individual circuit elements. This provides higher flexibility since the resources to be configured are
less, and as a consequence achieves less configuration time. Another future direction in the DPR

39



is the support of High-Level Design tools. The integration with high-level design tools and meth-
odologies will provide a higher level of abstraction and will simplify the design process, enabling
thus the designers to utilize all the benefits of the DPR.
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CHAPTER 4
Cude Dimension Controller Module

4.1 Introduction

This chapter focuses on the Cube Dimension Controller Module, which is a custom AXI4-Lite
interface dedicated to modifying the Y dimension of an HSI cube in the context of the HYPSO
mission. By discussing the design considerations and presenting experimental results, this chapter
provides a comprehensive guide to the module’s functionality and highlights the importance of
dynamic dimension changes in HSI analysis.

The Cube Dimension Controller Module is a critical component of the HYPSO mission, where the
ability to manipulate dimensions is essential for practical hyperspectral imaging. This chapter ex-
plores the implementation of the custom AXI4-Lite interface, which enables seamless modification
of the Y dimension. It delves into the design considerations involved in developing the module,
emphasizing the advantages of the chosen interface for this specific task. By introducing the mo-
tivation and providing an overview, readers will gain a clear understanding of the objectives and
significance of the custom AXI4-Lite interface in enabling flexible and efficient manipulation of the
Y dimension of the HSI cube.

4.2 Motivation

The motivation behind the development of the Cube Dimension Controller Module stems from
the inherent limitations posed by fixed dimensions in the hyperspectral image (HSI) cubes in the
HYPSO mission. The ability to dynamically manipulate the cube’s dimensions offers significant
advantages in various HSI applications. In the HYPSO mission, the module plays a crucial role in
efficiently adjusting the Y dimension of the HSI cube, where X and Y represent spatial coordinates
and Z represents spectral information. This adjustment is necessary because the CCSDS-123
compression algorithm is unable to compress images of varying sizes. However, the satellite is
capable of capturing images in multiples of a fixed size. As the satellite progresses along its orbit,
it captures consecutive images with Y values, such as 200, followed by another 200, and so on.

Based on previous research conducted in master theses [7] and [46], it was discovered that the
limitation arises from the algorithm’s reliance on parallel processing and pipelining to achieve high-
throughput rates. This necessitates a fixed hardware configuration that can efficiently process the
input data in parallel. If the image size or band configuration changes, the hardware must be
reconfigured to accommodate the new input data, resulting in a significant burden and reduced
performance.

Moreover, dynamic dimension changes can facilitate the CCSDS-123 compression algorithm for
efficient storage and transmission of HSI data. By adjusting the dimensions of the cube, it is pos-
sible to reduce its overall size while maintaining essential spectral information, enabling flexibility
and avoiding the FPGA reconfiguration. This can lead to significant savings in storage space and
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transmission bandwidth, which are crucial considerations for the HYPSO mission.

4.2.1 Relevance of AXI4-Lite in Hyperspectral Imaging Applications

Due to the advantages of the AXI4-Lite interface, like its compact design, memory-mapped com-
munication capabilities, and compatibility make it an ideal choice for integrating and controlling
various components within the limited resources of CubeSats platforms. In the case of the HYPSO
mission, the AXI4-Lite interface was specifically chosen for its ability to efficiently facilitate the
dynamic adjustment of the dimensions of the hyperspectral image cube. Using AXI4-Lite the cube
dimension, specifically the Y dimension, can be easily modified ensuring efficient utilization of on-
board resources and optimizing data capabilities. Moreover, this interface can be easily integrated
with the current implemented design of the HYSPO mission.

4.3 Implementation Details

This section will discuss the implementation details related to the integration and utilization of
the AXi4-Lite interface. Moreover, the section will cover signal connections, register mapping, and
configuration considerations.

4.3.1 Custom AXI4-Lite IP

In this subsection, the custom AXI4 Lite IP was developed to control the Y dimension of the HSI
cube. In Figure 4.1 it is given the custom IP, named DimController, that is implemented based on
Xilinx resources.

S00_AXI

s00_axi_aclk

s00_axi_aresetn

y_dim_data[31:0]

data_valid

+

dim_controller

Figure 4.1: DimController - Custom AXI4-Lite IP

As illustrated the IP features several ports such as:

1. S00 AXI: This port represents the AXI4-Lite interface of the DimController. It serves as
the communication channel between the component and a host processor. The S00 AXI
port includes signals such as AWVALID, AWREADY, AWADDR, WVALID, WREADY,
WDATA, BVALID, BREADY, and BRESP, enabling read and write transactions.

2. s00 axi ackl: This signal is an acknowledgment signal from the DimController to the host
processor. It indicates the successful completion of a read or write operation initiated by the
processor. The processor waits for this signal before proceeding with subsequent transactions.

3. s00 axi aresetn: This signal is the active-low asynchronous reset signal for the DimController.
When this signal is asserted low, it resets the component to its initial state, ensuring a known
starting point for proper functionality.

4. y dim data[31:0]: This port is an output signal that represents the Y dimension of the HSI
cube controlled by the DimController. It is a 32-bit vector that carries the data related to
the Y dimension of the cube.
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5. data valid: This signal is also an output of the DimController. When the data valid signal
is asserted the register y dim data register contains a valid y dimension.

4.3.2 RTL Code

The module was implemented in System Verilog based also on the resources and recommendations
provided by Xilinx. In order to customize the AXI4-Lite IP the below RTL code modifications
were done in order to add the functionality to change the Y dimension of the HSI cube:

Listing 4.1: Dimensionality Controller section code to write to Y dimension register

1 reg y_valid;
2 always @(posedge S_AXI_ACLK) begin
3
4 if (S_AXI_AWVALID && S_AXI_AWREADY && S_AXI_WVALID && axi_wready) begin
5 //A write operation has been completed, set the signal to 1
6 y_valid = 1'b1;
7 end else begin
8 // No write operation, keep the signal at 0
9 y_valid = 1'b0;

10 end
11 end
12
13 assign y_dim_data = slv_reg0;
14 assign data_valid = y_valid;

The code is contained within an always block that is triggered by the positive edge of the AXI4
Lite clock signal (S AXI ACLK). The purpose of this code is to determine the validity of data
written in the y dim data register. By evaluating the states of various AXI4 Lite interface signals,
such as write validation (S AXI AWVALID), write readiness (S AXI AWREADY), data validation
(S AXI WVALID), and response validation axi wready, the code determines whether a write op-
eration has been successfully completed. If all the specified signals are asserted at the same time,
indicating a completed write operation, the y valid signal is set to high, signifying the validity of
the data.

Conversely, if any of the signals are not asserted or the write operation is incomplete, the y valid
signal is set to low, indicating the data’s invalidity or the absence of a write operation. This
mechanism enables the host processor to determine the appropriateness of reading the HSI cube’s
dimension from the y dim data register, enhancing the overall control and synchronization between
the IP and the processor. This part is to ensure the validity of the value stored in y dim data.
This is because the CCSDS-123 algorithm is set up using the generic parameters given as input.

The last two assign lines indicate that the value stored in the slv reg0 register is assigned to the
y dim data output signal. The slv reg0 is a register within the AXI4 Lite IP. The assign statement
in the RTL code is used to assign the value of slv reg0 to the y dim data output signal. This allows
the value stored in slv reg0 to be propagated to the output port and made available for the host
processor to read.

In order to use the output data from this module, the CCSDS-123 module was changed in order to
support the dynamic change of the Y dimension. The code snippet below represents a process that
handles the reading of the y dimension, where NY is a generic value of a CCSDS123 compression
IP, and y valid is a signal coming from the dimensionality controller IP specifically the data valid
signal. Within the process, the y dimension (y dim) is updated based on the rising edge of the
CLK signal. The purpose of this process is to determine the value of the Y dimension based on
the state of the valid signal, in order to be sure that a value has been written in the register. Then
in the module, the value in the y dim signal is used during the operation.

Listing 4.2: Changes in the CCSDS-123 top module

1 signal y_dim : integer := NY;
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2
3 process (clk)
4 begin
5 if rising_edge(clk) and y_valid = '1' and unsigned(y_value) >= 0 then
6 y_dim <= to_integer(unsigned(y_value));
7 end if;
8 end process;

If the valid signal is asserted (’1’), indicating that new data is written in the y dim data register,
the process saves the value read from the DimController IP into the y dim signal. A simple check is
added in the if condition to ensure that the value that will be written is not negative. Conversely,
if the valid signal is de-asserted (’0’), indicating that the data is not valid, the value present in the
y dim signal is not changed.

By implementing this process, the code ensures that the value of the y dimension is determined
based on the state of the enable signal. If the data is valid, the process updates the Y dimension
with the value that needs to be changed. Otherwise, it sets the Y dimension to a default or generic
value (NY). Now the calculations for the cube size in the architecture of the ccsds123 top file are
done based on the value present in the y dim register.

In order to support the dynamic change in the CCSDS-123 module, besides the top module, the
pipeline and control modules are the only ones that were changed. The changes consist of adding
another input port for the new Y dimension, and also the changes in the architecture part in order
to do the calculations based on this new value.

4.4 Device Driver Development

As discussed in the background chapter, device drivers play a crucial role in facilitating communic-
ation between the operating system and hardware devices by providing an interface for applications
to interact with the hardware components. This section provides a description of the device driver
for the Cube Dimension Controller module. The device driver is implemented as a loadable ker-
nel module that registers itself as a character device. It offers two primary input/output control
commands: IOCTL SET DIMENSION and IOCTL GET DIMENSION. These commands enable
user-space applications to set and retrieve the Y-dimension value, respectively.

The driver, which can be found in the appendix, consists of two main files: dim controller.h
and dim controller.c. The header file defines the IOCTL commands, device file name, and other
essential constants. On the other hand, the dim controller.c source file implements the functionality
of the device driver. It includes the IOCTL handling function, file operations structure, and
initialization and cleanup functions. The input/output control functions interpret the commands
received from the user application, perform the necessary operations, and communicate the results
back to the application. Overall, the developed device driver provides a solid framework for
controlling the Y-dimension of the HSI cube and serves as a crucial component in enabling efficient
communication between the operating system and the Cube Dimension Controller module.

