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Abstract

The advancement of Additive Manufacturing systems has led to increased complex-

ity in the wider diversity of materials and enhanced Degrees of Freedom, which has

caused an increased interest in potentially solve some of the industry’s challenges

related to repairs and production. However, these systems do have few integrated

inspection capabilities to both evaluate the quality and monitoring the manufac-

turing process. The use of computer vision in Directed Energy Deposition has

traditionally been concentrated on various camera technologies and setups, each

specially tailored to a specific Additive Manufacturing system. These methods have

demonstrated potential for in-process monitoring, error detection and correction.

Nevertheless, research remains limited in terms of fully integrating inspection

systems with Additive Manufacturing processes utilizing robot manipulators, and

comprehensively exploring the challenges associated with using computer vision

on diverse metal types and geometric shapes. In this thesis, a novel framework is

proposed to be integrated with a Directed Energy Deposition system, to enable

real-time automated inspection during the manufacturing process. This framework

utilizes 3D reconstruction to examine height disparities, providing insights and

potential possibilities for optimizing in the manufacturing process. Furthermore,

incorporating a 3D reconstruction method that takes advantage of the capabilities

of both a laser line scanner and a robotic manipulator, which expands the possi-

bilities for inspection options. Lastly, the measured errors were experimentally

leveraged, with correction made to achieve the target height of a manufactured test

specimen. These results contribute to the field, offering an approach for automated

inspection in Additive Manufacturing processes.
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Sammendrag

Utviklingen av additiv produksjon har fùrt til ùkt kompleksitet på grunn av et

stùrre utvalg av materialer og utvidede frihetsgrader i systemene. Dette har ùkt

interessen når det gjelder å lùse noen av de industrielle utfordringene, inkludert

både reparasjoner og produksjon. Imidlertid har disse systemene har per nå ingen

innebygde inspeksjonsmuligheter for å både kvalitetskontroll og overvåke pro-

duksjonsprosessen. Gjennom utviklingen av additiv tilvirkning i metall, har unike

oppsett med bruk av forskjellige kamerateknologier blitt anvendt for å utnytte

ulike metoder innenfor datasyn. Disse metodene har vist potensiale for overvåking

under prosessen, feildeteksjon og korrigering. Det er imidlertid fortsatt begren-

sninger når det gjelder fullstendig integrering av inspeksjonssystemer med additive

tilvirkning som benytter seg av bruken av robotmanipulatorer med hùyere frihets-

grader. Det gjenstår mye å utforske både når det gjelder additive tilvirkning som

benytter seg av robotmanipulatorer, og de ulike utfordringene knyttet til bruk av

strukturert lys på ulike metaller og geometriske former. I denne oppgaven foreslås

det et innovativt rammeverk integrert med i et system for Directed Energy Deposi-

tion, som muliggjùr automatisert inspeksjon av produksjonsprosessen i sanntid.

Dette rammeverket benytter 3D-rekonstruksjon for å undersùke hùydeforskjeller,

forbedre overvåkingen av prosessen, og identifisere potensielle muligheter for

optimalisering av parametere i produksjonsprosessen. Videre har det blitt benyttet

en metode som muliggjùr 3D-rekonstruksjon ved å kombinere en laserlinjeskanner

og en robotmanipulator med flere frihetsgrader. Til slutt ble hùydeavvikene målt i

prosessen, og det ble utfùrt eksperimentelle korreksjoner for å utforske muligheten

for å oppnå ùnsket produksjonshùyde på testobjekter. Disse resultatene har be-

tydning innen fagfeltet og presenterer en metode for automatisert inspeksjon i

additive tilvirkningsprosesser.
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Glossary

Additive Manufacturing An Additive Manufacturing is described as a con-

struction of a 3D object by incrementally adding

material.

CAD Stands for Computer-Aided Design. It refers to the

3D digial model created from a computer software.

Degrees of Freedom Number of independent variables that describe a

mechanical system’s possible locations in space.

Directed Energy Deposition An Additive Manufacturing process, also reffered to

as metal printing which focuses thermal energy to

melt and fuse deposited metal.

ICP An algorithm typically used for aligning two 3D

point clouds to minimize the Euclidean distance be-

tween them.

RANSAC A mathematical model-based approach for aligning

and recognizing objects within a set of observed

data. It is especially effective when the data contains

outliers.

STL It describes the surface geometry of a 3D object

using a mesh of triangles.
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Chapter 1

Introduction

Additive Manufacturing (AM) also known as 3D printing, is the process that in-

crementally constructs an object from a Computer-Aided Design (CAD) model

by adding material layer by layer. The system uses these digital models to direct

the print head or other mechanisms to incrementally layer the material to the

object. A range of materials can be processed in these type of systems, includ-

ing various plastics and metals. Compared to other conventional manufacturing

techniques, AM offers a number of benefits, including design freedom to create

more complex geometry and reduced material waste. AM is a rapidly developing

field that is gaining ground in industry and is anticipated to play a significant role

in the future. Most industrial parts are manufactured using a range of different

type of metals. Consequently, industries have displayed considerable interest in

recent advancements in metal printing using Directed Energy Deposition (DED)

technology. One of the reasons for this interest is that it can address a common

industrial challenge, concerning defective spare parts. Usually, requesting new

spare parts needs to be ordered from a distant manufacturer. However, this process

can be time-consuming, and particularly if the part is not directly available from the

specific manufacturer. In contrast, a DED system can produce these components

within hours in a wide range of metals. For example, Equinor is one of the compa-

nies actively investigating the use of AM to face this challenge [1]. Nevertheless,

the industry has not fully adopted AM technology due to a variety of difficulties

1



2 Towards Automatic Inspection in AM using Computer Vision

with quality control to satisfy production standards. This is especially true for DED

processes, which is a highly complicated system with numerous parameters that

are easily influenced and may result in unforeseen issues with the created object’s

interior structure. Therefore, integrating inspection capabilities into the process

would be beneficial to enhance and expand the use of AM technology. There is

currently no off-the-shelf technology for automatic inspection for quality control

that is integrated in the feedback control in AM to increase the quality of the man-

ufactured object. Therefore, this thesis will explore the opportunities of adapting

computer vision into a DED process for inspecting the manufacturing process,

and to explore future possibilities to use computer vision as sensor feedback for

optimizing build parameters to detect deviation and to increase the quality.

1.1 Motivation

To improve the quality of manufactured parts, SINTEF Manufacturing has in-

vestigated the use of closed-loop methodologies within metal printing processes

utilizing DED technology from MELTIO. They have been combining a MELTIO

system on a KUKA Industrial robot arm to create this setup in order to do research

on manufacturing repairs, feature addition, and printing of more complicated struc-

tures than available with conventional techniques. Using a MELTIO system, metal

products are produced by focusing many lasers on a single focal point to form a

melt pool into which additional material is injected. Unlike most conventional 3D

printers, which only have 3 Degrees of Freedom (DOF), the industrial KUKA robot

is equipped with a 6 DOF robot arm and an additional 2 DOF rotation table. By us-

ing a KUKA Industrial robot into the DED process will increase Degrees of Freedom

to provide toolpaths more design flexibility. However, this enhancement introduces

intricacies that can escalate the likelihood of inaccuracies, a tendency particularly

noticeable in emerging technologies such as DED systems. It is therefore highly

desirable to have a way for inspecting the manufactured part. These potential

flaws highlight the critical need for a comprehensive inspection mechanism to

assure the quality and precision of manufactured parts.

Recent research has offered various methods for reducing these variances, in-

cluding parameter optimization, product design changes, and online monitoring.
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Regardless, in order to use any of these tactics, the evaluation of part accuracy

between the manufactured object and the desired object is a must for determining

each strategy’s effectiveness [2]. There are numerous approaches and techniques

for determining how accurate a manufactured part is. By investigating technologies

for surface reconstruction, photogrammetry, and structured light methods, it is

now possible to create precise 3D reconstructions of manufactured parts using

the most recent developments in 3D scan technology for producing digital point

clouds. The research goal is to create a vision-based framework for SINTEF Man-

ufacturing’s DED system that will enable automatic inspection of manufactured

parts using computer vision methods to further improve quality control output

and also advancing the research into vision-based automatic inspection in AM.

SFI Manufacturing is a centre for research-based innovation for competitive

high-value manufacturing [3]. SFI Manufacturing seeks to show that innovative

and environmentally friendly manufacturing is possible in high-cost countries. The

study that was done for this thesis, together with the findings, is a part of a wider

AM research project for SFI Manufacturing. Previously in SFI Manufacturing,

research has focused on the use of wire-arc Directed Energy Deposition in an

open-loop system [4], but the literature review and simulation study conducted by

Moltumyr et al. [5] highlight the potential of a vision-based closed-loop system

for applications in metal-based Additive Manufacturing.

During a summer internship in 2022, an exploration was initiated to assess the

possibility of incorporating automatic inspection into the DED system at SINTEF

Manufacturing. There were two complementary research topics. The first topic,

which is the basis of this thesis, explores the potential of automatic inspection, while

the second topic delves into the development of toolpath planning that fully utilizes

the multi-axis robot manipulator in a DED process. The summer was spent better

understanding and laying the framework for the research, as well as becoming

acquainted with the multi-axis robot manipulator. The research was continued as a

specialization project in Fall 2022 to create an outline of the components required to

build an automatic inspection framework utilizing computer vision. This thesis will

further investigate the issues associated with previous experiences with building a

vision-based framework for DED systems utilizing a robot manipulator, as well

as lay the groundwork for future work. The long-term goal is to merge the two

research aspects of automatic inspection and trajectory planning to have a closed-
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loop system which can manufacture higher quality objects than currently available

with DED systems.

1.2 Goal and Research Question

The overall goal and the research questions are based on what was learned from

the prior specialization project [6]. The overall goal of the thesis is the following:

• Goal: Develop a vision-based framework for fully automated inspection within

a DED system for enhancing the quality of fabricated objects.

Despite the goal being fairly broad and intricate, the main objective should at

least briefly describe some of the difficulties involved in constructing a vision-based

framework for automatic inspection in AM. Our objective is to build upon existing

knowledge in order to develop a framework infrastructure that lays the groundwork

for potential future integration of a closed-loop system within a DED system. Our

proposed framework should consist of multiple stages, such as 3D reconstruction,

point cloud generation, camera calibration, and identify height deviations. The

end result should be utilized to provide a qualitative and quantitative assessment

of height deviations, ultimately aiming to minimize geometric discrepancies. To

develop a robust vision-based framework, we will explore the following research

questions (RQ):

• RQ1: What are the main challenges of constructing an automatic vision-based

framework for a DED system?

The development of a vison-based framework for automatic inspection remains

a relatively uncharted territory, necessitating extensive experimentation. Address-

ing these challenges and highlighting results from the experiments will help to

bring the field forward.

• RQ2: To what extent do variation in geometric complexity and metal types

influence structured light-based 3D reconstruction?
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A significant challenge in utilizing structured light for DED processes, is the

diverse range of metal types and various geometrical shapes. These properties

affect how light interacts with the manufactured object and can lead to inaccurate

3D reconstruction. Investigating the effect of various metal types and geometric

shapes can help to develop new strategies to reduce the generated outliers. Due to

the fact that 3D reconstruction is based on structured light might disclose issues

while limiting the effect in the process. This study may also aid in the design and

development of improved methods for using structured light based 3D scanning

methods on metal.

• RQ3: How can height deviation data optimize parameters to reduce defects

and enhance product quality?

The height deviation data compares the scanned top surface of an object and

compares it with the design part. This data can be used to improve object de-

sign and lower internal and external error. The measurement and correction of

manufacturing process defects can also reduce flaws and variations in the final

manufactured part, which could also serve as a feedback loop for future research.

1.3 Research Method

The thesis goal will be achieved by examining the available literature and con-

ducting experiments. The results from the experiments will be used to examine

findings qualitatively and quantitatively through generated data resources gained

from each experiment. The experiments conducted are each carefully designed

to explore the different aspects of investigating manufactured objects in a DED

process. Each experiment throughout this thesis will contribute valuable insights

towards enhancing the final framework and thereby address the provided research

questions.
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1.4 Contributions

We propose a vision-based framework for automatic inspection in a DED processes.

This framework will use a robot manipulator and a cost-effective laser line scanner

to inspect any height deviation during the manufacturing process. Utilizing both

the existing axes in the robot manipulator and structured light-based methods.

Our suggested approach would deal with the issues related to inspection of geo-

metric deviation by incorporating a framework for examining the height using 3D

reconstruction, then analysing these to examine the manufactured object’s quality

for future process parameter optimization. Our contributions are summarized as

followed:

1. A framework for performing in-process inspections within DED processes,

highlight some of the inherent challenges to overcome.

2. Discuss the limitations of using structured light methods within DED pro-

cesses.

3. Highlight challenges of the framework and chosen methods in order to

set a path for future research and development for improving inspection

possibilities in DED processes.

4. The writing of a conference paper based on the experiments and findings

during this master thesis work (work in progress, early stage)

Most of the code in this thesis is included. The code follows a single module for

repetitive algorithms for simplicity, testing, and visualization. Furthermore, each

experiment is organized into separate folders with the data generated, accompanied

by a designated run script that produces the corresponding results. Additionally, a

video file is included to showcase the final result of the framework incorporated

into the DED system. The video can also be accessed through the following

link: https://youtu.be/FafU_0GgmvA. However, it is important to note that the

code for the hardware and robot functions is excluded as it belongs to SINTEF

Manufacturing.

https://youtu.be/FafU_0GgmvA
https://youtu.be/FafU_0GgmvA
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1.5 Thesis Outline

The thesis is structured into six chapter, and are organized in the following order:

• Chapter 1: Introduction, will introduce the topic, motivation, and research

area.

• Chapter 2: Background and Related Work, provides an introduction to

the key topics in this thesis. It introduces the concepts of Additive Manufac-

turing processes, robot manipulators, and computer vision, along with an

introduction to point cloud algorithms and 3D reconstruction. Additionally,

it also offers a review of previous works and studies that align closely with

the topics of this thesis.

• Chapter 3: Method, delves into an exploration of the methodology em-

ployed for conducting the experiments. This chapter contains a full analysis

of the methods employed, as well as the experimental design ideas and

hardware utilized throughout the experimentation in Chapter 4.

• Chapter 4: Experiments and Result, will present setup, results and the

discussions for each individual experiment.

• Chapter 5: Discussion, will discuss the overall framework and findings

from Chapter 4.

• Chapter 6: Conclusion and Future Work, concludes the thesis and sug-

gests various possible directions for future research.

• Appendix F: Draft of Conference Paper, an initial draft of the conference

paper.





Chapter 2

Background and Related

Work

The following thesis will explore multiple research topics related to construction of

a vision-based framework for automatic inspection in an Additive Manufacturing

process. This chapter will firstly introduce the AM process, and then give a basic

foundation of types of robot manipulators related to AM. Then, we will introduce

the technology employed in these areas to develop the system we are working with

at SINTEF Manufacturing, starting with a fundamental foundation in robotics and

the AM process. Later on, the topic of computer vision will be explained together

with point cloud registration and 3D reconstruction. Lastly, we will discuss the

related research on using vision-based methods for automatic inspection in a DED

process to give the reader a better understanding of the research area in this thesis.

This chapter is a continuation of a specialization project [6]. Also, parts of this

chapter assume prior familiarity with basic robotic kinematics and computer vision.

Therefore, we refer the reader to the following books for a more comprehensive

understanding of the topics in this thesis, "Modern Robotics: Mechanics, Planning,

and Control" [7] and "Computer Vision Algorithms and Applications" [8].

9
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2.1 Additive Manufacturing

The use of Additive Manufacturing, colloquially known as 3D printing, has com-

pletely changed how products are created, from conception to final product. Using

digital design files, Additive Manufacturing creates objects by gradually building

them, often layer by layer, as opposed to traditional subtractive manufacturing

techniques, which involve removing material from a solid block to produce a final

product. According to ISO/ASTM 52900 [9], AM is defined scientifically as:

"A process of joining materials to make objects from 3D model data, usu-

ally layer upon layer, as opposed to subtractive manufacturing method-

ologies"

The rapid advancement of Additive Manufacturing technology has resulted in a

wider selection of methods, process, and materials options for manufacturing. The

term "Additive Manufacturing" is often used interchangeably with "3D printing",

which related to the typical consumer 3D printers. While both methods involve the

creation of three-dimensional items, the term Additive Manufacturing is broader

and covers a variety of methods, including ones that employ equipment that are

more advanced than regular consumer 3D printers. For the context of this thesis,

these terms need to be clearly defined to ensure our scientific area of exploration.

To distinguish these terminologies, we will employ Klas Boivie’s [10] description

of a taxonomy for more precise identification of AM processes in ISO/ASTM 52900

[9], which is separated into three categories: Process Category, Distinctive process

characteristics, and Materials processed. From this terminology, we can define an

exact taxonomy for the AM system we are researching, as summarized in Table 2.1.
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Table 2.1: Taxonomy for the DED system at SINTEF Manufacturing, which encom-
passes the materials being currently studied and tested in this thesis.

Method Code Process Cate-

gory

Distinctive Pro-

cess Character-

istics

Materials Pro-

cessed

DED-LB/LCSS,

DSS

Directed Energy
Deposition (DED)

Laser-based (LB)
melting of metal
powder or wire
to deposit mate-
rial layer by layer

Low Carbon
Stainless Steel
(LCSS), Duplex
Stainless Steel
(DSS)

The process category explored in this thesis is Directed Energy Deposition

processes, and the term 3D printing and Additive Manufacturing will be used to

describe this process. For a more comprehensive understanding of the differences

between Directed Energy Deposition and other Additive Manufacturing processes,

Bikas et al. [11] provides a summary and comparison of different manufacturing

processes.

2.1.1 Additive Manufacturing Process

A broad range of AM processes employs the same general pipeline, and consists

of several steps. The first step is to create a 3D digital model of the object using

Computer-Aided Design software or other 3D modelling tools. Once the 3D digital

model is complete, it must be converted into a format that can be read by a 3D

printer or accompanying software for defining the toolpaths. The most commonly

used format for 3D printing is the Standard Tessellation Language (STL) format,

which represents the model as a triangulated mesh of connected points and surfaces.

