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ABSTRACT 
 
Installation of subsea pipelines used for transportation of hydrocarbons, 
water, or CO2, is carried out by ship-type installation vessels, which are 
highly sensitive to wave conditions. The prediction of installation loads 
in the pipeline is an essential input to the decision-making process for 
safe operation during offshore execution. Predictions may be required up 
to five days into the future. They can be produced from a physics-based 
simulation model with nonlinear calculations in the time domain and 
probabilistic representations of the response parameters based on 
multiple simulations for the forecasted wave spectra. Such calculations 
are computationally costly and, therefore, normally produced in advance 
by considering a set of generic parameter-based wave spectra. This paper 
describes how a machine learning model can be established, verified, and 
used to support decision-makers during a reeled pipeline installation 
operation. Compared to a physics-based simulation model, this method 
enables computationally efficient calculation of pipeline responses from 
forecasted wave spectra during offshore execution to provide more 
accurate input to decision-makers. 
 
KEY WORDS: Machine learning; pipeline installation; 
modelling. 
 
INTRODUCTION 
 
Subsea pipelines are an essential part of the infrastructure required for 
offshore energy production and transportation. Some examples include 
transportation of oil and gas from a subsea production well to a 
production and storage unit, injection of water into a reservoir to control 
the well pressure, flowlines delivering oil and gas from an offshore field 
to an onshore terminal, transportation of hydrogen produced from 
offshore wind power to an onshore storage facility and transportation of 
CO2 from an onshore terminal for storage below the seabed. There is a 
significant need for such infrastructure also in the future. 
 
The installation can only be done in operable weather conditions, 
meaning that the environmental conditions are sufficiently benign to 
avoid damage to the pipe or the installation equipment. Specialized 
monohull offshore construction vessels provide an efficient method for 
both transportation and installation of subsea pipelines, but monohull 
vessels are also very susceptible to wave conditions (especially wave 

period and direction) due to possible resonant motions. The process of 
classifying a condition as operable or non-operable typically includes 
dynamic structural analysis of the pipeline installation. This analysis is 
time-consuming, especially if a considerable number of environmental 
conditions and several time-domain simulations for each environmental 
condition need to be evaluated. 
 
Offshore decision making for a pipeline installation project may be based 
on pre-determined environmental limits, often in terms of a limiting 
significant wave height (Hs) for a selected range of spectral wave periods 
(such as the spectral peak period, Tp) and mean wave direction. The 
calculated limits are then based on generic and parameterized wave 
spectra, such as JONSWAP (Hasselmann et al., 1973), which does not 
consider simultaneously occurring wave systems. In reality, both swell 
and wind sea systems are often present. The Torsethaugen wave 
spectrum takes into account both swell and wind sea systems but is 
limited to generic representations with coinciding directionality. In fact, 
the wave systems can vary significantly from the average/generic 
representations, and normally come from different directions. 
 
Ship type installation vessels have natural heave, roll and pitch periods 
close to the main wave periods, leading to large resonant motions. A 
parameterized wave spectrum will often not capture the wave energy 
close to these periods well, leading to significant errors in the predicted 
vessel motion. 
 
An alternative, and more accurate approach, is to base the decision-
making on forecasted two-dimensional numerical wave spectra that are 
available closer to the time of execution. Whereas this approach is more 
accurate, it also requires a vast amount of analysis to be performed after 
the wave-forecast issuance to generate input for the decision-makers. 
Moreover, one needs to run multiple time-domain simulations with 
random waves for the same environmental condition to reduce the 
statistical uncertainty of the response parameters. Analysis that is purely 
based on FEM model simulations may not be feasible, because the wall 
clock time required for the simulations might not be tolerable. 
 
Guarize et al. (2007) proposed a hybrid method for reducing the dynamic 
analysis simulation time for slender marine structures, introducing 
machine learning in the analysis process. Specifically, an artificial neural 
network (ANN) was trained from FEM based simulations, making it 



possible to generate long timeseries with relatively little computational 
effort. The scheme was applied to two cases: mooring line tension and 
SLWR (Steel Lazy Wave Riser) tension in deep waters. Other work 
discussed later in this article also applies the hybrid method for design of 
in-place systems, typically considering the long-term weather statistics. 
 
