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Abstract

In all the hazardous accidents at sea, ship collision is always the most

frequent one. It has been paid great attention, and International Regu-

lations for Preventing Collisions at Sea (COLREG) are being complied

with. With the development of technology, autonomous guidance and

navigation for ship collision avoidance have been developed and used

in practice for several years. However, there are still challenges when

introducing autonomous navigation with the compliance of COLREG

in consideration of human interpretation. To narrow this gap between

vague and complex human interpretation and precise navigation, a non-

linear system of fuzzy logic is introduced to represent the human decision

under different situations when ship encounters.

However, the common approach of designing fuzzy logic verification and

validation system of ship collision avoidance is still by utilizing domain

expertise and based on assumptions and conjecture, which is good for

interpretability and understandability, but is yet imprecise and lacks a

certificate. In recent years, proposals have been brought that AIS can

be included to have a thorough improvement of the fuzzy logic system,

by the means of helping decide significant parameters and derive the

shape of fuzzy membership functions, but have not been implemented

and tested. To improve the knowledge-based fuzzy logic model to a novel

data-driven fuzzy logic model, machine learning methods can be used,

such as unsupervised learning and neural networks. One more concern

is, it is also possible to not only improve the parameters and functions

but integrate the whole system, which includes fuzzifier, If-Then rules,

and defuzzier, into one fuzzy black box using fuzzy neural network.
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1 Introduction

1.1 Background

The maritime industry is a vital component of global trade and transportation. It

serves as a critical conduit for connecting people, goods, and services across different

countries and continents. The industry’s contribution to the global economy is sig-

nificant, and maritime transportation is announced as ”Backbone of Global Trade

and the Global Economy” by United Nations (2016) . However, despite its import-

ance, maritime industry faces several challenges, particularly in terms of safety and

reliability. These challenges can lead to casualties that cannot be overlooked, and in

all these hazards, ship collisions are the most frequent and dangerous. According to

Acejo et al. (2018), ship collisions accounted for 35.8 % of all 693 maritime accidents

that occurred between 2002 and 2016, making it the leading cause of such incidents.

This high number of collisions can be attributed to several factors, including poor

visibility, adverse weather conditions, and navigational errors. However, human er-

ror is considered the primary cause of ship collisions, accounting for between 75%

to 96% of all such accidents (Zhang et al., 2013). Human factors such as fatigue,

lack of training, and complacency can compromise the ability of crew members to

operate ships safely and effectively.

The alarming rate of ship collisions underscores the urgent need for comprehensive

safety measures to be put in place. To address this issue, numerous rules and regula-

tions have been developed, such as the Collision Regulations of 1960 and Convention

on the International Regulations for Preventing Collisions at sea (COLREG) of 1972

that replaced it. These regulations provide a framework for the safe operation of

vessels by establishing rules for navigation, vessel traffic services, and maritime com-

munication. Additionally, many maritime organizations have implemented Maritime

Safety Management System (MSMS) that promote a proactive approach to safety by

identifying hazards and implementing appropriate measures to mitigate risks (Thai

and Grewal, 2006).

However, although the aforementioned efforts has been made, there is still high

percentage of navigational accidents for conventional vessels which are caused by

human erroneous operations . As a consequence, autonomy is naturally introduced

to maritime industry, such as autonomous shipping, where autonomy refers to ”the

ability of a ship to independently control its own actions while transporting goods

from one port to another” (Munim, 2019). In 2018, International Maritime Organ-

ization (IMO) has taken the first action to address Maritime Autonomous Surface

Ships (MASS), together with the four different autonomy levels, from low to high

are (IMO, 2018):

• Ship with automated processes and decision support, to give a most common

instance, CAS.
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• Remotely controlled ship with seafarers on board.

• Remotely controlled ship without seafarers on board.

• Fully autonomous ship, meaning that he operating system of the ship can be

able to make decisions and determine actions.

In recent years, autonomous ships are being trialled for short voyages in some areas

under the interim guidelines from IMO (IMO, 2023), but the international shipping

are not allowed due to law regulations (Ziajka-Poznańska and Montewka, 2021).

However, several maritime companies already have a future vision with vessels ma-

jority on water are autonomous. For instance, in 2014, Norwegian ship classification

society DNV has proposed the autonomous container-ship concept named ReVolt

with autonomous steering technology, and a small container-ship scale model was

constructed and sails in Trondheim water area four years later (DNV, 2021), as

shown in Fig.1. This ReVolt project was motivated to ease the burden on land

transportation, reduce cost of operations and promote safety at sea (Munim, 2019).

The latest milestone of autonomous vehicle is the trails of autonomous ferry. In

October 2022, the world’s first trail of an urban autonomous passenger ferry Mil-

liAmpere 2, designed and operated by NTNU, as shown in fig 2. In December

the same year, Denmark’s first driverless harbour bus ’GreenHopper’ sailed suc-

cessfully (Katrine Damkjar, 2022). In April 2023, a Swedish autonomous ferry is

scheduled to finish its construction, which is an electric catamaran with a capacity

of 25 people (Nick Blenkey, 2023). In addition, it is interesting to know that the

AIS dataset analyzed in this thesis contains a vessel categorized as ”unspecified”,

named ”OCEAN SPACE DRONE1.” This robust autonomous surface vehicle was

developed by Kongsberg in collaboration with NTNU and Sintef and was first tested

in May 2017, as illustrated in fig.3. (Mats Krokstrand, 2017)

Figure 1: ReVolt (DNV, 2021)

The incorporation of autonomous systems in maritime vessels holds promising pro-

spects, encompassing enhancements in operational safety and efficiency both on

board and offshore through more accurate perception of the environment and assist

on decision-making. Another significant benefit lies in the potential reduction of

fuel consumption and the associated decrease in CO2 emissions. This objective is

2



Figure 2: Autonomous passenger ferry MilliAmpere 2 (Idun Haugan, 2022)

Figure 3: Ocean Space Drone 1 (Mats Krokstrand, 2017)

primarily pursued through the adoption of reduced-speed operations, which, how-

ever, increases the transport time for goods, especially for long international travels.

This long duration trip is not viable for traditional ships since crew members on-

board need to switch shifts regularly. With autonomous ships, there is a reduced

need for personnel, which enables the ship to sustain prolonged at sea. In spied of all

the advantages brought by autonomous ship, the commercialization of autonomous

on a global scale faces significant challenges, particularly related to the regulatory

framework (Vagale et al., 2021). Specifically, the convention on COLREG was de-

signed for human-controlled ships (Benjamin and Curcio, 2004), so its considerable

flexibility and vagueness render it inadequate for evaluating the collision avoidance

behavior of ASV. To illustrate this point, there are many instances of imprecise

and ambiguous terminology within COLREG reciprocal describing situations and

actions, such as ”nearly reciprocal courses” and ” in any doubt” in rule 14, ” so

far as possible” in rule 16, and ”as soon as it becomes apparent” in rule 17, which

are apparently appropriate for human-operated vessels but hard for a CAS to un-

derstand and be accessed. Consequently, there is a pressing need for more effective

evaluation methods to assess how ASVs perform collision avoidance maneuvers in

compliance with COLREG. As a result, V&V of collision avoidance has been fo-

cused and utilized for ASV since 2016 (Helle et al., 2016), aiming at ensuring ship’s

CAS is functioning properly and effectively preventing collisions by evaluating how

much the ship is maneuvering subjective to COLREG, and this is of significant
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importance. Since then, scoring systems for each rule COLREG was designed re-

spectively by (Woerner, 2016). Field tests and simulation-based tests have been

used by different methods (Kufoalor et al., 2020; Torben et al., 2022).

Simultaneously, the advent of robust fuzzy logic technology has presented a prom-

ising solution to act as a ”translator” of the COLREG, converting their objectivity

into an understandable computer language with subjectivity, represented by a de-

gree between 0 and 1, instead of relying solely on Boolean values. In the maritime

industry, researchers such as Kijima and Furukawa (2001) and Perera et al. (2011)

have employed fuzzy logic to design the controller and decision-making function in

ship CAS, They take into account fuzzy inputs as, respectively, collision risk, and

collision distance, collision region, relative speed ratio and relative collision angle.

This approach enhances the trustworthiness and reliability of the CAS for ASVs

concerning compliance with the COLREG. Furthermore, fuzzy logic has also found

utility in the V&V of CAS since the year of 2021 by Trodahl (2021) and Løvoll

(2022).

1.2 Motivation

This thesis is primarily motivated by the research conducted by Trodahl (2021)

and Løvoll (2022). Trodahl (2021) successfully implemented fuzzy logic in the eval-

uation system of CAS subject to COLREG. By modeling the linguistic variables

in COLREG as mathematical variables utilizing FMF, the output is an appropri-

ate degree of truth between 0 and 1, providing scores of compliance for every rule.

Trodahl (2021) cleverly designed this system as three subsystems, which decide the

role of Own-ship (OS) and Target Ship (TS) as either a Give-way (GW) vessel

or a Stand-on (SO) vessel, and evaluated the compliance of the GW and SO ves-

sels, respectively. Finally, an overall score for a whole ship encounter situation is

provided, as illustrated in Fig.4. His fuzzy V&V system has undergone successful

testing in scenario-based simulations in open-water area, including head-on, cross-

ing, and overtaking situations of two ships encountering. Based on Trodahl (2021)’s

promising results, Løvoll (2022) has extended the fuzzy V&V system by combining

the COLREG-compliance block with two blocks of evaluating perceived safety and

encounter safety, and finally gives a combined overall safety score, as shown in fig.

5. In addition, he employed Change Point Detection (CPD) technique which results

a higher accuracy of calculating the fuzzy inputs. The system of Trodahl (2021) is

designed for open-water area, so Løvoll (2022) improved this to an urban and semi-

restricted operational domain, and tested with multiple ships encountering scenarios

(one OS with three TSs).