The STL format, established by 3D Systems Inc. [12] in 1987, has become an industry

standard for AM operations despite the fact that there are other representation

formats for CAD models and specifically for AM operations such as 3mf [13].

The final step is to prepare the model for printing by slicing it into planar

surfaces or layers. This is done using software called a slicer, which converts the

model into a set of machine instructions called G-code. The G-code tells the robot

manipulator how to move the tool, what temperature to use, or other settings, so
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that the object is manufactured correctly [14]. Figure 2.1, illustrates all of these

steps, providing an overview of the 3D printing process from start to finish.

Figure 2.1: Example of a general AM pipeline. Left: A CAD model. Center-left:
Converted CAD model into STL. Center-right: Sliced model that illustrates the
toolpath. Right: G-code for the toolpath. Image Source: [14]

Modelling

The initial step in the AM pipeline involves creating a digital model with a CAD

software. This advanced modelling software allows users to design complex ge-

ometries by representing curves and surfaces with base splines. The software also

makes use of the Non-Unfirorm Rational Basis Spline (NURBS) concept, which gives

a versatile and precise way of constructing complex shapes. With the emergence

of numerous CAD programs and file formats, a new standardized format was in-

troduced to enable the exchange of CAD models across different software systems.

This format was developed by the International Organization for Standardization

(ISO) in 1994 and is a part of the standard ISO 10303 [15]. The format, commonly

referred to as Standard for the Exchange of Prdouct Data (STEP) [16], specified in

ISO 10303-21 [17] was specifically designed for storing CAD models defined by ISO

10303. STEP provides a universal language for storing and sharing CAD models,

allowing multiple users to easily exchange files across different enterprise software

platforms. By standardizing the format of CAD models, STEP has significantly

streamlined the process of sharing and collaborating on designs in the engineering

and manufacturing industries.



Chapter 2: Background and Related Work 13

Figure 2.2: The difference between the quality of a CAD and STL model. Left:
CAD model. Center: High Resolution STL model. Right: Low Resolution STL
model. Image Source: [18]

When creating a 3D model for manufacturing in Additive Manufacturing, it

must be converted into a slicing-compatible format. STL is a popular format that

uses triangle facets to describe the model’s surface geometry. The STL format was

created primarily for 3D printing and is available as both ASCII and binary code.

When converting a 3D model to an STL file, the surface geometry of the model is

triangulated, which might result in a loss of information when compared to the

original model, as seen in Figure 2.2. In contrast, OBJ files store 3D models as a set

of vertices, edges, and faces [19], without a specific requirement for the surface

geometry to be represented as triangular facets. This means that OBJ files can

store more complex geometries, such as curved surfaces, without requiring them

to be simplified into triangles. However, when converting an OBJ file to an STL

file, the geometry must be triangulated to fit the requirements of the STL format,

which can result in a loss of detail.

Slicing

The STL files are being used to build contour data. The slicing procedure is carried

out in accordance with the desired layer thickness, with the layer being typically

planar surfaces. A wide variety of AM processes utlize machine instructions

or commonly known as G-code to execute the tool motion and control steps.

When compared to alternative representation formats, this format does present

some difficulties that could result in lower quality output for produced parts. The

thickness between the slices can be varied depending on the capabilities of the

type of manipulator and the shape being generated. Surface finishing degrades as

layer thickness increases. Figure 2.3 illustrates the variations in slicing thickness
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and detail. Given the versatility of material extrusion, which allows for alterations

in layer height and thickness, it is likely that slicing parameters would need to be

adjusted depending on the specifics of the AM process.

Figure 2.3: An example of slicing a solid geometry into horizontal layers with
varying thicknesses. Thinner layers produce higher resolution objects but take
longer to manufacture, whereas larger layers produce lower resolution objects but
take less time to manufacture. Image Source: [20]

Machine Instruction

The final step of the AM pipeline involves generating G-code or machine instruc-

tions that will be used by the AM system. This process converts the STL to G-code

to create a set of instructions that can be executed by the machine. The G-code

format offers information for positioning, line motion, and contouring control

systems, according to ISO 6983 [21]. In the instruction set, each command starting

with G represents the geometry or M for an instruction in the machine. Machine-

specific functions are handled by machine instructions, and material extrusion

and positioning are handled by geometry commands. Under certain conditions,

the toolpath might be determined by the unique kinematics of the robot, defin-

ing it independently of the standard G-code instruction set. This often comes

into play when dealing with robot programming languages such as the KUKA

Robot Language or other proprietary languages specific to different manufacturers.

These custom languages offer the capacity to implement machine instructions that

can effectively control and access systems with higher Degrees of Freedom, thus

broadening the potential for more complex and dynamic robotic operations.
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2.2 Robot Manipulator

A robotic manipulator is made up of a set of joints that are connected together by

a rigid structure designed to interact with their environment. The term manipula-

tion refers to operations performed by the robot such as picking and positioning

an object, gripping, releasing, interacting with the applicable environment, and

carrying objects within its working region [22]. A robot manipulator’s kinematics

include the use of sensors and actuators, which provide real-time feedback on the

manipulator’s location, velocity, and force. For the robot manipulator to work

ideally, the interaction between the sensors and actuators determines the precision

and accuracy. The actuators are driven using control systems that utilize advanced

control strategies and algorithms to achieve the desired motion. There are a lot of

different robot manipulator, but this thesis will mainly focus on articulated and

cartesian robot manipulators.

2.2.1 Types of Robot Manipulators

With industrial robots becoming more widespread in manufacturing environments,

there has been an increased demand for numerous different types of industrial

robots to accommodate specific applications and industries. To distinguish the

various robot manipulator systems, we will primarily focus on Cartesian robots,

which are utilized in commercial 3D printing, and articulated robots, commonly

referred to as robot arms. Each method operates differently and has its own distinct

work envelope, as shown in Figure 2.4.

The Cartesian robots, shown in Figure 2.4a, work exclusively in XYZ coordi-

nates. These type of robots are frequently utilized in standard AM operations. Due

to their high accuracy and precision, these robots are often used in AM techniques

such as 3D printing. 3 linear DOF of the x, y, and z axes of a Cartesian coordinate

system, are present in Cartesian robots. This suggests that they lack rotational

DOF and can only move linearly in three directions. Due to their lack rotational

Degrees of Freedom they can only follow toolpaths that can be accessed from

a fixed orientation along the whole path. Limiting their ability to print highly

complex shapes.
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The Articulated robots, shown in Figure 2.4b, are made up of a series of revolute

joints that allow them to move in a variety of directions. These robots are well-

known for their flexibility, and dexterity, which make them suitable for a variety

of applications such as welding, painting, and assembling [7]. Researchers have

recently begun investigating the use of Articulated robots in DED systems, where

they can be combined with laser or plasma sources to deposit material onto a

substrate [23]. In terms of movement, articulated robots are more adaptable than

Cartesian robots, since they have several joints that position a tool in any 6 DOF

pose.

(a) 3 DOF Cartesian Robot (b) 6 DOF Articulated Robot

Figure 2.4: Workspace of a Cartesian and Articulated Robot. Image Source: [24]
[25]

2.2.2 Articulated Robot Kinematics

The study of the motion of a robot mechanism in terms of positions is known as

robotic kinematics. It relates the position and orientation of the robot manipulator’s

end-effector relative to themanipulator’s base to the joint variables. Amathematical

description of the robot’s motion is provided by the kinematic analysis of robots,

which is important since it is necessary for directing the robot’s movement [7].

The robot’s control system utilizes this mathematical description, and can also

work out the path for the robot to take between two points. Robot kinematics

primarily comprises two main problems: forward and inverse kinematics.
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Figure 2.5: The relationship between Forward and Inverse Kinematics. Image

Source: [26]

Forward Kinematics

The position and orientation of a robot’s end-effector frame can be calculated using

the joint coordinates thanks to the fundamental concept of forward kinematics.

The ability to plan and carry out exact motions of the robot’s end-effector in three

dimensions makes this a crucial step in robotic control and manipulation. Calcu-

lating how to transform the robot’s joint angles into the location and orientation

of the end-effector in the task space is the challenge of forward kinematics [7].

Basic trigonometry can be used to accomplish this in simple robotic systems, but a

more systematic method is needed for more sophisticated systems. This is where

methods such as Denavit-Hartenberg (DH) [27] convention comes into play. By

providing a systematic method for defining reference frames and calculating the

resulting forward kinematics [28], the DH convention can simplify the process of

determining the forward kinematics of complex robot manipulators.

Inverse Kinematics

Inverse kinematics is the problem of determining the joint angles required to

generate a desired end-effector pose. In other words, inverse kinematics solves

for the joint angles required to produce a desired position and orientation of

the end-effector given a desired position and orientation in Cartesian space [7].

The inverse kinematics problem frequently presents greater complexity than the

forward kinematics problem, as it could potentially yield multiple solutions or, in
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some cases, no viable solution at all. The inverse kinematics can be mathematically

characterized as the search for solutions that fulfill 𝑇 (𝜃 ) = 𝑋 , where 𝑇 is the

forward kinematics function that translates joint angles to end-effector pose, 𝑋 is

the desired end-effector pose, and 𝜃 is the vector of joint angles [7]. The inverse

kinematics can be solved analytically for most 6 DOF industrial robots, and as an

iterative algorithm in the general case, such as Newton-Raphson [29], Jacobian

transpose [30], or various weighted pseudoinverses [30].

2.3 Directed Energy Deposition with an Articu-

lated Robot Manipulator

Directed Energy Deposition is a branch of AM, which uses a wide variety of metal

as feedstock. The wire is fed to a substrate simultaneously as a laser beam is focused

to create a melt pool while slowly depositing the material layer-wise. The recent

advancement of AM technologies, has made metal manufacturing an interesting

topic for research, and potential future for industrial applications for repairing and

manufacturing of parts. A conventional 3D printer is limited to accessing only 3

linear DOF, resulting in lower resolution for the manufactured parts, ultimately

affecting their quality. Using an articulated robot manipulator enables access to

both linear and rotational DOF. This will enable a larger workspace to be utilized

compared to other 3D metal printers, as illustrated in Figure 2.6. This highlights

the large differences in terms of working space area relative to the robot’s footprint

between the two types of metal printing.
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Figure 2.6: Comparison of a Stratasys F170 Cartesian robot manipulator working
space and an articulated robot manipulator reachable space.

The DED system at SINTEF Manufacturing uses a MELTIO system and a KUKA

Industrial Robot. The MELTIO system has the ability to process both wire and

powder feedstock material. It is powered by 6 direct diode lasers with a total power

of 1200 Watt and a wavelength of 976 nm, utilizes a wire feedstock of 0.8-1.2 mm

in diameter, which is compatible with a wide range of welding wires and powder

feedstock [31]. The KUKA Industrial robot has a 6 DOF articulated manipulator

and a 2 DOF rotatable table, providing versatile movement capabilities. Figure 2.7

depicts the integrated MELTIO system on a KUKA Industrial robot at SINTEF

Manufacturing.
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Figure 2.7: The MELTIO system integrated with a KUKA Industrial robot for DED
processes at the SINTEF Manufacturing.

2.4 Computer Vision

The science of computer vision is developing quickly and has completely changed

a variety of sectors. Most decisions on quality evaluation are made with the aid

of the human visual sense. As a result of technological improvements, robots

now use cameras as their "eyes," enabling automation and inspection control in a

variety of industrial operations. Computer vision technology boasts a wide range

of applications, including not only defect detection and motion tracking, but also

encompassing sophisticated tasks such as 3D reconstruction of environments and

point cloud processing for detailed spatial analysis. In this section, we will explore

the fundamental principles of computer vision related to inspection.

2.4.1 Capturing and Representing Visual Data

The advancement of technology has made it possible to capture and represent

visual data in various formats, encompassing images, videos, 3D models, and point

clouds. The definition of the camera model and calibration, which allows us to
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capture real-world data accurately, form the foundation of this capability. In this

section, we will look at the fundamental concepts of camera models and calibration

methods, as well as how they help us capture and represent visual data in a variety

of ways.

Pinhole Camera Model

The pinhole camera model is the basic foundation and simplified camera model for

projecting 3D points onto a 2D image plane. This model suggests that rays that are

reflected from an object into a plane, which will create a 2D representation of the

object, as seen in Figure 2.8. According to Sturm et al. [32], the Pinhole model is

an effective way of capturing how humans perceive the world. Even from basic 2D

images, it is possible to determine various attributes, such as the actual position

of objects in the real world. This process is known as perspective projection and

involves the conversion of 3D points within the world into a 2D plane. Additionally,

this enables the establishment of a mathematical framework that simplifies the

image capture process, enabling the representation of the relationship between

world to 2D image coordinates. However, the representation of an object in 2D

space is constrained since all points along a given ray are projected into the same

point in the image plane. Due to the loss of depth information brought on by

convergence of the multiple rays, the resulting 2D image might not be a genuine

representation of the object’s actual dimensions. As a result, while the pinhole

model is helpful for many computer vision applications, more complicated camera

models are often used to produce higher quality representations.

Figure 2.8: A simple illustration of a Pinhole Model.



22 Towards Automatic Inspection in AM using Computer Vision

Camera Model

The camera model plays a critical role in estimating the most precise projection

matrix to describe the transformation from real-world coordinates to the image

plane. This relation is established using the concept of the Pinhole model, which

forms the basis for constructing the camera model. The camera model can be

represented using the equation:

𝑃 = 𝐾 ∗ [𝑅 |𝑡] =



𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1



∗
[
𝑅 | 𝑡

]
(2.1)

where (𝑓𝑥 , 𝑓𝑦) denote the focal length and (𝑐𝑥 , 𝑐𝑦) refer to the optical center. The

term 𝑅 represents a 3 × 3 rotation matrix, while 𝑡 represents a 3 × 1 translation

vector.

The camera model comprises two matrices, namely the extrinsic and intrinsic

matrices. These matrices help to determine the accurate relationship between

world coordinates and image coordinates. The intrinsic parameters (𝐾 ) encompass

the focal length and the optical center, which facilitate the transformation from

camera coordinates to image coordinates. The extrinsic parameters include a

rotation matrix 𝑅 and a translation vector 𝑡 , which are critical for transforming

world coordinates to camera coordinates. However, the camera model’s geometric

precision is limited because cameras use lenses instead of a pinhole, and light

passing through the lens is prone to distortion. Therefore, camera models may not

provide a highly accurate representation of the real-world.

To obtain a more accurate correspondence between world coordinates and

image coordinates, it is essential to perform a calibration procedure to determine

the unknown parameters in the camera model. Typically, camera calibration

involves estimating the intrinsic parameters for 𝐾 and the distortion parameters

of the lens, for converting camera coordinates into a 2D image plane. To achieve

this correspondence, it is necessary to incorporate the extrinsic matrix (𝑅 and

𝑡 ) into the camera model. This inclusion facilitates the description of the world

coordinate frame reference into the camera coordinates, resulting in a more precise
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and reliable representation, the effect of these matrices is illustrated in Figure 2.9.

To calculate these unknown parameters effectively, a camera calibration method is

required.

Figure 2.9: A Camera Model’s Extrinsic and Intrinsic Conversion from world frame
to image plane.

Distortion in Cameras

The process of capturing an image with a camera involves light passing through

a lens and being projected onto a sensor. However, due to imperfections in the

lens and variations in the alignment between the sensor and the lens, distortions

can arise that impact the quality of the resulting image. Typically, two types of

distortion are observed: radial and tangential distortion.

Radial distortion occurs when the lens bends light unevenly, resulting in the

displacement of light rays away from their original positions, as seen in Figure 2.10.

Light that enters the lens at the edges will bend more than light entering through

the optical center, leading to a characteristic pattern of image distortion that can

be corrected with algorithms such as Brown’s Distortion Model [33] and Division

Model [34].
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Figure 2.10: The effect of Radial Distortion.

Tangential distortion, arises from misalignment between the camera sensor

and the lens. This can result in a stretching or slanting of the image, as seen in

Figure 2.11, which can likewise be corrected with a suitable calibration method. It

should be highlighted that these distortions might differ between different types

of cameras and lenses, requiring distortion calibration for each individual camera.

The problem can also be corrected by shifting the image parallel to the image plane,

this can be solved also by using an algorithm such as Brown’s Distortion Model

[33].

Figure 2.11: The effect of Tangential Distortion.

2.4.2 Camera Calibration

Camera calibration plays a fundamental role in the field of computer vision, and

mostly adopts the mathematical model of pinhole model. In essence, calibration in-

volves the estimation of unknown parameters that relate to the camera model. This

includes determining a camera’s intrinsic parameters, such as focal length, optical

center, and lens distortion characteristics. Calibration techniques typically involve

capturing images of a known calibration object from multiple viewpoints, and
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using these images to solve for the unknown parameters that define the camera’s

optical properties [35]. To obtain accurate estimation from world to camera frame,

a well-defined object of known dimensions is utilized in the scene. Capturing the

object from various orientations and positions enables the approximation of the

intrinsic and extrinsic parameters. The object size enables us to solve extrinsic

parameters for rotation and translation to establish a mapping between image and

world coordinates, which is essential for obtaining an accurate estimate of the cam-

era’s parameters. A mathematical model is employed to solve a system of equations

using a set of images captured from different viewpoints and orientations.

There are a number of camera calibration methods available, and the method

selected is determined by the information available about the 3D scene. Some use

multiple views of a 3D pattern with a known structure positioned and oriented

randomly in space. Other methods require a unique, calibrated 3D setup in which

the positions of every 3D point and the camera center are known. While there is

currently no definitive state-of-the-art calibration method, Zhang’s [36] calibration

is the most widely used calibration method. It is a well-known approach for camera

calibration that employs the checkerboard pattern to derive the homography

transformation to the image plane. For additional in-depth comparisons of various

calibrating methods, Remondino et al. [35] conducted a comprehensive analysis of

various camera calibration methods, evaluating their advantages and limitations.