The current work presents a novel application of the hybrid method for 
decision-making during offshore installation of pipelines based on two-
dimensional forecasted wave spectra. Two different implementation 
strategies for the hybrid method are applied to a case study example. A 
detailed account is provided of the model input and output, as well as the 
neural network model architecture and parameter selection. The 
performance of the hybrid method is presented and compared to a pure 
physics-based approach. 
 
RELATED WORK ON THE HYBRID METHOD FOR SLENDER 
STRUCTURES SUSPENDED FROM A FLOATING VESSEL 
 
Machine learning methods that replace a physics-based model are useful 
if they can produce sufficiently accurate and reliable results. The input 
parameter selection and structure must be carefully considered when 
constructing the ANN model. Wu (2021) introduces the term Physics-
Based Machine Learning (PBML) for a modelling approach that, 
similarly to the hybrid method, combines a physics-based model and 
machine learning method for predictions of future wave conditions. In 
this case, the spectral wave parameters Hs and Tp are predicted based on 
wind forcing more efficiently than pure physics-based modelling. 
 
As described in the introduction, Guarize et al. (2007) applied the hybrid 
method for fatigue calculation in mooring lines and risers. They used a 
ANN with a single hidden layer and a single output node. The input 
parameters included the floater heave, surge, and sway motions at the 
current time step in addition to previous time steps. The size of the 
hidden layer and the length of the delay for previous time steps were 
selected as tuning parameters. The model was trained for each sea state. 
 
Christiansen et al. (2013) proposed a hybrid method for the prediction of 
fatigue due to top tension in mooring lines connected to an FPSO. The 
ANN architecture included a single hidden layer. The input consisted of 
the 6 DOF floater motion, including previous time steps, and also 
previous time steps of the mooring line tension (target). The model was 
trained with fifteen different wave conditions, selected to represent the 
most significant sea states in the long term scatter diagram for the area. 
The resulting model was applied throughout the fatigue calculations. 
 
Chaves et al. (2015) applied the hybrid method for fatigue in flexible 
pipes by predicting tension and curvatures in the bend stiffener. The 
network was trained on each sea state using a NARX (non-linear auto 
regressive network with exogenous input) architecture, which is similar 
to the structure used by Christiansen et al (2013). 
 
Srikonda et al. (2018) applied the hybrid method to predict wellhead 
bending moment during operation, using a RNN (Recurrent Neural 
Network) trained from simulated data. The input to the machine learning 
model was inclination and acceleration at two positions close to the 
bottom of the riser: the lower riser joint (LRJ) and the blow out preventor 
(BOP), and tension at the LRJ. The model was trained using FEM 
simulations, while predictions were made using recorded MRU data 
during the operation. 
 
Da Silva & de Arujo (2020) used a convolutional neural network 
combined with a NARX architecture (NARX-CNN) to predict tension 
and curvature on a flexible riser. Further work by da Silva et al. (2022) 
applied a RNN structure to predict responses at multiple positions on a 

catenary and lazy wave flexible riser. 
 
PHYSICS-BASED MODEL IN PIPELINE INSTALLATION 
PROJECTS 
 
Objective of dynamic finite element analysis in operational planning 
 
Extensive dynamic finite element analysis is required during the detailed 
planning phase of pipeline installation operations. The analysis typically 
has multiple objectives: to increase the understanding of the operation, 
to determine the environmental limits, and to determine the amount of 
fatigue damage that might be accumulated during the installation 
process. 
 
Each pipeline installation operation has three main phases: initiation, 
normal lay, and laydown. The catenary profile is different for each step 
of the operation. Additionally, more complex installations may involve 
riser sections with buoyancy attachments, strakes and similar ancillaries, 
or a pipeline with inline structures. The modelling supports operational 
planning by developing step-by-step static configurations. Dynamic 
sensitivity studies are applied to identify steps that are potentially critical 
in a dynamic situation. At each step, multiple quasistatic conditions of 
current level, current direction and vessel offset is possible. This is an 
iterative job where the findings are used to improve the operational 
procedures, provides detailed step-by-step installation tables, and 
highlight critical phases to the offshore crew where special caution and 
attention is needed. 
 