Nonetheless, both of the evaluation systems designed by Trodahl (2021) and Løvoll

(2022) utilized knowledge-based fuzzy logic, which means that the FMFs were all

assumed to have trapezoidal shapes, and the values of the fuzzy variables were

4



Figure 4: Fuzzy V&V system of collision avoidance from Trodahl (2021)

based on domain knowledge and previous literature. For example, in the fuzzifier of

Løvoll (2022), relative bearing and contact angles are used for representing the term

’reciprocal or nearly reciprocal’ in COLREG rule 13, by the experience from literat-

ure. This simplification was made aiming at facilitating the verification process and

demonstrating the efficacy of the V&V process. However, (Løvoll, 2022) emphas-

ized the importance of quantifying parameters when evaluating CAS in adherence

to COLREG, particularly in the context of ASV, which has yet to be thoroughly

investigated. As the accuracy of the FMF is crucial for the effectiveness of fuzzy

logic-based evaluation systems, the tuning of the FMFs parameters or adapting dif-

ferent shapes of the FMFs are necessary for a better incorporation of COLREG

compliance.

In the recent years, a technique named data-driven fuzzy logic has emerged based

on knowledge-based fuzzy logic, and has been implemented in many other fields,

for example, for predicting the remaining useful life in dynamic failure scenarios

of a nuclear system (Zio and Di Maio, 2010) and for the prediction of rock burst

intensity (Adoko et al., 2013), all of which demonstrate the effective integration of

fuzzy logic and measurement data. In Adoko et al. (2013)’s work, fuzzy inference

system (FIS) and adaptive neuro-fuzzy inference systems (ANFIS) were both imple-

mented and the results were compared, showing that data-driven models outperform

knowledge-based models, indicating the superior performance of the former. While

in ship collision avoidance domain, proposals have emerged recently to enhance

the reliability and interpretability of fuzzy logic systems by integrating Automatic

Identification System (AIS) data. Inspired by this, two of the possible approaches

to improve the knowledge-based fuzzy logic model used by (Løvoll, 2022; Trodahl,

2021) to a data-driven fuzzy logic model can thus be:

• Improve the FMFs by enabling the identification of significant parameters and

obtaining more realistic parameter values. This can be conducted through

analyzing extensive AIS data. By leveraging large-scale AIS datasets, it be-

comes possible to extract valuable insights and refine the understanding of key
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Figure 5: Fuzzy V&V system of collision avoidance from Løvoll (2022)

parameters.

• To enhance the original shapes of the FMF which are all trapezoidal, other

types of shapes can be utilized.

• fuzzy neural netwok can be used to convert the current fuzzy system into a

’black box’.

traditional forms such as trapezoidal, triangular, or Gaussian, an approach

involves deriving the FMF based on the calculation of fuzzy degrees from

extensive AIS data is proposed. Specifically, the fuzzy degrees of diverse cases

are calculated, and neural network is employed to train these fuzzy degrees.

The resulting fuzzy degrees are used to generate the curve of the FMF through

regression analysis.
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1.3 Literature Review

1.3.1 Collision Avoidance Algorithm

Collision avoidance is interpreted as ”a process in which one ship departs from its

planned trajectory to avoid a potential undesired physical contact at a certain time

in the future” (Huang et al., 2020). According to his research, the whole process

of collision avoidance includes two sub-stages: conflict detection and conflict resol-

ution. For a manned ship, modern bridge system such as an Integrated Navigation

System (INS) is engaged mainly in conflict detection stage to support human to

make decision of how to control the ship to evasive collision, i.e. conflict resolu-

tion. For an unmanned ship, collision avoidance is executed by a Guidance and

Control System. There are many different categories of collision avoidance, such

as route planning, path planning and reactive collision avoidance. Route planning

takes place on large scale map; path planning is to look for a collision-free path with

static obstacles in some local area; reactive collision avoidance focuses on collision

avoidance of moving obstacles. In the research area of this thesis, the verification of

collision avoidance is reactive, i.e. collision avoidance with other ships with respect

to COLREG.

The present study focuses on the verification of collision avoidance for an Autonom-

ous Surface Vehicle (ASV), with potential implications for the verification of con-

ventional ships by leveraging their Automatic Identification System (AIS) data. To

achieve this goal, the collision avoidance system (CAS) model is extracted from prior

research, and various collision avoidance algorithms and their underlying principles

are succinctly introduced in this section.

In the work conducted by Huang et al. (2020), an assessment of different state-of-

the-art techniques is undertaken. Initially, the author enumerates several prominent

methods. Rule-based methods (Perera et al., 2012; Tam and Bucknall, 2013) are

highlighted as one such approach, involving the integration of specific rules COLREG

into the rule system. This integration enables the selection of rule-compliant actions

for the own ship (OS). Additionally, the artificial potential field method (Lyu and

Yin, 2019) is described, wherein the motion of the ship is guided by a resultant

virtual force. Furthermore, the velocity obstacle algorithm (Huang et al., 2018;

Wiig et al., 2017) is introduced, which identifies and gathers all potential collision

velocities to aid in navigation.

Another important category of collision avoidance techniques is based on optimiz-

ation approaches. For instance, Model Predictive Controller (MPC) (Chen et al.,

2018; Ferranti et al., 2018; Papadimitrakis et al., 2021) is a powerful and general

method designed to determine the optimal control input for a ship by solving an

optimization problem. MPC has been utilized not only in marine field, but also

other industries such as ground vehicles and aircrafts (Hagen et al., 2018). Typic-

ally, this problem formulation incorporates a cost function and various constraints.
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The cost function often consists of quadratic terms associated with control input and

vessel states, while the constraints are derived from vessel dynamics, environmental

forces and collision-free conditions. Other constraints such as risk, fuel efficiency,

operational constraints and destination time.etc. can also be included easily. Solv-

ing the optimization problem yields a set of optimal control inputs for a predicted

time horizon, with only the first control input being employed at the current time

step (Ferranti et al., 2018). This process is repeated at regular intervals to con-

tinuously update the control actions. Nevertheless, it is worth noting that MPC

methods entail the formulation of complex optimization problems, which can result

in substantial computational demands (Huang et al., 2020).

To evade this problem, Johansen et al. (2016) improved MPC method through

representing the solution-space by a limited number of predictive scenarios. The

obstacle motion is predicted based on simple holonomic model, while the control

scenario of OS are defined by course and speed selection with 3-Degrees of Freedom

(DOF) ship’s dynamics model, this new control method is named SBMPC, and

is illustrated as fig.6. By employing simulated predicted trajectories of OS and

TS, it becomes possible to evaluate and select the optimal maneuvering action that

adheres to COLREG. This evaluation and selection process can thus be accomplished

through a hazard cost function. The primary equations in his work are presented

below:

Figure 6: SBMPC CAS by Johansen et al. (2016)
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k∗(t0) = argmin
k

Hk(t0) (1)

Hk(t0) = max
i

max
t∈D(t0)

(
Ck
i (t)Rk

i (t) + κiµ
k
i (t)

)
+ f

(
P k, χk

ca

)
+ g

(
P k, χk

ca

)
(2)

where the total cost Hk(t0) in scenario k at time t0 can be calculate by various

factors: COLREG compliance term κiµ
k
i (t), cost of collision Ck

i (t), risk of colli-

sion Rk
i (t), penalty for path and speed deviation f(P k, χk

ca) and risk of grounding

g(P k, χk
ca). Compared to traditional MPC, this method is computationally simpler

for real-time operation, and it is also versatile by considering environmental forces

and uncertainty from sensors and predictions. In contrast to conventional MPC

approaches, this method exhibits computational simplicity, rendering it well-suited

for the implementation of real-time operations.

Kjerstad (2020) expanded upon this MPC method by incorporating information

regarding the intentions of other ships. He conducted a metrics-based safety eval-

uation and confirmed that the collision avoidance performance was enhanced. The

simulation model for OS, as proposed by Kjerstad (2020), was extracted and applied

in this thesis to generate data inputs for testing the V&V system. Figure 7 illus-

trates the various components of the OS’s simulation model. The guidance system

encompasses the Line of Sight (LOS) guidance law, reference models for both speed

and heading, as well as SBMPC, which incorporates information regarding the in-

tentions of other ships. This method selects the optimal propulsion command and

heading angle offset that minimize potential cost. These selected values are then

inputed to a feedback linearizing controller.

Figure 7: Guidance and control systems with SBMPC CAS (Kjerstad, 2020)

1.3.2 Verification and Validation of collision avoidance systems

The growing adoption of autonomy in ASVs and the integration of various CAS

methods in recent years have been met with enthusiasm. These developments have
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significantly improved the overall performance and functionality of ASVs. How-

ever, as software complexity increases, ensuring the trustworthiness and reliability

of safety-critical systems utilized in ASVs has become challenging, thereby hindering

public acceptance of ASV implementation in the maritime domain. Collision, being

the most frequent and severe hazard in the maritime field, has garnered significant

attention for resolution. Consequently, researchers have dedicated considerable ef-

fort to the V&V of ship collision avoidance with compliance of COLREG, especially

the recognizing the limitations of conventional V&V methods that prove inadequate

in accommodating the non-deterministic characteristics of autonomous systems cap-

able of continuous learning and adaptation (Helle et al., 2016). Specifically, V&V

procedure for autonomous systems encompasses comprehensive testing and eval-

uation to guarantee their correct operation and efficient collision prevention. This

generally entails conducting simulations or on-site tests on the systems across diverse

scenarios and subsequently comparing the obtained outcomes with predetermined

criteria to ascertain the adherence of the system to its intended design and function-

ality. Since 2016, various state-of-art approaches of V&V of ship collision avoidance

with adherence to COLREG have been proposed. A flow chart of the process of V&V

is illustrated as fig.8 (Bolbot et al., 2022; Kufoalor et al., 2020; Løvoll, 2022; Porres

et al., 2020; Stankiewicz and Mullins, 2019; Trodahl, 2021; Woener and Benjamin,

2015; Woerner, 2016; Woerner et al., 2019).

