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Abstract
Quantum information is very fragile, and it is clear that we need to
develop better qubits and employ error correction, in order to make
use of the full potential that quantum computation has. In this thesis
we explore known error correction codes and promising platforms for
topological quantum computation. Furthermore, we look at new ways
of engineering states which are useful for error correction using hybrid
devices, and investigate properties of superconductor-semiconductor
hybrid devices which have gained much attention due to their many
interesting properties, such as possibly hosting topological supercon-
ductivity.

In the first part of the thesis we explore the engineering of quantum
states by the use of hybrid devices. First, we look at a qubit coupled to
a microwave cavity. By driving the qubit through level crossings, we
show that it is possible to create Schrödinger-cat states. After this, we
look at a spin-qubit coupled to an anisotropic ferromagnet, which we
show is a physical realization of the quantum Rabi model. Furthermore,
we show that by expanding the hybrid device to include 3 qubits, we
are able to drive all three qubits simultaneously, creating a GHZ state,
in a way that is robust against qubit asymmetries.

In the second part of the thesis, we look at hybrid devices made
from superconductors and semiconductors. We start by introducing
concepts that are necessary to describe these systems, before looking
at one of the possible applications of these systems, namely in topo-
logically protected quantum computation. The detailed spin dynamics
of these devices can, however, heavily depend on features such as the
microscopic details of the device or strain. The two last chapters inves-
tigates the spin-dynamics of 1D and 2D hybrid devices. We first look
at a nanowire superconductor-normal-superconductor (SNS) junction,
with spin-orbit coupling and an external magnetic field, where we
derive an analytical expression for the critical current of the junction.
Lastly, we look at a 2D hole gas SNS junction, with spin-orbit coupling
and an external magnetic field, were we also here derive (semi)-analytic
expressions for the critical current in limiting cases.
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Preface
This thesis is submitted to the Norwegian University of Science and
Technology in partial fulfillment of the requirements for the philosophiae
doctor degree. The research was supervised by of Prof. Jeroen Danon
and co-supervised by Prof. Arne Brataas. The doctoral program in-
cluded 30 ECTS of coursework, and was carried out over four years, a
part of which was a total of one year of undergraduate teaching duties.
The thesis is written to supplement the three papers [i–iii], included
at the end of this thesis.
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1Introduction
One of the greatest achievements of humankind has been the invention
and development of the computer. It is what allows me to write this
thesis, typeset it, print it, and distribute it, with the help of only a hand-
ful of people, mostly using automated machines and devices. However,
even though most of the progress within computer science has come
after the paradigm shift of quantum mechanics, most concepts used
in creating and operating a computer can be explained using classical
physics. There are some exceptions¹, but fundamentally there are no
requirements of knowledge of quantum mechanics when creating a
computer.

A question one might ask is: Can we gain any meaningful advan-
tage over the classical computer by using the full quantum nature of
particles? It turns out that for some types of problems, employing con-
cepts such as entanglement and superposition can give a considerable
advantage over a classical computer. The problem however, is that
quantum states are very fragile.

To be able to do millions, if not billions, of operations like a classical
computer, the quantum systems that make up a qunatum computer
have to be extremely well isolated, and at the same time be controllable.
Even with the best efforts over the last few decades, the best quantum
computer components we have, are still not close to do the millions of
operations needed to do complex tasks without errors.

However, this comparison is not completely fair, classical computers
and storage media also experience errors. As an example, a CD or
DVD can easily get scratched, but as long as the degree of scratching
is not too large, the device will still play. This is possible because
we have redundantly encoded the information we want to store on
the disk, so even when errors occur, the reader can figure out what
error has occurred and compensate for it. The same concept applies
to quantum computation, if we are able to keep the number of errors
bellow a certain threshold, and by using clever ways of redundantly
encoding the information, we can still decode the right information
even when errors occur. What we need is less error-prone hardware

1. Quantum mechanics have made designing small and efficient components possi-
ble.
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and clever ways of redundantly encoding our information such that
we can correct for potential errors.

This thesis covers a few different topics, and it might seem sporadic
at times. You should know that this is not at any fault of the reader.
This thesis is the product of projects which are not very closely related,
but the red line throughout the thesis is the protection of quantum
information by the use of hybrid devices. We will first look at some
general concepts within quantum information, and some concepts
which allows for the protection of quantum information in chapter 2.

The rest of this thesis consists of two parts. The first part focuses
on paper [i] and [ii], where we discuss the engineering of certain
quantum states, that can be used in protecting quantum information.
In chapter 3 we look at the topics discussed in paper [i], where we
propose a method for engineering a type of bosonic state, the cat state,
with the use of a qubit. The cat state can be used for many things,
one of which is the protection of quantum information. In chapter 4
we introduce concepts from paper [ii], looking at a system of a qubit
and an anisotropic ferromagnet, that is a physical realization of the
quantum Rabi model with tunable coupling terms. We demonstrate
how a version of this system, with 3 qubits, can be used to create the
so-called GHZ state, which also has applications within protecting
quantum information.

The second part focuses on semiconductor/superconductor hybrid
devices, which are believed to be a possible platform for topologically
protected quantum computation. The theoretical framework used in
working with these systems as well as some context for why these
systems are desirable is addressed in chapter 5. Chapter 6 is based
on a manuscript in preparation where we look at a superconducting-
normal-superconducting (SNS) junction made from a nanowire with
spin-orbit coupling between two superconductors in the presence of a
magnetic field. In chapter 6 we focus on paper [iii], where we look at
the effects of spin-orbit coupling and the Zeeman effect on the critical
current of an SNS junction consisting of a 2D hole gas between two
superconducting contacts.
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2Quantum information

Quantum computation is often portrayed as revolutionary, with bold
promises of infinite parallelization and exponential speed-ups. The
truth is likely a lot more modest, but a working quantum computer
can do things no classical computer can. Currently, we only know of a
few very specialized tasks, where the quantum computer is superior
to the classical computer.

For one of these specialized tasks, the idea of doing the task fast, was
though so improbable that it is used in protocols for keeping important
messages private. That task is the factorization of large primes. The
assumption that multiplying two primes is very easy, even for large
numbers, while doing the inverse, prime number factorization, is very
hard, is used to make a non-symetric cryptographic scheme known as
RSA cryptography [2]. Peter Shor showed in 1994 that prime number
factorization is possible with a quantum computer in polynomial time¹,
using what is now known as Shor’s algorithm [3, 4]. And so no matter
the future of quantum computers, it is going to have had a huge impact
on the world, as we all transition to other cryptographic methods.

Another promising application was in fact one of the first propos-
als for a quantum computer [5]: Simulating quantum systems using
quantum computers. It is intuitive enough that a quantum computer,
essentially a controllable quantum system, is able to simulate quantum
systems, a task which is hard for classical computers to do. What is not
trivial is whether a digital quantum computer, made up of quantum
bits (qubits), can simulate arbitrary quantum systems well. It turns
out that it is indeed possible to simulate these systems efficiently, at
least in the case were we consider local interaction, using a general
purpose quantum computer [6, 7]. Specialization has also been done
for use in quantum chemistry [8], as well as quantum field theory [9].

2.1. Qubits

Analogous to a classical computer which manipulates and stores bits,
a quantum computer manipulates and stores qubits. These qubits can

1. Fast.
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Figure 2.1.: A qubit state |𝛹⟩ represented as a point on the Bloch
sphere. The states |0⟩ and |1⟩ are the poles on the sphere, while
the states which are equal superpositions of |0⟩ and |1⟩ are found
along the equator.

in principle be any quantum system with two states we can encode
information, which we will refer to as the |0⟩ and |1⟩ states, with
sufficient control. A general qubit state is given by:

|𝛹⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ , (2.1)

where 𝑎 and 𝑏 are arbitrary complex numbers. However, we have a
normalization constraint, the probability of the qubit being in either
|0⟩ or |1⟩ has to add to 1, |𝑎|2 + |𝑏|2 = 1. Using this in combination
with the fact that we are not able to measure the overall phase of the
qubit, means that it is possible to describe the whole qubit with two
real numbers, here with 𝜃 and 𝜙:

|𝛹⟩ = sin 𝜃
2
|0⟩ + 𝑒𝑖𝜙 cos 𝜃

2
|1⟩ . (2.2)

Because of this, it is common to imagine the qubit as a point on a
sphere, the so-called Bloch sphere, as illustrated in figure 2.1.

Not every quantum system with two states is equally good for mak-
ing a quantum computer, of course. In 2000 David DiVincenzo pro-
posed a set criteria which are necessary in order to make a quantum
computer [10]. They essentially boil down to being able to control
the qubit well enough (initialize the qubit in known states, making it
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possible to do the required operations on the qubits), having a way
to read out the results, it being a scalable system, and long coherence
times.

2.1.1. Current technology

There have been many suggested qubit platforms, which satisfy the Di-
Vincenzo criteria to different degrees. Superconducting qubits, which
have gained a lot of attention lately [11, 12], are superconducting cir-
cuits which utilize the nonlinear properties of Josephson junctions.
These devices use the lowest two electromagnetic excitations of the
device as a qubit [13]. There are many types of superconducting
qubits, typically categorized into phase qubits [14], flux qubits [15],
charge qubits [16]. Another popular avenue is qubits which leverage
the decades long research into semiconductors. These qubits use the
charge [17] and/or spin [18] degrees of freedom of electrons which
can be trapped in quantum dots. There are countless other types of
qubits, such as trapped-ion [19], neutral-atom qubits [20], NV centers
in diamonds [21], and photon based qubits [22, 23] to name a few.

2.2. Protected quantum information processing

With the current state of qubits, it is possible to obtain gate fidelities,
i.e. how well it is possible to do operations on the qubits, of up to 99.9%
[24–26], which is quite remarkable. However, the fidelities required
to do complex task, such as e.g. factorizing numbers which would be
difficult to factorize on a classical computer, could require gate fidelities
of up to 99.9999999% [27].

It is clear that none of the currently viable qubit platforms will reach
the strictest requirements for general scalable quantum computers in
the foreseeable future, but all hope is not lost. In this section we look
at different methods of protecting the quantum information further,
both intrinsically and extrinsically.

2.2.1. Extrinsic protection

By pooling multiple qubits together, using multiple qubits as one effec-
tive large qubit, we can in principle protect the quantum information.
Looking at classical information theory, the easiest way of protecting

5



information is to use a repetition code. Imagine encoding a single
logical bit, in three physical bits:

0̄ = 000, (2.3)

1̄ = 111, (2.4)

where the bar signifies that we are talking about a logical bit. This cod-
ing scheme, would allow for protection against a single error. A single
error in a 0̄ bit would manifest as one of the following bit sequences:
001, 010, 100. Using a majority vote over the bits, we can recover the
bit 0̄ = 000. Two bit errors would lead to the wrong recovered qubit,
and so we would have to expand the code to include more repetitions
if we want it to be correctable for multiple errors. However, it would
allow us to detect up to two errors, showing that the number of errors
which are detectable by a code is not necessarily the same as it is able
to correct. Adding bits to this code would make the code more resilient
to errors, but this would become inconvenient for larger codes, but
luckily more clever codes exist.

At first glance one might think that the same repetition code might
work well for qubits as well [28]:

|0̄⟩ = |000⟩ , (2.5)

|1̄⟩ = |111⟩ , (2.6)

where |000⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩. We would not be able to do the majority
vote that the classical code uses, because it would break any quantum
superposition in the state by measuring the qubits, destroying the
quantum information. We can however be a bit more clever, measuring
the parity between neighboring bits:

|𝜎1𝜎2𝜎3⟩ , (2.7)

𝑃1 𝑃2

𝑃3

where 𝑃1,2,3 are parity measurements over the two bits indicated by
the brackets. This does not distinguish |0̄⟩ from |1̄⟩, since 𝑃𝑖(0, 0) =
𝑃𝑖(1, 1) = 1, but it would tell us if there is an error, and even the location
of the error, so that we can correct for it.

6



This code would protect against a single bit flip error, and could
detect up to two such errors. The problem is that in qubits, bit flip
errors, going from north to south on the Bloch sphere, figure 2.1, are
not the only errors that can occur. Phase errors, which rotates the
state around the azimuthal angle, 𝜙, on the Bloch sphere, figure 2.1,
also has to be accounted for.

We can similarly create a repetition code which corrects a phase
error (but not bit-flip errors) by rotating the qubit basis, or equivalently
using parity measurements along the 𝑥-axis instead of the 𝑧-axis on
the Bloch sphere.

The first full quantum error-correcting code was proposed by Shor
[29], and was built by concatenating these two codes. This is done by
starting with the phase error correctable code, where the three qubits
are made up of the bit flip error correctable error code from above.
Giving us a code consisting of 9 qubits which encodes one logical,
error-correctable, qubit.

The Shor code, is an example of a larger class of codes, called CSS
codes after Robert Calderbank, Peter Shor [27] and Andrew Stean [30],
which again is a subset of so-called stabilizer codes. In the example
above, we essentially have to do the two parity measurements for each
of the 3 groups of 3 qubits, 6 parity measurements, and then do a
𝑥-oriented parity measurement on the two first groups and the two
last groups of 3 qubits. These 8 parity measurements, 𝑃𝑖, are what is
known as stabilizers for the Shor code, and they all have an eigenvalue
of 1 if there is no error:

𝑃𝑖 |𝜓 ⟩ = |𝜓 ⟩ , (2.8)

while if an error, bit-flip or sign-flip, has occurred, some stabilizers will
have an eigenvalue of −1:

𝑃𝑖 |𝜓 ⟩ = − |𝜓 ⟩ . (2.9)

Which stabilizer shows errors can tell us where the error is and allow
us to correct for it. A boson analog of the Shor code was first experi-
mentally demonstrated using photons [31], and have also later been
demonstrated in trapped-ion systems [32, 33]

7



Bosonic codes

Above we looked at encoding qubits in an ensemble of other two-level
systems, qubits, which created a large dimensional Hilbert space, with
some redundancy, which made error correction possible. A quantum
harmonic oscillator, a bosonic system, gives us an infinite dimensional
Hilbert space from the start to implement error correction codes.

One simple coding scheme is encoding the qubit in the number
states of the harmonic oscillator, the so-called Fock states, |𝑛⟩, in the
following way:

|0̄⟩ =
|0⟩ + |4⟩

√2
, (2.10)

|1̄⟩ = |2⟩ . (2.11)

Since the main error channel in these types of systems typically is
excitation loss [34], and the logical states are only made up of even
excitation numbers, errors are easily detectable bymeasuring the parity
of the state, which does not differentiate the two even logical states. If
the oscillator has an odd number of excitations, |1⟩ or |3⟩, we know an
error has occurred. This encoding, is an example of a binomial code
[35, 36].

A very similar type of code, is built from the coherent states, which
can make it more stable and be easier to make [37]. Superpositions of
coherent states can make similar parity states as shown above. The
coherent states can be thought of as the most classical state of the
quantum harmonic oscillator. These superpositions of coherent states
are called cat states, after Erwin Schrödinger’s though experiment,
Schrödinger’s cat. We will come back to these states in chapter 3.

2.2.2. Intrinsic protection

The repetition code mentioned above is essentially what makes hard
disk drives work so well. The information is encoded in magnetic
moments on a metallic disk. Each bit is many millions of magnetic
moments, which because of the ferromagnetic order in the disk, tend
to align. If an error occurs, i.e. one (or even thousands) of magnetic
moments flip, the other millions of magnetic moments force them back
in alignment with the majority, essentially doing the majority vote
correction mentioned earlier fully automatically.

8



This concept of error correction by diffusion can be brought over
to quantum error correction by using a system where errors send the
state to an error space, which by passive or active coupling to the
outside world, or some bath, decaying back into the logic space, and
importantly, into the correct logical state. Methods based on this has
been suggested for codes such as the cat code mentioned above [23,
38], where it can stabilize against both photon dephasing errors and
photon loss errors.

Another different approach is to implement the qubit in a system
which is in itself non-local, meaning that local perturbations cannot
influence the logical information stored in the qubit. This is the basic
idea behind topologically protected qubits. A theoretical proposal
for such a topological quantum computer was made by Alexei Kitaev
[39]. Kitaev proposed starting with a CSS code, the surface code,
and looking at excitations in this model, which are treated like quasi-
particles living in two dimensions called anyons. We will come back to
anyons and how they can be used in quantum computation in chapter
5. However, the basic idea is that by exchanging the position of anyons,
what is called braiding, we can change the state of the system, in a
measurable way, equivalently to applying gates to qubits. And was
in fact recently shown in practice by Google Quantum AI [12]. These
topological quasi-particles have also been theorized (and maybe [40]
found experimentally [41]) to appear in low dimensional solid state
systems such as in 1D topological superconductors [42], which we also
come back to in chapter 5.

An important feature of this computational scheme is that the
anyons are a feature of the bulk material, as opposed to local degrees
of freedom [43]. Additionally, the way quantum gates are applied, by
braiding, is immune to microscopic deviations of the position of the
particles. Applying a gate would entail moving a particle around other
particles; the exact path is not important for the operation, only which
particles move around which and in what order.
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Part I.

Quantum state engineering
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3Generating Schrödinger cat states with
qubit/boson system

The most famous thought experiment in quantum physics, if not in
all of physics, Schrödinger’s cat, was devised by Erwin Schrödinger in
1935 [44], to illustrate how the Copenhagen interpretation of quantum
mechanics could be problematic. In the thought experiment, a very
classical concept, a cat, is put in a quantum superposition of being alive
and dead. This concept of putting something classical in a quantum
superposition is the inspiration for the name of cat states which we
will be looking at in this chapter. The “cat” in this analogy is the most
classical state of the quantum harmonic oscillator, namely the coherent
state:

|𝛼⟩ = 𝑒−
|𝛼 |2

2

∞
∑
𝑛=0

𝛼𝑛

√𝑛!
|𝑛⟩ , (3.1)

where |𝑛⟩ are the excitation number eigenstates, the so-called Fock
states, of the quantum Harmonic oscillators:

𝐻 = ℏ𝜔 (𝑎†𝑎 + 1
2
) , (3.2)

where 𝑎† is the excitation creation operator, 𝑎† |𝑛⟩ = √𝑛 + 1 |𝑛 + 1⟩ and
𝜔 is the angular frequency of the oscillator. We refer to |𝛼 |2 as the size
of the state, because the average excitation number of the coherent
state is given by ⟨𝑛⟩ = |𝛼|2. This state is the most classical in the sense
that it behaves the most like the classical harmonic oscillator, and it
can be shown that for a large number of excitations this state recreates
the behavior of the classical counterpart of the system [45].

Cat states are linear superpositions of coherent states with opposite
phases:

|𝛹(𝜃𝑆)⟩ =
1

𝒩 (𝜃𝑆)
(|𝛼⟩ + 𝑒−𝑖𝜃𝑆 |−𝛼⟩) , (3.3)

where

𝒩 (𝜃𝑆) =
1

√2[1 + cos(𝜃𝑆)𝑒−2|𝛼|
2]
, (3.4)
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Figure 3.1.: A figure showing the occupation probability in the
Fock basis, 𝑃(𝑛) = ⟨𝑛| 𝛷 |𝑛⟩, of (a) a coherent state, (b) an even cat
state, and (c) an odd cat state, with the average photon number,
𝛼2 = 10, for all three cases.

is a normalization factor. For the special cases of 𝜃𝑆 = 0 and 𝜃𝑆 = 𝜋 we
get the states:

|𝛹(0)⟩ = |𝛹even⟩ ∝
𝛼0

√0!
|0⟩ + 𝛼2

√2!
|2⟩ + 𝛼4

√4!
|4⟩ + … (3.5)

|𝛹(𝜋)⟩ = |𝛹odd⟩ ∝
𝛼1

√1!
|1⟩ + 𝛼3

√3!
|3⟩ + 𝛼5

√5!
|5⟩ + … (3.6)

These states are linear superpositions of only even or odd Fock states,
which is why we will call these even and odd cat states. We can see
an example of the occupation probability of three different states, a
coherent state, an even cat state, and an odd cat state, in the Fock basis,
𝑃(𝑛) = ⟨𝑛| 𝛷 |𝑛⟩, in figure 3.1.

From this figure we can see that, and which will become important
when we want to engineer these states, even and odd cat states have
the same shape of distribution envelope in the occupation probability
as the coherent state (a Poisson distribution), but every other number
state has zero probability, 𝑃(𝑛) = 0.

Applications

The cat states are on the border between classical and quantum, which
means that one possible application is using cat states in investigating
the exact nature of this crossover [46]. Cat states have been proposed
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for many other applications as well, including high-precision measure-
ments [47–49], as a resource for quantum computation [50, 51], in
quantum teleportation [52, 53], and quantum error correction [54, 55].

One aspect which make these systems good for hosting error cor-
rectable quantum information is that we encode a qubit, a state in a 2D
Hilbert space, in an infinite dimensional Hilbert space of the bosonic
mode. As mentioned, this extra space is what allows us to redundantly
encode the information in the qubit in a way that errors are possible
to correct, without telling us which logical state the state is in.

Unlike in classical error correction, where we only have to protect
against bit-flip errors, the code has to protect against phase errors
as well to be fully protected. But phase errors and bit-flip errors do
not necessarily occur with the same frequency. Photon cavities are
generally very stable, and the main error channel is by far photon loss
[34]. Hence, by designing a code where errors which are caused by
photon loss are easy to correct for, we can protect the system well even
though it can not correct for all types of errors.

One application of the cat states are namely this, to design a state
which is very stable against photon loss errors, in the so-called cat
code. Where the logical states are coded in the coherent states with
opposite phase:

|0⟩ = |𝛼⟩ , (3.7)

|1⟩ = |−𝛼⟩ , (3.8)

where the |+⟩ = |𝛼⟩+|−𝛼⟩
√2

and |−⟩ = |𝛼⟩−|−𝛼⟩
√2

state of this code is then
the even and odd cat states, |𝛹even⟩ and |𝛹odd⟩.

The logical states are far apart, in the sense that a photon loss
event does not make one logical state similar to the other, ⟨1| 𝑎 |0⟩ ≈ 0.
However, for the |+⟩ and |−⟩ states, we see that photon loss leads to odd
number states transitioning to even number states, while the opposite
is true for even number states (except for the |0⟩ state). An even cat
state, the |+⟩ state, will turn into something similar to an odd cat state,
the |−⟩ state, in the event of a photon loss, ⟨−| 𝑎 |+⟩ ≫ 0. Because of
this, this cat code protects well against bit flip errors, but not phase
errors in the qubit.

To get complete error correction, one can use the diffusive error
correction mentioned in chapter 2 [23, 38], and/or by concatenating
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the cat code with some other error correction code, e.g. the surface
code [56]. However, the code we concatenate with the cat code should
be tailored to use more resources in correcting for phase errors since
the bit flip errors are to a great extent taken care of by the cat code. In
the case of the surface code this can be done by using a more qubits in
one dimension than the other [57]. We can obtain the ability to correct
for phase errors as well with cat codes alone if we expand the code to
a so-called four legged cat code.

Four legged cat code

If we imagine slightly different logical states of our code. Namely, two
even states which are 𝜋/2 out of phase with each other:

|0⟩ = 1
𝒩 (0)

(|𝛼⟩ + |−𝛼⟩) , (3.9)

|1⟩ = 1
𝒩 (0)

(|𝑖𝛼⟩ + |−𝑖𝛼⟩) . (3.10)

Photon loss does not bring these states close to each other for the
same reason as the coherent states; they are separated by the phase
of the coherent state, rather than just photon number. The |+⟩ and
|−⟩ states of this code, which are called four legged cat states since
they are linear superpositions of four coherent states, are similar to the
even and odd cat states of the original cat code, but instead of having
a non-zero occupation probability, 𝑃(𝑛), for every other number state,
𝑛 ≡ 0 (mod 2) and 𝑛 ≡ 1 (mod 2), they have a non-zero occupation
probability for every fourth number state, 𝑛 ≡ 0 (mod 4) and 𝑛 ≡ 2
(mod 4):

|+⟩ ∝ 𝛼0

√0!
|0⟩ + 𝛼4

√4!
|4⟩ + 𝛼8

√8!
|8⟩ + … (3.11)

|−⟩ ∝ 𝛼2

√2!
|2⟩ + 𝛼6

√6!
|6⟩ + 𝛼10

√10!
|10⟩ + … (3.12)

Photon loss makes all the states above transition to a common error
space, which is spanned by odd number states, which does not overlap
with the code space. A parity measurement qubit state can tell us
whether a photon loss event has occurred or not, without giving infor-
mation about the logical state and without the resulting state being a
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part of the coding space, which allows us to perfectly correct for single
photon loss events.

3.1. Landau-Zener physics

Focusing on the qubit, we now look at the transition dynamics of the
two levels crossing. This is a very general problem with many appli-
cations, from collision between atoms [58] to quantum information
which we will focus on here.

The Hamiltonian we consider is the general qubit Hamiltonian, with
a time dependent qubit splitting and constant coupling:

𝐻(𝑡) = 𝛥(𝑡)𝜎𝑧 + 𝛿𝜎𝑥. (3.13)

Assuming that the level splitting varies linearly in time:

𝛥(𝑡) = 𝑣LZ𝑡 , (3.14)

and that the coupling between the states is constant, the probability of
diabatic transfer between the two basis states from the infinite past to
the infinite future is given by the so called Landau-Zener formula.

To get some intuition, we can imagine how the system parameters
might affect the transfer probability in two limits. If the crossing is
very slow, we can use the adiabatic theorem, which makes it clear that
the system will stay in its instantaneous eigenstates, which means fully
transferring between basis states. On the other hand, if the crossing
is very fast, we know that the system will stay in the initialized basis
state by using the sudden approximation. Because of this, we know
that the transfer probability will somehow depend on the “speed” of
the crossing,

𝑣LZ =
𝑑𝛥(𝑡)
𝑑𝑡

, (3.15)

i.e. how fast 𝛥(𝑡) is changing. Fast and slow, however, must be com-
pared to something, and it is only natural that this speed is somehow
compared to the only other parameter of this model, the coupling, 𝛿.

The Landau Zener formula, describing the probability of transfer
between basis states, from a state prepared in the infinite past evolving
to the infinite future, was derived in works published by Lev Landau
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[59], Clarence Zener [60], Ernst Stückelberg [61], and Ettore Majorana
[62] independently in 1932 and 1933:

𝑃LZ = 𝑒
−2𝜋 2𝛿2

ℏ𝑣LZ . (3.16)

3.1.1. Landau-Zener-Stückelberg interferometry

We can now imagine that we drive the qubit periodically or in a more
generalized way which leads to multiple level crossings. For periodic
driving we can employ several theoretical approaches, such as Floquet
theory or using the so-called dressed-state picture. For more general
driving, we can employ a model called the adiabatic impulse model [63,
64]. Here we split the evolution of the system in an adiabatic region,
far away from crossings, and non-adiabatic regions where we have
level crossings. The adiabatic-impulse model is considered valid if the
crossings are linear and well separated [64].

Adiabatic evolution

Far away from level crossings we assume that the system evolves
adiabatically, meaning that there is no transfer between the instanta-
neous eigenstates, 𝜑±(𝑡), which are solutions to the time independent
Schrödinger equation:

𝐻(𝑡)𝜑(𝑡) = 𝐸(𝑡)𝜑(𝑡). (3.17)

The wavefunction can generally be written in term on the adiabatic
basis states as:

𝜓(𝑡) = ∑
±

𝑐±(𝑡)𝜑±(𝑡). (3.18)

In the adiabatic approximation the occupation probability of the adia-
batic basis states, are constant, while the phase evolves depending on
the instantaneous eigenvalues, 𝐸± between times 𝑡𝑖 and 𝑡𝑓. This can be
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described by the unitary matrix 𝑈 (𝑡𝑖, 𝑡𝑓):

(
𝑐+(𝑡𝑓)
𝑐−(𝑡𝑓)

) = 𝑈 (𝑡𝑖, 𝑡𝑓) (
𝑐+(𝑡𝑖)
𝑐−(𝑡𝑖)

) , (3.19)

𝑈 (𝑡𝑖, 𝑡𝑓) = (
𝑒−𝑖𝜙+(𝑡𝑖,𝑡𝑓) 0

0 𝑒−𝑖𝜙−(𝑡𝑖,𝑡𝑓)
) , (3.20)

ℏ𝜙±(𝑡𝑖, 𝑡𝑓) = ∫
𝑡𝑓

𝑡𝑖
𝐸±(𝑡)𝑑𝑡. (3.21)

Level crossing

We now have to treat the parts of the evolution where the levels cross.
From the previous section, section 3.1, we know the probability of
transfer between diabatic basis states for infinite-time propagation and
linear crossings is given by the Landau-Zener formula. Assuming that
the crossings are approximately linear, the questions still remain: Is
this a good approximation for non-infinite crossings, and where do we
say that this non-adiabatic region starts, and the adiabatic region from
above ends?

It turns out that a good approximation is to consider the evolution
to be adiabatic everywhere except the point of the crossing, where we
imagine all the transfer between adiabatic basis state to happen in
accordance with the Landau-Zener formula:

𝜓(𝑡𝑓) = ∑
±

[√1 − 𝑃𝐿𝑍𝑐±(𝑡𝑓)𝜑±(𝑡𝑓) + √𝑃𝐿𝑍𝑐∓(𝑡𝑓)𝜑∓(𝑡𝑓)] . (3.22)

It has been shown that the scale of the duration of the transition can
be estimated by the following [65]:

𝑡LZ ∼ 1

√2ℏ𝑣LZ
max(1, 𝛿

√2ℏ𝑣LZ
), (3.23)

which can be used to gauge whether the crossings are well separated.
The Landau-Zener formula, however, only gives the occupation

probability after a level crossing. As we are interested in the effects
of multiple level crossings, the phase of the occupation amplitude
is important as well. We can keep track of the effects of the, now
instantaneous, Landau-Zener transition by a unitary matrix, �̂�, still in
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Figure 3.2.: Double level crossing. Adiabatic energy levels, 𝐸±, as
a function of time. The shaded area corresponds to the dynamical
phase, 𝜙𝑑. Path shown with arrows corresponding to the transfer
from the adiabatic eigenstate 𝜑+ to the state 𝜑−.

the adiabatic basis, acting on the state vector:

(
𝑐+(𝑡 + 𝜂)
𝑐−(𝑡 + 𝜂)) = �̂� (

𝑐+(𝑡 − 𝜂)
𝑐−(𝑡 − 𝜂)) , (3.24)

�̂� = (√
1 − 𝑃LZ𝑒−𝑖𝜙S −√𝑃LZ

√𝑃LZ √1 − 𝑃LZ𝑒𝑖𝜙S
) , (3.25)

𝜙S = −𝜋
4
+ 𝛿2

2ℏ𝑣LZ
(ln 𝛿2

2ℏ𝑣LZ
− 1) + arg 𝛤 (1 − 𝑖 𝛿2

2ℏ𝑣LZ
) , (3.26)

for an infinitesimal time, 𝜂, before/after the transition, and where 𝜙S is a
geometric phase, the so-called Stokes phase, and arg 𝛤 is the argument
of the gamma function [64].

Two crossings

We now have the tools to look at multiple crossings, and so we can look
at the simplest possible case of two crossings, see figure 3.2. Starting
with some initial state 𝜓(𝑡0), written in the adiabatic basis, the state
after two crossings is given by:

𝜓(𝑡𝑓) = �̂� �̂� �̂� 𝜓 (𝑡0) (3.27)

The probability of transferring from the 𝜑+ state to the 𝜑− state, the
paths drawn by blue and orange arrows in figure 3.2, is given by:

𝑃+→− = 2(1 − 𝑃LZ)𝑃LZ (1 + cos(𝜙𝑑 + 2𝜙S)) , (3.28)
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Figure 3.3.: Array of qubits, indexed from 1 to 𝑁. We want to
transfer every second qubit from the |1⟩ state to the |0⟩ state. The
qubits have the same 𝑥-coupling turned on, but they all have
different qubit splittings, which is proportional to the qubit index.

where 𝜙𝑑 is the dynamical phase:

ℏ𝜙𝑑 = ∫
𝑡𝑓

𝑡𝑖
𝐸+(𝑡)𝑑𝑡 − ∫

𝑡𝑓

𝑡𝑖
𝐸−(𝑡)𝑑𝑡, (3.29)

which we can interpret as the area between the two instantaneous
energy levels, 𝐸±, in an energy-time diagram. This is illustrated as the
shaded area in figure 3.2.

3.1.2. Landau-Zener-Stückelberg state engineering

In the next section we use a technique inspired by Landau-Zener-
Stückelberg interferometry to engineer a cat state in a bosonic mode
using a qubit. To get some intuition on how we are able to do this,
we look at a slightly simpler example system, a set of 𝑁 independent
qubits, indexed from 1 to 𝑁.

The state we want to engineer is putting every second qubit in the
|0⟩ state, while keeping the other qubits in the |1⟩ state, see figure 3.3.
We are going to do this by initializing all the qubits in the |1⟩ state, and
then apply the same driving to all the qubits. All qubits have the same
𝜎𝑥 coupling, with amplitude 𝛿, while the qubit splitting is depends on
the qubit number. For simplicity, we work in units where ℏ = 1. The
Hamiltonian of this system is the following:

𝐻 =
𝑁
∑
𝑛=1

(𝛥𝑛
𝜔0
2

+ 𝜀(𝑡))𝜎 (𝑛)𝑧 + 𝛿𝜎 (𝑛)𝑥 , (3.30)

where 𝜎 (𝑛)𝑧/𝑥 are the spin 1/2 operators for qubit 𝑛, 𝛥𝑛 = 𝑛 + 𝜆, and 𝛥𝑛𝜔0
is the qubit splitting of qubit 𝑛, where 𝜔0 is the scale for the qubit
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Figure 3.4.: Spectrum of qubit 𝑛 during Landau-Zener-Stückelberg
engineering.

splittings, and 𝜀(𝑡) is the time dependent driving. The offset, 𝜆, is for
the time being a free parameter.

