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Preface

This technical paper details the design and implementation of a video sharing system uti-
lizing PCI-Express, a high-speed serial expansion bus standard widely used in computers
for adding peripheral devices. The paper is a collaboration with Dolphin Interconnect So-
lutions and is a showcase of the potential of PCI-Express interconnect technology. The
application uses Dolphin’s software and hardware to accomplish this.

The intended audience for this paper includes both practitioners and researchers in branches
related to high-performance computing. A basic understanding of computer hardware and
data transmission protocols is assumed, as well as knowledge regarding basic low-level
programming techniques.

Hopefully, this paper offers valuable insights into the implementation as well as inspi-
ration to further build on this technology.
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Executive summary

This technical paper presents the development and implementation of a pioneering video
transfer application leveraging the high-speed serial expansion bus standard, PCI-Express.
The project was undertaken in collaboration with Dolphin Interconnect Solutions, who’s
products enable the use of PCI-Express technology for higher-level applications such as
video transfer. In particular, this application focuses on ”multicast”, a reflective memory
implementation in hardware.

The problem at hand was to create a robust and efficient video sharing application that
showcases the features provided both by PCI-Express and the Dolphin products. The
development process involved researching, planning, testing, and implementation, all of
which are thoroughly documented in the subsequent sections of this paper.

The result is a fully functioning application that meets the initial objectives and provides
insights for how the technology can be developed even further. It provides a solution that
is first of it’s kind.

One key point in this project is that is it designed to be built further upon in the future
by making code and implementation as accessible as possible. By adopting this approach,
we have ensured that our application can be further expanded and refined by others in the
future, both for academic and professional reasons.

This paper should serve as a comprehensive guide for those interested in the technical-
ities of PCI-Express, Dolphin products and particularly how the multicast technology can
be leveraged for advanced applications. Hopefully, this lays the groundwork for future
advancements within high-performance interconnected video systems.
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Sammendrag

Denne tekniske rapporten presenterer utviklingen og implementeringen av en
videooverføringsapplikasjon som utnytter høyhastighetsbussen PCI-Express på en måte
som aldri før har blitt gjort. Prosjektet ble utført i samarbeid med Dolphin Intercon-
nect Solutions, og deres produkter som muliggjør bruk av PCI-Express-teknologi for mer
avanserte applikasjoner slik som videooverføring. Denne applikasjonen fokuserer på ”mul-
ticast”, en reflekterende minneimplementasjon i hardware.

Problemstillingen var å skape en robust og effektiv videodelingsapplikasjon som fremhever
funksjonaliteten som finnes både i PCI-Express og Dolphin-produktene. Utviklingspros-
essen involverte forskning, planlegging, testing og implementering som er grundig doku-
mentert i de påfølgende delene av denne rapporten.

Resultatet er en fullt fungerende applikasjon som oppfyller målene fra problemstillingen
og samtidig gir innsikt i hvordan teknologien kan utvikles videre. Løsningen som her
fremstilles er den første av sitt slag.

Et nøkkelpunkt i dette prosjektet er at det er designet for å bygges videre på i fremti-
den ved å gjøre kode og implementasjonsmetode så tilgjengelig som mulig. Ved å gjøre
det på denne måten, er målet at applikasjon kan utvides og forbedres av andre i fremtiden,
både for akademiske og profesjonelle formål.

Denne rapporten bør fungere som en dekkende guide for de som er interessert i teknikken
bak PCI-Express, Dolphin-produkter og spesielt hvordan multicast-teknologien kan ut-
nyttes til å lage avanserte applikasjoner. Forhåpentligvis legger denne rapporten grunnlaget
for fremtidige fremskritt innen sammenkoblede videosystemer med høy ytelse.
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1
Introduction

This masters thesis project presents the work on a video distribution application that uses
the bus technology known as PCI-Express (Peripheral Component Interconnect Express)
to distribute video to several devices at once. The application presents a new bridging
of existing technologies that provides opportunities for innovation and increase in perfor-
mance. As demands for throughput and reliability increase in general computing, technol-
ogy such as the one developed by Dolphin Interconnect Solutions for general purpose high
performance data transfers over PCI-Express extend their areas of appliance. In collabora-
tion with Dolphin and their PCI-Express based stack, this paper will tackle video transfers
using PCI-Express and reflective memory technology.

1.1 Context
This project is a collaboration between the author and Dolphin Interconnect Solutions
(hereby: ”Dolphin”). Dolphin is a Oslo-based company that are and have been designing
and manufacturing PCI-Express hardware and software products for more than 25 years
(Dolphin (2015)). Their products are used in high-performance systems within many sec-
tors such as defence, medical and automotive technology. Dolphin currently has a demo
program for transferring video from one device to another using their products that could
be extended extensively in order to demonstrate more of the capabilities their products
provide.

PCI-Express has been used for application specific purposes for a long time (IEEE (2022)),
most commonly known for connecting the GPU (Graphical Processing Unit) to your com-
puter. PCI-Express is however, a fast, reliable and continuously evolving technology that
can be used for more generic purposes as well (Dolphin (2015)). Dolphin’s unique soft-
ware and hardware products allows for utilization of the speed and robustness the PCI-
Express standard provides even for general purpose tasks. This allows this project to
tackle problems not previously solved and provides demonstration of Dolphin product ca-
pabilities at the same time.

1



1 Introduction 1.2 Motivation

1.2 Motivation

Dolphin Interconnect Solutions have provided this problem as a means to increase the
utility of their products. As the use cases for PCIe technology expand and increase, so
does the potential of Dolphins technology. As an extension to their existing technology,
Dolphin would like to demonstrate how PCI-Express can be used for sophisticated video
transferring and processing techniques.

For the aforementioned sectors who utilize PCI-Express compliant devices in their sys-
tems, an extension of the currently available features means reducing the amount of differ-
ent technologies that need upkeep. In many cases, there should also be a potential increase
in speed and reliability by opting to use this method for video applications as well. In order
to figure out the specific improvements that can be provided by using Dolphin products for
video specific applications, research is required.

1.3 Problem description

The problem presented by Dolphin Interconnect Solutions is found in Appendix A and
consists of building software using Dolphin’s products that allows video transfer in real-
time from one device to one or more connected clients. The program should be able to
demonstrate advanced PCI-Express techniques in a way that exceeds the capabilities of
their current solutions.

The problem description is presented as a choice between different potential expansions
where not all are assumed to be completeable within the timespan of a masters thesis. It
is the task of this exercise to identify which expansions are feasible to integrate within
the time period of the thesis. The decisions and acquired knowledge regarding what to
integrate, if it would work and how it could be integrated into a larger project will be part
of the final product. The proposed features in Appendix A are summed up here:

One possible expansion is adding support for ”multicast”, a Dolphin broadcast option that
allows simultaneously writing to memory in multiple computers at once. This can be done
with or without a GPU as part of the supply chain to process the video before it is shown
on the client devices.

A secondary option is to add support for direct transfer from a camera into the device(s).
The camera feed could be send directly to displaying nodes over multicast or to a GPU for
processing.

Due to circumstances explained in section 1.4, this technical paper focuses on the first op-
tion of creating an application that distributes video to several nodes using multicast. The
application should be implemented with the other extensions in mind and any advances
towards GPU or camera integration will be a bonus for the result.

2



1 Introduction 1.4 Limitations

1.4 Limitations
The existing demo application deployed by Dolphin is not open-source and in discussion
with Dolphin, an agreement was made that the version developed in this project should be
open-source and made available for further academic research.

Consequently, this project is not an expansion to existing demonstration capabilities but
rather a complete rewrite of a demo application from the bottom up. This choice comes
with a significant increase in development time but is ultimately regarded as a worthwhile
option because it makes the technology more available for future academical and profes-
sional interest.

The PCI-Express camera described in the problem description is not manufactured by
Dolphin and was not available for testing purposes during the timespan of this project.
In light of this, the development was shifted more towards the other options presented in
the problem description. The development process nevertheless considered the camera
integration as an option for the future.

1.5 Structure of the report
The report is structured as follows:
An introductory part is followed by a background chapter that sums up relevant literature
and lays the theoretical foundation for the technology and tools that are needed to create
the application. This includes an introduction to PCI-Express tools that are needed and
used as well as information regarding processing and displaying.

The goal of chapter 2 is to contain all fundamental knowledge acquired prior to devel-
oping the application. It should sufficiently cover the knowledge needed to comprehend
the parts following it.

All chapters following the background chapter are based on original work and findings.
This part starts with a methodical approach spanning the chapters ”Specification”, ”De-
sign”, ”Implementation” and ”Testing”. After this follows results, reflections and future
work which are especially important considering the open nature of the problem descrip-
tion.

3



2
Background

This chapter contains an introduction to PCI-Express tools that are needed and used for the
resulting application. This includes but is not limited to how segments are created, how
memory physically present on another computer can be mapped into a process’ memory
and how this memory can be read and written to. Moreover, an introduction to used frame-
works and common techniques such as multithreading and using mutexes is presented as
well as introductions to selected languages, frameworks and methods.

The research presented in this article is done using software and hardware provided by
Dolphin Interconnect Solutions. The provided tools from Dolphin give the software de-
veloper a programming interface for performing PCI-Express operations such as remote
memory access and high-speed transfers of data. The interface provided by Dolphin for
this purpose is the SISCI API which is used in this application.

PCI-Express (Peripheral Component Interconnect Express) is a high-speed computer bus
standard that is used to connect hardware devices, such as graphics cards, network cards,
and storage devices, to a motherboard. It was introduced in 2004 as a replacement for
the older PCI and AGP bus standards, and has since become the most widely used ex-
pansion slot interface in modern desktop and server computers. PCI-Express technology
offers high bandwidth, low latency, and improved power management. This has made
it an essential technology for high-performance computing applications, including gam-
ing, scientific research, and artificial intelligence. As the demand for higher performance
computing has increased, so has the use-cases for PCI-Express technology.

2.1 Related works
As far as the author aware, there have been no comparable attempts at doing what this
project attempts to accomplish. Additionally, the problem description provied in Ap-
pendix A clearly sets the scope of the task outside of PCI-Express technicalities. With
the exception of some particular PCI-Express knowledge in order to determine through-

4



2 Background 2.2 PCI-Express standard and transfer speed

put performance, the PCI-Express specifics that Dolphin products used are built on will
be regarded as outside the scope of the project. The relevant literature is therefore limited
mostly to the documentation of the frameworks utilized which in the case of SISCI is quite
extensive.

Some of the examined literature include two theses that utilize Dolphin technology for
slightly different goals. (Cubedo (2021)) used Dolphin PCI-Express technology to im-
prove the performance of machine learning models. The author developed a proof of
concept plugin for the NVIDIA Collective Communication Library (NCCL) that enables
inter-machine PCI-Express communication using Dolphin NTB adapters. Although the
goals and methods of the thesis were substantially different, there are still some key take-
aways in how the performance gain can be measured for instance.

(Skrede (2022)) worked on message passing interfaces over PCI-Express using Dolphin
technology to universalize high performance computing. Again, the resulting performance
could be helpful for benchmark comparisons but the tasks are fundamentally very differ-
ent. The methodology used is also found in (Dolphin (2017b)) which will be the preferred
source.

There is also a thesis by (Lye (2010)) that implements camera support over PCI-Express
for a system not relying on Dolphin technology. Because the camera support was dis-
carded as an option for this application, this did not become relevant.

This task is unique in the way that it is heavily based on ”multicast” which means the
whitepaper (Dolphin (2017a)) is essential. It provides comprehensive information on
transmitting and reading data from reflective memory, highlighting the significant ben-
efits of using PCI-Express. The document also includes detailed hardware configuration
and installation instructions, a reflective memory comparison, and future plans. Addition-
ally, it provides code examples for the SISCI API. The whitepaper serves as a valuable
resource for understanding the application and benefits of PCI-Express reflective memory
in data transmission.