The stochastic nature of waves means that the limiting environmental 
conditions must be based on a probabilistic criterion. For pipeline 
installations, the criterion is often a limit imposed on the most probable 
extreme (MPE) value for a representative duration. The MPE for a 
specific sea state can be found by fitting the extreme value distribution 
of the loads or, as a practical approach, conservatively approximated as 
the average extreme value from multiple realizations. Time series of the 
loads are obtained by introducing a random wave train generated from 
the target sea state and resolving the finite element model in time domain 
through time stepping. 
 
In this paper, the finite element model is termed a physics-based model. 
It stands in contrast to machine learning models, which are data driven 
and have no prior knowledge of the laws of physics. The hybrid method 
can not replace the physics-based model. The physics-based model is a 
prerequisite for applying the hybrid method and a new objective is also 
introduced: to train the machine learning model. In turn, the machine 
learning model can be used for efficient evaluation of new wave 
conditions. 
 
Case study model 
 
OrcaFlex is a widely used tool for dynamic simulation of slender 
structures using a finite element modelling approach. The modelling and 
simulations for this paper are done using OrcaFlex v. 11.2. 
 
In this article, a single pipe lay configuration is studied. The 
configuration is a pipeline in a catenary shape with two inline structures. 
The water depth is approximately 1200 m. The focus of the study is the 
prediction of maximum von Mises stresses at the top of the catenary, i.e., 
at the pipeline hang-off position on the stern of the vessel. Even though 
the von Mises stress is normally not directly used as an acceptance 
criterion, it represents a value closely related to the pipeline utilization, 
and is known to be difficult to predict for the top hang-off location using 
linear regression. An overview of the model is shown in figure 1. 
 



 
Figure 1: Pipeline installation example in 1200 m water depth with two 
inline structures as modelled with OrcaFlex v 11.2 
 
The pipeline is 8” in diameter and is installed with two structures in the 
catenary. This represents a complex but realistic model of a pipeline 
installation operation that may represent one of the critical phases. The 
purpose of structures, such as those included in the model, may be for 
branching of the pipelines (in-line tee) or to enable intervention (such as 
valve operations/isolation or pigging). The weight of the structures is 59 
metric tonne each. 
 
The pipe catenary is modelled from the vessel exit to the seabed using 
568 segments in total, meaning that there are 567 nodes. Each node 
represents three degrees of freedom (x, y and z global position), and each 
segment represents five degrees of freedom (bend angle at each side of 
the segment, spring offset at the middle of the segment, and torsion angle 
at the middle of the segment). The structures each have 6 degrees of 
freedom. In total the system has 1847 degrees of freedom. 
 
A modal analysis shows that the first mode of the system has an 
eigenperiod of 160 seconds. This represents the longest memory effect 
of the system. 
 
Simulation is done using an implicit time stepping scheme, where 
equilibrium is found at each time step through iterations. An adaptive 
time step is applied in this model, but with a maximum value of 0.05 
seconds. Results are logged every 0.1 seconds. Typically, a simulation is 
run for 3 hours after a short buildup period, which is 20 seconds in this 
study. 
 
A common assumption for pipeline installation projects is that the system 
can be adequately modelled without hydrodynamic coupling between the 
vessel and the pipeline, and that the presence of the pipeline has 
negligible influence on the 1st order wave frequency motion of the vessel. 
However, both vessel and pipeline are subjected to the same wave field. 
Moreover, the pipeline responses are strongly influenced by the motions 
of the top-end at the vessel. Vessel drift within the limits of the dynamic 
positioning capability and the effect of current is normally modelled as 
quasi-static processes. These assumptions are also made in the current 
case study. 
 

MACHINE LEARNIG MODEL 
 
For good performance of a machine learning model, a causal relationship 
between the input and output parameters is required. The selected 
machine learning model must have the ability to replicate the input-
output relationship.  The input should be sufficient to lead to the output, 
and the dynamic memory effect of the system must be captured. In the 
context of pipeline installation this input includes the wave field, and in 
extension the vessel motions.  
 
Model architecture 
 
The machine learning (ML) model for the case study is developed with 
a specific objective: to replicate the physics-based model’s ability to 
predict the average extreme von Mises stress at the top of the catenary. 
The model produces the desired output (target) based on one or more 
inputs (predictors), and the relationship between the target and the 
predictors is learned by reviewing a sufficient number of samples. 
 
