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Abstract
Authentication plays an important role in maintaining social security. Modern authentication methods often relies on mass
data datasets to implement authentication by data-driven. However, an essential question still remains unclear at data level. To
what extent can the authentication movement be simplified?We theoretically explain the rationality of authentication through
armmovements bymathematical modeling and design the simplest scheme of the authentication movement. At the same time,
we collect a small-sample multi-category dataset that compresses the authentication movement as much as possible according
to the model function. On this basis, we propose a method which consists of five different cells. Each cell is matched with
a custom data preprocessing module according to the structure. Four cells are composed of neural network modules based
on residual blocks, and the last cell is composed of traditional machine learning algorithms. The experimental results show
that arm movements can also maintain high-accuracy authentication on small-sample multi-class datasets with very simple
authentication movement.

Keywords Sensor · Biometric authentication · Behavioral authentication · Neural network · Machine learning

Introduction

Human authentication has always been the focus of attention
in security field. Human authentication and identity camou-
flage are like two armies that confront each other and upgrade
their equipment, and constantly propose corresponding solu-
tions according to each other’s technological development.
The backwardness of the authentication often leads to seri-
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ous economicproblems, the lackof credibility, and evenmore
fatal consequences.

In recent years, the improvement of computer computing
power and the development of related methods have pro-
moted the diversity and accuracy of human authentication,
and gradually met various personal privacy protection needs
and organizational privacy protection needs.

The knowledge-based authentication method based on
“people knows information” [1] has beenwidely used for sev-
eral decades. Including common access card [2,3], username
and password, etc. The 4- or 6-digit pin codes authentication
method or the common access card authentication method
makes it difficult for the perpetrator to imitate others in a
short period of time without preparation. However, several
researches [4] have shown that knowledge-based authentica-
tion methods such as pin codes are difficult to remember and
vulnerable to attack by perpetrators [5,6]. Common access
cards are easily stolen or lost [3], and usernames and pass-
words are easily disclosed and embezzled. Hence, about
one-fifth [4] of people prefer to store all of the personal infor-
mation in one device, leading to a significantly increased risk
and harm of information leakage.

The biometric-based authentication method based on
“people is something” has greatly alleviated the above prob-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-00979-8&domain=pdf


4658 Complex & Intelligent Systems (2023) 9:4657–4671

lems. The biometric is usually divided into bio-physiological
and bio-behavioral due to the nature of the human feature.
Bio-physiological authentication achieves the purpose of rec-
ognizing a person’s identity by measuring the physical fea-
tures of the human body, including hand region features [7,8],
facial region features [9,10], ocular features [11,12], etc..
Bio-physiological authentication does not require people to
remember anything, but requires cooperation to provide a
sufficient amount of features for authentication. Therefore,
bio-physiological authentication is usually used in situations
where the person voluntarily provides personal information
or is compelled to provide personal information under super-
vision, such as police stations and banks. The bio-behavioral
authentication is well adapted to the authentication needs
under unsupervised conditions. Bio-behavioral authentica-
tion identifies people by detecting and learning the biological
behaviors such as the personal habitual movements. Includ-
ing voice recognition [13,14], gait recognition [15,16],
keystroke dynamics [17] and signature [18,19]. Because each
person’s body characteristics (such as: height, weight, arm
length, muscle development, throat development, etc.) and
behavioral habits (such as: keystroke speed and strength,
step size, etc.) are different, bio-behavioral authentication
can identify peoplewith acceptable accuracy.Comparedwith
knowledge-based authentication, bio-behavioral authentica-
tion does not have the disadvantages of being easily lost or
stolen. Compared to bio-physiological authentication, bio-
behavioral authentication requires less hardware and can
be operated by low-cost sensors. At the same time, bio-
behavioral authentication has higher concealment [20,21]
and is not easy to be discovered.

However, nomatter in the collection of dataset or the appli-
cation of the methods, there is a fact that cannot be ignored,
that is, in most real life scenarios, the person being measured
will not provide such ample authentication information. For
the most common example, stealing is often a quick and pre-
cise movement completed within 1–5s. The thief’s face is
not completely exposed to the camera, and there is no inter-
action with the phone screen or buttons. In addition, such as
the movement of the intruder opening the door, etc., people
in these scenarios often do not provide sufficient data and
rich variety of features for authentication.

Therefore, this leads to two important questions and chal-
lenges:

1. Can a simple movement that is completed in a short time
and only generates a small amount of data be used for
authentication?

2. Can simple and commonly used sensors capture these
very short-term movements?

In response to the above challenges, we compress the time
and complexity of movements to an unprecedented degree.
At the same time, we design a variety of method structures
to process data, and make a detailed analysis.

In this work, we first model the authentication movement
based on human joints and bones from a mathematical point
of view and construct the model function. According to the
relevant parameters of the function, the authentication move-
ment is analyzed in detail and the sensor selection method is
designed.

Then, because the existing public dataset could not sup-
port our work, we collected a 110-persons movement dataset
for the designed authentication movement. The participants
have no prior knowledge, that is, the participants who are
collected data do not know the purpose of the data before
the collection, and only inform them of data use after col-
lection and obtain data use authorization. In this way, it is
ensured that the collected data conform to the daily habits of
the collected participants.