1.3.3 Fuzzy logic

Fuzzy logic, proposed by Zadeh (1988), is a mathematical framework that enables

the representation and manipulation of uncertainty and imprecision. It diverges

from traditional binary logic by accommodating approximate reasoning and allow-

ing for statements to possess degrees of truth or falsehood. In contrast to the

misconception surrounding its name, Zadeh (2008) argued and substantiated that

the key contribution of fuzzy logic lies in its capability to precisely handle impreci-

sion and approximate reasoning. The underlying principles of fuzzy logic and how

it is employed in the V&V system will be elucidated in Section 3.

The application domains of fuzzy logic are extensive and encompass mostly on con-

trol systems, as well as aerospace development, marine, artificial intelligence.etc. Its

effectiveness becomes evident in scenarios where determining an exact truth value

for a statement presents challenges, particularly when dealing with ambiguous or

imprecise data. For instance, Chen et al. (1993) proposed a fuzzy-PID control sys-

tem, and the stability analysis is performed. The Lyapunov’s method was employed

to establish a satisfactory criterion for ensuring stability. His work paved the way

of the designing of fuzzy-PID control system and can be applied to non-fuzzy con-

trol model as well. In the work of Tanaka et al. (2001), fuzzy logic is employed

in Lyapunov function as a ’Fuzzy Lyapunov function’ by fuzzily blending quadratic

functions. Through this, stability conditions for open-loop fuzzy systems are derived
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Figure 8: The process of V&V of collision avoidance of ASV

and discussed in his Takagi-Sugeno fuzzy model.

Fuzzy logic has been extensively utilized in the maritime domain since the early 21st

century, particularly in the design of CAS and the assessment of collision risk. For

instance, Kijima and Furukawa (2001) proposed a fault control method that integ-

rated fuzzy logic to regulate the rudder for achieving the desired course change. The

author employed TCPA and DCPA as fuzzy inputs for the fuzzy logic system. In

a similar vein, Lee et al. (2004) presented a modified virtual force field method for

ship track-keeping and collision avoidance. In his work, fuzzy rules were developed

to provide explanations for the application of COLREG. To give a specific example,

Perera et al. (2011) devised a collision avoidance decision-making system that can be

seamlessly integrated with an Autonomous Guidance and Navigation (AGN) system.

The author introduced a fuzzy inference system, visually presented in Fig.9, which

incorporates various inputs such as the speed, course, and position of both the own

vessel and the target vessel. This information is subsequently utilized to compute

and fuzzify estimated relative speed and course values, employing a set of four FMFs.
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The FMFs are specifically designed to capture essential aspects related to collision

distance, collision region, relative speed ratio, and relative collision angle. Drawing

upon the regulations stipulated by COLREG, a set of fuzzy rules is formulated in

the form of if-then statements. These rules provide valuable outputs in the form

of collision risk assessments and fuzzy decisions. To facilitate further analysis, the

decisions are then subjected to defuzzification, primarily focusing on course change

and speed change. Ultimately, the resulting defuzzified values serve as vital control

inputs for the AGN system of the own vessel. To validate the proposed system, com-

prehensive simulation-based tests were conducted under critical collision conditions

utilizing MATLAB. The outcomes of these tests successfully demonstrated that the

incorporation of the fuzzy logic-based decision-making system, acting as a control-

ler on the own vessel, effectively facilitated proper maneuvering in accordance with

COLREG.

Figure 9: Fuzzy inference system (Perera et al., 2011)

1.3.4 AIS data

As a foundational element within the international shipping industry, AIS serves

as an automated tracking system employed to discern and accurately determine

the identities and positions of maritime vessels through the exchange of messages.

Initially introduced during the 1990s, the primary objective of AIS is to reduce the

risk of vessel collisions and improve overall navigation safety (Yang et al., 2019). By

equipping ships with AIS technology, a wealth of information regarding the ship itself

and neighboring vessels that are within 20 nautical miles range to it can be obtained

via satellite or nearby coastal base stations. The mandatory implementation of AIS

was introduced in 2002 for maritime vessels exceeding 300 gross tonnages engaged
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in international voyages, as well as for cargoes surpassing 500 gross tonnages in any

body of water and all passenger vessels (Tu et al., 2017).

With the considerable benefits offered by AIS data and together the advancing ma-

turity of big data processing capabilities, AIS data has found extensive applications

within the maritime industry, both facilitating the optimization of seaway naviga-

tion management and the safe operation of maritime vessels. Since the beginning of

the 21st century, researchers have directed their attention towards collision risk as-

sessment of seaways based on AIS data. Firstly, assessing collision risk holds critical

importance in determining the safe routing of ships through waterways. By collect-

ing and analyzing historical AIS data specific to a particular waterway, the potential

for ship collisions can be derived, thereby facilitating maritime traffic management

and aiding in the design or improvement of these water areas. For instance, Mou

et al. (2010) conducted a statistical analysis of AIS data in the Traffic Separation

Scheme (TSS) off Rotterdam Port. To assess the risk in this water area, a dynamic

method based on the SAMSON model is developed utilizing AIS data. The data was

analyzed by calculating the DCPA along with other essential indices such as ship di-

mensions, speed, and course. A linear regression model was employed to investigate

the correlations between these variables. Similarly, Feng et al. (2022) developed a

quantitative collision risk assessment system using an information entropy method

combined with K-means clustering on historical AIS data from Ningbo-Zhoushan

Port. This system generated different groups of waterway legs with varying collision

risk levels, as depicted in figure 10, thereby benefiting waterway management and

assisting ships in prioritizing their maneuvers.

In ship’s domain, AIS data has been employed for various purposes such as anomaly

detection, trajectory prediction, collision assessment and path planning. Notably,

Deep Reinforcement Learning (DRL), known for its efficacy in addressing continu-

ous control problems, has been extensively utilized in research studies to construct

data-driven autonomous path planning models. In a study conducted by Guo et al.

(2020), the authors developed a path planning model using deep deterministic policy

gradient algorithm by incorporating ongoing environmental interactions and histor-

ical AIS data, enabling the agent to acquire the optimal action policy. In his work,

the fundamental principle is to maximize the reward obtained from a predefined

reward function, that is, to minimize the distance between OS to target point and

minimize the distance between OS to the range of obstacles (including static and

dynamic obstacles). The specific equation of the reward function is as below:

R =


2 dt−goal < Dg−min

−1 dt−obs < Do−min

dt′−goal − dt−goal − 0.1 other

(3)

where t and t′ are the time of this step and the last step. dt−goal and dt′−goal are

the distance between OS to target point at time t and t′, while dt−obs represents

the dangerous distance to the obstacle. Dg−min and Do−min are the preset threshold
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to target and minimum distance threshold to obstacle. With the model, simulated

scenarios were conducted utilizing a 2-dimensional map of 800 × 600 pixels ( one

pixel represents 10 meters in real environment) to replicate the range of ship motion.

An essential determinant in deciding whether the ship collides is the assessment of

whether it traverses the boundaries of this map. In the system’s design process,

AIS data played an indispensable role. This data was incorporated in the training

of the deep learning framework, leading to the optimization of the neural network’s

structure and parameters.

In the terms of anomaly detection utilizing AIS data, it aims to find typical vessel

motion patterns from AIS data and identify potential navigation safety hazards (Tu

et al., 2017). Tu et al. (2017) classified ship anomaly into three groups: position an-

omaly when a ship appears in a restricted or unexpected water area, speed anomaly

when the ship speed is significantly above or below regular speed, and time anomaly

for the unexpected ship visiting time. Rhodes et al. (2005) use the normalcy box

method to detect the speed anomaly by defining a set of region box based on the

distance to the port, like dock region, dock perimeter region, inner harbor region

and open water region. The learning system use the location and speed information

from historical AIS data to learn the acceptable speeds limits of each region box.

Rhodes et al. (2009) later improves system performance by replacing the rectangle

region with hyper-ellipsoid. The normalcy box has good online ability and efficiency

in updating the models with new data, but it cannot connect normal speed with

static AIS information like vessel types. Osekowska et al. (2013) introduces the

Potential Field Method (PFM) to maritime anomaly detection, where AIS data is

used and different local charge is assigned to vessel’s passed locations. The amount

of a local charge is influenced by the number of vessels and time period.

Clatk,lonl
(t) =

τ∑
t=0

d(t)clatk,lonl
(4)

where latk, logl are the geographical latitude and longitude coordinates at point

(k, l), d(t) is a non-increasing decay function over time and clatk,lonl
is the charge

carried by a vessel at the location. Then the potential field is build up with a two-

dimensional Gaussian smoothing equation with standard deviation. Areas with high

potential represents the normal behaviour, and the anomalous is considered when

the observed vessel behaviour is not conform to the normal pattern. The potential

field can be displayed on a map and is intuitive for users to detect both spatial and

temporal anomalous.

1.3.5 Data-driven fuzzy logic

In a fuzzy logic system, the design of fuzzy sets, fuzzy membership functions, and

fuzzy rules largely relies on experiential knowledge, leading to a significant degree

of subjectivity (Nilashi et al., 2017). Conversely, machine learning has emerged as
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Figure 10: AIS trajectory plot in legs of water areas with different ship collision risk
(Feng et al., 2022)

a powerful approach that leverages the analysis and learning of large-scale datasets,

providing an automated means to enhance decision-making effectiveness. One of the

most significant advantages derived from machine learning is the ability to achieve

high accuracy when dealing with complex natural systems that involve large input

data sets (Abiodun et al., 2018; Wang et al., 2017). While machine learning offers

high accuracy, it still lacks interpretability in terms of comprehending the underly-

ing rationale for decision-making processes. To provide an illustration, in a classical

set A utilized in machine learning, each element x can only correspond to one of

two scenarios: either x is in A or not in A. In contrast, a fuzzy set B can encom-

pass elements that are partially included. The characteristics of a classical set are

defined by its characteristic function µ(x), whereas a fuzzy set is characterized by

its membership function χ(x), given by

µ(x) : A→ [0, 1] (5a)

χ(x) : A→ {0, 1} (5b)

Since the 1980s, ANN has emerged as a prominent research topic, aiming to sim-

ulate the intricate processes of information transmission within the neurons of the

human brain (Dong and Hu, 1997). It consists of interconnected nodes (or neurons),

while Each node corresponds to an activation function responsible for producing spe-

cific outputs. The connections between nodes represent weights assigned to signal

propagation (Jenkins and Tanguay, 1995). To provide a comprehensive overview of

ANN and fuzzy logic, a simple of comparison has been made as Table 1.
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Fuzzy logic Neural network

knowledge acquisition expert knowledge big data

learning mechanisms induction weight adjustment

reasoning mechanisms heuristic search parallel Computing

error tolerance low high

reasoning speed low high

natural language flexibility high low

Table 1: Comparison between fuzzy logic and ANN

Given the previously mentioned benefits of fuzzy logic machine approaches, it is a

logical progression to consider their integration. In the year 1990, (Takagi, 1990)

first proposed a discussion and the future of the integration of these two methods. As

a milestone, Jang (1993) first introduced Adaptive-Network-based Fuzzy Inference

System (ANFIS). By leveraging both human knowledge in the form of fuzzy logic and

specified input-output data pairs, ANFIS demonstrates the capability to establish

mappings between inputs and outputs. This integration sets the stage for subsequent

rapid advancements in the field of data-driven fuzzy logic, facilitating its improved

performance and further development.

de Campos Souza (2020) made a review on data-driven duzzy logic using ANN. He

highlights that there are two distinct strategies in the academic literature, namely

FNN and Neural Fuzzy Network (NFN).