We apply driving to the qubits 𝜀(𝑡) which drives the qubit splitting
in such a way that all qubits experience two level crossings, with some
waiting time in between, 𝑡𝑝. Explicitly, the driving we apply is the
following:

𝜀(𝑡) =
⎧

⎨
⎩

−𝑣𝑡, 𝑡 ≤ 𝑡1
−(𝑁 + 1)𝜔0/2, 𝑡1 < 𝑡 < 𝑡1 + 𝑡𝑝
−(𝑁 + 1)𝜔0/2 + 𝑣 [𝑡 − (𝑡1 + 𝑡𝑝)] , 𝑡1 + 𝑡𝑝 ≤ 𝑡 < 2𝑡1 + 𝑡𝑝

where 𝑣 is the speed of driving during the level crossing, and 𝑡1 =
[(𝑁 + 1)𝜔0/2] /𝑣 is the time the linear driving persists, 𝑡𝑝 is the wait
time that we later will tune to get the desired state. The driving
is maximally (𝑁 + 1)/𝜔0 in amplitude, to make sure that all qubits
experience level crossings. We set 𝑣 = 𝜋𝛿2

ln(2) such that 𝑃LZ = 1/2. The
reason for this is that we essentially are making an interferometer, and
this is required to achieve total constructive/destructive interference.
The energy spectrum of one of the qubits, 𝑛, during the driving can be
seen sketched in figure 3.4.

Every qubit is independent, so we focus on a general qubit with
index 𝑛. We know the probability of transfer from the |1⟩ state to the
|0⟩ state after two crossings from the previous section, equation (3.28):

𝑃1→0 =
1
2
[1 + cos(𝜙𝑑(𝑛) + 2𝜙S)] , (3.31)
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where the Stokes phase, 𝜙S ≈ −1.08 is constrained by the condition
𝑃LZ = 1/2. The dynamical phase, 𝜙𝑑(𝑛), corresponds to the shaded
area in figure 3.4.

If we for simplicity assume that coupling is very strong, the speed 𝑣
becomes large because of the 𝑃LZ = 1/2 condition. This means that
the dynamical phase can be approximated by the dynamical phase
gained in the region where the driving term is constant:

𝜙𝑑(𝑛) = [(𝑁 + 1) − (𝑛 + 𝜆)] 𝜔0𝑡𝑝. (3.32)

With this, we see from equation (3.31), that one possible condition
for engineering the desired state is the following:

[(𝑁 + 1) − (𝑛 + 𝜆)] 𝜔0𝑡𝑝 + 2𝜙S = [(𝑁 + 1) − 𝑛] 𝜋. (3.33)

The reasoning is that this means that qubits with even qubit indices
will satisfy, 𝑃1→0 = 1, which fully puts these in the |0⟩ state, while the
qubits with odd qubit indices satisfies 𝑃1→0 = 0, which means that
these stay in the |1⟩ state.

After we set 𝜆 = 2𝜙S
𝜔0𝑡𝑝

to compensate for the Stokes phase, the condi-

tion simplifies to give us the timing of the driving pulse, 𝑡𝑝:

𝑡𝑝 = 𝜋/𝜔0. (3.34)

Notice that this is independent of the qubit index, 𝑛, and so setting
𝑡𝑝 = 𝜋 puts all the qubits in the desired state, every even qubit is
transferred from the initialized |1⟩ state to the |0⟩ state and every odd
qubit stays |1⟩ state.

3.2. Landau-Zener-Stückelberg engineering of cat states

We now have all the components needed in order to show the method
we have proposed for engineering Schrödinger cat states in paper [i],
and possibly more complicated states, such as multi legged cat states.

We will now combine the two systems previously discussed, a qubit
and a bosonic mode. What we will describe here works for a general
system, with a general qubit and a general boson cavity. To keep things
concrete, we will for the rest of the discussion imagine a qubit (e.g. a
semiconductor quantum dot qubit, or a superconducting qubit) which
is coupled to a (superconducting) transmission line cavity, acting like
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Figure 3.5.: Example hybrid system with transmission line and a
qubit. The superconducting high is shown on right. the dotted
line and the arrows show the magnitude of the electric field from
the transmission line. In the inset to the left we see some possible
qubit choices. (a) Schematic of a superconducting cooper pair
box qubit, consisting of two josephson junctions, controlled by
a magnetic flux penetrating the device. The black regions are
isolators and the colored region is superconducting. (b) Schematic
of a double quantum dot controlled by gates.

a harmonic oscillator, where the excitations are microwave photons,
see figure 3.5.

We assume that we start with the microwave cavity in a coherent
state. Motivated by the odd and even states from earlier, our goal is to
design a driving pattern which “filters” out all the even/odd photon
number occupation probabilities, which is accomplished by the Landau-
Zener-Stückelberg engineering introduced earlier. This filtering leaves
the system in an odd/even cat state.

The Hamiltonian of the system we look at is the tensor product of
the qubit Hamiltonian and the photon cavity Hamiltonian, with some
coupling between the systems:

𝐻 =
𝛥(𝑡)
2

𝜎𝑧

𝐻qubit

+ ℏ𝜔𝑎†𝑎

𝐻photon

+ ℏ𝐴(𝑎 + 𝑎†)𝜎𝑥

𝐻coupling

, (3.35)

where 𝜎𝑧/𝑥 are the 𝑧 and 𝑥 Pauli matrices, acting on the qubit subspace,
𝑎† is the creation operator in the cavity, 𝛥(𝑡) is the time dependent
qubit splitting, 𝜔 is the angular frequency of the cavity, and 𝐴 is the
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Figure 3.6.: Spectrum of the Hamiltonian, 𝐻, as a function of the
qubit splitting, 𝛥, where 𝐴/𝜔 = 0.05. The labels |𝑖, 𝑛⟩ indicate the
basis states the qubit in state |𝑖⟩ and 𝑛 photons in the cavity, |𝑛⟩.

coupling strength between the cavity and the qubit. Unity matrices in
spin space are implied for terms which do not contain Pauli matrices.

In figure 3.6 we can see a sketch of the spectrum of the Hamiltonian
above, 𝐻, as a function of the qubit splitting, 𝛥. The labels |𝑖, 𝑛⟩ indicate
the basis states |𝑖⟩qubit ⊗ |𝑛⟩photon.

As expected from the coupling above, we see avoided level crossings
when two states cross in energy which have a photon number 𝑛, which
differ by one, 𝑛 ± 1. Additionally, it is worth noting that the avoided
level crossings get larger for large photon numbers. This is because of
the coupling being proportional to the creation/annihilation operators:

𝑎 |𝑛⟩ = √𝑛 |𝑛 − 1⟩ , (3.36)

𝑎† |𝑛⟩ = √𝑛 + 1 |𝑛 + 1⟩ . (3.37)

In our proposal, we drive 𝛥 in the region around the 1-photon
resonance, close to 𝛥/ℏ𝜔 = −1 in figure 3.6. In this regime, every state
is coupled (approximately) only to one other state:

⟨1, 𝑛| 𝐻 |0, 𝑛 + 1⟩ = ℏ𝐴√𝑛 + 1. (3.38)

Every other matrix element is assumed to be zero. This assumption
is good as long as 2𝜔 ≫ 𝐴√𝑛 + 1, essentially meaning that we are far
away from the other avoided level crossing. This isolation of levels in

25



pairs, |0, 𝑛⟩ and |1, 𝑛 + 1⟩ is equivalent to the so-called rotating wave
approximation, which effectively gives us the Jaynes-Cummings model
[66]:

𝐻JC =
𝛥(𝑡)
2

𝜎𝑧 + ℏ𝜔𝑎†𝑎 + ℏ𝐴(𝑎𝜎+ + 𝑎†𝜎−). (3.39)

3.2.1. Connection to the toy model in section 3.1.2

Since we now have reduced the problem to pairs of levels it is simple to
connect this to the toy model in section 3.1.2. Every pair of states, |0, 𝑛⟩
and |1, 𝑛 + 1⟩, is essentially an isolated two-level system, analogous
to the qubits of the toy system which do not interact with the other
qubits. The individual pair of states, have the Hamiltonian:

𝐻 (𝑛)
pair = 𝑛 +

𝛥(𝑡)
2

𝜎𝑧 + ℏ𝐴√𝑛 + 1𝜎𝑥. (3.40)

We can see that similarly to the toy model all the qubit splittings
are driven in the same way, given by 𝛥(𝑡). Contrary to the toy model
this model has the exact same qubit splitting for all “qubits”, and so if
there is going to be a difference in dynamical phase, this must come
from the qubit coupling, which is dependent on the index (the photon
number, 𝑛) of the “qubit”.

3.2.2. Protocol for generating cat states from coherent states

The process which allows us to gain a different dynamical phase be-
tween each “qubit” is a fully adiabatic Landau-Zener transition. In
figure 3.6 we saw that the “avoidedness” depends on the photon num-
ber, 𝑛, and so the dynamical phase acquired in the adiabatic evolution
(the area under the curve in an energy-time diagram) through such a
transition is 𝑛 dependent.

We propose driving the system through three linear Landau-Zener
transitions in the following way:

1. Drive the system through a single LZ transition, at a speed
corresponding to 𝑃LZ = 1/2.

2. Drive the system through a very slow, approximately adiabatic
transition, 𝑃LZ = 1.
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Figure 3.7.: Two pairs of coupled levels as a function of time
through the driving proposed for cat state engineering. The
n-dependtent dynamical phase is indicated by the blue/orange
shaded area. The blue/orange arrow and lines show the occu-
pation probability of the respective states. Showing how the
different dynamical phase, ends up giving different occupation
probabilities.

3. Lastly, drive the system through a LZ transition, at a speed
corresponding to 𝑃LZ = 1/2.

The spectrum of the system under such driving is sketched in
figure 3.7 for two adjacent independent level pairs. Due to the 𝑛-
dependent coupling, the dynamical phase difference, 𝜙𝑑, gained be-
tween the Landau-Zener transition at the beginning and end, is also
𝑛-dependent. The dynamical phase, 𝜙𝑑, can be engineered in such a
way that every other pair experiences a transfer between the two states
in the pair, while the other pairs stay in the initial state, as shown by
the arrows in figure 3.7. Because of this, the final step in the procedure
is to filter out all the states which have transferred by projecting onto
the |0⟩ qubit state, which can be done by performing a measurement
on the qubit, and requiring that the outcome of this measurement to
be |0⟩ in order for the procedure to be successful.

It is here worth noting that this post selection is done in order to
make the best possible even and odd cat states. If the goal is simply
to create even/odd parity states or that the fidelity of the state is less
important than the success rate of the procedure, which would be
≈ 50%, the post selection can be dropped at the cost of fidelity. The
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reason is that the process of transferring for a given pair, 𝑛, takes the
state from |0, 𝑛⟩ to |1, 𝑛 + 1⟩. This makes all even/odd states odd/even,
while the states that are already odd/even, are left alone.

Just like in the toy example we get the desired engineered state
by requiring that the phase gained between the two crossings, the
dynamical phase 𝜙𝑑 and the geometric Stokes phase 𝜙S, differs by 𝜋
from one pair, 𝑛, to the next, 𝑛 + 1:

𝑑(𝑛) = [𝜙𝑑(𝑛 + 1) + 2𝜙S(𝑛 + 1)] − [𝜙𝑑(𝑛) + 2𝜙S(𝑛)] = 𝜋. (3.41)

This condition makes it so that 𝜙𝑑(𝑛) = 𝜙𝑑(0) + 𝑛𝜋. The parity (even
or odd) of the state can be tuned, by tuning 𝜙𝑑(0), which can be done
by tuning something that is the same for all states, such as at what
energy the driving switch direction.

Unlike the toy model, this difference in phase difference, 𝑑(𝑛), is
dependent on the photon number 𝑛. Which means that we have to
choose a photon number to optimize for. To minimize the error, we
naturally choose the peak of the coherent state 𝑛 = |𝛼|2.

Furthermore, it is worth noting that unlike the toy model the Stoke
phase as well as the first and last Landau-Zener transitions, are also
𝑛 dependent, since they depend on the coupling. However, the error
which comes from these contributions get small for large coherent
states, with |𝛼 |2 ≫ 1. For the following we assume that these are
𝑛-independent.

With these assumptions the dynamical phase difference between
adjacent pairs can be approximated by calculating the instantaneous
energies. From the time independent Schrödinger equation assum-
ing that we change sweep directions at −ℏ𝜔 ± ℏ𝑘, where 𝑘 < 𝜔, see
figure 3.7, we find the following expression for the phase difference
between adjacent pairs:

𝑑(𝑛) = 2ℏ𝐴2

𝑣∗
[ln ( 𝑘2

𝐴2 [𝑛 + 1]
) − 1

2 [𝑛 + 1]
] , (3.42)

assuming that 𝐴2𝑛 ≫ 𝑘2. Where we use an average over the fast
driving speed, 𝑣𝑓, of the first and last crossing, and the slow driving
speed, 𝑣𝑠 of the middle crossing:

𝑣∗ =
𝑣𝑓 + 𝑣𝑠
𝑣𝑓𝑣𝑠

. (3.43)
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We can now see that we are able to satisfy condition from equa-
tion (3.41) for a given 𝑛 close to the expectation value for the photon
number of the state, |𝛼 |2.

We can furthermore use equation (3.42) to estimate contribution
to the infidelity of the state due to the n-dependence of this phase
difference. The details can be seen in paper [iii], but it can be shown
that this contribution to the infidelity does not decrease with rising
|𝛼 |2 as the other errors mentioned above. However, the contribution to
the infidelity approaches ℏ𝐴2/𝑣∗ for large |𝛼 |2. One could in principle,
therefore, tune ℏ𝐴2/𝑣∗ as small as one would like, but due to additional
constraints, such as the adiabacity of the middle crossing, it could be
inconvenient in practice.

3.2.3. Numerical simulations

To investigate the analytic results we found in the previous section, we
can do numerical simulations of the proposed scheme. We here solve
the Schrödinger equation using QuTiP, “Quantum toolbox in python”
[67, 68]. We initialize the system in one qubit state, |0⟩ or |1⟩, and the
bosonic mode in a coherent state, |𝛼⟩. For simplicity, we here work in
units where ℏ = 1. The Hilbert space of the bosonic mode is truncated
at 𝑛 ≥ 2|𝛼|2+10 in the simulations. The driving is done as in figure 3.7,
and is explicitly given by:

𝛥(𝑡) =
⎧

⎨
⎩

−𝜔 − 𝑘 + 𝑣𝑓𝑡 , 0 ≤ 𝑡 ≤ 𝜏1,
−𝜔 + 𝑘 − 𝑣𝑠(𝑡 − 𝜏1), 𝜏1 ≤ 𝑡 ≤ 𝜏2,
−𝜔 − 𝑘 + 𝑣𝑓(𝑡 − 𝜏2), 𝜏2 ≤ 𝑡 ≤ 𝜏3,

(3.44)

where 𝜏1 = 2𝑘/𝑣𝑓, 𝜏2 = 𝜏1 + 2𝑘/𝑣𝑠, and 𝜏3 = 𝜏2 + 2𝑘/𝑣𝑠.
The numerical results presented in figure 3.8 are the occupation

probability, 𝑃(𝑛), in the Fock basis (top) and the Wigner functions,
𝑊(𝛼), (bottom) after a projection to the |0⟩ qubit state. The Wigner
function is a quasi probability function, which gives the right prob-
ability function by integrating out one of the conjugate variables, in
this case photon number (radially) and phase (angle) [69]. The initial
coherent state is of size |𝛼 |2 = 10, the coupling is set to 𝐴 = 0.003,
and where 𝑣𝑓 = 8.9741 × 10−4 is set by demanding that 𝑃(10) = 1/2.
The other parameters 𝑣𝑠 = 4.6965 × 10−5 and 𝑘 = 0.50017 are set by
equation (3.42) and to tune 𝜙𝑑(0) respectively.
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Figure 3.8.: Numerical simulations of the final boson mode states
visualized by the occupation probability, 𝑃(𝑛), in the Fock basis
(top) and the Wigner functions, 𝑊(𝛼) (bottom) after a projection
to the |0⟩ qubit state. All the simulation above are initialized with
the boson mode in a coherent state with |𝛼 |2 = 10 and a coupling
of 𝐴 = 0.003. The sweep speeds 𝑣𝑓 and 𝑣𝑠 is set by the conditions
𝑃LZ(10) = 1/2 and 𝑑(10) = 𝜋. In (a,b) we fine tune 𝑘 = 0.50017,
which yields, (a) an odd cat state if the qubit is initialized in |0⟩
giving a fidelity of 𝐹 = 0.986, and (b) an even cat state if the
qubit is initialized in |1⟩ with fidelity 𝐹 = 0.989. Not fine tuning
𝑘 produces a more general cat state (c), in this case with 𝑘 = 0.49
results in a cat state with 𝜃𝑆 = 0.713𝜋 (from equation (3.3)) with a
fidelity of 𝐹 = 0.988.

Visually we can see from both the Fock state occupation probabilities
and the Wigner functions, that we have approximately created the
desired even and odd states well, but to quantify exactly how well we
have recreated the desired state we calculate the overlap of the final
state, |𝛹𝐹⟩, with the desired state, |𝛹𝐷⟩, which we will call the fidelity
of the state:

𝐹 = | ⟨𝛹𝑓|𝛹𝐷⟩ |2. (3.45)

For all the examples in figure 3.8, we end up with a fidelity of 𝐹 ≈ 0.99.
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3.2.4. Encoding qubit information in cat code

In figure 3.8 we saw that the boson mode could end up in either the
odd or even cat state, depending on whether the qubit was initialized
in the |0⟩ or |1⟩ states respectively. What this allows us to do, is to
encode the qubit in a rotated cat code, where a general qubit state

|𝛹qubit⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ , (3.46)

gets approximately encoded in the bosonic state:

|𝛹cavity⟩ ≈ 𝑎 |𝛹odd⟩ + 𝑒𝑖𝜑𝑏 |𝛹even⟩ , (3.47)

where the phase 𝜑 ≈ −1.08 comes from taking a different path, and
picking up a different geometric phase. This phase is however known
and can be compensated for.

Multi legged cats

Additionally, one could producemulti legged cat states discussed earlier
by repeating the procedure above𝑚 times, to create 2𝑚 legged cat states.
One could imagine making the four legged cat states discussed earlier
by now starting with the cat state produced by the scheme proposed
above, and tweaking the condition in equation (3.41), demanding that
𝑑(𝑛) = 𝜋/2. This would make every fourth pair experience a transfer,
instead of every second as discussed above.

In this case the post selection by a projective measurement to the |0⟩
qubit state is essential to keep the parity of the initial state (keeping
the state being made up of only even or odd Fock states). As a result,
the success rate of creating higher order multi legged cat states using
this method is exponentially suppressed the number of iterations, but
linear in the number of legs.
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4Generation of GHZ states with
spin-qubit/magnon system
The GHZ state was first studied by Daniel Greenberger, Michael Horne
and Anton Zeilinger [70] as an example of an extremely non-classical
state, in this case a four qubit state, where a classical theory cannot
describe the correlations in the measurements of the qubits. This is
a generalization of Bells theorem [71], where it can be shown that
correlations between two entangled particles can be larger than any
classical theory predicts. However, classical theory show the same
results as quantum mechanics for certain measurement angles. The
generalization in the GHZ case is to make definite predictions, for all
measurement angles.

A Greenberger-Horne-Zeilinger (GHZ) state consists of at least 3
subsystems, qubits or qudits (generalized qubits with multiple levels).
We here only consider the 3 qubit GHZ state, but what follows can be
generalized to larger GHZ states. The 3 qubit GHZ state is defined as:

|GHZ⟩ =
|000⟩ + |111⟩

√2
, (4.1)

where |𝜎1𝜎2𝜎3⟩ = |𝜎⟩1 ⊗ |𝜎⟩2 ⊗ |𝜎⟩3 for the qubits 1, 2 and 3, where
𝜎 = {0, 1}.

Many more applications have been found for these GHZ states, such
as secret sharing between three people [72, 73], splitting quantum
information by quantum teleportation to two people [72], and is used
in a constant-time solution of the quantum version of the Byzantine
agreement [74].

Quantum error correction also has applications for GHZ states. The
simplest error correction scheme in section 2.2.1 which can correct for
a single general error, Shor’s error correction scheme [29], effectively
creates three entangled qubits states made up of GHZ states. These are
typically made by using the universal gates of a quantum computer us-
ing several pulses, however, they can be prepared outside the quantum
computer and be used as a resource. In paper [ii], we show a way of
creating these GHZ states using a single pulse, using three spin qubits
coupled via an exchange interaction to an anisotropic ferromagnet.
The advantage of which is the robustness against qubit asymmetries,
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Figure 4.1.: Figure of the system, with a ferromagnet substrate
(orange) and the three spin qubits coupling to the ferromagnet
through an exchange interaction.

and that only a single timed pulse is needed in order to entangle the
three qubits. In the following we explore this system and finally show
how one can generate the GHZ state. The following is based on paper
[ii].

4.1. Spin qubit coupled to magnonic cavity

The system we are looking at in this chapter is that of a bosonic mode
(magnons in a ferromagnet) interacting with two-level systems (spin
qubits) through the exchange interaction. What we will show is that
this system with a single spin qubit effectively is an ideal manifestation
of the Jaynes-Cummings model [66] and that through the introduction
of anisotropy in the ferromagnet the system effectively becomes a
physical realization of the quantum Rabi model, with tunable interac-
tion terms through the anisotropy. Introducing three spin qubits in
this quantum Rabi model we show that we are able to excite all three
qubits using a single control pulse, and that driving the qubits through
half of such a transition creates the GHZ states.

The quantum Rabi model is used to understand the interaction
between light and matter [75, 76], as it describes a bosonic mode that
interacts with a single two-level system and which under the rotating
wave approximation (an approximation which can be applied near
resonance in the quantum Rabi model, where rapid oscillating terms
are neglected) becomes the Jaynes-Cummings model [77]. Because of
this, in addition to the application we propose, this system can be a
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good platform in investigating both the Jaynes-Cummings model and
the quantum Rabi model.

4.1.1. Magnon mode

We assume that we work with a thin film of an insulating ferromagnet
that will act as the magnon cavity. With an applied magnetic field out
of the plane of the thin film, 𝐻0 ̂𝑧, we can write the Hamiltonian of the
ferromagnet as:

𝐻𝐹 = |𝛾 |𝜇0𝐻0∑
𝑖
𝑆𝑖𝑧 − 𝐽 ∑

⟨𝑖,𝑗⟩
𝑆𝑖 ⋅ 𝑆𝑗, (4.2)

where 𝑆𝑖 is the spin operator at position 𝑖, 𝐽 is the ferromagnetic cou-
pling between nearest neighbors (where angled brackets signifies that
the sum is over nearest neighbors), 𝛾 is the gyromagnetic ratio, 𝜇0 is
the permeability of free space, and we use units where ℏ = 1.

We rewrite this Hamiltonian in what will become spin excitations,
i.e. magnons, by first writing it in terms of the raising and lowering
operators:

𝑆𝑗± = 𝑆𝑗𝑥 + 𝑖𝑆𝑗𝑦. (4.3)

These raising and lowering operators act like bosonic ladder operators,
in that they raise and lower the spin. However, we have to make sure
that the commutation relations are correct. We know that for a boson
operator 𝑎, we have the following commutation relation, [𝑎†𝑖 , 𝑎𝑗] = 𝛿𝑖𝑗,
while the Spin operators should follow [𝑆+, 𝑆−] = 2𝑆𝑧. The result is the
Holstein-Primakoff transformation[78]:

𝑆𝑗+ = √2𝑆 − 𝑛𝑗 𝑎
†
𝑗 , (4.4)

𝑆𝑗− = √2𝑆 − 𝑛𝑗 𝑎𝑗, (4.5)

𝑆𝑗𝑧 = 𝑆 − 𝑎†𝑗 𝑎𝑗, (4.6)

where 𝑛𝑗 = 𝑎†𝑗 𝑎𝑗 is the number operator for magnon excitations, and
S is the spin magnitude. We can now see that we have written the
Hamiltonian in terms of the number of spin excitations 𝑛 away from
the ground state where all the spins point along the 𝑧-axis and have a
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spin projection of 𝑆𝑗𝑧 = 𝑆, and we can also see that the commutation
relations of the spin operators still hold.

Further, we assume that we are in the low excitation number limit,
𝑆 ≫ ⟨𝑛⟩, meaning that the Zeeman energy is relatively large compared
to other energies, such as excitations and later anisotropies that we will
introduce, meaning that the spins are mostly aligned in the 𝑧-direction.
To lowest order in 𝑛 we are left with the operators:

𝑆𝑗+ = √2𝑆 𝑎†𝑗 , (4.7)

𝑆𝑗− = √2𝑆 𝑎𝑗, (4.8)

𝑆𝑗𝑧 = 𝑆 − 𝑎†𝑗 𝑎𝑗. (4.9)

We can now introduce this transformation in the Heisenberg Hamil-
tonian, and introducing the Fourier transform of the boson operators:

𝑎𝑘 =
1
√𝑁

∑
𝑖
𝑎𝑖𝑒𝑖�⃗�⋅𝑟𝑖 , (4.10)

𝑎†𝑘 = 1
√𝑁

∑
𝑖
𝑎†𝑖 𝑒−𝑖�⃗�⋅𝑟𝑖 , (4.11)

where 𝑁 is the number of spin sites. 𝑎�⃗� is the annihilation operator for

a magnon with the momentum �⃗�. Discarding higher order terms in 𝑛,
the Hamiltonian we are left is:

𝐻𝐼 = 𝐸0 +∑
�⃗�

𝜔�⃗�𝑎
†
�⃗�
𝑎�⃗�, (4.12)

where

𝐸0 = −6𝑁𝐽𝑆2/2 − |𝛾 |𝜇0𝐻0𝑆𝑁 , (4.13)

is the energy of the classical ground state, and the eigenfrequency of
the mode is given by:

𝜔�⃗� = −|𝛾 |𝜇0𝐻0 + 4𝐽𝑆(3 − (cos(𝑘𝑥𝑎) + cos(𝑘𝑦𝑎) + cos(𝑘𝑧𝑎))), (4.14)

where 𝑎 is the lattice spacing.
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Anisotropy

Next we assume that we have some source of anisotropy, this could
come from dipolar interactions or magnetocrystaline single-ions, but
the form in which we introduce the anisotropy is general:

𝐻𝐴 = ∑
𝑖
𝐾𝑥(𝑆𝑖𝑥)2 + 𝐾𝑦(𝑆𝑖𝑦)2 + 𝐾𝑧(𝑆𝑖𝑧)2. (4.15)

Applying the Hollstein-Primakoff transformation from equation (4.7),
and the Fourier transform from equation (4.10) to the anisotropy term,
𝐻𝐴, we get the following full ferromagnet Hamiltonian, where we have
left out the constant terms:

𝐻𝐹 = 𝐻𝐼 + 𝐻𝐴 = ∑
�⃗�

𝐴�⃗�𝑎
†
�⃗�
𝑎�⃗� + 𝐵�⃗� (𝑎

2
�⃗�
+ 𝑎†2

�⃗�
) , (4.16)

where

𝐴�⃗� = −|𝛾 |𝜇0𝐻0 + 𝐾𝑥𝑆 + 𝐾𝑦𝑆 + 2𝐾𝑧𝑆 (4.17)

+ 4𝐽𝑆[3 − (cos(𝑘𝑥𝑎) + cos(𝑘𝑦𝑎) + cos(𝑘𝑧𝑎))],

𝐵�⃗� = (𝐾𝑥𝑆 + 𝐾𝑦𝑆) /2. (4.18)

For the rest of this discussion, we will focus on the 𝑘 = 0 mode of
the cavity. This can be justified by assuming a small magnet. In this
case the higher modes are separated by energies of multiple times the
qubit splittings (which is typically a few gigahertz).

We see that the anisotropy, specifically in the 𝑥- and 𝑦-direction,
takes us away from the magnon being the eigenmode of the system.
We can find the eigenmode of the system by introducing a final trans-
formation. Assuming that the eigenmode of the system is some linear
combination of the creation and annihilation operator of the magnon
mode, we get the Bogoliubov transformation:

𝛼 = 𝑢𝑎 + 𝑣𝑎†, (4.19)

𝛼† = 𝑢∗𝑎† + 𝑣∗𝑎, (4.20)

where the star signifies complex conjugation.
Using the fact that we still want this mode to follow bosonic statis-

tics, we know that the commutation relations have to be equal to the
magnon mode:

[𝛼, 𝛼†] = (|𝑢|2 + |𝑣 |2)[𝑎, 𝑎†]. (4.21)
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Which leaves us with the constraint, (|𝑢|2+ |𝑣 |2) = 1. By now requiring
that the Hamiltonian is on the form:

𝐻𝐹 = �̃�0𝛼†𝛼, (4.22)

we obtain:

𝑣 = −2𝐵/√(𝐴 + �̃�0)2 − 4𝐵2, (4.23)

𝑢 = √1 − 𝑣2, (4.24)

where the eigenmode energy is given by:

�̃�0 = √𝐴2 − 4𝐵2 (4.25)

The eigenmode, 𝛼, of the cavity is a slightly modified magnon, which
we will refer to as squeezed magnons.

4.1.2. Spin qubit

The qubit we consider is a spin qubit, which for the purposes here can
be thought of as a single confined electron. The spin up and down
states of the electron correspond to the |𝑔⟩ and |𝑒⟩ states respectively¹.
Full control of the qubit can be gained by applying external magnetic
fields, but here we imagine only lifting the spin-degeneracy by applying
a magnetic field along the 𝑧-direction, which gives us the spin-qubit
Hamiltonian:

𝐻𝑞 =
𝜔𝑞
2
𝜎𝑧, (4.26)

where 𝜔𝑞 is the qubit splitting induced by the magnetic field.

4.1.3. Interaction between the magnon mode and the qubit

We assume that the main interaction between the two subsystems is
an exchange interaction between the spin of the qubit and the spins
of the ferromagnet. Since the electrons in the ferromagnet are in
close proximity to the electrons in the qubit, there is an overlap in

1. We here use |𝑔⟩ and |𝑒⟩ to describe the two states of the qubit, and not |0⟩ and
|1⟩, to avoid confusion with the 0 and 1 excitation states of the magnon mode
and to be consistent with the notation in paper [ii].
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the wavefunctions of the two. Assuming there is an overlap of the
wavefunction we get a non-zero exchange interaction parameter 𝐽int:

𝐻int = 𝐽int∑
𝑖
𝑆𝑖 ⋅ 𝑠𝑖, (4.27)

where 𝑠𝑖 denotes the spin operator of the spin qubit at location 𝑖, and
𝑆𝑖 denotes the spin operator of the ferromagnet at spin. We note that
such a transition is spin conserving, as opposed to a non-conserving
interacting such as a dipolar interaction, meaning that spin is trans-
ferred between the qubit and the ferromagnet in a conserved manner.
In terms of the qubit spin operators and the magnon operator this
gives the following Hamiltonian:

𝐻int = 𝑔(𝑎†𝜎− + 𝑎𝜎+), (4.28)

where 𝜎± = (𝜎𝑥 ± 𝑖𝜎𝑦)/2 are the raising and lowering operators for
the qubit, and 𝑔 is the coupling amplitude. The qubit, the isotropic
ferromagnet, and this interaction term is then a manifestation of the
Jaynes-Cummings model:

𝐻JC = 𝐻𝐼 + 𝐻𝑞 + 𝐻int. (4.29)

Interaction in terms of squeezed magnons

Taking the interaction from above, 𝐻int, and applying the Bogoliubov
transformation we used to diagonalize the anisotropic ferromagnet
Hamiltonian, 𝐻𝐹, we obtain the interaction in terms of the squeezed
magnons:

𝐻int = 𝑔𝑅(𝛼†𝜎− + 𝛼𝜎+) + 𝑔𝐶𝑅(𝛼†𝜎+ + 𝛼𝜎−), (4.30)

where the amplitudes 𝑔𝑅 = 𝑔𝑢 and 𝑔𝐶𝑅 = 𝑔𝑣. This is the interaction
terms of the Rabi model, however, the rotating and counter rotating
terms are usually equal in typical models. In this model they gener-
ally not equal and their relative magnitudes are even tunable via the
squeezing, which is in term controlled by the anisotropy in the plane.

4.2. Generating GHZ states in qubits using coupling to the
magnon mode

We are now going to show that we are able to prepare three qubits in
the GHZ that we have talked about. The ingredients that we need is
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the planar anisotropic ferromagnet, and three spin qubits, which are
coupled to the ferromagnet via the exchange interaction between the
qubits and the ferromagnet. We assume that the qubits are individu-
ally coupled to the same squeezed magnon mode. This gives us the
Hamiltonian:

𝐻 = 𝐻𝐹 +
3
∑
𝑛=1

𝐻 𝑛
𝑞 + 𝐻 𝑛

int, (4.31)

where the superscript 𝑛 labels the Hamiltonians of the three spin
qubits and their interaction with the ferromagnet, which is given
by equation (4.26) and equation (4.30) respectively. We are going to
assume that the qubits are general, and so the method that we will
present is robust against qubit asymmetries such as slightly different
qubit splittings and couplings to the ferromagnet.

What we will show is that there is a coupling, 𝑔eff, between the two
states |1, 𝑔𝑔𝑔⟩ and |0, 𝑒𝑒𝑒⟩, where the first index refers to the squeezed
magnon number and the latter is the state of the three qubits, (e)xcited
or in the (g)round state. By initializing in one of these two states, e.g.
|1, 𝑔𝑔𝑔⟩, and tuning the system close to the resonance between these
two states, e.g. by tuning the qubit splitting such that 𝜔0 ≈ 3𝜔𝑞², we
can induce Rabi oscillations which make the system oscillate between
the two states.

Tuning the system close to resonance, the system experiences Rabi
oscillations, and evolve after a time 𝑡 in the following way:

|𝛹⟩ (𝑇 ) = cos(𝑔eff𝑡) |1, 𝑔𝑔𝑔⟩ + sin(𝑔eff𝑡) |0, 𝑒𝑒𝑒⟩ . (4.32)

Keeping the system at resonance for a time 𝑡 = 𝜋
4/𝑔eff leaves the system

in the state:

|𝛹⟩ (𝜋/𝑔eff) =
|1, 𝑔𝑔𝑔⟩ + |0, 𝑒𝑒𝑒⟩

√2
, (4.33)

where the qubits are in a GHZ state.
The question is then whether |1, 𝑔𝑔𝑔⟩ and |0, 𝑒𝑒𝑒⟩ are coupled. To

show this and to gain analytically insight in the nature of the coupling
we employ perturbation theory.