Finally, since there has never been a previous authentica-
tion method based on data of the same order of magnitude as
our movement data, we designed different deep neural net-
work structures based on a variety of common backbones and
combined with a variety of machine learning classification
methods for the results comparison and analysis.

We note that a shorter conference version [22] of this
paper appeared in ACM Turing Celebration Conference
(2020). Our previous work did not analyze the authentication
movement mathematically, and did not clarify the connec-
tion between movement, mathematical model and sensor.
Compared with previous work, we greatly compress the
movement complexity, reduce the number of sensors, add
four additional cells and add a cell evaluation module.

The remainder of the paper is organized as follows: In
the next section, we describe related work in bio-behavioral
authentication. In the subsequent section, we analyze the
mathematicalmodel anddesign the authenticationmovement
followed bywhichwe introduce our proposedmethod named
RaiseAuth. In the penultimate section, we analyze the model
performance and the resistance to attack. We conclude this
work in the final section.

Related work

In this section, we summarize the efforts of recent research
community in bio-behavioral authentication and correspond-
ing measurement studies.

A number of bio-behavioral authentication methods have
been reported during the last decade [1,23]. Hong [24] col-
lected the sensor data generated by the human hand when
writing through a special watch containing an acceleration
sensor, and used this as the basis for authentication. Each par-

123



Complex & Intelligent Systems (2023) 9:4657–4671 4659

ticipant is required to write 20 words and approximately 120
strokes, which takes approximately threeminutes to generate
one training sample. Langyue [25] proposed a novel fea-
ture extractorwhich achieved 97%accuracy in authentication
based on people’s gait behavior, where each person needed
to provide data generated by walking for more than 33min
for training. Timothy [26] authenticated people through the
coherent movements of people hitting the keyboard contin-
uously, and designed the method based on a training dataset
of over 5000 keyboard strokes per person. The above meth-
ods can often achieve an accuracy of more than 95%, and
have good application prospects in some specific situations.
However, it is obvious that the amount of dataset used by
these methods is huge, and it takes a long cost to collect data
from one person to train the model and improve the accuracy,
which makes these methods unsuitable for short-term simple
movement data.

Reducing the complexity and data scale of the authentica-
tionmovement is important because each order of magnitude
decrease in authentication movement ushers in a new set
of unforeseen challenges. Several researches [27–30] are
also trying to use simple movements to achieve authenti-
cation. In [31], the author used the combined movement
when the user answers the phone, that is, the user unlocked
the mobile phone and took the mobile phone to the ear
as an authentication movement. A 5% Equal Error Rate
(EER) was achieved on a self-built dataset of 48 people
based on a training set where each person performed ten
movements within 6000 ms. Jakub [32] collected the phone-
holding behavior data of participants within 40min, and
proposed a method based on Multilayer Perceptron (MLP)
and Convolutional Neural Network (CNN) machine learn-
ing models. The trained model is able to achieve 8% EER
on 20s level test samples. Although the above methods and
systems have made certain contributions in compressing the
amount of data, there is still room for improvement due to the
following two reasons. First, the above methods are all data-
driven, and do not analyze and explain the authentication
movement itself, which makes the correlation between the
authenticationmovement and authenticationmethod unclear.
Therefore, our method fills in this gap by analyzing in detail
the mathematical correlation between movements, sensors,
and authentication. Secondly, even if the above methods
simplify the authentication movement, the amount of data
required for single-sample training is stillmore than 2.5 times
ours.

In contrast, RaiseAuth uses a simpler authentication
movement, establishes a mathematical model to explain the
rationality of the movement, and comprehensively analyzes
the model structure and authentication results.

Movement and sensors

In this section, we build a mathematical model of human
joints and bones. By analyzing the relevant parameters of the
model functions, the authentication movement is designed
and the reasons for the selection are explained. Also the sen-
sor selection method is designed according to the analysis
results.

Mathematical analysis

Most of the recognizable behaviors of the human body
depend on the operation of the limbs. Compared with the
trunk, the limbs have fewer bones but have higher flexibility.
The muscles can ensure the normal operation of the limbs,
and bones and joints provide a natural entry point for the
establishment of mathematical models.

We chose the right arm among the limbs as the model
building template (Fig. 1), where point O is the shoulder
joint, point M is the elbow and point N means the wrist. We
take the point O as the coordinate origin, and put the bone and
joint models into the space coordinate system. At the same
time,we assume that the initial state of the arm isO−A1−B1,
the end state of the arm movement is O − A2 − B2, and the
arm state O −M − N is intermediate state of the arm at time
t(t ∈ [0, T ]) during the movement. Note that the movement
trajectory of the arm’s change from O − A1 − B1 state to
O − A2 − B2 state is not necessarily a straight line change,
but more likely an irregular trajectory change.