FNN

FNN is a specific type of neural network architecture that incorporates fuzzy neurons

(de Campos Souza, 2020). Introducing the learning capability of neural networks

into fuzzy systems provides a significant avenue for achieving self-organization and

self-learning in fuzzy systems. By representing the fuzzy system’s fuzzification, fuzzy

inference, and defuzzification computations through distributed neural networks, a

FNN becomes instrumental in facilitating the self-organization and self-learning pro-

cesses of fuzzy systems. In a FNN, the input layer and output layer nodes of the

neural network are employed to represent the input and output signals of the fuzzy

system, respectively, in a fuzzy manner. The hidden layer nodes of the neural net-

work are used to represent the composition of fuzzy rules. It is proved that leveraging

the parallel processing capabilities of neural networks greatly enhances the inference

capability of fuzzy systems. For instance, Lin et al. (2006) employed a independent

component analysis based FNN to design an adaptive alertness estimation program.

His FNN is illustrated as Figure 11, with 5 layers. Layer 1 receives the input and

transfers it to second layer. Layer 2 projects the input into the independent axes

by employing the independent component analysis, thus representing the the fuzzi-

fication process, in other words, the FMFs. Layer 3 aims at simulating the fuzzy

rules, where each node represents one fuzzy rule and its precondition. Layer 4 is a

consequent layer, with the black circles representing a fuzzy set of the output rule,
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and white circles transferring FMFs in layer 2 and rules in layer 3. Acting as a

defuzzifier, the last layer provides the out put as one variable y1.

Figure 11: FNN

NFN

NFNs set themselves apart from FNN through the incorporation of neural network

training for specific components, such as fuzzification or fuzzy rules. (de Cam-

pos Souza, 2020) The primary objective of NFNs is to effectively handle intricate

mathematical relationships thus improving this fuzzy component, such the chan-

ging the FMF parameters and shapes, and the amount and content of fuzzy rules.

Throughout the training process, algorithm provided by an intelligent model can be

employed. Except for ANN, other techniques of data analysing or machine learn-

ing have also been applied. For example, in order to generate the improved FMFs,

ANN is used by Takagi and Hayashi (1991), fuzzy c-means clustering is employed

by Adoko et al. (2013), histogram and decision tree by Yadav and Yadav (2015) and

genetic algorithms by Karr and Gentry (1993).

1.4 Objective and Scope

Based on the literature reviewed above, it can be concluded that:

• The rapid development of autonomous ships in recent years has presented

challenges in accurately applying the V&V process to the CAS of autonomous

vessels.

• COLREG was established with a primary focus on manned ships, resulting

in terminologies and concepts that may be vague and not readily applicable
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to autonomous ships. To bridge this gap and facilitate better adherence to

COLREGs by autonomous vessels, the integration of fuzzy logic as a powerful

tool is highly promising, which can effectively address the challenges posed by

the imprecise and uncertain nature of autonomous systems, enabling a more

nuanced and context-aware interpretation of COLREG for autonomous ships.

• Several researches have been carried out showing a promising usage of fuzzy lo-

gic on the V&Vof CAS, but all are based on expert knowledge and experience.

For better evaluating collision avoidance, AIS data has emerged as a promising

strategy. By incorporating AIS data, the utilization of data-driven fuzzy logic

can significantly enhance the interpretability, reliability, and accuracy of the

fuzzy logic system.

• Data-driven fuzzy logic is not a novel concept, and numerous methods utilizing

data-driven fuzzy logic have been developed and proved powerful.However,

their adoption and implementation in maritime applications remain relatively

limited.

Motivated by the above research gaps and the investigations carried out by Trodahl

(2021) and Løvoll (2022), the primary objective of this thesis is to further advance

the existing the V&V model with the utilization of large-scale AIS data. This

advancement is achieved by employing data-driven fuzzy logic. It involves enhancing

the parameters and shapes of fuzzy membership functions through the analysis of

AIS data using machine learning approaches such as classification and regression.

Based on this, a fuzzy C-Mean based Takagi–Sugeno fuzzy inference system can be

derived to replace the original knowledge-based fuzzy system. The final stage of

this research entails conducting simulation-based tests to evaluate the performance

of the enhanced data-driven fuzzy V&V system. .

1.5 Contribution

The contribution of this thesis is listed as following:

1. Data preprocessing for raw AIS vessel data: A comprehensive data prepro-

cessing methodology is developed to handle raw AIS vessel data and con-

tribute to the generation of high-quality datasets for subsequent analysis and

modeling.

2. Data analysis for head-on scenario in COLREG: The study focuses on ana-

lyzing head-on scenarios in COLREG, specifically addressing important para-

meter recognition and correlative analysis, providing valuable insights for col-

lision avoidance strategies.
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3. Investigating a data-driven approach combining fuzzy logic system and neural

network: A novel approach to optimize the Fuzzy Membership Functions

(FMFs) is developed, which could provide a more accurate representation of

the system dynamics, enhancing the overall performance of the fuzzy logic

system. The research contributes by demonstrating the potential of integrat-

ing fuzzy logic systems and neural networks to overcome the limitations of

traditional rule-based systems in COLREG analysis.

1.6 Outline

The rest of this thesis is organized as follows: Chapter 2 presents some relevant

basic theory for the following work. Chapter 3 introduces the methodology used

for verification, including data pre-processing, data analysis and data-driven fuzzy

model. In Chapter 4, the proposed method is tested by simulations of various

scenarios, and the results are displayed and compared with that of tradition fuzzy

logic V&V system, then the challenges and limitations are pointed out. In Chapter

5, the work of this thesis is concluded, and potential future work is listed.

19



2 Basic Theory

2.1 AIS

As a foundational element within the international shipping industry, AIS serves as

an automated tracking system employed to discern and accurately determine the

identities and positions of maritime vessels through the exchange of messages. By

equipping ships with AIS technology, a wealth of information regarding the ship itself

and neighboring vessels that are within 20 nautical miles range to it can be obtained

via satellite or nearby coastal base stations. The mandatory implementation of AIS

was introduced in 2002 for maritime vessels exceeding 300 gross tonnages engaged

in international voyages, as well as for cargoes surpassing 500 gross tonnages in any

body of water and all passenger vessels Tu et al. (2017). The AIS data encom-

passes various types of information, including static details such as the ship’s name,

Maritime Mobile Service Identity (MMSI)-number, ship type, and sometimes the

ship’s dimensions are available as well. In addition to static information, the high-

frequency kinetic messages transmitted through AIS data at intervals of typically

3 to 10 seconds (3 minutes when the ship is at anchor) enable dynamic monitoring

of vessel movements and maritime traffic analysis, including historical vessel tra-

jectories and port navigational channels. This dynamic information encompasses

elements such as time, positional coordinates, speed, heading, course, and rate of

course change Mou et al. (2010). Table 2 presents an illustrative instance of the AIS

data employed in this thesis, while Table 3 provides explanations for each indic-

ator within the dataset.AIS data can be categorized into two types: historical AIS

data and live AIS data, with historical AISS data generally accessible through nu-

merous maritime information databases. The information provided by AIS plays a

crucial role in enhancing situational awareness, making it an indispensable resource

for studying maritime traffic and addressing related critical situations, particularly

vessel-to-vessel collisions Rong et al. (2022). By utilizing the latitude and longit-

ude information present in AIS data, ship trajectories can be visualized, providing

a more intuitive understanding of vessel movements for subsequent analysis pur-

poses. Figure 12 is an example plot of the trajectories of cargo ships and tankers in

Trondheim water area on 15th January 2020.

mmsi unixtime latitude longitude heading sog nav cog rot

209318000 1577849253 63.7961 9.5702 207 8.5 0 208.10 -7.54

209318000 1577849264 63.7921 9.5698 206 8.5 0 204.69 -2.18

209318000 1577849295 63.7981 9.5688 205 8.5 0 201.10 0.71

Table 2: Example of AIS data
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Figure 12: ship trajectories plot in Trondheim water area on 15th January 2020

Indicator Description Unit/Accurancy

mmsi Maritime Mobile Service Identity number

unixtime timestamp in second 1 second

latitude longitudinal position 10 m

longitude latitudinal position 10 m

heading nose heading deg

sog speed over ground knot

nav navigation status

cog course over ground deg

rot rate of rotating deg/min

Table 3: Explanation of indicators in AIS data

2.2 COLREG

COLREGs represent the ”International Regulations for Preventing Collisions at

Sea” published by IMO, a comprehensive set of rules and regulations designed to

mitigate the occurrence of vessel collisions in maritime environments. These regula-

tions establish a standardized framework for vessels’ actions and responsibilities at

sea to ensure secure navigation and avoid collisions.

