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Abstract: Safe navigation for maritime autonomous surface ships (MASS) is a challenging task, and
generally highly dependent on effective collaboration between multiple sub-systems in environments
with various levels of uncertainty. This paper presents a novel methodology combining risk-based
optimal control and path following with autonomous machinery management (AMM) for MASS
navigation and supervisory risk control. Specifically, a risk-aware particle swarm optimization (PSO)
scheme utilizes “time-to-grounding” predictions based on weather data and electronic navigational
charts (ENC) to simultaneously control both the ship’s motion as well as the machinery system
operation (MSO) mode during transit. The proposed autonomous navigation system (ANS) is
comprised of an online receding horizon control that uses a PSO approach from previous works,
which produces a dynamic risk-aware path with respect to grounding obstacles from a pre-planned
MASS path, subsequently given as the input to a line-of-sight guidance controller for path following.
Moreover, the MSO mode of the AMM system is simultaneously selected and assigned to explicit
segments along the risk-aware path throughout the receding horizon, which effectively introduces
into the optimization scheme an additional safety layer as well as another dimension for risk or
resource minimization. The performance of the resulting ANS is demonstrated and verified through
simulations of a challenging scenario and human assessment of the generated paths. The results
show that the optimized paths are more efficient and in line with how human navigators would
maneuver a ship close to nearby grounding obstacles, compared to the optimized paths of selected
previous works.

Keywords: autonomous navigation systems; autonomous ships; autonomous surface vessels;
decision-making; dynamic programming; electronic navigational charts; grounding risk; maritime
autonomous surface ships; machinery management; obstacle avoidance; online optimal control;
particle swarm optimization; predictive control; receding horizon; path planning; risk management;
safety; simulation; supervisory risk control

1. Introduction

An important prerequisite for the realization of autonomous ships is that safe and
reliable performance of guidance and navigation tasks is ensured. One possible way of
achieving this is to develop risk-based guidance and navigation control systems that uses
risk models as part of their decision-making process. Collision avoidance and obstacle
avoidance for autonomous guidance and navigation is a topic that recently has received
much attention, see for example [1–12]. However, reliable obstacle and collision avoid-
ance is not the only concern that should be addressed. Another important aspect of the
guidance and navigation task is the grounding risk. Grounding accidents are commonly
classified into powered grounding and drifting grounding. Groundings where the ship
drifts aground as a consequence of machinery failures are classified as drifting ground-
ings, while groundings that occur due to navigational errors, are referred to as powered
groundings [13]. The powered groundings can be seen as part of the obstacle avoidance
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problem, where the seabed or shore is considered as an obstacle, [14–19], while the drifting
groundings are not covered by the literature with respect to obstacle avoidance.

Drifting grounding is a problem that, in principle, could be addressed by navigating
in such a way as to avoid sailing close to the shore when there is onshore wind. This
increases the probability that grounding (following a mechanical or electrical failure) can
be prevented by means of dropping anchor or restoring sufficient propulsion and steering
capability. There is, however, limited work on autonomous ships where the guidance and
navigation problem is studied in terms of drifting grounding avoidance or risk reduction.
One study, Blindheim et al. presents a decision-making algorithm to plan suitable trajec-
tories (minimized grounding risk) in situations where the ship unexpectedly experiences
reduced maneuverability due to e.g., thruster faults [20]. Moreover, Rokseth and Utne
propose a control system for automatically selecting the most appropriate operating mode
for a hybrid machinery system in order to minimize the drifting grounding risk and fuel
consumption [21].

In this paper, a supervisory control algorithm is proposed, which integrates the
machinery system mode selection problem with the guidance and navigation problem,
based on data of electronic navigational charts (ENC) from [22]. The main reason why
it is of interest to integrate these two control problems is that the controlled states (the
ship trajectory and machinery system mode) are important influencing factors for the
drifting grounding risk. In general, benefits may be achieved by considering several
distinct control problems that share the common feature that they somehow affect the risk
associated to the same loss scenario, as this potentially results in an extended or improved
set of possible actions for reducing the risk. Thus, the proposed hypothesis is that the
potential for reducing the grounding risk at a reasonable operational cost will improve if
the two control problems are merged into a single optimization problem weighting both
aspects simultaneously, compared to only optimizing for purely spatial and distance-based
grounding risks in previous works [23] (see Section 3.5). It is argued that this structure may
increase the number of ways in which the control algorithm can make safe decisions, and
thus a reasonably safe decision may be computed at a lower operational cost, such as fuel
consumption and expected costs based on grounding probabilities.

While the proposed control algorithm in [21] successfully identifies the optimal oper-
ating modes, the choice of machinery system operating mode (MSO mode) has a limited
impact on both the grounding risk and the fuel consumption. Here, it is instead proposed
to model the grounding risk and explicitly address the trade-off between fuel consumption
and grounding risk in an optimization framework. A more reliable operational mode is
generally more costly in terms of fuel consumption. When the ship is sailing in such a way
that the loss of the propulsion power may cause the ship to drift aground in a short amount
of time (i.e., close to land while the environmental forces acting on the ship is directed
toward the shore), a reliable mode of operation is considerably safer. In this context, a
grounding event occurs if the time it takes to drift aground is shorter than the time it takes
to recover propulsion capabilities. An alternative way of achieving equal levels of safety is
to change the route e.g., such that the ship is sailing further away from grounding obstacles
(i.e., the shore or shallow waters) or in such a way that the environmental forces acting on
the ship is not directed toward grounding obstacles, or there is more time to recover from a
machinery fault.

2. Materials and Methods
2.1. Problem Definition and Approach

In the proposed framework, autonomous ships are following routes defined by a
sequence of waypoints (WP). Each waypoint is described with longitude and latitude
coordinates. As illustrated in Figure 1, it is assumed that a separate global planning process
has prepared a pre-planned route for the entire voyage. This global planning is normally
performed onshore when the voyage is planned. Next, a tentative pre-planned route is
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generated and optimized or adapted online. Thus, the ship re-evaluates the part of the
tentative route that falls within a given prediction horizon, while sailing.
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Figure 1. An overview of the overall control strategy and structure of the implemented system.

The re-planning process consists of two tasks: The first one, referred to as “Level 1
route planning” in Figure 1, is carried out to generate a number of proposed feasible routes.
This is achieved by first using the most recent sensor data and map data to check if the
part of the tentative route that falls within the prediction horizon passes over objects or
too shallow waters that were not identified as obstacles in the planning stage, e.g., if a
fish farm has appeared that was not present on the map during voyage planning or the
water depth is different due to tides. If not, the tentative route is considered a feasible route.
If, on the other hand, there is an obstacle in the way, two alternative routes (one on each
side of the obstacle) will be generated (see Appendix A). In principle, 2N options exists if
there are N obstacles being considered. It may be noted that this level of re-planning or
online avoidance maneuvers may also be applied directly to avoid areas with opposite or
dense maritime traffic, nearby vessels or other dynamic obstacles in future works. This
could build on preliminary results that combines anti-grounding and anti-collision while
considering the traffic rules at sea (COLREGs), albeit without considering MSO and failure
modes, as presented in [24].
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The second task of the tentative route re-evaluation is to optimize the proposed route
alternatives (see “Level 2 route planning” in Figure 1). This is achieved by first generating a
new set of intermediate waypoints, essentially increasing the resolution and smoothness of
the original tentative route alternative. Next, the new waypoints are adjusted with respect
to resource consumption and grounding risk, in which the latitude, longitude and MSO
mode for all waypoints of each proposed feasible route are the decision variables available
for optimization (Figure 1). Specifically, each adjustment is considered in terms of the total
resulting cost, which is a function of the fuel consumption, the grounding risk (using a risk
model), and the deviation from the estimated arrival time (ETA) through calculations of
the measured states of the sailing process.