2. Or more generally 𝜔0 ≈ ∑3
𝑛=1 𝜔𝑛

𝑞 .

40



4.2.1. Perturbation theory

To get some intuition about the two states |1, 𝑔𝑔𝑔⟩ and |0, 𝑒𝑒𝑒⟩ are
coupled, we turn to time independent perturbation theory. This is
described in detail in any introductory book on quantum mechanics,
but we will give a brief introduction here.

The premise of time independent perturbation theory is that we
can write the Hamiltonian as an exactly solvable part, 𝐻0, with known
eigenvalues 𝐸𝑛0 and eigenstates |𝑛⟩0, in addition to a small perturbation,
𝜆𝐻pert:

𝐻 = 𝐻0 + 𝜆𝐻pert, (4.34)

𝐻0 |𝑛⟩0 = 𝐸𝑛0 |𝑛⟩0 , (4.35)

where 𝜆 is dimensionless parameter, which we will assume to be small,
𝜆 ≪ 1. Our goal is to write the exact eigenenergies, 𝐸𝑛, and the exact
eigenstates, |𝑛⟩,

(𝐻0 + 𝜆𝐻pert) |𝑛⟩ = 𝐸𝑛 |𝑛⟩ , (4.36)

in terms of the energy levels and eigenstates of the unperturbed Hamil-
tonian, 𝐻0, in a power series:

𝐸𝑛 = 𝐸𝑛0 + 𝜆𝐸𝑛1 + 𝜆2𝐸𝑛2 + ⋯ , (4.37)

|𝑛⟩ = |𝑛⟩0 + 𝜆 |𝑛⟩1 + 𝜆2 |𝑛⟩2 + ⋯ . (4.38)

Inserting these definitions in equation (4.36) we get:

(𝐻0+𝜆𝐻pert)(|𝑛⟩0+𝜆 |𝑛⟩1+⋯) = (𝐸𝑛0 +𝜆𝐸𝑛1 +⋯)(|𝑛⟩0+𝜆 |𝑛⟩1+⋯).
(4.39)

Separating this equation in terms with the same order of 𝜆, gives us a
set of equations which can be used to solve for the energy corrections
𝐸𝑛𝑖 . As an example we can take a look the first order equation:

𝐻0 |𝑛⟩1 + 𝐻pert |𝑛⟩0 = 𝐸𝑛0 |𝑛⟩1 + 𝐸𝑛1 |𝑛⟩0 . (4.40)

After multiplying with ⟨𝑛|0 from the left, and assuming that ⟨𝑛|0 |𝑛⟩1 =
0³, we get the first order correction to 𝐸𝑛:

𝐸𝑛1 = ⟨𝑛|0 𝐻pert |𝑛⟩0 . (4.41)

3. This can be shown using that the state should be normalized to zeroth order as
well as up to first order in 𝜆
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This can be inserted back in equation (4.40) to obtain the first order
correction to the eigenstates:

|𝑛⟩1 = ∑
𝑘≠𝑛

⟨𝑘|0 𝐻pert |𝑛⟩0
𝐸𝑛0 − 𝐸𝑘0

|𝑘⟩0 . (4.42)

Effective coupling

We can of course continue this up to arbitrarily high orders, however,
we are not interested in the full expansion of the state. Consequently,
we make a simplification: We want to know the effective coupling
between an initial state |𝑖⟩ and a final state |𝑓 ⟩, in our case this is
|1, 𝑔𝑔𝑔⟩ and |0, 𝑒𝑒𝑒⟩, and so we imagine expanding the exact eigenstate
|𝑖⟩ to some order, 𝑛 − 1, expressing that state in terms of a set of the
unperturbed states, but only some of these will couple directly with
|𝑓 ⟩ via 𝐻int, and this matrix element is what we refer to the effective
coupling:

𝑔(𝑛)eff = ⟨𝑓 | 𝐻int |𝑖⟩(𝑛−1) . (4.43)

In the case where 𝑛 is the lowest order to which 𝑔(𝑛)eff can be non-zero,
the effective coupling between an initial state |𝑖⟩ and a final state |𝑓 ⟩ is
given by [79]:

𝑔(𝑛)eff = ∑
𝑘1,𝑘2⋯𝑘𝑛−1

⟨𝑓 |𝐻int|𝑘𝑛−1⟩⋯ ⟨𝑘2|𝐻int|𝑘1⟩ ⟨𝑘1|𝐻int|𝑖⟩
(𝐸𝑖 − 𝐸𝑘1)(𝐸𝑖 − 𝐸𝑘2) … (𝐸𝑖 − 𝐸𝑘𝑛−1)

, (4.44)

where |𝑘𝑖⟩ are intermediary states, which are different from |𝑖⟩, and
𝐸𝑘𝑖 are the energies of the states |𝑘𝑖⟩. The statement about 𝑛 being the
lowest order to which 𝑔eff can be non-zero, is equivalent with all 𝑘𝑖
are different, i.e. there are no loops, which is then a condition for this
equation to hold.

A way of thinking of this is that as long as the initial state |𝑖⟩ and
the final state |𝑓 ⟩ is coupled via intermediary states, we can calculate
this coupling by multiplying the coupling between intermediary states,
and divide by how far in energy these intermediary states are from the
initial state, at least if there are no loops to consider. These interme-
diary states enable transitions between the initial state and the final
state via virtual transition to the intermediary states.
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Effective coupling up to third order in 𝑔

Because the coupling terms in the Hamiltonian, 𝐻int, changes the
magnon number and the qubit excitation number by one, it is pos-
sible to see that the lowest order terms which possibly could couple
|1, 𝑔𝑔𝑔⟩ and |0, 𝑒𝑒𝑒⟩, is third order in 𝑔, since all three qubits needs to
be excited/relaxed in order to go from one to the other.

The special case from equation (4.44) can be used to third order to
obtain the effective coupling:

𝑔(3)eff = ∑
𝑘1,𝑘2

⟨𝑓 |𝐻int|𝑘2⟩ ⟨𝑘2|𝐻int|𝑘1⟩ ⟨𝑘1|𝐻int|𝑖⟩
(𝐸𝑖 − 𝐸𝑘1)(𝐸𝑖 − 𝐸𝑘2)

, (4.45)

where 𝑘1 and 𝑘2 ranges over all possible states |𝑛, 𝜎1𝜎2𝜎3⟩, except
|1, 𝑔𝑔𝑔⟩. However, most of these matrix elements will be zero.

To get an understanding of which matrix elements are non-zero,
and which terms to include in the effective coupling we can take a
diagrammatic approach. We know that the interaction term, 𝐻int,
couples states where the excitation number in the qubits changes by
one, as well as the magnon number changing by one. The so-called
rotating terms, ∝ 𝑔𝑅, conserve the number of total excitations, while
the so-called counter-rotating terms, ∝ 𝑔𝐶𝑅 add or remove two total
excitations.

We can draw the contributions to 𝑔eff on a grid, see figure 4.2, where
one axis represents the number of qubit excitations, and the other
represents magnon excitations. The rotating terms connect squares
on diagonals (parallel to bottom right to top left, or vice versa, drawn
as full lines), while the counter rotating terms connect squares on
anti-diagonals (parallel to bottom left to top right, or vice versa, drawn
as dashed lines). To capture all relevant terms, we need to draw all
possible paths in three steps from |1, 𝑔𝑔𝑔⟩ to |0, 𝑒𝑒𝑒⟩.

The permutations of qubit excitations also has to be accounted
for. There is essentially one diagram for each qubit permutation, but
assuming that the qubits are symmetric, which for simplicity we will
do here, the diagrams just get an additional factor corresponding to the
number of possible qubit permutations, in this case 3! = 6, since we
have three qubits which gets excited in succession. The results where
all permutations are considered separately, is covered in the Appendix
B of paper [ii].
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Figure 4.2.: Third order diagrams, connecting |1, 𝑔𝑔𝑔⟩ (in blue)
and |0, 𝑒𝑒𝑒⟩ (in orange), via virtual transitions. Rotating terms are
represented by fully drawn lines, and counter-rotating terms are
represented by dashed lines.

The effective coupling can then be written down from the diagrams
as:

𝑔(3)eff = 3! (
2𝑔𝐶𝑅𝑔2𝑅

(𝜔𝑚 + 𝜔𝑞)2𝜔𝑞
+

𝑔𝐶𝑅𝑔2𝑅
(𝜔𝑞 − 𝜔𝑚)2𝜔𝑞

)

= 3𝑔2𝑅𝑔𝐶𝑅
3𝜔𝑞 − 𝜔𝑚

𝜔𝑞(𝜔2
𝑚 − 𝜔2

𝑞 )
.

(4.46)

It is worth noting that the factor 2 in the first term comes from the
magnon raising/lowering operator going to and from the two magnon
states, |2, 𝑒𝑔𝑔/𝑔𝑒𝑔/𝑔𝑔𝑒⟩.

From equation (4.46) we can see that at resonance, 𝜔𝑚 = 3𝜔𝑞, the
effective coupling is zero:

𝑔(3)eff (𝜔𝑚 = 3𝜔𝑞) = 0. (4.47)

The two diagrams perfectly cancel each other out. Furthermore, it can
be shown that they even cancel out if we introduce qubit asymmetries,
see Appendix B in paper [ii].

Effective coupling up to fifth order in 𝑔

Since the third order results where zero, we need to go to the next non-
zero order. Drawing paths on the grid from the section above, it is fairly
easy to convince one self that there are no fourth order contributions,
and that the lowest possibly non-zero order is fifth order.

Calculating the fourth order correction to the states, as we did
with the first order case is possible, but extremely time-consuming.
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Figure 4.3.: Two fifth order diagrams which contain the two third
order diagrams, with additional loops. We can use the third order
results to show that the sum of these two diagrams must cancel.
Counter rotating terms are shown as dashed lines.

Furthermore, the simplification we made to get to the third order
effective coupling is not valid, since there are many ways of creating
loops. There are however multiple diagrammatic ways to express
higher order perturbation theory, one such method is detailed in [80],
and is the one that we base the following discussion on.

Even though the third order results from above turned out to give
zero contribution to the effective coupling, we are still able to use the
results in making the calculation of the fifth order results easier. Fifth
order diagrams which contain the third order diagrams can be matched
up, and since we know that these cancel, we do not have to calculate
these diagrams. Examples of two such diagrams which cancel is shown
in figure 4.3.

Using the diagramatic formulation of perturbation theory from Ref.
[80], and the simplification of the canceling fifth order terms above,
we can draw all the remaining contributions to the effective coupling
in our own diagramatic formulation, shown in figure 4.4. The effective
coupling can then be written down from these diagrams.

Again, assuming that the qubits are symmetric, and now also that we
are at resonance, 𝜔𝑚 = 3𝜔𝑞, we get the following non-zero contribution
to the effective coupling:

𝑔(5)eff = −
9 (3𝑔3𝐶𝑅𝑔

2
𝑅 − 8𝑔𝐶𝑅𝑔4𝑅)
32𝜔4

𝑞
. (4.48)
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Figure 4.4.: All the fifth order diagrams contributing to the
effective coupling 𝑔(5)eff .

4.3. Concluding remarks

What we have showed in this chapter is that the hybrid system of a
ferromagnet acting as a magnon cavity and a spin qubit is a physical
realization of the quantum Rabi model. Furthermore, by applying an
anisotropy to the ferromagnet, we can obtain a controllable degree
of squeezing of the magnon mode. This squeezing produces counter-
rotating (non-spin conserving) terms in the coupling between the
magnon cavity and the qubit. Hence, the squeezing allows for the
control over the ratio of the amplitude of the rotating term and the
counter-rotating coupling term.

We then showed that by introducing three spin qubits, the model
couples the states where all three qubits are in the |𝑔⟩ state with states
where all three qubits are inn the |𝑒⟩ state via virtual transitions. Since
the results is fifth order in coupling, the low coupling limit discussed in
the previous section is probably not applicable, but the above discussion
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shows that there is a coupling between these two states. This allows
us to excite all three qubits with a single pulse, and by driving the
qubits halfway between |𝑔⟩ and |𝑒⟩ the qubits are left in the so-called
GHZ state:

|GHZ⟩ =
|𝑔𝑔𝑔⟩ + |𝑒𝑒𝑒⟩

√2
. (4.49)
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Part II.

Semi/super hybrid devices for
topologically protected
quantum computation
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5Semi/super hybrid devices for topological
protected quantum computation

In the previous chapters, we looked at hybrid devices which them-
selves are made up of devices, in chapter 3 with a microwave resonator
and a spin qubit, or in chapter 4 a ferromagnet and again spin qubits.
The hybrid nature of these devices allows us to combine advantageous
features from the sub-devices.

Hybrid devices made of superconductors and semiconductors have
gained a lot of attention recently because they allow us to combine ma-
terial features no single material could have. The possibility of strong
spin-orbit coupling in combination with superconductivity could pos-
sibly be used to engineer exotic properties such as topological super-
conductivity [81–84].

In this chapter, we introduce a few important concepts related to this
as well as motivate why superconducting hybrid devices have gained
so much attention lately. To do so we first have to have a grasp of how
superconductors work, and build a theoretical framework which lets
us describe systems which include superconductivity. We will then
move on to discuss the engineering of topological states of matter and
how this can be used in quantum computation.

5.1. Superconductors

The following is a quick introduction to a mean-field approach of a
system that supports a superconducting phase. Here, we outline the
main steps from refs. [85, 86], however, a more rigorous and formal
derivation is found in many textbooks on the topic.

The starting point is a second quantization Hamiltonian describing
a free electron with the addition of an attractive potential for the
electrons:

𝐻 =∑
𝜎
∫𝑑𝑟𝜓†𝜎 (𝑟)𝐻0(𝑟)𝜓𝜎(𝑟)

− 1
2
∑
𝜎,𝜎 ′

∬𝑑𝑟𝑑𝑟 ′𝑉𝜎,𝜎 ′(𝑟 , 𝑟 ′)𝜓
†
𝜎 (𝑟)𝜓

†
𝜎 ′(𝑟

′)𝜓𝜎(𝑟 ′)𝜓𝜎 ′(𝑟),
(5.1)
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where 𝜓†𝜎 (𝑟) and 𝜓𝜎(𝑟) are the creation and annihilation operators
for an electron with spin 𝜎 at 𝑟, and 𝑉𝜎,𝜎 ′(𝑟 , 𝑟 ′) is the strength of the
attraction between two electrons with spins 𝜎 and 𝜎 ′ at positions 𝑟 and
𝑟 ′, 𝑉𝜎,𝜎 ′(𝑟 , 𝑟 ′) is chosen to be positive, hence the negative sign in the
Hamiltonian. We will come back to more assumptions on 𝑉𝜎,𝜎 ′(𝑟 , 𝑟′)
later in this section.

Next we employ a mean-field approximation of the second term
of the Hamiltonian, which effectively assumes that we can neglect
fluctuations, meaning that any of the following results is only valid
in the low temperature limit. This allows us to use the following
substitution:

𝜓†𝜎 (𝑟)𝜓
†
𝜎 ′(𝑟

′)𝜓𝜎(𝑟 ′)𝜓𝜎 ′(𝑟) →

⟨𝜓†𝜎 (𝑟)𝜓
†
𝜎 ′(𝑟

′)⟩ 𝜓𝜎(𝑟 ′)𝜓𝜎 ′(𝑟)

+ 𝜓†𝜎 (𝑟)𝜓
†
𝜎 ′(𝑟

′) ⟨𝜓𝜎(𝑟 ′)𝜓𝜎 ′(𝑟)⟩

−⟨𝜓†𝜎 (𝑟)𝜓
†
𝜎 ′(𝑟

′)⟩⟨𝜓𝜎(𝑟 ′)𝜓𝜎 ′(𝑟)⟩,

(5.2)

where the angled brackets, ⟨…⟩, signify the thermodynamic average.
There are additional terms which we have left out here, of the type
∝ 𝜓†𝜓 and ∝ 𝜓†𝜓, however these can be accounted for by absorbing
them in the chemical potential of the free electron Hamiltonian. The
mean field approximation Hamiltonian is then given by:

𝐻M𝐹 =∑
𝜎
∫𝑑𝑟𝜓†𝜎 (𝑟)𝐻0(𝑟)𝜓𝜎(𝑟)

+ 1
2
∑
𝜎,𝜎 ′

∬𝑑𝑟𝑑𝑟 ′(𝛥∗
𝜎,𝜎 ′(𝑟 , 𝑟

′)𝜓𝜎(𝑟 ′)𝜓𝜎 ′(𝑟)

+ 𝛥𝜎,𝜎 ′(𝑟 ′, 𝑟)𝜓
†
𝜎 (𝑟 ′)𝜓

†
𝜎 ′(𝑟))

− 1
2
∑
𝜎,𝜎 ′

|𝛥𝜎,𝜎 ′(𝑟 , 𝑟 ′)|2

𝑉𝜎,𝜎 ′(𝑟 , 𝑟 ′)
,

(5.3)

where we define the pairing potential as:

𝛥𝜎,𝜎 ′(𝑟 , 𝑟 ′) = −𝑉𝜎,𝜎 ′(𝑟 , 𝑟 ′) ⟨𝜓𝜎(𝑟 ′)𝜓𝜎 ′(𝑟)⟩ , (5.4)

𝛥∗
𝜎,𝜎 ′(𝑟 , 𝑟

′) = −𝑉𝜎,𝜎 ′(𝑟 , 𝑟 ′) ⟨𝜓
†
𝜎 ′(𝑟)𝜓

†
𝜎 (𝑟 ′)⟩ . (5.5)

The first term in equation (5.3) is the unchanged free electron Hamil-
tonian (except for the renormalized chemical potential), the second
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term is the superconducting term which allows for the creation and
anihillation of two ellectrons, reflecting that they are bound toghether
in so-called Cooper pairs and can be absorbed by the superconducting
condensate. The last term is a constant term, which will not be relevant
for the purposes of this discussion.

Diagonalization and the BdG Hamiltonian

The Hamiltonian we are left with is now quadratic in electron cre-
ation/annihilation operators, but the second term in equation (5.3)
makes diagonalizing the Hamiltonian non-trivial. To do this we are
going to use a trick we used on the boson system in chapter 4, namely a
Bogoliubov transformation. Where we previously introduced a boson
field which was a linear combination of boson creation and annihila-
tion opperators, we now introduce fermionic opperators 𝛾𝑛 which are
the combination of fermionic creation and anihilation opperators. The
electron opperators can inversely be written in terms of 𝛾𝑛 as:

𝜓𝜎 = ∑
𝑛
𝑢𝑛𝜎𝛾𝑛 − 𝜎𝑣𝑛∗𝜎 𝛾†𝑛 , (5.6)

𝜓†𝜎 = ∑
𝑛
𝑢𝑛∗𝜎 𝛾†𝑛 − 𝜎𝑣𝑛𝜎 𝛾𝑛. (5.7)

The coefficients 𝑢𝑛𝜎 and 𝑣𝑛𝜎 are determined by demanding that the Hamil-
tonian is diagonalized:

𝐻M𝐹 = 𝐸𝑔 +∑
𝑛
𝐸𝑛𝛾

†
𝑛 𝛾𝑛, (5.8)

where 𝐸𝑔 is the ground state energy, and 𝐸𝑛 is the energy of the excited
states. To obtain the coeffiencet and find the excited energies 𝐸𝑛 we
can slightly rewrite the Hamiltonian, using the Nambu spinor 𝛹(𝑟) =
[𝜓↑(𝑟), 𝜓↓(𝑟), 𝜓

†
↓ (𝑟), −𝜓↑(𝑟)

†]𝖳:

𝐻M𝐹 =
1
2 ∬

𝑑𝑟𝑑𝑟 ′𝛹(𝑟)†ℋBdG𝛹(𝑟)

+ 1
2
Tr𝐻0

− 1
2
∑
𝜎,𝜎 ′

|𝛥𝜎,𝜎 ′(𝑟 , 𝑟 ′)|2

𝑉𝜎,𝜎 ′(𝑟 , 𝑟 ′)
,

(5.9)
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where the so-called Bogoliubov-De Gennes (BdG) Hamiltoian is defined
as:

ℋ = (
𝐻0(𝑟) �̂�(𝑟 , 𝑟′)
̂𝛥†(𝑟 ′, 𝑟) −𝒯 𝐻0𝒯 †) , (5.10)

where 𝒯 is the time reversal operator. The form which we have ended
up in, over describes the system, having doubled the Hilbert space.
This doubling of the Hilbert space is of course not physical, it is just
an artifact of describing the system in terms of electrons and holes,
which due to particle/hole symmetry is effectively describing the same
dynamics. We can now solve for 𝐸𝑛 and the coefficients 𝑢𝑛𝜎 and 𝑣𝑛𝜎 by
the Bogoliubov-De Gennes equation:

∫𝑑𝑟 ′ℋBdG(𝑟 , 𝑟 ′)𝜓 𝑛(𝑟 ′) = 𝐸𝑛𝜓 𝑛(𝑟), (5.11)

with the eigenvectors 𝜓 𝑛(𝑟) = [𝑢↑(𝑟), 𝑢↓(𝑟), 𝑣↓(𝑟), −𝑣↑(𝑟)]𝖳.

5.1.1. Andreev reflections and the proximity effect

It was early noticed that superconducting correlations could penetrate
into normal metals placed in close proximity to superconductors [87].
This is is known as the proximity effect, and is caused by cooper pairs
tunneling into the normal material. This can also equivalently be
described by a single electron picture in the normal material, using
what is known as Andreev reflection [88].

In this picture we look at what happens when an electron (hole)
in the normal material scatters of the superconducting-normal (SN)
surface. The superconductor is assumed to have a pairing potential of
𝛥 = 𝑒𝑖𝜙𝛥0. For simplicity we here consider a 1D example, where the
particles have energies within the gap of the superconductor, 𝐸 < 𝛥0.
By matching the BdG wave function of the normal material with that
of the exponentially decaying one in the superconductor [89] one can
show that electrons with spin 𝜎 and momentum �⃗� are reflected as holes
with the opposite spin, ̄𝜎, and opposite momentum −�⃗� and vice versa:

𝛹out = 𝑒−𝑖 arccos 𝐸/𝛥0

⎛
⎜
⎜
⎜
⎝

0 0 𝑒𝑖𝜙 0
0 0 0 𝑒𝑖𝜙

𝑒−𝑖𝜙 0 0 0
0 𝑒−𝑖𝜙 0 0

⎞
⎟
⎟
⎟
⎠

𝛹in, (5.12)
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Figure 5.1.: Schematic of the process of Andreev reflection. In-
comming electrons(holes) are reflected as holes(electrons) with
opposite spin and momentum when scattered of the supercon-
ductor (gray shaded area). Electrons are shown as full circles,
while the holes are shown as dotted circles, the vertical arrows
signify the spin of the particle. A charge of 2𝑒 is carried between
the normal material and the superconductor, which corresponds
to a cooper pair. The incoming/outgoing cooper cooper pairs are
shown i orange.

where 𝛹in/out = [𝜓 in/out
↑ , 𝜓 in/out

↓ , 𝜓 in/out
↓ , −𝜓 in/out

↑ ]𝖳, describes (in)com-
ing electrons with a momentum pointing towards the surface, and
(out)going electrons with momentum pointing away from the surface.
The reflection of a hole, is essentially describing the inverse process.
A schematic of the Andreev reflectio process can be seen in figure 5.1.

5.2. Majorana fermions

The notion of anti-particles came up as negative solutions to relativistic
equations describing spin 1/2 particles by Paul Dirac [90]. The negative
solutions was particles with the same mass, but with opposite charges,
and is known as the anti-particle counterpart to the corresponding
positive solution particle. The particle and the anti-particle of these
fermions, known as Dirac fermions, are formally described by two
different complex fields. One might ask if this has to be the case, or
if a single field can describe both particles and antiparticles. This is
exactly what Ettore Majorana questioned in his 1937 paper [91], and is
wheree he put forth the idea that neutral fermions could be described
by one single (real) field, making the particles its own anti-particle.
Because of this, these fermions are called Majorana fermions.

Of the fundamental particles, there is only one neutrally charged
fermion, namely the neutrino. Whether the neutrino is a Dirac or a
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Majorana fermion is still not known, although huge¹ efforts have been
made to answer the question. Answering this question could help
answering fundamental questions of the universe such as why there is
overwhelming asymmetry in the ratio between matter and anti-matter
[93].

5.2.1. Majoranas in condensed matter systems

These concepts from particle physics can be carried over to condensed
matter system, specifically to superconducting physics. Here, the
particles are electrons and the anti-particles are holes. As we saw from
eq. , the excitations within the superconducting gap can be written as
superpositions of electrons and holes. The excitations in the gap can
be described by the fermionic creation and annihilation operators 𝛾 (𝐸)
and 𝛾†(𝐸). Due to particle hole symmetry we know that:

𝛾 (𝐸) = 𝛾†(−𝐸), (5.13)

which at the center of the gap, 𝐸 = 0, gives:

𝛾 (0) = 𝛾†(0). (5.14)

Which means that the excitations are their own anti-particles. These
excitations which are their own anti-particles are indeed Majorana
fermions, and due to their location at zero energy, they are named Ma-
jorana zero modes. These excitations do, however, come in pairs, and
we would need to break spin-degeneracy to create unpaired Majorana
fermions [94].

The first toy model showing, quite elegantly, unpaired Majorana
fermions was made by Alexei Kitaev [42]. The model consist of a “sim-
ple” 1D spinless p-wave superconductor, where the “p-wave” refers to
the momentum dependence of the pairing potential of the supercon-
ductor. The details of which we do not detail in this thesis, but can
be looked up in reviews such as Ref. [95] or in the original paper, Ref.
[42].

One way of recreating this toy model is to use a p-wave supercon-
ductor and in some way spin-polarize the system. The details of these

1. Litterally, 1000kg of isotopically enriched 76Ge detectors have been proposed in
the search for decay paths that would indicate that the neutrino is a Majorana
fermion [92].
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more exotic superconductors will not be looked at here, but many of
the early proposal for creating Majorana fermions where based on this
idea [96, 97]. One problem with these types of superconductors, is that
they are very sensitive to disorder [94] as well as very few materials ex-
hibiting this type of pairing. Since p-wave superconductors bring some
problems, the question becomes: How can we get unpaired Majoranas
without spin-less p-wave superconductors? Many approaches have
been looked at, but one possible avenue is the approach of engineering
spin polarized p-wave superconductivity without the need for intrinsic
p-wave superconductors.

The main ingredients needed are deceivingly simple, namely proxim-
itizing the superconductivity of a conventional s-wave superconductor
into a material where we break time-reversal symmetry and some spin
orbit interaction.

Nanowires

In 2010 there were two important works [83, 84] which laid the ground-
work for a surprisingly simple model. By combining a 1D nanowire,
with a strong spin-orbit interaction, and a conventional superconduc-
tor, one could engineer a topological phase by applying a small external
magnetic field. We can see how this works by looking at the band
structure of the conduction band of a 1D nanowire, see figure 5.2. What
we see is that if the chemical potential is close to 𝐸 = 0, there is only
one band at the Fermi energy, this band is a mix of the spin up and spin
down bands, but the spin mixing is one-to-one with the momentum,
meaning that effectively there is no spin-degree of freedom.

In combination with the spin-orbit coupling mixing s-wave and
p-wave superconductivity [95], means that we have all the ingredients
needed for topological phases: An effective model with spinless p-
wave superconductor. We will not look at the details here, but as
we would expect from the arguments above, this model predicts that
when the Zeeman splitting is larger than the induced superconducting
gap a topological phase appears [83, 84, 98], assuming that we place
the chemical potential at 𝐸 = 0. Tuning the Fermi-level, by e.g. gate
voltages, or the Zeeman splitting, by an external magnetic field, can
be used to tune the system in and out of the topological phase.
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Figure 5.2.: The band structure of a 1D nanowire. With (a) just
free electron, (b) free electron including spin-orbit interaction, (c)
free electron with spin-orbit interaction and Zeeman splitting. We
can see that if the chemical potential is close to 𝐸 = 0, there is
effectivly only one band at the Fermi energy.

Additionally, it is worth noting that the sensitivity to disorder is
decided by the degree to which time reversal symmetry is broken
[95]. Time reversal symmetry is in the case described here broken
by the external magnetic field, causing the Zeeman splitting in the
material. One can gauge this grade of time-reversal symmetry breaking
by comparing the Zeeman field to the spin orbit field, using the ratio of
the Zeeman energy and the spin-orbit energy, 𝐸Z/𝐸so [99, 100]. When
this ratio is small, we are close to having a time-reversal symmetric
system, and the impact of disorder is suppressed. When this ratio is
large the opposite is the case and the impact of disorder can become
substantial [95]. The ratio of the Zeeman energy and the spin-orbit
energy is crucial in understanding the limitations of these systems.
This is one motivation for investigating the details of the spin physics
in these systems, and is what we will be looking at in the next chapters,
chapters 6 and 7.

Other approaches to creating the desired topological state have
been proposed, however, the basic ingredients are the same: Induced
superconducting from a traditional s-wave superconductor, strong
spin-orbit interaction, and breaking time-reversal symmetry. Two
examples is the combination of a 2D topological insulator [101, 102],
or a 3D topological insulator nanowire [103], materials with strong
spin orbit interaction which are insulators, but due to topological
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Figure 5.3.: Possible 2D platform for hosting Majorana zero
modes. We see the effects of puncturing the topological state,
changing the boundary conditions making unpaired Majorana
zero modes on the inner boundaries.

effects have conducting surface states, with a conventional s-wave
superconductors and magnetic fields.

2D Platforms

Similarly to the 1D case from above, the simplest example of a 2D
material which can host topologicalMajorana fermions, is a 2D electron
gas (2DEG) with 𝑝𝑥+𝑖𝑝𝑦 superconductivity [95], so called chiral p-wave
superconductivity, which again refers to the momentum dependence
of the pairing potential of the superconductor, 𝛥(�⃗�) = 𝑖𝛥0(𝑘𝑥 + 𝑖𝑘𝑦),
that is odd in momentum. The similarity to the 1D case is striking,
and indeed, the same ingredients as before can again engineer the
desired topological state: A 2DHG with spin-orbit interaction, an s-
wave superconductor which proximetizes superconductivity in the
2DHG, and a Zeeman field. In this case, however, the Zeeman field
has to come from an insulating ferromagnet instead of an external
magnetic field [98]. The reason for this is that an out of plane magnetic
field (perpendicular to the SOI which is in-plane) would easily break
the superconductivity. Thus, the Zeeman coupling would need to
come from the proximity effect from the ferromagnet [104] (electrons
tunneling into the 2DHG) and not from the direct coupling between
the external magnetic field from the ferromagnetic insulator and the
electrons in the 2DHG.

The Majorana zero modes live at the boundary between the topologi-
cal region and the normal region [105]. For a 2D surface, such as a disk,
the two Majorana zero modes would live on the outer boundary of the
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disk. This is however not desired since we want un-paired Majorana
Fermions which are manipulate independently. A solution to this is to
create a second boundary inside the disk, creating an annulus, such
that the two Majorana zero modes can live independently on each
surface, see figure 5.3. If more Majorana Zero modes are desired, more
holes can be made, and while the Majorana zero modes on the outer
ring pair up, the ones which live on the inner boundaries are unpaired.

Since magnetic fields can be used to control the topological phase,
we can imagine what happens if we use a type II superconductor, and
apply sufficiently strong magnetic fields perpendicular to the surface:
The magnetic field penetrates the superconductor (and the 2DEG)
in so-called vertexes, this fairly locallized magnetic field, breaks the
topological phase in the 2DHG. By tuning howmuch flux goes through
this vortex, it is possible to manipulate the boundarry conditions in
such a way that the two unpaired Majorana zero modes apear, where
one Majorana zero mode is located at the vortex while the other is
located at the outer edge [95].

Finally, we note that there are several other 2D platforms which are
not directly relevant to the systems we will be looking at in this thesis,
such as again using 3D topological insulators [101], or using intrinsic
chiral p-wave superconductors, such as possibly Sr2RuO4 [106].

5.2.2. Quantum computation and braiding

The Majorana zero modes are clearly fascinating from a fundamental
physics point of view, however, the main reason for their fame, is their
quantum information applications. To see why we have to look at
their exchange statistics.

For particles in 3D space there are essentially two options for what
happens if we exchange two identical particles, either the wave func-
tion acquires an additional factor−1 (for fermions) or thewave function
is unchanged, i.e. , the wave function gains a factor +1 (for bosons).
This essentially reflects the fact that we get back to the same indistin-
guishable state as we started in after exchanging particles twice. In two
dimensions this is not necessarily the case, as first noted by Leinaas
and Myrheim [107] in 1977. The essential difference is that in 3 + 1
dimension, the world lines of the particles can be untangled without
crossing paths, while in 2 + 1 dimension this is not always possible,
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Figure 5.4.: In this figure we see the world lines of anyons
through 2 + 1 dimensions, frome some time, 𝑡1, in the bottom to
a later time, 𝑡2, on top. The world lines intertwine in such a way
that there is no way of untangeling them.

the states which experience exchange are topologically different from
ones which has not experienced exchange, see figure 5.4. The result is
that after two exchanges of two identical particles at position 𝑟1 and 𝑟2,
it is possible that we end up with something non-trivial:

𝛹(𝑟1, 𝑟2) → 𝑈𝛹(𝑟1, 𝑟2), (5.15)

Where 𝑈 in general is a unitary matrix. The 2D particles that Leinaas
and Myrheim thought up in the 70s had 𝑈 = 𝑒2𝑖𝜙, where 𝜙 could be any
phase for a given particle, as opposed to fermions and bosons where
𝜙 = 𝜋, 0 respectively. This lead to these particles being called anyons,
since they could pick up any phase during exchange.