Set point A1(a, 0, 0),point B1(a+b, 0, 0), at time t , elbow
is located at point M(x1, y1, z1), the angle of rotation of the
upper arm O − M is:

Fig. 1 Human arm joints and bones mathematical model
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−→
θ1 = −→

θ1 (t) = (θ1x (t), θ1y(t), θ1z(t)), (1)

the angular velocity is:

−→ω1 = −→ω1(t) = (ω1x (t), ω1y(t), ω1z(t)). (2)

For the forearm M − N , set point N (x2, y2, z2), relative to
the upper arm the angle of rotation is:

−→
θ2 = −→

θ2 (t) = (θ2x (t), θ2y(t), θ2z(t)), (3)

the angular velocity is:

−→ω2 = −→ω2(t) = (ω2x (t), ω2y(t), ω2z(t)). (4)

Then

−→
θ1 =

∫ t

0

−−−→
ω1(t)dt =

(∫ t

0
ω1x (t)dt,

∫ t

0
ω1y(t)dt,

∫ t

0
ω1z(t)dt

)
,

(5)

−→
θ2 =

∫ t

0

−−−→
ω2(t)dt =

(∫ t

0
ω2x (t)dt,

∫ t

0
ω2y(t)dt,

∫ t

0
ω2z(t)dt

)
.

(6)

When t = T , set point A2(c1, d1, e1), pointB2(c2, d2, e2),
in the state change of the arm from O − A1 − B1 to
O − A2 − B2, the trajectory traversed by the elbow M
is L1 = A1A2, the trajectory traversed by the wrist N is
L2 = B1B2. Since the upper arm O − M and the forearm
M − N are two inflexible bones, the trajectory traversed by
the points on the lineOM andMN are actually the concentric
motion with the same angular velocity as the end points M
and N , respectively. Therefore, the movement state function
of the arm can be simplified to be represented by the motion
trajectories of points M and N , so we have the movement
state function

Y = L1 + L2. (7)

Then

⎧⎪⎨
⎪⎩
x1 = a cos θ1x

y1 = a cos θ1y

z1 = a cos θ1z

, (8)

⎧⎪⎨
⎪⎩
x2 = x1 + b cos(θ1x + θ2x )

y2 = y1 + b cos(θ1y + θ2y)

z2 = z1 + b cos(θ1z + θ2z)

, (9)

calculate the differential:

⎧⎪⎨
⎪⎩
dx1 = −a sin θ1x · ω1x (t)dt

dy1 = −a sin θ1y · ω1y(t)dt

dz1 = −a sin θ1z · ω1z(t)dt

, (10)

⎧⎪⎨
⎪⎩
dx2 = [−a sin θ1x · ω1x − b sin(θ1x + θ2x )(ω1x + ω2x )]dt
dy2 = [−a sin θ1y · ω1y − b sin(θ1y + θ2y)(ω1y + ω2y)]dt
dz2 = [−a sin θ1z · ω1z − b sin(θ1z + θ2z)(ω1z + ω2z)]dt

,

(11)

then

L1 =
∫ T

0

√
(dx1)2 + (dy1)2 + (dz1)2

= a
∫ T

0

√
(sin θ1x · ω1x )2 + (sin θ1y · ω1y)2 + (sin θ1z · ω1z)2dt

(12)

L2 =
∫ T

0

√
(dx2)2 + (dy2)2 + (dz2)2 =

∫ T

0

√
f (t)dt,

(13)

where

f (t) = a2[(ω1x sin θ1x )
2 + (ω1y sin θ1y)

2 + (ω1z sin θ1z)
2]

+ b2[((ω1x + ω2x ) sin(θ1x

+ θ2x ))
2 + ((ω1y + ω2y) sin(θ1y + θ2y))

2

+ ((ω1z + ω2z) sin(θ1z + θ2z))
2]

+ 2ab[ω1x (ω1x + ω2x ) sin θ1x sin(θ1x + θ2x )

+ ω1y(ω1y + ω2y) sin θ1y sin(θ1y + θ2y)

+ ((ω1z + ω2z) sin(θ1z + θ2z))
2]

+ ω1z(ω1z + ω2z) sin θ1z sin(θ1z + θ2z)]. (14)

The derivation of the above formulas show that themovement
state function is composed of two parts, L1 and L2, which
means that the most comprehensive data acquisition scheme
should be to wear sensors at the elbow M and wrist N for
measurement, and use the data to authentication. However,
through Formulas (12) and (13), it can be found that the
parameters required to calculate L2 cover all the parameters
required by L1, and the parameter richness of L2 is much
higher than that of L1, that means the weight of L2 in the
movement state function should be much higher than L1.
So it can be concluded that only adding sensors at wrist N
to measure L2 should also be able to achieve authentication
with good performance.
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Authenticationmovement

In Formula (14), it can be found that themain parameters that
affect the movement state function are the upper arm length
a, the forearm length b, the angular velocity ω with the three
components of the space coordinate system, and the rotation
angle θ , which means that the authentication movement only
needs to meet these conditions to be able to authenticate. So
the movement we designed is very simple (Fig. 2):

We asked participants to place their arms below their
waist and then raise them 15–20cm according to their natu-
ral strength and speed. Thismovement is typically completed
within 2 s. Putting the hands below the waist is only to ensure
that the participants have enough room to raise the hand, and
the reason for the raise is that we need to ensure that the
arm movement is from the participant’s subjective decision,
whichmakes the participants tomobilizemoremuscle power
to perform the movement, which is the key to affecting angu-
lar velocity and rotation angle. At the same time, since the
lengths of the upper arms and forearms of each participant
are different, this will also provide more parameter variables
for the movement state function. Therefore, with such a sim-
ple movement, all the requirements of the movement state
function are satisfied. At the same time, we provide two sce-
narios, that is, to complete this movement in the scenario of
sitting and standing, respectively.