4.4.1 Build and Install

To create the module under the PetaLinux project, use the following command:

petalinux-create -t modules --name dimcontroller --enable

This command generates a module named dimcontroller within the PetaLinux project. It auto-
matically creates a Makefile, a C-file, and a README file. Make the necessary modifications to
these files to add the desired functionality explained in the section above.
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Once the Linux is loaded onto the board, the loading and unloading of the Linux kernel module
for this module can be done using the below commands:

modprobe dimcontroller.ko #Loads the module into the kernel
modprobe -r dimcontroller.ko #Unloads the module into kernel

To interact with the dimcontroller module, develop a user application that communicates with the
module through the /dev/dimcontroller device file. In order to set and get the cube dimension the
below two functions are used, which call the IOCTL commands;

Listing 4.3: Functions to set and get the Y cube dimension

int setDimension(int new_dimension) {
int file_desc = open(DEVICE_FILE, O_RDWR);
if (file_desc < 0) {

perror("Failed to open device file");
return -1;

}
if (ioctl(file_desc, IOCTL_SET_DIMENSION, &new_dimension)<0) {

perror("Failed to set dimension");
close(file_desc);
return -1;

}
printf("Set dimension to %d\n", new_dimension);
close(file_desc);
return 0;

}
int getDimension(int *current_dimension) {

int file_desc = open(DEVICE_FILE, O_RDWR);
if (file_desc < 0) {

perror("Failed to open device file");
return -1;

}
if (ioctl(file_desc, IOCTL_GET_DIMENSION, current_dimension)<0) {

perror("Failed to get dimension");
close(file_desc);
return -1;

}
close(file_desc);
return 0;

}

This code opens the device file in read-write mode and returns a file descriptor (‘file desc‘) for
further operations. Once the device file is successfully opened, utilize the functionality of the
module. For instance, to set the y-dimension value, use the following code:

Listing 4.4: Application to call the set and get functions

int main() {
int new_dimension;
int current_dimension;
printf("Enter the new dimension: ");
scanf("%d", &new_dimension);

if (new_dimension <= 0) {
printf("Invalid dimension.\n");
return 1;

}
if (setDimension(new_dimension) != 0) {

printf("Failed to set dimension\n");
return 1;

}
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if (getDimension(&current_dimension) != 0) {
printf("Failed to get dimension\n");
return 1;

}
printf("Current dimension: %d\n", current_dimension);
return 0;

}

This code sends an IOCTL command (‘IOCTL SET DIMENSION‘) along with the desired new
dimension value to the dimcontroller module through the file descriptor. Furthermore, a device
node was added to the device tree for this module in order to avoid kernel panic that can happen
because of memory limitations.

4.5 Testing

This section will include the testing approach followed to test the Dimensionality Controller mod-
ule. Firstly, in order to verify that the functionality of the module is correct the simulation and
debugging in Vivado was used. After the simulation that initiate a write transaction, it was seen
that both data and valid signals were set correctly. Secondly, the communication between the
module and the CCSDS-123 module was tested in order to ensure that the desired functionality
was achieved. In order to test the functionality of the module a simple software application was
also used. This application which can be found in the project consists of a self-test function that
checks if the module is operating within expected parameters and that all its functionalities are
working as intended.

In check, if the changes in the CCSDS-123 module have not affected its functionality, the Emporda
tools were used. Emporda is a software implementation of CCSDS Recommended Standard for
multi-spectral and hyperspectral image coding, that offers two modes, compression and decompres-
sion. In the compression mode, Emporda takes an image as input and generates a compressed file.
In decompression mode, Emporda expects a compressed file and recovers the original image. The
software allows for the configuration of various parameters related to input images, compression/-
decompression algorithms, and coding/decoding algorithms. Default parameter values, as well as
specific predefined parameter files, are provided, with Emporda verifying parameter values and
combinations to prevent errors.

The verification system utilizes simulation data from a specific hyperspectral image cube and
performs comparisons between the compressed bitstream produced by the implemented design
and the decompressed bitstream obtained through Emporda’s software implementation. A visual
representation of the automated verification system can be found in Figure 4.2. In the verification
system, the new Y dimension and the valid signal were provided as inputs for testing purposes.
Through randomized testing, it was observed that the resulting bitstreams from the compression
and decompression processes were identical, affirming the successful functionality of the module.

In order to ensure accurate results, adjustments were made to the automated tool during this
phase. It was discovered during testing that the system incorporated a comparison of residual
bits between a byte string and an integer, which led to errors and resulted in differing bitstreams.
These refinements aimed to enhance the reliability and consistency of the verification process. For
the procedure of how to use the Emporda tool, the [7] defines all the steps that need to follow in
order to test using the Emporda tool. Before starting testing using this tool, it is important to
first run the simulation in Vivado, even though it will fail. This is done because Vivado will create
the necessary files needed by the verification system.
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Figure 4.2: Overview of the automatic verification system

Source: [7]

4.6 Conclusion

In conclusion, the focus of this chapter was on the Cube Dimension Controller Module, which
implements a custom AXI4-Lite interface for modifying the Y-dimension of an HSI cube in the
HYPSO mission. The chapter has provided an introduction to the module, discussing its signific-
ance in enabling dynamic dimension changes in HSI analysis. The motivation behind the module’s
development was explained, highlighting the limitations of fixed dimensions in traditional HSI
cubes and the advantages of dynamic dimension changes in terms of compression and resource
utilization.

Furthermore, the chapter discussed the implementation details of the Cube Dimension Controller
Module, including the development of a custom AXI4-Lite IP and the necessary modifications to the
RTL code. The custom IP, named DimController, was described along with its ports and signals.
The RTL code modifications were explained, focusing on the assignment of the Y-dimension data to
the output signal and the determination of data validity based on the AXI4-Lite interface signals.
Overall, this chapter provides a comprehensive guide to the Cube Dimension Controller Module
and highlights the importance of the custom AXI4-Lite interface in enabling flexible and efficient
manipulation of the Y-dimension of the HSI cube in the context of the HYPSO mission.

47



CHAPTER 5
Dynamic Partial Reconfiguration using PCAP

5.1 Vivado Software Flow

This subsection includes the flow that was followed in order to design a project that can be used
to perform a partial reconfiguration. Part of the Vivado tool is the Dynamic Function eXchange
(DFX) which allows for the reconfiguration of modules within a design. In the process of synthes-
izing and implementing a design, two crucial steps need to be undertaken. The first step involves
generating a top-level wrapper that acts as an interface between the design and the overall sys-
tem. This can be accomplished in the Vivado design environment by right-clicking on the top-level
block diagram in the Sources window and selecting the Create HDL Wrapper option. The res-
ulting wrapper file, named design wrapper.v, is then included in the project and serves as the
instantiation point for the top-level block diagram.

The second step entails generating the RTL and IP files required for synthesis. To perform this step
in Vivado, you need to navigate to the Flow Navigator and select the ”Generate Block Design”
command located under the IP INTEGRATOR header. This action triggers a dialog box to
appear, presenting you with several options: Out of context per IP, Out of context
per Block Design, or Global. In the case of the partial configuration flow, it is crucial to
choose the Global option since it will ensure that the generated RTL and IP files cover the entire
design, including all components and connections. This comprehensive approach to synthesis allows
for a thorough evaluation and optimization of the entire system. After this step, the creation of
the necessary RTL and IP files can be initiated. This step is critical as it lays the foundation
for subsequent stages in the design process, such as synthesis, implementation, and verification,
enabling the successful realization of the DPR project [47]. The flow of the partial reconfiguration
process is based on the DFX flow, provided by Xilinx that consists of different steps, as illustrated
in Figure 5.1, each with a specific purpose.

5.1.1 Synthesis

A partial reconfigurable design requires a bottom-up design, which is a synthesis flow in which
each module has its own synthesis project [47]. In order to achieve this, the first step is the convert
the design into a design that consists of the static part and the Reconfigurable Partitions (RP).
The top-level module should initiate both those components, but when it comes to Reconfigurable
Partition, it should have a black box for each of them, without any logic. That means that static
and reconfigurable designs should be synthesized separately. To synthesize the top-level module,
a TCL script is used that specifies which parts of the design should undergo synthesis.

set run.topSynth 0
set run.rmSynth 1
set run.prImp 0
set run.prVerify 0
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Figure 5.1: Graphical PR flow representation based on DFX

set run.writeBitstrim 0

In this case, the script is configured to synthesize only the reconfiguration modules, while avoiding
the synthesis of the top module, which is synthesized separately in the Vivado IDE. By executing
this script, the netlists for each of the RM are generated, each with its own configuration.

Global Synthesis

Global synthesis involves the synthesis of the entire design, including both the static and dynamic-
ally reconfigurable portions, into a single global design representation. The synthesis tool analyzes
the design, performs optimizations such as logic folding, technology mapping, and resource shar-
ing, and generates a gate-level netlist. Once the static portion of the design has been synthesized,
the dynamically reconfigurable portions are integrated into the global design representation. This
involves mapping the reconfigurable modules onto the FPGA device and establishing the necessary
interconnections between the static and reconfigurable portions. The synthesis tool analyzes the
reconfigurable modules, performs optimizations specific to partial reconfiguration, and generates a
modified global netlist that includes both static and reconfigurable elements. The global synthesis
also includes additional steps such as placement and routing. This ensures that the design meets
the required timing constraints and minimizes the propagation delays between different elements.

The output of global synthesis is a complete design representation that can be used for programming
the FPGA device. This representation includes the configuration bitstream for the static portion of
the design and the partial bitstreams for the reconfigurable modules. The global synthesis process
plays a crucial role in achieving efficient and optimized implementations of FPGA-based systems
with dynamic reconfiguration capabilities.

Out-of-context Synthesis

In contrast to global synthesis, which synthesizes the entire design as a single entity, out-of-context
synthesis allows for independent synthesis and optimization of specific modules or sub-designs. The
purpose of out-of-context synthesis is to enable modular design and development where different
modules can be synthesized and tested independently and thus offers several advantages, including
better manageability, improved design reuse, and faster design iterations. The out-of-context
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synthesis process focuses on optimizing the module’s functionality, resource utilization, and timing
characteristics without considering the interactions with other modules in the system. The out-of-
context synthesis also facilitates design reuse. Once a module has been synthesized and verified, it
can be reused in multiple designs or projects without the need for repeating the synthesis process.
This promotes efficient development and accelerates time-to-market for FPGA-based systems.

5.1.2 RTL Project Flow in Vivado IDE

The DFX project flow inserts the key requirements into the existing Vivado project. Some of
the key requirements include defining RP within the design hierarchy, population a set of RM for
each RP, creating a set of top-level and module-level synthesis runs, and creating a set of related
implementation runs. It should be mentioned that a project cannot be broken up or exported since
Vivado will now be able to track dependencies between runs and sources.

• The first step is to create the top-level design
So the top-level design will contain the block design and a wrapper for each of the reconfig-
urable regions. In this case, the CCSDS-123 component will be removed from the top-level
design. Another top-level file, reconfig top, was created in the design project that will in-
stantiate the CCSDS-123 module which was converted into a black box1. As illustrated in
Figure 5.2, the design is composed of the static logic and the reconfig top module, which
contains the reconfigurable logic that is represented by the ccsds123 top module.

static logic

reconfig_top

ccsds123_top

Figure 5.2: High-level structure of the design

Figure 5.3: Design including CCSDS-123, CubeDMA and DimController components

• Creating the custom ccsds123 IP
A custom IP named ccsds123 was developed, with the reconfig top module serving as its top
file. Subsequently, the IP was incorporated into the entire system diagram and connected to
other modules using the required signals. This approach was adopted to establish a high-level

1A component is considered as a black box if it doesn’t contain any implementation details but just the definition
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design that facilitates the division of reconfiguration regions and the static portion. Moreover,
since the state of the reconfiguration region (RR) is unknown during the reconfiguration
process and can impact other FPGA logic, this high-level design aids the controller in isolating
each reconfigurable partition (RP). The complete design that includes this IP as well is given
in Figure 5.3

5.1.3 Assembly of the design

After the synthesis is completed, the complete netlists will that include the static logic and each RP
logic, will be created. The netlists can be opened using the TCL command: open checkpoint
<filename>. When the static netlist is open, Vivado will issue a warning stating that it couldn’t
locate the logic for the previously defined black box. In this step, it is important to locate the path
of the black box component since it will be required in subsequent steps. The black box component
can be found in the netlist sources and is represented by a black square symbol.