The research for this task has greatly involved Dolpin Interconnect Solutions and the peo-
ple working there in order to categorize which ideas and expansions are viable and not. In
general, research has been specific to development and revolved around the tools necessary
as well as insight into the capabilities supplied by Dolphin’s products.

2.2 PCI-Express standard and transfer speed
Having a basic knowledge of the PCI-Express generations and the transfer speeds associ-
ated with them is somewhat integral to the ability to measure performance in a PCI-Express
system.

5



2 Background 2.2 PCI-Express standard and transfer speed

CPU

Dolphin adapter

PCIe link

CPU

Dolphin adapter

PCIe link

PCIe link

Node (computer) Node (computer)

Figure 2.1: A PCI-Express link using Dolphin products also relies on the PCI-Express link between
the adapter card and the CPU.

Generation Data Rate Lane Bandwidth (1 dir.) Maximum Bandwidth Release Date
1.0 2.5 GT/s 250 MB/s 4 GB/s 2003
2.0 5 GT/s 500 MB/s 8 GB/s 2007
3.0 8 GT/s 985 MB/s 15.75 GB/s 2010
4.0 16 GT/s 1.97 GB/s 31.5 GB/s 2017
5.0 32 GT/s 3.94 GB/s 63 GB/s 2019
6.0 64 GT/s 7.56 GB/s 121 GB/s 2021
7.0 128 GT/s 15.13 GB/s 242 GB/s TBD

Table 2.1: This table presents key characteristics of different generations of PCI-Express interfaces.
”Data rate [GT/s]” refers to the theoretical maximum data transfer rate per lane, measured in Gi-
gaTransfers per second. A transfer is essentially a change in the binary state, from 0 to 1 or vice
versa. ”Lane bandwidth” refers to the actual data transfer rate per lane, after accounting for encoding
overhead. ”Maximum bandwidth” refers to the total data transfer rate for a full-sized x16 slot in one
direction.

As specified in (PCI-SIG (2006)), the PCI-Express 2.0 standard provides a maximum the-
oretical bandwidth of 5.0 GT/s (GigaTransfers per second) per lane. After accounting for
the 8b/10b encoding scheme used in PCI-Express 2.0, this translates to approximately 500
MB/s (Megabytes per second) of actual data transfer rate per lane. A standard full-sized
PCI-Express slot (x16) can therefore provide a maximum theoretical bandwidth of 8 GB/s
(Gigabytes per second) in each direction (upstream and downstream), for a total of 16
GB/s.

Equivalently, as specified in (PCI-SIG (2010)), the PCI-Express 3.0 standard provides
a maximum theoretical bandwidth of 8.0 GT/s per lane, which translates to approximately
985 MB/s of actual data transfer rate per lane, after accounting for the 128b/130b encoding
scheme. A standard full-sized PCI-Express slot (x16) can therefore provide a maximum
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theoretical bandwidth of 15.75 GB/s in each direction, for a total of 31.5 GB/s.

The PXH830 supplied by Dolphin for the application uses PCI-Express 3.0 and supports
the corresponding transfer speeds. However, as illustrated in Figure 4.1, the PCI-Express
throughput of the system is dependent on both the link between the adapter cards in each
node and the link on the motherboard between the adapter card and the processor. There is
therefore no guarantee that the transfer speed will reach PCI-Express 3.0 standard speeds
without having a bottleneck out of the processor. The PCI-Express physical links in are
illustrated in Figure 4.1.

The PXH830 comes with four cables for interconnect which gives the full x16 speed when
they are all connected. The performance can be scaled down to x8 or x4 by using only two
or one cable(s), respectively.

2.2.1 Transaction layer packets and their performance effect
PCI-Express communication revolves around the concept of sending and receiving TLPs.
These are the basic units of transfer on the PCI-Express bus, and they encapsulate the data
being transferred along with some additional information necessary for delivering the data
correctly.

As referenced in (PCI-SIG (2006)), TLPs are responsible for requests and completions
in PCI-Express. A request TLP is sent by a requester (initiator), and a completion TLP is
sent by a completer (responder). The maximum payload size (MPS) is a parameter that
defines the maximum size of the data payload in a single TLP and can vary in size depend-
ing on the processor’s capabilities. In general, regular processors have lower maximum
payload sizes than FPGAs but it depends on the processor brand and model. The TLP
includes several fields:

1. Header: This contains information about the type of transaction, the length of the
data, and the source and destination of the transaction. The header is 20 bytes in
size.

2. Data: This is the payload of the TLP, which can be up to 4096 bytes in size.

3. Digest (optional): This is a cyclic redundancy check (CRC) field used for error
detection.

The MPS supported by the processor sets a limit on how much data can be transferred in
a single TLP and therefore decides the data utilization of the TLP for the system.

2.3 The Ethernet standard as compared to PCI-Express
The table above is created using information found in (IEEE (2022)). It shows us the speed
provided by the Ethernet protocol as a useful comparison to the performance we hope to
achieve using PCI-Express alternatives. A general Ethernet link between home comput-
ers is usually of the standards 1000BASE-TX or 10GBASE-TX with their corresponding
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Table 2.2: Ethernet Speed standards.

Version Bandwidth Standardized in Cable
10BASE-T 10 Mbps 1995 UTP

100BASE-TX 100 Mbps 1998 UTP
1000BASE-T 1 Gbps 2003 UTP
10GBASE-T 10 Gbps 2008 Cat6a or better UTP
25GBASE-T 25 Gbps 2016 Cat7 or better UTP
40GBASE-T 40 Gbps 2017 Cat7 or better UTP
100GBASE-T 100 Gbps 2019 Cat8 or better UTP

speed statistics. We also have to consider that the actual bandwidths do vary based on fac-
tors such as the length of the cable, the network load and the type of traffic being sent. In
general, differences in protocol overheads make the actual bandwidth very dependent on
the data being sent which is something to consider when comparing different technologies.

2.4 Video transfer

The main comparison to a PCI-Express based video transfer application is the common
method of using a TCP/IP-based stack. TCP/IP-based applications have a big advantage
in their availability. Any device that supports internet connectivity can in theory partake in
a video sharing application. The downside of this ”all-purpose” approach is speed and ro-
bustness. Depending on the physical link between devices, speed can be a varying factor.
In addition to this there is a need for continuous TCP/IP calls during data transfers which
are a limiting factor both for transfer speed and CPU usage.

On the other end there are embedded applications where specially designed protocols or
protocol-less systems have the flexibility to allow speed and efficiency only limited by the
hardware. This approach sacrifices generality and availability, and gives the opposite ben-
efits and disadvantages to a high-level protocol like TCP/IP.

My approach uses the Dolphin hardware and software stack to bridge these options. By
using Dolphin adapter cards and the software stack known as SISCI (Software Infrastruc-
ture Shared-Memory Cluster Interconnect) I can use regular processor store and load
commands to transfer data from one computer to the other. This avoids the previously
mentioned overhead of TCP/IP. When it comes to availability and generality, it is possible
to use SISCI on a wide range of different hardware running different software and operat-
ing system configurations.

One SISCI feature that is especially useful for this purpose are multicast addresses which
allows a single write operation to update memory on several other nodes through reflective
memory hardware. This can be used to create a bandwidth-efficient sharing application for
multiple clients.
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2.5 Hardware

The drivers provided by Dolphin Interconnect Solutions drive an adapter board connected
to the motherboard’s PCI-Express slot. The board used is the PXH830 ((Dolphin, 2019))
which supplies a link layer connection between the nodes in the network. The board can
be seen in Figure 2.2. The PXH830 allows for high-speed transfers with optical cables and
provides DMA capabilities for efficient transfers of bigger sizes.

In the testing cluster used, the two PXH830 adapters (one in each computer) are con-
nected with four cables providing a x16 link. They are configured to use their highest
supported version of PCI-Express being version 3.0. As per the specification ((PCI-SIG,
2010)) this should allow for a theoretical maximum transfer speed of 16GB/s.

Figure 2.2: The Dolphin Interconnect Solutions PXH830 adapter card as pictured in its manual
((Dolphin, 2019)).

2.5.1 PCI-Express switch

Multicast is a SISCI operation where a memory segment is reflected in several computers.
This allows a single processor write operation to alter memory on several nodes at once.
This operation is enabled by a PCI-Express packet switch created specifically for PCI-
Express clusters by Dolphin. The switch provided for this project is the MXS824 found at
(Dolphin (2023)).
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2.6 Dolphin software
The use of Dolphins PCI-Express software stack for video processing purposes is mostly
uncharted territory. This task utilizes a combination of hardware and software provided
by Dolphin to make advancements on this. SISCI, or (Software Infrastructure for Shared-
memory Cluster Interconnects) is an API designed to utilize the functionality of the in-
stalled PCI-Express adapter board. It provides a library of SISCI functions that allows the
programmer to utilize efficient PCI-Express functionality. The provided library commu-
nicates with the SISCI driver and provides ”made easy” ((Dolphin, 2017b)) PCI-Express
capabilities.

2.6.1 Virtual devices
A SISCI virtual device is required for every distinct resource held by the running program.
This means that a virtual device can only hold one of each resource with an example being
one memory segment and one interrupt but not two of either. Functionally, this allows a
virtual device to use all API functions available for a single connection. Multiple connec-
tions require one virtual device per connection.

The properties of a resource are collected in a descriptor and provided to the program-
mer through a handle. So in short, a virtual device is a communication channel with the
driver that contains a maximum of one of each resource. The resources are accessible by
the user though their provided handles.
In order to create a virtual device we need to initialize the SISCI library and then open a
virtual device. This can be achieved using the following template:

1 SCIInitialize()
2 SCIOpen()
3 /* Sisci functionality here */
4 SCIClose()
5 SCITerminate()

With each virtual device needing to be created and removed using SCIOpen and SCIClose,
respectively. Initialization and termination is necessary only once per program. Through
virtual devices, remote memory can be mapped directly into the memory of the running
process and accessed as if it were local, with SISCI drivers functioning as an intercepting
layer for seamless integration.

2.6.2 SISCI segments
Remote memory access is handled using segments. A memory segment can be set avail-
able for access from another device creating what is a local segment from the perspective
of the node that sets it available for others. Because memory allocation is a process that
is handled differently in various operating systems, SISCI supplies specific functionality
for allocating and preparing memory for segments. An operating system swapping pro-
cess memory allocated in a traditional way could for instance be detrimental to a shared-
memory application. The process of creating and preparing a segment for use on a physi-
cally separate device can be simplified to:
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1 sci_desc_t v_dev;
2 sci_local_segment_t local_segment;
3 sci_error_t error;
4

5 SCIInitialize(...);
6 SCIOpen(&v_dev,...);
7 SCICreateSegment(v_dev, &local_segment, ..., &error);
8 SCIPrepareSegment(local_segment, ...);
9 SCISetSegmentAvailable(local_segment, ...);

where some required arguments have been omitted for the sake of simplicity but are spec-
ified in ((Dolphin, 2020)). The segment is created and memory is allocated in a safe way in
accordance to the operating system with SCICreateSegment. SCIPrepareSegment
maps the memory segment into a cluster-wide network address space allowing access to
the segment from network adapters. This function also ensures that the memory is allo-
cated safely and in compliance with the local operating system. SCISetSegmentAvailable
allows importing nodes to connect to the segment and map it into their own memory. In
combination with its counterpart, SCISetSegmentUnavailable it’s possible to react
based on remote processes accessing the segment.
A remote node trying to connect to a segment made available on another device can do so
by representing the segment as a remote segment in its own memory. Data flow through
segments are illustrated in Figure 2.3.