Fig. 2 Authentication movement. a In standing posture. b In sitting
posture

Sensors selection

Accelerometer, magnetometer and gyroscope sensors are
chosen as the sensor for data acquisition for the following
two reasons. First, after mathematical analysis of armmodel,
the movement function we obtained reveals the parame-
ter composition that affects authentication movement. The
accelerometer sensor can provide good data support for cal-
culating the trajectory traveled by the wrist, the gyroscope
sensor can intuitively reflect the change of angular veloc-
ity, and the magnetometer sensors provides convenience for
confirming the instantaneous direction of movement. Sec-
ond, We aim to increase the applicability of the method by
collecting data using simple and commonly used sensors.
At present, most smartphones have built-in accelerometer,
magnetometer and gyroscope sensors to meet the different
needs of different mobile applications. Therefore, choosing
these three sensors can make our method have a wide range
of application scenarios, rather than just stay in theory.

Accelerometer

The acceleration sensor can collect the acceleration of the
sensor itself. Due to the gravity of the earth, when the
device is stationary, the value of the accelerometer sensor
will always generate 9.81m/s2 interference. To eliminate this
interference, high-pass filtering is used to process the accel-
eration sensor data. The low-pass filter is also used to process
the raw data of acceleration sensor. The low-pass filter can
eliminate the noise generated in the process of data collection.
The accelerometer data is used to reflect the user’s habits of
the arm strength and direction of the arm force. At the same
time, the accelerometer data will be used for auxiliary calcu-
lation trajectory.

The data processed by high-pass filter and low-pass filter
are added to the feature subset select together with the raw
data to ensure that the important feature information will not
be lost.

Gyroscope

Due to the rigidity and precession of the gyroscope, the gyro-
scope data can provide an important basis for calculating the
change of the angular velocity in three-dimensional direc-
tion.

Magnetometer

Magnetometer sensor can measure the strength and direction
of the magnetic field of the sensor. The data of magnetome-
ter sensor can reflect the instantaneous direction change of
sensor. In our method process, magnetometer data are used
to reflect the direction during the participant moving his arm.
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Fig. 3 RaiseAuth method architecture

Method

For better evaluation, we build a variety of architectures suit-
able for us based on the existing popular backbones, and put
them into different cells to select themost suitable one and do
further analysis. The architecture of the RaiseAuth method
is shown in Fig. 3, which contains 5 cells, each cell is con-
figured with the corresponding data preprocessing method.
Cell evaluation will calculate the score each cell gets on the
dataset during training, and provide feedback that will cause
RaiseAuth to close paths to the cells with low scores.

The data of accelerometer, magnetometer and gyroscope
were, respectively, expressed as (AX , AY , AZ), (MX , MY ,

MZ), (GX ,GY ,GZ), and the experimental data obtained
by the accelerometer were processed by low-pass filtering
(LPF) and high-pass filtering (HPF) respectively, and the
obtaineddatawere, respectively, expressed as (LX , LY , LZ)

and (HX , HY , HZ).

Fig. 4 1D multi-scale cell data preprocessing

1Dmulti-scale cell

What we first consider is to process and analyze the sensor
data from a one-dimensional perspective. Due to the limited
receptive field of the one-dimensional convolution kernel, we
extract features from the input data from three different scales
based on the bottleneck of ResNet [33] to achieve multiple
classification task.
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1D data preprocessing

As shown in Fig. 4, we stitch together the sensor data in the
order of HPF, LPF, accelerometer, magnetometer and gyro-
scope. The length of data generated by each sensor on each
axis is fixed at 140, the insufficient part is filledwith zero, and
the excess part will be discarded, forming a one-dimensional
data input with a length of 2100.

Cell architecture details

The cell structure and details are shown in Fig. 5. Where BN
means batch normalization, “/2” means stride is 2. Taking
“1×7conv, 32, /2” as an example, it means to perform a con-
volution calculation with a convolution kernel of 1×7 size,
the number of output channels is 32, and the stride is 2. Tak-
ing “1×3 maxpool, /2” as an example, it means to perform
a max pooling calculation with a convolution kernel of 1×3
size and the stride is 2. Taking “1×6 avgpool, /1” as an exam-
ple, it means to perform a average pooling calculation with
a convolution kernel of 1×6 size and the stride is 1.

When the preprocessed data are input into the cell, it
will first go through two convolution layers to increase the
number of channels. We choose to use a large convolution
kernel to increase the receptive field, thereby increasing the
breadth and depth of the feature map. We adopt batch nor-
malization (BN) [34] right after each convolution and before
activation, following [34]. We choose to add max pooling
to mix features and adjust output resolution after the activa-
tion function. Then, considering the restricted receptive field
of one-dimensional convolution, we perform residual con-
volution operations on the input from three scales of 1×3,
1×5, and 1×7, and finally concatenate the feature vector by
the output of the average pool. And input the vector into the
fully connected layer, and combine with softmax to achieve
classification.