The cost related to each proposed control output (adjustment) is estimated through
the simulated states from a ship simulator and the probability of grounding from a risk
model, and the selected control output of the Level 2 route planner is applied to a sailing
process controller—which in turn yields the next measured and/or initial ship states for the
subsequent simulation (see the respective modules in Figure 1). Thus, the optimization loop
of the Level-2 route planning process is to utilize current measured states from the sailing
process as inputs, predict future states using a ship simulator, use these predicted states to
estimate grounding risks using a risk model, and weigh these risks against other economic
or environmental factors using a cost function to produce an optimized series of waypoints.
In this work, an optimization algorithm based on particle swarm optimization (PSO) is
used to search for the set of control outputs that results in the lowest overall cost across the
receding horizon. PSO was proven to be effective for solving a simplified version of this
problem in [23], and was also chosen for solving similar problems related to unmanned
aircraft [25,26]. Note that in this proof of concept it is not claimed that PSO is the best
method to solve the optimization problem, and it is recommended to study alternative
methods such as genetic algorithms in future work.

Figure 2 illustrates the relationship between various factors affecting the cost, as well
as the terms that the cost function is composed of. First, the fundamental factors such as
ship speed (and available top speed), environmental forces and infrastructure along the
shore affects the ETA, grounding risk and fuel consumption as shown in the figure. The
position (longitude and latitude) of each waypoint affects the target ETA, i.e., if a WP is
moved such that the distance the ship has to sail to reach the target is changed, the ETA and
the fuel consumption may change accordingly. Moreover, the grounding risk may change
if a waypoint is moved such that the distance between the ship and obstacles is changed, or
the duration of exposure to disturbances with respect to e.g., a downwind obstacle changes.
Interestingly, the top speed of the ship additionally indirectly affects the ETA. An example
may be that longer exposure to increased risks near obstacles of a narrow strait due to
a lower available top speed compared to a different ship, can alter the resulting optimal
waypoint distribution along a route alternative. The MSO mode (Machinery system config
in Figure 2) directly affects the fuel consumption, possible top speed, and additionally the
grounding risk because the MSO modes are different in terms of robustness against drifting
grounding. Ultimately, the ETA, the grounding risk, and the fuel consumption affect the
cost to be minimized.

2.1.1. Level 1 Route Planning

The level 1 planning algorithm from previous works [22] is summarized in Appendix A.
It is used to generate pair-wise alternative routes on each side of static grounding obstacles,
if any such obstacle crosses the global pre-planned voyage path. Note, however, that the
computed paths are only concerned with purely spatial avoidance of any obstacle boundary
in the horizontal plane, and is subsequently evaluated, adjusted and optimized with respect
to resource consumption and risks by the level 2 route planner.
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Figure 2. An overview of the cost influencing factors as structured in this work.

2.1.2. Level 2 Route Planning

Due to the uncontrolled factors shown in Figure 2, an estimate of expected costs has to
be formulated and computed during sailing, based on probabilities and available online
(and offline) data. The cost estimate is from Figure 2 given by an ETA, a fuel consumption
estimation, and an estimated grounding risk rG, and ultimately serves as the optimization
variable for the level 2 route planner. The computation processes for these estimated terms
are presented in the following sections.

2.2. Modeling
2.2.1. The Ship Simulator

A three-DOF (degrees of freedom) ship model is proposed, for the purpose of state
predictions within the optimization algorithm: The ship’s position pn

b/n is described by
N (north) and E (east) coordinates, and ψ is the ship’s heading. As seen in (1), its time
derivative is a rotation transformation of the ship’s forward (surge) velocity, sideways
(sway) velocity and yaw rate are given as u, v and r, respectively. Based on [27], the
ship dynamics can be modeled by the notation as presented in Table 1, and the following
relationship definitions and equations:

pn
b/n =

[
N
E

]
vb

b/n =

[
u
v

]
Rn

b (Θnb) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]

Θnb =
[
ψ
]

ωb
b/n =

[
r
]

η =

[
pn

b/n
Θnb

]
ν =

[
vb

b/n
ωb

b/n

]
JΘ(η) =

[
Rn

b (Θnb) 0
0 1

]

ṗn
b/n = Rn

b (Θnb)v
b
b/n Θ̇nb = ωb

b/n η̇ = JΘ(η)ν (1)

f b
b =

[
F

−ksway δ u

]
mb

b =
[
−kyaw δ u

]
τ =

[
f b
b

mb
b

]

Ḟ = − k
ζ

F +
1
ζ

P k =
Pmax

Fmax
(2)
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where (2) represents the propulsion force dynamics. Here ζ is a tuning parameter, F and
Fmax are the input and maximum propulsion forces, and P and Pmax are the input and
maximum power available for propulsion, respectively. This model may be found online at
GitHub [28].

Table 1. An overview of the system variables used in this work.

f propulsion & steering forces C Coriolis matrix δ rudder angle
k proportional coefficient D damping matrix η ship pose
m steering moments E easting ν ship velocity
p ship position F propulsion force ω rotational velocity
r yaw rate J Jacobian matrix ψ ship heading
u surge velocity M mass matrix τ forces & moments
v sway velocity N northing Θ ship orientation

P power ζ tuning variable
R rotational matrix

Equation (3) relates the inertial force given the 3 by 3 mass matrix M (including
hydrodynamic added mass) times the acceleration in surge, sway and yaw, with the other
forces acting on the vessel. The Coriolis and centripetal forces CRB(ν)ν and CA(νR)νR as
described in [29] are included, where νR is the ship’s velocity vector relative to a water
particle floating with the current, and linear and nonlinear damping terms are described by
DLνR, and DN L(νR)νR. This gives

Mν̇ = −CRB(ν)ν− CA(νR)νR − DLνR − DNL(νR)νR + τwind + τ (3)

where τwind and τ represents the wind forces and control forces acting on the ship.
In the presented algorithm, environmental forces are considered as input, and it is not

within the scope of this paper to provide algorithms for weather or current forecasting given
the terrain and bathymetry. In general, the optimization should include margins when
defining the cost function and constraints in order to account for the uncertainty in these
forecasts, given the mentioned challenges. In this way, the control system will make robust
decisions by taking into account such uncertainty bounds. The example in this work utilizes
simple models of the environmental forces which do not include considerations of being
close to obstacles or varying depths, for simplicity and clarity when demonstrating the
effects of the novel contribution as a proof of concept. The extension to use more complex
and accuracy models (if available) is straightforward since the proposed framework is
flexible with respect to the format of the provided information (i.e., no requirements have
been made for deterministic operations, smoothness or continuity).

2.2.2. The Risk Model

The purpose of the risk model is to estimate the grounding risk Rk
G given in (4) for

each simulated future scenario k. In this work, the drifting grounding risk model presented
in [21] is defined as follows:

Rk
G = P(Gk) · CG (4)

It is used as a measure of the grounding risk, where P(Gk) denotes the probability of
experiencing a grounding event Gk during a future prediction horizon in scenario k (if the
scenario k were to be executed), and CG is the cost per grounding.

This model uses ENC data and the position, heading, velocity and yaw rate of a ship
as well as nearby grounding obstacles at some time instance t to calculate the probability
that a grounding scenario may occur, and can be used as an online real-time risk model
for a ship. Note that the grounding obstacles (hazards) are constructed according to [22],
in which the desired minimum depth may be selected by the operator. Thus, one may
include considerations such as ship size and the water depth in the area around the ship by
selecting a minimum depth with an added safety margin.
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In this work, the ship’s instantaneous states and relevant map data are fed into the
risk model at regular intervals (e.g., every 30 s) to produce an estimate of the probability of
grounding in the next time interval, applied repeatedly across a receding horizon of e.g.,
1 h to predict future probabilities into an imagined scenario. Thus, the model will be used
to evaluate the probability of grounding during a potential future scenario k corresponding
to a set of proposed control outputs. In this case, predicted ship states and map data
corresponding to scenario k are produced by the ship simulator.