2.6.3 Client-server based memory operations
Transferring data in a cluster of computers connected by Dolphin adapters can be done
in a pattern where the node that contains the physical data acts as a server and the nodes
requesting the data act as clients. One standard way to transfer anything from a running
server to a client requesting data is by using a doorbell mechanism in the following pattern:

1. The server makes a segment available for clients to notify their activity. This can for
instance be configured as an interrupt.

2. The client makes a data segment available for connections.

3. The client connects to the server and notifies it that a file is requested transferred to
the data segment made available.

4. The server connects to the client’s available data segment and pushes the data (for
instance using a DMA engine).

Once notified that a transaction is required, the server maps the available memory of the
client into it’s own memory space and transfers the data using regular processor I/O oper-
ations or provided DMA capabilities.

Processor In/Out operations (PIO)

The simplest way of writing to a memory address that is present on a different computer
but mapped into the local system with a SISCI segment is by simply writing to it. While
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Figure 2.3: Illustrative picture of data flow from the running process through the Dolphin adapters
provided by Dolphin Interconnect Solutions.

this can be done in any traditional way, the most efficient method should always be using
SCIMemCpy() according to (Dolphin (2017b)). SCIMemCpy() uses PIO for data trans-
fer but is optimized for the CPU and motherboard hostbridges. The SCIInitialize()
call finds the optimal SCIMemCpy() and is required upon every SISCI program initial-
ization.

Direct Memory Transfer (DMA)

The Dolphin adapter card PXH830 comes with a physical DMA that allows the use of
SISCI DMA functions. The DMA can move data from a local segment to a remote one
without taking up CPU resources, freeing the CPU to be used for other operations during
the transfer. The logical separation between the two modes for optimal performance as
supported by (Dolphin (2017b)) is to use the DMA for large data transfers and PIO for
smaller amounts of data. This is because the DMA has a significant overhead, making it
the faster option only at a certain transfer size. A DMA queue with the aforementioned
capabilities is a SISCI resource and therefore needs a virtual device as described in sub-
section 2.6.1. However, as specified in that section, the same virtual device can be used to
keep track of several different SISCI resources. Using the same virtual device that keeps
the handle for the remote segment we want the DMA to transfer to, we can also initialize an
accompanying DMA queue with it’s own handle. The DMA queue handle dma queue t
is initialized using SCICreateDMAQueue() and passing the adapter number for the
adapter with the physical DMA engine. Once the queue is initialized, passing data using
the DMA can be done in one of two ways:

• Using SCIStartDmaTransfer() which takes as it’s input a local and a remote
segment, transferring data from the local to the remote unless otherwise specified
using flags.

• Using SCIStartDmaTransferMem() to transfer directly from a user-allocated
buffer to a remote segment.
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The DMA transfer has several synchronous and asynchronous options for validating data
transfer as well as other options that will be omitted for the sake of conciseness but can be
found in (Dolphin (2017b)). Instead, relevant options for testing purposes are presented
when utilized in chapter 6.

2.6.4 Multicast
Multicast is a SISCI mechanism that allows for reflective memory, meaning a write opera-
tion can write to memory in several computers at once. This is done by assigning multicast
ID groups to local segments and mapping remote segments on the senders end to these.
The multicast mechanism handled by SISCI hardware meaning that writing to multiple
addresses is as simple as a regular processor write operation.

2.7 Programming language and OS. specific features
Mutexes and semaphores are synchronization primitives used in multithreading program-
ming to handle concurrent access to shared resources. A mutex is a binary flag that ensures
mutual exclusion between concurrent threads on a single resource. When a thread acquires
a mutex, no other thread can access the guarded resource until the original thread releases
the mutex.

A semaphore is a more generalized synchronization tool that controls access to a set of
resources instead of a single one. It maintains a count of available resources, and when
a thread requests a resource, the semaphore’s count decreases. If the count reaches zero,
requesting threads block until a resource becomes available again.

When using C and Linux, these features are available through the POSIX threads (pthreads)
library. The pthread mutex lock and pthread mutex unlock functions handle
mutex operations, while sem wait and sem post handle semaphore operations. These
mechanisms help prevent race conditions, ensure data consistency, and coordinate actions
between threads.

2.8 Video processing
In order to create an application that can support the transfer of different types of video, as
well as accommodate both file transfers and potential direct buffer writes from a camera
source, processing is necessary. Some of the features needed for the functionality of the
program are:

1. Breaking the video up into individual frames for data transfer

2. Separating video and audio data

3. Ability to break several types of video formats into one transferable datatype

4. Create displayable formats from raw image or video data
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The video processing techniques needed for this project are relatively basic but should
be able to extend into more advanced techniques if a GPU is utilized to process the data.
Flexibility is therefore a main requirement for the processing method.

2.8.1 About the framework: FFMPEG

Because the project is open-source, the open-source video processing framework FFmpeg
fits well with the task at hand. FFmpeg is a popular open-source multimedia framework
that provides powerful tools for handling various multimedia formats. It supports a wide
range of codecs, formats, and protocols, and can be used for encoding and decoding, of
audio and video files. FFmpeg is capable of converting files between different formats,
manipulating metadata, and extracting audio and video streams from file containers which
will be very useful when processing a video stream over PCI-Express. It can be integrated
into the application through its libraries and APIs although for the task at hand, the C
libraries are preferred.

Relevant library methods and datastructures

We need to establish some terminology in order to make use of the FFmpeg library func-
tions. Here follow the relevant video processing terminology:

• Codec: A program or device that encodes or decodes a digital data stream or sig-
nal. In the context of video files, a codec determines how the video is compressed.
Common video codecs for video include H.264, HEVC, VP9, and AV1. FFmpeg
supplies several codecs and is able to pick one that can decode our video based on
it’s format. This is essential for breaking down videos in different formats to the
same, PCI-Express transferable format.

• Decoding: The process of translating a compressed video data stream back into
a series of images (frames). The compressed video data is encoded in a specific
format, and the decoder must understand this format to correctly translate it back
into a watchable video.

• Packets: A unit of data that is transmitted over a network. In terms of video files, a
packet typically contains a portion of the compressed video data. Packets are part of
the ”container format” of the video file, which includes the video data, audio data,
and other information like subtitles or metadata.

• Streams: A sequence of data that represents a particular element of the video file.
For example, a video file may contain a video stream, an audio stream, and option-
ally other streams like subtitle or data streams.

• Frames: The individual images that make up a video stream. A video file is es-
sentially a sequence of frames that are displayed rapidly to create the illusion of
motion. In FFmpeg, frames are decompressed packages meaning they can contain
data additional to images such as sound and timestamps.
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The AVFrame datastructure is the frame produced when decoding and decompressing
video data with FFmpeg. The AVFrame data structure is a core component of the FFmpeg
library, serving as the primary structure for representing decoded video and audio data.
This structure is used extensively in FFmpeg to manage and manipulate raw media data.

An AVFrame structure represents a single frame of either audio or video. For video, an
AVFrame holds one image, and for audio, it contains multiple samples instead. The struc-
ture contains a wealth of fields for describing the frame’s properties, such as its format
(pixel format for video or sample format for audio), width and height (for video), number
of channels and samples (for audio), and other associated metadata.

The data field of an AVFrame is an array of pointers, pointing to the actual image or
sound data. For video, the data is typically organized as a two-dimensional array of pixel
values, with each row of pixels corresponding to a line in the image. For audio, the data is
typically a one-dimensional array of audio samples.

The structure of AVFrame is crucial for our application as we want to transfer only the
data that is altered between frames in order to create an efficient PCI-Express data trans-
fer. It can be visualized using Figure 2.4 below:
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Packet
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Pkt_pos: int64_t

Pkt_size: int
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Best_effort_timestamp: int64_t

Best_effort_timestamp_time_base: AVRational
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Repeat_pict: int

Audio

Channels: int

Channel_layout: uint64_t
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Extended_data: uint8_t**
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Keyframe: int

Pict_type: int

Format: int
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Data

Data: uint8_t*
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AVFrame

Figure 2.4: Illustration of the AVFrame ata structure from the FFMPEG library created with mer-
maid. The positioning has been altered in order to increase readability.

Looking at how the AVFrame data structure is built up, a main takeaway is that the raw
pixel data is not stored within the data structure itself but rather as a pointer to a data
storage address. This is relevant for a few reasons when it comes to data transfer. The
data pointer contains the raw image data. It’s size depends on the format, size and general
metadata within the AVFrame structure. From this, we can observe that knowing the static
context information is necessary to determine the data size per frame but also sufficient to
rebuild the data frame after a transfer.
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2.9 Visual framework: SDL
In order to display the video processed by FFmpeg and transferred with SISCI, we need
some sort of framework for an application since C does not come with GUI capabilities
out of the box. In the realm of media processing, the Simple DirectMedia Layer (SDL)
library is often utilized to display raw image data. SDL provides a structure known as
an SDL Texture, which is essentially an efficient, driver-specific representation of pixel
data. To display raw image data using SDL, one first needs to convert the image data into
an SDL-compatible format, subsequently creating an SDL Texture that can be rendered
onto the screen.

Initially, raw image data, such as that found in an AVFrame structure from FFmpeg, is
typically in a format not directly compatible with SDL. Thus, it needs to be converted to a
format SDL can understand, such as SDL’s own pixel format. For cross-platform purposes
it is important that the framework chosen is compatible with a wide range of operating
systems, including Windows and common distributions of Linux.

2.10 Compiling for Dolphin product compatibility
Compilation of SISCI projects is most easily done using a makefile. The SISCI developers
kit comes with libraries under /opt/DIS/include and /opt/DIS/src/. These are
essential for the linker in order to create an executable that can utilize SISCI functionality.

In order to create the .o object files, the include paths have to be passed to the GCC
compiler. In order to create executable files, the linker needs to be passed the argument
”LFLAGS=-Wl,-L/opt/DIS/(LIBDIRECTORY),-rpath,
/opt/DIS/(LIBDIRECTORY),-lsisci” at the end of the argument list. The specifics
of creating a makefile that supports the entire program will vary based on hardware and
which configuration the software is desired to work in. The makefile used for this project
is found in Appendix C.

17



3
Specification

3.1 Functional specification
I order to fit the relatively open problem description provided by Dolphin, the system needs
to provide support for several different modes, inputs and outputs. The system should be
able to:

• Process video files of different formats, sizes and lengths into packets (”frames”)
that are transferable through a PCI-Express cluster and reconstructable into the orig-
inal format.

• In the case where there is no file but instead raw data coming from PCI-Express
compliant camera hardware, the data should be able to be handled the same way a
processed frame would by the cluster network.

• Transfer video data from one machine to another using PCI-Express and direct ca-
bling.

• Multicast video from one machine to several nodes that receive at the same time.

• Support real-time video playing on one or multiple devices receiving the video data
frame-by frame over PCI-Express.

3.2 Performance requirements
Although there is inherent value in simply showing that the PCI-Express technology is ver-
satile enough to support a wider range of appliances, there should also be some performance-
based backing as to why that is advantageous. The application should meet the following
performance requirements:

• The application should be able to handle dimensions big enough to require large
frame sizes without compromising on frame rate or other metrics.
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• The application should support clients or server turning off or being disconnected
during transfer without crashing the program.

• Theoretical transfer speeds (disregarding video processing) should be comparable
to Ethernet - based alternatives and ideally outperform them. PCI-Express transfer
speeds as determined by generation and cabling width is specified in section 2.2.
This applies to a theoretical node with a fast enough graphical unit to where the
bottleneck lies in the transfer as opposed to the processing of the video.

3.3 Interface requirements
This application is intended as an open-source demonstration tool for the services provided
by Dolphins products. As such, it should be operateable and understandable by anyone
who is interested in this type of technology.