The problem is approached by fitting an artificial neural network on time 
domain simulation results generated by the physics-based model. Neural 
networks are attractive because they inherently have the ability to learn 
nonlinear relationships with interaction between the predictors without 
any prior knowledge. A general reference on neural networks can be 
found in e.g. Goodfellow et al. (2016), but a brief description is provided 
herein in order to give some background to the terms and concepts used 
in this study. 
 
The perceptron was introduced by Rosenblatt (1958) as a model that 
could mimic the biological brains behavior in storing and handling 
information. The perceptron consists of only two layers, an input layer 
and an output layer, which limits its application to solve linear 
relationships. However, the multi-layer perceptron (MLP) is a 
development that, by adding at least one hidden layer, can be shown to 
have universal approximation properties given that it has enough hidden 
units (Hornik et al., 1989). Visually, it can be seen as a network of nodes 
in multiple layers interconnected through weights. An example of such a 
representation is shown in figure 2. Each layer in the MLP is fully 
connected, such that each node in the layer is a function of all nodes in 
the previous layer. The model can be made more flexible and able to 
handle higher order relationships by increasing the width (i.e., the 
number of nodes in each layer) and/or the depth (i.e., the number of 
layers). 
  

 
Figure 2: Visual representation of a MLP with one hidden layer. The 
black circles represent nodes, the grey circles represent bias, and the 

lines represent weights which are determined through the training 
 
  



The MLP can be categorized as a feed forward network, because the 
information propagates only in a single direction. Although it is suitable 
for handling interactions and non-linear relationships, special 
considerations are needed to handle the dynamic nature of a pipeline 
installation model. 
 
Christiansen et al. (2013) and Chaves et al. (2015) use a NARX (Non-
linear Auto Regressive with Exogenous input) type architecture, e.g. 
(Chaves et al., 2015), to capture the dynamics of the system, where the 
target from the previous time steps is included as an input to the model, 
together with previous time steps from each predictor variable. The 
NARX model is trained as a feed forward network, using the true time 
series of the target during training, but it is recursive for predictions, as 
it uses the predicted target from the previous time steps for predicting the 
current time step. 
 
Recurrent Neural Networks (RNNs) are a development of neural 
networks that is especially adapted to handle predictions of sequential 
data, by moving recurrently through an ordered sequence (such as a time 
series) and including the inner state of each layer at the previous step as 
an input to the model. This process is more complex, but it increases the 
model’s ability to handle the dynamic behavior compared to the 
autoregressive architecture, since the inner state of the network contains 
substantially more information than the single output node. Plain RNNs 
have been shown to be difficult to train, but the problem is reduced by 
introducing special units/cells such as the LSTM (Long Short Term 
Memory) (Hochreiter & Schmidhuber, 1997). The GRU (Gated 
Recurrent Unit) cell structure (Cho et al., 2014) is a somewhat simpler 
alternative to LSTM which addresses the same issues. Using these 
architectures, RNNs have shown great performance on a number of 
problems. As earlier mentioned, Srikonda et al. (2018) has applied this 
architecture for prediction of loads in a drilling riser with good results. 
In this study, a recurrent neural network is applied using the GRU cell 
structure. 
 
The LengthNet model proposed by da Silva et al. (2022) applies a 
recurrent network structure both through time and space (the length of 
the catenary). This is an interesting extension to the RNN structure that 
increases the prediction speed when multiple points need to be assessed 
but is only found to give slight improvements in the prediction accuracy. 
The approach is not adopted in the current study. Rather, the neural 
network models developed in this study are trained to output results for 
a single location on the catenary. Even though several locations may be 
of interest, these often correspond to different quasi-static conditions, 
such as current direction and vessel drift. Critical stresses might, for 
example, occur both at the top of the catenary and at the sag-bend, where 
the top location is critical if the catenary is stretched, and the sag-bend 
location is critical if it is compressed. A single location per model is 
therefore often sufficient.  
 
Output and input selection 
 
As previously described, the target output of the neural network is the 
time series prediction of von Mises stress at the top of the catenary. This 
means that the model is used to solve a regression problem. 
Alternatively, it could be treated as a classification problem. For a 
classification problem, the model is trained to find the boundary, which 
in this case separates acceptable and unacceptable loading. The model is 
then fine-tuned to this boundary, and less affected by the possibly 
different physics that govern responses far away from the boundary. It is 
also less sensitive to changes in the acceptance criteria, e.g., between a 
criterion on the bending moment, the von Mises stress, or a combined 
loading criterion.  
 