As noted, 𝑈 can in principle be a unitary matrix [108], and unitary
matrices do not necessarily commute. If we do multiple exchanges
(with more particles), the order of the exchanges are important for
the final wavefunction. The group of these matrices are so-called non-
abelian, and the anyons which follows these exchange statistics are,
therefore, called non-abelian anyons.

The Majorana zero modes we discussed earlier, turn out to be non-
abelian anyons, and by exchanging the position of the Majorana zero
modes, so-called braiding, the state of the system can change, see fig-
ure 5.4. Using four Majorana fermions it is possible to implement a
qubit, a so-called Majorana box qubit, which is manipulated by braid-
ing [105, 109]. This braiding can be used to implement a subset of the
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gates needed for universal quantum computation, the Clifford gates.
However, the remaining gates needed for universal quantum compu-
tation can still be implemented using these qubits, using operations
which do not have the same topological protection or by usining aniclla
qubits [105]. It is also worth mentioning that actually performing the
braiding is complicated, and a measurement based approach keeps
the topological protection without the need for actually moving the
Majorana fermions [110].

5.3. Outlook and contributions

As stated above the ingredients needed to create systems which can
host Majorana zero modes are relatively simple. They have however
been elusive and it turns out that the experimental side of things are
much more complicated. The majorana zero mode has multiple fea-
tures such as the so call zero bias peeks [111] and non local conductance
[112]. However, it turns out that non-topological systems can recreate
these signatures [40, 113], meaning that final proof of their exsitence
is dificult to produce.

The ultimate proof is likely the actual braiding of the non-abelian
anyons, but this is not currently within reach. In the mean time one
important step is to know crucial properties of the materials/devices
that make up these potentially topological systems. Some properties
such as spin-orbit coupling is not just material spesific, but device
spesific, and measuring these properties can be challanging. In the
following chapters we look at two such hybrid devices, a 1D nanowire
SNS junction, and a 2D hole gas SNS junction. We show that the
analytic insight we get can be used to possibly measure properties
such as the spin-orbit interaction of the normal material.
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6The critical current in an NW SNS junction
with a scatterer
In this chapter we will be looking at a hybrid device composed of a
semiconductor nanowire of length 𝐿 connected to two superconduct-
ing contacts, known as an SNS junction, a superconducting-normal-
superconduting junction. A sketch of the system we consider can be
seen in figure 6.1. The nanowire is assumed to potentially having a
significant spin-orbit coupling. We include an external magnetic field,
pointing in a general direction. We also include disorder, which me
model as a single scatterer in the middle of the wire, with a scattering
amplitude, 𝑇.

The goal is to calculate the critical current of the junction. The
supercurrent is naturally heavily dependent on the spin mixing in
the normal material, and so we could potentially be able to extract
information about the spin mixing parameters, the SOI field and the
Zeeman field, from the critical current. Both the spin-orbit field and
the Zeeman field, can depend heavily on parameters such as the micro-
scopic geometry of the device and strain. By being able to describe an
easily measured quantity, the critical current, we hope to bring useful
insight into these devices. This chapter is based on a manuscript in
preparation [iv].

6.1. Model

Since we are working with the proximity effect of the superconductor,
we will phrase the Hamiltonian here in terms of the BdG Hamiltonian,
ℋ, introduced in the previous chapter:

𝐻 = 1
2 ∫

𝑑𝑥𝛹†ℋ𝛹, (6.1)

where 𝛹 = [𝜓↑(𝑥), 𝜓↓(𝑥), 𝜓
†
↓ (𝑥), −𝜓↑(𝑥)

†]𝖳, with 𝜓𝜎(𝑥) is the annihila-
tion operator of an electron with spin 𝜎 =↑, ↓. Furthermore, the BdG
Hamiltonian is given by:

ℋ = (
𝐻0 �̂�
̂𝛥† −𝒯 𝐻0𝒯 †) , (6.2)
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Figure 6.1.: Schematic of the NW SNS junction considered in this
chapter. The device is made up of two superconducting regions,
with phases 𝜙𝑙/𝑟, proximetized from two superconductors (blue),
connected with a semi-conducting nanowire of length 𝐿 which
has a scatterer in the middle (orange), which has a transparency
amplitude 𝑇.

where 𝒯 is the time reversal operator, 𝐻0 describes the physics of the
electron sector, and the time reversed −𝒯 𝐻0𝒯 † describes the physics
of the hole sector, both of which are 2 × 2 matrices in spin space. We
define the matrix 𝐻0 in the following way:

𝐻0 = −
ℏ2∂2𝑥
2𝑚

− 𝜇

Free electron

+ 𝑉0𝛿 (𝑥 − 1
2
𝐿)

Scatterer

+ (𝐵Z − 𝑖∂𝑥𝛼so) ⋅ 𝜎

Zeeman effect and SOI

,

(6.3)

where 𝜇 is the chemical potential, 𝑚 is the electron mass, ℏ is the re-
duced Planck constant, 𝛿(𝑥) is the Dirac delta distribution, the potential
𝑉0 parametrizes the strength of the scattering placed in the middle of
the wire at position 𝑥 = 𝐿/2, 𝐵Z = (1/2)𝜇𝐵𝑔𝐵𝑚 is the Zeeman field and
𝛼so is the spin-orbit field. The vector 𝜎 = [𝜎𝑥, 𝜎𝑦, 𝜎𝑧] is made from the
three Pauli matrices. For the terms without matrices, the unit matrix 𝐼
is implied, as usual.

The off-diagonal block ofℋ, which couples the electrons to the holes
is diagonal in the basis which we have chosen, coupling electrons with
holes of opposite spins, �̂�(𝑥) = 𝛥(𝑥)𝟙, where the amplitude is assumed
to be:

𝛥(𝑥) =
⎧

⎨
⎩

𝛥0𝑒−𝑖𝜙𝑙 , for 𝑥 < 0,
𝛥0𝑒−𝑖𝜙𝑟 , for 𝑥 > 𝐿,
0, for 0 ≤ 𝑥 ≤ 𝐿,

(6.4)
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i.e. , the pairing potential is non-zero only in the superconducting
regions, with phases 𝜙𝑙/𝑟 in the left and right superconductor regions
respectively, with the same amplitude for both 𝛥0. The superconduct-
ing regions could be a superconducting material, or more realistically
a region of the nanowire which obtains superconductivity because of
the proximity effect, reflected in figure 6.1.

The goal is to find solutions to the BdG equation from chapter 5:

∫𝑑𝑟 ′ℋBdG(𝑟 , 𝑟 ′)𝜓 𝑛(𝑟 ′) = 𝐸𝑛𝜓 𝑛(𝑟), (6.5)

with the eigenvectors 𝜓 𝑛(𝑟 ′) = [𝑢↑(𝑟), 𝑢↓(𝑟), 𝑣↓(𝑟), −𝑣↑(𝑟)]𝖳. Assuming
that we are in the short junction limit, i.e. , 𝐿 ≪ 𝜉, where 𝜉 is the coher-
ence length in the normal material, the zero-temperature supercurrent
is given in terms of the energies 𝐸𝑛 within the gap [89]:

𝐼 (𝜙) = 2𝑒
ℏ
∑
𝑛

′ 𝑑𝐸𝑛
𝑑𝜙

, (6.6)

where the prime indicates that we are summing over the negative
energies only.

6.1.1. Linearization and diagonalization

We assume that the pairing potential is much smaller than the chemical
potential, 𝛥0 ≪ 𝜇, and that we are interested in the physics within the
gap, caused by the sub-gap states carrying the supercurrent as we just
saw above. This means that we can linearize the Hamiltonian around
the Fermi energy, since all the “important” physics is going on close to
this. The Hamiltonian, to the left and right of the scatterer can then be
written in terms of the wave vector 𝑘 and the Fermi momentum 𝑘𝐹 as:

𝐻𝐿,𝑅
0± = ±ℏ𝑣F(𝑘 − 𝑘F) + (𝐵Z ± 𝐵𝑠𝑜) ⋅ 𝜎 , (6.7)

Where the ± indicates electron moving in the positive/negative 𝑥-
direction, and where we have introduced the spin-orbit field, 𝐵𝑠𝑜 =
𝑘F𝛼𝑠𝑜.

We are of course able to freely choose the quantization axis for
spins, and so we can align the z-axis along (𝐵Z + 𝐵𝑠𝑜). The positive
momentum electrons get the diagonalized Hamiltonian:

𝐻𝐿,𝑅
0+ = ℏ𝑣F(𝑘 − 𝑘F) + 𝐵+𝑒 ⋅ 𝜎𝑧, (6.8)
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where 𝐵+𝑒 = |𝐵Z +𝐵𝑠𝑜| is the total field that the electrons moving in the
positive direction sees.

We could of course have done the same for the electrons moving in
the other direction, setting the quantization axis along (𝐵Z −𝐵𝑠𝑜). And
as long as there is no mixing between right and left moving electrons
we are able to describe the full electron Hamiltonians as:

𝐻𝐿,𝑅
0± = ±ℏ𝑣F(𝑘 − 𝑘F) + 𝐵±𝑒 𝜎𝑧, (6.9)

where 𝐵±𝑒 = |𝐵Z ± 𝐵𝑠𝑜|. Where we describe the left moving and right
moving electrons in two different bases.

We are similarly able to diagonalize the hole part of the BdG Hamil-
tonian, by noting that the effective fields are transformed by the time
reversal operator as:

−𝒯 (𝐵Z ± 𝐵𝑠𝑜) ⋅ 𝜎𝒯 † = (𝐵Z ∓ 𝐵𝑠𝑜) ⋅ 𝜎 , (6.10)

and so the effective field the holes “feel” are that of the oppositely
moving electrons, 𝐵±𝑒 = 𝐵∓ℎ . The hole sector Hamiltonian can then be
written as:

−𝒯 𝐻𝐿,𝑅
0± 𝒯 † = ±ℏ𝑣F(𝑘 + 𝑘F) + 𝐵±ℎ 𝜎𝑧. (6.11)

Consequences of diagonalization

The way we diagonalized the Hamiltonians above, might seem a bit
too good to be true, and it sort of is. The price we pay is that anything
“simple” which scatters left moving electrons/holes to right moving
electrons/holes, and vice versa, such as the scatterer, becomes more
complicated because we have to take into account the change of basis
between left moving and right moving electrons. Similarly, processes
which scatter electrons to holes, such as the Andreev reflections, be-
come more complicated, because electrons and holes are not expressed
in the same spin basis.

We do not get rid of the spin mixing with this diagonalization, we
just formulate it in such a way that all the spin mixing happens at the
scattering events. However, this way of expressing the spin mixing
makes the following discussion and calculation somewhat easier.
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6.1.2. Scattering matrix

Wenowwant to solve the BdG equation to find the bound state energies
within the gap in order to calculate the supercurrent. To do this we
are going to formulate the problem in terms of a scattering matrix
[89]. A scattering matrix connects the amplitudes of an incoming
wave with that of an outgoing one. For electrons moving to the right
in the nanowire (i.e. with positive momentum), we can connect the
amplitudes of the electrons just to the right of the left superconducting
region, 𝑥 = 0, with the amplitudes of electrons just to the left of the
scatterer 𝑥 = 𝐿/2 in the following way:

(
𝑎+↑ (𝐿/2)
𝑎+↓ (𝐿/2)

) = 𝑡+𝑒 (
𝑎+↑ (0)
𝑎+↓ (0)

) , (6.12)

where 𝑡+𝑒 is the scattering matrix describing this process. The labeling
↑ / ↓ in the subscripts of the amplitudes above, is somewhat misleading.
Since we are working with multiple spin bases, we cannot think of
these as purely spin-up/spin-down, but rather as some more abstract
pseudo-spin. However, this basis choice does make it simple to write
transfer matrices, which, because there is no spin mixing, are diagonal:

𝑡+𝑒 = (
𝑒𝑖(𝜃𝑒++𝑘𝐹𝐿)/2 0

0 𝑒𝑖(−𝜃ℎ−+𝑘𝐹𝐿)/2
) , (6.13)

where 𝑘F is the Fermi momentum and where 𝜃𝑒+ = (𝐵+𝑒 /ℏ𝑣𝐹 + 𝑘)𝐿
and 𝜃ℎ− = (𝐵−ℎ /ℏ𝑣𝐹 − 𝑘)𝐿. We consider the short junction limit where
𝑘𝐿 ≪ 1, meaning that the 𝜃s essentially are the phase gained by an
electron due to the spin-orbit and Zeeman field. For electrons moving
to the right on the right side of the scatterer, the same scattering matrix
applies:

(
𝑎+↑ (𝐿)
𝑎+↓ (𝐿)

) = 𝑡+𝑒 (
𝑎+↑ (𝐿/2)
𝑎+↓ (𝐿/2)

) . (6.14)

The scattering matrix for the left moving electrons are however
different, since these experience different fields, which generally do
not point in the same direction as for the right moving electrons:

(
𝑎−↑ (𝐿/2)
𝑎−↓ (𝐿/2)

) = 𝑡−𝑒 (
𝑎−↑ (𝐿)
𝑎−↓ (𝐿)

) , (
𝑎−↑ (0)
𝑎−↓ (0)

) = 𝑡−𝑒 (
𝑎−↑ (𝐿/2)
𝑎−↓ (𝐿/2)

) , (6.15)
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where the scattering matrix is given by:

𝑡−𝑒 = (
𝑒𝑖(𝜃𝑒−−𝑘𝐹𝐿)/2 0

0 𝑒𝑖(−𝜃ℎ+−𝑘𝐹𝐿)/2
) , (6.16)

and where 𝜃𝑒− = (𝐵+𝑒 /ℏ𝑣𝐹 − 𝑘)𝐿 and 𝜃ℎ+ = (𝐵+ℎ /ℏ𝑣𝐹 + 𝑘)𝐿.
Similarly, we can define the transfer matrices for the holes:

(
𝑏+↑ (𝐿/2)
𝑏+↓ (𝐿/2)

) = 𝑡+ℎ (
𝑏+↑ (0)
𝑏+↓ (0)

) , (
𝑏+↑ (𝐿)
𝑏+↓ (𝐿)

) = 𝑡+ℎ (
𝑏+↑ (𝐿/2)
𝑏+↓ (𝐿/2)

) ,

(
𝑏−↑ (𝐿/2)
𝑏−↓ (𝐿/2)

) = 𝑡−ℎ (
𝑏−↑ (𝐿)
𝑏−↓ (𝐿)

) , (
𝑏−↑ (0)
𝑏−↓ (0)

) = 𝑡−ℎ (
𝑏−↑ (𝐿/2)
𝑏−↓ (𝐿/2)

) ,
(6.17)

where the transfer matrices for positive/negative momentum holes are
given by:

𝑡±ℎ = (
𝑒𝑖(𝜃ℎ∓±𝑘𝐹𝐿)/2 0

0 𝑒𝑖(−𝜃𝑒±±𝑘𝐹𝐿)/2
) . (6.18)

Andreev reflection and the scatterer

As stated in the previous section, a consequence of diagonalizing the
Hamiltonian in the way we have done, is that we would have to be
careful when considering reflections which change the direction of the
particles as well as when an electron is scattered as a hole and vice
versa.

We previously looked at Andreev reflections, and saw that when
scattered of the superconducting-normal surface, incoming electrons
are scattered as outgoing holes with opposite spin, as well as picking
up an energy dependent phase factor 𝑒−𝑖 arccos 𝐸/𝛥 and a phase corre-
sponding to the phase of the superconducting region 𝜙𝑙/𝑟. This would
imply that we could describe the process of a left moving electron scat-
tering to a right moving hole at the left SN surface with the following
scattering matrix:

(
𝑏+↓ (0)
−𝑏+↑ (0)

) = 𝑒−𝑖 arccos 𝐸/𝛥𝑒𝑖𝜙𝑙/𝑟 (
1 0
0 1)

𝑟𝐿𝐴(0)

(
𝑎−↑ (0)
𝑎−↓ (0)

) . (6.19)
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However, we have to account for the change of basis to be consistent
with the scattering matrices above. Since the spin basis of the holes
is rotated with respect to the electrons we have to apply a rotation
matrix to the scattering matrix:

𝑟𝐿𝐴(𝜃) = 𝑒−𝑖 arccos(𝐸/𝛥)𝑒𝑖𝜙𝑙 (
cos( 𝜃2 ) sin( 𝜃2 )
− sin( 𝜃2 ) cos( 𝜃2 )

) , (6.20)

where 𝜃 is the angle between the effective fields for electrons and holes:

𝜃(�⃗�) = arccos (
𝐵𝑒(�⃗�) ⋅ 𝐵ℎ(�⃗�)

|𝐵𝑒(�⃗�)||𝐵ℎ(�⃗�)|
) . (6.21)

The same can of course be done for the right surface, with the only
change being picking up the phase from the right superconducting
region 𝜙𝑟:

𝑟𝑅𝐴(𝜃) = 𝑒−𝑖 arccos(𝐸/𝛥)𝑒𝑖𝜙𝑟 (
cos( 𝜃2 ) sin( 𝜃2 )
− sin( 𝜃2 ) cos( 𝜃2 )

) . (6.22)

The scattering matrix describing the inverse process (holes to elec-
trons) can of course be found by applying the inverse rotation (by
−𝜃), and the phase picked up from the superconducting region is the
opposite, because this is the time-reversed process:

𝑟 𝑟/𝑙∗𝐴 (𝜃) = 𝑒−𝑖 arccos(𝐸/𝛥)𝑒−𝑖𝜙𝑟/𝑙 (
cos( 𝜃2 ) − sin( 𝜃2 )
sin( 𝜃2 ) cos( 𝜃2 )

) . (6.23)

Now the same basic idea can be applied to the case of the scatterer.
The scattering matrix relating the amplitudes to the left and right of
the scatterer is defined as:

⎛
⎜
⎜
⎜
⎝

𝑎+↑ (𝐿/2 + 𝜂)
𝑎+↓ (𝐿/2 + 𝜂)
𝑎−↑ (𝐿/2 − 𝜂)
𝑎−↓ (𝐿/2 − 𝜂)

⎞
⎟
⎟
⎟
⎠

= (
̂𝑇 −�̂�

�̂�𝖳 ̂𝑇
)
⎛
⎜
⎜
⎜
⎝

𝑎+↑ (𝐿/2 + 𝜂)
𝑎+↓ (𝐿/2 + 𝜂)
𝑎−↑ (𝐿/2 − 𝜂)
𝑎−↓ (𝐿/2 − 𝜂)

⎞
⎟
⎟
⎟
⎠

, (6.24)

where 𝜂 is a small distance to the right and left of the scatterer, �̂� is
a reflection matrix, �̂�𝖳 is the transpose of the reflection matrix and ̂𝑇
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is the transfer matrix. The transfer matrix is proportional to the unit
matrix:

̂𝑇 = 𝑇 (
1 0
0 1) , (6.25)

and where 𝑇 is the transfer amplitude. The reflection matrix, �̂�, gets
the same rotation as the Andreev reflection matrix for the same reason,
a rotation of the spin basis:

�̂� = √1 − 𝑇 2 (
cos( 𝜃2 ) sin( 𝜃2 )
− sin( 𝜃2 ) cos( 𝜃2 )

) . (6.26)

Equation for the bound state energies

We now consider the amplitudes just to the right and left of the scat-
terer, which we label according to figure 6.2. Using the scattering
matrices we have defined above we can relate the amplitudes of the
positive momentum electrons on the right side of the scatterer, with
the amplitudes of the negative momentum holes on the right side of
the scatterer:

(
𝑎𝑅𝑐
𝑎𝑅𝑑
) = 𝑀1 (

𝑎𝑅𝑎
𝑎𝑅𝑏
) , (6.27)

where the scattering matrix, 𝑀1, consist of the piecewise scattering
matrices:

𝑀1 = 𝑡−ℎ 𝑟
𝑅
𝐴𝑡

+
𝑒 . (6.28)

On the left side of the scatterer we can do the same:

(
𝑎𝐿𝑎
𝑎𝐿𝑏
) = 𝑀2 (

𝑎𝐿𝑐
𝑎𝐿𝑑
) , (6.29)

𝑀2 = 𝑡+𝑒 𝑟𝐿∗𝐴 𝑡−ℎ . (6.30)

From figure 6.2 we see that combining 𝑀1 and 𝑀2 makes a loop,
which is how we are going to obtain the equation for the bound state
energies. The scatterer does however make it so that we do not have
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Figure 6.2.: Diagram showing the amplitudes labeling of the
amplitudes to the right and left of the scatter in the 1D wire.
The shaded region in the middle signifies the scatter placed at
𝑥 = 𝐿/2. The horizontal arrows represent the transfer matrices.
The vertical arrows signify the pseudo-spin we introduced earlier,
and should not be confused with the actual spin of the particle,
unless there is no spin-orbit interaction. The mixing of the spin
happens at the Andreev reflections and at the scatterer in the
middle. Solid(dotted) lines signifies electrons(holes). The transfer
matrices 𝑀1,2 and �̃�1,2 are drawn in blue, orange, magenta and
green respectively.

a closed loop quite yet. The scatterer can scatter electrons and holes
into a different loop with the opposite direction. Hence, we do the
same for the left moving electrons and right moving holes, obtaining:

(
𝑎𝑅𝑒
𝑎𝑅𝑓
) = �̃�1 (

𝑎𝑅𝑔
𝑎𝑅ℎ
) , (6.31)

(
𝑎𝐿𝑔
𝑎𝐿ℎ
) = �̃�2 (

𝑎𝐿𝑒
𝑎𝐿𝑓
) , (6.32)

where:

�̃�1 = 𝑡−𝑒 𝑟𝑅∗𝐴 𝑡+ℎ , (6.33)

�̃�2 = 𝑡+ℎ 𝑟
𝐿
𝐴𝑡

−
𝑒 . (6.34)
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By using the scattering matrix for the scatterer, equation (6.24), and
the 𝑀 matrices from above, we can make the following relations for
the amplitudes:

⎛
⎜
⎜
⎝

𝑎𝐿𝑐
𝑎𝐿𝑑
𝑎𝑅𝑔
𝑎𝑅ℎ

⎞
⎟
⎟
⎠

= (
̂𝑇𝑀1 −�̂��̃�2

�̂�𝖳𝑀1 ̂𝑇 �̃�2
)

𝑀𝐴

⎛
⎜
⎜
⎜
⎝

𝑎𝑅𝑎
𝑎𝑅𝑏
𝑎𝐿𝑒
𝑎𝐿𝑓

⎞
⎟
⎟
⎟
⎠

, (6.35)

and

⎛
⎜
⎜
⎜
⎝

𝑎𝑅𝑎
𝑎𝑅𝑏
𝑎𝐿𝑒
𝑎𝐿𝑓

⎞
⎟
⎟
⎟
⎠

= (
̂𝑇𝑀2 �̂�𝖳�̃�1

−�̂�𝑀2 ̂𝑇 �̃�1
)

𝑀𝐵

⎛
⎜
⎜
⎝

𝑎𝐿𝑐
𝑎𝐿𝑑
𝑎𝑅𝑔
𝑎𝑅ℎ

⎞
⎟
⎟
⎠

. (6.36)

We now see that the vector on the right(left) side of equation (6.35)
and the left(right) side of equation (6.36) are the same, meaning that
we have a closed loop. This gives us the following eigenvalue problem:

⎛
⎜
⎜
⎜
⎝

𝑎𝑅𝑎
𝑎𝑅𝑏
𝑎𝐿𝑒
𝑎𝐿𝑓

⎞
⎟
⎟
⎟
⎠

= 𝑀𝐵𝑀𝐴

⎛
⎜
⎜
⎜
⎝

𝑎𝑅𝑎
𝑎𝑅𝑏
𝑎𝐿𝑒
𝑎𝐿𝑓

⎞
⎟
⎟
⎟
⎠

. (6.37)

Which have solutions if the matrix 𝑀𝐵𝑀𝐴 has an eigenvalue of 1. This
is the case when:

Det [1 − 𝑀𝐵𝑀𝐴] = 0, (6.38)

which is an equation we can solve for the energy 𝐸 of the bound states.
Continuing to assuming that we are in the short junction limit we
obtain the following expression for the bound state energies 𝐸:

𝐸 = ±𝛥√𝑣 ± √𝑤, (6.39)
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where the two ± are independent, and 𝑣 and 𝑤 are defined as:

𝑣 = 1
2
(1 + 𝐴 − 𝐵𝑅2) − 𝐴𝑇 2 sin (

𝜙
2
)
2
, (6.40)

𝑤 = (1 − 𝐴) sin (
𝜙
2
)
2
𝑇 2

× {(1 + 𝐴) [1 − sin (
𝜙
2
)
2
𝑇 2] − 𝐵𝑅2} , (6.41)

where and 𝑅2 = 1 − 𝑇 2, and using the notation:

𝐴 = cos(𝜃𝑒+) cos(𝜃ℎ+) − cos(𝜃) sin(𝜃𝑒+) sin(𝜃ℎ+), (6.42)

𝐵 = 2 sin(𝜃)2 sin ( 𝜃𝑒+2 )2 sin ( 𝜃ℎ+2 )2, (6.43)

6.2. Critical current

From the bound state energies, equation (6.39), we are able to calculate
the supercurrent using equation (6.6):

𝐼 (𝜙) = 2𝑒
ℏ
∑
𝑛

′ 𝑑𝐸𝑛
𝑑𝜙

, (6.44)

A nice feature of the way we have expressed the energies is that we
obtain two positive energies:

𝐸+± = 𝛥√𝑣 ± √𝑤, (6.45)

and two negative energies:

𝐸−± = −𝛥√𝑣 ± √𝑤. (6.46)

Which makes taking the sum over negative energies simple:

𝐼𝑆(𝜙) =
2𝑒
ℏ
∑
𝜎=±

𝑑𝐸−𝜎
𝑑𝜙

. (6.47)

The expression for the supercurrent does, however, get quite in-
volved, even with the notation introduced in the previous section.
Because of this, we here look at a few parameter limits in some more
detail.
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Small-T limit

To obtain the supercurrent in the small-T limit we Taylor expand the
energies from equation (6.46), keeping only terms up to 𝒪(𝑇 2) and
insert them into equation (6.47). This gives us the expression for the
supercurrent in the small-T limit:

𝐼𝑆(𝜙) = 𝛥2𝑒
ℏ
(𝐴 + 1)𝑇 2 sin(𝜙)

2√2𝐴 − 𝐵𝑅2 + 2
. (6.48)

As one would expect from a weakly coupled SNS junction, we get a
sinusoidal critical current as a function of the phase difference between
the two superconductors. Maximizing this with respect to the phase
difference, 𝜙, is as simple as setting sin(𝜙) → 1, giving us the critical
current in the small-T limit:

𝐼𝐶(𝜙) = 𝛥2𝑒
ℏ

(𝐴 + 1)𝑇 2

2√2𝐴 − 𝐵𝑅2 + 2
. (6.49)

High-T limit

For the high-T limit we set the transmission amplitude to, 𝑇 → 1.
Which after inserting the negative energies into equation (6.46) lets us
write the supercurrent as:

𝐼𝑆(𝜙) = 𝛥2𝑒
ℏ
1
4
(

cos(𝜙 − 𝜂)

√sin2 (12 (−𝜂 + 𝜙 − 𝜋
2))

−
cos(𝜂 + 𝜙)

√cos2 (12 (𝜂 + 𝜙 − 𝜋
2))

) ,

(6.50)

Where 𝜂 is the angle of the point (√1 − 𝐴2, 𝐴)¹.
We can now, by using the symmetry of the supercurrent 𝐼 (𝜙) =

−𝐼 (−𝜙) and the 2𝜋 periodicity of the critical current, focus on the
region 𝜙 ∈ [0, 𝜋]. Furthermore, using the fact that −1 < 𝐴 < 1, which
leads to −𝜋

2 < 𝜂 < 𝜋
2 , allows us to make the following simplification:

𝐼𝑆(𝜙) = 𝛥2𝑒
ℏ

⎧

⎨
⎩

sin( 𝜙
2 )(sin(

𝜂
2 )+cos(

𝜂
2 ))

√2
, for 𝜙 < 𝜂 + 𝜋

2 ,
cos( 𝜙

2 )(sin(
𝜂
2 )−cos(

𝜂
2 ))

√2
, for 𝜙 > 𝜂 + 𝜋

2 .
(6.51)

1. This is essentially arctan(𝐴/√1 − 𝐴2), but with an arctan(𝑦/𝑥) function which
takes into account which quadrant the point (𝑥, 𝑦) is in.
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The absolute value of the first function above is monotonically
increasing on the valid range [0, 𝜋], while the absolute value of the
second function is monotonically decreasing in the same region. This
means that the critical current has to be at the point where we switch
from one to the other at 𝜙 = 𝜂 + 𝜋/2:

𝐼𝑐 = 𝛥2𝑒
ℏ

max [|1
2
{sin(𝜂) + 1}| , | 1

2
{sin(𝜂) − 1}|]

= 𝛥 𝑒
ℏ
[1 + sin(|𝜂|)] ,

(6.52)

which after inserting the definition of 𝜂 gives us the critical current for
a transparent wire:

𝐼𝑐 = 𝛥 𝑒
ℏ
(1 + |𝐴|) , (6.53)

which in terms of the electron and hole fields is:

𝐼𝑐 = 𝛥 𝑒
ℏ
[1 + |cos(𝜃𝑒+) cos(𝜃ℎ+) − cos(𝜃) sin(𝜃𝑒+) sin(𝜃ℎ+)|] .

(6.54)

6.3. Applications

What we have obtained above is a model for the critical current in
a nanowire with spin orbit interaction and Zeeman splitting. The
critical current is written in terms of the effective field experienced
by electrons and holes with positive momentum, the angle between
these fields, and the transparency of the wire, 𝑇. Equivalently, by using
the definition of the electron and hole field, we are able to express
the critical current by the magnitude of the spin-orbit field and the
Zeeman field, the angle between these, and again the transparency of
the wire, 𝑇.

One application could be to measure the spin-orbit field in the
nanowire. Assuming that the transparency of the wire and the g-factor
can be found by other experiments, in principle the only unknown
in the model is the spin orbit field². This model could possibly al-
low us to measure the spin-orbit coupling by using critical current
measurements.
2. All angles between the Zeeman field and the spin-orbit field can be mapped out

by critical current measurements for magnetic fields with different angles perpen-
dicular to the wire, since we know the Rashba spin-orbit field is perpendicular
to the wire.
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A more general application is describing more complex devices such
as devices made from multiple 1D SNS junctions [114]. Furthermore,
the model can be used as a way of approximating the behavior of
2D SNS junctions. The current is not always carried uniformally
through a 2D SNS junction [115], such as running along the edges of
the junction. An approximate model for these systems could be one or
more nanowires modeled in this chapter.
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7Probing spin–orbit and Zeeman fields via
the critical current in a 2DHG SNS junction
Similarly to the previous chapter, we here look at the critical current
of an SNS junction. The aim is also here to uncover details of the
spin dynamics of the normal material. This time however, we look
at a 2D hole gas (2DHG) SNS junction. This is motivated by the
interest in recent years for devices made with 2DHGs [116–118], due
to interesting properties such as anisotropic and tunable g-factors [119,
120], and strong and tunable spin-orbit interaction [121–124], all of
which stem from the p-type orbital structure of the valence band [125].
Superconducting/2DHG devices have also gained attention lately due
their applications within engineering topological superconductivity
[126, 127].

The 2DHG SNS junction faces many of the same challenges as was
brought up when discussing the NW SNS junction in the previous
chapter, such as that microscopic geometric details of the junction,
strain, carrier density and so on, can have a great impact on the both
the effective spin orbit interaction and the g-factor of the material.
However, these quantities are not trivial to measure. In the following,
which is based on paper [iii], we obtain analytical expressions for the
critical current as a function of some of these parameters, and show
that critical current measurements can tell us something about them.

7.1. Properties of the 2DHG

We imagine placing the chemical potential in the top of the valence
band of a semiconductor, and are interested in the simplest model
which describe the valence band. The valence band is p-orbital in the
materials we consider, and hence has a total angular momentum of 3/2
(electron spin, 1/2, and the angular momentum from the orbital, 1).
Because of this there are 6 sub-bands in the valence band: |3/2, +3/2⟩,
|3/2, −3/2⟩, |3/2, +1/2⟩, |3/2, −1/2⟩, |1/2, +1/2⟩, |1/2, −1/2⟩. A sketch
of the valence band and the conduction band can be seen in figure 7.1.
Because of spin orbit interaction the |1/2, +1/2⟩ and |1/2, −1/2⟩ bands
are split off from the rest. The energy which these bands are split off
from the rest, 𝛥𝑆𝑂, is assumed to be large, and so the top two bands,
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Figure 7.1.: Sketch of the spectrum of a hole gas. We can see
the s-orbital conduction band and the p-orbital valance bands,
inlcuding the split off band and the heavy and light holes. In (a)
we see the spectrum in the bulk, while in (b) we see the spectrum
of a 2D system. We assume that 𝛥𝑆𝑂 is large and that the chemical
potential, 𝜇, is placed close to the top of the HH band.

closes to the gap, called the heavy hole and light hole bands, are mainly
what we are interested in. The heavy hole and light hole bands make an
effective spin 3/2 system, which is the root of much of the interesting
physics which we will see later in this chapter.