However, the COLREG rules are primarily written for human operators(Benjamin

and Curcio, 2004), which presents challenges when integrating them into the CAS of

ASV (Woerner, 2016). For example, COLREG rules are designed to address encoun-

ters between two vessels, whereas in practical scenarios, an ASV may simultaneously

assume both stand-on and give-way roles, potentially leading to conflicts where one

rule has to be disregarded. Therefore, conducting evaluations is important as they
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enable a deeper understanding of the performance of CAS by quantifying to what

extent the algorithms comply with the COLREG (Woerner, 2016). These evalu-

ations provide valuable insights into the system’s adherence to the COLREG rules,

allowing for improvements and adjustments to ensure better compliance and safety.

Among the rules defined in the COLREG, Rules 13, 14, and 15 primarily serve

to determine the specific type of encounter situation and prescribe the appropriate

actions to be taken in order to avoid collisions, illustrated as Figure 13. Conversely,

Rules 8, 16, and 17 provide guidance on the specific actions to be taken in various

circumstances. A more detailed explanation of these rules is provided below.

• Rule 8 - Action to avoid the collision. It outlines the necessary actions to

be taken by vessels to prevent potential collisions. According to this rule,

any alteration in course and/or speed should be substantial enough to be

perceptible to other vessels, ensuring a safe passing distance is maintained.

Course alteration is often considered as the most effective means to evade a

close-quarters situation.

• Rule 13 - Overtaking. An overtaking scenario occurs when one vessel ap-

proaches another from a direction that is more than 22.5 degrees behind the

overtaken vessel’s beam. In such circumstances, the vessel undertaking the

overtaking maneuver takes the responsibility of maneuvering and maintaining

a safe distance from the vessel being overtaken.

• Rule 14 - Head-on situation. Head-on situations occur when two vessels are

approaching each other on reciprocal or nearly reciprocal courses. In such

instances, both vessels are obligated to alter their course to starboard to ensure

that they pass each other on the port side.

• Rule 15 - Crossing situation. When two vessels are approaching each other

within a certain angle, the vessel that has the other vessel on its starboard

side bears the responsibility of giving way and avoiding crossing ahead of the

other vessel.

• Rule 16 - Action by GW vessel. Rule 16 of the COLREGs addresses the

actions to be taken by a GW vessel, which refers to a vessel that is required to

keep out of the way of another vessel. According to this rule, the GW vessel

must initiate timely and significant maneuvers to avoid a potential collision.

• Rule 17 - Action by SO vessel. According to this rule, when one of two vessels

is designated as the give-way (GW) vessel, the other vessel should assume the

stand-on status and maintain its current course and speed.
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Figure 13: An illustration of rule 13, 14, 15

Entry criteria

The determination of appropriate actions in accordance with the COLREG relies

on the critical contact angle, denoted as αcrit, which serves as a pivotal parameter.

This critical angle plays a vital role in assessing and evaluating the specific COLREG

situation encountered by a vessel. The incorporation of a critical contact angle offers

flexibility in the evaluation process, allowing designers to customize and optimize

this angle to closely align with the decision-making practices of human ship operat-

ors, as suggested by Woerner et al. (2019).

2.3 Collision avoidance notation

This section introduces basic notation used in ships’ collision avoidance, which con-

sists of general notation of one ship as well as notation of ship encounter situation.

One ship notation

The ship under investigation is referred to as own ship (OS), and its maneuverability

is the main focus of study and validation. To describe the pose of a ship, essential

parameters such as speed, position, and angle are required.

Ship position: The coordinates of OS is noted in a earth-fixed frame as [xOS, yOS]
T ∈

R2×1. The AIS data employed in this thesis includes position information in the form

of longitude and latitude coordinates. To align these coordinates with an earth-fixed

frame of reference, an arbitrary origin is defined and utilized for the transformation

process.

Ship direction: There are multiple methods available to describe the direction of a
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ship, among which the following three are commonly utilized: heading (yaw) ψ ,

course χ and sideslip (drift) λ. According to Xu (2022), it is worthy to distinguish

these different parameters, as they are used interchangeably and confusedly in much

of researched in marine field. Heading ψ is defined as the angle from NED x-axis to

the body x-axis, course χ is the angle from the NED x-axis to the velocity vector

U of the ship. Heading and course have a difference as there might exists a sideslip

(drift) λ, which is the angle from body x-axis to the velocity vector of the vessel

(Fossen, 2011). The sideslip can be caused by nonzero sway velocity as a consequence

of environmental forces. Note all the terms satisfy the positive rotation about z-

axis frame by the right-hand screw convention (Fossen, 2011). Simply, the relation

between these three ship direction terms is:

χ = ψ + λ (6)

The draft of one ship notation is illustrated in fig.14. Within the AIS dataset,

two parameters, namely heading or nose heading ψ, and course over ground χ, are

employed to represent the direction of a ship.

Figure 14: One ship notation

Ship encounter notation

In a ship encounter situation, the counterpart of OS is TS, which representing po-

tential obstacles that pose collision risks to the OS. To effectively depict and as-

sess such scenarios, various factors including relative position, relative angles, and

expert-based indices have been introduced by Benjamin (2017) and Løvoll (2022).

Taking a one-to-one ship encounter scenario as an example, the positions of the OS

and TS are denoted as [xOS, yOS] and [xTS, yTS], respectively, within an earth-fixed

frame of reference. The headings of the ships are denoted as ψOS and ψTS, while

UOS and UTS represent the respective speeds of the OS and TS. These positional,
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heading, and speed values can be obtained from the AIS data set. Utilizing the

aforementioned indices, the relative range rOS
TS between OS and TS, which represents

the linear distance between the two ships, can be calculated as follows:

rOS
TS = rTS

OS =
√

(xOS − xTS)2 + (yOS − yTS)2 (7)

In addition to the relative range, two significant indices, namely the relative bearing

(β̄) and the relative contact angle (ᾱ), have been introduced to depict the relative

angle between OS and TS, inspired by Nguyen et al. (2023). The following formulas

can be utilized to calculate the prerequisite parameters, as well as the relative bearing

and relative contact angle. It is important to note that all angle parameters are

measured in a positive clockwise direction.

The bearing (β), ranging from 0 to 360◦, represents the angle from the north of OS

to the linear distance towards TS. The relative bearing (β̄), also ranging from 0 to

360◦, denotes the angle from the heading of OS to the linear distance towards TS.

β = atan2(yOS − yTS, xOS − xTS) (8a)

β̄ =


360◦ − abs(β − ψOS) β − ψOS < 0◦

β − ψOS − 360◦ β − ψOS ≥ 360◦

β − ψOS else

(8b)

An alternative approach to describe the angles involves utilizing contact angle (α)

within the range of [0, 360◦). In contrast to bearing angle, contact angle initiates

from the north of TS and extends towards the linear distance to the OS. Obtain-

ing contact angle can be achieved by simply adding π to the bearing angle. The

calculation of relative contact angle (ᾱ) follows the same methodology as that of rel-

ative bearing. A visual representation of the notations for a ship encounter scenario

involving two ships is illustrated in fig.15.

α = β + π (9a)

ᾱ =


360◦ − abs(α− ψTS) α− ψTS < 0◦

α− ψTS − 360◦ α− ψTS ≥ 360◦

α− ψTS else

(9b)

Additional parameters crucial for the verification against COLREG are listed as

follows. For a specific ship denoted as ship i, course alteration |∆χi| and speed

alteration |∆Ui| are considered. The relative heading δψ ∈ [0, 360◦) and the relative

course ∆χ from the perspective of OS are calculated using the following equations:
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Figure 15: 2 ship encountering notation

∆ψ = |[ψOS − ψTS]180◦| (10a)

∆χ = mod(χOS − χTS, 360
◦) (10b)

Notice that until now, all the angular variables are not relevant about the ship speed,

except for course over ground.

The closest point of contact

Inspired by Benjamin (2017) and Nguyen et al. (2023), another important definition

used for assessing the collision risk is CPA. It is the point on the track of OS, where

the range between OS and TS is at its minimum. Since CPA is a closest point that

does not exist in reality, two expert-based variables are introduced to numerically

estimate the risk of collision, that are TCPA and DCPA. TCPA is the estimated

time for the ships to reach this point, assuming the speed and heading of the ships

are constant. This can be calculated through setting the first order derivative of

range as 0 and solving for time (Nguyen et al., 2023). DCPA is the range between

OS and TS when they are at the time of TCPA, estimated. The calculation of

the two variables related to CPA can be accomplished through various approaches

established in previous research. In this thesis, the methodology proposed by Ben-

jamin (2017) is employed, which relies on the positional information, headings, and

speeds of the ships.

DCPA =
√
k2TCPA+ k1TCPA+ k0 (11a)

TCPA =

{
0 ṙ ≥ 0

−k1
k2

otherwise
(11b)
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where k0, k1, and k2 are given by:

k0 = (yOS − yTS)
2 + (xOS − xTS)

2

k1 = 2 cos(ψOS)UOSyOS − 2 cos(ψOS)UOSyTS − 2 cos(ψTS)UTSyOS + 2cos(ψTS)UTSyTS

+ 2 sin(ψOS)UOSxOS − 2 sin(ψOS)UOSxTS − 2 sin(ψTS)UTSxOS + 2sin(ψTS)UTSxTS

k2 =
(
cos(ψOS)UOS − cos(ψTS)UTS)

2 + (sin(ψOS)UOS − sin(ψTS)UTS

)2
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3 Methodology

3.1 Fuzzy logic

A fuzzy logic system is a computational framework that aims to model and emulate

human reasoning under conditions of uncertainty and imprecision. It is based on

fuzzy set theory, which allows for the representation and manipulation of vague or

fuzzy concepts. In a fuzzy logic system, information is processed using fuzzy logic,

which extends traditional binary logic to incorporate degrees of truth and member-

ship. Theoretical foundations of fuzzy logic encompass four essential components:

fuzzy sets, fuzzifiers, fuzzy rules, and defuzzifiers. These elements collectively consti-

tute the fuzzy logic system, as depicted in Figure 16. The subsequent introduction

of the fuzzy system is based on (Klir and Yuan, 1995) and (Ross, 2009).