The input-output selection determines what type of problem the ML 
model needs to solve. At the highest level, the two-dimensional wave 
surface alone determines the load in the pipeline. Information about the 
wave field should therefore be sufficient to make predictions since it 
determines both the vessel motions and direct wave loads on the 
structure. Current and other conditions are treated as quasi static. Under 
those conditions, the ML model needs to infer the vessel RAOs as well 
as the dynamic behavior of the catenary to make accurate predictions for 
an arbitrary point on the pipeline. 
 
At the lowest level, the load on a specific pipeline segment at a specific 
point in time is determined by an equilibrium of loads transferred from 
adjacent nodes, external loads on the segment, linear and quadratic 
damping, and dynamic motion. In this scenario, the scope of the ML 
model is limited to learning the explicit equilibrium equation. However, 
this is not practical for real-world application, since it would require 
simulation in a physics-based software up to the point in time of the 
prediction to resolve the input. 
 
A practical approach is to reduce the complexity of the problem as much 
as possible by providing the lowest level input to the neural network that 
can be resolved with little computational effort. Since the physics-based 
model assumes that 1st order wave frequency motion of the vessel is 
unaffected by the pipeline, both wave elevation and vessel motions are 
resolved explicitly and can be generated with negligible computational 
effort for long time series. In this paper, vessel responses are provided at 
the hang-off point of the pipeline, which means that the neural network 
does not need to infer any of the vessel properties, and the model can in 
principle be used across different vessels. The wave field is represented 
through water particle velocity at the surface and points close to the 
surface, specifically, 10m, 20m and 30m depth along the pipeline 
catenary. An overview of the predictors is provided in table 1. 
 

Table 1: Overview of the predictors provided to the ML model 

Parameter # Predictors 

Vessel surge, sway, and heave motion 3 

Vessel roll, pitch, and yaw motion 3 

Water particle x-velocity, evaluated at 
surface, 10m, 20m and 30m depth 

4 

Water particle y-velocity, evaluated at 
surface, 10m, 20m and 30m depth 

4 

Water particle z-velocity, evaluated at 
surface, 10m, 20m and 30m depth 

4 

Total 18 
Note: The vessel surge, sway and heave motion are evaluated at the position 
where the pipeline exits the tensioner system on the vessel (hang-off point). The 
water particle velocities are evaluated in a global coordinate system that is aligned 
with the vessel, where x is positive in positive surge direction and z points 
vertically upwards.  
 
The predictors are provided to the model as time series, and the total 
number of data points included in each sample therefore depends on the 
choice of time step (sample interval) and the window used for each 
sample (sample window length). An example calculation is provided in 
table 2. 
 
  



Table 2: Example calculation of the total number of predictor values 
provided in each sample   

# Predictors 
Sample 
interval 

Sample window 
length 

Total data points 

18 0.5s 10s 
18 ∙ (10 0.5⁄ + 1)
= 378 

 
The desired output to be used in decision making is a probabilistic 
description of installation criteria, however, the output from the ML 
model is a single deterministic value shown in table 3, representing the 
value of the target variable at the end of the sample window.  
 

Table 3: Overview of the target output of the ML model 

Parameter # Targets 

Max von Mises stress at the top of the 
pipeline 

1 

 
For practical use it is required to evaluate the model sequentially to 
generate time series of the target that can be used in a probabilistic 
assessment. In this study, the representative load is calculated as the 
average of the extreme maxima from five 3-hour realizations. The 
number of evaluations required on the ML model to generate this output 
is shown in table 4. 
  

Table 4: Number of evaluations required on the machine learning 
model to generate a probabilistic output 

# Seeds 
Simulation 

length 
Time 
step 

Total evaluations 

5 
10800s (3-

hours) 
0.1s 

5 ∙ 10800 0.1⁄
= 540′000 

 
PRACTICAL BUILDING AND TRAINING OF THE ML MODEL 
 
Datasets for training, validation, and testing 
 
In accordance with the hybrid method, training data is generated by 
running multiple simulations with the physics-based model for different 
sea states. Each sea state represents a unique forecasted two-dimensional 
numeric wave spectrum for a location offshore West Africa. Two data 
sets are generated: The first dataset consists of 300 simulations, each 15 
minutes long from a unique sea state between 2.0m Hs and 3.5m Hs. In 
total 4500 minutes. The second dataset consists of simulations from 10 
unique sea states between 2.0m and 2.5m, each with five different 
random realizations and three hours long. In total 50 simulations and 
9000 minutes. The sea states included in the two datasets are non-
overlapping. The sample interval is 0.1 seconds for both. 
 