The 4 × 4 Luttinger Hamiltonian describes this effective 3/2 system
and is derived from 𝑘 ⋅ 𝑝 theory, and is obtained by including the effects
of the other bands in the full model by perturbation theory. The full
Luttinger Hamiltonian (or indeed the full 16 state 𝑘 ⋅ 𝑝 model, the Kane
model), can be looked up in e.g. [125], but we here keep to just writing
the 2D Luttinger model, where we have assumed that the sample is
heavily confined in the 𝑧-direction, in the basis of angular momentum
states {|+3/2⟩ , |−3/2⟩ , |+1/2⟩ , |−1/2⟩}:

𝐻𝐿 = 1
2𝑚0

⎛
⎜
⎜
⎝

𝑃 + 𝑄 0 0 𝑀
0 𝑃 + 𝑄 𝑀∗ 0
0 𝑀 𝑃 − 𝑄 0
𝑀∗ 0 0 𝑃 − 𝑄

⎞
⎟
⎟
⎠

, (7.1)
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where

𝑃 = 𝛾1 (𝑘2 + ⟨𝑘2𝑧 ⟩) , (7.2a)

𝑄 = 𝛾2 (𝑘2 − 2⟨𝑘2𝑧 ⟩) , (7.2b)

𝑀 = −1
2√3 [(𝛾2 + 𝛾3)𝑘2− + (𝛾2 − 𝛾3)𝑘2+] , (7.2c)

where 𝑘2 = 𝑘2𝑥 + 𝑘2𝑦 is the square of the in plane component of the mo-
mentum vector, the momentum raising/lowering operators are defined
as 𝑘± = 𝑘𝑥 ± 𝑖𝑘𝑦, and 𝛾𝑖 are the so called Luttinger parameters. The
Luttinger parameters are material specific; examples of parameters are
shown in table 7.1. From this table we can see that for some semicon-
ductors, such as Ge, GaAs, InSb, and InAs (but not Si) the second and
third Luttinger parameters are almost equal, |𝛾2 − 𝛾3| ≪ 𝛾2 + 𝛾3. When
this is the case, the non-spherical symmetric term in equation (7.2c)
becomes small. A good approximation for these materials is the spher-
ical approximation, where we drop this non-spherically symmetric
term [125]. In the following we assume that we are able to use this ap-
proximation. The expectation value of the 𝑘2𝑧 operator is proportional
to the inverse square of the confinement length, ⟨𝑘2𝑧 ⟩ ∼ 1/𝑑2, where 𝑑
is the confinement length in the 𝑧-direction.

Spin orbit interaction and the Zeeman effect

We also want to include spin-orbit coupling and the Zeeman effect. We
here limit our selves to a Rashba like spin-orbit coupling which could
be due to asymmetries created by the interfaces or an externally applied
electric field. This coupling can be described by the Hamiltonian:

𝐻R = 𝑖𝛼R(𝑘+𝐽− − 𝑘−𝐽+), (7.3)

Table 7.1.: Table over the Luttinger parameters 𝛾1,2,3 of a few
semiconductors of interest [125].

𝛾1 𝛾2 𝛾3
Ge 13.38 4.24 5.69
GaAs 6.85 2.10 2.90
InAs 20.40 8.30 9.10
InSb 37.10 16.50 17.70
Si 4.285 0.339 1.446
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where 𝛼R is the amplitude of the coupling term, and characterizes the
strength of the coupling, 𝐽± = 𝐽𝑥 ± 𝑖𝐽𝑦 are the spin 3/2 raising and
lowering operators, which in matrix form can be written in the same
basis as the Luttinger Hamiltonian:

𝐽+ =
⎛
⎜
⎜
⎝

0 0 √3 0
0 0 0 √3
0 0 0 2
0 0 0 0

⎞
⎟
⎟
⎠

, (7.4)

𝐽− =
⎛
⎜
⎜
⎝

0 0 0 0
0 0 0 0
√3 0 0 0
0 √3 2 0

⎞
⎟
⎟
⎠

. (7.5)

The Zeeman effect due to an in-plane magnet effect can be described
with the Hamiltonian in the effective spin 3/2 system as:

𝐻Z = −2𝜅(𝐵+𝐽− + 𝐵−𝐽+), (7.6)

where 𝐵± = 𝐵𝑥 ± 𝑖𝐵𝑦, 𝜅 is the g-factor for the holes, and where we are
working in units of the Bohr magneton 𝜇𝐵 = 1.

Full Hamiltonian

We now have all the ingredients for writing the full 2DHG Hamilto-
nian:

𝐻tot = 𝐻0 + 𝐻Z + 𝐻R

=
⎛
⎜
⎜
⎝

𝑘2/2𝑚𝐻 0 −√3 (2𝜅𝐵− + 𝑖𝛼R𝑘−) −𝑘2−/2𝑚𝑥
0 𝑘2/2𝑚𝐻 −𝑘2+/2𝑚𝑥 √3 (−2𝜅𝐵+ + 𝑖𝛼R𝑘+)

√3 (−2𝜅𝐵+ + 𝑖𝛼R𝑘+) −𝑘2−/2𝑚𝑥 𝛿𝐻𝐿 + 𝑘2/2𝑚𝐿 −4𝜅𝐵− − 4𝑖𝛼R𝑘−
−𝑘2+/2𝑚𝑥 −√3 (2𝜅𝐵− + 𝑖𝛼R𝑘−)−4𝜅𝐵+ + 4𝑖𝛼R𝑘+ 𝛿𝐻𝐿 + 𝑘2/2𝑚𝐿

⎞
⎟
⎟
⎠

,

(7.7)

where 𝛿𝐻𝐿 = 2𝛾2 ⟨𝑘2𝑧 ⟩ /𝑚0 is the splitting between the heavy holes
and the light holes, 𝑚𝐻 = 𝑚0/(𝛾1 + 𝛾2) and 𝑚𝐿 = 𝑚0/(𝛾1 − 𝛾2) are
the effective heavy and light hole masses in terms of the Luttinger
parameters and the bare electron mass, 𝑚0. Additionally, we have
defined 𝑚𝑥 = 2𝑚0/√3(𝛾2 + 𝛾3), to describe the strength of the mixing
between the heavy and light holes which comes from the Luttinger
Hamiltonian.

80



Furthermore, assuming that the heavy hole/light (HH-LH) hole split-
ting, 𝛿𝐻𝐿, is large compared to the other terms of the Hamiltonian
allows us to treat the coupling between the heavy hole and the light
hole subspace perturbatively. To do this we can use a similar ap-
proach as we did in chapter 4, however, keeping track of all terms
can again be cumbersome, and instead we here use a Schrieffer-Wolff
transformation [128], to decouple the heavy and light hole subspaces
perturbatively. The effective heavy hole Hamiltonian to second order
in 1/𝛿𝐻𝐿 becomes:

𝐻𝐻𝐻 = (
𝑘2/2𝑚𝐻 𝑔

𝑔∗ 𝑘2/2𝑚𝐻
) , (7.8)

𝑔 = − √3
𝛿𝐻𝐿

𝑘2−
𝑚𝑥

(2𝜅𝐵− + 𝑖𝛼R𝑘−)

− 12
𝛿2𝐻𝐿

(2𝜅𝐵− + 𝑖𝛼R𝑘−)2(𝜅𝐵− + 𝑖𝛼R𝑘−).
(7.9)

7.2. Model

In figure 7.2 we can see a schematic of the system we consider: An SNS
junction made up of a 2DHG connected to two identical conventional
superconductors. As we did in the previous section, we calculate the
critical current, the maximal supercurrent which the junction can
carry. The approach in this chapter is going to be a bit different. The
supercurrent, which is driven by a phase difference, 𝜙, between the
two superconductors, is in the ground state given by:

𝐼 (𝜙) = 2𝑒
ℏ
∂𝐹
∂𝜙

, (7.10)

where 𝑒 is the electron charge, ℏ is the reduced Planks constant, and 𝐹
is the free energy of the junction. Hence, we need a way to calculate
the free energy of the junction, and specifically we only care about the
part of the free energy which “knows” about the superconductors, i.e.
is 𝜙-dependent.

For now, we do not assume anything about the Hamiltonian of
the normal material, but we do assume that the coupling between
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Figure 7.2.: Schematic of the system we consider: An SNS
junction of length 𝐿 and widht 𝑊, made up of two identical
superconductors, 𝑆𝑙 and 𝑆𝑟, connected by a 2DHG.

the superconductors and the 2DHG is described by the tunneling
Hamiltonian:

𝐻𝑡 = ∑
𝜎
∫𝑑𝑦 [𝑡𝑙 ̂𝜓

†
𝜎 (0, 𝑦)�̂�𝜎,𝐿(0, 𝑦)

+ 𝑡𝑟 ̂𝜓†𝜎 (𝑊 , 𝑦)�̂�𝜎,𝑅(𝑊 , 𝑦) + H.c.],
(7.11)

where ̂𝜓†𝜎 (𝑟) is the creation operator of an electron from the normal
region with spin 𝜎 at position 𝑟, �̂�†

𝜎,𝐿(𝑅)(𝑟) is the creation operator of an
electron in the left (right) superconductor with spin 𝜎 at position 𝑟, and
the superconductor/2DHG interfaces are defined by the lines/planes
𝑥 = 0,𝑊. The coupling is essentially just electrons tunneling between
the normal material and the superconductor, with the amplitude 𝑡𝑙 ,𝑟.

Furthermore, we assume that the coupling amplitudes 𝑡𝑙 ,𝑟 from above
are small, so that we can employ a perturbative method in obtaining
part of the free energy which “knows” about both superconductors.
To do this we employ a Green function formalism.

7.2.1. Green function formalism

To get to the supercurrent we are going to introduce a few concepts.
We here only reiterate the key main steps from the supplementary
material of Paper [iii]. As stated we are going to calculate the free
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energy, which is given by:

𝐹 = −𝑇 ln Tr[𝑒𝐻/𝑇], (7.12)

where, 𝐻 = 𝐻tot + 𝐻𝑡 is the full Hamiltonian of the 2DHG and the
tunneling Hamiltonian from above, and T is the temperature (we here
use units where 𝑘B = ℏ = 1). We here work in the interaction picture,
which means that the time dependence is governed by𝐻tot alone. From
the definition:

𝑆 = 𝑇𝜏 exp [−∫
𝛽

0
𝑑𝜏 ′𝐻𝑡(𝜏 ′)] , (7.13)

where 𝑇𝜏 is the imaginary-time time-ordering operator, and 𝛽 = 1/𝑇 is
the inverse temperature, it can be shown that the free energy can be
written as:

𝐹 = 𝐹0 + 𝑇 ln ⟨𝑆⟩ , (7.14)

where 𝐹0 = −𝑇 ln Tr[𝑒−𝐻𝑡𝑜𝑡/𝑇] and ⟨…⟩ is the Gibbs statistical average
over the unperturbed states. Furthermore, it can be shown that this
can be rewritten in terms of only connected diagrams (this can be
found in any text book on the topic, e.g. in [129]), that is as a sum over
all self-energy diagrams:

𝐹 = 𝐹0 − 𝑇(⟨𝑆⟩con − 1), (7.15)

where ⟨𝑆⟩con is the sum over all possible self energy terms contributing
to ⟨𝑆⟩:

⟨𝑆⟩con = 1 + 𝛯1 + 𝛯2 + … , (7.16)

where the self-energy terms are defined as:

𝛯𝑛 =
(−1)𝑛

𝑛! ∫
𝛽

0
𝑑𝜏1…𝑑𝜏𝑛 ⟨𝑇𝜏𝐻𝑡(𝜏1) …𝐻𝑡(𝜏𝑛)⟩ . (7.17)

The self-energy diagrams can be visualized as loops, see figure 7.3.
The order of the diagrams is given by the number of tunneling op-
erators, i.e. how many times they cross the boundary between the
superconductor and the normal material. It is easy to see that the
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Figure 7.3.: Sketch of self-energy diagrams contributing to the
free energy. In the middle is a diagram contributing to the trivial
self energy 𝛯0, to the top left is a diagram contributing to 𝛯2
which only knows about the left superconductor, to the top right
is a diagram which contribute to 𝛯4, but which only knows about
the right superconductor. Finally, towards the bottom is a diagram
contributing to 𝛯4 which depends on the phase difference between
the two superconductors, 𝜑 = 𝜑𝑙 − 𝜑𝑟, hence, contributing to the
supercurrent.

lowest order diagrams which “know” about both superconductor, and
specifically the phase difference 𝜑𝑙 − 𝜑𝑟 = 𝜑, has to be fourth order
in the tunneling Hamiltonian. For the purposes of calculating the
supercurrent, we can throw out lower order diagrams and fourth order
diagrams which do not depend on 𝜑, see figure 7.3. Assuming the
coupling is weak, we focus on the lowest order correction which is
fourth order in the coupling Hamiltonian:

𝛯4 =
1
4! ∫

𝛽

0
𝑑𝜏1𝑑𝜏2𝑑𝜏3𝑑𝜏4 ⟨𝑇𝜏𝐻𝑡(𝜏1)𝐻𝑡(𝜏2)𝐻𝑡(𝜏3)𝐻𝑡(𝜏4)⟩ . (7.18)

We can now insert the tunneling Hamiltonian from equation (7.11).
Assuming that the dimensions of the junction is large compared to the
Fermi wavelength, we can assume that the Andreev reflection is local
and energy independent. By then applying Wick’s theorem we are
able to write the fourth order self-energy as:

𝛯4 = 𝜆𝑙𝜆𝑟 ∫𝑑𝑦 𝑑𝑦
′ Re{𝑒𝑖[𝜑𝑙(𝑦)−𝜑𝑟(𝑦

′)]

×∑
𝑘

Tr [ ̄𝒢 (𝑊 , 𝑦 ′; 0, 𝑦 ; 𝑖𝜔𝑘)𝜎𝑦 ̄𝒢 (𝑊 , 𝑦 ′; 0, 𝑦 ; −𝑖𝜔𝑘)𝑇𝜎𝑦]},
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(7.19)

where 𝜆𝑟 ,𝑙 = 𝜋𝑡2𝑟 ,𝑙𝑣eff is the strength of the coupling between the 2DHG
and the right/left superconducting leads, 𝑣eff is the local effective one-
dimensional tunneling density of states of the superconductor, 𝜎𝑦 is
the 𝑦 Pauli matrix, 𝜑𝑟 ,𝑙(𝑦) is the phase of the right/left superconductor
at position (𝑊 , 𝑦) and (0, 𝑦) respectively, and Tr is the trace over the
matrix. The ̄𝒢 are matrices in spin space and are defined as:

̄𝒢 (𝑥′, 𝑦 ′; 𝑥, 𝑦 ; 𝑖𝜔𝑘) = (
𝒢↑↑(𝑥′, 𝑦 ′; 𝑥, 𝑦 ; 𝑖𝜔𝑘) 𝒢↑↓(𝑥′, 𝑦 ′; 𝑥, 𝑦 ; 𝑖𝜔𝑘)
𝒢↓↑(𝑥′, 𝑦 ′; 𝑥, 𝑦 ; 𝑖𝜔𝑘) 𝒢↓↓(𝑥′, 𝑦 ′; 𝑥, 𝑦 ; 𝑖𝜔𝑘)

) ,

(7.20)

where

𝒢𝜎 ′𝜎(𝑟 ′, 𝑟 ; 𝑖𝜔𝑘) = −∫
𝛽

0
𝑑𝜏 𝑒𝑖𝜔𝑘𝜏⟨ ̂𝑇𝜏 ̂𝜓𝜎 ′(𝑟 ′, 𝜏 ) ̂𝜓†𝜎 (𝑟 , 0)⟩, (7.21)

are the so-called Matsubara Green functions with Matsubara frequency
𝜔𝑘 = (2𝑘 + 1)𝜋𝑇, which describe the propagation in the normal region
for an electron with spin 𝜎 at location 𝑟 to a location 𝑟 ′ with spin 𝜎 ′.

To get to the free energy, which allows us to calculate the supercur-
rent, we see that the lowest order contribution to the free energy which
is dependent on the phase difference between the superconductors, is
given by:

𝐹 (4) = −𝑇𝛯4. (7.22)

What we have obtained is a relatively compact equation for the
fourth-order correction to the free energy, which essentially describes
the transport of two electrons (or equivalently described by an electron
and a hole with negative momentum) from a point, 𝑦, at one of the SN
surfaces to a different point 𝑦 ′ for the other surface. The two electrons
emerging from one superconductor and which is reabsorbed by the
other superconductor is essentially a Cooper pair. Hence, we write
the free energy in terms of a correlation function, 𝐶(𝑟 ′; 𝑟), describing
cooper pair propagation:

𝐹 (4) = −𝜆𝑙𝜆𝑟∬𝑑𝑦 𝑑𝑦 ′Re {𝑒𝑖[𝜑𝑙(𝑦)−𝜑𝑟(𝑦
′)]𝐶(𝑊 , 𝑦 ′; 0, 𝑦)} , (7.23)

where

𝐶(𝑟 ′; 𝑟) = 𝑇
2
∑
𝑘

Tr[ ̄𝒢 (𝑟 ′, 𝑟 ; 𝑖𝜔𝑘)𝜎𝑦 ̄𝒢 (𝑟 ′, 𝑟 ; −𝑖𝜔𝑘)𝑇𝜎𝑦], (7.24)
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Out of plane magnetic field

In the presence of an out of plane magnetic field, we get phase dif-
ferences between electron paths, due to the Aharonov-Bohm effect.
Additionally, orbital effects can become important, but we here as-
sume the applied magnetic fields to be small enough to neglect these.
The flux penetration effects, on the other hand, can be large even for
small fields. To account for this effect we define the phases 𝜑𝑟 ,𝑙 from
above in such a way that it captures the effects of the flux 𝛷 = 𝐵𝑧𝑊𝐿¹
penetrating the junction:

𝜑𝑙(𝑦) − 𝜑𝑟(𝑦 ′) = 𝜙 +
𝜋(𝑦 + 𝑦 ′)𝐵𝑧𝑊

𝛷0
, (7.25)

where the bare phase difference is given by 𝜙, and 𝛷0 = ℎ/2𝑒 is the flux
quantum.

7.3. Linearization of the Hamiltonian and the semi-classical
approximation

To obtain analytical results for the critical current we are going to
make some approximations. First, we are going to assume that rele-
vant dynamics happen at an energy scale close to the Fermi level, 𝐸𝐹,
allowing us to linearize the kinetic energy part of Hamiltonian 7.8,
𝐻𝐻𝐻, as well as assuming that the absolute value of the in-plane mo-
mentum vector can be approximated by the Fermi momentum, |�⃗�| ≈ 𝑘k
for the off-diagonal elements. This gives us the linearized heavy hole
Hamiltonian:

𝐻𝐻𝐻 = 𝑣F(𝑘 − 𝑘F) + 𝛽(𝜃) ⋅ 𝜎 , (7.26)

where 𝑣F = 𝑘F/𝑚𝐻 is the Fermi velocity, the field 𝛽 describes the
effective field the holes experiences and includes all the off-diagonal
terms of Hamiltonian 7.8, and 𝜃 describes the angle of the in-plane
momentum, �⃗�. This Hamiltonian can easily be diagonalized [130]:

𝐻𝐻𝐻 = ∑
𝜆�⃗�=±�⃗�

𝜀�⃗�𝜆𝑃
𝜆�⃗� , (7.27)

1. Due to the superconductor expelling the magnetic field, the real flux penetrating
the junction would be higher than 𝛷 = 𝐵𝑧𝑊𝐿 from an applied field 𝐵𝑧. We
neglect this here, but it could be compensated for by renormalizing 𝐵𝑧.
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where the projector

𝑃𝜆�⃗� = |𝜆�⃗�⟩ ⟨𝜆�⃗�| =
1
2
(1 + 𝜆 ̂𝛽(𝜃) ⋅ 𝜎) , (7.28)

projects onto the two eigenspinnors |𝜆�⃗�⟩, where 𝜆 = ±. ̂𝛽(𝜃) is the unit

vector describing the direction of the effective field, ̂𝛽(𝜃) = 𝛽(𝜃)/|𝛽(𝜃)|.
The energies are given by:

𝜀�⃗�𝜆 = 𝑣F(𝑘 − 𝑘F) + 𝜆|𝛽(𝜃)|. (7.29)

Assuming that we have full translational invariance in the 2DHG,
as well as zero temperature, the correlation function 𝐶(𝑟 ′; 𝑟) can be
written in terms of the projection operator in the following way, again,
see the supplementary material of paper [iii] for the details:

𝐶(𝑟) = ∫∫
∞

0

𝑑𝜀 𝑑𝜀′

2(𝜀 + 𝜀′)
Tr[ ̄𝑔(𝑟 , −𝜀)𝜎𝑦 ̄𝑔(𝑟 , −𝜀′)𝑇𝜎𝑦

+ ̄𝑔(𝑟 , 𝜀)𝜎𝑦 ̄𝑔(𝑟 , 𝜀′)𝑇𝜎𝑦], (7.30)

where,

̄𝑔(𝑟 , 𝜀) = 1
(2𝜋)2

∑
𝜆�⃗�=±�⃗�

∫𝑑�⃗� 𝑒𝑖�⃗�⋅𝑟𝛿(𝜀 − 𝜀�⃗�𝜆)𝑃
𝜆�⃗� . (7.31)

This can be further simplified, if we assume that 𝑘F𝑟 ≫ 1 for all
relevant distances, such as the width of the junction 𝑊. This is es-
sentially a semi-classical approximation which means we only care
about straight electron/hole paths, where the momentum vector is
parallel/anti-parallel to 𝑟. The greatly simplified expression for 𝐶(𝑟)
can then be expressed as:

𝐶(𝑟) = 𝐾
𝑟2
{ cos (

|𝛽(𝜃)|𝑟
𝑣F

) cos (
|𝛽( ̄𝜃)|𝑟
𝑣F

)

− �̂�(𝜃) ⋅ �̂�( ̄𝜃) sin (
|𝛽(𝜃)|𝑟
𝑣F

) sin (
|𝛽( ̄𝜃)|𝑟
𝑣F

) },
(7.32)

where 𝐾 = 𝑘F/(2𝜋)2𝑣F. The angle 𝜃 is now parallel to 𝑟 and the bar
signifies that we are talking about anti-parallel angle, ̄𝜃 = 𝜃 − 𝜋.
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7.4. Critical current

The expression we derived in the previous section for 𝐶(𝑟) is fairly
simple, and could feasibly be integrated analytically, giving us the
supercurrent. However, the large number of competing coupling terms
seen in equation (7.9) make the effective field 𝛽(𝜃), and hence the
supercurrent², look very different depending on parameters such as the
exact hole g-factor 𝜅, the Rashba spin orbit strength 𝛼R, the confinement
parameterized by the HH-LH splitting 𝛿𝐻𝐿 and the Luttinger spin-orbit
coupling strength parameterized by 1/𝑚𝑥. We will instead focus on
the case where a few of these terms are dominating. We look at the
case when the HH-LH splitting in a bit of detail, and refer to paper
[iii], for the details of the remaining limits.

7.4.1. Large HH-LH splitting

When we are the limit of large HH-LH splitting, the terms which are
proportional to 1/𝛿2𝐻𝐿 are suppressed. Formally, the limit where the
terms which are linear in 1/𝛿𝐻𝐿 dominate is when³:

√𝛿𝐻𝐿𝐸𝑥 ≫ 𝐸Z, 𝐸𝑆𝑂, (7.33)

where we define the energies: 𝐸Z = 𝜅𝐵∥, the Zeeman energy, 𝐸𝑆𝑂 =
𝛼R𝑘F, the spin orbit energy, and 𝐸𝑥 = 𝑘2F/2𝑚𝑥, which is the energy
associated with the orbital coupling of the Luttinger Hamiltonian.

In this limit the effective field, here expressed in terms of 𝛽+ =
𝛽𝑥 + 𝑖𝛽𝑦:

𝛽+(𝜃) =
2√3𝐸𝑥
𝛿𝐻𝐿

(𝑖𝐸𝑠𝑜𝑒3𝑖𝜃 − 2𝐸Z𝑒𝑖(2𝜃+𝜙𝐵)) , (7.34)

where 𝜃 is the angle of the momentum vector, and 𝜙𝐵 is the angle of the
in-plane magnetic field. Interestingly the first term makes the effective
field rotate 3 times as fast as the momentum vector (or a standard 2DEG

2. In the case of zero out of plane magnetic field, which we focus on here, the
supercurrent is ∝ cos 𝜙, and so the critical current is found by maximizing this
factor, i.e. setting it to 1.

3. This is assuming that the Luttinger parameters are of order unity. The following
discussion is still general, as larger/smaller Luttinger parameters only shifts the
ranges where the limits discussed are valid.
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Figure 7.4.: Sketch of the effective field caused by (a) Rashba spin-
orbit coupling and (b) the cubic spin orbit term in equation (7.34).

Rashba spin-orbit field) while the second term makes the effective field
rotate twice as fast as the momentum vector and at the same rate as the
magnetic field (i.e. the same dependence on the angle of the magnetic
field as a Zeeman term in a 2DHG), see figure 7.4.

However, aswe can see from cooper pair propagator in equation (7.32),
the only place where the direction of the effective field comes in is
where we take the dot product of the field where the momentum vector
points in some direction 𝜃 with the effective field where the momen-
tum vector points in the opposite direction ̄𝜃: �̂�(𝜃) ⋅ �̂�( ̄𝜃). What this
effectively means is that what matters is the relative orientation of
the terms which make up the effective fields. While the terms in the
effective field 𝛽+ above might look strange, both of the terms essen-
tially rotate twice as fast as the momentum vector. On top of this the
first term rotates at the same rate as the momentum vector (Rashba
spin-orbit like) and the second term rotates at the same rate as the
in-plane magnetic field (Zeeman like). By dropping the extra rotations
we can simplify the cooper pair propagator in the limit where either
of the two terms dominate:

𝐶(𝑟) ≈ 𝐾
𝑟2

× {
cos (|𝑑|𝑟) for 𝐸Z ≫ 𝐸𝑠𝑜
cos ([ ̂𝑧 × 𝑑] ⋅ 𝑟) for 𝐸𝑠𝑜 ≫ 𝐸Z

, (7.35)

where 𝑑 = 𝐵∥/𝐵0𝑊, where 𝐵0 = 𝛿𝐻𝐿𝑣F/8√3𝐸𝑥𝑊𝜅. This is on the same
form as a 2DEG SNS junction with Rashba spin-orbit coupling and
Zeeman splitting, see Ref. [130], which is expected since the relative
orientation of the effective fields is the same as for the 2DEG SNS
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junction. Furthermore, assuming no out-of-plane magnetic field, we
are able to calculate the critical current in these limits by evaluating
the following integral:

𝐼𝑐(𝐵∥) = 4|𝜆𝑙𝜆𝑟∬
𝐿

0
𝑑𝑦 𝑑𝑦 ′ 𝐶(𝑊 , 𝑦 ′ − 𝑦)|, (7.36)

where we have set the electron charge 𝑒 = 1. This integral looks de-
ceivingly simple, and even though it is (semi)-analytically solvable, see
the supplemental material of paper [iii], it is surprisingly complicated.
Under the assumption that we are in the long junction limit, i.e. 𝐿 ≫ 𝑊,
the integral simplifies somewhat. For the case of 𝐸Z ≫ 𝐸𝑠𝑜 the critical
current simplifies to:

𝐼𝑐1(𝐵∥) = 𝐼0
𝜋𝐿
2𝑊

|𝜋𝛼[𝐽0(𝛼)𝐻1(𝛼) − 𝐽1(𝛼)𝐻0(𝛼)]

+ 2[1 − 𝛼𝐽0(𝛼)]|, (7.37)

where 𝛼 = 𝐵∥/𝐵0, 𝐼0 = 4𝐾|𝜆𝑙𝜆𝑟| is the scale of the supercurrent, 𝐽𝑛(𝑥)
are the Bessel functions of the first kind, and 𝐻𝑛(𝑥) are the Struve
functions. For the case of 𝐸Z ≪ 𝐸𝑠𝑜, still in the limit of 𝐿 ≫ 𝑊, it is
somewhat easier to show that we can obtain the critical current:

𝐼𝑐2(𝐵∥) ≈ 𝐼0
𝜋𝐿
𝑊

𝑒−|𝐵𝑥/𝐵0|| cos(𝐵𝑦/𝐵0)|. (7.38)

7.4.2. Numerical calculations

To compare the analytic results from above, and to explore more com-
plicated limits, we can calculate the critical current from the effective
field 𝛽(𝜃) numerically. In the following we will look at three different
limits: Firstly, the example we looked at above where the HH-LH
splitting is large. Secondly, the limit where the HH-LH splitting is
not dominating, which opens the possibility of the terms which are
quadratic in the HH-LH splitting, ∝ 1/𝛿2𝐻𝐿 to dominate. And lastly,
we look at the limit where there is no Rashba SOI, 𝛼 → 0.

Large HH-LH splitting

In figure 7.5 we show the critical current, 𝐼𝑐, as a function of an applied
in-plane magnetic field, 𝐵∥, for different ratios of 𝐸𝑠𝑜/𝐸Z. In the figure
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Figure 7.5.: (a-c) Critical current as a function of in-plane mag-
netic field, 𝐵∥ = (𝐵𝑥, 𝐵𝑦), 𝐵𝑧 = 0, in the limit of large HH-LH
splitting, √𝛿𝐻𝐿𝐸𝑥 ≫ 𝐸Z, 𝐸𝑆𝑂. The subfigures critical current for
different ratios of 𝐸𝑠𝑜/𝐸Z: (a) 𝐸𝑠𝑜/𝜅𝐵0 = 0.2, (b) 𝐸𝑠𝑜/𝜅𝐵0 = 2, and (c)
𝐸𝑠𝑜/𝜅𝐵0 = 20. Where 𝐵0 = 𝛿𝐻𝐿𝑣F/8√3𝐸𝑥𝑊𝜅, and 𝐼max = 𝐼0𝜋𝐿/𝑊.
All plots are calculated for a device with aspect ratio 𝐿/𝑊 = 10.

we have used 𝐸𝑠𝑜/𝜅𝐵0 = 0.2, 2, 20 respectively. In all the examples we
use an aspect ratio of 𝐿/𝑊 = 10.

Comparing these plots with the critical current we derived in equa-
tions (7.37) and (7.38) we see that these describe the behavior of the
critical current. As expected the plots look similar compared to those of
Ref. [130], which describes the critical current of a 2DEG SNS junction.

“Small” HH-LH splitting

When the HH-LH splitting is not quite as large as described in the
previously discussed limit, the terms which are inversely quadratic in
the HH-LH splitting ∝ 1/𝛿2𝐻𝐿 can become dominating. Formally we
are in this limit when:

𝐸Z, 𝐸𝑠𝑜 ≫ √𝛿𝐻𝐿𝐸𝑥. (7.39)

The total coupling field then becomes:

𝛽+(𝜃) =
12
𝛿2𝐻𝐿

( − 𝑖𝐸3𝑠𝑜𝑒3𝑖𝜃 + 5𝐸2𝑠𝑜𝐸Z𝑒𝑖(2𝜃+𝜙𝐵)

+ 8𝑖𝐸𝑠𝑜𝐸2Z𝑒
𝑖(𝜃+2𝜙𝐵) − 4𝐸3Z𝑒

3𝑖𝜙𝐵),
(7.40)

which is muchmore involved than the previous limit. In this discussion
we only numerically evaluate the critical current, however, similarly
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Figure 7.6.: (a-e) Critical current as a function of in-plane mag-
netic field, 𝐵∥ = (𝐵𝑥, 𝐵𝑦), 𝐵𝑧 = 0, in the limit of not so large HH-LH
splitting, 𝐸Z, 𝐸𝑠𝑜 ≫ √𝛿𝐻𝐿𝐸𝑥. The subfigures critical current for
different ratios of 𝐸𝑠𝑜/𝐸Z: (a) 𝐸𝑠𝑜/𝜅𝐵0 = 0.157, (b) 𝐸𝑠𝑜/𝜅𝐵0 = 1.19,
(c) 𝐸𝑠𝑜/𝜅𝐵0 = 1.97, (d) 𝐸𝑠𝑜/𝜅𝐵0 = 3.16, and (e) 𝐸𝑠𝑜/𝜅𝐵0 = 3.94.
Where 𝜅𝐵0 = (𝛿2𝐻𝐿𝑣F/96𝑊 )1/3, and 𝐼max = 𝐼0𝜋𝐿/𝑊. All plots are
calculated for a device with aspect ratio 𝐿/𝑊 = 10.

to the case above we are able to obtain (semi)-analytic results for the
critical current when we consider sub-limits where one or two of the
terms above dominates, see paper [iii].

In figure 7.6 we show the critical current as a function of in-plane
magnetic fields, for different ratios of 𝐸𝑠𝑜/𝐸Z. In this figure we have
used (a) 𝐸𝑠𝑜/𝜅𝐵0 = 0.157, (b) 𝐸𝑠𝑜/𝜅𝐵0 = 1.19, (c) 𝐸𝑠𝑜/𝜅𝐵0 = 1.97, (d)
𝐸𝑠𝑜/𝜅𝐵0 = 3.16, and (e) 𝐸𝑠𝑜/𝜅𝐵0 = 3.94, where we now define 𝜅𝐵0 =
(𝛿2𝐻𝐿𝑣F/96𝑊 )1/3. We use the same aspect ratio as before, 𝐿/𝑊 = 10.

We can see that similar patterns from before appear in this limit as
well. Some of them are, however, somewhat distorted, which can be
explained by some terms having more than one magnetic field operator.
e.g. figure 7.6 (a) corresponds to the limit in which the last term of
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Figure 7.7.: (a-c) Critical current as a function of in-plane mag-
netic field, 𝐵∥ = (𝐵𝑥, 𝐵𝑦) and 𝐵𝑧 = 0, in the limit of weak or no
spin-orbit coupling, 𝛼R → 0. The subfigures show critical current
for different ratios of 𝐸𝑥𝛿𝐻𝐿/𝐸2

Z: (a) √3𝐸𝑥𝛿𝐻𝐿/12(𝜅𝐵0)2 = 0.252,
(b) √3𝐸𝑥𝛿𝐻𝐿/12(𝜅𝐵0)2 = 2.52, and (c) √3𝐸𝑥𝛿𝐻𝐿/12(𝜅𝐵0)2 = 25.2.
Where 𝜅𝐵0 = (𝛿2𝐻𝐿𝑣F/96𝑊 )1/3, and 𝐼max = 𝐼0𝜋𝐿/𝑊. All plots are
calculated for a device with aspect ratio 𝐿/𝑊 = 10.

equation (7.40) dominates, 𝐸Z ≫ 𝐸𝑠𝑜, this term looks like a Zeeman
term, but is proportional to 𝐵3, hence the non-linear spacing of the
rings. Similar expression as equations (7.37) and (7.38) can be found
for the limits we look at in figure 7.6, see paper [iii].