Figure 16: Fuzzy logic system

Fuzzy set

The fundamental notion of the fuzzy set was originally proposed by (Zadeh, 1965).

A fuzzy set, denoted as A, is characterized by the membership function µA(x), which

assigns a degree of membership to an element x in the range between 0 and 1. Unlike

traditional sets that categorize elements as either completely in or completely out,

the concept of fuzzy sets allows for a continuum of membership values, thereby

accommodating varying degrees of uncertainty. The representation of fuzzy set A is

expressed as follows:

A = {x, µA(x)|x ∈ X} (12)

where the symbol X represents the universe of discourse, encompassing all relevant

elements under consideration. The function µA(x) corresponds to the fuzzy mem-

bership function (FMF) associated with element x. The value assigned by µA(x)

reflects the degree of truth, ranging between 0 and 1, thereby quantifying the extent

to which x belongs to the fuzzy set A.
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Fuzzifier

Fuzzification is the process of converting a crisp input value x into a fuzzy input set

A by assigning them degrees of membership utilizing a set of FMFs. Since fuzzy

sets operate within a universe of discourse X consisting of a large or infinite number

of elements x, explicitly defining all pairs to establish a FMF becomes impractical.

As stated by Ali et al. (2015), the selection of the FMF shape is a critical aspect in

the architecture of a fuzzy logic system because it directly influences the degree of

truth for each x. Previous research employing fuzzy logic has commonly employed

triangular, trapezoidal, and Gaussian FMF shapes, as illustrated in Figure 17. Other

shapes, such as exponential, generalized bell, sigmoid, and 2-D FMFs, are also viable

alternatives (Samanta, 2018).

Ali conducted a comparative analysis of the three most commonly used FMF shapes

to determine their impact. For this purpose, a fuzzy logic controller was developed

for the Antenna Azimuth Position Control System. The study concluded that while

the triangular and trapezoidal FMFs exhibit similar response characteristics in terms

of rising time and overshoot, the triangular FMF outperforms in steady-state beha-

vior. Conversely, when dealing with systems involving probabilistic and statistical

data, the Gaussian FMF is generally preferred.

Figure 17: FMF shapes (Ali et al., 2015)

Regarding V&V of collision avoidance system, Trodahl (2021) and Løvoll (2022)

have chosen the commonly used trapezoidal FMF due to its simplicity and effect-

iveness in demonstrating the functioning of the V&V system. An example of a

trapezoidal FMF is depicted in Figure 18, where the variable x represents the rel-

ative bearing course of the own ship, ranging from 0 to 360 degrees with a 2-degree

interval. The fuzzy membership degree µ(x) ranges from 0 to 1. By setting the

x-coordinates of the four folding points on the blue line as a, b, c, and d, the

trapezoidal FMF can be constructed using the MATLAB language through the ex-

pression y = trapmf(x, [a, b, c, d]). This approach facilitates the interpretation of

Rule 14, part (a) in COLREGs, which states that ”When two power-driven vessels
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are meeting on reciprocal or nearly reciprocal courses so as to involve risk of colli-

sion, each shall alter her course to starboard.” Here, the term ”reciprocal or nearly

reciprocal courses” is represented by a range of relative courses from 168 degrees to

192 degrees, rather than precisely 180 degrees.

Figure 18: A example of trapezoidal FMF

Fuzzy rules

The inference process in fuzzy logic involves the utilization of fuzzy rules and intel-

ligent reasoning. Fuzzy rules typically take the form of if-then rules incorporating

AND or OR logic, which are designed for classification purposes. These rules are

often derived from the experiential summaries of manual control strategies. In the

context of this study, the rules are formulated by interpreting the COLREG. For

instance, considering the aforementioned Rule 14, part (a), a possible fuzzy rule can

be defined as follows: If OS and TS are on a head-on course, then the role of OS

is governed by the GW principle, and the role of TS is also governed by the GW

principle.

Defuzzifier

Defuzzification represents the final stage in a fuzzy logic system, involving the con-

version of a fuzzy set into a crisp set. This involves aggregating the fuzzy sets and

determining a single representative value that best represents the fuzzy output. This

process commonly entails computing the weighted average of the fuzzy set, with the

weights determined by the degree of membership assigned to each value within the

fuzzy set. Various methods can be employed for defuzzification, including the cen-

ter of gravity method, the mean of the maximum method, and the smallest of the

maximum method. In this thesis, the center of gravity method is utilized, which
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employs the following equation:

COG =

∑N
i=1Ai × xi∑N

i=1Ai

(13)

Here, N represents the number of subareas, Ai denotes the area of each subarea,

and xi signifies the x-coordinate of the centroid of the corresponding area.

3.2 Case construction

The AIS data utilized in this study were extracted from land-based stations and

specifically comprised the raw AIS data pertaining to the Trondheim, Oslo, and

Kristiansund water areas during the years 2019 and 2020. These raw AIS data

are characterized by a substantial volume, amounting to nearly 1 TB per water

area per year, and exhibit significant complexity and irregularity for each individual

vessel. Since the data required for following fuzzy membership training necessitates

the presence of two-ship encounter situations, it becomes essential to refine the raw

AIS data into distinct cases, facilitating subsequent data mining processes and the

development of the fuzzy V&V system of ship collision. This section is inspired by

the notable research conducted by Vassbotn (2022) on the refinement of AIS data

analysis.

Ship type filter

Given that the raw AIS data encompasses information from various ship types, the

initial stage of data refinement involves filtering the data to exclusively retain cargo

ships and tankers. While COLREG applies to all vessels in high seas and connected

waters, cargo ships and tankers typically exhibit superior compliance performance

and possess more representative characteristics that are more advantageous for sub-

sequent analysis than other ship types such as passenger ships or fishing vessels.

As the raw AIS data lacks ship type information, a Python script is developed to

autonomously retrieve ship types from an online database as numeric values. Spe-

cifically, the range of 70 to 79 is designated for cargo ships, while tankers are assigned

values ranging from 80 to 89. The trajectories of filtered ships on a specific day in

the Trondheim region are depicted in Figure 19 as an example.

Dock recognition

In this thesis, the presence of ships at dock areas and anchorage areas is deemed

undesirable due to their distance from potential collision situations. To identify and

exclude such ships from the AIS dataset, data instances characterized by zero speed

over ground and an ’at anchor’ navigation status were utilized, as depicted in Figure
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Figure 19: Trajectories of Cargo ships and tankers in Trondheim water area on 15th
January 2020

20. Additionally, ships in close proximity to a dock are also considered undesired.

To address this, the Density-based Spatial Clustering of Applications with Noise

(DBSCAN) clustering method was employed to classify the at-dock data points into

distinct classes, thereby representing different dock areas. The centroid points of

these classes were subsequently designated as dock locations. By this, 16 ports are

recognized, including 2 ports adjacent to a seaway. After this, the data points within

a 3km radius of the dock locations were removed from the dataset. While for docks

located adjacent to a seaway, a distance threshold of 0.5 km was employed. As a

result, 8.43% of the data was identified as being in close proximity to a dock and

subsequently eliminated.

Figure 20: Data points at dock in Trondheim
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Down sampling

Due to the varying transmission intervals of AIS data, typically ranging from ap-

proximately 3 to 10 seconds and dependent on ship speed and heading, the dataset

may contain excessively dense data points that require removal. Such dense points

commonly occur, for instance, when one returns to a straight path after a turn or

prepares to dock. To address this, a simple linear approximation method is em-

ployed to estimate the location of specific data points between the preceding and

subsequent data points. Data points with a difference between their actual location

and estimated location of less than 10 meters are eliminated from the dataset. This

process results in the removal of 26.48% of the data. To ensure the validity of the

remaining dataset for collision studies, a quick validation is performed by confirm-

ing that the sog for all ships is above 1 knot, indicating the dataset’s suitability for

further analysis.

Estimate point

Since the AIS data is not available at any given arbitrary time with accuracy in

second, it becomes necessary to estimate missing information for specific timestamps

in order to facilitate subsequent computations. Assume the data needed is at

timestamp t , the first step is to check t presents in the dataset or not. If not,

a binary search is carried out aiming at find the closest data of the given time.

Then the non-positional data (e.g., speed, SOG, COG) with the timestamp closest

to t is copied over. Regarding the positional data (latitude and longitude), a linear

approximation method assuming constant speed is employed using the preceding

and subsequent data points. The equations for linear approximation of longitude

and lagitude are as follows:

x̂(t) = x1 +
x2 − x1
t2 − t1

× (t− t1) (14a)

ŷ(t) = y1 +
y2 − y1
t2 − t1

× (t− t1) (14b)

where x̂(t), ŷ(t) are the estimated longitude and latitude at time t. t1, and t2 are

the previous and next timestamps.

Potential COLREG case searching

To identify ship encounter cases where two ships have the potential to maneuver in

accordance with COLREG, the steepest descent method is utilized. This method

determines if the DCPA is within a proximity that poses a potential collision risk.

The algorithm utilized in this thesis is adapted from the work of Vassbotn (2022), as

illustrated in Figure 21 and 22. The underlying principle involves iterating through
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the data within the overlapping time interval tstart to tstop of the two ships. During

each iteration, the distance at the start time and stop time dstart and dstop is cal-

culated while tstart to tstop are updated until the distance becomes smaller than a

predetermined threshold dmin near the DCPA, or until the time step for updating is

smaller than threshold ∆tmin. In this approach, the steepest descent (or gradient)

∆f is adjusted to three times the sum of the maximum speeds of ship 1 max(v1(t))

and ship 2 max(v2(t)) in order to result in a smaller time step for updating, thus

leading to an enhancement of the precision. Some equations used in this method

are:

∆f = (max(v1(t)) + max(v2(t)))× 3 (15a)

ddiff = min(dstart, dstop)− dmin (15b)

∆t =
ddiff
∆f

(15c)

Where ∆t is the forward or backward time step of tstart to tstop respectively. dmin is

set as 5km, and tmin is set as 60 seconds.