The grounding risk model is illustrated in Figure 3 and deals specifically with the
case where the loss of propulsion power may cause the ship to drift aground if propulsion
power is not restored in time to prevent it. It is structured as a bow-tie diagram, with
unexpected component failures as the triggering events, loss of propulsion power (LOPP)
as the hazardous event, and grounding as the considered consequence. This diagram thus
conforms with the scope of this paper, i.e., online navigation before a potential loss of
propulsion event is considered with respect to grounding risks. Moreover, the MSO modes
affect both the engine recovery time during LOPP as well as the potential for unexpected
component failures, and may act as proactive barrier if selected appropriately. Lastly,
environmental forces (disturbances) and the waypoint positions distributed along the
navigated trajectory or path affect the time it would take to ground the ship if a hazardous
event occurs.
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Figure 3. Illustration of the collision risk grounding model.

Figure 4 shows the implementation and structure of the risk model. The hazardous
event of Figure 3 serves as the key element in the risk model, in which the probability
of a LOPP event occurring is combined with a “time-to-grounding” (TTG) prediction to
calculate the accumulating grounding probability distribution across the prediction horizon,
based on the future predicted ship states as inputs. This probability is ultimately multiplied
with the cost of grounding to produce the total grounding risk Rk

G.
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K(ti) are the predicted blackout trajectories at any time
instant ti, and ∆tk

G(ti) are the simulated TTG predictions.

2.2.3. The Probability of Grounding

There may be significant transients in Rk
G over the duration of a prediction horizon.

To capture the effect of these transients, the prediction horizon is subdivided into n time
intervals. P(Gk) can be formulated as

P(Gk) =
n

∑
i=1

P(Gi,k) (5)

where Gi,k denotes the event of grounding during time interval i in scenario k. It is
only possible to ground once during the prediction horizon. Therefore, the probability
of grounding during a specific interval i in the prediction horizon must account for the
possibility that a grounding already occurred earlier in the prediction horizon.

The notation P(Gi,k|Ḡ1,k, Ḡ2,k, . . . , Ḡi−1,k) := P(Gi,k|Ḡi− ,k) used in (6) is defined as the
conditional probability of grounding during the interval i in scenario k, given that it did
not occur prior to the ith interval in scenario k, and Ḡj,k is the complementary event of Gj,k.
Thus, the probability of grounding during the time interval i in the prediction horizon k
can be formulated as

P(Gi,k) =





P(Gi,k|Ḡi− ,k)
i−1

∏
j=1

(
1− P(Gj,k)

)
, if i > 1

P(G1,k), if i = 1

(6)

Next, each time interval in the prediction horizon k is considered. To simplify the
notation, the indices i and k are not included in the following derivation: A potential
grounding scenario can be subdivided into a scenario that leads to loss of propulsion power
(a LOPP scenario), and a recovery scenario. If a LOPP scenario occurs, a grounding follows
if a recovery scenario cannot be successfully executed within the time it takes the ship to
drift aground. A LOPP scenario can be described by a set of triggering events, while a
recovery scenario is described by a set of startup events. In the model, a set of potential
LOPP scenarios is associated to each MSO mode. Moreover, a set of potential recovery
scenarios are associated to each LOPP scenario in each MSO mode. That is, the possible
ways of recovering the system after LOPP depends on the scenario that caused the LOPP
event and the state of the system (MSO mode) when the LOPP event occurred.
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Consider the power and propulsion system illustrated in Figure 5 as an example.
The system can be operated with two propellers, each with its independent power source.
It is assumed that one power source and propeller is sufficient to prevent the ship from
grounding. As shown in the fault tree in Figure 6, a potential LOPP scenario, in this case,
is that both power sources are lost (i.e., the set containing the two events “ME1 stops”
and “ME2 stops”). The event tree in Figure 6 illustrates the two corresponding potential
recovery scenarios, namely either the recovery scenario in which ME1 is restarted, or the
recovery scenario where ME2 is restarted. If the ship is operated with only one online
power source, e.g., ME1, then a LOPP scenario is described by the event “Loss of ME1”,
while the potential recovery scenarios becomes “Restart ME1” or “Start ME2”. In general,
the event of starting a component and the event of restarting a component are distinguished
from each other. Whether one is restarting a component (after unexpected loss) or starting
a component may e.g., affect the probability of success.

ME1 ME2

Figure 5. Example power and propulsion system with two propellers using independent main engine
(ME) power sources.

LOPP

AND

ME1 
stops

ME2 
stops

LOPP-scenario

Restart ME1
in time

Restart ME2
in time

yes

no yes

no

Recovery

Recovery

Grounding

Potential recovery scenarios

Figure 6. A potential set of two grounding scenarios for the example system.

The probability of experiencing the particular LOPP scenario S consisting of triggering
events et is denoted P(S), see (7). If the triggering events can reasonably be modeled as
independent events, and the ship is operated in a mode where S is a potential scenario, then

P(S) = ∏
et∈S

P(et). (7)

In this paper, the triggering events et are modeled as exponentially distributed events
with constant frequencies of occurrence λt, as defined in (8). Thus, the probability of
experiencing the event et during a time interval ∆t is

P(et) = Fexp(∆t; λt) = 1− e−λt∆t. (8)

A set Er of possible recovery scenarios following a particular LOPP scenario in a
given machinery system configuration is referred to in a recovery event tree, where each
possible recovery scenario ri is a branch on the event tree (as exemplified in Figure 6). The
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probability of not succeeding in recovering the system, given the occurrence of LOPP, is
equal to the probability that none of the possible recovery scenarios in Er succeed within
the time it takes the ship to drift aground. The probability P(G|L) = 1− P(Er|L) of not
succeeding in recovering before grounding can be calculated directly from the event tree
according to the standard event tree methodology, (e.g., in Figure 6, the probability of
grounding given LOPP would be the product of the two probabilities of not restarting
ME in time and not restarting M2 in time). To achieve this, it is necessary to find the
probability P(er) of each recovery event er occurring before grounding (e.g., restarting
ME1 in Figure 6). It is noted that the time ∆tr it takes from LOPP occurs to event er occurs
(e.g., M1 is successfully restarted), is a random variable. Thus, the probability that the
event occurs before a grounding occurs (i.e., before the time ∆tG elapses), is given by the
cumulative distribution of ∆tG, P(∆tr < ∆tG) = Fer (∆tG) and a nominal probability of
success pr associated with the event (e.g., the probability that it is possible to restart ME1
given infinite time),

P(er) = Fer (∆tG) · P(r). (9)

The time ∆tG it would take to ground given the occurrence of LOPP, is found by
simulating that the ship drifts without propulsion (and steering), subject to environmental
forces. This is achieved by using the TTG simulator for predictions as illustrated in Figure 4.
This prediction uses the same model as described in Section 2.2.1, but without propulsion
and steering. Lastly, the TTG prediction is initialized by using the predicted ship state each
time that LOPP is simulated to occur.

2.2.4. The Cost of Grounding

The cost of grounding is a function of the ship state vector x, as illustrated in Figure 4.
In general, the cost of grounding can have a large range of contributions. In this research, it
is proposed to divide the contributions into costs associated with:

• Cship := damage to the ship. This depends on the system states x, such as impact
speed and location of grounding (i.e., the type of surface the ship grounds into), as
well as the sea state, S (i.e., large waves may cause a more violent impact) to be used
in the cost function.