During training, we use a batch size of 64 and use SGD
with amomentum of 0.9 to initialize the weight. The learning
rate is initialized to 0.01 and exponentially descends with a
descending rate of 0.95.When the error plateaus, the learning
rate will be divided by 10. Dropout is not used, following the
practice in [33]. The models are trained for up to 150 epochs.

2D residual cell

In this cell, we preprocess the signal into a 2D structure
and combine ResNet to achieve multi-classification tasks.
We choose models of different depths to construct cells.

2D data preprocessing

As shown in Fig. 6, we construct the sensor data into an
input format of 3 (channel) × 5 (height) × 140 (width). The

Fig. 5 1D multi-scale cell architecture

length of one training sample data generated by each sensor
on each axis is fixed at 140, the insufficient part is filled with
zero, and the excess part will be discarded. Among them, 5
height corresponds to the data generated by 5 sensors, and
3 channels correspond to the data generated by 5 sensors on
the three axes of (x, y, z).

The advantage of this structure is that during the convo-
lution operation, the convolution kernel can simultaneously
acquire the data generated by the three axes at the same time,
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Fig. 6 2D residual cell data preprocessing

and with the difference in the size of the convolution ker-
nel, the receptive field can cover the data generated by other
sensors in a similar time, too.

Cell architecture details

Referring to previous work on Occam’s Razor and ResNet
[33], we choose ResNet-18, ResNet-50 and ResNet-101 to
construct cell. Even though it is theoretically shown that the
residual block will ensure that the network accuracy will at
least not decrease as the network deepens, we still try shallow
networks to improve the accuracy comparison. During train-
ing we use a batch size of 32 and use SGDwith a momentum
of 0.9 to initialize the weight. The learning rate is initialized
to 0.01 and exponentially descends with a descending rate
of 0.94. When the error plateaus, the learning rate will be
divided by 10. Dropout is not used. The models are trained
for up to 130 epochs.

Traditional machine learning cell

In [35], it was shown that traditional machine learning meth-
ods can often achieve better results than deep neural networks
on small sample datasets. For example, on the ORL dataset
[36], 400 images are divided into 40 categories, and the Ran-
dom Forest algorithm achieves better results than the deep
neural network in classification, which is also confirmed in
some of our previous work [22]. Our dataset is also a small
sample dataset, so we built a traditional machine learning
cell for experiments and comparisons.

Feature extraction and concatenation

To increase the optional range and diversity of features, on the

basis of the original data,we takeMA =
√
AX2 + AY2 + AZ2,

MM =
√
MX2 + MY2 + MZ2,MG =

√
GX2 + GY2 + GZ2,

MLA =
√
LX2 + LY2 + LZ2,MHA =

√
HX2 + HY2 + HZ2.

For the above 20 sets of data, we calculated the minimum,
maximum, mean, standard deviation, skewness and kurtosis

Algorithm1Correlation featuremaximization feature subset
selection algorithm.
Input: Nfeature , Nsensor , Sfeature , Wfeature , Msubset
Output:Number of features extracted from each feature group, Msensor
function Correlation Feature Maximization Algorithm
1: Nsubset ← Nfeature / Nsensor
2: for i ← 0 to Nsensor do
3: for j ← 0 to Msubset[i] do
4: Psensor[i] ← Psensor[i] + Wfeature[i][ j] ∗ Sfeature[i][ j]
5: Psum ← Psum + Psensor[i]
6: end for
7: end for
8: for k ← 0 to Nsensor do
9: Msensor[k] ← Psensor[k] / Psum ∗ Nsubset
10: end for
11: return Msensor

values for each set of data. Therefore, for each training sam-
ple, we get a total of 120 features as shown in Table 1. For
the convenience of the following, we assign a unique id to
each feature in the Table 1. For example, FId.15 is the mean
value of the Z component of the acceleration measured by
the accelerometer (AZ) and FId.95 is the skewness of the
magnitude of the acceleration (MA). The feature id will be
used instead of the long name of the feature in the following.

The feature fusionof the bio-behavioral authentication can
increase the accuracy and reduce the redundancy of the data.
Moreover, the earlier the data fusion, the better the effect [37],
but due to the early sensor-level data fusion, a large amount
of noisewill be brought into themodel, so sensor-level fusion
often does not yield the best results. Therefore, the feature-
level data fusion is considered to be a more effective choice
for improving accuracy. We selects feature-level data fusion.

Feature subset selection

Feature subset selection plays an important role in reduc-
ing data dimensions and preventing data overfitting. Based
on the correlation between features and classes, a feature
subset selection algorithm is proposed, named correlation
feature maximization (CFM) feature subset selection algo-
rithm (Algorithm 1).