Weak spin-orbit coupling

Lastly, we consider the limit where 𝛼R → 0, i.e. in the case of vanishing
Rashba spin-orbit interaction. The effective field in this case is then
given by:

𝛽+(𝜃) =
−4𝐸Z
𝛿𝐻𝐿

(√3𝐸𝑥𝑒𝑖(2𝜃+𝜙𝐵) +
12𝐸2Z
𝛿𝐻𝐿

𝑒𝑖3𝜙𝐵) . (7.41)

In figure 7.7 we show the calculated critical current as a function of
in-plane magnetic field, for different ratios of 𝐸𝑥𝛿𝐻𝐿/𝐸2Z. We use the
parameters: (a) √3𝐸𝑥𝛿𝐻𝐿/12(𝜅𝐵0)2 = 0.252, (b) √3𝐸𝑥𝛿𝐻𝐿/12(𝜅𝐵0)2 =
2.52, and (c) √3𝐸𝑥𝛿𝐻𝐿/12(𝜅𝐵0)2 = 25.2, where 𝜅𝐵0 = (𝛿2𝐻𝐿𝑣F/96𝑊 )1/3

and the aspect ratio of 𝐿/𝑊 = 10.
The only “new” pattern is the intermediary case where the two

terms in the effective field is close to being equal in magnitude. We
here see islands of high critical current along the 𝑥-axis of the plot, as
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opposed to the nodes along the 𝑦-axis in the previous limits. Similar
expression as equations (7.37) and (7.38) can be found for the three
limits looked at in figure 7.7, see paper [iii].

7.5. Signatures of SOI and Zeeman in critical current

The results in the previous section suggests that the critical current
could be useful for characterizing the relative strength of the spin orbit
field and the Zeeman field in 2DHG SNS devices.

The simplest possible case is if the patterns we see are unique to
a certain limit, e.g. looking at figure 7.7 (b) in which we see islands
of high critical current along the 𝑥-axis. Seeing this in measurements
would indicate that the Rashba SOI of the device is negligible compared
to the Zeeman effect, and that Zeeman effect is comparable to the
Luttinger orbit coupling.

Another signature, which does not exactly pinpoint the relative
strength of the relevant fields, is islands in the critical current along
the 𝑦-axis, see figure 7.6 (b) and (e), and figure 7.5 (c). The limits which
are plotted in these figures have in common that the Rashba spin orbit
interaction term is dominating, or a term which contains the Rashba
term in the perturbation theory expansion is dominating.

Finally, the most powerful tool in measuring the relative strength of
relevant fields, is when we see the transition between patterns. As we
can see from figure 7.5 (b), figure 7.6 (c) and figure 7.7 (b), the transition
between patterns are fairly sharp, and so observing a transition gives a
good estimate of relative strength of the effective fields, as well as the
details of the transition giving another signature to pinpoint which
limit we are in, e.g. the isotropic rings transitioning to the islands
along the 𝑦-axis in figure 7.6 (c).

As we can see, much information about the underlying spin mixing
in the 2DHG can be extracted from the qualitative patterns in critical
current measurements of a 2DHG SNS junction. Even more detailed
information can be found by using the analytic results we present
in detail in paper [iii], information which could be very useful when
making complex devices, or when looking for exotic properties in these
devices, such as topologically non-trivial phases.
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8Conclusion
In this thesis we have explored the main concepts of papers [i–iii]
and the manuscript in preparation [iv], which is the core of this thesis.
Along the way we have introduced topics which relate these projects
such as the protection of quantum information.

In chapter 3 we showed how it is possible to engineer cat states
from coherent states, using a qubit coupled to a microwave cavity
by using Landau-Zener-Stückelberg interferometry, based on paper
[i]. In chapter 4 we saw how a spin qubit coupled to an anisotropic
magnon cavity (ferromagnet) is a physical realization of the quantum
Rabi model, based on paper [ii]. Furthermore, the anisotropy of the
ferromagnet could be used to tune the coupling terms of the model. We
also show how this system can be expanded to include three qubits, and
that it can be used to creating GHZ states using a single control pulse,
which has the advantage of being robust against qubit asymmetries.

In chapter 5 we addressed the theoretical framework needed for
working with superconducting hybrid devices, as well as looked at
why these systems are currently getting so much attention, and why
there still is much to figure out. In chapter 6 we derived an expression
for the critical current in a nanowire SNS junction with spin-orbit
coupling and an external magnetic field, based on a manuscript in
preparation [iv]. The analytic expressions we obtain for the Andreev
level are particularly interesting because the positive Andreev levels
are separate from the negative. Lastly, in chapter 7 we derived expres-
sions for the critical current for a 2DHG SNS junction for important
parameter limits. Showing that the critical current could potentially
be used in understanding the spin-dynamics of the 2DHG.

While noisy intermediate-scale quantum (NISQ) computation might
the only option in the following years, the end goal currently is fault-
tolerant quantum computation. To achieve this we have to either
implement quantum error correction algorithms or look at completely
new qubits (or more likely the combination of the two). There are
many promising paths both in quantum error correction and in new
types of qubits, which could help get us towards this goal.

In this thesis we have explored some of these paths, both looking at
quantum error correction made possible by implementing the qubit in
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a higher dimensional space, via bosonic cat states and GHZ states, and
understanding material properties of parts of hybrid devices which
could allow for topological quantum computation.
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Schrödinger-cat states are useful for many applications, ranging from quantum-information processing to
high-precision measurements. In this paper we propose a method for creating such cat states, based on photon-
assisted Landau-Zener-Stückelberg interferometry in a hybrid system consisting of a qubit coupled to a photon
cavity. We show that by initializing the qubit in one of its basis states, performing three consecutive sweeps of
the qubit energy splitting across the 1-photon resonance, and finally projecting the qubit to the same basis state,
the parity of the photon field can be purified to very high degree; when the initial photon state is a coherent
state, the final state will then be very close to a Schrödinger-cat state. We present numerical simulations that
confirm that our protocol could work with high fidelity (∼0.99) for coherent states of reasonable size (|α|2 ∼ 10).
Furthermore, we suggest that our protocol can also be used to transfer quantum information between the qubit
and a superposition of orthogonal cat states in the cavity.

DOI: 10.1103/PhysRevA.102.043717

I. INTRODUCTION

A coherent state is a quantum state of the harmonic oscil-
lator that most closely resembles a classical state, in the sense
that it has minimal and equal uncertainty in its two conjugate
variables, the expectation values of which follow the classical
equations of motion. More explicitly, coherent states are the
eigenstates of the oscillator’s bosonic annihilation operator,
a |α〉 = α |α〉, where α is a complex number characterizing
the amplitude and phase of the oscillations associated with
|α〉: |α|2 gives the expectation value of the number of excita-
tions in the oscillator.

A superposition of two coherent states, e.g.,

|�±(α)〉 = 1

N (|α〉 ± |−α〉), (1)

is, in a way, thus analogous to the cat in Schrödinger’s famous
thought experiment [1], as it presents a quantum superposition
of two different (quasi)classical states. These superpositions
are therefore commonly known as Schrödinger-cat states and
are interesting for a number of reasons. First, since their be-
havior is on the border between quantum and classical, they
provide a perfect playground for studying decoherence and
the quantum-to-classical transition [2], which is of fundamen-
tal interest. Further, it has been shown that Schrödinger-cat
states can be used as a resource for quantum computation [3,4]
and quantum error correction [5–8], quantum teleportation
[9,10], and also high-precision measurements [11–14]. For
these reasons, reliable generation and manipulation of such
cat states has been the focus of a substantial amount of work
in the past few decades, both theoretical and experimental.

Most of the cat-based quantum technologies mentioned
above, such as high-precision metrology and reliable quan-
tum computation, require the use of coherent states of the
freely propagating photon field. Furthermore, these applica-
tions work best when the overlap between the coherent states

constituting the cat state is small. For the state (1) this overlap
is | 〈α| − α〉 | = e−2|α|2 , and in that case it has been estimated
that |α| > 1.2 is required for fault-tolerant quantum comput-
ing [4].

Over the years, many ways have been put forward on how
to produce freely propagating cat states, several of which have
successfully been implemented. Yurke and Stoler originally
proposed sending a coherent photon state through a strongly
nonlinear (Kerr) medium to generate a cat state [15], but
all commonly available media are too weakly nonlinear to
achieve the required degree of dispersion over reasonable
distances. Other proposed methods, some of which have been
successfully implemented, include performing conditional
measurements on the squeezed vacuum [16–21], mixing a
coherent state with a squeezed single-photon beam [22], ho-
modyne detection on a 50:50 split n-photon Fock state [23],
and reflecting coherent light pulses from an atom-cavity sys-
tem [24]. The drawback of these methods is that they become
less successful for increasing amplitude |α| of the cat state,
the highest amplitudes reached being |α| ∼ 1.5.

Achieving higher amplitudes is possible via a few different
methods. One idea is to combine pairs of small-amplitude cat
states into one state with a larger |α| in a process known as
“breeding” [22,25]. Another route is to turn to cavity QED,
trapping the photons in cavities where they strongly interact
with atoms that are shot through the cavity; in that way, the
state of the photon field can be manipulated into a cat state
[2,26,27]. Advances in qubit technology allowed for replacing
the atoms with (superconducting) qubits acting as artificial
atoms that are coupled to the cavity mode, which provides an
extra level of control over the light-matter interaction. Such
hybrid systems can be used to coherently transfer quantum
information from a qubit to a superposition of cat states [28]
and they allowed for the creation of cat states with amplitudes
up to |α| ∼ 10 [29].
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Such cavity-based cat states were used for studying
the quantum-to-classical transition [2], but they could also
provide a platform for fault-tolerant quantum-information
processing [6,28]. Furthermore, for applications where a
freely propagating cat state is needed it is possible to “release”
a nonclassical photon state from a cavity, which has been
demonstrated for single-photon [30] as well as multiphoton
states [31].

In this paper, we propose a method of generating
Schrödinger-cat states, based on photon-assisted Landau-
Zener-Stückelberg interferometry in a hybrid system consist-
ing of a qubit coupled to a photon cavity. Landau-Zener-
Stückelberg interferometry has been used before to create
entangled states in multipartite few-level systems [32,33],
but here we explore the possibility to use it to entangle the
photon field by manipulating the level structure of the qubit.
We show that repeatedly sweeping the level splitting of the
qubit through the 1-photon resonance can lead to interference
effects which, depending on the details of the level cross-
ing, can selectively amplify and attenuate specific n-photon
components in the wave function of the cavity field. Using
this principle, we demonstrate how an initial coherent photon
state in the cavity can be transformed with high fidelity to a
so-called even or odd cat state |�±(α)〉 [see Eq. (1)] by means
of three consecutive level crossings. We also speculate that the
procedure can be used to transfer quantum information from
a qubit state to the photon cavity using an odd cat state and an
even state as a basis. We further present numerical simulations
of the time evolution of the proposed system which confirm
the successful creation of cat states with fidelities up to ∼0.99
for |α|2 ∼ 10.

The rest of this paper is organized as follows. In Sec. II we
review the basics of Landau-Zener-Stückelberg interferome-
try, using the example of two levels that are swept through
each other multiple times. In Sec. III we then introduce the
system and model Hamiltonian we consider, and we outline
the basic working of our cat-state generating protocol; first we
do this using the most intuitive picture possible, connecting
directly to the example system presented in Sec. II, and then
we discuss the main simplifications we made in that picture
and estimate the deviations from the ideal situation in a more
realistic picture. We end the section suggesting how the same
protocol could be used to coherently transfer quantum infor-
mation from the qubit to a superposition of cat states in the
cavity. In Sec. IV we present our numerical simulations, which
confirm the working of protocol. Finally, in Sec. V we discuss
a few candidate systems that could be used to implement our
idea and in Sec. VI we present our conclusions.

II. LANDAU-ZENER-STÜCKELBERG INTERFEROMETRY

The dynamics of a time-dependent level crossing in a two-
level system is a well studied problem in quantum mechanics
and can be described by the Hamiltonian

Hqub = �(t )

2
σz + δ σx, (2)

written in the diabatic basis {|1〉 , |0〉} and using the Pauli
matrices σx,z. Assuming linear driving of the level splitting,
�(t ) = vt , where t is time and v the sweep speed, the system

will pass a region around t = 0 where the coupling term δ

mixes the two components of the wave function. In the limit of
an infinite linear sweep of the energy splitting, from t = −∞
to t = ∞, the probability of a diabatic transition (i.e., the
probability for the system to remain in its initial state after
the crossing) is given by the famous Landau-Zener formula,

PLZ = e−2π δ2

h̄v . (3)

This analytic result is valid for an infinite sweep through
a single level crossing, and thus needs to be adapted to de-
scribe the situation of multiple consecutive level crossings.
Assuming that the crossings are far enough apart in time,
it is reasonable to assume that all crossings can be treated
separately, leading to the adiabatic-impulse model [34]. The
general idea is to treat the system as if it evolves adiabatically
everywhere except in regions close to the level crossings and
the nonadiabatic evolution at all crossings is assumed to be
instantaneous. This approximation is considered good if the
crossings are locally linear in time and well separated [35].

The time-evolution operator can then be written as a series
of adiabatic evolution operators separated by nonadiabatic
transfer operators. The adiabatic evolution operator, in the
adiabatic basis, is

U (t2, t1) =
(

e−iθ+(t2,t1 ) 0
0 e−iθ−(t2,t1 )

)
, (4)

where θ±(t2, t1) = ∫ t2
t1

dt E±(t ) in terms of the instantaneous
eigenenergies E±(t ). The nonadiabatic evolution at the level
crossing reads in the same basis as [35]

N =
(√

1 − PLZe−iφS −√
PLZ√

PLZ
√

1 − PLZeiφS

)
, (5)

where we see that, apart from the (square root) of the Landau-
Zener probabilities, all amplitudes pick up a different phase,
where φS in the diagonal elements is [35],

φS = −π

4
+ δ2

h̄v

[
ln

(
δ2

h̄v

)
− 1

]
+ arg 


(
1 − i

δ2

h̄v

)
, (6)

with 
(z) being the gamma function.
As an example we consider initializing the system in the

state |0〉 and driving the level splitting through three consec-
utive crossings, as shown in Fig. 1. The first and last have
identical sweep speed v, while the middle crossing is so slow
that it is adiabatic. In this limit, the matrix N at the middle
crossing becomes iσz and the final state in the adiabatic-
impulse model is thus given by

|ψ〉 f = iU (t f , t3)NσzU (t3, t1)NU (t1, ti ) |0〉 , (7)

where ti < t1 is the initial time and t f > t3 the final time. For
the case where PLZ = 1

2 for the first and last crossing we can
write explicitly in the adiabatic basis

|ψ〉 f = e−i[θ+(t1,ti )+ 1
2 θ+(t3,t1 )+ 1

2 θ−(t3,t1 )]

×
(

ie−i[θ+(t f ,t3 )+ϕ] cos( 1
2φd + ϕ)

e−iθ−(t f ,t3 ) sin( 1
2φd + ϕ)

)
, (8)

where φd = θ+(t3, t1) − θ−(t3, t1) is the phase difference built
up during the adiabatic evolution from t1 to t3 and ϕ ≈ −1.08
is the phase φS that corresponds to the value of δ2/h̄v that
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FIG. 1. Time-dependent spectrum of the example sweep protocol
discussed in Sec. II. The diabatic energies of |0〉 and |1〉 are shown
as dashed lines, while the adiabatic (instantaneous) eigenenergies are
shown as full lines. Two interfering paths are colored in blue and the
dynamic phase difference between them is shown as a blue shaded
area.

yields the probability PLZ = 1
2 . The final occupation probabil-

ities for the two states then follow straightforwardly as

P1,0 = 1
2 ± 1

2 cos (φd + 2ϕ). (9)

We thus see how this sweep protocol indeed leads to in-
terference effects that depend on the difference in phases
acquired along the two possible paths in time (blue lines in
Fig. 1). This phase difference has two contributions: (i) the
phase ϕ, given by (6), caused by the first and the last level
crossing, and (ii) the dynamical contribution φd picked up
during the adiabatic evolution, which corresponds to the blue
shaded area in Fig. 1. As we can see, the total phase and hence
the “return” probability is periodically dependent on this area,
which we can easily control by tuning the sweep speed or the
coupling strength δ at the second crossing.

III. PROPOSAL

The goal is to create even or odd cat states |�±(α)〉 ∝
|α〉 ± |−α〉 in the photon field, where the coherent states read
explicitly as |α〉 = e−|α|2/2 ∑∞

n=0(αn/
√

n!) |n〉 in terms of the
photon number basis states |n〉. We see that, due to the factor
αn in the photon number coefficients, an even (odd) cat state
only contains even (odd) photon number states, the occupation
probabilities of which still have the same Poissonian “enve-
lope” as the coherent states they are constituted of. In short,
our cat state generation protocol, which we will explain in
detail below, amounts to removing all odd or even components
from a coherent photon state, without altering the Poissonian
envelope structure of the state too much.

Let us now turn to the hybrid qubit-cavity system with
which we would like to perform this protocol. We assume a
simplest situation, where a single qubit is coupled to a single
mode of the cavity photon field, and we describe the system
with the Hamiltonian

H = �(t )

2
σz + h̄ωa†a + h̄A(a + a†)σx, (10)

where �(t ) is the time-dependent qubit splitting, ω the fre-
quency of the cavity mode, and A is the coupling strength

FIG. 2. (a) Schematic plot of the energy spectrum of the Hamil-
tonian (10) as a function of �. Dressed levels |1〉 and |0〉 anticross
whenever the accompanying number of photons differs by 1.
(b) Sketch of the proposed sweep protocol �(t ). (c) Zoom-in on
neighboring pair of coupled levels that are swept through each other.
The n-dependent magnitude of the relative dynamical phases picked
up during the sweep is indicated by the shaded red and blue areas.

between the qubit and the photon field. We note that we
assumed “transverse” qubit-cavity coupling, i.e., the field in
the cavity couples to the σx operator in the qubit subspace;
comparing with the toy model used in Sec. II we see that
h̄A(a + a†) now takes the place of δ.

In Fig. 2(a) we sketch the spectrum of H as a function of �,
where the labels |i, n〉 indicate the (approximate) basis states
|i〉qub ⊗ |n〉ph. All levels cross, except when the two photon
numbers involved differ by 1, in which case the magnitude of
the anticrossing is determined by the matrix element

〈1, n|H |0, n ± 1〉 = h̄A
√

n + 1
2 ± 1

2 , (11)

and thus depends on the actual photon numbers involved [36].
The key to our proposal is to use this n dependence of the
size of the anticrossings. If we drive the qubit in a zigzag pat-
tern around the 1-photon resonance, as sketched in Fig. 2(b),
then we create a “ladder” of time-dependent level crossings
between levels |0, n〉 and |1, n + 1〉; see Fig. 2(c). Each pair of
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coupled levels thus undergoes a sweep pattern that is similar
to the one discussed in Sec. II and, assuming that we again
make sure that the second level crossing is adiabatic, the final
state is then given by Eq. (8), where the phase difference φd

now depends on n, as can be seen from the difference in size
between the red and blue shaded regions in Fig. 2(c). We
note that isolating the dynamics of pairs of levels in such a
way is in fact equivalent to applying the usual rotating-wave
approximation to the Hamiltonian (10).

The idea is then to initialize in |0〉 ⊗ |α〉, i.e., the cavity
in a coherent state and the qubit in one of its basis states,
and perform the sweep protocol sketched in Fig. 2, aim-
ing for the characteristics (i) PLZ = 1

2 for all first and last
crossings, (ii) all middle crossings are adiabatic, and (iii)
φd (n + 1) − φd (n) = π as closely as possible for all relevant
n. Of course, in reality the n dependence of the dynamical
phase difference is not linear over larger ranges of n and PLZ

is also n dependent. Below we will investigate how well the
desired characteristics can be satisfied at the same time, but
let us for now assume the ideal (hypothetical) situation where
PLZ = 1

2 and φd (n) = φd (0) + nπ .
The phase φd (0) can be tuned by changing parts of the

time-dependent level structure that are the same for all n, such
as the minimum and maximum value of �(t ) or the coupling
strength A. Tuning φd (0) = −2ϕ is thus in principle possible,
independently from trying to approach φd (n + 1) − φd (n) =
π . Then we see from Eq. (8) that the initial component |0, n〉
will evolve as

|0, n〉 → e−inωT

[
sin

(
n

2
π

)
|0, n〉

+ ie−iϕ cos

(
n

2
π

)
|1, n + 1〉

]
, (12)

where we introduced the total sweep time T = t f − ti, setting
t f = t3 and ti = t1 for simplicity [37]. We see that all compo-
nents |0, n〉 evolve (up to a phase factor) into |0, n〉 for odd
n and into |1, n + 1〉 for even n, thereby yielding zero weight
in all even-n components of the final state of the photon field
[38].

We thus end up with a photon field with a perfect odd
parity. Since the weight of each even-n component that was
removed was transferred to a neighboring n, one could expect
that the envelope of the resulting cavity state is still relatively
close to that of the coherent state, thus yielding (almost) a cat
state. Even better, however, would be to end the protocol with
a selective measurement of the qubit state: only accepting the
outcome |0〉 will project the photon field to the state

−ie− 1
2 |β|2

N

∞∑
n=0

[
βn

√
n!

− (−β )n

√
n!

]
|n〉 = −i |�−(β )〉 , (13)

with β = ie−iωT α, which is a perfect odd cat state.
Let us now investigate how closely our idealized assump-

tions about PLZ and the dynamical phase differences can
actually be met by a system described by the Hamiltonian
(10). First of all, we write the full final state for the pair of lev-
els {|0, n〉 , |1, n + 1〉} after the sweep protocol, now allowing
for deviations from our assumptions. From Eqs. (4)–(7) we

FIG. 3. The deviation of the phase φS(n) at n = |α|2 ± |α| from
the assumption φS(n) = ϕ ≈ −1.08. The sweep speed is tuned such
that PLZ(|α|2) = 1

2 and thus φS(|α|2) = ϕ.

find the explicit expression

|0, n〉 → e−inωT
{
2 sin

(
1
2φd + φS

)√
PLZ(1 − PLZ) |0, n〉

+ e−iφS
[
(1 − 2PLZ) sin

(
1
2φd + φS

)
+ i cos

(
1
2φd + φS

)] |1, n + 1〉 }
, (14)

where now φd , φS, as well as PLZ are n dependent. As is well
known, the relative width of the photon number distribution of
a coherent state decreases for increasing |α|, suggesting that
this n dependence might become less important for large |α|.

We first focus on the n dependence of the Landau-Zener
probability for the first and last crossing, which simply reads
as

PLZ(n) = exp

(
−2π h̄A2[n + 1]

v f

)
, (15)

where v f is the “fast” sweep speed at those two crossings. For
any particular α we can tune this speed such that PLZ(|α|2) =
1
2 . We then estimate the decrease in fidelity of creating the
desired state due to the n dependence of PLZ by calculating
the modulo square of the weight of the final component |0, n〉
at n± = |α|2 ± |α|, using the fact that the photon distribution
will have a Poissonian envelope with both mean and variance
equal to |α|2. We then find that for |α|2 � 1

4PLZ(n±)[1 − PLZ(n±)] ≈ 1 − ln 2

|α|2 ; (16)

i.e., the deviation from 1 is suppressed for increasing |α|2.
Next we investigate in a similar way the n dependence of

φS which we above also assumed to be constant, φS(n) = ϕ ≈
−1.08. Using the same sweep speed v f such that PLZ(|α|2) =
1
2 we calculate the phases φS(n±) using Eq. (6). In Fig. 3 we
show the result, where we normalized the two phases with
ϕ. We see again that the deviation from the ideal condition
decreases monotonically for |α|2 � 1.

Finally, we investigate the dynamical phases φd (n), for
which we assumed d (n) ≡ φd (n + 1) − φd (n) = π . Assum-
ing that the sweep is performed using the detuning extrema
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−h̄ω ± h̄k (with k < ω; see Fig. 2) we find

d (n) ≈ 2h̄A2

v∗

[
ln

(
k2

A2[n + 1]

)
− 1

2[n + 1]

]
, (17)

valid in the limit A2n  k2 and at n � 1, where v∗ =
v f vs/(v f + vs) is an average of the two different sweep
speeds, with vs the “slow” adiabatic sweep speed. The deriva-
tive with respect to n of this phase difference,

d ′(n) ≈ 2h̄A2

v∗

(
− 1

n + 1
+ 1

2[n + 1]2

)
, (18)

decreases faster than 1/
√

n for increasing n, but the total error
in d (n) at n± = |α|2 ± |α| is a cumulative error, contributed to
by all n between |α|2 and n±. To arrive at an estimate for the
typical error in d (n) we thus need to sum over all contributing
phase differences from |α|2 to n±, yielding approximately

± 2h̄A2

v∗

(
− 1

|α|2 + 1
+ 1

2[|α|2 + 1]2

) |α|∑
l=1

l

= ± h̄A2

v∗

(
− 1

|α|2 + 1
+ 1

2[|α|2 + 1]2

)
(|α|2 + |α|). (19)

We see that this contribution to the infidelity of our protocol
does not decrease as a function of increasing |α|2: for large
|α| it approaches h̄A2/v∗. In principle one could tune h̄A2/v∗
as small as desired, but, due to the conditions (i) d (|α|2) =
π and (ii) h̄A2|α|2/vs � 1, that would require an exponential
increase of k/A|α|, see Eq. (17), and a very large ratio h̄k2/vs.
These requirements are not in contradiction with any of our
other assumptions, but might be inconvenient from a practical
point of view.

We thus showed how our proposed protocol conceptually
works, and we demonstrated that the most important intrinsic
inaccuracies can in principle be tuned to be of arbitrarily small
importance, e.g., by going to large |α|2 and small h̄A2/v∗.
However, deviations from the other assumptions we made,
such as the validity of the adiabatic-impulse model, will also
contribute to the infidelity of the protocol. In order to investi-
gate their importance quantitatively, we will present numerical
simulations of the protocol in Sec. IV, showing that fidelities
of ∼0.99 are theoretically indeed achievable.

So far, we used the qubit mainly as a tool to tune the
spectrum and sweep the system through multiple level cross-
ings. As an example, we showed how initialization of the
system in |0〉 ⊗ |α〉 can produce an odd cat state of the photon
field after projecting the final qubit state to |0〉. We could,
however, also assume a more general initial state of the qubit,
|χ〉qub = a |0〉 + b |1〉, and investigate to what extent and in
what way the quantum information in this initial qubit state is
transferred to the photon field during the sweep protocol.

It is straightforward to focus on the same pair of levels
{|0, n〉 , |1, n + 1〉} as before and use Eq. (8) to write down the
final state after initializing in |1, n + 1〉, assuming the same
ideal conditions as in (12),

|1, n + 1〉 → − e−inωT

[
sin

(
n

2
π

)
|1, n + 1〉

+ ieiϕ cos

(
n

2
π

)
|0, n〉

]
. (20)

We see that now for even n the population is fully trans-
ferred to |0, n〉 and for odd n to |1, n + 1〉. This means that
initialization in |1〉 ⊗ |α〉 would produce a final photon state
with a perfect even parity, whereas initialization in |0〉 ⊗ |α〉
yielded a perfect odd state. Initializing in |χ〉qub ⊗ |α〉 will
thus yield a photonic state that is in a superposition of a
perfectly odd state (with an amplitude proportional to a) and
an even state (with amplitude proportional to b). Since the
even and odd cat states |�±(α)〉 form a good orthogonal basis
for cat-based quantum-information applications [3,4], where
|χ〉cat = a |�−(α)〉 + b |�+(α)〉 encodes the same quantum
information as |χ〉qub, this suggests that our protocol might
provide a way to transfer the quantum information coherently
from the qubit to the photon field.

We thus initialize in |χ〉qub ⊗ |α〉 and perform the same
sweep protocol as before, assuming the same hypothetical
ideal conditions. If we again selectively measure the final state
of the qubit, only accepting the outcome |0〉, we will project
the photon field to the state

−ia |�−(β )〉

−ibeiϕ e− 1
2 |β|2

N

∞∑
n=0

α√
n + 1

[
βn

√
n!

+ (−β )n

√
n!

]
|n〉 . (21)

We see that the even part of the field is nearly a cat state,
the weight of each n-photon component being slightly off
since it originated from the component |n + 1〉 in the initial
coherent state |α〉 of the field. The modulo square of the
overlap of the part of the photon field proportional to b with
the state −ieiϕ |�+(β )〉 can be evaluated numerically: we find
that it is 0.99 for |α| ≈ 5 and approaches 1 monotonically for
increasing |α|. Therefore we conclude that with high fidelity
the final photon state approaches

−i[a |�−(β )〉 + eiϕb |�+(β )〉]. (22)

The phase ϕ ≈ −1.08 is known and can thus be compensated
for, meaning that our sweep protocol indeed provides a means
to coherently transfer quantum information from an actual
two-level system to a superposition of even and odd cat states
in a photon field. Of course, the final state (21) was derived
under the same assumptions concerning PLZ(n), φS(n), and
φd (n) as (12); i.e., the deviations from these ideal conditions
investigated before will affect the fidelity of this transfer pro-
tocol in a way that should be quantitatively similar.

IV. NUMERICAL SIMULATIONS

We solved the time-dependent Schrödinger equation using
the function “sesolve” from the Quantum Toolbox in Python
(QuTiP) package [39,40]. We initialize the system in a direct
product state of one of the two qubit basis states and a coherent
state of the photon field |α〉, using the basis states |0, n〉 and
|1, n〉, where we cut off the Hilbert space for n � 2|α|2 + 10,
and work in units where h̄ = 1. Then we evolve the system
using the Hamiltonian as given in (10) with

�(t ) =
⎧⎨
⎩

−ω − k + v f t, for 0 � t � τ1,

−ω + k − vs(t − τ1), for τ1 � t � τ2,

−ω − k + v f (t − τ2), for τ2 � t � τ3,

(23)
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FIG. 4. Numerically calculated final photon states after perform-
ing the sweep protocol (23) and projecting the qubit to the state |0〉.
In the left panels we show their Wigner distribution function W (α)
and in the right panels their photon number distribution function
Pn. In all simulations we used |α|2 = 10 and A = 0.003. The sweep
speeds vs, f were chosen such that PLZ(10) = 1

2 and d (10) = π . (a),
(b) Fine-tuning the parameter k to k = 0.50017 yields (a) an odd cat
state with fidelity 0.986 if the qubit was initialized in |0〉 and (b) an
even cat state with fidelity 0.989 if it was in |1〉. (c) Not fine-tuning
k yields a cat state of a more general form; see Eq. (24). In this case
k = 0.49 resulted in θ = 0.713π with fidelity 0.988.

with τ1 = 2k/v f , τ2 = τ1 + 2k/vs, and τ3 = τ2 + 2k/v f . This
results in the sweep pattern as shown in Fig. 2(b), with the
detuning extrema −ω ± k.

We will first present numerical results for |α|2 = 10. We
set A = 0.003 (in units of ω), which will allow for large
k/A|α| while still satisfying the condition k � ω. Then we set
the other simulation parameters as follows: v f is calculated
using Eq. (15), demanding that PLZ(10) = 1

2 , and vs and k
are tuned together to satisfy d (10) = π , see Eq. (17), and
φd (10) = −2φS(10) as closely as possible, which corresponds
to fixing the “offset” phase φd (0) = −2ϕ in the ideal pic-
ture presented above. This yielded v f ≈ 8.9741 × 10−4, vs ≈
4.6965 × 10−5, and k = 0.50017. In Fig. 4 we show final

photon states after the sweep protocol, assuming the qubit to
have been projected to |0〉. The left panels show the Wigner
distribution function W (α) of the state, all of them showing
the characteristics of a cat state, including the typical fringes
around α = 0 signaling quantum-mechanical interference be-
tween the state’s two main components. The right panels show
the photon number distribution Pn of the final state.

Figure 4(a) presents the final photon state that results after
initializing the qubit in |0〉. In the right panel we see that
state has almost perfect odd parity, suggesting that it is indeed
close to an odd cat state, as predicted above. We can calculate
numerically the overlap of this final state with the desired
odd cat state, as a measure of the fidelity of our protocol,
yielding F− = | 〈� f |�−(β )〉 |2 ≈ 0.986, where |β| = √

10. In
Fig. 4(b) we show the resulting final photon state after the
same sweep procedure, but now having initialized the qubit in
|1〉. The parity of this state is indeed almost exactly opposite,
and as fidelity of the thusly created even cat state we find
F+ ≈ 0.989. As expected, the Wigner distribution functions of
the two states shown in Figs. 4(a) and 4(b) look very similar.
The main difference is in the phase of the interference fringes
appearing around α = 0, which is set by the relative sign
of the two components constituting the cat state. Finally, in
Fig. 4(c) we show the resulting state if the parameter k is not
fine-tuned but simply fixed to some value, we set k = 0.49,
after which only v f ≈ 8.9741 × 10−4 and vs ≈ 4.6705 are
adjusted to satisfy PLZ(10) = 1

2 and d (10) = π , following
Eqs. (15) and (17). This means we no longer ensure that
φd (10) = −2φS(10), which introduces an extra phase shift
in the n-dependent oscillations of all final amplitudes; see
Eq. (14). This phase shift results in a final state that is still
close to a cat state, but now of the more general form

|�θ (β )〉 = 1

N (|β〉 + eiθ |−β〉), (24)

where θ is no longer necessarily π or 0. For our particular
choice of k we found a maximum overlap with the cat state
with θ = 0.713 π , yielding a fidelity of Fθ ≈ 0.988.

We thus see that our protocol is in principle indeed able
to produce Schrödinger-cat states with fidelities up to ∼0.99,
already at moderate |α|. Next, we investigate how the fidelity
of the protocol depends on |α| by varying |α|2 from 3 to 25.
We initialize the qubit in |0〉 and perform the sweep procedure
using the same parameters A = 0.003 and k = 0.50017 as
before, while adjusting v f and vs such that PLZ(|α|2) = 1

2 and
d (|α|2) = π for each |α|2. After projecting the qubit to |0〉 we
find the cat state |�θ (β )〉 that has largest overlap with the final
photon state and calculate the modulo square of that overlap
to determine the fidelity F . In Fig. 5 we plot F as a function
of |α|2, and we see that the fidelity is around 0.98 for all |α|2
in the range plotted, with a slight decrease for larger |α|2. This
is a sign that the assumption of A|α|/k  1, which is one of
the conditions for the adiabatic-impulse model to be a good
approximation, is starting to become questionable.