Hand-Eye Calibration

Hand-eye calibration is one of the known methods to determine the relative trans-

formation between an end-effector and the camera frame [37]. Initially, camera

calibration is undertaken to ascertain the camera’s internal and external parameters,

a critical step for accurate vision representation [36]. This is followed by robotic

calibration, which is aimed at pinpointing an accurate stance for the mechanical

gripper [38]. Furthermore, a hand-eye calibration is used to identify the camera’s

and end-effector homogenous transformation matrix, and at last the relative inac-

curacy is used to evaluate the results of hand-eye calibration. In order to identify a

transformation from the camera coordinate system to the robot coordinate system,

it is common to classify hand-eye calibration into two categories: eye-to-hand

and eye-to-robot calibration. A mounted camera is used in the second technique,
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called eye-in-hand calibration, which seeks to identify a transformation from the

end-effector to the camera coordinates. Both methods are shown in Figure 2.12,

demonstrating how the robot’s movements can be guided based on the visual data

from the camera.

Figure 2.12: An example of Eye-to-Hand and Eye-in-Hand calibration. Image

Source: [39]

ArUco Markers

ArUcomarkers are often used for camera pose estimation, which involves determin-

ing the position and orientation of a camera relative to a known reference point or

object [40]. These markers are predefined two-dimensional black and white square

patterns that can be visually identified and tracked, as seen in Figure 2.13. These

markers provide a convenient and efficient way to identify camera position relative

to these known markers. ArUco markers are appropriate for real-time applications

since they are made to be simple to detect and have a low computational cost. They

function by locating the corners of a square marker and using that knowledge

to determine the marker’s attitude relative to the camera position. In contrast,

Zhang’s approach necessitates the use of singular value decomposition to solve a

linear equation, which can be computationally expensive [36].

Figure 2.13: Examples of ArUco marker with IDs 0,1,2,3. Image Source: [41]
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2.5 Point Clouds Registration

Point cloud registration is a fundamental problem in robotics and computer vision

that aims to align multiple point clouds by finding the best rotation and translation

transformation. Several algorithms have been developed to address this issue,

using different techniques to determine the ideal registration. In most cases, known

correspondences are used to estimate a more ideal registration. However, in real-

world scenarios, these correspondences may be unknown or contain a significant

number of outliers. There are a lot of different point cloud registration algorithms,

but this thesis will mainly focus on Iterative Closest Point (ICP) and Random

Sample Consensus (RANSAC). These algorithms are frequently used nowadays, but

operates under different assumptions. The ICP algorithm is a well known approach

for aligning two point clouds, but requires both a good initial transformation and

no presence of outliers. In contrast, the RANSAC algorithm works well with the

presence of outliers, but requires the data to be described by fitting a mathematical

model.

2.5.1 Iterative Closest Point

The Iterative Closest Point algorithm is a registration method that finds the trans-

formation between two point clouds for a variety of data types. The algorithm

determines the rotation and translation necessary to align the two point clouds,

with the first step being to calculate the nearest point to a given point. The initial

paper for ICP by Besl et al. [42] solved finding the transformation by computing

the Euclidean distance between a point and a point set in order to determine the

closest distance, but this process is computationally complex and can be slow. After

determining the closest points between two point clouds, a rigid transformation

will be used to align the source point cloud with the reference point cloud. The

Mean Squared Error (MSE) is then computed to measure the discrepancy between

the transformed source point cloud and the reference. If the MSE falls below a

predefined convergence threshold, the registration process is terminated. The

pseudocode for the ICP registration process is summarized in Algorithm 1 with an

overall time complexity of 𝑂 (𝑛3).
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Algorithm 1 Iterative Closest Point Algorithm [42]

Require: Point cloud 𝑃 = {𝑝1, . . . , 𝑝𝑛}, Target point cloud 𝑋 = {𝑥1, . . . , 𝑥𝑛}, Con-
vergence threshold 𝜏

Ensure: Optimal rigid transformation 𝑇
1: 𝑇 ← initial transformation
2: while not converged do

3: 𝑌 ← for each point in 𝑝 in 𝑃 get the closest point in 𝑋
4: Compute the rigid transformation 𝑇 that minimize the Mean Squared Error

between the points in 𝑃 and the closest point in 𝑌
5: Apply the transformation 𝑇 to 𝑃
6: Get MSE of current iteration𝑀𝑆𝐸curr ← : 1

𝑛

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑝𝑖 |

2

7: Compute change in between in Δ𝑀𝑆𝐸 ← 𝑀𝑆𝐸curr −𝑀𝑆𝐸prev
8: Set𝑀𝑆𝐸prev ← 𝑀𝑆𝐸curr
9: if Δ𝑀𝑆𝐸 < 𝜏 then

10: break
11: end if

12: end while

13: return 𝑇

An example of the alignment process can be seen in Figure 2.14, which demon-

strates the application of ICP for aligning two line sets. It should be highlighted,

nonetheless, that the reliability of the findings significantly depends on a good

initial estimation of the relation between the two sets. In most situations, the ICP

algorithm is prone to converge to local minima. Outliers are practically always

present in real-world situations, which can have a substantial impact on how well

the algorithm finds correspondences and the overall runtime of the algorithm.

Figure 2.14: Simple example of ICP algorithm of two line sets.
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2.5.2 Random Sample Consensus

The Random Sample Consensus algorithm was introduced by Fischler et al. [43],

which is a parameter estimation approach for handling data with a high proportion

of outliers. The algorithm utilizes a resampling method by expressing models with

parameters that are defined as geometric shapes [44]. Additionally, the algorithm

demonstrates proficiency in discerning distinct shapes present in extensive point

clouds, such as the detection of planar structures. The procedure begins by picking

the smallest number of random points needed for the model to compute the model

parameters using only the selected data to estimate a fit for the model. After

constructing this model, distances will be computed, and any measurement less

than a certain threshold will be marked as an inlier. The more iterations the

algorithm runs, the more likely it is to develop a model that fits the data better

and eliminates outliers. The RANSAC algorithm has several variations and can

be applied in a variety of ways, such as fitting a model to a single point cloud

or aligning two point clouds based on the given mode. The RANSAC algorithm

presented in this thesis of is designed specifically for detecting planar surfaces

within a point cloud, as illustrated in the pseudocode presented in Algorithm 2.
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Algorithm 2 Random Sample Consensus Algorithm for Fitting Plane [43]

Require: Point cloud 𝑃 = {𝑝1, . . . , 𝑝𝑛}, Convergence threshold 𝜖 , Maximum
iterations 𝑁

Ensure: Optimal rigid transformation 𝑇
1: bestInliers← 0
2: T← Identity transformation
3: numberRandomPoints ← Number of points needed by the model (e.g 3 for

plane)
4: for 𝑖 = 1 to 𝑁 do

5: randomPoints← Select numberRandomPoints points randomly from the 𝑃 .
6: bestModel← Fit the model to selected points at randomPoints

7: numberOfInliers← 0
8: for each point in 𝑃 do

9: distance← Calculate distance from point to plane using bestModel

10: if distance ≤ 𝜖 then

11: numberOfInliers← numberOfInliers + 1
12: end if

13: end for

14: if numberOfInliers > bestInliers then

15: bestInliers← numberOfInliers

16: T← bestModel

17: end if

18: end for

19: return T, bestInliers

The time complexity of the RANSAC varies depending on the desired model

to be fitted. In 3D space, planes serve as relatively simple geometric models that

can be utilized for efficiently computing distances. A plane model can be fitted by

solving for the parameters 𝑎, 𝑏, 𝑐 , and 𝑑 using three random non-collinear points,

as seen in Figure 2.15. The overall time complexity would be𝑂 (𝑁𝑘2), where𝑂 (𝑘2)

comes from computing the distance from a point to the plane required for solving

a set of linear equations.
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Figure 2.15: Illustration of the process of random plane sampling in the RANSAC
algorithm based on fitting a plane model.

2.6 3D Reconstruction using Laser Scanner

3D reconstruction, creates digital models of real-world objects. A variety of tech-

niques exist for this purpose. In this thesis, methods which involve projecting a

laser line onto an object and capturing the reflected light using a camera are inves-

tigated, as seen in Figure 2.16. These types of scanners offer a high resolution and

accuracy, but can be limited by optical material properties. The scanner operates

by detecting the diffused reflection, and when specifically interacting with metals,

one can anticipate a higher degree of specular reflection which will result more

outliers to be produced. To mitigate some of the potential challenges this may

introduce, laser line scanners employ a bandpass filter. However, this also makes it

difficult to extract points from bright and dark surfaces. In contrast to conventional

structured light methods, which use a projector to cast predetermined patterns of

light onto a scene, the geometry of the scene distorts these patterns, and a camera

then records and processes these distortions to create a single point cloud that

represents the 3D reconstruction of the entire scene. Normally, these traditional

methods are more expensive and provide less dimensional accuracy in comparison

to a simple laser line scanner. These laser line scanners works by capturing a single

line in 2D space, where the 𝑧 value denotes height and the extent of the laser line

along the 𝑥 axis represents length. As a result, multiple captures are required to

create a full 3D reconstruction by combining these profiles.
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Figure 2.16: Illustration of a Laser Line Scanner’s output.

When it comes to materials like metal, which have a higher degree of specular

reflection than other materials, there is a larger possibility of generating more

outliers. The effect of specular light introduces additional challenges to ensuring

the accuracy and reliability of the scanner’s output, with the issue being associated

by both the shape and metal type. Wang et al. [45] addressed the problem of

outliers resulting from specular reflection on edges and smooth surfaces in laser

line scanning. They proposed a path optimization approach to mitigate this issue,

aiming to identify a more ideal scanning path, as illustrated in Figure 2.17.

Figure 2.17: A scanning of aluminium using a laser line scanner with two different
paths. Top: Shows two scanning paths. Upper-middle: generated outliers follow-
ing the red path. Lower-middle: the path of specular reflection generating the
outliers. Bottom: Following the green scanning path. Image Source: [45]
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To fully comprehend how these outliers are generated by specular reflection, it

is important to recognize that a substantial portion of light hitting a surface with

continuously varying surface normals gets reflected as specular light [45]. The

angle of the specular reflection will regularly change on a surface with shifting

normals, which can cause a higher degree of specular light with varying shapes

of the geoemetry. Given that the laser line can be represented as a Gaussian

distribution, and normally the center of the profile is detected as diffuse reflection.

However, specular reflection is influenced by the angle of the surface normal, which

certain geometric features, such as edges, may exhibit a higher rate of generating

outliers, as shown in Figure 2.18.

Figure 2.18: Illustration of specular reflection generating outlier from an edge.

2.7 Related Work

The section will concentrate on automatic inspection for various AM systems.

While outlining the major obstacles that might come up in our framework, we will

correlate our study with recent examples from literature. Studies on vision-based

methods in DED processes differ from the objectives and setup for our framework.

Therefore, the search will focus on finding comparable alternatives to AM processes

that utilize vision-based setups. The section’s conclusion will provide a list of some

of the key challenges encountered in building the framework’s foundation.
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2.7.1 Error Detection for Cartesian 3D Printer

Charalampous et al. [46], introduced a real-time vision-based error detection,

proposed for a conventional Cartesian 3D printer. The objective of this research

was to develop an error detection system in AM processes. Figure 2.19 illustrates

the pipeline, beginning with the pre-processing of the manufactured object’s G-

code generated from a CAD model, to create an equivalent 3D point cloud of the

different layers which will serve as the reference model. Portions of reference

point cloud will be occasionally be compared with reconstructed point cloud. This

comparison is done by using ICP algorithm for alignment and KD Tree [47] for

computing the closest distances between the two. Lastly, the 3d printer will stop

dependent on a specific threshold based on computing both Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE). The printing is automatically stopped,

preventing further production of defective components.

Figure 2.19: Illustration of the point cloud registration between two point clouds.
Left: Theoretical point cloud. Center: 3D Reconstructed point cloud. Right:
Comparison after ICP algorithm. Image Source: [46]

This system highlights both real-time monitoring and error detection in a con-

ventional 3D printer. However, it is not tested with a wider range of AM methods

such as DED processes. Since the pipeline makes use of a point cloud generated by

a 3D printer simulation, which may result in an inaccurate representation of the

printed object. Another issue is the reliance on the ICP algorithm for alignment

between the two point clouds. This approach, however, is strongly reliant on a

good initial alignment. If the initial alignment is not set correctly, the method

may fall into a local minimum, causing the ICP algorithm to potentially fail to

converge to the optimal alignment. While the KD Tree is a popular choice for
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nearest neighbour searches, it does have some disadvantages. Also, when dealing

with huge datasets, it also may struggle with scalability, making the tree-building

process computationally expensive and demands a significant amount of memory

for larger point clouds. Some of these issues highlight the challenges that can

occur from relying too much on multiple point cloud registration algorithms for

automatic inspection.

2.7.2 Height Correction through Layer Addition or Removal

DED process has a minor instability with requiring accurate representation of a

geometrical object from its design, in comparison to simpler conventional alter-

native AM processes. Garmendia et al. [48] created a framework that makes use

of structured light utilizing a projector at a fixed position to achieve in-process

height modification in a laser-based DED process. By placing the scanner at a fixed

position, they could capture a point cloud of the height and measure the height

relative to the build platform. A pre-set of layers was built before employing a

control mechanism that dynamically adds or removes layers according to the build

height information from the intended CADmodel of the object being manufactured.

The height error is the difference between the theoretical layer height produced by

the path generator and the measured layer height. Depending on the calculated

error, layers are either added or removed, as seen in Figure 2.20.

This framework utilizes a similar setup and method as Garmendia et al. [48].

However, this framework provides an advanced solution for in-process layer height

correction, since it alter the design of the geometry. Furthermore, the scope of the

experiment was restricted, as it was carried out using a single metal variant. It

is also noteworthy to mention that the constraints of this study, specifically the

application of structured light, were limited due to the exclusive use of one type of

metal.



36 Towards Automatic Inspection in AM using Computer Vision

Figure 2.20: The figure displays a comparison of the theoretical height (ℎ𝑡 ) repre-
sented by a and c, and the expected layer height (ℎ𝑟 ) represented by b and d, with
layer corrections indicated every five layers in the first row and every three layers
in the second row. Image Source: [48]

2.7.3 Error Correction based on Working Distance

Several process parameters can be adjusted based on the measured height deviation

to account for differences. Although adjusting the number of layers by adding or

removing them might appear as an efficient way to achieve the desired height of

the object. However, this approach can unexpectedly alter the geometric design

and produce other geometric deviation, such as sudden overhangs. In contrast,

Zhou et al. [49] proposed a framework for in-process clad height control in a DED

processes using optical height monitoring to adjust working distance between

nozzle and the manufactured object. The conventional methods for regulating

the nozzle working distance in a DED process, such as passive controls using

convergent nozzles or active measures utilizing dynamic changes to the tool path,

laser power, powder flow rate, or feedrate, have inherent drawbacks. The suggested

method was presented as having various advantages over previous frameworks,

including a simpler design that requires fewer sensors and real-time operation.

A heatmap is produced from the camera to monitor the melt pool and estimate

the position of the highest pixel in the melt pool, and a known location inside

the nozzle is used as a reference to measure the distance between them. The new
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working distance is then calculated from the height based on the thermal camera’s

measurements to ensure the height of the layer matches the height of the tool path.

The final results of the height controller can be seen in Figure 2.21.

Figure 2.21: Illustration of the results without and with the height controller. (a)
without controller and (b) with controller. Image Source: [49]

The findings demonstrated that the height control system was efficient in main-

taining the target height while also assuring geometric part accuracy. The updated

height is used to adjust the nozzle to the new optimal working distance. This

highlights a bigger improvement for adjusting process parameters to improve the

geometry. However, the scanning procedure does not allow a thorough inspection

of the entire production process, or offer any exhaustive inspection of the height

discrepancies.

2.7.4 Conclusion on Related Work

The majority of related studies employ specifically tailored systems to implement

error detection and correction methods, demonstrating a strong need for continued

research in this area to improve inspection capabilities within AM processes.

Extensive research has been dedicated to devising control strategies aimed at

enhancing production quality in DED processes. However, the objectives of the

framework outlined in this thesis will venture further. It aims to explore the

production process to assist in finding a more suitable process parameters for a

variety of metal types, but also to explore whether height deviation data based on

the insights from these related studies can potentially be used to refine the process

parameters in the DED system at SINTEF Manufacturing.
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Furthermore, while many existing systems leverage structured light which

utilizes a projector, the potential of alternative scanning technologies remains

underexplored. Certain studies have explored the application of laser line scanners,

recognized for their high dimensional accuracy. However, these systems do not

incorporate any method for 3D reconstruction due to limitation of integrating

such methods and technologies into their existing systems. Therefore, this thesis

seeks to examine alternative technologies in conjunction with the utilization of an

Articulated robot manipulator’s multiple DOFs. By leveraging the robot’s mobility,

the objective is to augment the scanning procedure and provide an opportunity

for a more in-depth analysis through 3D reconstruction. This research could

potentially widen the application across a wider variety of metal types, extending

the possibilities for automatic inspection in DED processes.
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Method

This chapter describes the thought process involved in the selection of deviation

properties to inspect and hardware used. It will progressively detail the creation and

explanation of each element within a vision-based framework, which is designed for

the experiments referred to in Chapter 4. We will begin by examining the deviation

types we aim to inspect, and then delve into the specifics of the hardware employed

and demonstrate how we to incorporate and optimize it for 3D reconstruction with

the DED system outlined in Section 2.3. We will then discuss the steps involved in

processing and measuring point clouds to compute the deviation, as well as explore

potential future applications of the data to improve the DED process. Furthermore,

we will discuss the steps involved in processing and measuring point clouds to

compute the deviation.

3.1 Overview of Prior Studies

Prior to this thesis, research was conducted to develop a method for a vision-based

framework in the specialization project [6]. A summary of previous research

on the subject will be provided before delving into the current framework for

this thesis. To identify the most appropriate approach, a thorough analysis was

conducted, involving the examination, implementation, and rigorous testing of

39
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several alternatives. This section presents a concise review of significant past

investigations and methodologies considered during the specialization project,

ultimately leading to the selection of the current preferred framework.