Suppose the number of features is Nfeature, CFM evaluates
each feature according to the correlation between features
and classes [38]. Nfeature correlation evaluation scores are
obtained, formed array Sfeature. The higher the score, the
greater the correlation between the feature and the class.
Suppose Nsensor sensors are involved in the authentication
movement, CFM regards features extracted from the same
sensor as a set, totally Nsensor sets of features. Suppose
Msubset is the number of features in each set of features. At
the same time, CFM assigns a weight value to each feature
according to the ranking of correlation evaluation scores, So
there is the array Wfeature. The higher the ranking, the bigger
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Table 1 The correspondence
between feature name and
feature id

Feature name AX AY AZ MX MY MZ GX GY GZ LX

Minimum 1 7 13 19 25 31 37 43 49 55

Maximum 2 8 14 20 26 32 38 44 50 56

Mean 3 9 15 21 27 33 39 45 51 57

Standard deviation 4 10 16 22 28 34 40 46 52 58

Skewness 5 11 17 23 29 35 41 47 53 59

Kurtosis 6 12 18 24 30 36 42 48 54 60

Feature name LY LZ HX HY HZ MA MM MG MLA MHA

Minimum 61 67 73 79 85 91 97 103 109 115

Maximum 62 68 74 80 86 92 98 104 110 116

Mean 63 69 75 81 87 93 99 105 111 117

Standard deviation 64 70 76 82 88 94 100 106 112 118

Skewness 65 71 77 83 89 95 101 107 113 119

Kurtosis 66 72 78 84 90 96 102 108 114 120

Table 2 Feature subset in sitting/standing posture

Sitting Standing

FId 19, 20, 21, 58, 4, 26, 27, 55, 76, 73, 1, 25, 97, 69, 32, 99, 15, 61, 98, 28, 33,
100, 77, 31, 62, 57, 8, 45, 9, 75, 3, 7, 63, 64, 22, 46, 10, 67, 68, 34, 70, 16, 14,
81, 112, 44, 74, 105, 94, 106, 93, 23, 52, 85, 56, 49, 13, 82, 80, 104

102, 97, 103, 75, 109, 81, 91, 115, 57, 19, 49, 25, 31, 87, 63, 105, 33, 117, 21,
111, 27, 51, 69, 9, 3, 15, 45, 39, 43, 37, 13, 44, 38, 50, 8, 20, 14, 2, 7, 86, 80,
56, 68, 62, 26, 32, 61

the weight value is. Theweight value depends onwhether the
user values the individual performance of individual sensors
or the cooperative performance of all sensors. If users pay
more attention to the individual performance of individual
sensors, the features with high correlation score have greater
weight value difference with those with low ranking. If users
pay more attention to the performance of sensor cooperation,
the features with high correlation score have smaller weight
value difference with those with low ranking. The details of
CFM are shown in Algorithm 1.

Finally, from each set of features, the features of the top
Msensor scores are extracted and combined the feature subset
(Table 2). This enables the CFM algorithm to filter out the
best-performing features produced by each sensor and group
them into feature subsets. Among them, in the sitting posture,
the proportions of the features related to the high-pass filtered
accelerometer, low-pass filtered accelerometer, accelerome-
ter rawdata,magnetometer and gyroscope to the total number
of features of the feature subset are: 15%, 21.7%, 21.7%,
28.3%, 13.3%. In the standing posture, the proportions are
14.9%, 19.1%, 19.1%, 23.4%, and 23.4%, respectively. Each
sensor data occupies an important proportion in the feature
subset.

Classifier selection

According to the feature subsets (Table 2), to find the most
suitable classification algorithm, 5 commonly used classifi-
cation algorithms [39] (Naive Bayes (NB), Bayes Net (BN),
J48, Random Forest (RF) and Simple Logistic (SL)) were
used to model and authenticate in the sitting and standing
postures respectively.

Cell evaluation

Cell evaluation will calculate the Score each cell gets:

Score = 1

Nparam × Error
, (15)

where Nparam is the number of parameters involved in the
cell calculation, and Error is the minimum error rate on the
valid set during training. This module selects the cell with
the highest score at the end of training and keeps its path,
while closing the paths to other cells, ensuring that only one
cell path will be left in the end.
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Performance evaluation

In this section, we first describe the details of our dataset
composition and the collection of training and test samples.
Secondly, we evaluate the performance of different cells of
the model on the dataset, and conduct random attack exper-
iments and imitation attack experiments.

Data collection used iPhone7 64 GB, with IOS 12.2
system. The calculation is performed on Windows 10,
RTX3080Ti 32 GB RAM, 1TB hard disk.

Data collection

We used the built-in accelerometer, magnetometer and gyro-
scope sensors to collect the data. The number of participants
in the experiment was 138, 110 participants participated in
the training set and testing set collection, 20 participants par-
ticipated in the random attack experiment, and 8 participants
participated in the imitation attack. The sampling rate of the
accelerometer, magnetometer, and gyroscope was set to 100
Hz.

In response to our previous challenge of using the smallest
possible dataset to achieve high-accuracy authentication, to
compress the sample size required for each person’s train-
ing as much as possible, we asked each of 110 participants
to perform 5 times authentication movement in the sitting
and standing positions. The duration of each movement was
determined by the participants’ personal habits, but was usu-
ally no more than two seconds (in fact, we founded that the
longest movement time of the 110 participants was 1.38 s).
Therefore, in the 1D data preprocessing section and 2D data
preprocessing section, we set the data length of each axis
of each sensor to 140, to ensure that all sample data can be
included while padding as few zeros as possible. A total of
1100 training sample data were collected.We then asked 110
participants to perform 4 more times authentication move-
ment in the sitting and standing positions to form the test
dataset. Therefore, we got a total of 1980 training and testing
samples, a total of 110 types of authentication movement
datasets. We will perform a 110-class multi-classification
task on this dataset.