• The program should be easy to extend to other hardware or software requirements
through modular interfaces.

• The program should be easy to run and modify to the users specific needs.

• The application should be designed and implemented with future expansions in
mind.

19



4
Design

4.1 Hardware design

The hardware design is determined by the gear supplied for the project by Dolphin. They
supplied three computers with installed PXH830 adapter cards, as well as a MXS824
switch with four PCI-Express 320-10060 cables. In order to meet the requirements, the
nodes have to be interconnected and at the same time leave room for extensions in the
form of an external GPU or a PCI-Express compliant camera.

PCI-e switch

Data sources Data sinks

Server node

PCI-e camera

Client node

Client node Display

Display

GPU

Figure 4.1: Figure: A hardware design overview that includes all potential application extensions
including GPU and camera support.

Since the hardware design is determined mostly by what is available for development in
terms of Dolphin products, the software will have to be designed around the hardware.
The way to design around several potential application expansions is modular design.
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4.2 Modular software design
The software can be designed in a modular way to allow the different pieces of the hard-
ware system to access relevant and necessary functionality. Modularization in this code
brings several key benefits, especially considering the project’s potential to evolve in vari-
ous directions. By breaking down the code into distinct modules, we increase the system’s
adaptability to deal with the different possible extensions. It also means we can add to or
change individual modules without affecting the whole system. This is particularly use-
ful for this project, as there are several possible enhancements but some uncertainty as to
which ones there will be time to implement. With a modular approach, we can develop
without having to overhaul large parts of the code. This not only streamlines our develop-
ment process but also ensures we can quickly adapt to new requirements or opportunities,
making the most of the project’s potential. The implementation of modularization for the
specific purposes of this application is explained further in section 5.8.

The flow of data through the modules for the different modes is illustrated in Figure 4.3,
Figure 4.2 and Figure 4.4 below. Through splitting the program into different modules,
the goal is to be able to switch hardware modes seamlessly. This should provide compro-
miseless to the performance requirements.

PCI-e transfer
process

Video player
process

Video player
process

PCI-e receiver
process

Video
Camera

PCI-e link

Data flow Data flow

Data flow

Unicast / Multicast
topology

Figure 4.2: Figure: How data flows in the case of a camera being the source of the video frames. The
circles represent running modules where the thin lines are one-to-one data transfers while the thick
arrows represent a potential multicasting of the data to several instances of the receiving module.

A single module should provide the interface needed to make a decoded video file appear
no different from a direct frame video stream from a camera. The next image illustrates
how simply adding a module should provide sufficient. One thing to keep in mind is
that the feed of frames into the PCI-Express process will depend on the video decoding
capabilities of the system and potentially create a bottleneck. This is as opposed to the
system in Figure 4.2 where the feed of frames would be decided by the frames per second
capture rate of the camera.
The GPU processing module should be standalone in a way that makes the clients display-
ing the video unaffected as to whether a GPU is used in the cluster or not.
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PCI-e transfer
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Unicast / Multicast
topology

Video processing

Data flow

Video file

Figure 4.3: Figure: How data flows in the case of either previous source of video frames with
a GPU unit attached to the cluster network for video processing. The circles represent running
modules where the thin lines are one-to-one data transfers while the thick arrows represent a potential
multicasting of the data to several instances of the receiving module.
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Figure 4.4: Figure: A hardware design overview that includes all potential application extensions
including GPU and camera support.
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5.1 Overview of implementation sequence
Due to opting for a rewrite of existing demo capabilities, the implementation sequence
was as follows:

1. Develop the (existing) unicast capability on a physical cluster consisting of two
nodes, interconnected by Dolphin hardware.

2. Develop the same functionality but only using multicast transfers. Multicast works
like unicast in a two-node cluster.

3. Expand the hardware with a PCI-Express switch and a third node, then add support
for this in the software.

4. Add a GPU to the cluster connected to the switch and develop software for it to be
able to participate in the cluster.

5.2 Physical cluster setup (Without multicast support)
The PCIe cluster was set up using two desktop computers running fresh installations of
Ubuntu 18.04.01. Both nodes were equipped with PXH830 adapter cards provided by
Dolphin. The computers were connected using four cables of the type 320-10060 which
provides the maximum 16x PCI-Express physical link between the PXH830 adapters. The
setup is illustrated below in Figure 5.1.
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Dolphin PXH830
adapter

Dolphin PXH830
adapter

Linux-based OS Linux-based OS
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Figure 5.1: Simple illustration of the hardware setup for unicast.
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Figure 5.2: Simple illustration of the hardware setup for multicast.

5.3 Physical cluster setup (Multicast)
The physical difference between the unicast and the multicast setup is simply the inclusion
of an MXS 824 Dolphin PCI-Express switch as well as more nodes with their correspond-
ing physical link cables. The inclusion of the switch allows easy connections of other
devices to the cluster such as GPUs but the cluster still needs reconfiguring in order to
make sure every node has a separate and known node ID. Figure 5.2 illustrates the multi-
cast setup without an included GPU but with two free sets of cables where a GPU connect
is possible, mirroring the physical setup.

5.4 Node configuration
The SISCI software stack is compatible with most common operating systems and is de-
livered with a self-installing archive (”SIA”) that installs required drivers and libraries for
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5 Implementation 5.5 Modular program setup in C

our PCI-Express functionality. Quite a few options had to be tried in order to make this
work but eventually success was found with Ubuntu 18.04.01 as the operating system on
all nodes. Dolphin responded to the feedback regarding some of the broken SIA packages
and claim to have fixed them but that has not been verified during this development pro-
cess. In general, software built for older systems tend to be more stable.

The SISCI software stack installs for the entire cluster and can be monitored from a ”fron-
tend manager node”. The manager node can be one of the cluster nodes running SISCI-
based software but it can also be a different machine. For remote testing purposes, the
cluster manager suite was installed on a personal laptop allowing tests to be run from re-
mote locations. The cluster manager node gets a set of scripts that allow GUI monitoring
of the installed nodes in the cluster. This gives information about the status of the clus-
ter but also access to pretty powerful features like rebooting nodes and getting node IDs
present in the cluster. In order to get this access, the SIA (for the correct O.S.) has to be
run from the management node with Ethernet access to all nodes that shall be configured
in the cluster. This means setting up SSH access to all nodes.

Since the cluster management node in this case did not run Ubuntu 18.04.01, the install
process for every time the cluster changed (including adding a switch for multicast) was a
heterogeneous one which is performed as follows:

1. Remove the current configuration on all nodes by running SIA with flag –wipe

2. Run the SIA on all nodes using the flag –install-node

3. Run the SIA on the frontend manager node with the flag –install-frontend

4. Verify cluster configuration using the script ”DIS Admin” on the frontend node.

This procedure does not mention setting up SSH access to the nodes for the frontend install
to configure correctly. There are several ways of doing this, this setup utilized the package
”openssh-server”.

5.5 Modular program setup in C

5.5.1 Multithreading
The video processing module operates using a custom queue data structure called AVFrame Q
which as the name suggests, is a queue of AVFrames. The idea behind using this is that it is
hard to tell what takes more time between breaking down frames using the ffmpeg library
or transferring them using SISCI and PCI-Express. This could depend on the graphical
capabilities of the node running the server, the type of Dolphin hardware we have installed
as well as other loads affecting both the node and the cluster network. To mitigate this, we
place the processed frames into a queue that supplies atomic push and pop operations as
well as other helper functions that can be seen in Figure 5.3. This lets us run the video pro-
cessing functionality in a different thread from the one handling the PCI-Express transfer.
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Figure 5.3: A Class-diagram-like approach to illustrating the modular interface. ”+” Indicates that
the data/function is accessible when importing the module. ”-” Indicates that it is a non-accessible
function for internal use only. ”#” Indicates that the data structure is opaque and can be referred to
by the importing module. The internal data is hidden for the importing module however, meaning
that only pointers to the imported datatype is allowed.

The two threads deal with filling up and emptying the queue separately which gives us
a buffer in case one of the processes experience a delay.

The interaction is showed in the following schematic:
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Figure 5.4: Illustration of how the server node uses two threads to interact with a custom queue data
structure.
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The queue is protected by a mutex and semaphores to ensure it works as a safe connection
between the running threads.

5.6 Video processing
The video processing process is the one illustrated as ”thread 1” in Figure 5.4. It also sup-
plies the queue datastructure and an interface with all functions needed to use the queue
from an importing module. The interface is made as a .h file and is found in teh appeni-
dix’ subsection D.

The module processes a video file into a single allocated AVFrame structure which func-
tions as a ”working frame” and uses the provided AVFrame Q push() function to add
it to the shared queue before processing the next frame. The data is deep copied into the
queue and not passed as a reference. We avoid passing pointers which is the ”normal”
way of handling AVFrames because they themselves contain a lot of dynamically allo-
cated variables. This was done to avoid confusing pointer arithmetrics in a multithreaded
environment.

First, the ffmpeg library is initialized by calling av register all() and
avcodec register all(). This sets up the necessary environment for video pro-
cessing. Next, the input video file is opened using avformat open input(). This
function establishes a connection to the video file and retrieves the format-specific infor-
mation into an AVFormatContext structure. Once the format is established, the stream
information is extracted by calling avformat find stream info(). This step al-
lows us to identify the video stream within the file.

To decode the video, the appropriate codec is determined using av find best stream().
The codec information is stored in the codec variable. A codec context is allocated and
initialized with avcodec alloc context3(). This context holds the parameters and
settings required for video decoding. The codec parameters from the input stream are
copied to the codec context using avcodec parameters to context(). This en-
sures that the codec context is properly configured for decoding the video. The codec is
then opened using avcodec open2(). This step prepares the codec for video decoding.

To hold the decoded video frames, an AVFrame structure is allocated using av frame alloc().
This frame will store the uncompressed video data. Then begins the decoding and process-
ing loop. The function reads packets from the video file using av read frame(). If the
packet belongs to the video stream, it is decoded using avcodec decode video2().
If decoding is successful and a frame is obtained, it is processed further. The processed
frame is then pushed into a queue, enabling further processing or display. This is achieved
by calling avframe Q push(). The loop continues until a predefined threshold is
reached or the video ends. If the video ends, the function seeks back using av seek frame()
to ensure continuous playback. After the loop exits, the allocated resources, including the
frame, codec context, and format context, are properly freed to release memory.
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In summary, this module initializes the necessary structures, opens the video file, decodes
and processes video frames, and ensures proper cleanup. The process is based almost en-
tirely on ffmpeg functionality and is perhaps better understood by studying the code or
interface of the module.

5.7 PCI-Express transfer
The SISCI library is initialized using SCIInitalize(). This SISCI library function
finds an optimized copy function by checking the system CPU and and installed SISCI
adapter and is important for data transfer later. It also does simple error checking by
checking that the driver version is consistent with the SISCI library version. In addition,
system resources needed for SISCI memory transfer later is allocated.

For every synchronizing segment planned to use in the application, a separate virtual
device has to be created. A virtual device is created with SCIOpen() and requires a
reference to a descriptor of the virtual device with the datatype sci desc t. The virtual
device is a communication channel to the SISCI driver and uses a descriptor to ensure
accessibility while keeping the exact implementation details behind an opaque handle.

Once a communication channel is established with the driver, is becomes possible to open
a SISCI segment using SCICreateSegment(). This function allocates contiguous
memory of the specified size with a segment ID for identification. The SISCI driver will
keep a list of allocated segments that can be referred to and used in our program by passing
their respective segment ID.

From here, the allocated segment can be prepared for use with other machines in the cluster
by making it accessible to the Dolphin adapter. This is done with SCIPrepareSegment().
Since it is possible to have multiple adapters installed, teh function needs to be passed the
correct adapter ID and segment ID in order to link them up properly.