Afterward, the netlist for each of the reconfigurable modules should be linked with the black box
definition in the top-level module of the static part. In this case, the logic path of the module
should be provided as input to the command, as shown below:

read_checkpoint -cell <blackBoxPath>/<componentName>
<pathToNetlist>/<filename>

This command connects the module logic with the previously defined black box component. After
linking the components, the next step is to designate the Reconfigurable Partition (RP) as partially
reconfigurable. This can be achieved by setting the HD Reconfigurable property to 1.

Then the assembled design can be saved using the write checkpoint command. This process
should be performed for each of the Reconfigurable modules in the Reconfigurable Partition, by
giving as input its own netlist file.

5.1.4 Floorplanning

During this step, the floorplanning process is performed to define the regions that will undergo
partial reconfiguration. The floorplan, also known as Pblock, determines the allocation of phys-
ical resources for the Reconfigurable Modules. This step holds great importance in the partial
reconfiguration flow as it ensures that the necessary restrictions and requirements are met. If the
design includes flip-flops, it is crucial to consider a specific property in the floorplanning phase. In
the properties section, the RESET AFTER RECONFIG checkbox should be enabled. This property
is a beneficial feature that helps ensure the proper routing of the reset signal during the partial
reconfiguration process.

By setting the RESET AFTER RECONFIG property, the tool automatically generates the required
logic to synchronize the reset signal with the completion of the reconfiguration process. This
proactive approach helps prevent any potential issues that may arise if the reset signal is not
correctly synchronized with the reconfiguration process.

However, it is important that the floorplanning is performed for the configuration that has the
biggest use of resources. So it is necessary first to define a configuration with the maximum use of
resources and then the floorplanning can be used for other configurations as well. The floorplanning
approach followed in this project prioritized implementing the configuration with the highest re-
source utilization. For 7-series devices, it is important to ensure that the Reconfiguration Partition
(RP) is framed-aligned, meaning that the Pblock is aligned with the clock region boundaries when
the RESET AFTER RECONFIG property is set. However, it should be noted that this requirement
is not applicable to UltraScale devices.

During the floorplanning process, it should be considered that not all the elements can be configured
so they should not be included in the Pblock. The elements that can be configured include

51



CLBs, BRAMs, DSPs, and routing resources. However, the elements like clocking resources, I/O
resources, and architecture feature components cannot be configured. That means that the width
and composition of the Pblock must not split interconnect columns. When determining the width
of the RP, it is recommended to choose a width that optimizes the utilization of interconnect
and closing resources. In 7-series devices, as explained in the background chapter, the routing
resources are positioned adjacent to or back-to-back with each other. Therefore, a key requirement
regarding the width is to ensure that the left and right edges of the Pblock are placed between two
interconnect columns (INT-INT). This allows the tool to utilize all available resources for both the
reconfigurable logic and the static logic during the place and route process. In cases where the
specific locations of these columns are not known, the SNAPPING MODE property can be utilized
within the Pblock. This property automatically resizes the Pblock to avoid violations related to
back-to-back placement. Another thing to consider is that the Pblocks should not overlap with
each other in the design and also nesting of the RPs is not supported.

By following these considerations during floorplanning, the design can optimize resource utiliza-
tion, ensure proper alignment, and avoid potential issues related to interconnect placement. The
initial step is to determine the resources required by the CCSDS-123 IP and then add the 20%
overhead that is needed for routing resources. This ensures that there is sufficient room for rout-
ing resources and helps avoid issues related to interconnect placement. In order to check if the
floorplanning is performed correctly, the Partial Reconfiguration Design Rule Checks (DRC) must
be run. This report will include all warnings and errors related to partial reconfiguration. Each
of the warnings should be taken into consideration since they can affect the following steps in the
partial configuration flow. After this step, the Pblock definitions and their associated properties
must be saved on a .xdc file.

5.1.5 Implementation of the configurations

During the implementation stage of the partial reconfiguration flow, the synthesized netlist is
mapped into the target FPGA device’s resources. Since there can be multiple configurations in
partial reconfiguration, implementation needs to be performed for each Reconfigurable Module
(RM) separately. The implementation process includes loading the design constraints and per-
forming the place and route. Loading design constraints is crucial in ensuring the success and
reliability of the design during the implementation of each configuration. More specifically, the
PS constrain file, which contains information about pin assignments, I/O voltage levels, and clock
frequencies should be loaded for each of the configurations. This file can be generated by Vivado
when the system design that contains the PS is synthesized. The below command is used to load
the constraint:

read_xdc <filename.xdc>

After loading the design constraints, the constrained optimization, place, and routing processes
are performed during implementation in the partial reconfiguration flow. The following commands
can be used for these steps:

opt_design
place_design
route_design

After each step in the implementation process, it is crucial to preserve the generated placement
and routing results to ensure their integrity and avoid unintentional modifications. This can be
achieved by saving the implementation results as checkpoints. Checkpoints serve as snapshots
of the design’s implementation state at specific stages. They capture the placement and routing
information, including the physical location of the design’s components, interconnections, and other
relevant data.

write_checkpoint <name.dcp>
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Until this point, each of those steps should be performed for all RM variants. Furthermore, since
the static portion of the configuration will be used for all subsequent configurations (for every
RM or RPs), the static design must be isolated and the RM module must be removed. Also, the
placement and routing are locked down in order to guarantee consistency for different RMs for
each RP.

update_design -cell <path-to-blackbox-component> -black box
lock design -level routing

After the placement and routing process for all configurations is finished, it is important to perform
a final verification check to ensure consistency between these configurations. This verification is
carried out using the pr verify command, which takes multiple routed checkpoints (DCPs) as
inputs. The command then generates a log that highlights any differences found in the static
implementation and Partition Pin placement between the configurations.

#To compare two configurations
pr_verify <config1_routed.dcp> <config2_routed.dcp>

#To compare more than two configurations
pr_verify -initial <config1.dcp -additional {config2.dcp confign.dcp}

5.1.6 Bitstream Generation

In the partial reconfiguration flow, the generation of bitstreams, instead of creating a single com-
plete bitstream file for the entire design, the write bitstream command is used to generate multiple
bit files. For each design configuration, this command generates a full standard configuration file
and additional partial bit files for each RM within that configuration. To ensure proper identific-
ation and organization of the generated bit files, Xilinx recommends providing the configuration
name and RM names using the -file option when executing the write bitstream command as below:

write_bitstream -file Config_1.bit

When performing partial reconfiguration using the FPGA Manager, it is necessary to create bin-
ary bitstreams. The binary bitstream format (.bin) is specifically designed to support the partial
reconfiguration process and includes a header and other metadata required for successful reconfig-
uration.

Startup CRC DATA Header Configuration Clear

CRC DATA Header

Partial Configuration Bit file

Full Configuration Bit file

Figure 5.4: Structure of the full and partial bitstream files

Full and partial bitstream configuration bit files have different structures. As shown in Figure 5.4,
the full configuration bit file includes the startup, CRC, data, header, and configuration clear. On
the other hand, the partial bit files contain the CRC, configuration data, and header. The CRC
(Cyclic Redundancy Check) is used as a mechanism for error detection and verification during the
configuration process of FPGA.
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Also, it should be mentioned, that this flow creates the black box partial bitstreams that don’t
contain any logic for the RPs. Those bitstreams can be used to remove the previous logic of RM
and then substitute it with a new configuration bitstream.

5.2 PL Configuration through PS

The next and final step in dynamic partial reconfiguration is to reconfigure the PL through the PS.
The high-level flow of how the partial reconfiguration flow is performed through software is given
in Figure 5.5. A software application, that is executed in the CPU is used to give an instance as
input to the configuration manager. The configuration manager then reads the specific bitstream
file from SD Card, and then using one of the configuration paths, in our case the PCAP path, the
bitstream is loaded in the FPGA configuration logic.

Application Software

Configuration Manager

RM

CPU

RM

Static

FPGA

Configuration Interface

Bitstreams
Bitstreams

Bitstreams

Figure 5.5: High-level flow of PL configuration through PS

To transfer the partial bitstream from the Programmable System (PS) to the Programmable Logic
(PL) region of the FPGA, the Process Configuration Access Port (PCAP) interface can be utilized.
The PCAP interface enables communication between the PS and the PL for configuration purposes.
The general steps to configure the PL via the PCAP interface are as follows:

1. Enable the interface the select PCAP programming path. This step establishes the commu-
nication link between the PS and PL for configuration purposes.

2. Clear interrupts to ensure a clean configuration process. Clearing interrupts ensures that any
pending signals are resent, avoiding potential interference during the configuration.

3. Initialize the PL by preparing it for the upcoming configuration. This involves setting up
the necessary resources and ensuring a proper starting state.

4. Disable the internal DevC (Device Configuration) loopback function. This step ensures
that the configuration proceeds smoothly without any interference from internal feedback.
Disabling the loopback function ensures that the PL receives its configuration data through
the intended method, with is via DevC DMA.

5. Transfer the new bitstream file to the PL using the DevC DMA.

To facilitate the testing of dynamic partial reconfiguration through the PCAP (Processor Config-
uration Access Port) interface, a simple application was developed. This application utilizes the
devcfg driver, which acts as the interface between the processing system (PS) and programmable
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logic (PL) of the FPGA. The devcfg driver enables the transfer of bitstream data from the PS to
the PL, ensuring power synchronization and control during the configuration process.

It is important to note that the devcfg driver has been deprecated in the 2018.1 release of the Linux
Kernel and is no longer included in the mainline tree. However, Xilinx now provides a higher-level
abstraction called FPGA Manager, which offers a more advanced and recommended approach for
dynamic FPGA reconfiguration. It is worth mentioning that some of the FPGA Manager APIs
are built on the functionality provided by the devcfg driver.

Although FPGA Manager is the preferred method for dynamic partial reconfiguration, there are
scenarios where the application based on the devcfg driver can still be useful. Firstly, in legacy
systems that rely on older versions of Linux with support for the devcfg driver, the application can
be utilized for dynamic partial reconfiguration without the need to migrate to newer Linux versions.
Additionally, in customized environments where specific Linux versions can be maintained, the
application can be deployed to enable dynamic partial reconfiguration.