3.1.1 Exploration of Previous Framework

The initial study on a vision-based framework, as shown in Figure 3.1, employed a

method attempting at utilizing the rotating table with VC Nano 3D-Z at a fixed-

position. Although this specific approach was not directly employed in the DED

system, a simplified setup was replicated, as seen in Appendix D. By calculating

the distance to the rotation table, the scanned profiles could be merged through

computing a rotation transformation. However, this method was not ideal, as it

relied on the scanner’s position relative to the table and also required the rotational

speed of the table, which proved difficult to calibrate and control.

(a) Pre-processing for 3D reconstruction and STL.

(b) Alignment using Point Cloud registration algorithms (RANSAC and ICP) with error

computed as the closest distance using KD Tree.

Figure 3.1: Visual representation of the methodology employed in the specialization
project: Key stages include 3D reconstruction, preprocessing and point cloud
registration algorithms for alignment. Image Source: [6]
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The prior objective of the framework was to examine the total geometric

deviance, necessitating a dense point cloud to capture the complete object for in-

spection. This approach was found to be time-consuming and required numerous

scanning positions to capture the majority of the object. The scanning process

had to be further adapted based on the manufactured object’s shape to retrieve

a dense point cloud. Furthermore, to enable efficient comparison between 3D

reconstructions and STL models, a computationally efficient approach was adopted.

Instead of directly comparing a mesh to a point cloud, which can be highly compu-

tationally intensive. To address this issue, a selective sampling method was applied

to the STL model. By only comparing the distances between the closest points, this

approach significantly reduces computing expense. It systematically selected the

data points from the STL model at random intervals, thus ensuring comprehensive

coverage while limiting the number of points. To accurately compute the closest

distances for alignment and deviation analysis, both RANSAC and ICP algorithms

were utilized. These algorithms were employed to align the data and calculate

the closest distance utilizing KD Tree [47] to optimize the computation. This

approach closely aligns with the methods outlined in Subsection 2.7.1. Comparing

the sampled STL model and the entire scan accurately is challenging due to the

variations in sampling methods employed by different algorithms. As shown in

Figure 3.2, the visual differences between the distributed points and the laser scan

are apparent. The presence of vertical lines in the laser scan results requires a more

suitable sampling algorithm adapted to the number of profile scans. As a result,

using the closest distances as a deviation metric becomes unsuitable for evaluating

the comparison between an STL model and a 3D reconstruction.



42 Towards Automatic Inspection in AM using Computer Vision

Figure 3.2: Comparison of Profile Scans with the VC Nano 3D-Z and a rotation
table, and Uniform Sampling Distribution. Top: this row demonstrates the uniform
sampling method, applied to uniformly sample a STL model. Bottom: this row
visually represents the profile scanning process, in which each sample is rotated
incrementally.

3.1.2 Insights and Key Findings

The overall study exposed the weaknesses and limitations of the previously at-

tempted methods. Based upon these insights, this thesis aims to leverage the

findings from the prior study to develop a better vision-based framework. The

objective is to minimize the dependency on the scanner’s position, decrease com-

putational expenses, and enhance reliability by reducing the need for point cloud

registration algorithms such as ICP and RANSAC. Firstly, this thesis will investigate

alternative methods for 3D reconstruction that can work with complex shapes

utilizing the KUKA Industrial robot multiple DOFs. Furthermore, examining the

overall geometric deviation posed significant challenges, and the focus should be

pivoted towards inspecting the height deviation similar to the frameworks outlined

in Section 2.7.2 and Section 2.7.3. Furthermore, the inspection of height deviation,

as highlighted in earlier studies and discussed in Section 2.7, can be effectively

utilized within a feedback loop.
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3.2 Selecting Deviation Properties to Inspect

The manufacturing process in a DED system is a complex and intricate system

that involves numerous steps, each of which can introduce various sources of

geometrical deviations. These deviations can arise from a wide range of factors,

such as machine tool errors, tool wear, material deformation, and environmental

influences. While identifying every instance of deviation may be challenging, the

focus has been placed towards inspecting the changes of geometric deviations

related to height. Maintaining a constant width and length throughout the process

can be challenging, as it depends on the trajectory planning. On the other hand,

the layer height is typically kept constant, it yet remains challenging to ensure

consistency throughout the process. This is due to various factors such as the

deposition rate, melting point, and the speed of the robot arm.

3.3 Choosing the Hardware

The initial study started with exploring two hardware types, Zivid Two and VC

Nano 3D-Z, both seen in Figure 3.3, as methods for producing dense point cloud

for 3D reconstruction. Both hardware solutions used different methods to generate

these point clouds, each with their own advantages and drawbacks. The Zivid Two

employs structured light to create a depth map using binary patterns projected

onto the object. The Zivid Two is sensitive to ambient light conditions, which

may cause interference and affect the accuracy of the generated point cloud. On

the other hand, the VC-Nano 3D-Z uses laser triangulation to estimate a profile

of points with high precision. It is not affected by ambient light and has a higher

precision. The VC Nano 3D-Z was chosen as the preferred hardware solution for

this thesis after extensive consideration and testing with both types of hardware

during the specialization project. The VC Nano 3D-Z’s high dimensional accuracy

and minimal susceptibility to ambient light conditions were some of the factors in

the selection.
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Figure 3.3: Left: Zivid Two. Right: VC-Nano 3D-Z

3.4 VC Nano 3D-Z

The VC Nano 3D-Z is a compact and highly precise hardware solution that uses

laser line triangulation to estimate the profile of points. The scanner utilizes a

methodology to capture and compute depth and height dimension of objects in two

dimensions. Unlike other traditional laser scanner that capture the whole point

cloud in a single capture, the VC Nano 3D-Z uses a blue line laser that scans the

object at frequencies of up to 400 Hz, allowing real-time capture of objects with

high accuracy. The dimensional accuracy of the VC Nano 3D-Z model large 6/26,

that is defined as: the resolution ranges from 140 𝜇𝑚 to 600 𝜇𝑚 in the X direction,

and from 20 𝜇𝑚 to 380 𝜇𝑚 in the Z direction [50]. This represents the minimum

and maximum respective measurements the model can accurately discern within

these two dimensions. Additional insights into this scanning technique can be

found in Section 2.6.

The VC Nano 3D-Z runs on Linux with all the image processing algorithms

built in. It uses a client-server architecture, with the conventional TCP/IP protocol

over Ethernet are used to control the scanner. This enables the scanner to function

as a server, responding to transmission from client requests, and also support the

speed up to 1 Gbit, and lower speeds of 100 Mbit, and 10 Mbit [50]. Furthermore,

the scanner can receive output via an Ethernet connection, providing real-time

communication speed.
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3.4.1 Pipeline for Creating VC Nano 3D-Z Profiles

To ensure accurate and precise reconstruction of the object, a calibration routine

is required. This is achieved using Zhang’s [36] method of planar checkerboard

surfaces, which allows for the retrieval of the camera’s intrinsic and extrinsic

matrices, as described in Section 2.4.2. These matrices are used to calculate the

reconstruction of the object and ensure high accuracy and precision. The VC Nano

3D-Z hardware uses a blue line laser to capture depth and height information in

two dimensions. Most of the work of capturing the information is done through

the hardware and software in the VC Nano 3D-Z.

Figure 3.4: An illustration of the output of the scanner. Left: intersection of an
object and a laser line. Right: x-axis denotes height, and y-axis represents distance
from the laser. Image Source: [6]

Despite the complexity of a laser line scanner, its fundamentals can be un-

derstood by studying a simple setup including a regular camera and a laser line.

Firstly, the laser line exposure region contrasts sharply with the background, mak-

ing it simpler to retrieve. Processing the laser line first yields a gray image, which

can then be binarized by either using simple thresholding to decide whether a

pixel should be 1 or 0, or by using a method like Otsu’s Binarization [51] to find

the best threshold. This process yields the points in two dimensions from the

laser intersection, and Figure 3.4 demonstrates the resulting output. The laser’s

reflecting properties cause the light from a surface region where a laser line is
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emitted to spread out across a wider surface area. To correct for this, the second

stage is to reduce the foreground portions of a binary image using skeletonization.

White pixels covering bigger regions will be reduced to narrow 1 pixel lines. This

process helps to eliminate any irregularities in the laser line that may be caused

by variations in the surface or angle of the object being scanned. The final step

calculates the profile of the scan in camera coordinates relative to the laser line,

using laser triangulation to estimate the depth of each point of the profile.

3.5 Exploring Impact of Metal types and Geometry

on Reflectivity

Reflectivity is an important property which is influenced by the material properties

but also the geometric shape of the object being scanned. To further understand

the challenges posed by reflective surfaces in a variety of metal types, it is essential

to find the appropriate parameters for the scanner when performing a 3D recon-

struction. Metal types have varying degrees of reflectivity, which can significantly

impact the quality of profile scans. For instance, aluminium is known to have

high reflectivity, which can pose significant challenges when attempting to obtain

accurate scans of aluminium manufactured objects, thus requiring lower shutter

time. In contrast, metals such as carbon steel are less reflective, making them more

suitable for scanning, thus a higher shutter time yields better results.

To map out these configurations in the experiment, a subset of four plates

have been chosen consisting of manufactured objects of different materials across

each plate to be scanned to measure the influence of both geometric variations

and metal type on the quality of the scan. Each plate is based on two metals with

different reflections, which can fluctuate the diffuse and specular light significantly

due to variations in metal composition, surface roughness, and other factors. The

following parameters selected for the experiment are outlined in Table 3.1. These

parameters have been selected due to their significant impact and correlation on

the quality of the scan. It is important to note that there are other parameters that

could be considered in this experiment, however, for the purposes of this study,

the focus will be exclusively on these parameters. In order to effectively assess the



Chapter 3: Method 47

impact of each parameter, a controlled study was performed, where each parameter

was varied while keeping the others constant. The results of this experiment are

given in Section 4.2.

Table 3.1: Experimental Configurations of VC Nano 3D-Z

Configuration Description

Shutter Time [𝜇𝑠] The duration of the camera’s exposure to capture
the image of the laser line.

RLC Threshold The threshold value set for the RLC algorithm to
detect the laser line.

Exposure Mode The camera’s exposure configuration, which in-
cludes three options:

• AUTO EXPOSURE: uses a fixed shutter
time,

• FIXED EXPOSURE: Trying to find an es-
timate of an optimal shutter time, and

• DOUBLE EXPOSURE: Uses two extra
shutter times.

3.5.1 Optimization based on Error Metrics

To optimize the laser line scanner configuration, a set of error metrics that will

be used to evaluate the quality of the generated laser line profile must first be

determined. These error metrics are essential in determining the accuracy and

reliability of the laser scanner, and can ultimately help improve the quality of

the resulting data. Each of these error metrics will provide valuable insights into

the accuracy of single line scans taken from various metal plates, allowing for

a comprehensive evaluation of the results. The results will be compared across

different parameter configurations to identify the configuration that produces the

best results for each metal. Each parameter configuration is evaluated based on the

following metrics: average distance, standard deviation of distance, and maximum Z

distance from mean.
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The Average Distance, denoted as 𝐸𝑎𝑣𝑔, represents the mean Euclidean distance

computed over consecutive pairs of points within the 2D coordinate space (𝑥, 𝑧)

and 𝑁 is the total number of points. Mathematically, this can be represented as:

𝐸𝑎𝑣𝑔 =
1

𝑁

𝑁−1∑︁

𝑗=1

√︃
(x𝑗+1 − x𝑗 )2 + (z𝑗+1 − z𝑗 )2 (3.1)

The Standard Deviation is calculated using Euclidean distances to calculate the

distances individually between each consecutive points. This can be stated as:

𝐸𝑠𝑡𝑑 = std

({√︃
(x𝑗+1 − x𝑗 )2 + (z𝑗+1 − z𝑗 )2

}𝑁−1

𝑗=1

)

(3.2)

Characterizing Maximum Height Variations Based on Z-coordinates: considering

that the z-coordinates represent the height of the object being scanned, any dis-

crepancies or anomalies, such as those caused by reflections, are expected to create

significant deviations from the average, since these points will stand out due to

their substantial difference from the rest of the data. The maximum absolute value

of the difference between each z coordinate value and the mean z coordinate value

is an error metric that may also be helpful to identify outliers. Mathematically, this

can be represented as:

𝐸𝑧,𝑚𝑎𝑥 =

𝑁
max
𝑗=1

�����
z𝑗 −

1

𝑁

𝑁∑︁

𝑖=1

z𝑖

�����
(3.3)

3.6 Vision-Based Inspection Framework Design

The vision-based framework aims to achieve its objective by automated steps to

conduct regular scans during the building process to generate a 3D reconstruction

that can be compared to the height of the STLmodel. Through comparative analysis

of various reconstructions, it is possible to derive insights into the building process,

which may subsequently inform adjustments to optimize the MELTIO’s parameters

or the toolpath of the robot to enhance the overall quality of the final product.
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For integrating a vision-based framework, our research explores mainly to

utilize the KUKA Industrial robot system, which has a 6 DOF robot arm and 2 DOF

rotating table for examining any deviation in an ongoing build. Due to the VC

Nano 3D-Z only receives a single profile scan, a comprehensive 3D reconstruction

requires several scans across the entire object. From the 3D reconstruction, a

comparison is made between the point cloud and corresponding height of the STL

model. By applying the RANSAC algorithm to fit a plane to the point clouds of the

base and scanned top layers, the height can be estimated between the base plate

and the current layer. This step is crucial for accurate height deviation estimation.

The need for such precision arises from experiences of earlier experiments, where

minor camera inaccuracies due to potential tilt, along with potential warping of

the bottom plate caused by heat, led to issues with the experiment. By employing

robust methods for plane fitting and rotationmatrix determination, it can effectively

handle noisy data and account for outliers and other errors, ensuring a reliable

alignment of the layers and a better precision of height deviations. Identifying

these errors, it enables thorough quality control, and corrective measures can be

taken in the subsequent system to rectify or investigate the error.

3.6.1 Data Acquisition and 3D Reconstruction

The prior studies in the specialization project explored the use of ArUco markers

and a rotational table as a potential method for 3D reconstruction, as seen in

Appendix B. It was observed that the deployment of markers was constrained and

inadequate in certain scenarios, and susceptible to distortion due to various envi-

ronmental factors, such as occlusion and lighting conditions. ArUco markers were

chosen at the beginning, as images taken from different angles can be registered to

the same reference frame. This allows for the construction of dense point clouds

from multiple viewpoints. This implies that geometric deviation can be computed

of the entire object, and not only at one height. However, the experiments for

this process involves using a 2 DOF rotation table to rotate the object while the

scanner remains in a fixed position. This method requires knowledge of the axis

of rotation relative to the scanner, and measurement of the angle of rotation for

each captured scan. While this approach effectively captures the geometry, it does

have certain limitations. These include the requirement for additional hand-eye
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calibration, as described in Section 2.4.2. However, incorporating this type of

calibration routine will additionally introduce uncertainties and inaccuracies [52].

Furthermore, this method demands considerable setup time and needs further re-

finements to automate the process. In contrast, the second method involves using a

robot arm to move the scanner in a single axis, as seen in Figure 3.5. This approach

do not require any calibration and setup time compared to the first method since

it only requires a constant step relative to the building coordinates of the robot.

The use of a robot arm introduces other complexities, such as ensuring accurate

positioning and alignment of the robot and maintaining its stability during the

scanning process.

Figure 3.5: Illustration of the 3D reconstruction process of the top layer utilizing
the VC Nano 3D-Z integrated with KUKA Industrial robot moving in the direction
of the green arrow.

Both methods have their advantages and disadvantages, and the selection of a

method would depend on factors such as the size and complexity of the object being

scanned and the overall desired level of accuracy. Upon analysing the advantages

and disadvantages of the two methods for performing 3D reconstruction, the

second method utilizing a robot arm seems to be a more reliable option. One key

advantage of this method is the ability to capture height deviation with higher

accuracy. This is due to the fact that the robot arm can be programmed to move

in a single axis, resulting in a more precise and controlled movement. The main

challenge encountered with the rotation table method was in estimating the axis of
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symmetry accurately, which was compounded by issues with wobbling instability

on the initial test setup.

3.6.2 Pre-processing and Fine-tuning RANSAC Parameters

All the scans requires a pre-processing procedure to eliminate points that are not

relevant, as most point cloud algorithms have difficulty distinguishing whether a

point is a noisy point or critical part of the scanned geometry. During the exper-

imentation process, most of the 3D reconstructions were adjusted by removing

portions from both sides, and the top and bottom layers. This was necessary

because the RANSAC algorithm, which was used to identify these planar surfaces,

struggled to do so as a result of substantial differences in their appearance or

properties. While the RANSAC algorithm is primary utilized to align two point

clouds, it also possesses the capability to fit a mathematical model, such as planes,

within a point cloud. For a more ideal performance of the RANSAC algorithm

with the dataset, fine-tuning of the specific parameters is necessary. Since the

experimentation primarily involves planes, there are no need to incorporate other

mathematical models to fit in the point cloud in the current experiments. Each of

these parameters can be adjusted accordingly to Table 3.2.

Table 3.2: RANSAC Parameters

Parameter Description

distance_threshold Represents the maximum distance from the plane
at which a point can be considered to fit the model
and thus be labelled an inlier. If this value is set
too high, it might lead to the inclusion of noise or
an outlier.

ransac_n Defines the minimum number of points that must
be considered inliers for the model to be deemed a
good fit. If this value is set too high, it will demand
more points to ascertain a good fit.

num_iterations Refers to the number of iterations the algorithm
should perform. An increased number of itera-
tions enhances the probability of finding the op-
timal model. This value should be set high if the
point cloud has a lot of noise.
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3.6.3 Plane Estimation and Alignment

After the pre-processing, the remaining result should consist of an initial scan

of the base and each top layer segmented into its own point cloud. The base

serves as a reference point for measuring height deviations. Typically, when

slicing a STL model, it is divided into layers of equal height. However, due to

the deposition process leaving strands of material along the toolpaths rather than

perfectly flat layers, the top layer’s height may exhibit significant fluctuations. This

is affected by the choice of infill pattern and structure when making the toolpaths.