• Crecovery := rescue fee that must be paid to recover the ship. This may depend on the
constant parameters of the ship such as the length of the ship, but also the system
states x, and in particular the location of the ship (e.g., if it is far from civilization and
the nationality of the rescue team).

• Ccargo := damage to or loss of cargo. This may be set as a fixed parameter according
to the value of the cargo, as well as being dependent on the magnitude and nature of
the impact.

• Cenvironment := environmental damages such as oil spill in the ocean. This may depend
on fixed parameters such as the amount of oil carried by the ship, but also the system
states x, and in particular the location of the ship (e.g., the sensitivity of the marine
area) and weather conditions.

• Cin f rastructure := damage to infrastructure on the shore such as fish farms, harbors,
promenades, and so forth. This cost may depend on the system states x, (e.g., location
of the impact and whether or not there are infrastructure there to be damaged).

• Creputation := loss of reputation due to loss of or damage to cargo or major delays in
delivery. This may be modeled as a fixed quantity.

The total cost of grounding may then be estimated as

CG = Cship(x,S) + Crecovery(x) + Ccargo

+ Cenvironment(x) + Cin f rastructure(x) + Creputation.
(10)
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This concludes the methodology of this work, and will in the following sections be
implemented in a simulation study, serving as the foundation for the results and discussion
in which the proposed approach presented in this paper is validated and assessed.

3. Results

In this section, a simulation study is presented. The objective is to test and demon-
strate the proposed control algorithm for autonomous ship control. The control system is
implemented on a simulation model of a coastal cargo ship with a length overall (LOA) of
81.5 m and a beam of 16 m and a displacement of 5335 tons.

3.1. The Machinery Management System

The ship is equipped with a hybrid-electric propulsion system. There is one propeller
that is powered from a gearbox. The gearbox can be powered either from the main engine
(ME), or from a hybrid shaft generator (HSG). The HSG converts electrical power from
an electrical bus that can be powered from two identical diesel generators (DGs). There
are several ways in which the propulsion system can be operated. In this case study, only
the three predefined Machinery System Operational modes (MSO modes) Power Take Out
(PTO), Mechanical (MEC) and Power Take In (PTI) are considered.

As illustrated in Figure 7a, PTO refers to a mode where the ME is responsible for the
main propulsion, as well as auxiliary electrical loads. In this case, both DGs are offline
and the HSG functions as a generator, transforming mechanical power from the gearbox to
electrical power. In MEC mode, (see Figure 7b) the auxiliary electrical loads are served by
one of the DGs instead of the HSG. Thus, the HSG is off, and all the power produced by the
ME is used for propulsion. Finally, as seen in Figure 7c, PTI mode uses the DGs to provide
power for propulsion. In this case, the HSG is acting as an electrical motor, transforming
the electrical power from the DGs into mechanical power on the gearbox.

(a) (b)

ME

Gear-
box

HSG

(c)

Figure 7. Diagrams of the machinery system’s layout in the three operational modes. Green color
indicates online components and the arrows indicate the direction of energy flow (power) [21].
(a) PTO-mode where the ME is responsible for both propulsion and electrical loads. (b) MEC-
mode where the ME is responsible for propulsion and a DG is used for auxiliary electrical loads.
(c) PTI-mode where two DGs are responsible for main propulsion and auxiliary electrical loads.

The main engine is a marine diesel engine with a maximum continuous rating (MCR)
of 2160 kW, while the two diesel generators are rated at 590 kW each.

3.2. Risk Model Setup

Table 2 presents the possible scenarios (consisting of a LOPP scenario and a set of
possible restoration scenarios) that can occur in each MSO mode. The LOPP-scenarios
and restoration scenarios are described in terms of triggering events and restoration
events, respectively.

The expected rate of occurrence for each triggering event is presented in Table 3,
and the restoration events and their parameters are given in Table 4. Here, the nominal
probability refers to the probability of success of a recovery event given infinite amounts
of time. The mean time, standard deviation and minimum time, are parameters in the
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restoration events success time, where mean time refers to the mean time given that it
will start (i.e., assuming that the nominal probability is one). A lognormal distribution is
assumed, where the minimum time parameter refers to a time interval. As an example,
“Start ME” takes at least 20 s, according to the parameters in Table 4.

Table 2. Description of the possible scenarios in each MSO mode.

MSO Mode LOPP-Scenarios Possible Restoration Scenarios

PTO “ME stops” “Restart ME”
“Start DG1” AND “Start HSG”
“Start DG2” AND “Start HSG”

MEC “ME stops” “Restart ME”
“Start HSG”

PTI “DG1 stops” AND “DG2 stops” “Restart DG1”
“Restart DG2”
“Start ME”

“HSG stops” “Restart HSG”
“Start ME”

Table 3. Overview of considered triggering events and rates of occurrence.

Triggering Event ME Stops DG1 Stops DG2 Stops HSG Stops

Failure rate 3× 10−9 6× 10−9 6× 10−9 2× 10−9

Table 4. Overview of restoration events and their statistical parameters.

Recovery Start Restart Start Restart Start Restart Start Restart
Events ME ME DG1 DG1 DG2 DG2 HSG HSG

Nominal prob. 1 0.4 1 0.5 1 0.5 1 0.8
Mean time 50 50 35 35 35 35 12 12
Std. deviation 1.4 1.4 1 1 1 1 1 1
Minimum time 20 20 14 14 14 14 3 3

3.3. Environment Setup and Route Planning

For proof of concept, a simple simulation environment is created using the ENC
package SeaCharts [22] in Python 3.10. An area of approximately 14 square kilometers
west-northwest of the Norwegian city of Ålesund is chosen for the simulation study, shown
in Figure 8. This environment showcases an interesting scenario in which one may choose
between two different paths on either side of an island, and is considered well suited for a
proof of concept.

The tentative ship route or path to follow is shown in Figure 8 as green line segments
connected by “links” at each given waypoint, as generated by the global voyage planner of
Figure 1. Notice however how one of the green line segments are intersecting an island,
highlighted by the red color where the island crosses the globally planned line segment.
This setup is specifically chosen to demonstrate that if a planned tentative route is somehow
inaccurate or incomplete such that grounding obstacles are present along the route, one
may utilize e.g., the Level-1 route planner from [22] to generate alternative feasible routes
on opposite sides of the obstacle in question. Moreover, one may analogously extend the
anti-grounding algorithm to also encompass collision avoidance of dynamic obstacles,
through e.g., the concept of (polygonal) adaptive safety domains [30] constructed around
e.g., nearby vessels. Thus, it is argued that the approach shows significant flexibility and
adaptability. Appendix A contains a summary of the planning algorithm, as well as a visual
demonstration of each algorithm step.
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Figure 8. Visualization of the simulation study area and ship route using the SeaCharts package [22].
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Figure 8. Visualization of the simulation study area and ship route using the SeaCharts package [22].

Figure 9 shows the result of the Level-1 path planning performed on the ship route of
Figure 8, as generated by Algorithm A1 from Appendix A. First, the green line segments are
checked for intersections with any grounding obstacles in the environment, which in this
case yields the red streak as shown in Figure 8. Second, the convex hull of the intersected
grounding obstacle (island) is extracted, and an added buffer of a 50 m safety margin is
applied in all directions from the obstacle exterior boundary, in addition to the already
added 10 m buffer and vertex simplification process performed during the construction
of the polygons of the SeaCharts ENC. This yields the two convex polygons highlighted
around each of the islands south in the environment.