V. DISCUSSION

We demonstrated that our protocol can generate cat states
in a photon cavity with fidelities up to ∼0.99 and could pos-
sibly also be used to coherently transfer quantum information
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FIG. 5. Fidelity of the resulting final cat state as a function of |α|2
using the same parameters A = 0.003 and k = 0.50017 throughout,
while adjusting v f and vs such that the conditions PLZ(|α|2) = 1

2 and
d (|α|2) = π remain fulfilled.

between a qubit and a superposition of different, orthogonal
cat states in the cavity. However, so far we assumed both
the cavity and the qubit to be lossless and coherent at all
times. In reality, both subsystems are coupled to many envi-
ronmental degrees of freedom, leading to photon loss from
the cavity, typically characterized with the decay rate κ , and
qubit decoherence characterized with the rate γ . Roughly
speaking, good coherence during the full protocol will thus be
guaranteed if the total time of the procedure T ∼ 2h̄k/vs 
κ−1, γ −1, where vs should be small enough to ensure that the
second crossing is adiabatic. It is therefore straightforward to
investigate the typical coherence properties of a few obvious
candidate systems for implementing our protocol and com-
pare them in the context of this requirement.

The paradigmatic system providing a well-controllable
qubit coupled to a single mode of the photon field is the
circuit-QED setup of a superconducting qubit coupled to a
transmission line resonator [41,42]. In such hybrid systems
coupling strengths of A/2π ∼ 100 MHz can easily be reached
[43], which, assuming |α|2 ∼ 10, leads to the constraint vs �
25 μeV/ns. Typical resonator frequencies are of the order
ω/2π ∼ 10 GHz and picking 2k ≈ ω, as we did in our nu-
merical examples, then yields a lower limit T � 2 ns, which
is well below typical decay and dephasing times κ−1, γ −1 ∼
0.1–1 μs. In fact, depending on the choice of qubit (transmon,
flux, phase, or charge), having such a strong coupling param-
eter A might make it challenging to implement a sweep speed
v f high enough to yield a Landau-Zener probability of 1

2 . But
since the minimum and maximum T estimated above are still
several orders of magnitude apart, there is enough room to
work with significantly smaller coupling A.

Another, more recently developed class of hybrid systems
that could be used to implement our idea is that of gate-defined
semiconductor quantum dots coupled to a superconducting
cavity [44]. This would allow us to perform the protocol
using a spin-based qubit instead of a superconducting qubit,
which provides potentially superior qubit coherence proper-
ties. Direct spin-photon coupling is weak, typically on the
peV scale, but the effective coupling strength can be signif-
icantly enhanced by using multielectron spin qubits instead,
where the basis states are spin-charge mixtures that couple
much more efficiently to the photon field [44]. The most
advanced example in this field is the triple-dot three-electron
exchange-only qubit [45–47], which provides fast all-electric
control and potentially strong coupling to the cavity mode
[48]. Recently the coherent coupling between such a qubit
and a microwave cavity has been demonstrated experimen-
tally [49], yielding the device parameters ω/2π ≈ 4.5 GHz,
κ−1 ≈ 20 ns, and γ −1 ≈ 0.1 μs, while providing coupling
strengths up to A/2π ≈ 31 MHz. The same rough estimate
as above then yields the constraint vs � 2 μeV/ns and thus a
lower limit T � 9 ns, which is within the reported decoher-
ence times.

VI. CONCLUSION

We presented a way to create Schrödinger-cat states in
a photonic cavity using Landau-Zener-Stückelberg interfer-
ometry, by coupling the cavity to a qubit and manipulating
the qubit splitting as a function of time. We show how our
protocol can create cat states with a fidelity up to ∼0.99 for
|α|2 ∼ 10, and how it could also be used to coherently transfer
quantum information between the qubit and the photon field,
where it can be stored in the form of coherent superpositions
of orthogonal cat states. We corroborated our presentation of
the protocol with numerical simulations and finally discussed
a few candidate hybrid systems that could be used to imple-
ment our idea.
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The ongoing rapid progress towards quantum technologies relies on new hybrid platforms optimized
for specific quantum computation and communication tasks, and researchers are striving to achieve such
platforms. We study theoretically a spin qubit exchange-coupled to an anisotropic ferromagnet that hosts
magnons with a controllable degree of intrinsic squeezing. We find this system to physically realize the
quantum Rabi model from the isotropic to the Jaynes-Cummings limit with coupling strengths that can
reach the deep-strong regime. We demonstrate that the composite nature of the squeezed magnon enables
concurrent excitation of three spin qubits coupled to the same magnet. Thus, three-qubit Greenberger-
Horne-Zeilinger and related states needed for implementing Shor’s quantum error-correction code can be
robustly generated. Our analysis highlights some unique advantages offered by this hybrid platform, and
we hope that it will motivate corresponding experimental efforts.

DOI: 10.1103/PhysRevApplied.16.064008

I. INTRODUCTION

A bosonic mode interacting with a two-level system
constitutes the paradigmatic quantum Rabi model (QRM)
employed in understanding light-matter interactions [1,2].
The recent theoretical discovery of its integrability [3]
and the increasing coupling strengths realized in experi-
ments have brought the QRM into sharp focus [4,5]. The
QRM also models a qubit interacting with an electromag-
netic mode, a key ingredient for quantum communication
and distant qubit-qubit coupling [6–9]. Thus, the ongoing
quantum information revolution [6,10] capitalizes heav-
ily on the advancements in physically realizing and the-
oretically understanding the QRM. In particular, larger
coupling strengths are advantageous for faster gate oper-
ations on qubits, racing against imminent decoherence.
Generating squeezed states of the bosonic mode [11,12],
typically light, via parametric amplification has emerged as
a nonequilibrium means of strengthening this coupling and
achieving various entangled states [13–18]. Other related
methods [19,20] that exploit drives to control, for example,
the QRM anisotropy [4] have also been proposed.

Contemporary digital electronics relies heavily on very
large-scale integration of silicon-based circuits. In sharp
contrast, the emerging quantum information technologies
benefit from the availability of multiple physical realiza-
tions of qubits and their interconnects in order for one to

*akashdeep.kamra@uam.es

be able to choose the best platform for implementing a spe-
cific task or computation [6,8,21–24]. Fault-tolerant quan-
tum computing, either via less error-prone qubits [25] or
via implementation of quantum error correction [26–28],
is widely seen as the path forward. A paradigmatic error-
correction code [26] put forth by Shor requires encoding
one logical qubit into nine physical qubits and generat-
ing three-qubit Greenberger-Horne-Zeilinger (GHZ) [29]
and related states. A continuous-variable analog of this
code employing squeezed states of light has been exper-
imentally demonstrated [30]. This has spurred fresh hopes
of fault-tolerant quantum computing and demonstrated the
use of bosonic modes as more than just interconnects for
qubits.

In our discussion above, we encounter squeezed states
of light in multiple contexts. These nonequilibrium states,
which have widespread applications from metrology
[31] to quantum teleportation [32,33], decay with time.
In contrast, the bosonic normal modes—magnons—in
anisotropic ferromagnets have recently been shown to be
squeezed [34] and to embody various quantum features
inherent in such squeezed states [11,35–37]. Being equi-
librium in nature, these modes are also somewhat different
from light and require care when making comparisons.
This calls for examining ways in which we can exploit
the robust equilibrium-squeezed nature of magnons in
addressing the challenges facing emerging quantum tech-
nologies [24,38,39]. The spin qubit [22,23,40] becomes
the perfect partner because of its potential silicon-based

2331-7019/21/16(6)/064008(12) 064008-1 © 2021 American Physical Society
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nature, the feasibility of strong exchange coupling to the
magnet, its reliance on a mature fabrication technology,
and so on.

Here, we study theoretically a ferromagnet exchange-
coupled to a spin qubit. We find that the ensuing
magnon-qubit ensemble combines the various comple-
mentary advantages mentioned above into one promis-
ing platform. We show that this system realizes an ideal
Jaynes-Cummings model, enabled by spin conservation
in a system that forbids counter-rotating terms (CRTs)
by symmetry. If we allow anisotropy in the magnet, the
squeezed magnon [34,35] becomes the normal mode, giv-
ing rise to nonzero and controllable CRTs. The squeezed
nature of the magnon leads further to an enhancement
in the coupling strength, without the need for a nonequi-
librium drive. Considering three spin qubits coupled to
the same ferromagnet, we demonstrate theoretically the
simultaneous resonant excitation of the three qubits via
a single squeezed magnon. Thus, the system enables a
robust means to generate the entangled three-qubit GHZ
and related states that underlie Shor’s error-correction
code [26]. The magnon–spin-qubit ensemble offers an
optimal platform for realizing the QRM with large cou-
pling strengths and implementing fault-tolerant quantum
computing protocols.

II. ONE MAGNONIC MODE COUPLED TO ONE
QUBIT

We consider a thin film of an insulating ferromagnet that
acts as a magnonic cavity. Considering an applied mag-
netic field H0ẑ, the ferromagnetic Hamiltonian is expressed
as [41]

H̃ F = −J
∑
〈i,j 〉

S̃i · S̃j + |γ |μ0H0

∑
i

S̃iz, (1)

where J (> 0) parameterizes the ferromagnetic exchange
between nearest neighbors, γ (< 0) is the gyromagnetic
ratio, and S̃i denotes the spin operator at position i. We set
� = 1 throughout and identify operators with an overhead
tilde. A detailed derivation of the system Hamiltonian is
presented in Appendix A. We discuss the key steps and
their physical implications here in the main text. Because
of the Zeeman energy, the ferromagnet has all its spins
pointing along −ẑ in its ground state. Employing Holstein-
Primakoff transformations [42] and switching to Fourier
space, the ferromagnetic Hamiltonian is written in terms
of spin-1 magnons [43] as follows:

H̃ F = const +
∑

k

(
ω0 + clJSa2k2) ã†

kãk, (2)

where ω0 ≡ |γ |μ0H0 is the ferromagnetic resonance fre-
quency (on the order of a gigahertz) corresponding to the

uniform (k = 0) magnon mode, a is the lattice constant,
S is the spin, cl is a factor that depends on the lattice
considered, and ãk denotes the annihilation operator for a
magnon with wave vector k. The magnons here have unit
spin, as each of them reduces the total spin in the ferro-
magnet by that amount [43]. The boundary conditions for
small magnets result in a discrete magnon spectrum [44].
This leads to discrete allowed values of the wave vector
k, leaving the Hamiltonian unchanged otherwise. Further-
more, k then labels standing waves instead of traveling
waves. For typical values of J , spatial dimensions in the
micrometer range result in magnon energies differing by a
few gigahertz. Hence, we consider only the k = 0 mode
henceforth, denoting ã0 simply as ã. We may disregard the
higher modes, as we exploit coherent resonant interactions
in this study.

As depicted in Fig. 1(a), the confined electron gas
that becomes a spin qubit is interfaced directly with the
ferromagnet to enable exchange coupling [45–48]:

H̃ int = Jint

∑
l

S̃l · s̃l, (3)

where Jint parameterizes the interfacial exchange inter-
action, s̃l denotes the spin operator of the spin-qubit
electronic state at site l, and l runs over the interfacial
sites. In terms of the relevant eigenmodes, the interfacial
interaction is simplified to

H̃ int = g
(
ã†σ̃− + ãσ̃+

)
, (4)

where g = JintNint|ψ |2√S/(2NF), with Nint being the
number of interfacial sites, |ψ |2 the spin-qubit elec-
tron probability averaged over the interface, and NF the
total number of sites in the ferromagnet. The operators

(a) (b)

FIG. 1. Schematic depiction of three spin qubits exchange-
coupled to one magnon mode. (a) Semiconducting wires hosting
the localized electronic states that constitute the spin qubit are
deposited on top of a thin insulating ferromagnet layer. A direct
contact enables strong interfacial exchange coupling. (b) The
corresponding anisotropic QRM. Three qubits interact with a
single magnonic mode via controllably strong rotating (gR) and
counter-rotating (gCR) terms [Eq. (9)].
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σ̃+,− = (σ̃x ± iσ̃y)/2 excite or relax the spin qubit, which
is further described via

H̃ q = ωq

2
σ̃z. (5)

Thus, our total Hamiltonian becomes

H̃ 1 = H̃ F + H̃ q + H̃ int, (6)

where H̃ F = ω0ã†ã, and the other contributions are given
by Eqs. (4) and (5).

Our system thus realizes the Jaynes-Cummings Hamil-
tonian [Eq. (6)], which conserves the total number of
excitations. This is a direct consequence of spin conser-
vation, afforded by the exchange coupling in our system.
A spin-1 magnon can be absorbed by a spin qubit, flip-
ping the latter from its spin-(−1/2) to its spin-(+1/2)

state. The same transition in the spin qubit, however, can-
not emit a magnon. This is in contrast to the case of
dipolar coupling between a spin qubit and a ferromagnet
[7,41,48–50], which does not necessarily conserve spin.
Further, as numerically estimated below, on account of
exchange being a much stronger interaction, the effec-
tive coupling g in our system can exceed the magnon
frequency ω0, thereby covering the full coupling range
from weak to deep-strong [51–53]. Nonclassical behav-
ior is typically manifested when one starts with ultrastrong
couplings g/ω0 > 0.1 [51,54,55].

We consider the ferromagnet to be isotropic thus far.
However, such films manifest a strong shape anisotropy, in
addition to potential magnetocrystalline anisotropies [41].
We now account for these effects by including the single-
ion anisotropy contribution, parameterized via Kx,y,z:

H̃ an =
∑

i

Kx

(
S̃ix

)2
+ Ky

(
S̃iy

)2
+ Kz

(
S̃iz

)2
.

Our assumed general form for the anisotropy allows us to
capture all possible contributions to the uniform magnon-
mode Hamiltonian and provides design principles for
choosing the right material. The specific cases of shape
anisotropy [34,47] and magnetocrystalline anisotropy in
specific materials [56] are adequately captured by our gen-
eral considerations, and have been detailed elsewhere [34,
47,56]. If we retain only the uniform mode, the anisotropy
contribution above results in the following magnon Hamil-
tonian:

H̃ F = Aã†ã + B
(
ã2 + ã†2) , (7)

where A ≡ |γ |μ0H0 + KxS + KyS − 2KzS and B ≡
S(Kx − Ky)/2. For typical physical systems, both A and
B are in the gigahertz regime and are determined via the
applied field and the anisotropies as delineated by the

expressions presented above. The ensuing Hamiltonian,
Eq. (7), possesses squeezing terms proportional to B,
which, unlike in the case of light, result from the magnet
trying to minimize its ground-state energy while respecting
the Heisenberg uncertainty principle [35]. The new eigen-
mode, dubbed a squeezed magnon [34], is obtained via a
Bogoliubov transform ã = cosh rα̃ + sinh rα̃†, resulting in

H̃ F = ω0α̃
†α̃, (8)

where we continue to denote the eigenmode energy as
ω0, and we now have ω0 = √

A2 − 4B2. Further, the
squeeze parameter r is governed by the relation sinh r =
−2B/

√
(A + ω0)2 − 4B2. The stability of the ground state

requires ω0 > 0 and (A + ω0)
2 > 4B2. Thus, while the

physical system in question allows values of A and B out-
side this domain, our assumption of a uniformly ordered
ground state becomes invalid in that case. We confine our
analysis to the case of a sufficiently large applied field H0
such that the system harbors a uniformly ordered ground
state. The limit of a divergent squeezing r is neverthe-
less within the domain of applicability. A detailed analysis
of squeezing resulting from shape anisotropy shows it to
be a strong effect [34,47], with sinh r being of the order
of unity for typical experiments. It can be much larger
for small applied fields, or when the magnet is close to
a ground-state instability, or when a magnet with strong
magnetocrystalline anisotropy is chosen. Further, the anal-
ysis above shows that breaking the symmetry in the plane
transverse to the equilibrium spin order yields a squeezing
effect, while a uniaxial anisotropy does not contribute to it.
In the new eigenbasis, we obtain

H̃ int = gR
(
α̃†σ̃− + α̃σ̃+

) + gCR
(
α̃†σ̃+ + α̃σ̃−

)
, (9)

where gR = g cosh r and gCR = g sinh r. The interaction
now has both rotating (proportional to gR) and counter-
rotating (proportional to gCR) terms [Fig. 1(b)].

Our system can be analyzed in terms of two differ-
ent bases: using a spin-1 magnon (represented by ã) or
a squeezed magnon (α̃). The latter is the eigenmode and
comprises a superposition of odd-magnon-number states
[Fig. 2(a)] [34,35,57,58]. Since a spin-1 magnon is associ-
ated with a physical spin flip in the magnet [42], the inter-
action in Eq. (4) still comprises absorption and emission of
magnons (ã) accompanied by transitions in the qubit. On
the other hand, in the eigenbasis, the qubit is now interact-
ing with a new bosonic eigenmode, the squeezed magnon
(α̃), via an interaction that includes rotating and counter-
rotating terms [Eq. (9)]. Therefore, in the eigenbasis, our
system accomplishes an anisotropic QRM [4,5] [Fig. 1(b)
and Eqs. (5), (6), (8), and (9)]. The squeeze parameter
r, tunable via the applied field and the anisotropies [59],
further enhances the coupling strength and controls the rel-
ative importance of the rotating and counter-rotating terms:
gR = g cosh r and gCR = g sinh r.
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++ +...
(a)

(b)

FIG. 2. Schematic depiction of the transition |1, ggg〉 →
|0, eee〉. (a) The squeezed magnon comprises a superposition of
odd-magnon-number states. This composite nature enables its
absorption by an odd number of qubits. We focus on the case
of three qubits. (b) An example pathway that takes the system
from containing one squeezed magnon and three ground-state
qubits (|1, ggg〉) to zero squeezed magnons and three excited
qubits (|0, eee〉) via a series of virtual states. The first transition is
effected by a CRT and is indicated by a dashed arrow. The right
scale indicates the state energy, assuming ω0 = 3ωq.

III. ONE MAGNONIC MODE COUPLED TO
THREE QUBITS

We now exploit the squeezed and composite nature
of the magnonic eigenmode to generate useful entangled
states [35]. As depicted in Fig. 2(a), the composite nature
of the squeezed magnon should enable joint excitation
of an odd number of qubits. Considering the paramount
importance of generating such three-qubit GHZ states [29]
for Shor’s error-correction code [26], we consider three
qubits coupled to the same squeezed-magnon eigenmode:

H̃ 3 = H̃ F +
∑

n=1,2,3

(
H̃ n

q + H̃ n
int

)
, (10)

with the individual contributions expressed via Eqs. (5),
(8), and (9). For simplicity, we assume the three qubits
and their couplings with the magnet to be identical. The
qualitative physics is unaffected by asymmetries among
the three qubits, which are detailed in Appendix B. Hence-
forth, we analyze the problem in its eigenbasis, employing
a methodology consistent with a previous investigation of
joint photon absorption [60].

We are interested in jointly exciting the three qubits
using a single squeezed-magnon eigenmode, a transition
denoted as |1, ggg〉 → |0, eee〉. To gain physical insight,
we first analyze this transition within the perturbation-
theory framework detailed in Appendix B. While the tran-
sition is not possible via a direct process [first order in the
interaction Eq. (9)], it can be accomplished via a series
of virtual states. As the transition requires an increase in

the total excitation number by 2, at least one of the virtual
processes needs to be effected via CRTs, thus requiring a
nonzero squeezing r in our system. The shortest path to
effecting the transition consists of three virtual processes,
but its amplitude is canceled exactly by a complementary
path, as detailed in Appendix B. Hence, the lowest nonva-
nishing order for accomplishing this transition is 5, with
an example pathway being depicted in Fig. 2(b) [61]. As
detailed in Appendix B, several such paths contribute to
the overall transition amplitude. The energy-conservation
requirement on the initial and final states necessitates
ω0 ≈ 3ωq.

Guided by intuition from the perturbative analysis, we
now study the system [Eq. (10)] numerically using the
QuTiP package [62,63]. Unless stated otherwise, and for
simplicity, we employ gR = gCR = 0.1ωq in our analy-
sis. A numerical diagonalization of the total Hamiltonian
in Eq. (10) yields the energy spectrum, as depicted in
Fig. 3(a). To understand it, let us first consider the simpler
case of zero qubit-magnon coupling. In that case, the spec-
trum should contain eight (23) flat curves, corresponding
to the different excited qubits and zero squeezed-magnon
occupation. Two triplets of these overlap, resulting in four
visually distinct flat curves. The same three-qubit spec-
trum combined with N squeezed magnons yields the same
four visually distinct curves, now with a slope of N . Let
us turn on the qubit-magnon coupling now. For the small
but finite coupling considered in Fig. 3(a), we see the
typical one-excitation Rabi splitting around ω0 ≈ ωq that
results from a direct process. Around ω0 ≈ 2ωq, we see
crossings between different levels [64]. A coupling here
is forbidden, as only an odd number of qubits can be
excited by one squeezed magnon [Fig. 2(a)]. The apparent
crossing around ω0 ≈ 3ωq is in fact an anticrossing, man-
ifesting a small Rabi splitting between the states |1, ggg〉
and |0, eee〉 [see Fig. 3(b)]. This is the transition of inter-
est, and the effective coupling responsible for it can be
expressed as

H̃ eff = geff (|1, ggg〉 〈0, eee| + |0, eee〉 〈1, ggg|) , (11)

where geff = (gCRg4
R − 0.3g3

CRg2
R)/ω4

q is obtained by fit-
ting (almost perfectly) its gR,CR dependence predicted by
the perturbative analysis to the Rabi splittings obtained
via numerical diagonalization. In carrying out this anal-
ysis, we numerically find the resonance condition, which
occurs around ω0 ≈ 3ωq, and evaluate the Rabi splitting.
Hence, the expression for geff above is valid for ω0 ≈ 3ωq.
The comparison between the squeezed-magnon occupa-
tion, the single-qubit excitation, and the three-qubit cor-
relations plotted in Fig. 3(c) for Rabi oscillations around
ω0 ≈ 3ωq confirms the joint nature of the three-qubit
excitation.
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(a) (b) (c)

FIG. 3. Numerically evaluated spectrum and dynamics of three qubits coupled to one magnonic mode [Eq. (10)]. (a) Energy spec-
trum evaluated assuming gR = gCR = 0.1ωq. The green rectangle encloses the typical one-excitation anticrossing (ω0 ≈ ωq). The circle
highlights crossings around ω0 ≈ 2ωq, as only an odd number of qubits can be excited [Fig. 2(a)]. The square emphasizes the weaker
three-excitation anticrossing around ω0 ≈ 3ωq, which results from finite squeezing and the resulting CRTs. (b) Enlargement of the
three-excitation anticrossing that stems from the transition depicted in Fig. 2. The red dashed lines depict the spectrum evaluated
assuming gCR = 0, leaving the rest unchanged. (c) Zero-detuning system dynamics around ω0 ≈ 3ωq with the initial state |1, ggg〉.
The squeezed-magnon occupation (blue solid line) and single-qubit excitation (black solid line) manifest typical Rabi oscillations.
The nearly perfect overlap between the single-qubit and three-qubit (red dashed line) correlations confirms the joint nature of the
three-qubit excitation in these Rabi oscillations.

IV. DISCUSSION

Our system enables the transition |1, ggg〉 → |0, eee〉
with an effective coupling strength geff [Eq. (11)], or equiv-
alently the Rabi frequency, that is tunable via the magnon
squeezing: gCR = g sinh r. Bringing the system into reso-
nance to enable a Rabi oscillation for a fraction of a cycle
can be exploited to robustly generate three-qubit GHZ
and related entangled states, (|ggg〉 ± |eee〉)/√2. Conve-
nient generation of these states is central to Shor’s error-
correction code [26] and thus of great value in achieving
fault-tolerant quantum computing. Such three-qubit entan-
gled states can be generated on contemporary quantum
computers via sequential one- and two-qubit gate oper-
ations [65–67]. In theory, and for ideal gate operations,
our suggested method appears not to offer any advantage
over such sequential gate operations executed on state-
of-the-art quantum computers. However, each two-qubit
gate operation entails applying an exact pulse that, in turn,
depends on the qubit frequencies and their coupling to
the bosonic mode. Further, such sequential operations nec-
essarily create an asymmetry between the three qubits,
since one of them needs to be addressed in the end. In
the presence of decoherence, this can compromise the
quality of the GHZ states achieved in practice. Finally,
sequential operations are bound to take a longer time to
generate the desired GHZ state, which reduces the time
available for other computations, given that decoherence
limits the total time available. In contrast, capitalizing on
energy and spin conservation, our proposed single-pulse
method is intrinsically robust against any qubit asymme-
tries and perfectly synchronizes the excitation of the three
qubits. This resilience of our suggested method comes
because there is a unique resonance condition around

ω0 ≈ ωq1 + ωq2 + ωq3 for the single pulse needed. Since
the three qubits need to absorb the energy of one squeezed
magnon together, their GHZ-state generation is automati-
cally synchronized.

Being a fifth-order process, geff is evaluated to be small
for the parameters employed in our analysis above (gR =
gCR = 0.1ωq). However, notwithstanding our choice of
parameters, which is motivated by a comparison with per-
turbation theory, the proposed system can achieve very
high bare couplings g [Eq. (9), gR, gCR > ωq], such that
the higher-order processes are not diminished and geff
becomes large. An increase in the coupling strength and the
relevance of higher-order processes, however, has its trade-
offs. While some of these higher-order processes merely
renormalize the qubit and magnon frequencies, thereby
not affecting the phenomena discussed here, others can
bring the independent existence of the magnon and qubit
subsystems into question. Thus, depending on the desired
application, an optimal value for geff needs to be chosen.
The key benefit of the proposed system is the wide range
of geff that it admits. Spin-pumping experiments yield
interfacial exchange couplings [Eq. (3)] Jint ≈ 10 meV
between various (insulating) magnets and adjacent metals
[68–70]. Assuming the qubit wave function to be localized
in five monolayers below an equally thin ferromagnet and
an interface comprising 100 sites, we obtain a bare cou-
pling rate [Eq. (4)] g ≈ 0.005Jint ≈ 80 GHz, significantly
larger than typical spin-qubit and uniform-magnon-mode
frequencies.

In general, one can design a system (e.g., by choosing
the ferromagnet thickness) to have a desired bare coupling,
and exploit the squeezing-mediated tunability in situ. The
latter effect, although an interesting and useful property of
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the system, may not be needed in a specific application,
given that deep-strong coupling could be achieved without
this enhancement. In particular, our example of choice, the
generation of GHZ states, need not exploit this enhance-
ment effect.

Our proposal for leveraging intrinsic magnon squeezing
in generating entanglement via a coherent process is com-
plementary to previous incoherent interaction-based pro-
posals [36,48,71,72]. The latter typically necessitate dia-
batic decoupling of qubits from the magnet after achieving
an entangled state. Our proposal thus uncovers an unex-
plored and experimentally favorable avenue for exploiting
the squeezing intrinsic to magnets.

V. SUMMARY

We demonstrate that a magnon–spin-qubit ensemble can
realize an anisotropic quantum Rabi model with coupling
strengths that make it feasible to reach the deep-strong
regime. This system is shown to capitalize on various
unique features of squeezed magnons hosted by mag-
nets. These include squeezing-mediated coupling enhance-
ment, tunable anisotropy of the Rabi model, and conve-
nient synchronous entanglement of three qubits. Thus, the
magnon–spin-qubit ensemble provides a promising plat-
form for investigating phenomena beyond the ultrastrong
regime and implementing error-correction codes.

ACKNOWLEDGMENTS

We thank Wolfgang Belzig, Tim Ludwig, and Rembert
Duine for valuable discussions. We acknowledge finan-
cial support from the Research Council of Norway through
its Centers of Excellence funding scheme, Project 262633,
“QuSpin,” and the Spanish Ministry for Science and Inno-
vation, AEI Grant No. CEX2018-000805-M (through the
“Maria de Maeztu” Program for Units of Excellence in
R&D).

APPENDIX A: SYSTEM HAMILTONIAN

In this section, we derive the Hamiltonian describing our
magnon–spin-qubit ensemble. First, starting with the ferro-
magnetic spin Hamiltonian, we obtain a description of the
magnonic mode. Then, we specify the spin qubit. Finally,
we derive the interfacial exchange-mediated interaction
between the two subsystems.

1. Magnonic mode

Taking into account the Zeeman energy, ferromagnetic
exchange, and a general anisotropy, the ferromagnet is

described via the spin Hamiltonian

H̃ F = |γ |μ0H0

∑
i

S̃iz − J
∑
〈i,j 〉

S̃i · S̃j

+
∑

i

[
Kx

(
S̃ix

)2
+ Ky

(
S̃iy

)2
+ Kz

(
S̃iz

)2
]

,

(A1)

where the applied magnetic field is H0ẑ, γ (< 0) is the
gyromagnetic ratio, J (> 0) is the exchange energy, 〈i, j 〉
denotes a sum over nearest neighbors, and Kx,y,z param-
eterize the magnetic anisotropy. While the anisotropy
may arise due to dipolar interactions or magnetocrys-
talline single-ion anisotropies, our assumed general form
encompasses all such symmetry-allowed contributions that
can contribute to determining the uniform k = 0 magnon
mode [47].

Assuming the Zeeman energy to dominate over the
anisotropy, we consider all spins to point along −ẑ in the
magnetic ground state. We may express the spin Hamil-
tonian in Eq. (A1) in terms of bosonic magnons via the
Holstein-Primakoff transformation [42] corresponding to
our spin ground state,

S̃j + =
√

2Sã†
j , (A2)

S̃j − =
√

2Sãj , (A3)

S̃jz = −S + ã†
j ãj , (A4)

where S̃j ± ≡ S̃jx ± iS̃jy , ãj is the magnon annihilation
operator at position j , and S is the spin magnitude. In
addition, we need the Fourier relations

ãj = 1√
NF

∑
k

ãke−ik·rj , (A5)

ãk = 1√
NF

∑
j

ãj eik·rj , (A6)

where NF is the total number of sites in the ferromagnet
and ãk is the annihilation operator for the magnon mode
with wave vector k. Employing these Holstein-Primakoff
and Fourier transformations in Eq. (A1), we obtain the
magnonic Hamiltonian

H̃ F = const +
∑

k

[
Akã†

kãk + Bk

(
ã†

kã†
−k + ãkã−k

)]
,

(A7)

where Ak ≡ |γ |μ0H0 + KxS + KyS − 2KzS + 4JS [3−(
cos kxa + cos kya + cos kza

)]
and Bk ≡ S(Kx − Ky)/2.

In obtaining the exchange contribution to Ak, we assume
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a simple cubic lattice with lattice constant a. In the long-
wavelength limit, i.e., akx,y,z � 1, the cosines can be
approximated by parabolas.

As discussed in the main text, we retain only the uni-
form mode corresponding to k = 0 in our consideration of
the magnon–spin-qubit system. This is justifiable because,
for small dimensions of the magnet considered here, the
allowed wave vectors k correspond to magnon energies
separated from the lowest uniform mode (with an energy
of a few gigahertz) by at least several gigahertz. Thus,
we may disregard such high-energy modes when con-
sidering coherent resonant interactions, as we do in this
paper. Further diagonalization of Eq. (A7), considering
only the uniform mode, via a Bogoliubov transformation
is described in the main text.

2. The spin qubit

We consider our spin qubit to comprise a confined elec-
tronic orbital that admits spin-up and spin-down states.
Considering a lifting of the spin degeneracy by, for exam-
ple, an applied magnetic field, the spin-qubit Hamiltoniam
may be expressed as

H̃ q = const + ωq

2

(
c̃†
↑c̃↑ − c̃†

↓c̃↓
)

, (A8)

where, considering a negative gyromagnetic ratio and an
applied magnetic field along ẑ, ωq (> 0) is the qubit
splitting. We further introduce the notation

σ̃z ≡
(

c̃†
↑ c̃†

↓
)(

1 0
0 −1

) (
c̃↑
c̃↓

)
≡ c̃†

σ zc̃, (A9)

where an underline identifies a matrix. With this notation,
and dropping the spin-independent constant, the spin-qubit
Hamiltonian is expressed as

H̃ q = ωq

2
σ̃z. (A10)

With the notation defined in Eq. (A9), σ̃+ ≡ (σ̃x + iσ̃y)/2
becomes the qubit excitation operator, while σ̃− ≡ (σ̃x −
iσ̃y)/2 is the qubit relaxation operator.

3. Exchange coupling

The magnon and spin qubit are considered to be coupled
via an interfacial exchange interaction parameterized via
Jint [45–47],

H̃ int = Jint

∑
l

S̃l · s̃l, (A11)

where l labels the interfacial sites, S̃ denotes the fer-
romagnetic spin operator, and s̃ represents the spin of
the electronic states that comprise the qubit. We wish to

express the interfacial Hamiltonian in Eq. (A11) in terms
of the magnon and qubit operators. To this end, S̃l can
be expressed via magnon operators using the Holstein-
Primakoff and Fourier transforms [Eqs. (A2)–(A6)]
already described above. We now discuss the representa-
tion of s̃l in terms of the qubit operators σ̃x,y,z [Eq. (A9)].