Infill structures, which are generated by these toolpaths, determine the internal

structural integrity of the model. In this thesis, most experimental samples were

produced using a zigzag pattern [53], which offers internal contour filling during

the manufacturing of multi-layered cubes.

Several improvements were implemented throughout the experimentation

process to address various errors. Initially, there was the issue of achieving accurate

height measurements due to the fluctuations in each manufactured layer and the

lower resolution of the zigzag pattern. In addition, the high temperatures produced

during a DED process can introduce bending of the base plate. This highlights

the necessity of having an alignment strategy to minimize the propagation of

error through the subsequent layer. This challenge was addressed by applying

the RANSAC algorithm for plane segmentation, thereby finding the best-fitting

plane for each layer. By segmenting the best fitting plane of the base plate, an ideal

alignment can be achieved. This alignment is based on the rotation matrix derived

from the base plate, which can be used to align all subsequent layers during the

construction process, as illustrated in Figure 3.6. Furthermore, the pseudocode for

this algorithm can be found in Appendix E.

Figure 3.6: Illustration of the Plane Segmentation and Alignment process of each
top layer point cloud.
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Once all the layers are properly aligned, the mean value along the height

dimension is calculated to estimate the height between the base and each scanned

layer. This reduces the need of employing additional point cloud registration

methods, such as ICP. However, due to incomplete capture of the entire object

during themanufacturing process, applying ICPwould become insufficient. Despite

the reliability of achieving optimal alignment being highlighted in Section 3.1, the

inadequate number of points would still result in an inaccurate alignment and

assessment of the object’s geometry.





Chapter 4

Experiments and Result

The experiments and findings from the study are presented in this chapter. Before

discussing how each experiment was conducted, we will first state our experi-

mental plan. Then, each experiment will be presented with an explanation of the

setup used, along with the qualitative and quantitative results. Each experiment’s

findings will then be discussed in order to assess the outcomes and potential fu-

ture improvements. Firstly, the experiments will investigate the quality of the VC

Nano 3D-Z in a replicated environment to get results and insights for utilizing the

multiple DOF of the KUKA Industrial robot. Then, the result regarding integrating

a method for 3D reconstruction for the DED system outlined in Section 2.3 is

presented together with a video illustrating the results and process. Finally, an

empirical investigation is conducted to explore the potential for error correction,

focusing on achieving the expected height by addressing deviations in measured

height.

4.1 Experimental Plan

The experiments aim to gain insights to develop an automated inspection frame-

work. This will enable monitoring of height deviations throughout the manufac-

turing processes in the DED system. Four experiments were developed that each

55
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focus on a different aspect to develop the framework. Each experiment is given a

brief overview in Table 4.1.

Table 4.1: Overview of the experiments

Experiment Objective Method

1 Optimize scanner
configuration param-
eters.

Examine a set of four plates with
diverse metal types and evaluate
a range of parameters that signif-
icantly influence the results, such
as shutter speed, line detection, and
exposure modes.

2 Verify scanner accu-
racy and method for
3D reconstruction
utilizing the multiple
Degrees of Freedom
offered by the DED
system.

We compared the final 3D recon-
struction of a plate, to their corre-
sponding height based layer height
of the STL model.

3 Apply the methods
for detecting height
error in the DED sys-
tem.

Conduct 3D reconstructions after
every manufactured layer, and com-
pare each measured layer height
from the 3D reconstruction to the
estimated height in the STL model.

4 Examine the relation-
ship between height
deviation and layer
height by measuring
these deviations in
order to generate
a more accurate
approximation of the
expected height.

Utilize insights from Experiment 3
to minimize height deviation by tak-
ing the measured error into account
and estimating a new layer height
for improving the accuracy of the
expected height.

The Franka Emika robot was initially used to refine the scanner’s configuration

parameters for a subset of different metal types, assuring accurate scanning in

Experiment 1. Upon determining the appropriate configurations, then moved on to

Experiment 2 to verify the scanner’s accuracy and method for 3D reconstruction. In

this experiment, Franka Emika robot was employed to verify a method for accom-

plishing a 3D reconstruction. Subsequently, the accuracy of manufactured objects

was then determined with corresponding height in the STL model. Experiment
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3 and 4 were carried out using DED system. In Experiment 3, the height errors

were identified by actively scanning after each manufactured layer. Based on these

findings, a method was developed to retrieve the error after every scanned layer.

This method was applied to Experiment 4 to see if the measured deviation could

be used to create a better estimate of the expected height.

4.2 Experiment 1: Optimizing VC Nano 3D-Z for

different Metals

The fundamental issue in the a 3D reconstruction is the significant diversity in

the diffuse and specular reflected light properties of metals. When utilizing laser

triangulation, DED systems can create a wide range of metals onto diverse metal

substrates, resulting in significant variation in diffuse and specular reflections

between the metals. The purpose of this study is to evaluate various line scanner

parameters with regards to the different metals used to find a set of optimal

configurations for each material situation.

4.2.1 Setup

The use of a Franka Emika robot with a VCNano 3D-Z attachment offers a regulated

and dependable setup for evaluating the different combination of configurations.

The scanner will be used in the subsequent experiment to scan four metal plates

manufactured by the DED system. Data collection is accurate and reproducible

because the robot arm keeps the laser line in the same location throughout each

scan. The VC Nano 3D-Z is placed at an optimal distance of 20 cm away from

the table relative to the end-effector of the robot arm, as seen in Figure 4.1. This

guarantees that the data is reliable and free from outside distortions.
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Figure 4.1: Illustration of the setup using Franka Emika robot arm and VC Nano
3D-Z.

One of the aspects we must consider when interpreting the results is that

every metal plate consist of various patterns and shapes across the plate, as seen in

Figure 4.2. Also, every plate also consists mostly of twomaterials: the substrate, and

the top layer which is the manufactured object. We will scan a total of four metal

plates with a single laser line to examine the different configurations outlined in

Section 3.5.1, and each plate consists of two metal types as showcased in Table 4.2.

Table 4.2: Metal Types and their corresponding base metals for every plate sampled
for the experiment.

Plate Top Substrate

A Carbon Steel Carbon Steel

B Aluminum Aluminum (Grit blasted)

C Bronze Carbon Steel

D Stainless Steel Carbon Steel (Grit blasted)
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Figure 4.2: Visual illustration of all the plates utilized for this experiment.

4.2.2 Results

The results and findings of the experiment will be presented in the section that fol-

lows. Further visual representations and findings can be found in the Appendix A.

Comparison of Shutter Times of each Plate

The shutter time analysis was carried out by gathering data from 64 different

shutter times, ranging from 500 𝜇𝑠 to 10,000 𝜇𝑠 on each plate. Table 4.3 shows

the five best shutter times for each plate based on the error metrics, described in

Section 3.5.1. A comparison of Plate A and C reveals that the plate samples had

substantial differences. Even though the shutter times on the two plates are equal,

Plate C shows higher errors for all metrics. Plate D has a higher degree of variation

in terms of values, despite Plates B and D having relatively low shutter periods.

This is because the objects created on Plate D have significant height discrepancies.
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Table 4.3: Best Shutter Times for each Plate

Plate Shutter

Time

[𝜇𝑠]

Avg.

dist.

[mm]

Standard

Deviation

[mm]

Variance

[mm]

Max Error

[mm]

A

9950 0.325152 0.612833 0.375564 13.3113

9500 0.325417 0.613697 0.376624 13.3072

8750 0.32556 0.61455 0.377672 13.3084

9800 0.325746 0.614687 0.377841 13.3196

9650 0.326159 0.616378 0.379922 13.308

B

3800 0.315711 0.581551 0.338201 17.7838

3950 0.315927 0.580892 0.337436 17.7809

3350 0.316282 0.582754 0.339602 17.7899

3650 0.31642 0.57983 0.336203 17.7909

3050 0.31657 0.581484 0.338123 17.788

C

9950 0.357283 0.932996 0.870482 15.8173

8750 0.358721 0.933767 0.87192 15.8202

9500 0.358853 0.935753 0.875634 15.8044

9800 0.358982 0.934683 0.873632 15.8067

9350 0.359225 0.934093 0.872529 15.7959

D

2600 0.508492 2.03241 4.13069 13.5345

2450 0.509201 2.0249 4.10024 13.6221

1550 0.510621 2.05992 4.24328 13.5512

1700 0.510743 2.04409 4.1783 13.5542

1850 0.511085 2.03189 4.12859 13.5033
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Comparison of RLC Threshold

The optimal RLC threshold values were discovered by iterating all values from 20

to 40. Table 4.4 shows the five best RLC Threshold value for every plate and the

corresponding best shutter time for each plate found in Table 4.3. Plates A and C

had values that were comparable, but Plate D had the lowest value. This result

implies that when higher shutter times and RLC threshold values are employed to

Plate D, scattering may have an effect on the intensity of the light emitted from

the laser line scanner and the RLC threshold value. This suggests that when the

shutter periods and RLC threshold values increase, the light emitted by the laser

line scanner gets diffused, resulting in a drop in the intensity of the light collected

by the sensor and, consequently, lower values as seen in Plate D.
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Table 4.4: Best RLC Threshold for each plate

Plate RLC

Thresh-

old

Shutter

Time

[𝜇𝑠]

Avg.

dist.

[mm]

Standard

Devia-

tion

[mm]

Variance

[mm]

Max

Error

[mm]

A

30 9950 0.324948 0.612689 0.375388 13.3013

29 9950 0.329797 0.650902 0.423673 13.3233

31 9950 0.330628 0.628991 0.39563 13.291

32 9950 0.33621 0.645828 0.417094 13.2592

33 9950 0.341164 0.65815 0.433161 13.2536

B

28 3800 0.310809 0.563714 0.317774 17.78

30 3800 0.31579 0.579743 0.336103 17.7965

29 3800 0.316025 0.578341 0.334478 17.7818

32 3800 0.316243 0.584489 0.341628 17.7886

31 3800 0.3165 0.583951 0.340998 17.7978

C

29 9950 0.348094 0.893221 0.797844 15.8777

30 9950 0.35659 0.929644 0.864238 15.8336

31 9950 0.363956 0.953084 0.908369 15.7938

32 9950 0.372201 0.98969 0.979487 15.7839

33 9950 0.375627 1.09427 1.19744 15.7738

D

20 2600 0.432143 1.84543 3.4056 25.8308

21 2600 0.44286 1.87953 3.53264 26.0387

22 2600 0.459577 1.9298 3.72412 26.2464

25 2600 0.460927 1.92575 3.70851 26.5727

23 2600 0.466992 1.94918 3.79931 26.3704
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Comparison of Exposure Modes

The three distinct exposure modes were triggered in order to obtain the results. In

exposure mode 0, the user had the option to choose a fixed shutter time, where

the best shutter time was utilized for every plate. Exposure Mode 1, enabled

the scanner to automatically adjust the shutter time and gain value based on

available light in our scene. The shutter time and gain value were each set within a

specified range, with distinct minimum and maximum values established for both

parameters, dependent on the lighting conditions. This setting is typically utilized

in unpredictable lighting situations. The last exposure mode 2, enables two shutter

times (Double Shutter 1 and Double Shutter 2) for capturing each plate, which will

help to remove underexposure of the darker areas or overexposure of the brighter

areas on the surface we are scanning. To determine the most optimal shutter time,

heatmaps were generated to evaluate the correlation between shutter times and

error metrics, as seen in Appendix A. The results showed that the distribution

of the heatmap was even across the error metrics, indicating that there was no

significant correlation between the two variables and that the chosen shutter times

were not highly influential in determining the error values. Table 4.5, showed the

results that Plate A, Plate C, and Plate D had the lowest overall error rate when

using exposure mode 1. On the other hand, Plate B demonstrated a lower error rate

when using exposure mode 0. These findings suggest that for Plate B, maintaining

a fixed exposure time was more effective in producing accurate results, while for

Plates A, C, and D, using the automatic exposure adjustment provided by mode 1

resulted in the lowest error rate.



T
ab
le
4.
5:
B
es
t
E
x
p
o
su
re

M
o
d
es

fo
r
ea
ch

P
la
te

P
la
te

E
x
p
o
su

re
M
o
d
e

S
h
u
tt
e
r

T
im

e

D
o
u
b
le

S
h
u
t-

te
r
1

D
o
u
b
le

S
h
u
t-

te
r
2

R
L
C

T
h
re
sh

-

o
ld

A
v
g
.

d
is
t.

[m
m
]

S
ta
n
d
a
rd

D
e
v
ia
ti
o
n

[m
m
]

V
a
ri
a
n
ce

[m
m
]

M
a
x
H
e
ig
h
t

E
rr
o
r
[m

m
]

A

0
99
50

-
-

30
0.
32
54
25

0.
61
31
28

0.
37
59
25

13
.3
07
6

1
-

-
-

3
0

0
.2
6
9
3
5
7

0
.4
4
0
2
1
3

0
.1
9
3
7
8
7

1
3
.9
9
2
3

2
-

42
5

60
0

30
0.
28
41
35

0.
49
28
43

0.
24
28
94

13
.3
17

B

0
3
8
0
0

-
-

2
8

0
.3
1
0
7
4
8

0
.5
5
9
6
8
1

0
.3
1
3
2
4
3

1
7
.7
7
2
2

1
-

-
-

28
0.
32
71
61

0.
66
72
77

0.
44
52
59

17
.8
48
7

2
-

32
5

30
0

28
0.
32
51
96

0.
65
19
93

0.
42
50
95

18
.0
31
1

C

0
99
50

-
-

29
0.
34
85
1

0.
88
32
23

0.
78
00
83

15
.8
85

1
-

-
-

2
9

0
.2
9
7
1
8

0
.6
1
1
6
7
2

0
.3
7
4
1
4
3

1
6
.9
6
5

2
-

12
5

45
0

29
0.
31
54
39

0.
71
77
45

0.
51
51
58

17
.6
41
3

D

0
26
00

-
-

20
0.
43
33
59

1.
84
56
6

3.
40
64
6

25
.7
58
9

1
-

-
-

2
0

0
.3
8
7
3
2
7

1
.5
6
9
7
3

2
.4
6
4
0
6

2
3
.8
6
3
5

2
-

18
5

85
0

20
0.
42
66
53

1.
81
83
9

3.
30
65
4

25
.9
62
2



Chapter 4: Experiments and Result 65

Visual Comparison of Finding the Ideal Shutter Time

The provided results visually compare iterations through a small portion of shutter

time configurations tested for Plate B, where the ideal shutter time was determined

to be 3800 𝜇𝑠 . Figure 4.3 displays the progression of thee shutter times, leading

to identification of the ideal shutter time based on the error metrics. Each of

the results for all the configurations tested are available in an easily accessible

HTML format in the code repository. Figure 4.3a illustrates the loss of points in the

center, potentially due to inappropriate parameter settings. In contrast, Figure 4.3b

reveals the generation of numerous outliers due to an excessively high shutter time

configuration. Ultimately, Figure 4.3c displays the final results obtained, providing

evidence that the selected error metrics functioned effectively to find the parameter

configurations for the scanner.
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(a) Shutter time of 5900 𝜇𝑠 .

(b) Shutter time of 8600 𝜇𝑠 .

(c) The ideal Shutter Time discovered was 3800 𝜇𝑠 .

Figure 4.3: An example of the process of determining the best shutter time based
on the error metric, using Plate B as an example.
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4.2.3 Discussion

Surface Roughness and Scanning Path

The chosen parameters for the experiment were carefully selected to be a repre-

sentative subset of possible configurations and were heavily influenced by the

shutter time parameter. Each plate presented unique geometrical variations, which

impacted the results and challenged the efforts to identify optimal configurations.

The roughness of each plate varied a lot because a portion of the base plate were

grid blasted, which introduces random deviations in surface texture and increases

the complexity of the reflection patterns for the laser. Normally, the laser line

scanner would only pick up diffusely reflected light in a perfect scanning scenario,

and not any specular reflection. However, when scanning over highly textured

surfaces and edges, the sensor may also pick up specular reflected light, resulting

in outliers. To reduce the occurrence of outliers, it may be beneficial to plan a

scanning path, as earlier described in Section 2.6.

High variation in Reflection

According to the findings, which are presented in Table 4.3, Plate A and C had

the lowest overall reflectivity among the plates examined. Due to the decreased

reflectance in these plates, a longer optimal shutter time of 9950 𝜇𝑠 to capture

sufficient light was tested. Upon examining the data, we found that only the base

of Plate A was captured. In standard operating conditions, the scanner is calibrated

to only capture diffusely reflected light, effectively nullifying specular reflection.

However, during the process of scanning edge features, there may be instances

where the sensor inadvertently intercepts specular reflected light. This can happen

due to the angle of incidence coinciding with the angle of reflection on the edges.

Such incidents can lead to data outliers. This highlights the inherent difficulties in

capturing the entirety of the plate when faced with low object diffuse reflection,

issues which were present in both Plate B and D. Additionally, it was discovered

that high reflecting objects produced more outliers depending on the intensity of

the specular reflective light. We have observed a high correlation between the

shutter time and geometric variations, particularly at edges of the scanned object,
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as expected by the theory in Section 2.6. The findings show that both the material

reflection and the geometric structure affect the number of outliers generated.

Low Reflectivity with Exposure Mode 0

The results of our experiment indicate that exposure mode 0, was not effective

when dealing with the low reflection of Plate A. The issue lies with exposure

mode 0, which employs a fixed shutter time that has proven to be insufficient for

capturing the details of the metal type of the base. In our experiment, we found

that even after testing a range of shutter times, a higher shutter time was necessary

to adequately capture these details. However, our results also point out the benefits

of utilizing exposure mode 1. Exposure mode 1 is better suited for capturing images

with low reflectivity, as it incorporates an iterative process between the shutter

time and gain to achieve ideal results.