To test RaiseAuth’s resistance to random attacks, each
of the 20 random attackers provided 50 random attacks in
sitting posture and 50 random attacks in standing posture.
Each random attack has the following characteristics: ran-
dom attacker will try to make authentication movement with
random behavior habits without knowing the 110 real user
data. A total of 1000 random attack data of standing posture
and 1000 randomattack data of sitting posturewere provided.

To test RaiseAuth’s resistance to imitation attack, four
pairs of people who were similar in height, weight, forearm
length and upper arm length were required to make authen-
tication movement. Each pair of people will have a real user

and a imitated attacker. During the process of observing the
real user’s authentication movement, the imitated attacker
tries to imitate the real user 20 times in the standing posture
and sitting posture respectively. four pairs of people were
provided with 80 attack data of standing posture imitation
and 80 attack data of sitting posture imitation.

Results

Based on the training set and testing set of 110 participants,
we evaluated the performance of each Cell, and parts of the
results are shown in Table 3. The column Params indicates
the number of parameters involved in the calculation process
of the Cell. The more the number of parameters, the more
computing resources are required to implement training and
testing. It can be seen that the network structure parameters in
1D multi-scale cell are significantly lower than 2D ResNet-
18 cell, 2D Resnet-50 cell and 2D Resnet-101 cell. In terms
of error rate, we selected three ways to evaluate. We took
out the data of sitting posture, the data of standing posture,
and the data of mixed sitting posture and standing posture
for model training and testing respectively. From the results,
we can see that even if the network structure includes a 1-
dimensional shallow low-parameter neural network to a 2-
dimensional 101-layer deep high-parameter network, their
errors are basically the same. The depth of the network did
not bring about a significant change.This is in agreementwith
our previous predictions, and with previous work in [35]. We
believe that this is due to the order ofmagnitude of the sample
data is too low, and the sample categories are toomany, so that
the deep neural network structure cannot obtain enough data
to train the weight in the network. This makes the network
usually overfit very quickly on the training set, but not well
performance on the valid set and test set. However, we can
still see from the results that compared with the standing
posture, the sitting posture has a lower error rate, and the
effect achieved by the mixed data set is comparable to the
sitting posture. The relatively low error of 1Dmulti scale cell
indicates that, compared with deepening the structure of the
network, collecting more information from different scales
is better. The richness of scales information can improve the
training accuracy of small sample dataset.

Then, we tested the traditional machine learning cell. We
selected a total of 5 algorithms (Naive Bayes (NB), Bayes
Net (BN), J48, Random Forest (RF) and Simple Logistic
(SL) ) as the classifier of the model, train the model under the
standing and sitting posture dataset respectively, and select
5-fold cross-validation. It can be seen that the RandomForest
classification algorithm has the best performance, achieving
an accuracy of 97.49% in sitting posture and an accuracy of
94.68% in standing posture (Fig. 7). The accuracy is
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Table 3 Cell parameters and
classification error in sitting
posture, standing posture and
combined dataset

Cell Params Sit error (%) Stand error (%) Mix error (%)

1D Multi Scale 2,209,999 26.53 27.46 24.31

2D ResNet-18 11,233,455 30.41 31.55 29.28

2D ResNet-50 23,735,471 29.76 31.28 29.79

2D ResNet-101 42,727,599 31.33 31.39 30.82

Fig. 7 The accuracy results of
RaiseAuth traditional machine
learning cell combined with 5
classification algorithms in
sitting/standing posture

Accuracy = TPR + TNR

TPR + FPR + FNR + TNR
, (16)

where TPR is true positive, FPR is false-positive rate, TNR
is true-negative rate and FNR is false-negative rate.

At the same time, we selected five commonly used fea-
ture subset selection algorithms to compare with the CFM
algorithm. We limit the number of features of the feature
subset selection algorithms to have the same number of fea-
tures as the CFM algorithm, and also use the RandomForest
classifier. In the sitting posture, the accuracies of the Reli-
efF [40], GainRatio [41], InfoGain [42], SymmetricalUncert
[43], oneR [44], and CFM (ours) algorithms are 96.98%,
97.21%, 97.21%, 97.35%, 97.38%, and 97.49%, respec-
tively. In the standing posture, they were 93.17%, 93.55%,
93.17%, 94.49%, 93.24%, and 94.68%, respectively. This
shows that our CFM algorithm has better performance on
this task.

The False Positive Rate (FPR) and True Positive Rate
(TPR) of the model are calculated and the Receiver Oper-
ating Characteristics (ROC) curve is drawn when the user
is sitting posture (Fig. 8) and standing posture (Fig. 9). The
ROC curves can visually display the FPR and TPR. Themore
the curve is “convex” to the upper left corner, the better the
classifier effect.