Figure 21: Deepest decent algorithm (Vassbotn, 2022)

This algorithm is also employed to search for the DCPA in ship encounter situations,

as well as the time when the ships first reach a distance of x km from each other,

and when the ships exceed a distance of y km after CPA. Consequently, pairs of

trajectory segments can be extracted as individual cases, where the segments span

from the point when the two ships are 15 km apart, pass through CPA, and continue

until the two ships are again 15 km apart.

It is important to clarify that the objective of this section is to identify potential

COLREG cases, rather than definitively confirming them as such. The specific

determination of a COLREG case requires the application of entry criteria, which
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Figure 22: Deepest decent illustration (Vassbotn, 2022)

also categorizes the case according to the rules outlined in COLREG.

Interpolation

Due to the variations in timestamp intervals between ships, the computation of

COLREG-related parameters at each timestamp, such as relative heading and crit-

ical relative heading at CPA, becomes challenging. To address this issue, a normal-

ization of the time intervals is required, whereby the intervals are adjusted to a fixed

value. In this study, a time interval of 30 seconds is chosen for normalization. By

employing the methodology described in the ”Estimate point” section, the remain-

ing information in the AIS data can be derived accordingly. Two examples case of

two ship encounter situation in Trondheim water area is shown as Figure 23 and

Figure 24.

3.2.1 Entry and classification criteria

Until now, the possible cases of two ship encounter situation that a maneuver might

exist in adherence to COLREG have been identified.However, it is imperative to

further select those cases that are strictly COLREGcase more than just ’possible’.

This selection process is performed through employing an entry and classification

criteria algorithm based on COLREG, inspired by Hagen (2022) and Trodahl (2021).

This algorithm is carried on by the calculated indicators derived from AIS data, as

explicated in table 3, whereby the initial indicators represent the ship characteristics

at the commencement of the encounter, specifically when the two vessels first come

within a range of 10 kilometers.
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Figure 23: An example of ship encountering situation of ship 229061000 and
304619000. DCPA is 1930.52 m

Indicator Description

rCPA range at CPA

β̄ relative bearing

β̄0 initial relative bearing

ᾱ relative contact angle

ᾱ0 initial relative contact angle

Table 4: Explanation of indicators used in entry criteria algorithm

The specific implementation of the entry and classification criteria is executed based

on the formulas outlined in Table 5. The initial step is to determine the desirability

of a given case, i.e. whether there is a potential risk of collision. This assessment is

conducted by comparing the range at CPA with a predetermined threshold denoted

as rmin. Once the presence of a collision risk is confirmed, the case is subsequently

classified into five distinct categories: head-on scenario, overtaking scenario where

OS is required to stand on, overtaking scenario where OS is required to give way,

crossing scenario where the OS is required to stand on, and crossing scenario where

OS is required to give way. The thresholds utilized in this classification process are

derived from COLREG and previous studies, as shown in Table 6 (Hagen, 2022)

and (Trodahl, 2021).
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Figure 24: An example of ship encountering situation of ship 244020000 and
258090000. DCPA is 500.55 m

criteria method

risk exists rCPA > rmin

head on |β̄180◦| < α14
crit and |ᾱ180◦

0 | < α14
crit

overtaking (stand-on) 112.5◦ < β̄0 < 247.5◦ and |ᾱ0
180◦| < α13

crit

overtaking (give-way) 112.5◦ < ᾱ0 < 247.5◦ and |β̄180◦0 | < α14
crit

crossing (stand-on) 0 < β̄0 < 112.5◦ and −112.5◦ < ᾱ180◦ < α15
crit

crossing (give-way) 0 < ᾱ0 < 112.5◦ and −112.5◦ < β̄180◦ < α15
crit

Table 5: Entry and classification criteria

Threshold Value

rmin 2960m

α13
crit 45◦

α14
crit 13◦

α15
crit 10◦

Table 6: Thresholds of entry and classification criteria

3.2.2 Maneuver detection

Once the cases have been selected and categorized, attention turns to the remaining

variables necessary for conducting a verification and validation process using fuzzy

logic. Specifically, the focus is on assessing the extent to which a ship is complying

with the COLREG when taking action. These variables pertain to the maneuvering

of ships and include factors such as the time of the first maneuvers performed by OS

and TS in order to avoid collision, as well as the distance between ships at the time
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of initial maneuvers and the magnitude of these maneuvers. To determine these

crucial variables, as researched, Løvoll (2022) used a sliding window method for

maneuver detection, which performs satisfactorily but is concluded to be improved

for the reason of complexity of tuning and lack of controllability. In this thesis, a

change point detection method is employed on each data point i utilizing derivatives,

drawing inspiration from the work of Hagen (2022). This method is applied to the

identified cases, commencing when the two ships enter into a COLREG scenario or

reach a range of 10 kilometers to each other, terminating once the ships have passed

the CPA.

In the context of change point detection, two distinct types of change points can be

identified: course change and speed change. Determining a speed change point is

relatively straightforward, as it can be achieved by analyzing the first derivative of

the ship’s speed at each data point. This approach is justified by the observation

that changes in ship speed often exhibit well-defined characteristics. Specifically, if

the absolute value of the first derivative at a given data point exceeds a predefined

threshold, that particular point is deemed to be a speed change point.

|U̇i| ≥ ϵU̇ (16)

Course change, as a crucial indicator of a maneuver, may not be as readily discernible

as a speed change. As a consequence, instead of relying solely on the first derivative,

the change point detection method is employed utilizing the first to third derivatives

that have been smoothed using a Gaussian filter. The equations are given by

|χ̇i| ≥ ϵχ̇ (17a)

|χ̈i| ≤ ϵχ̈ (17b)

| ...χ i| ≥ ϵ ...χ (17c)

signχ̈i| ≠ signχ̈i−1 (17d)

sign
...
χ i| ≠ signχ̇i−1 (17e)

where i is data point, ϵ is the preset threshold as explained in Table 7. The derivat-

ives are computed by central finite difference with a time step ∆t = 60s, as equation

18. The standard deviation of the Gaussian filter used in the analysis is set to 1.5.

After this, the start point and end point of maneuver can thus be recognized when

the third derivative is closest to zero. An example of the three derivatives of OS

(ship 257238000) are illustrated as Figure 25, and its corresponding time series of

course over ground is shown in Figure 26.
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Threshold Value Unit

ϵU̇ 0.8 m/s

ϵχ̇ 0.008 rad/s

ϵχ̈ 0.01 rad/s2

ϵχ̇ × 104 0.003 rad/s3

Table 7: Thresholds of change point detection

χ̇ =
−χi−1 + χi+1

2×∆t
(18a)

χ̈ =
−χi−1 + 2× χi + χi+1

(∆t)2
(18b)

...
χ =

−χi−2 + 2× χi−1 − 2× χi+1 + χi

2× (∆t)3
(18c)

Figure 25: Change point detection

Figure 26: Time series of course

Once the change points have been identified, the total speed change and course

change can be determined by subtracting the values at the stop point from the

values at the start point, given by
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∆U = Ustop − Ustart (19a)

∆χ = χstop − χstart (19b)

In the example case of Figure 25 and Figure 26, two change points are detected,

point 3 and 9. The corresponding end points of maneuver are point 7 and 15. In the

first maneuver interval (3,7), course change is 8.80◦, which is a turn to starboard.

In the second maneuver interval (7,15), course change is −7.30◦, which is a turn to

port.

Moreover, it is important to emphasize that only evasive maneuvers are considered in

the analysis (such as point 3 in the above example), while other maneuvers performed

for purposes, for instance, navigating narrow channels in restricted water areas are

excluded (such as point 7). This is performed by calculating the estimated range

at CPA r̂cpa using equation 11. A maneuver can be treated as an evasive maneuver

if it causes an increase in r̂cpa,i than r̂cpa,i−1. An example of is shown as Figure

27. The figure illustrates a head-on collision avoidance case of ship 257238000 and

257659000, where the red and yellow lines are the trajectories, blue lines are when

the ships are taking a evasive maneuver. As stated above, ship 257238000 turns

8.80◦ to starboard, with compliance to COLREG. While ship 257659000 makes a

port turn of 2.10◦. After the first maneuver, it is apparent that that ship 257238000

turns back to port. This maneuver is likely executed after ensuring that there is

no risk of collision and is intended to align the ship with the designated waypoints

within the navigational channel. The range at CPA is 409.31m, as the red star in

the figure.

3.3 Fuzzy V&V system and parameter selection

Since the objective of this thesis is to enhance the existing fuzzy V&V system

by incorporating data-driven fuzzy logic, it is thus essential to provide a concise

overview of the principle and methodology employed in the original fuzzy system

developed by (Trodahl, 2021).

The fuzzy V&V system, depicted in Figure 29, has been designed to assess the per-

formance of the CAS in adherence to the COLREG. By generating a scenario of

collision avoidance through simulation, parameters that indicate the performance

of OS and TS can be derived accordingly. These parameters, as a combination of

factors, are utilized as inputs to the system. Subsequently, the system processes

these parameter combinations and produces an overall compliance score as the sys-

tem’s output, which serves as an assessment of the CAS’s effectiveness in facilitating

collision avoidance.
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Figure 27: Example of maneuver detection

Comprising three interconnected subsystems, the V&V system fulfills evaluation of

distinct rules. Firstly, subsystem A initiates the analysis by examining the initial

stage of the input parameters and outputs the role of OS and TS, as SO vessel and

or GW. This is conducted by inputting relative contact angle ᾱ, relative bearing β̄

and relative course ∆χ and setting the according FMFs, and calculating estimated

DCPA which is used to reflect the risk of collision, also as a FMF. Through taking

into account rules 13, 14, and 15, the types of COLREG are determined at the

first step, followed by risk assessment. Finally roles of ships are determined by

the if-then rules. For instance, in terms of a crossing scenario, relative bearing

and relative contact angle are received by according FMFs to determine whether

TS is on starboard of OS or os is on starboard of TS. By providing DCPA to its

corresponding FMF as well, risk can be derived as Figure 31. Through applying

these similar steps for rule 13 and rule 14, a set of summarizing FMFs of parameter

ᾱ can be derived, giving one fuzzy degree to each category. As illustrated in Figure

30, there are four classes in total, namely rule 14 Not Ahead, rule 13 TS Overtaking

OS, and rule 15 TS on Starboard of OS and OS on Starboard of TS. By utilizing the

process of defuzzification, the scenario can be categorized into the class exhibiting

the highest degree of membership. At last, the result that SO is GW and TS is SO

can be concluded by the fuzzy rules with logical OR between roles and logical AND

of risk. as follows:

Following the assessment of vessel roles, Subsystem B evaluates the compliance

of the give-way vessel. Meanwhile, Subsystem C assesses the compliance of the

stand-on vessel. The overall compliance score is then obtained using a logical OR,

which selects the higher score between the GW compliance and the SO compliance,
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Figure 28: Another example of maneuver detection

Figure 29: Fuzzy V&V system Trodahl (2021)

effectively representing the overall compliance of the CAS. In subsystems B and C,

the goodness of compliance comes from rule 8 action to avoid collision, rule 16 action

by GW vessel and rule 17 action by SO vessel. The specific parameters employed

in this context are outlined in Table 8.