Figure 4.4 demonstrate the clear differences between exposure mode 0, 1 and 2.

It is important to keep in mind that the best exposure mode will differ depending

on the reflectivity of the object being captured, the lighting, and the desired result.

However, our work emphasizes the need of taking into account the interaction

between shutter duration and gain when selecting an exposure mode. Additionally,

our findings imply that exposure mode 1 would be a superior option in the future

for similar metal characteristics, particularly when working with low reflectiv-

ity metals. While exposure mode 2 effectively accommodates highly differing

reflectivity between the base and manufactured object.
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Figure 4.4: Illustration of exposure mode 0, 1 and 2 of Plate A. Exposure mode 1 is
a closer resemblance to Plate A.
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4.3 Experiment 2: Top Layer Inspection with VC

Nano 3D -Z

An accurate and valid 3D reconstruction is essential for ensuring the frameworkwill

work as desired. However, prior testing and experimentation in the specialization

project [6] has only been conducted on Polylactic Acid (PLA) manufactured objects,

which is not an accurate representation of objects being manufactured by a DED

process. In this experiment, different layered cubes manufactured with DED are

inspected and the measured heights of the top layer are compared to the expected

height from their corresponding STL model.

4.3.1 Setup

This experiment uses the same setup as Experiment 1, with a Franka Emika Robot

and a VC Nano 3D-Z attached to the end-effector. The robotic arm will travel in

linear steps of 0.1 mm, performing a scan after each stop, to create a 3D recon-

struction of the entire plate. The scanner configuration parameters that performed

best for all plates in Experiment 1 is chosen for the reconstruction.

For this experiment, three different cubes are being scanned, as seen in Fig-

ure 4.5. These cubes have been purposely built with a variety of layers throughout

the plate. Also, each cube has been designed so that it is easy to compare it to the

relevant STL model. It is anticipated that each layer will have a uniform height of

0.98 mm, and length and width of 14 mm. The following cubes in the associated

STL file should therefore have heights of 2.94, 4.90, and 6.86 mm. This experiment

examines the gap between each cube’s height and the predicted height provided

by the STL model, ultimately examining the height deviation by simply computing

the distances between the points to the desired height.
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Figure 4.5: The final outcome of various layered cubes produced by the MELTIO
system, annotated with the number of layers in the cubes. The cubes behind
represent a separate experiment.

4.3.2 Results

The results and findings for this experiment will be presented in the section that

follows.

Comparisons of Measured Error of the Heights

In examining the height discrepancies between each top layer and mesh, the

accuracy and comparisons of measured heights of the 3D reconstruction were also

assessed. To achieve this, a generated planar mesh of the top layer derived from the

3D reconstruction served as the reference for guiding themanual alignment for each

of the three cubes. Figure 4.6 illustrates how each cube’s STL model was aligned

with the scanned top layers. Additionally, height deviation from the scanned top

layers is then presented in Table 4.6 as a mean value. Furthermore, it is noteworthy

that the cube, whose height was accurately measured at 7.22 mm, demonstrated

an anomalously increased layer height. This irregularity was traced back to an

error that occurred during the manufacturing process. By analysing the overall

data, we were able to observe the increase of fluctuations in the measured height

discrepancies between each of the layered cubes, and this divergence increased as

the number of layers was increased.

To transform the measured distances into frequency data, we categorized the

distances into interval of 0.1. The distance intervals were based on their proximity

to the intended height of the STL model, as shown in Figure 4.7. Additionally, the
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results demonstrated correlation between the number of layers and the magnitude

of error. Lastly, Figure 4.8 combines all the frequency plots into one for a direct

comparison.

Table 4.6: Comparison of Manufactured Cube Height and corresponding Mesh
Heights

Layers Measured

Cube Height

[mm]

Mesh Height

[mm]

Height Error

[mm]

3 3.0 2.94 0.06

5 4.99 4.90 0.09

7 7.22 6.86 0.36

(a) 3-layered Cube (b) 5-layered Cube

(c) 7-layered Cube

Figure 4.6: Illustration of each top layer and their corresponding STL model to
compare the height deviation for 3-layered, 5-layered, and 7-layered cubes.
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(a) 3-layered cube

(b) 5-layered cube

(c) 7-layered cube

Figure 4.7: Comparison of frequency distances for 3-layered, 5-layered, and 7-
layered cubes.



74 Towards Automatic Inspection in AM using Computer Vision

Figure 4.8: All the frequency of the distances visualized together for comparing
each cube to each other.
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4.3.3 Discussion

Discrepancy between Expected and Manufactured Heights

The rising inaccuracy with the number of layers being made was one of our most

significant findings. In addition, the surface on top of each cube is not perfectly

flat and is made up of eight curvature strings stacked one on top of the other.

This implies that the surfaces are not flat in relation to the STL model, as seen in

Figure 4.9, and that the curvature surfaces add some extra reflectiveness, causing

a small amount of fluctuation in the measurement of the error. This source of

error led to the development of a plane segmentation using RANSAC to extract the

height of each layer, as described in Section 3.6.3. This method was subsequently

applied for future experiments.

Figure 4.9: Preview of toolpath generated from the STL model of the 3 layered cube
in the software named Slic3r.

Increased Height Error with Number of Layers

The manufactured cubes were manually constructed using toolpaths, which, due

to their small size, resulted in lower resolution cubes. There are significant dif-

ferences between expected and desired height. It is important to highlight that

wire-based DED techniques have a lower resolution than some alternatives, but

a higher deposition rate and the ability to manufacture larger objects. The DED

technique has limits, despite its benefits. Recreating small features or sharp corners

is particularly challenging with this process, as the resolution may be insufficient
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to accurately capture the geometrical complexities of the STL model. In addition,

the deposition process can be affected by thermal effects such as residual stress

and distortion, which can result in variations in the material properties of the

deposited material and the corresponding STL model. The measured height of the

cubes gradually increases with the number of layer manufactured. The final cube’s

anticipated height was 6.86 mm, but it was actually constructed with a height of

7.22 mm, indicating that the inaccuracy has been gradually getting worse with

each layer. This cube saw substantial temperature rises during the manufacturing

process, which increased height deviation. This behaviour of changes in process

parameters will highly affect the final object, including the process’s sensitivity

to parameter changes and the accumulation of errors over successive layers of

deposition. The cubes were constructed using a string-based approach for the

toolpath. It was discovered that the length of the string can be adjusted to achieve

a more accurate representation of the cube, depending on the working distance

between the nozzle and the plate, as illustrated in Figure 4.10. By optimizing the

working distance based on the measured error of each cube, it is possible to create

more accurate cubes. This was also described in Subsection 2.7.3 of the related

studies.

Figure 4.10: In the MELTIO system, the height and width of the string depends
on the distance between the nozzle and the printing bed (also the focal point). As
the printing head moves up or down, the height and width of the string changes
accordingly. This height control allows for precise layering and shaping of the
manufactured object, while the nozzle diameter affects the resolution and speed of
the printing process.
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4.4 Experiment 3: Layer-wise Height Deviation in

a Manufacturing Process

The experiments conducted so far have not been tested in an active DED process.

The Franka Emika Robot and the KUKA Industrial Robot are sourced from different

suppliers, resulting in two completely distinct systems. As such, the primary

objective is to integrate the scanning setup with the DED system in order to

achieve inspection during the manufacturing process. In this study, we examine

the same method that was previously used for 3D reconstruction, but this time

for each layer in the active manufacturing process for analysing height variation

through the entire process.

4.4.1 Setup

For this experiment, the VC Nano 3D-Z will be integrated into KUKA Indsutrial

Robot system outlined in Section 2.3. Whenever a layer is finished, a new scan

will be performed by incrementally translating along the x-axis in linear steps

of 0.5 mm. The KUKA Industrial Robot initiates its operation from a pre-defined

starting position, then progresses linearly along the x-axis before reverting to the

prior pose in order to continue to the next layer. This experiment utilizes a cube

with dimensions of 24 × 24 × 10 mm. Each layer is designated to have a thickness

of 1.0 mm, and carbon steel serves as the primary metal type employed in the

experiment.

4.4.2 Results

The following section will present the experiment’s findings and results. As discov-

ered in Experiment 2, the utilization of the RANSAC plane segmentationmethod for

each consecutive top layer offers a more accurate representation to the STL model.

These results are presented using both mean calculations and plane comparisons.

The final result of the cube manufactured can be seen in Figure 4.11.
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Figure 4.11: Final result of 10 layered cube with 1.0 mm layer height.

Discrepancy between each layer relative to base

Figure 4.12 and Figure 4.13 presents the final comparison of each consecutive layer

with respect to the base, illustrating the representation of each layer in the point

cloud after the pre-processing of the point cloud data. Figure 4.13 shows the final

results, comparing each consecutive layer to the base and calculating the variance

of the height deviations. The final layer exhibited a distance of 10.09 mm in the

raw point cloud and 10.08 mm when derived from the segmented RANSAC planes.

(a) Height Layer Comparisons using mean

(b) Height Layer Comparions using

RANSAC Plane Segmentation

Figure 4.12: Final results after cropping, aligning and comparing each layer: two
methods were utilized to highlight the differences, order plane comparison using
raw and RANSAC for a direct visual comparison.
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(a) Height Layer Comparisons using mean

(b) Height Layer Comparisons using RANSAC Plane Segmentation

Figure 4.13: Error calculated for each layer relative to the base, using two methods:
raw point cloud and RANSAC plane. Variance is determined for each point to
assess uncertainties in height deviation.
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Discrepancy between each consecutive layers pairs

Figure 4.14 illustrates the height deviations based on the relative differences be-

tween each layer. Ideally, the height differences between these pairs should be 1.0

mm. The first pair (0, 1) has the greatest height deviation, which is most likely

due to the bonding of the building plate and manufactured metal. Additionally,

to uncertainties associated with using carbon steel that is still in an experimental

phase in terms of determine more ideal process parameters. A small pattern can

be observed, which oscillates around 0.

Figure 4.14: The height differences between each layer pair, where the expected
layer height is 1.0 mm.

Video Results

In order to provide a deeper understanding of how the integrated hardware works

with DED system, the results will show how the 3D reconstruction is integrated

together with DED system, as depicted in an illustrative video presented in Fig-

ure 4.15. A compressed video, shortened from 50 minutes to 2 minutes and 30

seconds, effectively showcasing the scanning procedure between each layer. The

alteration between operating in scanning and manufacturing is highlighted in the

upper-left corner for reference.
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Figure 4.15: QR code showcasing the Final Result. If this is being viewed on a
digital device, a link is included: youtu.be/FafU_0GgmvA

.

4.4.3 Discussion

Enhancing Height Discrepancy Calculation

As previously mentioned, generating the toolpath from a STL model can lead to

increasing inaccuracies. To address this issue, we implemented mean value calcula-

tions and RANSAC plane segmentation to provide a more accurate representation

of the height when calculating the height deviation. Our experiment demonstrated

minimal errors across each layer, resulting in a final height that closely aligned

with expectations. The first built layer typically exhibits a higher error due to the

bonding process, which refers to how each layer bind to the one below it. However,

as subsequent layers are added, the error slowly decreases. The variance shown

in Figure 4.13, which shows a large spread across the height deviation, which is

probably correlated to the toolpaths.

For each layer, only a small deviation was anticipated, and our results con-

firmed this hypothesis. The final height of the object ranged somewhere between

10.08 and 10.09 mm, showcasing using mean value calculations and RANSAC

plane segmentation for a more precise height estimation in point clouds. Due to

the fluctuations in the height of the generated toolpaths, this method is a closer

estimation of height instead of using the closest distance approach, as previously

employed in Experiment 2.

https://youtu.be/FafU_0GgmvA
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4.5 Experiment 4: Height Optimization in a Manu-

facturing Process

In order to achieve the most precise geometric properties in the DED system, each

metal requires their own set of parameters, which have been discovered by doing

empirical research. In this experiment, we will focus examining a single parameter:

layer height. The main objective is to determine how modifications to the layer

height based on height measurements can bring the achieved layer height closer

to the designed layer height. Throughout this study, we will explore the impact of

height alternation on the desired height by investigating strategies for layer height

adjustments.

4.5.1 Setup

In this experiment, a KUKA Industrial robot is employed with a VC Nano 3D-Z for

scanning and a MELTIO Engine Robot for the DED process, as in prior experiment.

The metal types chosen for this experiment will be carbon steel for both build

plate and manufactured metal will be carbon steel. The height measurements will

similarly be calculated with the same methodology used in Experiment 3 to access

the height errors. Initially, three cubes will be created with a layer height of 1.075

mm, which has proven to be a good initial guess in previous experiments. The

expected building height for this should be 10.75 mm at the 10th layer and 21.5

mm at the 20th layer. Accordingly, two scans will be conducted, and RANSAC

plane comparisons will be used to obtain an average height across the three cubes

to estimate the height and distributed layer error. Finally, a distributed error will

be calculated to determine a new layer height that can be explored and empirically

studied with further.

4.5.2 Results

A total of six cubes were produced, as illustrated in Figure 4.16. Which can be

categorized as follows: Cube A represents the first three cubes, that were used to
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estimate an average height. Subsequently, Cube B signifies the recalculated height

based on the error from Cube A. Cube C represents the derived height from Cube

B, but were halved due to significant error generated. Lastly, Cube D, on the other

hand, is an extended version with 20 layers instead of the 10 layers used in Cube B

and C to see if it is possible to produce a closer estimate of expected height at the

20th layer of 21.5 mm.

Figure 4.16: Final results of the manufactured cubes.

Table 4.7 shows the measurements taken for each cube as well as the manufac-

turing order. Cube A consists of a batch of three cubes, each intended to be identical

in dimension, and represents the first produced cubes. Measuring the height of all

three cubes, the average height computed was 10.10 mm from the scan. Subse-

quently, we compute the distributed error between each layer and estimate a new

layer height of 1.139. This is calculated by dividing expected height by achieved

height and adjusting the tool path height by that ratio: 10.75/10.10 = 1.06435.

Then, incorporating the error or ratio into Cube A’s layer height (1.075 mm) an

update layer height of 1.075 + 0.06435 ≈ 1.139 mm to Cube B. As a result of the

updated layer height of Cube B, the error increased. This led us to estimate a

new layer height by halving the error to produce Cube C, which yielded results

closest to the expected height. Comparing this to Cube A and B, the results showed

improvements and the height deviation was reduced significantly.
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Table 4.7: Measured and expected heights of Cube A (M1, M2 M3), Cube B, Cube
C, and Cube D with deviation and layer height.

Cube Measured

Height

[mm]

Expected

Height

[mm]

Height Devi-

ation [mm]

Layer

Height

[mm]

Cube A (M1) 10.1527 10.750 -0.5972 1.075

Cube A (M1) 23.1549 21.5 1.6549 1.075

Cube A (M2) 10.1086 10.750 -0.6413 1.075

Cube A (M2) 23.1719 21.5 1.6719 1.075

Cube A (M3) 10.0799 10.750 -0.6700 1.075

Cube A (M3) 23.0554 21.5 1.5554 1.075

Cube B 11.9755 10.75 1.2255 1.139

Cube C 10.9529 10.75 0.2029 1.107

Cube D 23.1068 21.5 1.6068 1.107

The objective of the layer height adjustments was to determining if it was

possible to get a more closely measured cube height to the expected height. As

observed in Cube C, the height was getting closer to the expected height, prompting

the creation of Cube D to see if we can generate a closer approximate of 21.5 mm

in measured height compared to Cube A. However, the cubes generated in this

experiment exhibited very small dimensions in terms of length and width, resulting

specially for Cube D of a smoother top surface and a larger height deviation.

Detecting small inaccuracy in the scanner

After the experiments, we noted slight inaccuracies in the placement of the scanner,

which led to a tilted z-axis and consequently, imprecise height deviation measure-

ments. This problem was addressed by again utilizing the RANSAC plane fitting

algorithm to find a corrected rotation matrix relative to the initial scan of the base,

as outlined in Section 3.6.3. The results can be corrected by utilizing RANSAC to

fit a plane to the point cloud data, pinpointing the rotation to align the scanned

layers with the base, thereby minimizing error.
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Figure 4.17: Comparison of the base plate tilt correction from Experiment 4 using
RANSAC to find a more ideal rotation and correct the tilt error.

4.5.3 Discussion

Addressing Low Scan Quality and Limited Surface Area

Due to the small size of the generated cubes for this experiment, the 3D reconstruc-

tion data was limited when measuring the height. The small size also affected build

because of the heat distribution issues across the surface area occurred, causing

many of the cubes to become smoother at the final layers and resulted in difficulty

measuring the height. This issue is closely linked to the size of the surface area

and the generated cubes were the smallest currently feasible for production in

DED system. The behaviour is illustrated in Figure 4.18. For example, Cube C

produced a more precise height estimate of 10.9529 mm with a 0.209 mm variance.

Furthermore, Cube D was created to make an attempt of expected height in Cube C

at the 20th layer. However, the smaller surface area of Cube D resulted in a larger

error due to the smooth surface it developed when built above the 10th layer.
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Figure 4.18: Illustrates the rounding effect on the top layer due to insufficient
surface area. Top: scan of cube produced with width and length of 24mm. Bottom:

leftmost scan of Cube produced with width and length of 14.2 mm.

Correlation Related to Height Deviation

Throughout the experiment, discerning any trends or patterns related to height

deviation proved challenging. As this study primarily focused on empirical research,

it is plausible that some correlation exists between layer height adjustments and

the final expected height. However, various factors influence the geometry, making

determining an object’s height difficult. Despite the challenges, measuring the

deviation in the height might help to improve the final height. The findings

from this experiment may not provide sufficient insights to establish a direct

correlation between layer height adjustments and achieving the expected height,

they do indicate that height adjustments can be modified to a certain degree during

the process to reach the expected height and geometrical requirements. Further

research of this link may lead to a better knowledge of what factors are impacting

height accuracy, ultimately improving the representation of the 3D reconstructions.
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Discussion

The outcomes presented in Chapter 4 have been examined primarily on an indi-

vidual basis, focusing on key highlights. These discussions also exposes several

challenges related to optimizing the scanner, the 3D reconstruction process, evalu-

ating the measuring method, height measurement, and the error metric for height

deviation. This chapter generally summarizes the results and discussions to address

the research questions outlined in Section 1.2. Additionally, it emphasizes any

shortcomings identified throughout the experimentation, and also evaluate this

type of measurement method contributing to a more comprehensive understanding

of the research findings.