This application begins by initializing the necessary components such as the interrupt controller,
PCAP interface, and SD card. It then performs a full configuration of the FPGA using a specified
bitstream file. After that, it proceeds with two partial reconfigurations using different bitstream
files. The application also includes functions to handle interrupt callbacks and error handling. In
the end, the cache is flushed, and the application returns. The application code can be found in
the appendix.

FPGA Manager provides a framework for managing the partial reconfiguration of FPGAs, and it
simplifies the process of reconfiguring specific regions of FPGAs. As explained in the background
chapter, two are the main concepts in FPGA Manager, FPGA Region, and FPGA Bridge. The
FPGA Region is defined during the design phase, which also specifies the boundaries and the re-
sources needed by this region that will serve as the part that needs to be configured by the FPGA
Manager tool. Another component concept is FPGA Bridge, which facilitates the communica-
tion between the reconfiguration regions and the static region, by acting as an interface for data
and control signals. During the reconfiguration process, the FPGA Manager gets as input the
specified bitstream and loads it into the FPGA region’s configuration memory through the CAP.
Furthermore, the reconfiguration controller initiates the processes by setting the control signals
and commands, that enable the reconfiguration. Reconfiguration is in the region without affecting
the static region,

To reconfigure the Programmable Logic (PL) using the FPGA Manager, the following steps need
to be followed:

1. Create the /lib/firmware directory: The first step is to create the /lib/firmware
directory, which will serve as the storage location for the bitstream file. The bitstream file
contains the necessary configuration data specific to the desired design that will be loaded
onto the FPGA.

2. Copy the desired bitstream file: The next step involves copying the desired bitstream file to
the /lib/firmware directory. The bitstream file contains the configuration data that is
required to program the FPGA with the specific design. By executing the below command,
the bitstream file named partial bitstream.bin is copied to the designated directory.

3. Set the necessary flags: The FPGA Manager needs to be informed that a partial reconfig-
uration of the PL logic is desired. This is achieved by setting the appropriate flags in the
FPGA Manager.

4. Load the bitstream file using the FPGA Manager: The final step involves loading the bit-
stream file onto the FPGA using the FPGA Manager module.

This command instructs the FPGA Manager to upload a specified bitstream file into the
FPGA. The FPGAManager reads the file from the /lib/firmware directory and programs
the corresponding reconfiguration region, that is specified in the bitstream content.

For convenience and ease of replication, a configuration file for each RM can be created. Below is
an example of such a configuration script:
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Listing 5.1: Script to perform partial reconfiguration

1 echo 1 > /sys/class/fpga_manager/fpga0/flags
2 mkdir -p /lib/firmware
3 cp /mnt/vivado_designs/partial_wrapper.bit.bin /lib/firmware
4 echo partial_wrapper.bit.bin > /sys/class/fpga_manager/fpga0/firmware

The steps in the configuration script are as follows:

• Set the flags to indicate a partial programming of the PL logic to the FPGA Manager.

• Create the necessary firmware folder.

• Copy the bitstream file (partial bitstream.bin) to the firmware folder.

• Provide the bitstream file (partial bitstream.bin) to the FPGA Manager module.

By following these steps and utilizing the configuration file, the FPGA Manager can be easily
configured to perform partial reprogramming of the PL logic, granting the flexibility to dynamically
update and optimize your FPGA design.

As mentioned before, and as it can be seen in the script the bitstream needs to be in the .bin
format. The below script is used to do this, but first, it requires creating the BIF (boot image
format) files for each bitstream that will be used as input to the bootgen command.

Listing 5.2: Script convert bitstreams into binary format

1 #!/bin/bash
2
3 # Define the input bitstream file names
4 input_bitstream_1="blackboxpartial.bif"
5 input_bitstream_2="full1.bif"
6 input_bitstream_3="full2.bif"
7 input_bitstream_4="cube2partial.bif"
8 input_bitstream_5="cube1partial.bif"
9 input_bitstream_6="blackbox.bif"

10
11 # Define the output binary file names
12 output_file_1="blackboxpartial.bit"
13 output_file_2="full1.bit"
14 output_file_3="full2.bit"
15 output_file_4="cube2partial.bit"
16 output_file_5="cube1partial.bit"
17 output_file_6="blackbox.bit"
18
19 # Run the bootgen command to convert the bitstreams
20 bootgen -image "$input_bitstream_1" -arch zynq
21 -process_bitstream bin -w -o "$output_file_1"
22
23 bootgen -image "$input_bitstream_2" -arch zynq
24 -process_bitstream bin -w -o "$output_file_2"
25
26 bootgen -image "$input_bitstream_3" -arch zynq
27 -process_bitstream bin -w -o "$output_file_3"
28
29 bootgen -image "$input_bitstream_4" -arch zynq
30 -process_bitstream bin -w -o "$output_file_4"
31
32 bootgen -image "$input_bitstream_5" -arch zynq
33 -process_bitstream bin -w -o "$output_file_5"
34
35 bootgen -image "$input_bitstream_6" -arch zynq
36 -process_bitstream bin -w -o "$output_file_6"
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37
38 echo "Conversion completed."

5.3 Summary

The chapter discusses the process of dynamic partial reconfiguration using the Partial Configuration
Access Port (PCAP) in Vivado IDE. It provides a summary of the RTL project flow in Vivado,
including the creation of a top-level design and the creation of a custom IP. The Vivado software
flow is also explained, highlighting the steps involved in the synthesis, assembly, floorplanning,
implementation, and bitstream generation.

The chapter then focuses on the process of PL configuration through the PS using the PCAP
interface. It describes the high-level flow of PL configuration through the PS and explains the
steps involved in transferring the partial bitstream from the PS to the PL using PCAP. The
process of enabling the PCAP interface, clearing interrupts, initializing the PL, disabling internal
loopback, and transferring the bitstream file to the PL using DevC DMA are discussed.

Furthermore, the chapter introduced the concept of binary bitstreams and their specific format
with header and metadata, which are essential for transferring the partial configuration from the
PS to the PL through the PCAP interface. Lastly, it highlighted the FPGA Manager as a higher-
level abstraction provided by Xilinx, enabling easier management and communication between the
PS and PL during the reconfiguration process. The FPGA Manager eliminates the need for custom
applications and simplifies the configuration process by handling bitstream transfer through the
PCAP interface.
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CHAPTER 6
Dynamic Partial Reconfiguration Testing

6.1 Introduction

This chapter focuses on the testing of the dynamic partial reconfiguration of FPGA using the
CCSDS-123 compression algorithm for the HYPSO mission. The objective is to evaluate the
functionality, performance, and effectiveness of the implemented system. Through a systematic
testing approach, it is validated the successful execution of the dynamic partial reconfiguration
process and assess the impact of the CCSDS-123 compression algorithm. Furthermore are discussed
the steps involved, including directory structure organization, synthesis, assembly, floorplanning,
configuration implementation, bitstream generation, and software application development using
PCAP.

6.2 Experimental Setup

This section will describe the hardware and software environment utilized for testing and exper-
imentation. The FPGA platform is described together with additional tools or equipment used,
and also specific considerations or requirements for testing dynamic partial reconfiguration with
the CCSDS-123 compression algorithm are outlined.

6.2.1 ZedBoard System Architecture

ZedBoard is a low-cost development board by Avnet with a rich set of peripherals and interfaces.
The main part of Zedboard is the Zynq-7000 SoC (XC7Z020-CLG484-1), with a dual-core ARM
Cortex-A9 processor with Xilinx programmable logic fabric.

The Zynq-7000 SoC provides a processing system (PS) and a programmable logic (PL) section.
The processing system consists of the dual-core Cortex-A9 processor, peripherals, and memory
interfaces. The programmable logic section, on the other hand, offers a reconfigurable hardware
fabric that can be customized to meet specific application requirements. It includes programmable
logic cells, DSP slices, block RAM, and peripheral interfaces. It has a capacity of 53200 LUTs,
106400 flip-flops, 220 DSP48E1s, and 140 BRAMs [11]. Furthermore, the Zynq device interfaces
to a 256Mbit flash memory and 512MB DDR3 memory. The layout of ZedBoard by Avnet is given
in Figure 6.1.

ZedBoard’s system architecture also includes a wide range of peripherals and interfaces to facilitate
connectivity and interaction with external devices. It features HDMI and VGA ports for video
output, USB ports for connecting peripherals, Ethernet for networking, audio input/output, and
various other interfaces such as GPIO, I2C, SPI, and UART.

58



Figure 6.1: The layout of ZedBoard by Avnet

6.2.2 Additional Tools and Equipment

In addition to the ZedBoard, additional tools and equipment that facilitate the experimental setup
are as below:

• Vivado Design Suite 2019.1 and 2022.2
Vivado is used as a developing environment provided by Xilinx, a leading provider of Field-
Programmable Gate Array (FPGA) and programmable logic solutions. Vivado provides a
set of tools and features for FPGA design, implementation, and verification. Every year,
Xilinx offers a new version of the Vivado design suite in order to improve and optimize its
functionality. However, this is not very helpful, since if a design is developed using an older
version, upgrading it to a newer version requires a careful examination of all changes and
updates done to Vivado, in order to avoid any problems in the design functionality. The
opu-system design was developed using version 2019.1 and that is why during testing this
version was mostly used. However in order to ensure that the flow also works in the newer
versions, the 2022.2 version was used as well.

• Vits SDK
Vitis Software Development Kit (SDK) as described in the background chapter, is a devel-
opment environment for designing and deploying software applications on Xilinx platforms.
During testing, Vitis SDK was used mostly for verifying the functionality of modules after
reconfiguration.

• Version Control tools (GitHub, Git)
GitHub and Git are two other tools that have been used during this master thesis, and during
testing specifically. Those tools help keep track of changes done in scripts and in the design
through the testing procedure.

• Petalinux
PetaLinux is a development environment and embedded Linux distribution provided by Xil-
inx specifically for designing and building custom Linux-based systems for Xilinx FPGAs
and SoCs. This tool is used to create the boot files for running the Linux operating system
on the board. Since Xilinx recommends using the same version as the Vivado Design Suite,
PetaLinux 2019.1 is also used during testing. However, this tool requires a detailed examin-
ation and understanding of its functionalities, since the creation and building of the project
will fail many times, without a clear explanation. So in order to have a smooth usage of
this tool, it is recommended to stick to a specified flow and to keep track of any warnings or
errors throughout the process.
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6.2.3 Considerations for Testing Dynamic Partial Reconfiguration

Testing dynamic partial reconfiguration with the compression algorithm necessitates specific con-
siderations to ensure accurate and reliable results. These considerations encompass various as-
pects of the testing process, including the configuration of the FPGA design, the validation of the
compression algorithm’s functionality, and the assessment of the reconfiguration infrastructure’s
performance. By addressing these factors, the effectiveness and robustness of the dynamic partial
reconfiguration system can be thoroughly evaluated. Two main factors addressed are:

• Partial Reconfiguration Support
To test dynamic partial reconfiguration with the CCSDS-123 compression algorithm, it is cru-
cial to ensure that the FPGA design tools, such as Vivado, support the concept of dynamic
reconfiguration. This includes the ability to generate the necessary partial bitstreams, handle
the reconfiguration process, and provide a seamless interface between the reconfigurable re-
gions and the rest of the design. It is essential to verify that the tools and infrastructure
support the specific requirements of dynamic partial reconfiguration, allowing for the re-
configuration of specific regions while maintaining the functionality of the remaining FPGA
fabric.