At this point, the segment memory is allocated in kernel space and managed by the SISCI
driver. The idea is to map the memory (which synchronises using the SISCI driver) to
the user space program as a virtual address. The SCIMapLocalSegment() function
returns a virtual address that the program can write to and read from using regular mem-
ory operations (such as memcpy()). The SISCI driver handles synchronization letting us
operate on the memory address as if it were regular local memory while affecting memory
present physically elsewhere.

The segment can then be prepared for remote access from another device running the
SISCI software stack. Notably, we prepare segments for remote access by another
computer in the client software. That way, the server is prepared to write directly to
the client instead of the client fetching data from the server. This can be thought of as
a mailbox operation where the address of the mailbox is mapped directly into the ad-
dress space of the server program. To acomplish this, the segment is set available using
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Client Server

loop [Data transfer]

Creates Local Segment

Creates Remote Segment

Sets Segment Available

Connects to Available Segment

Writes Data to Segment

Reads and Operates on Received Data

Figure 5.5: Sequence Diagram: Segment preparation. The mapping of remote and local segments
into program address space has been omitted.
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SCISetSegmentAvailable() on the client side followed by SCIConnectSegment()
on the server side. Since SCIConnectSegment() only succeeds if the segment has al-
ready been set available, we can opt to run it in a loop as a blocking call. This ensures that
program features such as video transfer only proceeds once a client is actually connected.
The video server program runs the following loop:

1 do {
2 SCIConnectSegment(v_dev_framedata,
3 &r_seg_framedata,
4 DIS_BROADCAST_NODEID_GROUP_ALL,
5 FRAMEDATA_SEGMENT_ID,
6 ADAPTER_NO,
7 NO_CALLBACK,
8 NULL,
9 SCI_INFINITE_TIMEOUT,

10 SCI_FLAG_BROADCAST,
11 &err);
12

13 SleepMilliseconds(10);
14

15 } while (err != SCI_ERR_OK);

This ensures there is a client available before the video processing starts.

Once the segments have been properly set up for communication, data transfer can be
done simply by writing to the mapped memory sequence. The choice is given between
using regular processor I/O operations on the mapped memory or DMA transfer protocols
provided by the Dolphin adapter cards. For PIO operations, SISCI provides the function
SCIMemCpy() which provides an optimized memory copy algorithm based on hardware
surveys performed when SCIInitialize() was ran. For bigger data transfers, reduc-
ing CPU load by using provided DMA capabilities might be a better option. In order to
use the DMA capabilities present on the Dolphin adapter cards, a DMA queue in local
memory can be created using SCICreateDMAQueue(). The data can then be trans-
ferred from local memory to a remote segment using SCIEnqueueDMATransfer()
and SCIPostDMAQueue(). This requires more overhead so it is only worth it if reduc-
ing processor load is of importance and the data transfer is big enough to take advantage
of the DMA capabilities.

After data transfer has been completed in a SISCI program, several cleanup operations
should be performed to ensure the system resources are properly released. Firstly, the
SCIUnmapSegment() function should be called to unmap any previously mapped seg-
ments from the application’s address space. This includes both local and remote seg-
ments that were mapped. Secondly, ff any segments were made available to remote
nodes using the SCISetSegmentAvailable() function, they should be made un-
available using the SCISetSegmentUnavailable() function. Any segments that
were created using the SCICreateSegment() function should be removed using the
SCIRemoveSegment() function. Finally, the SCIClose() function should be called
to close any virtual devices that were opened with the SCIOpen() function. After all
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these operations, the SCITerminate() function should be called to terminate the SISCI
API. This ensures that all resources allocated during the use of the API are properly re-
leased. A simplified illustration of a segment setup sequence is seen in Figure 5.5.

5.7.1 Differences between unicast and multicast segment setup

Server PCI-e switch

Broadcast
(Multicast ID)

Client
(in multicast

group)

Client
(in multicast

group)

Client
(not in

multicast
group)

Transfer

Transfer

No
transfer

Figure 5.6: Figure: A PCI-Express switch handles the package distribution to nodes meaning there
are no longer any direct connections.

In order to set the application up for multicast, there are a few changes required to the
PCI-Express transferring setup. Multicast is not a direct memory transfer between two
nodes which means the previous setup where a client makes a segment available for the
server to connect to has to be altered. Instead, the packets are distributed to the nodes with
segments registered in the corresponding multicast ID group as illustrated by Figure 5.6.
This makes the segment setup different but also enables hot-plugging of both server and
nodes. The nodes can be set up to ”listen” to a multicast segment and play once data comes
through and the server is able to send data to the switch regardless of whether there are
nodes receiving or not.

Both server and client nodes create and prepare segments using SCICreateSegment()
and SCIPrepareSegment() respectively, passing the flag SCI FLAG BROADCAST
and a multicast segment ID to prepare for multicast compatibility. The segment is then
mapped to local memory using SCIMapLocalSegment() and set available similarly
to how the client would prepare a segment previously. This mapped address serves as the
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read address. As opposed to previously, both server and client create local segments. Ad-
ditionally, the segments share the same segment ID on all participating nodes. The server
also needs to connect to the multicast segment using SCIConnectSegment() and then
map it again, this time as a remote address using SCIMapRemoteSegment() to create
a write address. This method of creating local segments on all nodes but only mapping
a remote write address for the server allows there to always be a segment to write to no
matter how many clients are connected. This gives us the benefit of being able to reboot
both server and clients without interfering with the program.

5.7.2 Differences in what data to transfer
Since the unicast implementation needs an established and alive connection between server
and client, the size of the data segment should be established before data transfer ensues.
As previously mentioned, the raw pixel color data needed to create a displayable frame has
a size dependent on the video size and the pixel format. The SISCI segment is allocated
first by the client node that imports the data, which means we need a way to communicate
the required segment size from the server to the client before the transfer ensues. This is
done in the following way:

1. Client creates a segment and waits for a connection.

2. Server connects to the segment and transfers the segment size and other information
necessary for video reconstruction based on a test video processing run.

3. Client closes the segment and re-allocates it with the now correct size.

4. Server re-connects.

5. Video processing and transfer begins.

With this unicast implementation the metadata is transferred once at program startup and
then the connection re-establishes for continuous frame data transfer. In the multicast im-
plementation, several other factors have to be considered. Serving an unknown number of
client nodes means we can not assume the clients all have the necessary metadata when we
transfer frames. The way this is solved is by establishing two different multicast segments.
One for metadata and one for raw pixel data. The client listens to the metadata segment
and makes sure all necessary variables are initialized before starting to process the data
available on the raw data segment. This double-segment method of data transfer not only
ensures multiple client (multicast) functionality but also has the added benefit of allowing
both clients and server to reboot without major issues to the program. Advantages and
disadvantages will be examined in further detail in chapter 8.

5.8 Video display
One goal of development was to create the video display functionality as a modular design
since the functionality for viewing the video should be the same on both the client and the
server side of the operation. The modular design should allow the user of the module to
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view it as a simple black-box that takes an AVFrame and displays video in return, illus-
trated in Figure 5.7.

AVFrame

Module

Videoplayer

Input

Output

Figure 5.7: Black-box logic for reusability of the module. An AVFrame should be sent in and
displayed on the screen for the required amount of time.

There are multiple reasons to modularize code. In this instance, the reusability aspect of
having the same video playback mechanism in both server and client nodes is an obvious
one. Reusability when the code expands to support more functionality is also equally
important. Other benefits of modularization include:

• Ease of Understanding: Modular programming breaks down complex systems into
smaller, manageable parts, each with a specific functionality. This makes the code
easier to understand and learn.

• Maintainability: In a modular program, each module can be updated, modified,
or fixed independently without affecting other parts of the program. This makes
maintaining the program easier and reduces the chance of introducing new bugs
when making changes.

• Encapsulation: Modular programming promotes encapsulation by keeping the in-
ternal workings of each module hidden from the others. This helps to prevent data
corruption and unauthorized access.

The video player module was set up in the following way: The function
create videoplayer() is responsible for initializing SDL, creating an SDL window
and renderer, and setting the color for clearing the renderer. If any of these operations fail,

34



5 Implementation 5.9 Adding a GPU to the cluster.

the function will report an error and terminate the SDL subsystem.

Once the video player has been initialized, the image shown on screen can be updated
simply by calling update videoplayer() and passing the new AVFrame that should
be rendered on screen. This function receives an AVFrame and a VideoPlayer structure as
input and translates the AVFrame into an SDL texture. The texture, containing the video
frame data, is then updated and rendered onto the screen. A delay is introduced to main-
tain the desired frame rate. Once the frame is displayed, the SDL texture is destroyed to
manage resources effectively.

Inconveniently, ffmpeg and SLD use different datatypes to store pixel formats so we use a
custom function to select the correct SDL pixel format based on the ffmpeg format. The
function select format() handles the conversion. This step is vital because it ensures
that the video frame data decoded by FFmpeg is translatable into a format that SDL can
render. This method is however, not guaranteed to work for every file format which means
the function has to be extended based on the required functionality.

SDL is a good choice for an application build on SISCI as both project are built to be
platform independent. SDL serves as an abstraction layer between the hardware and the
application, handling low-level tasks such as rendering graphics, capturing input, and play-
ing audio. This means that when using SDL, the developer doesn’t need to write different
code for different operating systems or hardware configurations. Instead, SDL automati-
cally translates the application’s commands into instructions that the specific hardware can
understand. This capability not only saves considerable development time and effort but
also improves code maintainability and scalability. In addition, SDL is optimized for per-
formance and supports many advanced features, making it a robust choice for multimedia
applications that need to run on diverse hardware setups.

The interface of the video display module can be found in the appendix’ subsection E.

5.9 Adding a GPU to the cluster.
After successfully implementing the multicast software, one of the open ports on the PCI-
Express switch was used to expand the cluster with a Nvidia Xavier GPU. The Xavier was
pre-configured with SISCI drivers from Dolphin and had yet another PXH 830 adapter
card attached to it’s PCI-Express slot.

The GPU was configured to read frames from the same multicast address as the running
cluster. Then, instead of rendering graphics and showing them, the GPU was configured to
flip the frame upside-down and send the flipped frame over a segment with a new multicast
ID. Since the PXH830 supports four multicast IDs, segment ID 0 was used for the frame
metadata, ID 1 for the raw frame data and ID 2 for the flipped frame data. The flow of data
between segments inside the modules is illustrated below in Figure 5.8.
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Figure 5.8: Illustration of how the different nodes participating in the cluster utilize the segment IDs
(0-2). Here, the GPU transformation represents whatever transformation is desired.