5.1 Evaluation on Measuring Method

A supplementary failed experiment, detailed in Appendix C, was conducted as

a minor test of Experiment 4. The primary objective of this supplementary in-

vestigation was to explore the limits of attainable building height and to assess

larger errors, as the height deviations observed in the previous Experiment 3 were

relatively low. This further analysis aimed to enhance our understanding of the

factors influencing the building process and potential challenges associated with

small increase of layer heights in the DED process. Additionally, the scanning

87
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procedure is a time-consuming, as the robot arm incrementally moves across the

surface. In this experiment each scan was performed every 5th layer. However,

most of the data were collected up to 35th layer, as the scanner’s optimal working

distance is 20 cm and the points between 35th and 45th layer were not captured.

This limitation highlights one of the challenges associated with this measurement

method: building large objects requires the scanner to be repositioned at a higher

level between scans. Another issue discovered can be seen in the last layers seen

in Figure C.3 and Figure C.4, where falling pixels are observed. This is a result of

the top layer becoming more rounded rather than flat. The impact of this issue can

also be easily visualized in the 3D reconstruction shown in Figure 4.18.

In conclusion, the measurement method exhibits limitations when rounded

surfaces are present, as their top layer curvature could potentially influence the

results and generate outliers. Furthermore, for larger objects, it is essential to adjust

the scanner’s height in accordance with the layers built to ensure data accuracy

and prevent loss during future scans.

5.2 Experimentation Failures and Improvements

The series of experiments outlined in Chapter 4 were conducted to gain insights

for improving the final framework detailed in Section 3.6. In particular, Experiment

2 led to the development of an alternative technique for comparing the top layer

of the 3D reconstructions with STL model. This approach was necessitated due to

the significant fluctuations observed in the toolpaths of the generated cubes. By

integrating an estimated plane calculated using the RANSAC algorithm, we were

able to mitigate these fluctuations, as described in Subsection 3.6.3. Consequently,

this revised method offers a more reliable and accurate means of comparing these

two different data types. Furthermore, in Experiment 4 a minor misalignment of

the installation of the scanner was observed when measuring the heights of three

identical cubes, referred to as Cube A in Table 4.7. By employing the RANSAC

algorithm for plane estimation, as described in Section 3.6.3. The refined alignment,

once applied to the remaining cubes in this experiment, helped mitigate some

inaccuracies present in the experimental data. This process highlighted the inherent

complexities for finding an optimal rotation without references within the scene
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5.3 Research Questions

Based on a literature study, experimentation, and discussion, we attempt to address

the research questions from Section 1.2 in the following section.

RQ1: What are the main challenges of constructing an auto-

matic vision-based framework for a DED system?

In the investigation of various inspection frameworks discussed in Section 2.7,

it was found that many are highly customized for specific AM processes. The

research objective is to determine whether it is possible to measure geometrical

errors using a vision-based framework and subsequently establish a feedback loop

for process parameter optimization to potentially enable more complex manufac-

turing utilizing the multiple DOFs and a more precise geometry tailored to specific

requirements. Experiment 4 demonstrates the potential use of measured height

deviations, while the STL model proves to be an unsuitable comparison due to

its lower resolution toolpath, resulting in significant fluctuations during height

measurements, as discussed in Section 4.3.3. This issue highlights the challenge

of accurately measuring height, and comparing it to a corresponding height of

the STL model, this problem can be highlighted by looking at toolpath for a sim-

ple 3-layered cube in Figure 4.9. This highlights the most significant limitation

of the previously developed framework, as detailed in Section 3.1. Due to the

high substantial discrepancies of the top layers between the desired manufactured

object and the reference STL model, which results in challenges of using point

cloud registration algorithms such as RANSAC and ICP. These algorithms struggle

to ensure optimal alignment due to these inconsistencies, as observed with the

previous framework detailed in Section 3.6.

Another highlighted issue related to the optimization of the scanner, Experi-

ment 1 showcased materials with high reflection can interfere with structured light

patterns, leading to measurement errors. When using two distinct metals with

high and low reflectivity, discrepancies may arise if the base is highly reflective

and the manufactured material on top is less reflective. This difference can cause

the scanner to only capture the base plate, requiring multiple iterations through
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various shutter times and gains to achieve optimal results, as further discussed in

Section 4.2.3. Although the DED system can manufacture multiple metals, some of

them described in Table 2.1, a more comprehensive investigation into the impact of

different metal types is needed to improve the quality of the scan. Potential future

research could involve addressing the identified issues within the framework, a

topic further discussed in Section Section 6.2.2.

RQ2: To what extent do variation in geometric complexity and

metal types influence structured light-based 3D reconstruc-

tion?

In Experiment 1, we examined configuration parameters significantly influenced

by metal types and geometric complexity of the objects being scanned. By investi-

gating these parameters, we can identify the diversity of metal types. Throughout

the course of the thesis, some hardware options have been explored, as detailed in

Section 3.3, ultimately leading to the selection of the VC Nano 3D-Z. The VC Nano

3D-Z offers faster sampling speed and greater precision in point cloud generation.

The related work on inspection in AM processes has utilized structured light-based

methods for 3D reconstruction, enabling comprehensive investigations. However,

it has been observed that the optical properties of metals differ considerably, as

illustrated in Experiment 1. Moreover, the extensive variety of geometric shapes

presents additional challenges. Factors such as sharp edges, reflective surfaces, and

intricate curvatures can significantly affect the reconstruction results. To mitigate

these issues, an optimized scanning path is necessary for minimizing errors and

enhancing the accuracy of the 3D reconstruction, as discussed in Section 4.2.3 and

illustrated in Figure 2.17.

In conclusion, structured light-based methods has their challenges when being

used in a DED system, because of the inherent diversity in optical properties

of metals and the wide range of geometric shapes. This creates challenges that

can potentially be addressed by scanning path optimization and other techniques

to assure accurate and dependable results. Further work related to this topic is

discussed in Subsection 6.2.1.
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RQ3: How can height deviation data optimize parameters to

reduce defects and enhance product quality?

Throughout the thesis, various methods have been employed to determine height

deviation. The specialization project [6] explored the use of point cloud registration

algorithms to align the scanned object with the reference STLmodel. This approach

particularly highlighted the issue arising from the non-planar height due to the

toolpath, which rendered these algorithms insufficient and unable to guarantee

optimal alignment. This approach was not explored until Experiment 3, where

RANSAC was utilized to identify a plane for a more accurate height estimation.

Figure 4.13 illustrates the layer height deviation relative to the base, but the error

was too small to detect any significant differences. Based on further analysis and

experimentation of the results in Experiment 3, new findings about adjusting the

layer height were uncovered, as illustrated in Figure 4.10.

Therefore, Experiment 4 was conducted to investigate potential methods for

adjusting layer height. The default optimal layer height for building with carbon

steel was 1.075 mm, resulting in an expected height of 10.75 mm at the 10th layer.

Nevertheless, the actual error was much lower, and a more optimal layer height

for achieving this target was demonstrated in Table 4.7. While the results from

this experiment may not represent the best method due to the issues discussed in

Section 4.5.3, they do provide a proof of concept for further optimization of the

process parameter, which will enable a more accurate manufacturing to achieve

the desired height.





Chapter 6

Conclusion and Future Work

In this final chapter, we will conclude the thesis and discuss the further work

regarding vision-based methods for automatic inspection in DED processes.

6.1 Conclusion

Directed Energy Deposition processes, as explored throughout this thesis, are

inherently complex and comparatively less stable than other conventional man-

ufacturing techniques. This emergent field of study is abundant for research

possibilities and further optimization efforts to identify more ideal process param-

eters for constructing precise geometries with various metals. The development

of a vision-based framework could pave the way for more efficient monitoring of

the building process and find more ideal process parameters for the DED system

for various metals. Throughout this thesis, we have examined several topics and

methods utilizing the framework in the SINTEF Manufacturing’s DED system. We

have illustrated the impact of 3D reconstruction on different metals and geometric

shapes to gain insight on the effect of using structured light-based methods in

DED processes. Furthermore, to extend this knowledge, we utilized the DOF of

the DED system to develop a method for 3D reconstruction, which have been

both integrated and tested. Lastly, we investigated how the calculated height
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deviation could be utilized for additional optimization. While most of the process

parameters in DED system have been derived from prior empirical research, the

data and experiments did not reveal any specific trends correlating layer height

parameter with the expected height. However, the height deviation data in the

final experiment showed small improvements to achieving the expected height by

adjusting the layer height based on the height measurements from the framework.

This has a further potential to enhance the precision of the building process, thus

aiding to achieve a height closer to expected height and potentially improve the

geometry. This thesis has also discussed the challenges involved in building a

vision-based framework for a DED process. For instance, structured light-based

3D reconstruction can introduce multiple error sources from varying geometric

shapes, include falling pixels and outliers resulting from sharp edges. As well as

discrepancies caused by varying reflection from different metal types, which more

research would be beneficial to unfold more ideal parameter configurations for

the scanner with a wider range of metal types. Although the final framework

is not yet fully automated, however, it highlights the potential of incorporating

a vision-based framework into a DED process for geometric inspection of the

building process and potential future research of using height deviation data as

sensor feedback to further improve the geometry.

6.2 Future Work

While significant progress has been achieved in the use of a vision-based frame-

work for DED processes, several challenging remain, including 3D reconstruction,

automation, and a wider understanding of the optical characteristics of metals.

The subsequent sections will highlight the potential areas for further research.

6.2.1 Improved 3D Reconstruction

A crucial component of the framework for examining the height deviation process

is 3D reconstruction. It allows us to continuously monitor the condition of an

object as it is manufactured. In order to capture the complete object throughout

this process, a point cloud must be created. To do this, the KUKA industrial robot
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must move progressively along the x-axis. The scanner’s 400 Hz capture speed,

which was mentioned in Section 3.4, has the potential to significantly shorten the

gap between each layer’s capture. However, optimizing the 3D reconstruction by

synchronizing the robot’s translation along the x-axis with the scanner’s capture

rate is a critical problem that requires additional work. One possible reason for the

complexity of this synchronization is the need to accurately save poses. The scanner

must capture the right image every time the robot moves, and in order to do so, it

must save the robot’s pose to assure the reconstruction. If the 3D reconstruction is

not properly synchronized, measurement error could occur, resulting in faults in

the created product. As a result, future research could concentrate on developing

more effective systems for posture storing and synchronization.

The second issue, identified in Appendix C, pertains to the optimal working

distance, which is around 20 cm. If the distance between the manufactured object

and the scanner is not adjusted to match the height, there will be a loss of data. This

can significantly impact the quality of the 3D reconstruction and, consequently,

the accuracy of the manufacturing process. Therefore, future research should aim

to devise strategies that can adaptively adjust the working distance to prevent data

loss and ensure accurate 3D reconstruction.

In summary, despite the strides made in the application of 3D reconstruction

for DED processes, key challenges persist. These include synchronization of robot

movements with the scanner’s capturing speed, as well as maintaining an optimal

working distance to prevent data loss.

6.2.2 Impacts of Varied Shapes on Scanning Quality

As discovered in Experiment 3, the shape of an object can significantly contribute

to the emergence of outliers and can potentially reduce the quality of the 3D

reconstruction. The majority of the studies have used cubic forms, but it is im-

portant to recognize that more sophisticated shapes, particularly curves, edges,

and distinctive surface features, may demand optimal scanning paths. Complex

forms with varying surfaces and angles can present a significant challenge to the

current scanning path. Curved surfaces, for example, may refract or absorb light

from the scanner differently than flat surfaces, resulting in the falling pixels seen in
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Figure C.1b. Similarly, edges, especially sharp or irregular ones, can cast shadows

or reflect light, which might skew the scanner’s results, as illustrated in Figure 2.18.

This can result in data gaps or inaccuracies, which can compromise the quality of

the 3D reconstruction.

Addressing these issues is a complex task. One option would be to define a

sequence of scanning pathways based on the shape being created. Instead of using

a uniform scanning path for all objects, the scanning process might be tailored to

each object’s unique characteristics. A spherical object, for example, may require a

spiral scanning path, but a cuboid may benefit from a grid-based path. However,

to determine the best scanning paths for various shapes is a considerable task. It is

expected that algorithms capable of assessing a shape and calculating an optimal

scanning path that minimizes data loss and inaccuracy. For example, techniques

from several domains, such as computational geometry and machine learning,

could be used.

To summarize, the shape and specific surface properties of the scanned object

have a significant impact on the quality of the 3D reconstruction. Future study

could concentrate on developing algorithms for optimizing the scanning path

depending on the individual geoemetric properties of the object, with the ultimate

goal of enhancing scanning accuracy and efficiency and overcoming problems like

falling pixels.

6.2.3 Investigating the Correlation between Layer Height and

Expected Height

The findings from Experiment 4 highlights the importance of adjusting the layer

height parameter, a key factor in the manufacturing process. However, the MELTIO

system houses a vast array of other process parameters that could be strategically

manipulated to potentially improve the quality of the final manufactured object.

At this stage, no conclusive correlation between these process parameters and the

relationship between layer height and expected height has been established. As a

result, there is a lot of room for more research in this field. Discovering a more

precise correlation could greatly enhance our understanding of how these variables

interplay, which could lead to significant improvements in the manufacturing
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process.

In summary, more research for finding a strong correlation with layer height

but also potentially other parameters to help to construct a more robust prediction

model that allows for proactive changes to process parameters. Consequently, such

advancements could offer a greater degree of precision in controlling the outcome

of the manufactured object to their corresponding design.

6.2.4 Enhancing Automation in Detection and Calibration

In the current DED system, a calibration step is required every time an object is

manufactured. This involves establishing a new coordinate system for the robot

to operate within by setting an origin point, a point for the y-axis, and a point

for the XY plane. While this process is necessary for accurate manufacturing, it

presents challenges for automatic inspection. The profile scans from the scanner

complicates the automatic segmentation and extraction of a specific object. This is

due to the shifting coordinate system, which makes it challenging to consistently

and automatically identify the object of interest within the data collected by the

camera.

Various strategies have been proposed to address this complexity. One such

method involves the implementation of manual calibration, where a plane is defined

to align the coordinate systems of both the robot and scanner. Subsequently, using

the origin point as a reference, the object of interest could potentially be located

within the point cloud data. However, this solution presents its own unique set of

challenges that need to be addressed. Further research is required to refine this

method and potentially develop automated solutions that could easily locate the

manufactured object in 3D reconstruction.

In summary, the object being manufactured within the point cloud is a complex

task that is currently hard to automate. This automation is a critical missing

element in the current framework. Typically, this process is performed manually.

By identifying the object’s positioning in 3D reconstruction using some sort of

calibration or reference in the scene would allow for a better continuous, real-time

examination of the object when utilizing the framework.
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Appendix A

Supplementary Visual

Representations for

Experiment 1

This chapter shows the additional plots that contributed to highlight some of the

results in Section 4.2, as well as provide a more comprehensive look of the data

and support some of the conclusions drawn. There are additional plots supplied in

the code in HTML format as well, to explore the various configurations.

A.0.1 Heatmap for Double Shutter 1 and 2

105



Fi
g
u
re

A
.1
:
H
ea
tm

ap
fo
r
P
la
te

A



Chapter A: Supplementary Visual Representations for Experiment 1 107

Fi
g
u
re

A
.2
:
H
ea
tm

ap
fo
r
P
la
te

B



108 Towards Automatic Inspection in AM using Computer Vision

Fi
g
u
re

A
.3
:
H
ea
tm

ap
fo
r
P
la
te

C



Chapter A: Supplementary Visual Representations for Experiment 1 109

Fi
g
u
re

A
.4
:
H
ea
tm

ap
fo
r
P
la
te

D



110 Towards Automatic Inspection in AM using Computer Vision

A.0.2 Visualization for each Exposure Mode

Figure A.5: Capture with Exposure mode 0 and 1 for Plate A

Figure A.6: Capture with different configurations with Exposure mode 2 for Plate
A
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Figure A.7: Capture with Exposure mode 0 and 1 for Plate B

Figure A.8: Capture with different configurations with Exposure mode 2 for Plate
B
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Figure A.9: Capture with Exposure mode 0 and 1 for Plate C

Figure A.10: Capture with different configurations with Exposure mode 2 for Plate
C



Chapter A: Supplementary Visual Representations for Experiment 1 113

Figure A.11: Capture with Exposure mode 0 and 1 for Plate D

Figure A.12: Capture with different configurations with Exposure mode 2 for Plate
D





Appendix B

Registration with ArUco

Markers

During a summer internship in 2022, an experiment involving a rotation table in

the DED system at SINTEF Manufacturing was conducted. The Zivid Two and

ArUco markers were used on the rotation table for this experiment. By estimating

the transformation matrix between the respective markers, the ArUco markers

allowed the scene to be captured from a variety of orientations.

In order to accurately detect any geometric deviation in the 3D reconstruction

of an object, a dense point cloud is needed. However, capturing the object from

a single viewpoint may result in missing points on its sides and rear. To address

this, three ArUco markers were strategically placed at the rotating table’s corners.

This experimental setup allowed for the collection of four distinct point clouds

from four distinct perspectives, with each capture being a 90-degree rotation of

the table, as seen in Figure B.1. This rotation allowed each marker to be identified,

and its transformation estimated to perform the alignment, resulting in a dense

point cloud.
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(a) Original Position (b) Clockwise 90◦

(c) Clockwise 180◦ (d) Clockwise 270◦

Figure B.1: In each rotation we can the estimate the poses of all the detected markers. Then

we can easily perform an alignment without the need to search to find any correspondences.