• Resource Utilisation
The CCSDS-123 compression algorithm and the dynamic partial reconfiguration infrastruc-
ture both require FPGA resources to operate effectively. It is important to analyze and
manage resource utilization during testing to ensure that the FPGA resources are appropri-
ately allocated and utilized. This involves examining the resource usage of the CCSDS-123
compression algorithm and determining the additional resources required for the dynamic
partial reconfiguration process. Careful resource planning and allocation are necessary to
avoid conflicts or shortages that could impact the overall functionality and performance of
the system. Thorough testing should include resource utilization analysis to ensure that the
resources are allocated efficiently and that the system operates within the desired constraints.

By addressing these considerations and utilizing the appropriate tools and equipment, a robust
experimental setup for testing dynamic partial reconfiguration with the CCSDS-123 compression
algorithm is established. This setup enables the validation of the effectiveness and performance of
the proposed approach and gathers meaningful results for analysis and evaluation.

6.3 Testing Methodology

The testing methodology employed in this thesis aimed to ensure a comprehensive evaluation
and verification of the dynamic partial reconfiguration functionality. The following steps were
incorporated into the testing process, each playing a crucial role in assessing the effectiveness
and reliability of the implemented approach. A well-organized directory structure was established
to manage the project files effectively. This structure facilitated the separation of source code,
checkpoint files, synthesis scripts, bitstream files, and other relevant files. By maintaining a clear
directory hierarchy, it was easier to track and manage the various components of the design, leading
to efficient testing and debugging.

By incorporating these specific steps into the testing process, this methodology aimed to com-
prehensively evaluate and verify the dynamic partial reconfiguration functionality. Each step
contributed to addressing different aspects of the design, from high-level synthesis to physical
implementation, enabling a thorough assessment of the system’s performance and effectiveness.

6.4 Directory Structure

To effectively manage the source files, netlists, bitstreams, and reports generated throughout the
partial reconfiguration flow, a well-organized directory structure was established based on the
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guidelines presented in [47]. The structure of the partial reconfigurable directory is outlined below:

• Bitstreams
This folder serves as the repository for the bitstreams generated during the static and partial
region configurations. It stores the compiled binary files that can be loaded onto the FPGA
for reconfiguration.

• Implement
The Implement folder acts as the target location for checkpoints and reports related to each
design configuration. It also contains a separate folder for each configuration, ensuring a
clear organization of results and facilitating easy access to specific configuration information
and analysis.

• Sources
This folder will contain the design source files that are used during the design. It consists of
the HDL files and the constraints files for each of the reconfigurable regions and for each of
the configurations.

– hdl
This subfolder contains the Hardware Description Language (HDL) files, such as Verilog
or VHDL, required for the reconfigurable regions. Each configuration has its correspond-
ing set of HDL files, ensuring a clean separation and management of design sources.

– xdc
The xdc subfolder contains the constraints files for each of the reconfigurable regions
and their respective configurations. These files define the design constraints, such as
pin assignments, clocking, and timing requirements, enabling accurate synthesis and
implementation of the design.

• Synth
The Synth folder stores the post-synthesis checkpoint files for all the modules within the
design. These checkpoint files capture the state of the design after the synthesis stage and
serve as an intermediate representation for subsequent implementation steps.

• TCL
The TCL folder encompasses lower-level TCL scripts that are invoked by the top-level TCL
scripts. These lower-level scripts handle specific tasks or subroutines required during the
design process, contributing to the overall automation and manageability of the flow.

• design complete.tcl
This file serves as the master script that defines the design sources, parameters, and overall
flow. It is responsible for orchestrating the execution of the entire design flow, from RTL to
bitstream generation, ensuring a streamlined and consistent process.

• run dfx.tcl
In contrast to design complete.tcl, run dfx.tcl focuses solely on running the synthesis stage
of the design flow. It encapsulates the necessary steps and settings to perform synthesis,
generating the synthesized netlists as an intermediate output.

6.5 Synthesis and Assembly

6.5.1 Synthesis

The synthesis process in this project involves generating netlists for reconfigurable modules using
the ”run dfx.tcl” script, which has been adapted from the guide provided in [47]. The script is
responsible for creating the necessary files and saving them in the Synth folder.

The ”run dfx.tcl” script, adapted from [47], is used to initiate the synthesis process. Executing
this script generates netlists for the reconfigurable modules, which are saved in the Synth folder.

61



In the project, a single reconfigurable partition named ”ccsds123 top” is defined, which consists of
three reconfigurable modules: cube 1, cube 2, and cube 3. Each module has specific dimensions:

• cube 1: X = 300, Y = 300, Z = 300

• cube 2: X = 250, Y = 250, Z = 250

• cube 3: X = 200, Y = 200, Z = 200

To ensure efficient synthesis for the embedded system, the ”advanced settings.tcl” script is used,
which is customized to exclude sources related to the static part. Consequently, the section re-
sponsible for synthesizing the static part sources in the ”run dfx.tcl” script is commented out.

To initiate the synthesis process, the Vivado TCL Shell is opened using the following commands:

cd /tools/Xilinx/Vivado/2022.2/bin/
./vivado -mode tcl

Once the Vivado TCL Shell is open, the TCL script ”run dfx.tcl” is run, to start the synthesis and
generate the output files in the Synth folder:

source run_dfx.tcl -notrace

The ”-notrace” option suppresses the echoing of TCL commands, providing a cleaner output. By
following these steps, the synthesis process will be initiated, and the netlists for the reconfigurable
modules will be generated and saved in the designated Synth folder.

6.5.2 Assemble the Design

The assembly phase involves mapping the synthesized design onto the target FPGA platform,
addressing the physical aspects of implementation such as logic element assignments and routing
resources within the FPGA. Through assembly, the design’s compatibility with the target device
is validated, ensuring successful integration and functionality.

After generating the netlists for different configurations of the CCSDS-123 module, the next step
is to connect these configurations, represented by separate netlists, with the black box in the
embedded system design. This process requires loading the synthesized netlist checkpoints for
each reconfigurable partition (RP) and defining the RP as partially reconfigured. Additionally,
after each step, the assembled design state for the initial configuration is saved as a checkpoint.

To locate the path of the black box within the design, you need to open the netlist of the static
part, which contains the black box component. By navigating through the netlist dialog box and
following the hierarchy, you can identify the path to the black box module. For example:

System_i/ccsds123_ip_0/U0/ji

Once the path to the black box is identified, the design needs to be assembled. Next, the first
synthesized checkpoint for the first reconfigurable module (RM) of the RP is loaded:

read_checkpoint -cell System_i/ccsds123_ip_0/U0/ji Synth/cube_1/
ccsds123_top_synth.dcp

After that, the RP is defined as partially reconfigurable using the below command:

set_property HD.RECONFIGURABLE 1 [get_cells System_i/ccsds123_ip_0/U0/ji]
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This checkpoint for the first assembled state is saved.

write_checkpoint ./Checkpoint/top_cube_1.dcp

After execution of these steps, the design is assembled by connecting the synthesized netlist check-
points for each reconfigurable module with the black box component. This process allows for
the creation of an integrated design that combines the static and reconfigurable parts, enabling
successful implementation and functionality on the target FPGA platform.

When the synthesis of the static part and the floorplanning for the RP exist, those steps can be
run all that once. For this purpose, a bash script, completeDPR.sh was created in order to run
those steps all at once.

6.6 Floorplanning

The floorplanning step involves defining the regions within the FPGA that will be used for partial
reconfiguration. In this project, floorplanning was performed to determine the areas where par-
tial reconfiguration would take place. Specifically, the Pblock (partial reconfiguration block) was
defined in the XOYO and X1Y0 clock regions, as illustrated in Figure 6.2.

Figure 6.2: Selected area for black box ccsds123, instantiated as ji

The specific Pblock region was defined by considering various factors, including the warnings and
errors given by the Design Rule Check (DRC) report. By analyzing the DRC report, any potential
issues or conflicts related to the floorplanning could be identified and resolved. Additionally, the
resource requirements of the reconfigurable modules (RMs) were taken into account to ensure
sufficient space and resources within the defined Pblock. The floorplanning can be saved in the
form of a constrain file (xdc) which defines the location and the specification of the floorplanning.
Later, this file can be read in the project, which helps create an automated flow of creating the
entire DPR project with all the necessary definitions.

6.7 Implementation of Configurations

In this step, the implementation of different configurations was performed through the place and
route process. The design was processed using the opt design, place design, and route design
commands. These commands optimize the design, perform placement of the components, and
establish the routing connections for each configuration. To ensure the reusability of the design
with new reconfigurable modules (RMs), it was necessary to isolate the static design by removing
the RM and locking all placement and routing. This was achieved using the following commands:
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update_design -cell System_i/ccsds123_ip_0/U0/ji -black_box
lock_design -level routing
write_checkpoint -force Checkpoint/static_route_design.dcp

The update design command removes the specified reconfigurable module (RM), in this case, ”Sys-
tem i/ccsds123 ip 0/U0/ji,” from the design, treating it as a black box. The lock design command
locks all the components in their current placements and routes to preserve the static part of the
design. Finally, the write checkpoint command saves the checkpoint for the static-only design,
named ”static route design.dcp,” which can be used for the other configurations.

6.8 Bitstream Generation

The final step in the testing methodology is the generation of the bitstream, which is used to
program the FPGA with the desired configuration. The bitstream contains all the necessary
information to configure the FPGA, including the partial reconfiguration regions and the associated
bitstreams for each module. By generating the bitstream, the correct implementation of dynamic
partial reconfiguration functionality on the FPGA can be verified. To generate the bitstream for
the first configuration, the following was executed:

write_bitstream -file Bitstreams/Config_cube_1.bit

This command generates the full bitstream for the first configuration, which is saved as ”Con-
fig cube 1.bit” in the Bitstreams folder. The same procedure is performed for the second config-
uration as well. The generated bitstream is in the bit format. However, if the bitstream needs to
be formatted as binary (BIN) and the interface is specified as SMAPx32, the following command
can be used:

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap -loadbit
"up 0x0 Bitstreams/Config_cube_1_pblock_ji_partial.bit" -file
Bitstreams/Config_cube_1_pblock_ji_partialu

This command formats the bitstream as binary (BIN) and specifies the interface as SMAPx32. It
also disables the byte swap of the bitstream using the ”-disablebitswap” option. The bitstream
associated with the partial reconfiguration of the ”ji” module within the ”pblock” region for the
first configuration is loaded and saved as ”Config cube 1 pblock ji partial.bin” in the Bitstreams
folder. However, if the FPGA Manager interface is used, there is no need to manually perform the
byte swap of the bitstream, as it is handled by the tool itself. In the board, the conversion of the
bitstream to the binary file is done by the bootgen command.