The following snippet was used to flip the frames:

1 void flip_frame(AVFrame *frame) {
2 struct SwsContext *sws_ctx;
3 AVFrame *flipped_frame;
4 int ret;
5

6 // Allocate a new frame
7 flipped_frame = av_frame_alloc();
8 if (!flipped_frame) {
9 fprintf(stderr, "Failed to allocate frame.\n");

10 return;
11 }
12

13 // Set the frame data
14 flipped_frame->format = frame->format;
15 flipped_frame->width = frame->width;
16 flipped_frame->height = frame->height;
17

18 // Allocate the frame data
19 ret = av_image_alloc(flipped_frame->data, flipped_frame->
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linesize, flipped_frame->width, flipped_frame->height,
flipped_frame->format, 32);

20 if (ret < 0) {
21 fprintf(stderr, "Failed to allocate frame data.\n");
22 av_frame_free(&flipped_frame);
23 return;
24 }
25

26 // Create a scaling context
27 sws_ctx = sws_getContext(frame->width, frame->height, frame->

format, frame->width, frame->height, frame->format,
SWS_BITEXACT, NULL, NULL, NULL);

28 if (!sws_ctx) {
29 fprintf(stderr, "Failed to create scaling context.\n");
30 av_freep(&flipped_frame->data[0]);
31 av_frame_free(&flipped_frame);
32 return;
33 }
34

35 // Flip the frame
36 flipped_frame->data[0] += flipped_frame->linesize[0] * (frame

->height - 1);
37 flipped_frame->linesize[0] = -flipped_frame->linesize[0];
38

39 // Convert the image
40 sws_scale(sws_ctx, (const uint8_t * const*)frame->data, frame

->linesize, 0, frame->height, flipped_frame->data,
flipped_frame->linesize);

41

42 // Free the scaling context
43 sws_freeContext(sws_ctx);
44

45 // Copy the flipped frame data to the original frame
46 av_frame_unref(frame);
47 av_frame_move_ref(frame, flipped_frame);
48

49 // Free the flipped frame
50 av_frame_free(&flipped_frame);
51 }

A client node was then set up to render the flipped graphics from segment ID 2 by simply
switching which segment ID it uses for it’s local segment. This works because the trans-
formation is as simple as flipping the image and does not affect the metadata. The client
uses the metadata from the server and the frame data from the GPU to render it’s frames.
In the case of a more advanced image processing technique, the last multicast segment ID
could be set up to carry the altered metadata information in order for the client software to
still support the video. This was not attempted in the current implementation.
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Testing

Testing the installed cluster and software is a crucial part of this process for several reasons.

• Setting up the cluster was a long and error-prone process as referenced in the ap-
pendix’ subsection B. Verifying that the cluster and physical links were operating
as expected is therefore a prerequisite for software development to be useful at all.

• Testing the multicast performance is required to identify hazards when moving from
a unicast to a multicast transfer mode.

• Lastly, testing the application to ensure it meets the specification is a requirement.

6.1 Environment
All tests were run directly on the deployed cluster which consists of the system described
in chapter 5. This introduces the potential issue of hardware differences which will be
discussed further in chapter 8.

Two of the nodes including the one consistently running the server side of the applica-
tion had the following specs:

Component Description
System Name HP Compaq 8200 Elite SFF PC (XL510AV)
Processor Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
Total Memory Size 8GiB System Memory
PCIe Bridge Xeon E3-1200/2nd Gen. Core Processor Family PCI Express Root Port

Table 6.1: System Specifications

The last node had the specs found in Table 6.2.
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Component Description
System Name OptiPlex 7010 (OptiPlex 7010)
Processor Intel(R) Core(TM) i3-3220 CPU @ 3.30GHz
Total Memory Size 4GiB System Memory
PCIe Bridge Xeon E3-1200 v2/3rd Gen Core processor PCI Express Root Port

Table 6.2: Hardware Information

The nodes each had installed a PXH830 card from Dolphin. Additionally, each PHX830
card was connected to a central Dolphin MXS824 switch with four PCI-Express 320-
10060 cables from Dolphin. This gives a PCI-Express 3.0 x16 link although the PCI-
Express bridge on the motherboards limited the actual transfer speed to x8.

6.2 Validation of cluster configuration
SISCI conveniently comes with a suite of testing software in order to validate the hardware
setup. Notably we can validate that the cluster works as expected both for direct PIO trans-
fers and reflective multicast transfers with the tests scibench2 and reflective bench
respectively. These benchmarks are part of the SISCI demo library which can be build by
running:

1 make -f Makefile.demo all

in the /opt/DIS/src folder that is created upon installing the SISCI developers kit.

Figure 6.1 shows the result of the throughput benchmark scibench2.

The results show that the physical link is running at x8 capacity since any less would
downgrade the throughput to a maximum of 4000Mb/s. The offset from the theoretical
throughput of 8000MB/s can partially be explained by the MPS as explained in subsec-
tion 2.2.1. Diagnosing the cluster using dis diag, a SISCI developer tool that comes
with the frontend install, we see that the MPS of the cluster is 128bytes. Using this infor-
mation we can adjust the expected data throughput to:

8000MB/s ×
(
128− 20Bytes

128Bytes

)
= 6750MB/s (6.1)

There is still some loss of throughput unaccounted for but because the performance is
sufficiently close to the theoretical one and the expected performance of scibench2 is
unspecified, the cluster can be assumed correctly configured.

reflective bench provides benchmarking of the multicast cluster setup shown in
Figure 5.2. Running the benchmark is no different from running scibench2 except two
nodes run the benchmark in client mode and one as server.

A typical run of the benchmark can be seen in Figure 6.2.
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Figure 6.1: A plotting of the results from running the benchmark scibench2. The benchmark
was configured to return the average of 10000 segment write loops for each segment size. The sizes
benchmarked were 128-4096 byte segments with 128 byte increments. For comparison the red line
represents the theoretical PCI-Express 2.0 throughtput maximum.

We can see that the throughput is about halved compared to scibench2 which is to
be expected because this benchmark measures traffic both ways compared to just in one
direction.

6.3 Validation of video transfer compatibility
For validation of video compatibility, the test library found at Anonymous (2023) was
used as a source for test files. All files found here were able to be transferred over the
multicast system successfully. However, the larger dimension video files trigger an error
when allocating a multicast segment for the uncompressed frame data saying it is unable
to get system resources. To fix this issue for large dimensions and through extension
frames, the option for dis max segment size megabytes in the SISCI driver has
to be increased from the default value of 4MB. This is specified in Dolphin (2016). The
maximum allowed multicast segment size is 2GB but by simply adjusting the driver to
8MB, the bigger files in the test library worked as well.

It is possible to require a certain file format when transferring from file, and this was the
behavior of the previous application Dolphin disposed for unicast demonstration. How-
ever, the spec requires certain file compatibility with common file formats and is set up to
handle several kinds of raw image frame data. This is to allow for future camera support,
being that a camera would provide a raw image data stream in an unknown format.
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Figure 6.2: Figure: An output example of reflective bench. The benchmark returned the
average of 10000 segment write loops for each presented segment size.
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The longest consecutive running of video transfer was a 16 hour session with a single
video looping. This was done to validate that a memory leak previously present in the
AVFrame Q structure was fixed.

6.4 Simultaneous video stream testing.
Simultaneous testing of the multicast application can be done simply by running the pro-
gram as in two different processes in each machine. Because the multicast SEGMENT ID
is limited to 0−3 and the application uses one SEGMENT ID both for the metadata transfer
and the actual frame data transfer, the maximum possible running instances of the applica-
tion was limited to two. Setting the ID’s to 0, 1 for the first instance and 2, 3 for the second
one is all that is needed for two simultaneous video multicasts.

6.5 High-performance throughput testing.
In the theoretical situation where the video decoding hardware is able to decode frames
faster than they can be transferred over PCI-Express, the multicast transfer module would
become the limiting factor. It can be shown that this is not the case for the current hardware
by inspecting the size of the AVFrame queue during application runtime and see that it
is almost always empty. In order to test the actual capabilities of this module without a
bottleneck coming from the video decoding or texture rendering modules, the following
test was implemented:

1. Modify the program to not use the video player functionality. This means no updat-
ing of the SDL video texture upon retrieval of a new frame on either the server or
the client.

2. Fill the AVFrame queuewith frames before starting the main transfer loop instead
of alongside the main transfer loop. The queue can be initialized to a fitting capacity.

3. Measure the time between the first and last frame arriving at the client.

4. Use the uncompressed frame size, number of frames and time measurement to cal-
culate the throughput independent of the video decoding and playback modules.

The modified module structure to accomplish this is shown in Figure 6.3.

When testing, the average of ten runs transferring 100 pre-processed frames of the size
345600Bytes over multicast, the results were as follows:
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Figure 6.3: Figure: Modifications to enable the measurement of throughput.
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6 Testing 6.5 High-performance throughput testing.

Transfer method Average transfer time Throughput
PIO 0.102160 338 MB/s

DMA 0.764302 452 MB/s

Table 6.3: Transfer times

Notably, this is quite a lot lower than the speed measured in the previous test. However, it
is still higher than the maximum throughput available through the most common ethernet
standards 1000BASE-TX and 10GBASE-TX as presented in Table 2.2. The result of this
test will be examined further in chapter 8.
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7
Results

7.1 Recap
The previous sections detailed the implementation of an application written in C that is
able to play video simultaneously on several computers using Dolphin’s SISCI multi-
cast functionality. The hardware implementation of this was done using custom Dolphin
adapter cards in regular desktop computers interconnected by a PCI-Express switch. The
software was designed in a modular fashion to accommodate expansions and used ffmpeg
for the video breakdown module, SDL for the video display module and Dolphin’s SISCI
API for the multicast transfer module.

7.2 Product
The main product of this thesis is a first-of-its-kind open-source video transfer application
that utilizes SISCI multicast to play video on several nodes at once. The application is able
to:

• Transfer and play video in real-time on all connected nodes using PCI-Express and
SISCI multicast.

• Break a video file down into frames that can be transferred over PCI-Express. The
application supports several common video formats and dimensions of video files.

• Allow fairly high performance on limited hardware which should scale alongside
improved hardware.

• Support hot-plugging of both clients and server, allowing mid-transfer reboots and
joining of new clients.

The application demonstrates features provided by Dolphin’s SISCI API such as multicast
in a way that did not exist previous to this paper. In addition, it lays the foundation for
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7 Results 7.3 Accessibility improvements

Figure 7.1: Picture showcasing multicast of a video file from one server to two clients. The three
nodes are each connected to the PCI-Express switch and a display.

expansion through sending the video stream through an external GPU for processing, al-
lowing for demanding computational processing to be done outside of the server and client
nodes. The future potential of this will be discussed in chapter 8.

The full, functioning code used for the multicast system can be found at Angvik Hov-
dar (2023). An image displaying the running setup is found above in Figure 7.1.

The secondary product is the contents of this paper which describes the design, imple-
mentation and testing scheme used to create this system as well as the progress made on
how expansions would fit into the larger system. This also includes compromises and neg-
ative results which would serve helpful to anyone looking to re-build, improve or expand
on any part of this project.

7.3 Accessibility improvements

This paper serves to make the technology researched and deployed more accessible for
academic purposes as well as professional. The design philosophy and open-source na-
ture of the project makes the application well suited for expansions as well as re-use in
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7 Results 7.4 Challenges and solutions

other projects with overlapping interests. Through building a modular, open source demo
application, the application is made accessible for reuse and reconfiguration to fit other
experiments within and outside the scope of this exercise.

Additionally, the future expansions of the demo capabilities have been made more accessi-
ble. The proposed ideas of using a camera to directly supply video data over PCI-Express
as well as advanced GPU processing of real-time data are closer to realization after the
research done in this project.

7.4 Challenges and solutions
One major challenge with using multicast for video frame transfer is that the segments
are created in static sizes independently of each other. This is as opposed to an imported
”regular” SISCI segment where the size of the segment is decided by the node that creates
it and imported by the other.

Given that the size of the segments may vary depending on the format and dimensions
of the video, this information needs to be synchronized somehow. This is to avoid the
video being interpreted wrong on the receiving end in the case of changes on the server-
end.

The application solves this by using two multicast segments. A set-size one with metadata
and a variable size one that is re-created with a new size in the case of metadata changes.
This is a fully functional way to solve this problem with both advantages and disadvan-
tages that will be discussed further in chapter 8.
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8
Discussion

8.1 Hardware limitations
The hardware used for this task limits the potential of the technology in two main ways:

1. The video decoding capabilities of the hardware (A regular desktop computer with
no GPU was used)

2. The PCI-Express port on the motherboard of said computers only supports PCI-
Express generation 2.0. In other words, the throughput of the system will always be
bottlenecked by this port no matter which PCI-Express generation or configuration.