Image Source: [6]



Appendix C

Sub-experiment: Assessing

the Maximum Build Height

The following experiment is a sub-experiment of Experiment 4, aimed to determine

the maximum building height achievable with the DED system. Although a small

error is expected in a DED process, the focus of this experiment was to find out

the maximum building height and to see a larger height deviation. In Experiment

3, the layer height error was not significantly high, which prompted to a new

sub-experiment to investigate a higher height deviation by scanning every 5th

layer to detect a larger error when building, while also assessing the maximum

building height.

C.1 Results

This section presents the results of the sub-experiment where a total of 50 layers

were constructed with a layer height of 1.0 mm each. Considering scanning every

layer takes time, it was decided to scan every 5th layer instead. However, the data

was lost after the 35th layer due to the VC Nano 3D-Z’s optimal working distance

of 20 cm. To scan the last layer, the KUKA Industrial Robot was positioned at a
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higher elevation.

The final outcomes, including the manufactured cube and 3D reconstruction,

are illustrated in Figure C.1. The height deviation for each layer relative to the base

is shown in Figure C.2. Only a portion of the top layer is captured at the 35th layer

due to the scanner’s optimal working distance limitations. This accounts for the

observed low error in the height deviation of 35th layer, this fault was corrected

in 50th layer. The findings clearly indicate that as the cube’s height increases, so

does the number of falling pixels, as illustrated in Figure C.1b. To gain deeper

insights into this issue, can be further investigated in the additional projection

plots from the XZ and YZ planes, which are presented in Figure C.3 and Figure C.4.

These plots provide a visual representation of the issue to better understand the

underlying factors contributing to the problem. These findings demonstrate that

the issue with falling pixels arises due to the small surface area, which results in

poor heat distribution. Consequently, the top of the cube becomes rounded. The

impact of the falling pixels increases for every scan, as observed in both projection

plots.

(a) The final result of the cube built with

50 layers.

(b) Scanned layers and the increasing ef-

fect of falling pixels as the height of the

cube increases.

Figure C.1: Illustration of the manufactured cube and 3D reconstruciton.
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Figure C.2: For every 5th layer, measured the error relative to the base.
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Appendix D

Prior Study of Specialization

Project

This section provides a brief visual overview of the preliminary studies under

the specialization project[6]. Figure D.1 illustrates employing a rotation table in

a simplified, replicated environment, facilitated by the use of an Arduino and a

3D printed rotation table. Despite the framework developed in the specialization

project was never incorporated into the DED system, it set the foundation for

further studies in this thesis.
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Figure D.1: Experimental Setup: Replicating an Environment with a Rotation Table
and VC Nano 3D-Z for 3D Reconstruction.



Appendix E

RANSAC Plane Alignment

This subsequent pseudocode presents the practical application of the RANSAC

algorithm, specifically for the task of aligning the manufactured layers based on

the base plate. Algorithm 3 shows the process of obtaining the rotation matrix

from plane segmentation by explicitly calculating the transformation of fitted plane

based on the normal using the RANSAC algorithm.
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Algorithm 3 RANSAC Plane Alignment of XY Plane

Require: Point cloud 𝑃 = {𝑝1, . . . , 𝑝𝑛}

Ensure: Rotated 𝑃 and rotation_matrix
1: Initialize RANSAC regressor
2: Fit RANSAC model to (𝑥,𝑦) pairs predicting 𝑧
3: Get coefficients 𝑎, 𝑏, and intercept 𝑑 from the fitted RANSAC model
4: Set normal = [𝑎, 𝑏,−1]
5: Set normal_xy = [0, 0, 1]

6: Compute𝑤 = cross_product(normal, normal_xy)

7: Compute cos_theta =
dot_product(normal, normal_xy)
norm(normal)×norm(normal_xy)

8: Compute sin_theta =
√︁
1 − cos_theta2

9: Construct skew-symmetric matrix wx_matrix =



0 −𝑤 [2] 𝑤 [1]

𝑤 [2] 0 −𝑤 [0]

−𝑤 [1] 𝑤 [0] 0


10: Calculate rotation_matrix using Rodrigues’ rotation formula
11: Rotate 𝑃 using rotation_matrix around the origin
12: return Rotated 𝑃 and rotation_matrix



Appendix F

Draft of Conference Paper

The work in this master’s thesis will be turned into a conference paper to be

submitted at the ICCMA 2023 conference.
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Abstract—Enhancing the geometric accuracy of additive man-
ufacturing (AM) processes remains a vital challenge, particularly
in the context of directed energy deposition (DED). This paper
investigates using a laser line scanner for real-time layer height
estimation during the DED process. The proposed system offers
[...], enabling adaptive control and quality assurance in DED
manufacturing. Experimental results demonstrate the effective-
ness of the laser line scanner in achieving higher geometric
accuracy in printed objects. The findings contribute to advancing
quality control methodologies in AM, paving the way for broader
adoption of DED technology.

Index Terms—Computer vision, process control, closed loop
systems

I. INTRODUCTION

Additive manufacturing (AM) is an effective and promising

manufacturing technology for quick prototyping and produc-

tion technology. Achieving the desired geometry using AM

requires either an accurate model of the deposition process

for all possible material and geometry situations, allowing for

an open-loop approach to depositing the material, or a closed-

loop approach where sensor feedback of the layers as-built

defines how the next layer is applied.

An industrially relevant AM process that accepts a wide

range of metals is Directed Energy Deposition (DED). The

DED process involves melting and fusing of metallic wire

and/or powder using a thermal energy source like a laser,

but its practical application is not without challenges. A

critical aspect is achieving high geometric accuracy to achieve

precise specifications, a requirement in various fields from

aerospace to medical sectors. Although advances in AM have

increased demand for its applications, regulating the geom-

etry of deposited objects during the AM process remains a

significant problem. As a result, significant breakthroughs in

quality assurance and control are required to bring AM into

widespread use [3, 4].

The work reported in this paper is based on activities within centre for
research based innovation SFI Manufacturing in Norway, and is partially
funded by the Research Council of Norway under contract number 237900.

Multiple methods have been tested to improve AM pro-

cesses, including computer vision technology and structured

light sensors for online monitoring, error detection, and correc-

tion during manufacturing. Charalampous et al. [5] employed

a method for error detection in a Cartesian material extrusion

printer using a structured light camera at a fixed position.

In this research, a point cloud of the top layer was created,

compared to a simulated point cloud, and an error was calcu-

lated using mean squared error (MSE). The suggested method

primarily relies on point cloud registration methods, known

for being stuck in local minima. Furthermore, the technique

is based on the use of KD Tree [2] to build a tree in order to

determine if the MSE is above a specific error threshold. This

procedure can be difficult because it relies on constructing

a tree and comparing distances after every layer. Methods

more similar to DED processes can be found in the study by

Garmendia et al. [7] which used structured light from a fixed

position to measure the height relative to the build platform.

After a specific number of layers was built, and the height

deviation was calculated and layers were either removed or

added to better achieve the desired CAD model. However,

this method alters the geometrical characteristics of the printed

object, which can cause inaccurate representation of the object

and have problems with curvature overhangs. Zhou et al. [8]

showcased a framework for in-process height control in a DED

process using a camera to monitor the height and adjusting

process parameters to optimize the building process. This was

done by locating the highest pixel in the melt pool and then

measure the distance to the nozzle. Using the differences, a

new working distance between the nozzle and build plate was

estimated, which resulted in a more accurate cube.

Computer vision has been illustrated as good method for

feedback in the DED process. There are a lot of existing

structured light-based methods that projects binary patterns [1]

to retrieve point cloud from a scene, but the dimensional

accuracy of simple laser line scanners are higher, although

it only receives single profile scans. Most structured light



scanners captures diffuse reflection and use a method such as

filter to reduce the outlier generated from specular reflection,

but surface finish, material properties, and geometry affect the

quality of the scan.

A DED process is capable of processing a number of

metals with a wide range of reflection properties. As a result,

this article describes a process for optimizing the scanner

parameters based on a set of error metrics without considering

the specific material being scanned. The resulting parameters

are used to establish a scanning system for layer-by-layer

monitoring of the built geometry. The layer is used to estimate

the height layer for use with closed-loop control of the DED

process.

II. EXPERIMENTAL SETUP

In order to examine the two aspect of the research area, two

different experimental setups were designed. Both setups use

the VC Nano 3D-Z, a scanner based on structured light using

a laser line.

A. Experiment 1

The first experimental setup involves testing a variety of

plates with distinct shapes and materials manufactured from

a DED process, as seen in Table I. It is important to note

that some of the base plates have been grit blasted, a process

that can result in more texture surfaces. In this setup, the VC

Nano 3D-Z scanner is set to scan each plate iterating through

a predetermined set of parameter configurations chosen for

this experiment. These parameters include shutter time, RLC

threshold and a set of three different exposure modes. To

identify ideal parameter configurations, a set of error metrics

is defined by using average distance between consecutive pairs

of points, standard deviation between each consecutive point

and maximum height variations based on the Z-coordinates.

By iterating through different parameter configurations, the

setup aims to find an ideal set of parameters that minimizes

outliers generated from specular reflection.

TABLE I: Metal Types and their corresponding Base Metals

for every Plate sampled for the experiment.

Plate Top Base

A Carbon Steel Carbon Steel
B Aluminum Aluminum (Grit blasted)
C Bronze Carbon Steel
D Stainless Steel Carbon Steel (Grit blasted)

1) Choice of Parameter Configurations: The VC Nano 3D-

Z has a set of customizable parameter setups, which must be

optimized to improve scan quality. The geometric shape and

material characteristics of the object being scanned determine

the configured values of certain objects. Due to the diversity

of structured light, most of the time these parameters has

to be adjusted manually. A robust and automated method of

configuring the scanner to specific objects are required to

reduce setup time. For the purpose of this experiment, we

have focused on the adjusting of three parameters: shutter

TABLE II: Experimental Configurations of VC Nano 3D-Z

Configuration Description

Shutter Time [µs] The duration of the camera’s exposure
to capture the image of the laser line.

RLC Threshold The threshold value set for the RLC
algorithm to detect the laser line.

Exposure Mode The camera’s exposure configuration,
which includes three options: AUTO
EXPOSURE: uses a fixed shutter
time, FIXED EXPOSURE: Trying to
find an estimate of an optimal shut-
ter time, and DOUBLE EXPOSURE:
Uses two extra shutter times.

time, RLC threshold, and a selection of three distinct exposure

modes which is described in Table II.

2) Choice of Error Metric: Further, optimizing the scanner

requires a set of error metric to distinguish suboptimal and

optimal configurations. A number of statistically based error

metrics were chosen, with the objective of identifying an

ideal output by iterating through a range of configurations.

The output is based on the following error metric: average

distance, standard deviation, and maximum z distance from

mean.

The average distance uses the Euclidean distance between

each consecutive point pairs (x, z) is defined as

Eavg =
1

N

N−1
∑

j=1

√

(xj+1 − xj)2 + (zj+1 − zj)2 (1)

where N is the total number of points.

Similarly, the standard deviation is calculated using

Estd = std

(

{

√

(xj+1 − xj)2 + (zj+1 − zj)2
}N−1

j=1

)

(2)

where {} are used to denote the collection of distances.

Lastly, the maximum z distance from mean is defined as

Ez,max =
N

max
j=1

∣

∣

∣

∣

∣

zj −
1

N

N
∑

i=1

zi

∣

∣

∣

∣

∣

(3)

and attempts to capture the situation when reflection issues

result in few but significant outliers that are far from the true

surface line.

B. Experiment 2

This experiment is conducted based on a MELTIO laser-

based DED process integrated into a multi-axis KUKA In-

dustrial robot, as seen in Fig.1. Using the robot’s tool mount,

the scanner can be integrated to create a scanning path for

inspection by producing 3D reconstruction of the top layer.

In this case, a simple scanning path was constructed that

translates step-wise 0.5 mm along the x-axis. By performing

an initial scan of the build plate it is possible to measure the

height deviation relative to the build plate. In this experiment,

a cube composed of ten layers is constructed, with a desired

layer height of 1.0 mm. A scan of the top layer is performed



after each layer is deposited. The substrate and the manu-

factured material for this experiment is carbon steel. The scan

provides a dense point cloud of the surface. Two measures that

can be used to inform a control strategy are the height layer

comparison using mean and variance of the scanned points,

and by fitting a plane to the top layer and comparing the height

differences between

Fig. 1: The MELTIO system integrated with a KUKA Indus-

trial robot for DED processes.

III. RESULTS

A. Experiment 1

Table III presents the outcomes from varying the shutter

time while keeping the remaining parameters at their default

values. The three best results for each were selected to examine

substantial variations when identifying the optimal shutter time

based on the error metrics. In contrast to Plates A and C, which

require substantially longer shutter times, Plates B and D have

lower ideal shutter times. This finding suggests that the Plates

B and D’s materials have a high reflectivity, necessitating

shorter shutter periods.

A further analysis of Plate B was conducted to confirm the

parameter configurations were not arbitrary. The most ideal

shutter time discovered was 3800 µs. Fig.2 demonstrates the

disparities caused by the use of longer shutter duration, as well

TABLE III: Best shutter times for each plate

Plate Shutter

time
[µs]

Avg.

dist.
[mm]

SD

[mm]

Var

[mm]

Max.

error
[mm]

A

9950 0.33 0.61 0.38 13.31
9500 0.33 0.61 0.38 13.31
8750 0.33 0.61 0.38 13.31

B

3800 0.32 0.58 0.34 17.78
3950 0.32 0.58 0.34 17.78
3350 0.32 0.58 0.34 17.79

C

9950 0.36 0.93 0.87 15.82
8750 0.36 0.93 0.87 15.82
9500 0.36 0.94 0.88 15.80

D

2600 0.51 2.03 4.13 13.53
2450 0.52 2.02 4.10 13.62
1550 0.51 2.06 4.24 13.55

as the outliers they produce. Furthermore, the higher shutter

time comparisons show an increase in reflection, which result

in significant differences in the z-coordinates.

Fig. 2: Various shutter time configurations tested for Plate B,

finding the optimal value of 3800 µs.

Table IV presents the optimal parameters for the RLC

threshold, where the shutter time was selected based on the

best values for each plate in Table III. It was observed before

the experiment that values below 20 and above 40 gave

not the best results. Therefore, these results were fine-tuned

between this range. It can be observed that the threshold value

stays relatively similar, with an exception to Plate D. Plate

D exhibited the lowest threshold value, which could be the

inherently low reflecting characteristics of its, stainless steel.

Table V presents the outcomes of the three different expo-

sure mode compared with the optimal shutter time and RLC

threshold from prior findings. For most of the plates, exposure

mode 1 was discovered as the ideal one to use. In contrast,

Plate B found that the best exposure mode was 0. The wide

range of materials used in the DED process and the build

plate might highly differ in reflection. The Plate D consist

of a highly reflective build plate Carbon steel and a lower

reflection manufactured material stainless steel.



TABLE IV: Best RLC threshold for each plate.

Plate RLC

thresh.

Avg.

dist.
[mm]

SD

[mm]

Var

[mm]

Max.

error
[mm]

A

30 0.32 0.61 0.38 13.30
29 0.33 0.65 0.42 13.32
31 0.33 0.63 0.40 13.29

B

28 0.31 0.56 0.32 17.78
30 0.32 0.58 0.34 17.80
29 0.32 0.58 0.33 17.78

C

29 0.35 0.89 0.80 15.88
30 0.36 0.93 0.86 15.83
31 0.36 0.95 0.91 15.79

D

20 0.43 1.85 3.41 25.83
21 0.44 1.88 3.53 26.04
22 0.46 1.93 3.72 26.25

B. Experiment 2

Figure 3 presents the final result of the cube manufactured,

where each top layer was scanned, including the build plate.

Each layer height was approximately was set to be 1.0 mm.

Fig. 3: Final result of 10 layered cube with 1.0 mm layer

height manufactured in Carbon Steel.

Figure 4 presents the results of scanning each top layer. It

can be seen some flucatations is this is because of the nature

of wire-arc based DED processes have lower resolution when

manufacturing small objects, in this case 14 × 14 × 10 mm.

The mean height of each layer is calculated relative to the

build plate.

Fig. 4: Height Layer Comparisons using mean

Figure 5 illustrates the height deviation from each layer

calculated the mean of the height of each layer, but also the

variances to illustrate fluctuations of each top layer. The first

top layer has a high error, but slowly decreases as the building

progresses. This might be a result of the solidification between

the build plate and first layer.

Fig. 5: Height Layer Comparisons using mean

Figure 6 presents the results from comparing each con-

secutive layer. The solidification can be better seen here

that the error is relatively higher but decreases and stays

relatively the same throughout the process. Because of the

large variation in fluations, the Random sample consensus

(RANSAC) algorithm [6] was used to estimate a plane on each

top layer. This was done since comparing layer height are done

by planar surfaces and specially when comparing the height

with the Standard Tessellation Language (STL) model, which

is a format that most AM system process to build objects.

Fig. 6: Assessing height differences between consecutive layer

pairs, where the expected height between layers is 1.0 mm.

IV. DISCUSSION

A. Parameter Choices

B. Path Optimization

V. CONCLUSION
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TABLE V: Best exposure modes for each plate.

Plate Exposure

mode

Shutter

time

Double

shutter
1

Double

shutter
2

RLC

thresh.

Avg. dist.

[mm]

SD [mm] Var [mm] Max. error

[mm]

A
0 9950 - - 30 0.33 0.61 0.38 13.31
1 - - - 30 0.27 0.44 0.19 13.99

2 - 425 600 30 0.28 0.49 0.24 13.32

B
0 3800 - - 28 0.31 0.56 0.31 17.78
1 - - - 28 0.33 0.67 0.45 17.85
2 - 325 300 28 0.33 0.65 0.43 18.03

C
0 9950 - - 29 0.35 0.88 0.78 15.89
1 - - - 29 0.30 0.61 0.37 16.97
2 - 125 450 29 0.32 0.72 0.52 17.64

D
0 2600 - - 20 0.43 1.85 3.41 25.76
1 - - - 20 0.39 1.57 2.46 23.86
2 - 185 850 20 0.43 1.82 3.31 25.96
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