Fig. 8 The ROC curve in the sitting posture of RaiseAuth

Random attack test

To test the robustness and security of RaiseAuth, 20 attack-
ers randomly performed 50 authentication movement data
collections in both sitting and standing postures without
knowledge of the 110 real user’s information. This resulted
in a total of 1000 sitting attack data and 1000 standing attack
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Fig. 9 The ROC curve in the standing posture of RaiseAuth

Fig. 10 The sample predictions of 1000 random attacks calculated by
RaiseAuth in sitting posture

Fig. 11 The sample predictions of 1000 random attacks calculated by
RaiseAuth in standing posture

data. These 2000 attack data was used to test RaiseAuth,
and the sample prediction of each random attack data was
shown (Figs. 10, 11). The sample prediction represents how
much confidence the model has in classifying samples to the
current class. For example, 40% prediction means that the
current sample matches one classified class by 40%. In the
sitting posture, no attack prediction was more than 33%, and
only 2 attacks had a prediction of 31%-35%. In the stand-
ing posture, no attack prediction was more than 35%, and
only 3 attacks had an prediction of 31%-35%. TheMinimum
Threshold Line indicates how much the model needs to set
the sample prediction rate threshold under attack to be able
to resist the attack well. Usually, the threshold of sample pre-
diction rate of real users is set to 90%, that is, when themodel
makes a judgment that the prediction is more than 90%, the
judgment will be considered reliable. Our experiments prove
that all 2000 random attack samples can be filtered out only
by setting the minimum threshold line to 35%, which makes
the difference between random attack samples and real user
samples very obvious. This means that traditional machine
learning cell in RaiseAuth structure perform well in resisting
random attacks.

Imitated attack test

Imitated attacks occur occasionally in real life, where attack-
ers achieve identity obfuscation by observing and imitating
real users. We tested the imitated attack resistance of the
RaiseAuth. Participants were four pairs of people who were
similar in height, weight, forearm length and upper arm
length (Table 4). Four of them are real users and four
are attackers. Real users normally collected authentication
movement data, while attackers observed and imitated the
collection process of real users. Next, each attacker imitated
20 attacks by imitating real users of similar body size in sit-
ting (Fig. 12) and standing (Fig. 13) posture. In the results,
the predictions of attacks were mostly concentrated in the
40% - 60% range, no one was more than 70%. The mini-
mum threshold line is 70%.

At the same time, we analyzed the experimental data of
real users and attackers. We showed the two best features
in the standing posture (Fig. 14) as an example. This data
comes from a pair of Real user1 and Attacker 1, of which the
lower left corner is the value of FId.19 and FId.21 generated
after 20 authentication movements by real user1. The upper
right corner is the value of FId.19 and FId.21 generated by
the imitator Attacker 1 imitating the real user1 to make 20
imitation movements. It could be seen that even though the
real user and the attacker were very similar in body size,
and the attacker was given 20 opportunities to observe and
imitate, the difference between them was still very obvious
for RaiseAuth.
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Table 4 Body size of attacker and real user in imitated attack test

Role Height (cm) Weight (kg) Upper arm length (cm) Forearm length (cm) Habitual hand Gender

Real user 1 185 82.9 23 49 Right Male

Attacker 1 185 83.5 25 49 Right Male

Real user 2 188 78.2 28 47 Right Male

Attacker 2 186 80.3 27 47 Right Male

Real user 3 176 65 30 44 Left Male

Attacker 3 175 60 28 47 Left Male

Real user 4 162 52 26 38 Right Female

Attacker 4 161 45 26 38 Right Female

Fig. 12 The sample predictions of imitated attacks calculated by
RaiseAuth in sitting posture

Fig. 13 The sample predictions of imitated attacks calculated by
RaiseAuth in standing posture

Fig. 14 Feature Id 19’s and Feature Id 21’s data visualization of a pair
of participants in imitated attack test

Conclusions

In this work, we aim to achieve high-accuracy authentication
while compressing the movement complexity of the authen-
tication movement as much as possible. The contribution of
this work is twofold.

First, based on the mathematical modeling of the arm,
we constructed the movement state function, and accord-
ing to the parameters of the movement state function, the
complexity of the authentication movement was maximally
compressed.

Second, to the best of our knowledge, we are the first to
authenticate against an authentication movement with such
lowmovement complexity.We constructed an authentication
dataset involving a total of 138 people. At the same time,
based on this dataset, we designed an authentication method
named RaiseAuth with multiple Cells.

Through the analysis of the experimental results, we
can draw the following two points, (1) RaiseAuth is better
than deep neural network cell when paired with traditional
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machine learning cell, which means that in the face of small
samples and multi-category dataset, traditional machine
learning algorithms are more effective. This is in agree-
ment with previous work in [35]; (2) RaiseAuth performs
well against random attacks that do not know the real user
information, but it suffers a certain impact when confronting
imitators with similar physical parameters that stare at real
users and conduct 20 imitation attacks. This shows that under
extreme conditions, authentication based on body move-
ments may be affected by imitated attacks.

In summary, RaiseAuth can perform multi-classification
tasks with good performance on the 110-class authentication
dataset with low movement complexity and small samples.
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