It is important to notice that one should be careful with this “hard” static safety margin.
If this buffer around each grounding obstacle is too large, the subsequent path following or
guidance controller may have trouble with navigation through extremely narrow straits,
or one may even risk closing the strait in its entirety, losing the possibility of navigating
through it as a route alternative. Thus, it is argued that the buffer should be somewhat
conservative, and that the path following algorithm or controller is expected and required
to be capable of operating in the interior of the feasible domain, as opposed to at the bound-
aries of hard constraints such as the grounding obstacle exteriors. Nonetheless, the Level-1
alternative route path planner is indeed a linear optimization algorithm operating on the
vertices and line segments of each grounding obstacle polygons, essentially generating an
approximate ship path to be used both during initialization and as part of the cost function
of the Level-2 route planning optimizer of Figure 1.

In Figure 9, the red disk within the path waypoint link to the east shows the start
point of the simulation study. Conversely, the red disk to the west is the next target path
waypoint. Algorithm A1 iterates through each of the grounding obstacle vertices, and
checks if the point is visible (i.e., accessible along a straight uninterrupted line) from the
reference point. The first reference point is thus the red east-most starting point, and
the distances between each vertex visible from the reference location and the green line
segment are measured. The visible vertex farthest away from the path is selected as the first
alternate waypoint, and the process is repeated with each newly generated waypoint as the
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visibility reference location. This generates a new collection of line segments on each side
of the grounding obstacle, and these alternative paths are in Figure 9 shown in yellow and
pink. Notice how the generated yellow path originally intersected with the larger island
to the south-west, which prompted another sub-run of the algorithm such that the new
intersection is considered in the final path alternatives. See Appendix A for more details on
this procedure.
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Figure 9. End result visualization of the Level-1 route planning algorithm [22] of the Appendix.
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3.4. Particle Swarm Optimization

The waypoint (route) optimizer used in this simulation study is a risk-aware Particle
Swarm Optimization (PSO) waypoint planning algorithm which is extended, based on pre-
vious works [23]. Compared to other methods such as Model Predictive Control (MPC) [20],
PSO is not subject to any special cost function construction or feasibility concerns in or-
der to generate solutions (not guaranteed to be optimal). Thus, one may utilize highly
discontinuous or discrete cost definitions, allowing for more complex general optimization.

The principle behind PSO is to randomly generate an initial swarm of N-dimensional
solution particles, and repeatedly update the particle positions with respect to semi-random
particle velocities based on their performance measured by the cost function. The technique
is widely covered in the literature, and the reader is referred to previous works for more in
depth background on PSO [23].

A simple demonstration case is shown in Figure 10, in which only the two-dimensional
(2D) XY-coordinates of the path waypoints in the horizontal plane are optimized through
purely distance-based and spatial costs from the ad hoc risk-aware implementation dis-
cussed in [23]. The same green line segments, start and target in red from Figure 9 are
considered, as well as the newly generated route alternatives—here, shown in gray on each
side of the smaller island.
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Figure 10. Particle swarm optimization (PSO) demonstration of 2D waypoints along the ship route.
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Figure 10. Particle swarm optimization (PSO) demonstration of 2D waypoints along the ship route.

The alternate paths are subsequently split into 20 sub-segments, corresponding to 19
waypoints shown in yellow and pink, respectively. The first line segment corresponds to the
given start waypoint. These intermediate waypoints are used directly as the 2D particles to
be optimized by the PSO, with respect to any nearby grounding obstacles. The cost function
is a sum of simple path-related costs such as total path length and waypoint distances to the
original path, as well as a simple risk-aware exponential function applied to the grounding
obstacles [23]. The latter term weighs small distances between the ship position and nearby
obstacles very highly compared to far-away locations, essentially adding a dynamic “soft
constraint” which prevents the optimized path from crossing obstacles.

It is clear how the yellow and pink waypoints simulate increased risk-aware behavior
with respect to the nearby islands, if followed by a navigation or guidance controller.
Furthermore, one may also note how the lack of hard constraints keeps the problem well-
behaved, even in the more narrow strait between the two islands shown in yellow. If,
e.g., the safety margins discussed previously had been increased as a substitute for the
distance-based “interior” cost inside the feasible region, one could end up with sharp and
even infeasible paths between narrow straits such as the one shown. The magnitude of the
obstacle avoidance costs are exaggerated for visibility in this proof of concept.

3.5. Risk Cost Formulation

The formulation of the final risk-aware cost function is subject to many considera-
tions. Figure 11 presents a visualization in which the same intermediate yellow and pink
waypoints from the Figure 10 are shown in the colors yellow and cyan (replacing the pink
for visibility), respectively. Here, the ends of the green line segments replace the initial
route “links”, and denote the original red start and target locations. The increased risks
simulated by the exponential term in the cost function is readily apparent from the overlap-
ping contour polygons shown around each grounding obstacle, increasing in intensity and
color from light yellow to dark red within the obstacle interiors. The optimized waypoints
in yellow and cyan are seen traversing over or along the “hills and valleys” of the risk
contours around the obstacles, and there is a strong correlation between the risk contour
magnitudes and the resulting waypoints arrangement.
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Figure 11. Contours visualization of the distance-based grounding risk cost term used in this work.
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Obstacles previously hidden from sight also become apparent in this view, as every
land area, shores and/or seabed depths more shallow than 10 m are included as (convex)
red obstacle interiors. Thus, these obstacles also contribute to the spatial optimization, but
are in this scenario negligible if sufficiently far away from the considered waypoints. This
effect can be verified by comparing the colored intermediate waypoints with the previous
alternate line path segments of Figure 10: There is no considerable discrepancy between
the optimized waypoints and the Level-1 planned paths when no grounding obstacles are
within some distance from the original path, as a direct consequence of the exponential
nature of the risk cost term.

These distance-based risk awareness contours of Figure 11 resembles artificial potential
(repulsion) fields, which is another popular approach used for path planning for e.g.,
unmanned autonomous vehicles. This method is however prone to becoming stuck in
local minima and may show poor performance in narrow passages such as the isle strait
considered here, and these issues must also be recognized and handled when using PSO.
The sum of additional path-related costs are valuable in this regard, strongly related to the
previous point with respect to the negligible divergence between the Level-1 routes and
the optimized waypoints further away from obstacles: By enforcing large costs associated
with straying away from the original path (as well as increasing the total path length), the
(near-) optimal placements of each waypoint are semi-forced along the original path. This
approach does however place more responsibility onto the Level-1 planner in order to
achieve satisfactory solutions, which is considered appropriate following that the global
planned path is already assumed to be near-optimal in this study.

In previous works, a scalar cost with respect to environment (wind) disturbances was
used in conjunction with the static distance-based grounding obstacle costs to account for
the increased risks present when obstacles are located down-wind (or down-stream) of the
ship [20,23]. Figure 12 shows a comparison view of the effect this extra cost term has on the
waypoint distribution across each route alternative. The yellow and pink waypoint paths
of Figure 10 are here denoted in orange and magenta, respectively, and the new resulting
waypoints of each alternative including the added scalar product cost term are shown in
yellow and pink.
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Figure 12. Comparison of the scalar product grounding risk cost used in previous works.
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For simplicity, only wind disturbances are included in the proof of concept demon-
stration. In the upper-right corner of Figure 12, the wind direction and wind velocity of
the disturbance forces are shown as 250° and 10 m/s, respectively. It is clear how the scalar
product of the wind direction and the direction to each grounding obstacle weighs more
heavily onto the waypoint costs, effectively shifting them in approximately the opposite
direction. Though the PSO algorithm is entirely sample-based and not gradient-based, the
direction of the extra perturbations of the spatial waypoint locations are very similar, as
expected. See the visualizations and discussions presented in the previous works for more
details [20,23].