6.9 CubeDMA Verification

This section will describe the steps performed to verify the CubeDMA module. It is important to
note that the specifications done are related to the ZedBoard, that is the board used to test the
partial reconfiguration. If the tests are performed on a different board, the specifications are not
relevant, but they should be defined based on the board specification.

6.9.1 CubeDMA Kernel Driver

The CubeDMA kernel driver was designed in [32] and optimized in [46] to facilitate the management
of the two character devices: one for sending data, the send channel, and the other for receiving
data details. This section gives a high-level description of the CubeDMA kernel driver, and for a
more technical explanation, the above-mentioned thesis should be consulted.
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1. Initialization and Device Setup
Firstly, when the driver is initialized it sets the two instances of the device structures, one for
the send channel and another for the receive channel. Those two structures hold information
about each device including the major number, device class, and the associated character.
An important part of the initialization is the request of the memory regions for the send
and receive channels to ensure that they have the necessary memory resources. The driver
also initializes the character device structures and associates the relevant file operations with
the devices. These file operations include functions for opening, reading from, writing to,
and closing the devices, as well as memory mapping and I/O control operations. The driver
registers a unique major number for each device, that serves as an identifier for the driver
and its devices.

2. Memory Mapping and Cache Operations
After the device is initialized, the driver maps the physical memory regions associated with
the send and receive devices to the kernel space. In this case for the send channel, the
0x10000000 address is used, and for the receive channel the 0x18000000 address. This map-
ping allows the driver to directly access the device memory. Furthermore, to ensure data
consistency and synchronization between levels of the memory hierarchy the drivers perform
the cache operations. ache flushing operations ensure that any modifications made to the
send and receive data buffers are propagated through the cache hierarchy. Cache invalida-
tion operations make sure that subsequent data read from the receive buffer fetch the most
up-to-date data from the physical memory.

3. Device Access and File Operations
To enable user space applications to interact with the devices, the driver implements various
file operations. These operations include reading from and writing to the devices, memory
mapping the devices’ physical memory to user space, and performing I/O control operations.

4. Cleanup and Resource Release
During the cleanup process, the driver takes care of releasing all the resources that were
allocated during initialization. This involves several important tasks, such as removing the
devices themselves, unregistering the device class, freeing up the assigned major numbers,
removing the character devices, and unmapping the memory regions. By performing these
cleanup steps, the driver ensures that the system resources it utilized are properly released
and can be utilized by other processes or drivers. This helps maintain a healthy and efficient
system environment.

To integrate the custom kernel driver into the PetaLinux root file system, a module was created
using the following command:

petalinux-create -t modules --name cubedma

This command generates a module recipe in the < plnx− proj − root > /project− spec/meta−
user/recipes−modules/cubedma directory. The next step involved editing the cubedma.c file to
add the implementation of the custom CubeDMA kernel driver.

Once the boot files were generated and copied to the SD card for the target board, the module
was inserted into the running kernel by executing one of the following commands:

insmod /lib/modules/<kernel version>/extra/cubedma.ko or modprobe cubedma

The insmod command loads the cubedma.ko module from the specified location (/lib/modules/ <
kernelversion > /extra/) into the kernel, making it available for use. To remove the module from
the kernel, the following command can be used:

rmmod /lib/modules/<kernel version>/extra/cubedma.ko or modprobe -r cubedma
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The rmmod command unloads the cubedma.ko module from the kernel, freeing up system resources.
By creating the module, adding the custom driver code, and inserting or removing the module using
the appropriate commands, the custom kernel driver, in this case, the CubeDMA driver, can be
seamlessly integrated into the PetaLinux system. This allows for the utilization of the driver’s
functionality in the target board’s environment.

6.9.2 CubeDMA Reserved Area

Based on the insights gained from [46], it was observed that during the verification of the CubeDMA
module, a kernel panic occurred during the booting process of the board. This unexpected kernel
panic can be attributed to various factors such as memory conflicts or resource allocation issues. To
mitigate the occurrence of such a situation, it became imperative to establish a reserved memory
region within the RAM, ensuring that the specified range remains unutilized.

To accomplish this, two crucial steps were undertaken. Firstly, the amount of memory accessible
to the Linux kernel was reduced, thereby creating a designated space for the reserved memory. By
limiting the memory available to the kernel, the chances of any overlapping memory usage were
minimized. This reduction in accessible memory was achieved through appropriate configuration
adjustments.

The second step involved defining the reserved memory region in the device tree, thereby notifying
the system about the dedicated memory area. The size of this reserved memory region can be
determined based on the dimensions and requirements of the HSI cube, ensuring sufficient space
for its operations. By explicitly specifying the reserved memory region in the device tree, potential
conflicts or unintended usage of the designated memory range were avoided.

Below is given how the memory is reserved using the device tree.

Listing 6.1: Device Tree to reserve memory for CubeDMA and DimController modules

chosen{
bootargs = "earlycon root=/dev/mmcblk0p2 rootfstype=ext4 rw
rootwait clk_ignore_unused uio_pdrv_genirq.of_id=generic-uio";
stdout-path = "serial0:115200n8";

};
reserved-memory{

#address-cells = <1>;
#size-cells = <1>;
ranges;

reserved: buffer@0x10000000{
reg = <0x10000000 0x10000000>;
no-map;

};
reserved_dimcontroller: buffer@0x28000000{

reg = <0x28000000 0x00200000>;
no-map;

};
};

cubedma: cubedma@43C00000{
memory-region = <&reserved>;
status = "okay";

};
dimcontroller: dimcontroller@43C10000{

memory-region = <&reserved_dimcontroller>;
status = "okay";

};

To incorporate the provided section into the system configuration of your Petalinux project, it
is necessary to locate and modify the system-config.dtsi file. This file is typically found in the
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< petalinux−project−direcotry > /project−spec/meta−user/recipes−bsp/device−tree/files
directory. By including this section in the system-config.dtsi file, it is ensured that the reserved
memory region and the CubeDMA module configuration are incorporated into the device tree of
the Petalinux project. This allows the system to recognize and utilize the reserved memory region
and the CubeDMA module appropriately during system initialization and operation.

Another important part added to the device tree is the ”chosen” section which is used to avoid
kernel panic that can happen when the kernel is unable to mount the root filesystem specified during
boot. The provided device tree section defines the ”chosen” node, which sets global properties for
system configuration. The ”bootargs” property specifies boot arguments passed to the kernel
during boot, controlling initial kernel configuration. The ”stdout-path” property determines the
output path for the system standard output, in this case directing it to the serial console. These
properties configure boot behavior and console output settings for the system and it is used

6.9.3 Verifying Script

In order to ensure the accurate implementation of the partial reconfiguration using the CCSDS-123
compression algorithm, it is crucial to conduct a thorough verification of the CubeDMA module.
This verification process involves the utilization of a verifying script that performs data movement
operations within the memory, employing the DMA module to transfer data from one memory
location to another. Subsequently, the script compares the contents of the two memory regions
or locations, and if they are identical, it indicates a successful DMA transfer. Conversely, if the
content of the two regions differs, it signifies an unsuccessful DMA transfer.

The script employed for verifying the CubeDMA module is based on a similar verifying script
developed in previous works such as [32] and [46]. It can be accessed in the online repository of
opu-systems. This script not only sets the CubeDMA control signal but also defines the addresses
to be used, which should align with the addresses specified in the kernel driver mentioned in
the preceding section. However, it is important to note that the script was initially tested on
the ZedBoard platform. Consequently, the addresses were adjusted to accommodate the memory
specifications and DDR size of the ZedBoard.

6.10 CCSDS-123 Verification

After ensuring that the CubeDMA module is working as expected, the next phase is to verify the
CCSDS-123 module. The script defines the encoding configuration parameters and handles the
compression. This step is important in order to check if the dynamic partial reconfiguration is
performed as expected and has not affected the functionality of the design. The overall purpose of
the script is to implement the image compression and encoding functionality, and after that, the
dynamic partial reconfiguration is performed using different parameters.

Another approach to test the CCSDS-123 compression algorithm is by using the debugging cores
in Vivado. In order to test it, the ILA core was used, by asserting the debugging property of
the signals necessary to be debugged. Then a simple application was created in Vitis in order to
initialize the PS. In order to start a transaction between the DMA and CCSDS-123 cores, two
signals were added in the probe widow of ILA, respectively TVALID and TREADY. Then after
running the c application in Vitis, the waveform is filled with all the values. Besides this, the
internal signals were checked using the Set Up Debug tool in Vivado.

However, sometimes it was observed that the CubeDMA module sometimes was having unexpected
behavior, and the S2MM stream channel was not able to complete, affecting thus also the behavior
of the CCSDS-123 module. The reasons behind this can be the wrong data in the memory location
or the input signals to this core are not properly isolated. Even though the FPGA Manager has
the responsibility to decouple the RP from the static logic, this can also be ensured by using the
DFX decouple IP, which is a hardware resource that controls the isolation of the RP from the
hardware.
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6.11 Reconfiguration Using FPGA Manager

As mentioned in the Implementation chapter, the tool that is used to reconfigure the FPGA is
FPGA Manager. To use the FPGA Manager tool, the first step is to enable the tool in the
configuration of the Petalinux project. This can be done using the Petalinux configuration GUI or
using Petalinux commands. After that, the scripts with the content as explained in the background
chapter were created. For example in order to reconfigure the PL using the first configuration of
the RM the below script was used:

echo 1 > /sys/class/fpga_manager/fpga0/flags
mkdir -p /lib/firmware
cp /mnt/bitstreams/cube1partial.bit.bin /lib/firmware
echo cube1partial.bit.bin > /sys/class/fpga_manager/fpga0/firmware

For each bitstream file that was used to reconfigure the PL, a script was created. In order to see
if the FPGA was configured as expected the dmesg command that shows the kernel logs in Linux
can be used. After executing the script the below output is shown:
fpga_manager fpga0: writing cube1partial.bit.bin to Xilinx Zynq FPGA Manager

Even though FPGA Manager offers the readback of configuration registers for the reconfiguration
process, it should be noted that Zynq devices do not support this capability, but this is supported
in the UltraScale devices.

This chapter provided an overview of the testing methodology employed to evaluate dynamic partial
reconfiguration for the CCSDS-123 compression algorithm. The experimental setup, including the
hardware and software environment, was described. The importance of each testing step, such
as synthesis, assembly, floorplanning, bitstream generation, and software application development,
was emphasized. By following this methodology, the functionality, performance, and effectiveness
of the implemented system can be thoroughly evaluated.
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CHAPTER 7
Experimental Results

This section will include the experimental results taken from the tests conducted for the dynamic
partial reconfiguration and the dimensionality reduction module in the ZedBoard. More specifically,
the chapter will include the resource utilization, reconfiguration speed, and function density for the
dynamic partial reconfiguration approach used during this master thesis. Based on those results,
at the end of the chapter, an analysis of those results is conducted to identify the advantages and
disadvantages of the test performed.