The simulation time is approximately 1:1, meaning that it takes about 
three hours on the clock to produce a simulation of three hours length on 
a single processor. 
 
Two different model approaches are presented in this study and listed 
below. 
 

1) The unseen sea state model: The model is trained for prediction 
on unseen wave spectra, meaning that the time series used for 
testing are generated from a wave spectrum which is not 
included in the training data set. 
 

2) The single sea state model: The model is trained for prediction 
on a single known wave spectrum, meaning that the time series 
used for both training and testing are generated from the same 
single wave spectrum 

 
The unseen sea state model has a very high prediction efficiency during 
operation, since it is trained prior to the operation, and, in principle, does 
not require any further evaluation of the physics-based model. This 
approach is adopted by e.g. Christiansen et al. (2013). On the other hand, 
the single sea state model has a much smaller scope and requires less 
training data, but it must be trained for every wave spectrum that needs 
to be evaluated. In sum, the required training data may be larger than for 
the unseen sea state model, and it needs to be processed during operation. 
An advantage of the single sea state model is that it will not encounter 
un-expected wave spectra, such as an unseen wave direction that was not 
part of the training set, or poorly represented. This approach is applied 
by e.g. Guarize et al. (2007). 
 
The unseen sea state model is trained from the first data set with 15-
minute simulations. The dataset is split into a training set and a validation 
set during training. The training set contains 270 simulations, and the 
validation set includes 30 simulations. To ensure maximum 
independence between the test set and validation set, the simulations are 
sorted chronologically by forecast date before splitting, and the 
validation set is taken from the end of the list. 
 
The single sea state model is trained from the second dataset with 3-hour 
simulations. Simulation length between 5 minutes and 60 minutes is used 
for the training, taken from the beginning of the time series, and the 
validation data is taken as 15 minutes from the end of the data set. 
 
The performance of both models is tested on the second data set with 3-
hour simulations. Even though part of the test data for the known sea 
state model is not independent of the training and validation data, this 
represents a realistic evaluation of the performance on actual operations 
since the output from the physics-based model is also available to 
decision makers with this method.  
 
Model parameter selection 
 
The building and training of a recurrent neural network is not straight 
forward and involves multiple parameter choices. Some parameters can 
be selected from experience, but there is often no obvious choice, and 
selection must be done by repeated training and testing to identify the 
best possible configuration. The parameters selected for tuning the model 
are called hyper-parameters. For this study they are separated into three 
different types: convergence parameters, architecture parameters and 
physical parameters. 
 
The neural network is trained by finding the weights that minimize the 
prediction error (loss) for a set of training samples. This process is done 
using a gradient based optimizing algorithm, and in the case study, the 
Adam optimization algorithm is applied. The convergence parameters 
include learning rate, batch size, and dropout. The learning rate 
determines the step size for each gradient update and should not be 
selected too large; otherwise, the training will be unstable. A too low 
value will require an excessive number of iterations to converge.  
 
During optimization, gradients can be updated on each sample 
(stochastic gradient decent), after reviewing all samples (batch gradient 
decent) or using an intermediary setting, which is more common and 
applied in this case study (mini-batch gradient decent). The number of 
samples included for each update represents the batch-size. 
 
Dropout is a method for regularizing neural networks, where a random 
selection of the weights is assigned a value of zero between two layers, 
for the case study, dropout is included after each of the GRU layers. The 
dropout is re-selected between each sample. The dropout rate specifies 



the ratio of the weights that are nulled.  
 

Table 5: Convergence parameter selection 
Parameter Value 
Learning rate 5e-4 
Batch size 32 
Dropout 0.1 

 
The number of RNN layers and the number of units within each layer 
determines the network architecture. As the number of units and layers 
increase, it allows the network to handle problems of greater complexity. 
However, the issues related to overfitting and need for regularization of 
the network also increases. For simplicity, the same number of units are 
used in each layer. 
 