Some interesting effects are seen on a few waypoints. On the pink path, one can see
how WP3 is more eastward, and WP7 is almost completely northward compared to their
magenta counterparts, due to the scalar product of the closest point on the nearby ground-
ing obstacle and the wind direction. Most notably, WP3 of the yellow path demonstrates a
slightly unintended effect of using this risk cost formulation. Here, the wind direction (in
this example) compared to the direction of the nearest potential point of grounding as seen
from the ship, is such that the scaled extra cost of the exponential scalar product term is
sufficient to noticeably move the waypoint southward unnecessarily. Though the risk cost
scaling in these examples are exaggerated greatly for visual clarity, effectively resulting in
less efficient routes around the islands, there is evident potential for improvements.

Thus, a new risk cost formulation is presented in this paper, which utilizes a ship
model and the concept of TTG in order to produce more precise and appropriate waypoint
planning solutions. It is argued that this cost formulation reflects realistic scenarios to a
higher degree, more accurately incorporates the dynamics (i.e., the trajectory) of the ship,
and is considered a natural addition to the cost function given the new scope which also
includes machinery management considerations. The final cost function is presented in
Section 3.9.

3.6. Path Following and Trajectory Control

The output of the Level-2 route planner of Figure 1 is ultimately given as input to
the ship’s guidance system, which in turn controls the trajectory of the ship toward the



J. Mar. Sci. Eng. 2023, 11, 327 18 of 29

resulting waypoints. Figure 13 shows an example simulation of trajectories produced by a
line-of-sight (LOS) guidance controller, following the paths generated by both alternative
sets of waypoints. Here, the speed of the ship is set constant, for simplicity. Most strikingly,
the yellow trajectory is noticeably faster than its counterpart in pink. Its end position is
readily seen in the figure being located farther along the path, after the same number of
sampled time intervals.
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Figure 13. Path following simulation example, based on a simple line-of-sight guidance controller.
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In the example trajectories shown in Figure 13, the yellow trajectory is faster than the
pink trajectory, but intuitively it does also involve higher levels of grounding risks—as
apparent in Figure 11. This leads to the very purpose of this paper, and is indeed the main
research question to be considered: How can both the efficiency and risk aspects of ship
paths or trajectories be weighted such that the resource consumption is minimized during
a successful mission execution, while simultaneously achieving safety?

3.7. Time-to-Grounding (TTG) Predictions

As noted in the discussion related to Figures 3 and 4, the principle of “time-to-
grounding” is simply to predict when (if) a ship would experience a grounding event
if a LOPP (machinery failure) scenario occurs at a given time instant along the planned
path, given the current or expected environment (weather) conditions.

Figure 14 presents a demonstration of the TTG predictions. The wind velocity is 10 m/s,
and the current velocity is 1 m/s. Here, the orange and green collections of ship poses are not
simulation trajectories, but rather the ideal ship poses defined for each waypoint distributed
evenly along the original paths. This shows how an initial ship yaw angle or heading is
needed for each (ideal) waypoint in order to predict TTG. The angles are calculated using
the angle between the previous and the next (neighboring) waypoints, for each individual
waypoint. The yellow and pink colored ship poses denote the predicted trajectories during
a LOPP scenario corresponding to each ship pose of the orange and green routes, across a
horizon of 10 min.

The predicted future trajectories with no propulsion and steering are simulated by the
ship model, and include the ship dynamics and initial ship speed before loss of propulsion
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power. As expected given a wind direction of 250°, the ship in the orange trajectory is
predicted to drift south-west toward the south-west island, and the ship in the green
trajectory would firstly hit the smaller island. Moreover, as the accumulated probability of
grounding only increases (and is defined) given that a grounding event has not occurred,
the future predictions are ended if any part of the ship intersects with a grounding obstacle.
These intersections are shown as red ship poses. Note that the red grounding events may be
asynchronous with respect to the regular sampling intervals of predicted ship state (pose),
across the LOPP scenario horizon.
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Figure 14. Time-to-grounding predictions shown for a LOPP scenario occurring along the trajectories.
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Figure 14. Time-to-grounding predictions shown for a LOPP scenario occurring along the trajectories.

3.8. MSO Mode Selection and Fuel Consumption

The TTG predictions are used to inform the optimization during the PSO run, i.e., to
select the most suitable MSO mode as well as the waypoint locations during optimization.
This is due to the fact that each MSO mode have different fuel consumption rates when
active, and have different restoration properties. The resulting time values of the TTG
predictions are subsequently translated into grounding probabilities, and then expected
costs through the rate of failure probabilities and restoration rates of Tables 2–4. These costs
are ultimately weighted against all other costs defined by the path following cost function,
and the PSO outputs three-dimensional (3D) solution particles consisting of the X and Y
coordinates of each waypoint, and the selected MSO mode to be used for the following
time interval.

Figure 15 presents an alternative view of the ideal sailing routes and LOPP blackout
predictions of Figure 14, in which additional directed arrows denote how the 2D cost gradi-
ents of the waypoint locations in the horizontal plane are affected by the TTG predictions
and resulting estimated costs. The altered locations of the optimized waypoints would in
turn increase the total fuel consumption, assuming that the original path is near-optimal. It
is intuitive that since the risks for a grounding event occurring increases along the direction
of the wind disturbance, a purely spatial cost function would move the waypoint locations
away from the predicted points of impact [20,23]. However, in this work, the MSO mode
selection also plays an important role.
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Figure 15. Spatial waypoint risk gradients and MSO mode selection demonstrations.
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In this figure, the trajectories are unchanged for the purpose of conceptual demon-
stration and comparison to later results. For this example, both trajectories experience
proximity to higher grounding probabilities for an approximately equal amount of time.
However, in general, this is not necessarily the case, and the fuel consumption along the
complete trajectories are highly dependent on both the specific MSO mode selected, and
the accumulated time spent in the mode. Thus, it may sometimes be more economically
prudent to simply move the route waypoints further away from the grounding obstacles,
as an alternative to disrupt the machinery to go into another (i.e., safer but also more costly)
MSO mode. This joint combination of spatial path optimization and operational mode cost
minimization during operations is considered the novel contribution of this work.

3.9. The Complete Cost Function and Simulations

Based on the discussions and intermediate results of the previous sections, the final
complete cost function is formulated as follows:

Ck(v, m) = Cpath(v, k) + Cgrounding(v, k, m) + Cmso(v, k, m) (11)

Cpath(v, k) = µ1||v−v
re f
k ||2 + µ2

(
||v−v

re f
k−1|| − ||v−v

re f
k+1||

)6
(12)

Cgrounding(v, k, m) = CG

(
µ3 ∑

σ∈O
e−dmin(v,σ)ζ1 + µ4P(G)

)
(13)

Cmso(v, k, m) = Cconsumption · µ5||v−v
re f
k+1|| (14)

where vk = P(x, y) is a 2D waypoint corresponding to the kth line segment along a route
alternative, and x, y, k and m are the x- and y-coordinates of a waypoint, the line segment
number and the selected MSO machinery mode, respectively.

The second term of Cpath is raised to a larger (even) power than the first to more
strongly encourage distributing the waypoints with equal distances between each other,
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compared to being close to the ideal reference waypoint along the route. ∑σ∈O e−dmin(v,σ)ζ1

is the total sum of the negatively scaled minimum distances to every grounding obsta-
cle raised to the power of e, which serves as an exponential barrier function for nearby
grounding obstacles irrespective of the heading of the ship or any disturbances.