7.1 Resource Utilization

In embedded systems, resource utilization is a critical aspect of hardware design. It is important
to strike a balance between minimizing resource usage and ensuring efficient functionality. The
resource utilization for the CSDS-123 module was evaluated through testing on the ZedBoard plat-
form using two different cube dimensions: 300x300x300 and 250x250x250. The resource utilization
results for these configurations are presented in Table 7.1 and Table 7.3.

Table 7.1 shows the resource utilization summary for Configuration 1. The ”Slice LUTs,” ”LUT
as Logic,” and ”LUT as Memory” columns indicate the utilization of Look-Up Tables (LUTs)
in different modes. The ”Slice Registers” column represents the utilization of registers in the
design. It can be observed that the utilization percentages for these resources range from 13.62%
to 35.39%. The ”F7 Muxes” and ”F8 Muxes” columns show the utilization of multiplexers, with
very low utilization percentages.

Similarly, Table 7.3 presents the resource utilization summary for Configuration 2. The utiliza-
tion percentages for LUTs, registers, and multiplexers in this configuration range from 12.33% to
32.52%. Comparing the two configurations, it can be observed that Configuration 2 utilizes fewer
resources in general, indicating better resource optimization.

In addition to the resource utilization summary, Tables 7.2 and 7.4 provide detailed information
about the utilization of memory and DSP resources for Configuration 1 and Configuration 2,
respectively. These tables show the utilization percentages for specific memory types (e.g., Block
RAM Tile, RAMB36/FIFO) and DSP resources.

This approach allows the designer to have more control of the resources used by the reconfiguration
partition. After each reconfiguration partition is synthesized, the reports regarding resource util-
ization are generated together with the necessary log files. So, based on those data and knowing
the available resources on the board, the designer can make he necessary decisions for the image
dimensions.
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Resource Type Used Available Utilization (%)
Slice LUTs 18,829 53,200 35.39
- LUTs as Logic 15,786 53,200 29.67
- LUTs as Memory 3,043 17,400 17.49
- LUTs as Distributed RAM 2,016 - -
- LUTs as Shift Register 1,027 - -
Slice Registers 14,493 106,400 13.62
- Registers as Flip Flop 14,493 106,400 13.62
- Registers as Latch 0 106,400 0.00
F7 Muxes 155 26,600 0.58
F8 Muxes 32 13,300 0.24

Table 7.1: Resource Utilization Summary for Configuration 1

3. Memory
Resource Type Used Available Utilization (%)
Block RAM Tile 49.5 140 35.36
RAMB36/FIFO* 44 140 31.43
RAMB18 11 280 3.93

4. DSP
Resource Type Used Available Utilization (%)
DSPs 28 220 12.73

Table 7.2: Resource Utilization Summary for Memory and DSP (Configuration 1)

7.2 Reconfiguration Speed

Besides resource utilization, another essential factor to consider for the DPR is the reconfiguration
speed. The reconfiguration speed specifies how long the bitstream interchange can happen in
FPGA, for different configurations. This section calculates the reconfiguration speed based on
the provided data and analyses the size of the bitstream and how long it takes to perform the
reconfiguration of FPGA.

The table 7.5 below shows the size of the different bitstreams used in the testing.

To calculate the reconfiguration speed, we need to measure the time it takes to perform the
reconfiguration for each scenario. Let’s denote the reconfiguration times as follows:

• T1: Time to reconfigure using the ”Static + Partial Configuration logic”, or the full bitstream.

• T2: Time to reconfigure using the partial bitstream.

Now, let’s calculate the reconfiguration speeds for each scenario:

Reconfiguration speed for the full reconfiguration scenario:

Speed1 =
Size of bitstream

T1
=

4MB bytes

180.61ms
= 22.14 MB/s

Reconfiguration speed for the partial scenario:

Speed2 =
Size of bitstream

T2
=

2.6MB bytes

82.3
= 31.59 MB/s

By performing the reconfiguration and measuring the respective times, the actual values can be
substituted into the above formulas to calculate the reconfiguration speeds for each scenario. Based
on the experiment it was seen that the time taken to perform full reconfiguration was T1 = 180.61
ms and the time taken to perform partial reconfiguration was T2 = 82.3 ms.
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Resource Type Used Available Utilization (%)
Slice LUTs 17,302 53,200 32.52
LUTs as Logic 15,157 53,200 28.49
LUTs as Memory 2,145 17,400 12.33
Slice Registers 14,431 106,400 13.56
Registers as Flip Flop 14,431 106,400 13.56
F7 Muxes 151 26,600 0.57
F8 Muxes 32 13,300 0.24

Table 7.3: Resource Utilization Summary for Configuration 2

3. Memory
Site Type Used Available Utilization (%)
Block RAM Tile 37.5 140 26.79
RAMB36/FIFO* 32 140 22.86
RAMB18 11 280 3.93

4. DSP
Site Type Used Available Utilization (%)
DSPs 28 220 12.73

Table 7.4: Resource Utilization Summary for Memory and DSP (Configuration 2)

Bitstream Size (MB) Size (B)
Static + Configuration 1 4 MB 4,045,564 bytes
Static + Configuration 2 4 MB 4,045,564 bytes
Static + Black Box 4 MB 4,045,564 bytes
Configuration 1 2.6 MB 2,560,260 bytes
Configuration 2 2.6 MB 2,560,260 bytes

Table 7.5: Bitstream sizes for different configurations

7.3 Bitstream Upload Time Analysis

In the context of partial reconfiguration in an HYPSO mission, it is important to examine the
differences between uploading the full bitstream and the partial bitstream. This section analyzes
the implications of using partial reconfiguration and compares the upload times for both scenarios
considering that the uplink speed of HYPSO-1 is limited to 150Kbps. To estimate the upload time
for the full bitstream, we can utilize the formula:

Upload Time (seconds) =
Bitstream Size (bits)

Uplink Speed (bits per second)

Considering an uplink speed of 150Kbps and a bitstream size of 4MB (4,000,000 bytes), the upload
time for the full bitstream is calculated as follows:

Upload Time (Full Bitstream) =
4, 000, 000× 8

150, 000
= 213.33 seconds

Therefore, with an uplink speed of 150Kbps, it would take approximately 213.33 seconds or around
3 minutes and 33 seconds to upload the entire 4MB full bitstream. In contrast, when utilizing
partial reconfiguration, the upload time can be significantly reduced by sending only the partial
bitstream that contains the updated configuration information. The size of the partial bitstream
is typically smaller than the full bitstream since it only includes the changes required for the
reconfiguration.
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Let’s assume the size of the partial bitstream is 2MB (2,000,000 bytes). Using the same uplink
speed of 150Kbps, the upload time for the partial bitstream can be calculated as follows:

Upload Time (Partial Bitstream) =
2, 000, 000× 8

150, 000
= 106.67 seconds

Therefore, with the same uplink speed, it would take approximately 106.67 seconds or around 1
minute and 47 seconds to upload the 2MB partial bitstream.

7.3.1 Comparison and Implications

The comparison between the full bitstream upload time and the partial bitstream upload time
clearly highlights the advantage of using partial reconfiguration. By sending only the partial
bitstream, the upload time can be reduced by approximately 50% compared to the full bitstream
upload. This reduction in upload time has significant implications for HYPSO operations since it
allows for faster reconfiguration and update of the FPGA configuration, enabling more agile and
flexible in-orbit operations. Furthermore, the reduced upload time minimizes the impact on limited
uplink resources, such as bandwidth and power, which are valuable and constrained in CubeSat
space missions. Another option to further optimize the reconfiguration process is to store different
bitstreams with various configurations in the SD card. By having pre-loaded bitstreams available,
during the reconfiguration it can swiftly switch between configurations as needed, avoiding the
need for bitstream uploads altogether. This approach eliminates the time and resources required
for bitstream uploads, providing instant reconfiguration capabilities.

7.4 Power Consumption

In the context of CubeSats, power consumption is an important consideration alongside recon-
figuration speed. Power consumption in reconfigurable computing systems comprises static and
dynamic power. Static power accounts for the leakage current in the transistors, while dynamic
power involves the switching of transistors. Theoretically, the power consumption should decrease
during partial reconfiguration since the partial bitstream is up to 50% smaller, resulting in a
shorter reconfiguration time. However, this reduction depends on additional factors such as the ef-
ficiency of the reconfiguration process and the power characteristics of the FPGA itself. Therefore,
it is crucial to conduct a thorough analysis and measure power consumption during the partial
reconfiguration process to accurately assess the potential power savings.

Firstly, theoretically, the reduction in power consumption can be achieved if the configuration
throughput is high enough to reduce the energy overhead of the partial reconfiguration. Based on
the above section, on configuration speed, it was seen that the reconfiguration time is a function of
bitstream size and the reconfiguration throughput. So the necessary throughput in order to reduce
the power consumption should be greater than the product of reconfiguration time and the size of
the bitstream, taking also into consideration the power consumption of the CCSDS-123 while this
module is not being used.

Secondly, since a main portion of the power consumption is static power, reducing this will have
an immediate effect on the power consumption. So, in the cases when the CCSDS-123 algorithm
is not being used, the FPGA can be configured using a blank bitstream, that removes the logic
from the reconfiguration partition. In order to support this, a simple theoretical power estimation
was done for three types of configurations respectively: configuration 1, configuration 2, and black
box configuration as shown in Graph 7.1. To get those data was used the Power Estimator tool,
provided by Vivado, that estimates the power estimation of the digital design.

As seen in the graph the total on-chip power is highly reduced when using the back box configura-
tion. Furthermore, between the two configurations, the one with smaller cube dimensions has less
power consumption.
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Figure 7.1: Total On-Chip Power Consumption for Different Configurations

7.5 Conclusion

In conclusion, this section presented the experimental results obtained from the tests conducted for
the dynamic partial reconfiguration (DPR) and dimensionality reduction module in the ZedBoard.
The resource utilization, reconfiguration speed, and function density were evaluated to assess the
effectiveness and efficiency of the DPR approach.

The resource utilization analysis revealed the utilization percentages for various resources such as
Slice LUTs, Slice Registers, F7 Muxes, and F8 Muxes. Two different configurations, Configuration
1 and Configuration 2, were compared, indicating that Configuration 2 utilized fewer resources,
suggesting better resource optimization. Detailed information about the utilization of memory and
DSP resources was also provided, highlighting the significance of these resources in the design.

Furthermore, the reconfiguration speed was measured for different scenarios, including full recon-
figuration using the full bitstream and partial reconfiguration using the partial bitstream. The
calculated reconfiguration speeds indicated that the partial reconfiguration scenario achieved a
higher speed, demonstrating the advantages of dynamic partial reconfiguration in terms of faster
reconfiguration times.