The testing results would not be accurate in the case of hardware upgrades or other dif-
ferences. Upgrading the PCI-Express limiting factor of the 2.0 ports on the motherboard
would make the whole system see improved transfer speeds. Similarly, any improvement
to the video processing capabilities of the nodes would affect performance as well.

Still, the hardware used for the purposes of this development process was plenty in the
sense that it was never necessary to make any special considerations. It is more so the
fact that an application running on older specs is anticipated to run even better on newer
specs that is important. The hardware and software stack from Dolphin supporting the
application should allow this assumption to hold in this scenario as well.

8.2 Choices regarding development

8.2.1 Re-building for open-source

The choice to re-develop an application to make it open source compared to expanding the
existing application has both advantages and disadvantages.
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8 Discussion 8.2.2 On setting up a cluster from scratch

On the one hand, re-developing the application for open source can lead to increased trans-
parency and involvement. It allows for a potentially larger pool of developers to adapt and
contribute to PCI-Express technology. It also encourages the use of open standards and
interoperability which is desired by Dolphin as well.

On the other hand, building on the existing application would have been a lot faster as
many of the features that took time developing were already solved problems. There is
also a risk of starting from scratch in introducing new bugs or compatibility issues. How-
ever, building on the existing application would not offer the same level of transparency as
an open-source solution.

8.2.2 On setting up a cluster from scratch
Configuring the physical cluster for use before starting development on the software appli-
cation took a lot longer than anticipated. This was the case although the cluster topology
was more or less decided by the available hardware. Through the expansion of the pre-
configured GPU it became evident how much time would have been saved by using a
pre-configured hardware supplied by Dolphin.

Although the experience regarding how SISCI drivers are configured is useful for some-
one seeking thorough knowledge of the complete Dolphin stack, the actual software and
demo showcase development was hindered by this approach. Additionally, not having any
control over which driver installation packages were up to date for the various operating
systems lead to problems that could only be solved by developers external to the task at
hand.

Ultimately, there will always be a trade-off between how desired the knowledge of the
entire system is and how much time should be spent tackling already solved problems. In
the case of an equivalent problem, using the exact setup used in this paper or collaborating
more closely with the hardware supplier on this part of the design process would probably
lead to an improved result.

8.2.3 Choosing development direction
The problem description presents three different directions in which to take the develop-
ment. The implemented solution focuses on completing the multicast part of the problem
with an additional proof-of-concept for the GPU. This was in part because a camera was
unavailable during the period where developing for it was an option but also because a
proper multicast implementation would enable future development on the other problems.

A major discussion point when deciding which direction to go was finding out whether
the different expansions were limited by other factors. For instance, using a camera which
interface would only enable writing to a file would not be any different from using the reg-
ular server operation. However, writing the raw data directly to a multicast address would
mean not having to process the video which is a big difference in how the system works.
While more interesting, this approach would require significant time and research on the
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8 Discussion 8.2.4 Data flow through the system

camera and that was sadly not an option at the time.

Having an external GPU in the cluster allows processing to be done mid-network outside
of the nodes responsible for showing the video. While just a proof-of-concept that could
just as well have been done by the nodes was performed in this instance, the options for
expanding this is more interesting. However, advanced video processing is a difficult field
on its own and due to lack of specific competence, it was regarded as more worthwhile to
spend time building a reusable multicast base that enables this as a future expansion.

8.2.4 Data flow through the system

Figure 5.4 illustrates how both threads use a ”working frame” as a buffer both as a loca-
tion to push to queue from and destination for the popped frame. Practically, this means
that the frame data switches memory location a total of three times before actually being
multicast by the adapter to the client nodes. This is not the most efficient implementation,
but it does provide transparency, modularity and ease of expansion in terms of which data
to transfer. Perhaps this was an approach that affected the tested theoretical transfer speed
negatively.

The data flow between nodes is separated into a set-size multicast segment for metadata
and a variable size multicast segment for raw data where the size is determined my the
metadata information. Seeing as multicast segment ID’s are a very limited resource (0-3
for the PXH830), this wastes some potential in the application. Some considered options
are:

• Using a ”regular” segment to communicate the context information to the clients.
This would mean losing the ability to hot-plug clients and servers automatically
which is a useful multicast feature. To mitigate this, software can be built to keep
track of clients active in the system and re-establish connections to them. Ultimately,
building a unicast framework to ensure the multicast functionality works as intended
seems somewhat obsolete.

• Combining the two segments’ contents into one segment with a variable size but a
fixed minimum size. Accomplishing this means adding more advanced methods of
reading from segments and separating out the data. Additionally, synchronization
mechanisms for adjusting to new formats and dimensions would have to be built in
a more complicated way. The upside to this is using half the segment ID’s which is
a pretty big improvement. Transferring all data in one go could also have a positive
effect on transfer speed. Out of the two, this is probably the better option as there
are no downsides except for increased complexity.
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8 Discussion 8.3 Test result discussion

8.3 Test result discussion

8.3.1 Theoretical application throughput
While the test results presented in Table 6.3 were sufficient for the current video transfer
application, it is still less than 10% of the theoretical transfer speeds from the testing in
Figure 6.1. This is an area that could be improved upon to allow for very high quality
video transfer at solid frame rates. Some possible improvements to achieve this are:

• In order to get a good measurement of throughput, a video file with large dimensions
resulting in large frames is preferred. The segment size is initiated to the size of a
video frame and a multicast segment has a maximum size of 2GB according to
Dolphin (2017a). In other words, since segment size isn’t a limiting factor, larger
files could improve performance.

• The current program writes to two segments each frame cycle in order to be able to
alert the client of any potential metadata changes. Putting this into one segment is
possible but requires some finesse in how the segment size is initiated (and probably
reinitiated). It would be more efficient to transfer all data in one operation, especially
if using a DMA.

• There are several DMA optimizations not implemented in this design or testing
scheme. Dolphin (2020) specifies among other things DMA queueing and asyn-
chronous waiting mechanisms as options that could improve the throughput of the
demo application.

Taking a look at high quality video, we can for instance see that for uncompressed 4K
60FPS video with an assumed color depth of 8bit for three channels (RGB), the required
data rate is:

Resolution = 3840× 2160 pixels = 8294400 pixels/frame
Data per frame = 8294400 pixels/frame × 24 bits/pixel = 199065600 bits/frame

Data rate = 199065600 bits/frame × 60 frames/second = 11943936000 bits/second

Data rate in MB/s =
11943936000

8× 1024× 1024
≈ 1425MB/s

(8.1)

The current implementation which is limited by PCI-Express 2.0 would actually support
the maximum of two simultaneous 4K 60FPS video streams since two multicast seg-
ments are used per instance out of a maximum of four. This shows the potential for per-
formance without even improving the hardware.

8.4 Further work
As pointed out in the task description, the total workload of the ideas presented exceeded
what was possible to complete during the span of a masters thesis. This section will
therefore present the opportunities for future work as well as relevant findings about the
remaining tasks that have been discovered or researched during this thesis.

51



8 Discussion 8.4.1 Camera

8.4.1 Camera
The concept of this application can be extended to have a camera write directly into the
memory of the server application for raw frame data to be distributed and played the same
way it is when coming from a current file in this implementation. Connecting a cam-
era directly to the PCI-Express cluster without going through the server node is also an
interesting option but will depend on the camera in question. Thorough research on PCI-
Express compliant cameras is needed to make this an integration. Some things to look into
are:

• Developing a driver for a PCI-Express compliant camera to be able to use multicast
segments directly.

• Sending the data to a GPU unit in some way and letting the GPU handle multicast
to the nodes in a similar way to how it was showcased in this project.

• Using PCI-Express to write directly into a buffer on the node used for this appli-
cation. The server could work as a middle-man to get the camera data out into the
multicast protocol.

8.4.2 GPU processing
The GPU showcased in this project was used to flip frames which is not something a GPU
would be needed for. Integrating actual CUDA or other graphical programming frame-
works to apply transformations that the nodes would spend too long doing themselves
would be a good end-goal for this. In particular, running object detection could be a useful
feature for a cluster similar to this one sending camera source data to several monitors.

8.4.3 Performance increase
This paper has identified possible increases in performance specified in subsection 8.3.1
which would allow extremely high quality video transfers even on PCI-Express 2.0 hard-
ware. This would be more feasible on a system with nodes that have the GPU power
necessary to produce 4K frames at the demanded speed or in a system that has managed
to interconnect a very high quality camera.

Optimizing the data flow and theoretical application throughput as discussed in the sec-
tions above could lead to exciting improvements. Especially if combined with a high-
performance task that can take advantage of the optimizations such as high-quality or
multiple parallel video transfer.
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9
Conclusion

This project’s implementation of a video sharing application using SISCI multicast pro-
vided a working application with extra thought put into extensions and future possibilities.
The resulting product is built from the bottom up and provides availability of the SISCI
multicast feature set through a design and implementation that is meant to be expanded
upon as well as conceptual use of extensions using a GPU.

Certain difficult decisions had to be made during the development, and some ideas had
to get priority over others. This means there is still further research needed both into un-
finished parts of this problem and related opportunities that have been found during this
project.

Finally, this thesis hopes to spark and inspire further work within the field of PCI-Express
technology. This application breaks new ground with its multicast video sharing features
but it is still merely an introduction to what can be done using the same principles. It is the
hope of all contributing parts that the results and reflections provided in this paper would
serve helpful to anyone wishing to look further into this technology.
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Appendix

A Problem description
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Master thesis: Advanced Video transfers over PCIe

Version 1:

Background
Dolphin is designing and manufacturing advanced PCIe hardware and software products. The 
products are used world-wide in various medical, defense, automotive, HPC, real-time and control 
systems and simulators. 

Motivation
Dolphin has a basic demo program that can transfer data over PCIe from a PC with a video camera 
attached to a remote PC for display. Dolphin would like to extend this demo program to better 
demonstrate some sophisticated PCIe techniques.

Proposal
The work consists of several independent extensions / tasks – It is currently assumed that all of the 
suggestions will be more work than what can be expected from a 6-month maser thesis. 

Preferred Background
The master student should have good understanding of PC architectures, real-time systems and 
familiar with Linux systems and C programming. Experience in GPGPUs programming (Cuda) is a 
strong benefit for the task involving Direct GPU transfers. The work will not require any special 
knowledge about PCIe. 

Transfer details existing solution
Data from the video camera is written to a memory buffer in the local PC. Data is copied from the 
memory video buffer to a remote display buffer using PCIe DMA functions. Dolphins SISCI API is used 
to set up and configure transfers over PCIe.

An overview of the setup is shown in the graphics below.
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Proposed Master Thesis
The demo program can be extended in several ways to explore ways to utilize advanced PCIe 
transfer methods.

Distribution of video data using PCIe Multicast
Support for PCIe Multicast to distribute the video steam to two or more systems. 

Transfer details
Data from the video camera is written to a memory buffer in the local PC. Data is copied from the 
memory video buffer to a remote display buffer using PCIe DMA functions and PCIe multicast.

An overview of the proposed setup is shown in the graphics below.

Challenges: Understand Dolphins SISCI API and implement efficient data transfer protocols. 
Complexity level: medium.
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Distribution of video data using Direct Transfers and PCIe Multicast
Support for PCIe Multicast to distribute the video steam to two or more systems. 

Transfer details
Data from the video camera is transferred directly from the camera to two or more remote display 
buffers using PCIe multicast.

An overview of the proposed setup is shown in the graphics below.

Challenges: Modify PCIe camera driver to enable direct transfers over PCIe. To our knowledge, this 
has never been done by anyone yet. Similar techniques have been demonstrated using FPGAs

Complexity level: high.
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Distribution of video data using Direct Transfers, GPU processing and PCIe 
Multicast
Video stream is also sent to directly to GPU buffer in a PCIe expansion system. GPU modifies video 
stream and sends data directly to display buffers in two or more PCs.