P(G) is the accumulative grounding probability function from (5), and Cconsumption is
the estimated fuel cost per meter traveled. For simplicity, it is for (11) assumed that the
variable costs defined in (10) are held constant for the entire optimization horizon, i.e., CG
is static based on a set of assumptions related to the current surrounding environment. The
reference waypoints vre f denote the ideal waypoint locations evenly spread across all line
sub-segments along a route alternative if left completely unaltered by grounding risk costs,
i.e., Cpath = Cgrounding = 0 (see the pink waypoints 8 to 19 in Figure 12). In this work, the
PSO setup used 30 candidate particles in each particle swarm (one for each of the 20 line
segments), and was run for 100 iterations. The following hyper-parameters of the PSO was
used: The inertia weight was set to 0.75, the cognitive weight was 1.0, the social weight
was 2.0, and the velocity limit was 1.0.

Using the path following guidance controller, the resulting optimized WP distributions
and trajectories of each route alternative are shown in Figure 16. The green trajectory
follows the resulting PSO route in pink, and the orange trajectory follows the yellow
route. The target ship heading each time interval is calculated by drawing line segments
between the optimized waypoints, and extracting the target coordinates by intersecting the
resulting path by a circular horizon radius of 200 m. Thus, the generated ship trajectory is
entirely independent of the distance between each optimized waypoint of the PSO, and the
smoothness of the path to follow may be improved simply by increasing the number of
waypoints to optimize.

The cyan waypoints on both routes denote where the most robust but costly MSO
mode is selected for a specific WP interval (MEC), and the cyan ship pose shows where
the ship has this mode active during its voyage in order to reduce the expected costs of
grounding due to the TTG simulations. All other waypoints are given their original colors
when using the most economical MSO mode (PTO). These results show how e.g., WP10
of the yellow route and WP6 of the pink route are allowed closer to the nearby obstacles
compared to e.g., Figure 12 (demonstrating the approach of previous works [23]), as the
cost function now integrates and considers the ship dynamics.

Moreover, it may be noted that the MEC mode is still selected also for the line segment
following WP9, for the purpose of demonstration—the MSO mode selection algorithm may
utilize more advanced mode management mechanisms than simply choosing the most
economical at each interval. It is also apparent that WP9 in this example is moved away
from the nearby obstacle, leading to the normal PTO mode being selected. Though such
mode switching generally is unwanted due to additional startup/switching costs, this
outcome is included here for completeness only; a more sophisticated behavior may be
tweaked and fine-tuned as desired.

Graphs of estimated (expected) grounding and fuel costs of each route, as well as the
total accumulating costs along each alternative, are presented in Figure 17. Expected costs
for grounding shows the µ4 term of Cgrounding (13) for each waypoint, and are shown as
blue bars. It may be noted that as the scaling coefficients for grounding events are constant
in this work, the value of the blue bars may serve as proxy visualizations for the grounding
probabilities P(G) experienced during the TTG simulations of each waypoint, i.e., a taller
bar means a larger expected rate of grounding occurrences, which are noticeably different
for each mode due to their inherent restoration capabilities. Expected (additional) costs for
added fuel consumption with respect to the optimal path are denoted as the green bars on
top. The three different MSO modes PTO, MEC and PTI are denoted by zero, halved and
fully streaked bars, respectively. The total heights (sum) of these bars are the total expected
costs of each MSO mode selection, for each waypoint.
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Figure 16. The resulting route trajectories using the complete cost function with TTG predictions.
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It is apparent how each MSO mode are proportionately related to different fuel cost
rates and grounding risk probabilities (due to different restoration rates), e.g., PTO has a
lower fuel cost but also a larger grounding risk scaling associated with it, compared to that
of MEC. During optimization, the mode with the lowest total cost is simply chosen for each
route line segment between optimized waypoints. Note that the cost coefficients used in
this work are ad hoc for a proof of concept, and are consequently only meaningful relative
to each other. Thus, both Y axes are normalized between 0 and 1.

Definite indications of increased grounding risks and thus expected costs are clearly
visible for WP 6, 7, 8, 9 and 10 for the yellow path, and WP 3, 4, and 5 for the pink path. This
is in line with the visual information shown of the environment in Figure 16, i.e., the nearby
grounding obstacles affect the costs as expected. One may also note that, despite being as
close to the obstacles as the mentioned points, WP 11 of the yellow path and WP 6 and 7
of the pink path are not affected in the same way, due to the general direction of the TTG
predictions as a result of the given disturbances. Moreover, there is a noticeable difference
between the expected fuel cost of WP 9 in the yellow path compared to its two neighbors.
This also corresponds to the visually apparent location shift of the waypoint, in which
the increased fuel costs of moving the waypoint in this situation were less expensive than
the expected grounding costs for this specific interval. One possible explanation for this
result may be that the expected TTG for this interval is less than the shortest minimum time
required for all available restoration events, which significantly increases the grounding
risk for that initial waypoint location.

The yellow and pink lines are the accumulating costs of each respective route, used to
select the most efficient route. Ultimately, the pink route with its resulting green trajectory
was chosen due to the lowest total expected cost across the entire (predicted) simulation
run. This result shows how the fastest route may not always be considered the most
cost-effective within a specific environment and set of conditions, and thus a slightly longer
but more effective and/or safer route is generated and selected as the optimal choice.
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Figure 17. The weighted MSO mode costs of each waypoint interval and accumulated route costs.
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4. Discussion

It is recommended that the methodology and proof of concept presented in this
paper should be implemented and tested in a practical implementation in future research.
Moreover, testing of different combinations of various PSO hyper-parameter settings,
number of particle candidates and number of iterations should be investigated and assessed
in order to achieve improved performance.

The structure and tuning of specific terms in the complete cost function have a signifi-
cant impact on the resulting solutions. In fact, the behavior or final waypoint distribution
across each route alternative is by definition entirely dependent on both the cost func-
tion formulation and its inherent weighting coefficients. As such, the choices made with
respect to the individual terms of the cost function must be thoroughly assessed. The
sub-parts of (10) may in future research be weighted dynamically with respect to the ship
state or predicted states. However, CG is in this proof of concept given a constant value
for simplicity.

The Cpath term (12) consists of only path-related costs, which keep the waypoint
distribution close to the original route alternative (the first term) as well as distributing
the waypoints evenly across the full length of the original route. The values of both the
exponents and its weights (µ1, µ2) is however highly flexible, and may be adjusted to
accommodate various levels of strictness with respect to the path following aspect of the
cost function as deemed most fitting by the human operators. Furthermore, it may be noted
that though the TTG simulations are time-dependent during the LOPP simulations, Cpath is
not. This is a deliberate choice made in order to enable utilization of parallel computing
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techniques, due to each waypoint being fully independent from all other variable waypoints
during optimization as a result of only using the ideal (static) reference waypoints vre f

in this cost term. However, it may be argued that the PSO optimization instead may be
structured such that the cost of each WP is dynamically calculated with respect to the
best known costs of each PSO WP neighbor instead of the static references. Though this
structure is not parallelizable, it may potentially achieve even more optimal waypoint
distributions in future works.

Next, the Cgrounding term (13) is comprised of both the exponential anti-grounding
costs as well as the weighted TTG-based accumulative probabilities of grounding if a LOPP
event occurs. Though these terms are quite different in their form and the resulting effects
of each consequently are difficult to compare directly, both are considered necessary to
formulate as such in order to achieve desired behavior. The first term is included solely to
serve as a strong barrier function for the purpose of extra safety, which may override any
insufficient tuning or if any unexpected or unaccounted for events may occur. Thus, the
term is exponentially defined, even though the resulting costs close to grounding obstacles
are difficult to define explicitly or compare to more practical probability- and expected
costs-based terms. This formulation may also be thoroughly examined in later research.