Overall, the experimental results presented in this chapter provide valuable insights into the per-
formance and efficiency of the dynamic partial reconfiguration and dimensionality reduction module
implemented on the ZedBoard. These results serve as a basis for further analysis and discussion in
the subsequent chapters, enabling a comprehensive evaluation of the advantages and disadvantages
of the tested approaches.
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CHAPTER 8
Conclusion

8.1 Summary

The main focus of this thesis was the exploration of the dynamic reconfiguration of FPGA, with a
specific emphasis on the applications in the context of hyperspectral remote sensing in HYPSO-1.
The objective was to implement an approach for the on-flight FPGA reconfiguration, particularly
utilizing the CCSDS-123 compression algorithm. The thesis also aimed to enhance the versatility
and applicability of the algorithm by modifying its implementation to support the compression of
different types of images. Additionally, the thesis aimed to develop a comprehensive dataflow model
for dynamic reconfiguration, focusing on partial reconfiguration using the CCSDS-123 algorithm.

The thesis began with an introduction to the motivation behind CubeSats and their increasing
utilization in space missions, as well as the significance of hyperspectral imaging and processing in
various domains. The HYPSO mission, which serves as the basis for this thesis, was introduced,
along with the concept of dynamic reconfiguration in FPGA-based systems. The thesis was built
upon a previous specialization project that focused on the onboard image processing pipeline and
on-flight FPGA reconfiguration for hyperspectral remote sensing CubeSats.

The main contributions of this thesis include an analysis of the CCSDS-123 compression algorithm
and its modification to support various image types. A custom AXI4-Lite component was im-
plemented to enable efficient modification of the hyperspectral imaging (HSI) cube’s Y-dimension
without full FPGA reconfiguration. Furthermore, a systematic partial reconfiguration flow for the
CCSDS-123 algorithm was developed, allowing module interchangeability without affecting other
modules. Testing and validation of the proposed approach demonstrated its functionality and ef-
fectiveness in the context of hyperspectral remote sensing CubeSats, particularly in the HYPSO
mission.

8.2 Conclusion

Through the exploration and implementation of dynamic partial reconfiguration using the CCSDS-
123 compression algorithm, this thesis has achieved to highlight the benefits of using partial recon-
figuration flow in the CubeSat missions, specifically for the HYPSO mission. First and foremost,
the modification of the CCSDS-123 compression algorithm has enhanced its versatility and ap-
plicability by enabling the compression of different types of images. This modification increases
the flexibility and adaptability of the algorithm for various use cases. The implementation of a
custom AXI4-Lite component for changing the Y-dimension of the hyperspectral imaging (HSI)
cube has been successfully achieved. This component allows for efficient and flexible modification
of the cube size dimension without the need for full reconfiguration of the FPGA. Secondly, the
developed partial reconfiguration flow for the CCSDS-123 compression algorithm provides a sys-
tematic methodology for performing dynamic on-flight reconfiguration of the FPGA. Furthermore,
it should be noted that the testing of this approach was done using a small HSI cube in order
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to fulfill the floorplanning requirements in Zynq devices. Another approach will be to reduce the
abstraction level, by introducing smaller RP inside the CCSDS-123 IP, allowing thus more control
of the reconfiguration process. This flow enables the interchange of different modules in the FPGA
without affecting the functionality of other modules. The testing and validation conducted in this
thesis have demonstrated the functionality and effectiveness of the proposed approach. The results
obtained from testing and validation indicate that dynamic partial reconfiguration is a viable solu-
tion for hyperspectral remote sensing CubeSats, offering advantages in terms of reconfiguration
speed, resource utilization, and adaptability.

8.3 Future Work

While this thesis has made significant progress in the field of dynamic partial reconfiguration
for space applications, there are several avenues for future work and further exploration. Some
potential directions for future research include:

• Optimization of the partial reconfiguration flow
Further optimization of the partial reconfiguration flow can be investigated to improve the
efficiency and performance of the FPGA reconfiguration process. This could involve exploring
different compression algorithms or techniques to reduce the size of the partial bitstream and
enhance the reconfiguration speed.

• Integration of additional functionalities
The developed framework for dynamic partial reconfiguration can be expanded to include
other functionalities or algorithms relevant to space applications. This could involve integ-
rating modules for image processing, feature extraction, or classification, enabling a more
comprehensive onboard processing pipeline while keeping resource utilization and power con-
sumption as low as possible.

• Developing a custom controller based on ICAP
Investigation into the development of a custom controller utilizing the ICAP controller can
be explored. This utilizes the benefits of the configuration from hardware and also offers
more flexibility and customization options.

• Exploration of other reconfigurable hardware technologies
While this thesis focused on FPGA-based systems, future work could explore the potential
of other reconfigurable hardware technologies, such as ASIC-based reconfigurable systems
or hybrid approaches. Comparisons and evaluations of different reconfigurable hardware
technologies would contribute to a more comprehensive understanding of their strengths and
limitations.

• Propose a solution for a secure dynamic reconfiguration Future work can focus on
adding security features to dynamic reconfiguration. Developing techniques and protocols to
ensure the integrity and confidentiality of partial bitstreams and secure the reconfiguration
process would be valuable in space applications and in HYPSO mission specifically.

• Optimized and efficient floorplanning techniques Investigating floorplanning tech-
niques specific to dynamic partial reconfiguration is an important step to meet specific timing
and area requirements. This could include investigating partitioning approaches in order to
support a more flexible floorplanning process for a number of RP.
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Tutorial

This tutorial will describe the steps to create a Pealinux project and also how to prepare the
SD-Card for booting. The purpose of this tutorial is also to document the errors that were faced
during the testing phase.

Petalinux

1. Installation

1. Installation Steps
The installer for PetaLinux can be downloaded from the Xilinx download page. In this case,
version 2022 was downloaded. PetaLinux installer can be installed in the desired directory
by running the below command:

./petalinux-v<petalinux-version>-final-installer.run

2. BSP (Board Support Packages) Installation
Xilinx together with PetaLinux provides BSP (Board Support Packages) in order to start
working and customize the project, in our case for Zedboard. The packages include config-
uration files, pre-built and tested hardware, and software images. H

After the PetaLinux tool and BSP installation, the next step is the creation and specification of
the hardware platform which is explained in the upcoming subsection.

2. Project Creation and Configuration

1. Project Customisation
The project can be created using the below command:

petalinux-create -t project -s <path-to-bsp>

However, during testing in the Zedboard, the boot files were not created properly. For this
reason, the method with the BSP was not used, but instead, the method using templates
was utilized as below:

petalinux-create --type project --template zynq --name zedboard

Then the next states are the same for both methods.
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2. Importing Hardware Configuration The example hardware configuration is imported into the
created project. The first step is to change into the directory of created PetaLinux project
and then import the hardware description by giving the path of the directory containing the
.xsa file as follows:

petalinux-config --get-hw-description <PATH-TO-XSA Directory>

After running this command, the tool detects the changes in the imported hardware design
and launches the system configuration menu. During this step, the FPGA Manager and the
device tree overlay were enabled by using the system configuration menu. It is important
to include bootgen package in the PetaLinux project. The packages in PetaLinux can be
installed using the below command that opens the menu to select a specific package to be
added to the PetaLinux project.

petalinux− config − c rootfs

Some other packages that are necessary to be added to the petalinux project in order
to add the GCC and other development tools. Those packages are packagegroup-core-
buildessential and packagegroup-core-buildessential-dev. Those packages can be enabled by
going to FileSystemPackages -¿ misc -¿ packagegroup-core-buildessentail

3. Project Build

3. Build PetaLinux System Image
The project is built by the following command:

petalinux− build

This command generates a DTB file, the first stage boot loader, U-Boot, Linux kernel, a root
file system image, and generates the boot images.

4. Generating Packaging Boot Image The following command generates the boot image in .bin
format:

petalinux-package --boot --fsbl images/linux/zynq_fsbl.elf
--fpga images/linux/system.bit --u-boot

The –u-boot adds all required images to boot up to U-Boot into BOOT.BIN and –format

5. Notes

Some things to be considered while testing the dynamic partial reconfiguration for the ccsds123
module are:

First, it is very important to check the version with which the project was created, since Xilinx
updates its products a lot throughout the years, it is important to check all the changes in its
products.

One issue found, while using Petalinux 2019.1 was that this version of Petalinux is based on a 2.x
version of Python, so it should also execute in the environment with the same Python version.
This error was seen while trying to configure the project, and it was not able to complete the step.
So in order to resolve this step, a tool named Anaconda was created with the correct version of
Python needed by Petalinux. The environment can be activated using the below command:

conda activate petalinux
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Another error faced during testing is related to the XPM library. When the script synthesis of
the reconfigurable modules was run in Vivado 2019.1, the error was that the XPM library was not
found. This error was removed by adding the below command in the synthesize.tcl script:

set_property XPM_LIBRARIES {XPM_CDC XPM_MEMORY} [current_project]

However, even though the library was found, the tool was not able to bind the i fifo to the hdl
files, and thus it was considered as black box.

Preparing SD-Card

After building the project and creating the images, the next step is to put those files on SD Card.
In order to prepare the SD Card the following steps were performed:

• Un-mount SD Card
First, the card should be un-mounted, and if it has been used before it is recommended to
delete the existing partitions.

• Create partition
Three partitions were created: BOOT, of type fat32, with the size 1GB, FAT (type fat32)
with the size 2GB, and roofs, of type ext4, with the remaining space.

• Set Flags
In the boot partition is required to set the boot and lba flags.

• Root File System Creation
Then the rootfs.tar.gz should be extracted in rootfs partition on SD Card. For example:

tar − xf rootfs.tar.gz − C /media/”name”/rootfs

After this step, the SD Card is ready to be used for booting the hardware device.

Debugging using Vivado Logic Analyzer

This section will describe how to use the ILA IP provided by Xilinx to debug a specific IP, which
in this case is the CubeDMA module. Integrated Logic Analyzer (ILA) is an IP core that can be
used to monitor the internal signals of a design. There are two ways to use the ILA IP, the manual
and automatic approaches. This section will describe the automatic approach.

• Mark the necessary interfaces or nets that need to be probed using the Debug option
This can be done by right-clicking on the interface and selecting Debug from the context
menu.

• Run connection Automation
After the interfaces that need to be debugged are defined, the next step is to run the con-
nection automation which will include in the block design the ILA IP.

• Open Hardware Manager
After synthesis, implementation, and bitstream generation the hardware manager is open in
order to see the ILA waveform. However since the PS is not configured, Vivado will not
recognize the ILA component. So in order to reconfigure the PS, a simple Vitis application
can be created for this purpose.
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Another approach can be to use the Setup As Debug in the Synthesis Desing Mode when in the
debug window the internal signal can be added also in order to see their values.

After setting the PS using the Vitis application, it is necessary to probe the necessary signals in
the ILA, in order to initiate a transaction. For example, the ready and valid signals can be added
in the probe section of the ILA.
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Appendix

A Partial Reconfiguration Synthesize TCL Script
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B Reconfiguration using the devcfg library
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C DPR Github Repository

The DPR project can be found in the opu-system repository of HYPSO mission: opu-system
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