Transfer details
Data from the video camera is transferred directly from the camera to two remote display buffers 
and a GPU buffer using PCIe multicast. The GPU utilizes RDMA to send modified data to two or more 
display buffers.

An overview of the proposed setup is shown in the graphics below.

Challenges:  Understand and set up PCIe multicast directly into GPU buffer. Understand and set up 
GPU RDMA transfers into PCIe multicast addresses to enable direct transfers into remote display 
buffers. 

Complexity level: high.

More information
More information on Dolphins eXpressWare software, and the SISCI API can be found at 
https://www.dolphinics.com/products/embedded-sisci-developers-kit.html

https://www.dolphinics.com/solutions/embedded-system-reflective-memory.html

https://www.dolphinics.com/products/dolphin_pci_express_software.html

Genera conditions
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The master student will be offered an office at Dolphin’s offices in Oslo or can work most/part of the 
time remotely. If remote work is preferred, the student can borrow the hardware setup. (Some small 
PCs and required PCIe hardware)

Contact Person
The contact person for this master thesis is Hugo Kohmann – hugo@dolphinics.com. Hugo has 
several decades of experience in building interconnect solutions, has been mentoring numerous 
Master thesis and holds a Master degree in computer science from the University of Oslo.
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Note on CISCI installation.
Cisci can be installed using a “self-installing archive” (SIA) provided by Dolphin ICS. The SIA
is a script developed for installing all CISCI software required to use Dolpin PCIe hardware
such as the PX830 PCIe cards used in my two-machine cluster.
The SIA is available for a variety of operating systems including different versions of
Windows and both Debian and Red Hat-based Linux distributions.
A cluster needs at least two nodes that have CISCI installed as well as a frontend for
managing and verifying the installation. The frontend can be run on one of the nodes or on a
separate machine. I wanted the frontend to be on my personal laptop. As I did not want to
install a new operating system on my laptop, I opted for a heterogenous installation as
opposed to a homogenous one. In short, this meant I had to run the SIA on each node with
the “--install-node” option before running the SIA with the “--install-frontend” option on the
frontend computer.
For my installation, I first tried the script for Ubuntu 22.04.01 LTS on a clean install of the
operating system on each node. The installation failed because of a missing dependency
“libgcc1” which is now called “libgcc-s1”. I could not find a way to circumvent this error and
had to abandon Ubuntu 22.04.01. Note: After giving feedback to Dolphin, this error in the
script should be fixed although I have not verified it myself.
I then tried clean installs of fedora 36 on my nodes. The SIA failed with a non-descriptive
build error and since Fedora 36 was the recommended operating system for this version of
the SIA, I eventually abandoned this operating system as well.
My third OS install was a clean version of Ubuntu 18.04.01 LTS on which the SIA worked
and I completed the node installations on both nodes.
For the frontend, I was using Fedora 35 and started with the SIA designed for Fedora 25.
The script failed with the error returned being ERROR: Failed to build Cluster Management
Node packages, #* ERROR: Couldn't build system packages. I then upgraded to Fedora 37
and ran the SIA designed for Fedora 36 which worked.
The final configuration was then: SIA ran with “install-node” for and on Ubuntu 18.04.01 and
SIA ran with “install-fronted” for Fedora 36 ran on Fedora 37.
Heads up for frontend installation: The administration GUI tools that the SIA proposes
running during installation do not work. Both when trying frontend install on Fedora 37 and
on one of the nodes (Ubuntu 18.04.01) the GUI windows would open but be blank, aborting
the installation script.
If opted out of, the installation will finish and the GUI tools can be found under /opt/DIS/sbin
where they will work. However, as GUI tools only work when run by a non-root user, their
functionality is limited. Most Linux distros are not designed for GUI tools to be run by a root
user including both Fedora 36 and Ubuntu 18.04.01.

63



Kjapp rekkefølge:
- Forsøk ubuntu 22.04.1

- Installasjonsskript stopper på installering av libgcc1 fordi pakken egentlig
heter libgcc-s1 og pakkemanager (apt) godtar kun dette.

- Forsøk fedora 36
- Installasjonsskript returnerer feilkode forbundet med bygging av pakker

- Forsøk ubuntu 18
- Skript fungerer på nodeinstallasjon ved hjelp av

# sh ./Dolphin_eXpressWare-<version>.sh --install-node --enable-sisci-development --enable-supersockets

- Forsøk på cluster node manager installert på ekstern laptop (fedora 35),
installasjonsskript for fedora 25.

- Skript godtar kun tilgang til root@<IP> for nodene, så root bruker må
settes opp

- Skript feiler. “Software finnes ikke på nodene”
- Forsøk på cluster node manager installert på en av nodene

- Installerte på “1 node” via SSH med den andre som cluster manager.
- Kom til å launche graphical tool “dls_netconfig” men den fungerte ikke.

Hvit(blankt) vindu
- Hvordan launcher man den nå? Skriptet reboota etter å ha måttet skrive inn

passord ca 100 ganger

Heterogenous installation. - Satse på at node install har vært som den skal (og det har den?)
- Fedora 25 på fedora 35 –install-frontend returnerer
- ERROR: Failed to build Cluster Management Node packages, see
- #+ '/home/22mah22/Downloads/DIS_install.log_ByWseO' on 'localhost'.
- #* ERROR: Couldn't build system packages

Fedora 36 da?
Oppgraderte egen pc til fedora 37
fik lov til å bygge system packages nå!
Dis_netconfig (cluster edit) er fortsatt bare et tomt hvitt vindu…
VIndusfeil er Error: BadDrawable (invalid Pixmap or Window parameter) 9
Major opcode: 62 (X_CopyArea)
- Bare når jeg kjører som root (sudo). Why? Hmm

Kabler i feil vei???

VSCODE setup: Ditt og datt.
Endret permission på opt/DIS folder for å kunne endre filer og adde konfigurasjoner (må til
for å la VScode kjøre med custom include paths etc. Alternativet er å kjøre manuelt med
terminalinput)
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C Makefile

1 # Makefile
2 CC = gcc
3 # Compiler flags: all warnings + debugger meta-data
4 CFLAGS = -Wall -g -m64 -Wall -D_REENTRANT
5 INCLUDES=-Iinclude -I/opt/DIS/include -I/opt/DIS/src/include -I/

opt/DIS/include/dis
6

7 #OS Specific?
8 BITS=$(shell sh -c ’getconf LONG_BIT || echo NA’)
9

10 ifeq ($(BITS),NA)
11 LIB_DIRECTORY=lib
12 endif
13

14 ifeq ($(BITS),32)
15 LIB_DIRECTORY=lib
16 endif
17

18 ifeq ($(BITS),64)
19 LIB_DIRECTORY=lib64
20 endif
21 # External libraries:
22 LIBS = -Wl,-L/opt/DIS/$(LIB_DIRECTORY),-rpath,/opt/DIS/$(

LIB_DIRECTORY),-lsisci -lSDL2 -lavcodec -lavformat -lavutil -
lswscale -lpthread

23

24 # Pre-defined macros for conditional compilation
25 DEFS = -DDEBUG_FLAG -DEXPERIMENTAL=0
26

27 # The final executable program file, i.e. name of our program
28 BIN = server
29 BIN2 = client
30

31 # Object files from which $BIN depends
32 SERVER_OBJS = process_video.o videoplayer.o
33 CLIENT_OBJS = videoplayer.o
34

35 $(BIN): $(SERVER_OBJS) $(BIN).c
36 $(CC) $(CFLAGS) $(DEFS) $(INCLUDES) $(SERVER_OBJS) $(BIN).c $(

LIBS) -o $(BIN)
37

38 $(BIN2): $(CLIENT_OBJS) $(BIN2).c
39 $(CC) $(CFLAGS) $(DEFS) $(INCLUDES) $(CLIENT_OBJS) $(BIN2).c $

(LIBS) -o $(BIN2)
40

41 %.o: %.c %.h
42 $(CC) -c $(CFLAGS) $(DEFS) $(INCLUDES) $< -o $@
43
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44 clean:
45 rm -f *˜ *.o $(BIN)
46

47 depend:
48 makedepend -Y -- $(CFLAGS) $(DEFS) -- *.c

D Video processor module interface
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#ifndef Process_video_H

#define Process_video_H

// includes

#include <stdio.h>

#include <pthread.h>

#include <libavcodec/avcodec.h>

#include <libavformat/avformat.h>

#include <libavformat/avio.h>

#include <libavutil/avutil.h>

#include <libavutil/pixfmt.h>

/* IMPORT macro will be defined by the implementation file

Other clients will not define it, and will get an extern declaration

This prevents the compiler from complaining about multiple definitions

*/

#ifdef Process_video_IMPORT

#define EXTERN

#else

#define EXTERN extern

#endif

// opaque:

typedef struct AVFrame_Q AVFrame_Q;

EXTERN int ffmpeg_init();

EXTERN AVFrame_Q* avframe_Q_alloc(int capacity);

EXTERN void avframe_Q_destroy(AVFrame_Q* q);

EXTERN int avframe_Q_push(AVFrame_Q* q, AVFrame* frame);

EXTERN int avframe_Q_pop(AVFrame_Q* q, AVFrame* dest);

EXTERN int avframe_Q_get_size(AVFrame_Q* q);

EXTERN int avframe_Q_flush(AVFrame_Q* q);

// Arg struct for process_video

struct process_video_args{

char* filename;

AVFrame_Q* q;

int stop_threshold;

} process_video_args;
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// Function prototypes

EXTERN void* process_video(void* arg);

#undef Process_video_IMPORT

#undef EXTERN

#endif
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E Video player module interface
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#ifndef Videoplayer_H

#define Videoplayer_H

// includes

#include <stdio.h>

#include <libavcodec/avcodec.h>

#include <libavutil/imgutils.h>

#include <libavutil/mem.h>

#include <libavutil/pixfmt.h>

// include SDL

#include <SDL2/SDL.h>

#include <SDL2/SDL_thread.h>

#include <SDL2/SDL_ttf.h>

#include <SDL2/SDL_timer.h>

#include <SDL2/SDL_video.h>

#include <SDL2/SDL_render.h>

#include <SDL2/SDL_pixels.h>

#define FRAME_RATE 30

#define FRAME_DELAY 1000/FRAME_RATE

// IMPORT macro will be defined by the implementation file

// Other clients will not define it, and will get an extern declaration

// This prevents the compiler from complaining about multiple

definitions

#ifdef Videoplayer_IMPORT

#define EXTERN

#else

#define EXTERN extern

#endif

//Struct for frame data.

//Writing frame data without context over PCIe makes reconstruction

impossible

//if we dont know the exact format.

//We therefore need a metadata struct to send with the frame data.

typedef struct {

int width;

int height;

enum AVPixelFormat pix_fmt;

int buffer_size;
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int linesize[AV_NUM_DATA_POINTERS];

int align;

} FrameData;

// Reconstruction function for after PCIe transfer

int update_avframe_from_framedata(FrameData *framedata, AVFrame *frame,

void *data_addr);

int update_framedata_from_avframe(AVFrame *frame, FrameData

*framedata);

typedef struct VideoPlayer {

SDL_Window *window;

SDL_Renderer *renderer;

} VideoPlayer;

// opaque:

EXTERN int create_videoplayer(VideoPlayer* vp);

EXTERN void update_videoplayer(VideoPlayer* vp, AVFrame *frame,

uint32_t delay_time);

EXTERN void destroy_videoplayer(VideoPlayer* vp);

// Function prototypes

#undef Videoplayer_IMPORT

#undef EXTERN

#endif
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