Similarly to the path-related cost formulation, the Cmso term (14) is based on fuel
consumption with respect to the next ideal waypoint, as opposed to a perhaps more
intuitive parameters such as total distance traveled, or time. This somewhat indirect
form is also chosen in order to enable parallel computing, eliminating the need to include
the variable waypoints during optimization, which vastly reduces the computational
complexity. It is argued that though the resulting cost is not accurate in terms of actual
fuel consumption estimated during the voyage, it is a useful measure of how much extra
consumption is required for any waypoint change with respect to the ideal route alternative.
This is considered appropriate within the scope of this study, due to the pre-computed
reference path being assumed near-optimal.

Note that the implementation and cost formulation in this work do not include any
additional cost terms for switching of MSO modes, nor any considerations of time delays
or other time-dependent variables related to e.g., cold-starting an engine. These factors
were not handled in this proof-of-concept study, but are however considered natural and
appropriate additions to further research efforts or industrial applications.

There are many uncertainties related to both the measurement of states and predicting
future states, and the models used to calculate these states. The management of such
uncertainties is an important consideration of optimization problems such as the one
presented in this paper. In general, one may add additional safety margins to mitigate
potential damages if the accumulated errors due to uncertainties lead to an accident. In
addition, the models used for environmental factors were kept simple in this study. Future
work should also include and implement more comprehensive and accurate models for
calculation of environmental forces or physical effects, such as varying ocean depths and
disturbance dynamics (winds, waves and currents) in order to reduce the amount of
uncertainties present in the system.

Lastly, the results as presented in Figures 16 and 17 are highly subject to the tuning of
the cost function coefficients, and should be acknowledged as such. Moreover, the results
are assessed and validated by human evaluation of the behavior of simulated trajectories
in a challenging scenario, which is subjective and subject to bias. The environment and
cost function weights of this study are to a large degree chosen or established in order to
show-case interesting behavior relevant to the proposed methodology, and is consequently
biased toward this particular configuration. The method for tuning and assessment should
thus be comprehensively investigated in future works.
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5. Conclusions

This paper proposes a methodology and proof-of-concept simulation study which
utilizes PSO for simultaneous selection of machinery operational modes combined with
waypoint re-planning based on grounding risks calculated from spatial distances and
“time-to-grounding” simulations, such that both safety and efficiency may be considered
more accurately during optimization compared to previous works. The results show that
a slower route with respect to time and distance traveled may still be considered more
cost-effective in terms of expected costs when also recognizing grounding risks along
a route.

There are nevertheless several limitations that could be addressed in future work. As
mentioned, the method could be extended for collision avoidance with dynamic obstacles
and following the traffic rules at sea. Moreover, while the choice of PSO as an optimization
engine is effective, other methods such as genetic algorithms should be considered as
well. Although it is straightforward to define safety margins to account for uncertainty
in models and input data, a more systematic method for determining the uncertainty
levels and setting the safety margins would be useful. For an industrial implementation,
hazard analysis should be used to obtain a more complete overview of the scenarios that
potentially can lead to accidents, and to gain more insight into which factors may affect
the risk, and how. The proposed framework fully supports the implementation of a more
comprehensive risk model, and is thus considered a promising approach to serve as the
foundation to future works on joint machinery management and autonomous navigation.
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Abbreviations
The following abbreviations are used in this manuscript:

2D two-dimensional
3D three-dimensional
COLREGs International Regulations for Preventing Collisions at Sea
DG diesel generator
ENC electronic navigational charts
ETA estimated time of arrival
HSG hybrid shaft generator
LOA length overall
LOPP loss of propulsion power
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LOS line-of-sight
MCR maximum continuous rating
ME main engine
MEC mechanical mode
MPC model predictive control
MSO machinery system operation
PSO particle swarm optimization
PTI power take in mode
PTO power take out mode
TTG time-to-grounding
WP waypoint

Appendix A. The Level-1 Route Planning Algorithm

The following is a summary of concepts from previous works [22]:
A simple path planning algorithm for constructing a tree of possible route alternatives

between two waypoints is presented in Algorithm A1. The algorithm is given a set of
grounding obstacle polygons G, a safety distance ∆ds, an initial starting waypoint σ, and a
single end target waypoint χ to which a path with several potential route alternatives is
to be planned. Figure A1 shows an example in which a vessel intends to navigate around
a collection of smaller isles, i.e., the set of red grounding obstacles G. The start point σ is
represented by the vessel hull in white, and the end point χ is denoted by the green disk.
The initial route path ρ intersecting G is shown as a green line from σ to χ. In this example,
G is defined by extracting all nearby areas of seabed depths < 10 m.

Algorithm A1 PlanRoutes

Input: grounding obstacles G, safety distance ∆ds,
start point σ, end point χ

Output: binary tree R of alternative routes from σ to χ
procedure PLANROUTES(G, σ, χ)

H ← convex hulls of all polygons in G
I ← dilate H by ∆ds
J ← spatial unions of all polygons in I
K ← convex hulls of unions J
ρ← straight line segment from σ to χ
R← new tree of line nodes with root ρ
while ∃P ∈ K intersects ∃ρ ∈ R do

P← largest intersecting polygon
ρ← remove intersecting line from R
V ← visible vertices of P
Λ, Γ← group V into left and right wrt. ρ
λ, γ← vertices of Λ and Γ farthest from ρ
δ← start point of ρ
α1,2 ← linear line segments from δ to χ via λ
β1,2 ← linear line segments from δ to χ via γ
R← add α1,2 and β1,2 as new line nodes

end while
end procedure
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Figure A1. Path planning end result visualization of two alternative routes around an obstacle.
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Figure A1. Path planning end result visualization of two alternative routes around an obstacle.

An initialization phase of six steps sets up the algorithm before the main loop is
initiated, and consists of the following: The convex hulls H of all polygons in G are
computed by accessing the Shapely property convex_hull, and the resulting new set of
polygons H are subsequently dilated by the safety distance ∆ds (here defined as 50 m),
using the Shapely method buffer to produce the polygon set of I. The next step calculates
the spatial unions J of all polygons in I using the Shapely method unary_union, such that
any overlapping polygons are merged, producing the highlighted convex polygon. The
convex hulls K of J are lastly computed similarly to the first step, yielding the final set of
polygons to be used in the main loop. Lastly, the initial green line segment ρ is defined
by the start point σ and the end point χ, and a new binary tree R with ρ as its root node
is created.
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After initialization, the main loop of the algorithm identifies the largest (if any) polygon
P ∈ K that intersects with any line segment ρ ∈ R and extracts all visible vertices V of
P, filtered by line-of-sight checks. Next, these vertices are split into two sets of left and
right (Λ and Γ, respectively) based on their positions with respect to the line segment
ρ. These are shown in Figure A1, given the colors pink and magenta, and yellow and
orange, respectively.

The vertices with the maximum distance from ρ in each group (shown in Figure A1
as cyan perpendicular arrows from ρ to each respective vertex) are selected as the new
intermediate route waypoints λ and γ, i.e., the minimum distance required to circumnavi-
gate the visible part of the obstacle P at each iteration. These waypoints shown in yellow
and pink are used to construct two separate splines of straight lines α and β consisting
of two linear line segments each, from σ to χ via λ and γ. These new line segments are
subsequently added to the root node of the R tree, leaving two new leaf nodes of line
segments sharing the same end target point at χ. If any of the line segments in the resulting
tree intersects with any polygon P of K, this process is repeated for that particular line
segment, potentially creating more branching nodes along its respective route alternative.

The end result of the algorithm is presented as the pink and yellow line segments with
several intermediate waypoints, generated by repeated iterations of the algorithm
loop. These path alternatives may subsequently be used by other navigational optimization
schemes, e.g., to select the optimal path with respect to resource consumption or time.
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