Parameter Explanation Vagueness of COLREG

∆U largest speed offset during maneuver ’readily apparent change’

∆χ largest course offset during maneuver ’readily apparent change’

TCPA TCPA at first maneuver ’early and substantial action’

#SCi maximum of speed and course deviations ’avoid small succession’

Table 8: Parameters used in subsystems B and C
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Figure 30: FMFs of relative bearing to determin role Trodahl (2021)

Figure 31: FMF of DCPA to determin risk Trodahl (2021)

To summarize, the parameter design for the FMFs in this fuzzy V&V system is

shown as Figure 32,where there are 7 parameter designs in total. Out of all the

parameters, only the ones for action for overtaking are accurate with no doubt as

directly using COLREG rule. The parameters of change of course and change of

speed are generated through AIS data analyzing, but are on a very early stage

and need more investigation (Nguyen et al., 2023). The remaining parameters are

derived from previous literature, including ’Reciprocal’ and ’Risk’ for determining

roles in subsystem A, and ’Starboard crossing’ and ’Earliness’ in subsystem B.

Figure 32: Designed parameters for FMFs Nguyen et al. (2023); Trodahl (2021)

Through this comprehensive V&V system, the performance of the CAS is thor-

oughly analyzed and assessed, providing valuable insights into its compliance with

COLREG and thus aiding in the design of a robust control system.
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3.4 FMFs Improvement

As FMFs are the most important part of a fuzzy system , but the parameters of

FMFs are largely based on COLREG, previous study and expert knowledge, the ex-

isting fuzzy system may be not accurate and reliable. Building upon the motivation,

the initial strategy for enhancing the fuzzy system thus becomes the improvement

of the shapes and parameters of FMFs using AIS data. This involves conducting a

thorough analysis of the system’s parameters and providing an improvement of them

through several techniques. Consequently, two ship encounter cases are extracted

and constructed utilizing the AIS dataset specified in Section 3.2.

As shown stated in the last section, there are 7 parameter designs in total. The

overtaking design, reciprocal design and risk design are quite clear so no need to

be improved. To ensure simplicity and validate the effectiveness of the proposed

methodologies, a comprehensive analysis is conducted on 452 encounter cases and

only the 266 head-on cases are analyzed.

3.4.1 Histogram

Inspired by Yadav and Yadav (2015)’s study, it has been demonstrated that utilizing

histogram-derived parameters can lead to a more accurate and realistic fuzzy system.

In his research, triangular FMFs were generated by selecting the point with the

highest value in the histogram as the center point of the triangle, and the closest

local minimum point as the positions of the remaining two vertices. However, this

approach is not suitable for determining ship collision avoidance parameters. As

the original FMFs were set as trapezoidal shapes as stated in the above section, the

values of the trapezoidal vertices can be generated using the percentages obtained

from a normal distribution.

The determination of course change in each scenario involves aggregating the course

alterations resulting from starboard maneuvers. Turns to port are not desired as

are not compliant maneuvers according to COLREG. Similarly, the speed change

is calculated by summing the speed alterations of all speed maneuvers. The his-

tograms and normal distributions depicting these changes are presented in Figure

33 and Figure 34, respectively. Based on the distribution of course changes, the

fuzzy set denoted as ’Insufficient’ is associated with parameters derived from 70%

and 80% of the distribution, corresponding to 10.70◦ and 12.72◦. Consequently, the

updated FMFs can be represented using the modified parameters [-12.72, -10.70,

10.70, 12.72], as opposed to the original parameters [-4, -2, 2, 4]. Analysis of the

histogram also indicates that a significant proportion of vessels did not exhibit no-

ticeable course alterations. Concerning speed changes, it is evident that 97% of

vessels did not experience substantial speed modifications, with 85% maintaining

constant speeds or making minimal changes below 0.3 m/s. This observation sug-

gests that course changes outweigh speed changes in terms of maneuver preference
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(a) Histogram and normal distribution curve of course change

(b) Cumulative distribution of course change

Figure 33: Course change

among vessels. Accordingly, the original FMF parameters for speed change, [-2, -1.5,

1.5, 2], remain unchanged.

In terms of ’earliness of collision avoidance maneuver’ in COLREG rule 16, TCPA

is used for the evaluation of compliance. TCPA is computed as the estimated time

to CPA when the ship first deviates from original course or speed, and the normal

distribution is given as Figure 35. From this, 2.5% = 361s and 4.5% = 401s are

utilized, and the improved FMF parameters are [361,401,1500,1500], compared to

the original [360,383,1000,1000] derived by expert knowledge.

Regarding the range at CPA, its histogram is presented in Figure ??. However,

this variable lacks relevance in the design of risk assessment, which instead relies on

DCPA to determine the presence of collision risk. Therefore, the original parameters

of the FMFs for the evaluating risk remain unchanged as [0, 0, 2960, 2960].

In addition, a joint distribution plot depicting the relationship between course
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Figure 34: Histogram and normal distribution curve of speed change

Figure 35: Histogram of TCPA

change and TCPA is generated to assess their correlation, as Figure 37. Observing

the plot, it can be concluded that no significant correlation is evident. Contrary

to expectations, no negative correlation is observed, implying that a ship would

not make minor course alterations when time is realy, or not make large course

alterations when time is late.

3.4.2 Shapes of FMFs

The previous subsection of the study focuses on updating the parameters of the

FMFs for speed change, course change, and TCPA. In order to further enhance the

fuzzy V&V system, the trapezoidal shape of the FMFs can be improved. Specific-

ally, the FMFs for course change, speed change, and TCPA are modified to adopt

the generalized bell, generalized bell, and sigmoidal shapes, respectively. The cor-

responding parameter values for the improved TCPA are [12.7, 11, 0], [2, 11, 0], and

[0.25, 381].

Compared to the trapezoidal TCPA, the use of generalized bell and sigmoidal TCPA

offers smoother transitions between different membership degrees, contrasting with

the abrupt transitions observed in trapezoidal TCPA. This smoothness can contrib-
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Figure 36: Histogram of range at CPA

Figure 37: Correlation between course change and TCPA

ute to better continuity and smoother inference processes. Although the difference

of the shapes is not large, it is reasonable to expect that with improved continuity

and smoothness, the membership degrees become more realistic, especially for ships

that near the abrupt values. Consequently, the improved fuzzy V&V system, partic-

ularly in the context of CAS for autonomous ships, can achieve higher accuracy, thus

aiding the decision-making process for design. The original and improved FMFs are

depicted in Figure 38 and 39.

3.5 FNN

In the preceding section, various techniques were employed to enhance the realism

and accuracy of the FMFs in evaluating collision avoidance scenarios. However,
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(a) Trapezoidal FMF of
course change

(b) Trapezoidal FMF of speed
change

(c) Trapezoidal FMF of
TCPA

Figure 38: Original FMFs

(a) Gbell FMF of course
change

(b) Gbell FMF of speed
change

(c) sigmoidal FMF of
TCPA

Figure 39: Improved FMFs

these modifications were limited to a single component of the overall system, thus it

is still cumbersome and time-consuming to employ the system in actual. To address

this limitation, it is feasible to transform this fuzzy V&V system into a ”black

box” implementation utilizing a FNN. This conversion would simplify the system

and streamline its usage, offering a more efficient and user-friendly approach thus

promoting the design process of CAS.

Specifically, the initial step involves preparing the training and test data. For the

266 head-on collision cases, the improved fuzzy V&V system is employed to evalu-

ate each case, resulting in a corresponding overall score. The seven parameters of

the cases, including relative bearing, relative contact angle, course change, speed

change, DCPA, and TCPA, are computed and treated as a set of inputs. The out-

put corresponds to the overall compliance score. The main structure of the FNN

utilized in this study follows the framework proposed by Lin et al. (2006) in the

literature review section of data-driven fuzzy logic. The FNN consists of five layers,

with seven input nodes and one output node. In the second layer, which represents

the fuzzification process, each node functions as a FMF utilizing the improved FMFs

generated in subsection 3.4.2.
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4 Conclusion

The predominant approach in formal V&V methods for CAS in autonomous ves-

sels involves the utilization of a fuzzy logic system, which heavily relies on expert

knowledge to determine the membership functions and fuzzy rules. However, the

subjectivity inherent in expert opinions may introduce accuracy issues. This thesis

seeks to address this challenge by focusing on training a fuzzy neural network model

using real Automatic Identification System (AIS) data to represent the formal fuzzy

system, thereby enhancing the system’s accuracy and performance.

The data-driven approach involves several time-consuming steps in the preprocessing

of raw AIS data. These steps encompass ship type extraction, dock recognition,

downsampling, searching for potential COLREG cases, point interpolation, and

maneuvering detection. These preprocessing tasks are crucial in preparing the data

for subsequent analysis.

Initially, the essential parameters in the head-on scenario are identified and selec-

ted from a dataset consisting of 266 real scenarios. Subsequently, histograms and

distribution plots are generated to gain insights into the characteristics of these

parameters. Furthermore, efforts are made to improve the shape of the FMF based

on the obtained data and insights from the histogram and distribution analysis.
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