Table 6: Architecture parameter selection 
Parameter Value 
Number of layers 4 
Number of units each layer 32 

 
RNNs are trained on samples of limited length time series. These 
samples are found by splitting the training data files into smaller time 
series sections and resampling them at specified time steps. The sample 
windows may overlap but should be separated sufficiently so the target 
output value can be assumed independent. A separation of 1 minute is 
adopted, which should be more than sufficient.  
 
In principle, the maximum length time series and minimum choice of 
time step increase the amount of information provided to the network. 
This choice maximize performance up to the model’s highest modal 
period, which is approximately 150 seconds. Even so, both long sample 
durations and short time steps increase the sequence length.  For practical 
implementation this increases the need to regularize the network and, 
therefore, may not lead to increased performance.  
 

Table 7: Physical parameter selection 
Parameter Value 
Sample window length 10 seconds 
Sample interval 0.3 / 0.6 seconds 

 
The parameters applied in the case study are provided in tables 5, 6 and 
7. They are identified based on extensive and iterative tuning of the hyper 
parameters. In this tuning process, it is essential to separate the validation 
data and the training data, otherwise, there is a risk of overfitting against 
the tuning parameters. While separate training and validation sets are 
used in this study for both approaches, a cross-validation approach is also 
possible, and could be particularly useful for the single-sea state model 
creation. 
 

 
Figure 3: Outline of RNN model architecture 

 
Performance 
 
The performance of the model is measured by the predicted average 
extreme value over the five seeds in each of the 10 sea states represented 
in the 3-hour simulation dataset. Results for the unseen sea state model 
shows that the prediction error of the von Mises stress at the top of the 
catenary vary between 1 and 12 MPa. 
 

Table 8: Performance of the unseen sea state model in terms of the 
average extreme von Mises stress over 5 seeds 

Sea state 
number 

True value 
[MPa] 

Predicted value 
[MPa] 

Difference 
[MPa] 

#1 394 383 12 

#2 396 385 10 

#3 385 378 6 

#4 394 387 7 

#5 398 390 8 

#6 404 402 1 

#7 409 406 4 

#8 408 406 2 

#9 414 408 6 

#10 413 407 7 
 
Even though there is significant under estimation for some sea states, the 
predicted and true time series reveal that the model is very proficient at 
predicting the location of the peaks. The time series around the extreme 
peak for one of the seeds is shown in figure 4. 



 
Figure 4: Extreme peak in sea state #1, first seed, plotted against 

predicted values 
 
If the time of occurrence of the extreme response is known, it is straight 
forward to apply the physics-based model for a limited duration around 
the peak value. Typically, such a simulation should start well in 
advance of the peak to allow the system to settle in a stationary 
condition, and can end a few seconds after the occurrence of the peak. 
A duration of approximately 60 seconds is adequate for most models. 
Figure 5 shows the sensitivity of the case-study model to the lead time 
when re-running peaks. All the simulations converge to the same value, 
indicating that a 15 second lead time is sufficient. Many of the largest 
predicted peaks may be identified for such a rerun to improve 
predictions. The results including a three-peak re-run strategy are 
shown in table 9, where the process is approximated by extracting the 
extreme value from the true time series for a duration +/- 10 seconds 
from the predicted peak locations. 
 

 
Figure 5: Results obtained by short simulations around the peak of the 
original simulation using the physics-based model 
 

Table 9: Performance of the unseen sea state model in terms of the 
average extreme von Mises stress over 5 seeds, allowing re-run of time 

series for the 3 highest predicted peak locations 
Sea state 
number 

True value 
[MPa] 

Predicted value 
[MPa] 

Difference 
[MPa] 

#1 394 394 0.2 

#2 396 395 0.7 

#3 385 385 0.0 

#4 394 394 0.0 

#5 398 397 1.1 

#6 404 402 1.5 

#7 409 409 0.0 

#8 408 407 1.5 

#9 414 414 0.0 

#10 413 411 2.6 
 
The tables show the average extreme value, the distribution of the 
values for the five seeds are exemplified by sea state #1, which is 
plotted in figure 6 for the unseen sea state model. 

 
Figure 6: Results for the five seeds in sea state #1 for the true value, the 
value predicted purely by the unseen sea state model, and the value 
found from rerun of three highest peaks predicted by the model 
 
The single sea state model can perform well with significantly reduced 
training time. While the unseen sea state model is trained on 300 
samples of 15 minutes each, 4500 minutes in total, the single sea state 
models in this study are trained on time series between 15 minutes and 
60 minutes. 
 



Table 10: Performance of the 15minute single-sea state model in terms 
of the average extreme von Mises stress over 5 seeds 

Sea state 
number 

True value 
[MPa] 

Predicted value 
[MPa] 

Difference 
[MPa] 

#1 394 386 8 

#2 396 361 35 

#3 385 361 23 

#4 394 385 9 

#5 398 396 2 

#6 404 372 31 

#7 409 399 10 

#8 408 405 4 

#9 414 399 15 

#10 413 415 -2 
 
The performance of the 15-minute single-sea state model is worse than 
that of the unseen sea state model. However, similar improvements are 
seen if the peak-values are extracted from short windows around 
predicted occurrence on the true time series. 
 
Table 11: Performance of the 15-minute single-sea state model in terms 

of the average extreme von Mises stress over five seeds, allowing re-
run of time series for the three highest predicted peak locations 

Sea state 
number 

True value 
[MPa] 

Predicted value 
[MPa] 

Difference 
[MPa] 

#1 394 394 0.2 

#2 396 393 2.2 

#3 385 385 0.0 

#4 394 393 1.1 

#5 398 398 0.3 

#6 404 397 6.7 

#7 409 409 0.0 

#8 408 406 2.5 

#9 414 413 1.2 

#10 413 413 0.4 
 
Results are also presented for a single sea state model trained on 60-
minute simulation data. By increasing the training data, the difference 
between predicted and true values are reduced, which is the expected 
effect, but the results are still worse in comparison with the unseen sea 
state model. 
 

Table 12: Performance of the 60minute single-sea state model in terms 
of the average extreme von Mises stress over 5 seeds 

Sea state 
number 

True value 
[MPa] 

Predicted value 
[MPa] 

Difference 
[MPa] 

#1 394 395 -1 

#2 396 378 17 

#3 385 365 19 

#4 394 390 3 

#5 398 393 5 

#6 404 396 8 

#7 409 408 1 

#8 408 405 4 

#9 414 416 -3 

#10 413 408 5 
 
Table 13: Performance of the 60minute single-sea state model in terms 
of the average extreme von Mises stress over 5 seeds, allowing re-run 

of time series for the 3 highest predicted peak locations 
Sea state 
number 

True value 
[MPa] 

Predicted value 
[MPa] 

Difference 
[MPa] 

#1 394 394 0.0 

#2 396 395 0.7 

#3 385 385 0.0 

#4 394 393 1.1 

#5 398 398 0.3 

#6 404 403 0.7 

#7 409 409 0.0 

#8 408 408 0.0 

#9 414 414 0.0 

#10 413 413 0.4 
 
SUMMARY 
 
The process of building a machine learning model that can make efficient 
predictions during operations is presented in this paper, including the 
detailed steps and configuration for a realistic and challenging case 
study. 
 
Two main approaches are used for training the machine learning model, 
a single-sea state approach, where the scope of the model is only to 
predict new time series generated from the same sea state on which it is 
trained, and a unseen sea state model, where the scope of the model is to 
predict time series for completely new sea states.  
 
Even though the single-sea state model requires much less training time, 
the unseen sea state model is much more efficient for operations, because 
all the training can be performed before project execution. The unseen 
sea state model also performs better than the single sea state model, even 
when the single sea state models training duration is increased up to 60 
minutes. 
 
The unseen sea state model should, however, be used with caution. All 
relevant sea states must be sufficiently represented in the training data 
set. If the model is exposed to sea states that have unseen features, such 



as a different directionality compared to the training data set, the 
predictions cannot be trusted. 
 
For both these methods, significant improvement is seen if the physics-
based model is used to generate target responses around the occurrence 
of extreme peaks. If three peaks from each sea state are selected for rerun, 
the error is found to be negligible for all the 10 sea states included in the 
test set, independent of the model applied. This approach increases the 
simulation time somewhat, but it is still reduced by a factor of 10 
compared to running a complete set of 5 three-hour simulations 
(assuming a single sea state model trained on a 60-minute time series). 
The data generated from peak-rerun can also be used as a validation set, 
to safeguard against wrongful application on unseen and unexpected 
wave conditions. 
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