Following quantum-field-theory notation for discrete
sites, the spin operator at a given position r can be
expressed in terms of ladder operators at the same position:

s̃(r) = 1
2

∑
s,s′=↑,↓

�̃†
s (r)σ ss′�̃s′(r), (A12)

where σ = σ xx̂ + σ y ŷ + σ z ẑ, with σ x,y,z being the Pauli
matrices. The local ladder operators can be represented fur-
ther in terms of the complete set of eigenstates labeled via
an orbital index t:

�̃s(r) =
∑

t

ψt(r)c̃ts, (A13)

where ψ(r) is the spatial wave function of the orbital and
c̃ts are the ladder operators for each spin-resolved orbital.
Employing this relation, Eq. (A12) becomes

s̃(r) = 1
2

∑
s,s′,t,t′

ψ∗
t (r)ψt′(r)σ ss′ c̃

†
tsc̃t′s′ . (A14)

Since, for our spin qubit, we are interested in only one
orbital out of the complete set, we allow only one value of
t and thus drop the index t in accordance with our previous
considerations in Eq. (A8):

s̃(r) = 1
2

∑
s,s′

|ψ(r)|2 σ ss′ c̃†
s c̃s′ , (A15)

= |ψ(r)|2
2

c̃†σ c̃, (A16)

=⇒ s̃l = |ψl|2
2

c̃†σ c̃, (A17)

where ψl is the wave-function amplitude of the qubit
orbital at position l.

The interfacial interaction in Eq. (A11) is now simplified
to

H̃ ints = Jint

∑
l

[
S̃lz s̃lz + 1

2

(
S̃l+s̃l− + S̃l−s̃l+

)]
, (A18)

where S̃l± ≡ S̃lx ± iS̃ly and s̃l± ≡ s̃lx ± is̃ly . Employing
Eq. (A17) together with Eqs.(A2)–(A6) and retaining only
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the uniform magnon mode, the interfacial Hamiltonian is
simplified to include two contributions:

H̃ int = H̃ int1 + H̃ int2. (A19)

The first contribution is our desired magnon–spin-qubit
exchange coupling,

H̃ int1 = JintNint|ψ |2
√

S
2NF

(
ã†σ̃− + ãσ̃+

)
, (A20)

where Nint is the number of interfacial sites and |ψ |2 ≡(∑
l |ψl|2

)
/Nint is the qubit electronic state wave function

averaged over the interface. The second contribution,

H̃ int2 = −SJintNint|ψ |2
2

σ̃z, (A21)

renormalizes the spin-qubit energy and can be absorbed
into ωq [Eq. (A10)].

APPENDIX B: DERIVING AN EXPRESSION FOR
THE EFFECTIVE COUPLING WITH

PERTURBATION THEORY

Here we look at the Hamiltonian describing three qubits
coupled to the same squeezed-magnon eigenmode, as
described in the main text. We assume the interaction
terms, H̃ n

int, to be small compared with the rest of the
Hamiltonian, H̃ 0 = ω0α̃

†α̃ + ∑
n=1,2,3(ωqn/2)σ̃ n

z , and cal-
culate the effective coupling geff between the two states
|1, ggg〉 and |0, eee〉 using perturbation theory. The inter-
action term, H̃ n

int, is given by

H̃ n
int = gRn

(
α̃†σ̃ n

− + α̃σ̃ n
+
) + gCRn

(
α̃†σ̃ n

+ + α̃σ̃ n
−
)

. (B1)

The relevant virtual processes can be shown as paths from
|1, ggg〉 (blue) to |0, eee〉 (red) on a grid of “number of
magnon excitations” and “number of qubit excitations.”
The rotating term (drawn as a full line) keeps the total num-
ber of excitations constant, while the counter-rotating term
(drawn as a dotted line) changes the total number of exci-
tations by two. The detailed expressions for each diagram
are calculated using a diagrammatic approach presented in
Ref. [73].

1. Third-order perturbation theory

We start by applying perturbation theory to third order.
The two third-order diagrams are shown in Fig. 4. For
general qubits, these two diagrams result in the effective
coupling

FIG. 4. Diagrams connecting |1, ggg〉 (blue) and |0, eee〉 (red)
via virtual transitions to third order. Counter-rotating processes
are represented by dashed lines.

g(3)

eff =
∑
i,j ,k

i�=j �=k �=i

[
2gCRigRj gRk

(−ω0 − ωqi)(−ωqi − ωqj )

+ gRigCRj gRk

(ω0 − ωqi)(−ωqi − ωqj )

]
, (B2)

where the sum is over all qubit permutations.
If we assume that the qubits are identical (gCRi =

gCR, gRi = gR, ωqi = ωq), all qubit permutations are equiv-
alent, and the sum can be carried out by counting qubit
permutations:

g(3)

eff = 3gR
2gCR

3ωq − ω0

ωq
(
ω0

2 − ωq
2
) . (B3)

As we can see, the two paths cancel at resonance, i.e.,
ω0 = 3ωq. Moreover, it can be shown from Eq. (B2) that
the third-order term cancels when ω0 = ∑

i ωqi. The result
of pure third-order perturbation theory is therefore zero.

2. Fifth-order perturbation theory

Since the third-order result is zero and there are no
fourth-order paths, we move on to fifth order by drawing
all fifth-order paths from the initial state |1, ggg〉 (blue) to
the state |0, eee〉 (red). We use the result that the third-order
term cancels at resonance to note that pairs of diagrams

FIG. 5. Example of fifth-order diagrams that cancel if ω0 =
3ωq. Pairs of two third-order diagrams with an additional loop
on a shared vertex that is not the initial vertex fully cancel
at resonance. Counter-rotating terms are represented by dashed
lines.
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(a) (b)

(d)(c)

(e) (f) (g)

FIG. 6. Relevant diagrams that
connect |1, ggg〉 (blue) and |0, eee〉
(red) via virtual transitions to fifth
order. Counter-rotating terms are
represented by dashed lines.

such as the ones in Fig. 5, i.e., the two third-order dia-
grams with an additional loop on a shared vertex that is
not the initial vertex, also fully cancel at resonance.

All remaining diagrams are shown in Fig. 6. Diagrams
(a) and (c) cancel partially but not fully, and give the
contribution

g(5a)

eff + g(5c)
eff =

∑
i,j ,k,l

j �=k �=l�=j

[(
2gCRi

2

(−ω0 − ωqi)

) (
2gCRj gRkgRl

(−ω0 − ωqi)2(−ωqi − ωqj )
+ gRj gCRkgRl

(ω0 − ωqi)2(−ωqi − ωqj )

)]
. (B4)

Similarly, for (b) and (d),

g(5b)

eff + g(5d)

eff =
∑
i,j ,k,l

j �=k �=l�=j

[(
gRi

2

(ω0 − ωqi)

) (
2gCRj gRkgRl

(−ω0 − ωqi)2(−ωqi − ωqj )
+ gRj gCRkgRl

(ω0 − ωqi)2(−ωqi − ωqj )

)]
. (B5)

The contributions from diagrams (e), (f), and (g) are

g(5e)
eff =

∑
i,j ,k,l

i�=j �=k �=i

6gCRigCRj gRkgCRlgRl

(−ω0 − ωqi)(−2ω0 − ωqi − ωqj )(−ω0 − ∑
n ωqn)(ωql − ∑

n ωqn)
(B6)

g(5f )

eff =
∑

i,j ,k,l,m,n
i�=j �=k �=i

l=i,j
m=l,k

n�=m n=l,k

6gCRigCRj gCRlgRmgRn

(−ω0 − ωqi)(−2ω0 − ωqi − ωqj )(−ω0 + ωql + ωqk − ∑
p ωqp)(ωqn − ∑

p ωqp)
, (B7)

g(5g)

eff =
∑
i,j ,k,l

j �=k �=l�=j

6gCRigRigRj gRkgRl

(−ω0 − ωqi)(−2ω0)(−ω0 − ωqj )(−ωqj − ωqk)
. (B8)
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If we now assume that we are at resonance and that the
qubits are identical (gCRi = gCR, gRi = gR, ωqi = ωq, and
ω0 = 3ωq), the sums can again be carried out by count-
ing qubit permutations. The total effective coupling to fifth
order is then

g(5)

eff = −9
(
3gCR

3gR
2 − 8gCRgR

4
)

32ωq
4 . (B9)

3. Additional corrections

As we have seen, the third-order contribution to the
effective coupling is zero when ω0 = 3ωq. However, if we
are interested in the details of the (anti)crossing, there is
an additional detail we need to consider. The perturba-
tion causes the energy levels to shift, which causes the
(anti)crossing to take place at a small shift away from
ω0 = 3ωq.

By applying second-order perturbation theory (at ω0 =
3ωq) to the energies of the two relevant states, we find that
the crossing takes place at

ω0 = 3ωq + 3gCR
2

2ωq
− 3gR

2

ωq
. (B10)

Inserting this into the third-order effective coupling,
Eq. (B3), and keeping terms of up to fifth order in gCR/R
leaves us with [74]

g(3)′
eff = 9

(
gCR

3gR
2 − 2gCRgR

4
)

16ωq
4 , (B11)

where the prime indicates that the effective coupling is
evaluated at the (anti)crossing.
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Superconductor-semiconductor hybrid devices are currently attracting much attention, fueled by the fact that
strong spin-orbit interaction in combination with induced superconductivity can lead to exotic physics with
potential applications in fault-tolerant quantum computation. The detailed nature of the spin dynamics in such
systems is, however, often strongly dependent on device details and hard to access in experiment. In this paper
we theoretically investigate a superconductor-normal-superconductor junction based on a two-dimensional hole
gas with additional Rashba spin-orbit coupling, and we focus on the dependence of the critical current on
the direction and magnitude of an applied in-plane magnetic field. We present a simple model, which allows
us to systematically investigate different parameter regimes and obtain both numerical results and analytical
expressions for all limiting cases. Our results could serve as a tool for extracting more information about the
detailed spin physics in a two-dimensional hole gas based on a measured pattern of critical currents.

DOI: 10.1103/PhysRevB.107.085303

I. INTRODUCTION

Hybrid devices made of superconductors and semiconduc-
tors have gained much interest in recent years due to their rich
and complex behavior. Spin-orbit coupling in combination
with superconducting correlations induced via the proximity
effect can give rise to exotic spin physics inside the semi-
conductor, which could be exploited to engineer topological
superconductivity [1–7]. Since such topological superconduc-
tors are expected to host low-energy Majorana modes that
obey non-Abelian anyonic statistics, they could provide a plat-
form for implementing fault-tolerant quantum computation
with topologically protected qubit operations [8–10].

Arguably the simplest hybrid device one can create using
superconducting and normal elements is the superconductor-
normal-superconductor (SNS) junction, which finds applica-
tions in a wide range of directions, including superconducting
qubits [11–15] and electronic and magnetic measuring devices
[16–20]. In addition to being an essential component of su-
perconducting circuits, an SNS junction can also be used for
studying the underlying properties of the constituent elements
of the hybrid structure. For the case of a semiconducting
normal region, an SNS setup allows to probe details of the
spin-orbit interaction in the semiconductor and its interplay
with the Zeeman effect [21–23], as well as to study phase
transitions into and out of topological phases [24–26].

One quantity that encodes several details of the under-
lying physics of the system is the critical current through
the SNS junction, i.e., the maximal supercurrent the junc-
tion can support. By applying a magnetic field perpendicular
to a two-dimensional junction, information about the cur-
rent density distribution can be extracted from the measured
critical current [27]. For a uniform current distribution, the

critical current as a function of the out-of-plane magnetic field
emerges as a so-called Fraunhofer pattern, which reflects the
flux enclosed by the junction. A deviation from a Fraunhofer
pattern is a sign of a nonuniform current distribution and the
pattern of critical current can be directly related to the actual
current distribution profile in the junction [28–34].

The field-dependent behavior of an SNS junction is heavily
influenced by the properties of the normal part, and junctions
based on a wide range of materials have been explored in
the past [35–38]. In this paper we focus on SNS junctions
comprised of a two-dimensional hole gas (2DHG) contacted
by two conventional superconductors. Our choice is motivated
by the recent surge in interest for lower-dimensional quantum
devices hosted in 2DHGs [39–46], which was sparked by their
interesting properties including strong inherent and tunable
spin-orbit interaction [47–51] and highly anisotropic and tun-
able g tensors [52–55], all caused by the underlying p-type
orbital structure of the valence band states [56]. Addition-
ally, germanium-based hole gases have recently shown great
promise for straightforward integration with superconducting
elements [57–60].

The effective spin-orbit interaction and Zeeman coupling
that together can give rise to its useful properties depend
strongly on many details of the 2DHG, including its exact
out-of-plane confining potential, the carrier density, strain,
and the local electrostatic landscape. For this reason it is
not always straightforward to access the relevant underlying
spin-orbit and g-tensor parameters in experiment for a given
system. Here, we theoretically study the dependence of the
critical current through a 2DHG-based SNS junction on the
direction and magnitude of an applied in-plane magnetic field.
We show how to derive an elegant expression for the field-
dependent critical current in a semiclassical limit (where the
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FIG. 1. Schematic of the SNS junction: two identical conven-
tional superconductors Sl and Sr , connected by a 2D hole gas. The
junction has a length of L and a width of W , as indicated. An example
of a diagram contributing to the Cooper-pair propagator is drawn in
the normal region, where the electron (hole) propagator is depicted
with a solid (dashed) line.

system is large compared to its Fermi wavelength), which
allows for straightforward numerical evaluation of the current.
Assuming that we can describe the dynamics of the holes
in the normal region with a simple 4 × 4 Luttinger Hamil-
tonian and that the carrier density is low enough that only
the lowest (heavy-hole) subband is occupied, we identify sev-
eral different parameter regimes where different spin-mixing
mechanisms could be dominating and we calculate the field-
dependent critical current in all these regimes. We are able
to connect each mechanism to clear qualitative features in
the pattern of critical current that emerges and we present
analytical expressions for the current in most limiting cases.
Our results could thus help distinguishing the dominating
spin-mixing process at play in an experiment, and as such give
insight in the strength and nature of the underlying spin-orbit
and Zeeman couplings in the system.

The rest of the paper is organized as follows. In Sec. II we
will introduce the setup we consider and the model we use to
describe it. We outline our method of calculating the critical
current through the junction and explain how we tailor it to the
situation where all transport in the normal region is carried by
the heavy holes. In Sec. III we present both our numerical and
analytical results, systematically going through the different
parameter regimes that could be reached. Finally, in Sec. IV
we present a short conclusion.

II. MODEL

Figure 1 shows a cartoon of the system we consider: A
2DHG is contacted from two sides by two identical conven-
tional superconductors to create an SNS junction, where we
assume the coupling between the superconductors and the
normal region to be weak. We define the length L and width
W of the junction as indicated in the figure and choose the
coordinate system such that the average flow of supercurrent
is in the x direction and the out-of-plane direction is denoted
by z. We assume the clean junction limit, as the width of
experimentally viable devices is typically of the order 100 nm
to 1 µm [58,59,61], while the mean-free path of, e.g., Ge
2DHGs has been measured to be up to ∼6 µm [58,59].

We will first introduce the method we chose for calculating
the supercurrent through the junction. In the ground state, the
current is given by

I (φ) = 2e

h̄

∂F

∂φ
, (1)

where F is the free energy of the junction and φ is the differ-
ence in phase between the two superconductors.

We describe the coupling between the hole gas and the
superconducting leads with a tunneling Hamiltonian

Ht =
∑

σ

∫
dy[tl ψ̂

†
σ (0, y)�̂σ,L(0, y)

+ trψ̂
†
σ (W, y)�̂σ,R(W, y) + H.c.], (2)

where ψ̂†
σ (r) is the creation operator for an electron with spin

σ at position r in the normal region, and �̂
†
σ,L (R)(r) for an

electron with spin σ at position r in the left (right) supercon-
ductor. The lines x = 0,W define the interfaces between the
superconductors and the normal region.

We assume the coupling amplitudes tl,r to be small enough
to justify a perturbative treatment of Ht . Weak coupling can
result from, e.g., interfacial disorder, but could also be a
consequence of the difference in underlying orbital struc-
ture of the electronic wave functions in the superconductors’
conduction band and the semiconductor’s valence band. The
leading-order correction to F that depends on φ is second
order in the self-energy due to the proximity of the supercon-
ductors, or fourth order in the coupling Hamiltonian Ht [62]:

F (4) = − 1

4!β

∫ β

0
dτ1...4〈T̂τ Ht (τ1)Ht (τ2)Ht (τ3)Ht (τ4)〉, (3)

where β = 1/T is the inverse temperature, T̂τ is the (imag-
inary) time-ordering operator, and h̄ = kB = 1. In the evalu-
ation of (3) we focus on the fully connected diagrams only
since those are the ones that can probe the phase difference
between the two superconductors.

Anticipating that we will make a semiclassical approxima-
tion later, assuming that the dimensions of the junction are
much larger than the Fermi wavelength λF, we will take the
Andreev reflection at the NS interface to be local and energy
independent. After applying Wick’s theorem to the correlator
in (3) this allows us to simplify the correction to

F (4) = −λlλr

∫∫
dy dy′Re{ei[ϕl (y)−ϕr (y′ )]C(W, y′; 0, y)}, (4)

where λl,r = πt2
l,rνeff parametrize the strength of the coupling

to the superconducting leads, with νeff the local effective one-
dimensional tunneling density of states of the superconductors
(giving the λ′s dimensions energy × meters). The phase dif-
ference

ϕl (y) − ϕr (y′) = φ + π (y + y′)BzW

0
, (5)

with 0 = h/2e the flux quantum, depends on the two y
coordinates in such a way that it captures the coupling to an
out-of-plane magnetic field [63], due to the flux  = BzW L
penetrating the junction. We assume that the magnetic field
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Bz is small enough that it does not significantly affect the
trajectories of the charges.1 We used the function

C(r′; r) = T

2

∑
k

Tr[Ḡ(r′, r; iωk )σyḠ(r′, r; −iωk )T σy], (6)

were the Ḡ are 2 × 2 matrices in spin space,

Ḡ(r′, r; iωk ) =
(G↑↑(r′, r; iωk ) G↑↓(r′, r; iωk )
G↓↑(r′, r; iωk ) G↓↓(r′, r; iωk )

)
, (7)

with Gσ ′σ (r′, r; iωk ) = − ∫ β

0 dτ eiωkτ 〈T̂τ ψ̂σ ′ (r′, τ )ψ̂†
σ (r, 0)〉

the thermal Green function at Matsubara frequency ωk =
(2k + 1)πT for (spin-dependent) electronic propagation in
the normal region. The correlation function C(W, y′; 0, y)
as used in (4) can thus be interpreted as the probability
amplitude for a Cooper pair to cross the junction, from
the point (0, y) to the point (W, y′), as illustrated by the
simple diagram shown in Fig. 1. In writing Eq. (4) we
further assumed the pairing in the superconductors to
be conventional s type, described by pairing terms like
H (S)

pair = −∑
k{�0�̂

†
k↑�̂

†
−k↓ + �∗

0�̂−k↓�̂k↑}. Within all
approximations made, other details of the dynamics inside
the superconductors will only affect the magnitude of the two
coupling parameters λl,r .

We assume that the carriers in the normal region can be
described by a 4 × 4 Luttinger Hamiltonian [56]

H0 = 1

2m0

⎛
⎜⎜⎝

P + Q 0 0 M
0 P + Q M∗ 0
0 M P − Q 0

M∗ 0 0 P − Q

⎞
⎟⎟⎠, (8)

where

P = γ1
(
k2 + 〈

k2
z

〉)
, (9a)

Q = γ2
(
k2 − 2

〈
k2

z

〉)
, (9b)

M = − 1
2

√
3[(γ2 + γ3)k2

− + (γ2 − γ3)k2
+], (9c)

using k± = kx ± iky and k2 = k2
x + k2

y , and with m0 being
the bare electron mass and γ1,2,3 the three-dimensionless

1The total magnetic flux penetrating the junction area is in reality
often enhanced by flux focusing due to the Meissner effect, which
we will neglect here for simplicity. Including this effect can be done
simply by renormalizing Bz.

material-specific Luttinger parameters. This Hamiltonian
is written in the basis of the angular-momentum states
{|+ 3

2 〉 , |− 3
2 〉 , |+ 1

2 〉 , |− 1
2 〉} with total angular momentum 3

2
and it includes an extra minus sign, i.e., it describes the
dynamics from a hole perspective. The z coordinate (along
which the holes are strongly confined) has already been in-
tegrated out, 〈k2

z 〉 ∼ 1/d2, with d the transverse confinement
length, and we neglect the effects of strain for simplicity.

We now assume that transverse confinement is strong
enough to make the splitting δHL = 2γ2〈k2

z 〉/m0 the largest
energy scale involved, on the order of ∼100 meV in planar Ge
[49,57,64], which allows us to focus on the so-called heavy-
hole (HH) subspace {|+ 3

2 〉 , |− 3
2 〉} and treat the coupling to the

light-hole (LH) states {|+ 1
2 〉 , |− 1

2 〉} perturbatively. We will
further assume that the Andreev reflection at the interfaces
with the superconductors pairs hole states with opposite or-
bital and spin angular momentum, such as |± 3

2 〉. This allows
us to treat the low-energy HH subspace {|+ 3

2 〉 , |− 3
2 〉} as an

effective spin- 1
2 system that can host a supercurrent that can

be described with the formalism presented above.2

Furthermore, we want to include the Zeeman effect due to
an in-plane magnetic field B‖ as well as Rashba-type spin-
orbit coupling. We describe the in-plane Zeeman effect with
the Hamiltonian

HZ = −2κ (B+J− + B−J+), (10)

where J± = Jx ± iJy are the spin- 3
2 raising and lowering op-

erators, B± = Bx ± iBy, the hole g factor is κ , and we set
μB = 1. The spin-orbit coupling, which can be due to asym-
metries in the confining potential or to an externally applied
out-of-plane electric field, is described with

HR = iαR(k+J− − k−J+), (11)

where αR characterizes the strength of the coupling.
We add these two ingredients to the projected two-

dimensional Luttinger Hamiltonian introduced above and we
make the so-called spherical approximation, amounting to the
assumption |γ2 − γ3| � γ2 + γ3, which allows to drop the last
term in (9c). For many commonly used semiconductors, such
as Ge, GaAs, InSb, and InAs (but not for Si), this is a valid
approximation [56]. Otherwise, we impose no constraints on
the Luttinger parameters. Then the total Hamiltonian for the
hole gas is

Htot = H0 + HZ + HR

=

⎛
⎜⎜⎜⎝

k2/2mH 0 −√
3(2κB− + iαRk−) −k2

−/2mx

0 k2/2mH −k2
+/2mx

√
3(−2κB+ + iαRk+)√

3(−2κB+ + iαRk+) −k2
−/2mx δHL + k2/2mL −4κB− − 4iαRk−

−k2
+/2mx −√

3(2κB− + iαRk−) −4κB+ + 4iαRk+ δHL + k2/2mL

⎞
⎟⎟⎟⎠, (12)

where we introduced the effective HH and LH masses mH = m0/(γ1 + γ2) and mL = m0/(γ1 − γ2). We further used mx =
2m0/

√
3(γ2 + γ3), which governs the strength of the momentum-dependent HH-LH mixing. A sketch of Hamiltonian (12) can

be seen in Fig. 2.

2Treating the holes as electrons results in an overall minus sign for the supercurrent, which is irrelevant in the context of this work.
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Our assumption that δHL is the largest energy scale involved allows us to treat the HH-LH coupling perturbatively. We first
diagonalize the LH subspace in (12), after which we perform a Schrieffer-Wolff transformation to decouple the HH and LH
subspaces. To second order in 1/δHL we find the effective HH Hamiltonian

HHH =
(

k2/2mH −δ−1
HL(k2

−/mx )β1 − 4δ−2
HLβ2

1β2

−δ−1
HL(k2

+/mx )β∗
1 − 4δ−2

HL(β∗
1 )2β∗

2 k2/2mH

)
, (13)

where we ignored the shift of the diagonal elements, and
we used β1 = √

3(2κB− + iαRk−) and β2 = κB− + iαRk−.
We see that, depending on the magnitude of δHL, the typical
in-plane (Fermi) momentum kF of the current-carrying holes,
the strength of the spin-orbit coupling αR, and the magnitude
of the applied in-plane magnetic field, different terms can
dominate the effective coupling of the two HH states. We used
that in the perturbative limit we consider here one always has
(δ−1

HLk2
±/mx )2 � δ−1

HLk2
±/mx, and we thus ignore the contribu-

tion −4δ−2
HL(k2

−/mx )2(β∗
2 σ+ + β2σ−) to Eq. (13).

We can now consider different cases. First, for a very thin
2DHG we can assume that the term ∝δ−1

HL will dominate,
which leaves two qualitatively different coupling terms in
HHH,

H (1)
0,3 = −i

√
3αR

mxδHL
(k3

−σ+ − k3
+σ−), (14)

H (1)
1,2 = −2

√
3κ

mxδHL
(B−k2

−σ+ + B+k2
+σ−), (15)

where the subscripts of H refer to the powers of B and k ap-
pearing in the term, respectively, and the superscript indicates
the power of δ−1

HL. If the 2DHG is less thin, then the term ∝δ−2
HL

in (13) could also contribute, which allows for four additional
coupling terms:

H (2)
0,3 = 12

iα3
R

δ2
HL

(k3
−σ+ − k3

+σ−), (16)

FIG. 2. A sketch of the spectrum of the Hamiltonian (12), where
we assumed the perturbations HZ and HR to be small enough to be
neglected. We see the heavy-hole and light-hole bands being split by
the HH-LH splitting δHL and anticross where they are mixed by the
off-diagonal terms k2

±/2mx . The blue shaded region around the Fermi
energy EF indicates the energy window within which all relevant
dynamics are assumed to happen, its width being of the order of |�0|.
Superconducting pairing in the 2DHG is induced between holes in
the HH band with opposite spin and momentum, as illustrated in the
figure.

H (2)
1,2 = 60

α2
Rκ

δ2
HL

(B−k2
−σ+ + B+k2

+σ−), (17)

H (2)
2,1 = −96

iαRκ2

δ2
HL

(B2
−k−σ+ − B2

+k+σ−), (18)

H (2)
3,0 = −48

κ3

δ2
HL

(B3
−σ+ + B3

+σ−). (19)

We now make the assumption that all relevant dynamics
happen on an energy scale very close to the Fermi level EF.
This allows us to linearize the kinetic energy in HHH in k and
to assume that the magnitude of the in-plane momentum k ≈
kF in the off-diagonal terms. This leaves us with a general 2 ×
2 Hamiltonian effectively describing the HH subsystem (up to
a constant)

HHH = vF(k − kF) + β(θ ) · σ, (20)

where vF = kF/mH is the Fermi velocity and the field β

includes the off-diagonal terms of HHH, depending only on
the angle θ , the in-plane direction of k. The vector σ =
{σx, σy, σz} consists of the three Pauli matrices.

Following the approach of Ref. [63], we recognize that
HHH in (20) can be diagonalized in spin space and we denote
the two k-dependent eigenspinors with |λk〉, where λ = ±.
This allows to rewrite Eq. (20) as

HHH =
∑

λk=±k

εkλPλk , (21)

in terms of the energies εkλ = vF(k − kF) + λ|β(θ )| and
the projectors Pλk = |λk〉 〈λk| = 1

2 [1 + λβ̂(θ ) · σ], where the
dimensionless vector β̂(θ ) = β(θ )/|β(θ )| points along the di-
rection of the field β(θ ).

Assuming for simplicity translational invariance inside the
2DHG, the correlation function C(r′; r) is only a function of
the difference in coordinates and reduces at zero temperature
to (see the Supplemental Material [65] for a more detailed
derivation)

C(r) =
∫∫ ∞

0

dε dε′

2(ε + ε′)
Tr[ḡ(r,−ε)σyḡ(r,−ε′)T σy

+ ḡ(r, ε)σyḡ(r, ε′)T σy], (22)

using the propagator

ḡ(r, ε) = 1

(2π )2

∑
λk=±k

∫
dk eik·rδ(ε − εkλ)Pλk . (23)

We then additionally assume that kFr � 1 for all distances
r = |r| of interest (such as W ), which amounts to employing
a semiclassical approximation. In that case one finds that the
only momenta that contribute significantly in the propagators
ḡ(r, ε) have a wave vector k parallel or antiparallel to r (see
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the Supplemental Material [65] for a formal derivation). In
this limit we find a greatly simplified approximation for the
Cooper-pair propagator

C(r) = K

r2

{
cos

( |β(θ )|r
vF

)
cos

( |β(θ̄ )|r
vF

)

− β̂(θ ) · β̂(θ̄ ) sin

( |β(θ )|r
vF

)
sin

( |β(θ̄ )|r
vF

)}
, (24)

where the constant K = kF/(2π )2vF, and θ (θ̄) is now the in-
plane direction parallel (antiparallel) to r, which means r =
{r cos θ, r sin θ} and θ̄ = θ − π .

We note that by inserting this propagator in Eq. (4) to
evaluate the supercurrent we only account for the contribution
of straight trajectories between the two superconducting con-
tacts, i.e., we neglect trajectories that involve scattering off the
edges of the 2DHG. This approximation becomes better with
increasing aspect ratio L/W of the junction.

III. RESULTS

We now have all ingredients needed to calculate the su-
percurrent through the junction, to leading order in the SN
coupling strength and within a semiclassical approximation.
In this section we will present our results.

Due to the large number of competing coupling terms we
consider [Eqs. (14)–(19)], the field β(θ ), and thus the current,
can look very different depending on the parameters one as-
sumes. However, in the limiting case where only one of the
six terms dominates, the Cooper-pair propagator immediately
simplifies further: Assuming that one term Hn,m is by far the
largest (where, again, n and m refer to the powers of B and k
in the coupling term), one finds

β̂(θ ) · β̂(θ̄ ) = cos(mπ ), (25)

and in that case the expression given in (24) reduces to

C(r) = K

r2
×

{
cos (2r|β|/vF) for m even,
1 for m odd, (26)

where we used that all coupling terms listed above correspond
to fields for which |β(θ )| is independent of θ .

In this case the supercurrent through the junction will thus
not depend on the direction of the applied in-plane field, only
on its magnitude if the coupling term has an even power of
k. This is indeed what one expects: When the field β is even
in momentum, a pairing of opposite spins at the Fermi level
introduces a finite average Cooper-pair momentum which is
to first approximation linear in the magnitude of the field. For
fields that are odd in momentum, the sign change of β upon
inversion of k guarantees that there are always eigenstates
with opposite spin and momentum available at the Fermi level,
independent of the magnitude of the total field.

A more interesting dependence on the magnitude and di-
rection of the in-plane field can arise when two or more
coupling terms with different dependence on B and k compete
[63]. Calculating the supercurrent numerically for an arbi-
trary combination of coupling mechanisms is straightforward.
However, to structure our discussion and to gain qualitative
insight in the significance of all terms, we will mostly consider
limiting cases below, where only a few terms play a role.

FIG. 3. (a)–(c) Numerically calculated critical current as a func-
tion of in-plane magnetic field B‖ = (Bx, By ) and Bz = 0, expressed
in units of B0 = δHLvF/8

√
3κExW . We work in the limit of large

HH-LH splitting everywhere, using a field β(θ ) as defined by (28).
We show results for different values of ESO: (a) ESO/κB0 = 0.2,
(b) ESO/κB0 = 2, and (c) ESO/κB0 = 20. (d)–(f) Critical current
as a function of in-plane magnetic field (vertical axis) along given
directions, and an additional out-of-plane magnetic field (horizontal
axis), quantified by the total flux trough the junction . The colors
at the vertical axes correspond to the colored dashed lines in (a)–(c),
which indicate the direction of the in-plane field. For all plots the
aspect ratio is set at L/W = 10, the scale of the critical current is
described by Imax = I0πL/W , and 0 = h/2e is the flux quantum.

A. Large HH-LH splitting

The first case we will investigate is when we have a large
HH-LH splitting δHL (corresponding to tight out-of-plane
confinement). In that case, the terms (16)–(19), which are pro-
portional to δ−2

HL, are suppressed and the dominating coupling
terms are H (1)

0,3 and H (1)
1,2 . More quantitatively, we see that this

regime is reached when√
δHLEx � EZ, ESO, (27)

where we introduced the Zeeman energy EZ = κB‖, the spin-
orbit energy ESO = αRkF, and the orbital coupling energy
Ex = k2

F/2mx. (Assuming that the Luttinger parameters are of
order unity,3 this last energy scale is of the order of the Fermi
energy in the valence band and can thus be tuned by varying
the carrier density.) In this case, the total coupling field is
defined by

β+(θ ) = 2
√

3Ex

δHL
(iESOe3iθ − 2EZei(2θ+φB ) ), (28)

where φB is the direction of the in-plane magnetic field.
As mentioned, this effective field allows us to calculate

the supercurrent and hence the critical current through the
junction. In Fig. 3 we show the dependence of the resulting

3The actual values of the Luttinger parameters only affect the
magnitude of parameters like δHL and Ex and can thus only lead to a
shift of the ranges of validity of the limits discussed, not to a change
of the phenomenology of the patterns observed in the critical current.
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critical current on the applied magnetic field, for different
ratios of ESO/EZ: In the top row of panels we plot the critical
current as a function of the the magnitude and direction of a
purely in-plane field. In Figs. 3(a)–3(c) we used ESO/κB0 =
0.2, 2, and 20, respectively, where κB0 = δHLvF/8

√
3ExW

and we used an aspect ratio of L/W = 10. For reference,
and to compare with Ref. [63], we show in the bottom row
the Fraunhofer-type patterns of critical current that emerge
when, in addition to an in-plane field (vertical axes), a small
perpendicular magnetic field Bz is applied (horizontal axes).
The direction of each B‖ is indicated with a dashed line in the
plots in the top row: In Fig. 3(d) we have ESO/κB0 = 0.2, as
in Fig. 3(a), while the in-plane field is oriented along ŷ (blue
dashed line). In Figs. 3(e) and 3(f) we used ESO/κB0 = 20
with 3(e) the in-plane field along x̂ [green dashed line in 3(c)]
and 3(f) the field along ŷ [red dashed line in 3(c)].

We see that these results are similar to those of Ref. [63] for
the case where the competition between Zeeman and Rashba
coupling is investigated (cf. Fig. 3 in Ref. [63]). This can
be easily understood from the structure of the semiclassical
Cooper-pair propagator (24), which only depends on the rela-
tive orientation and the magnitude of the fields acting on the
“electrons” and “holes” that propagate with opposite momen-
tum. The main difference in our coupling terms as compared
to the electronic case studied in Ref. [63] is an extra factor k2

±
due to the intrinsic HH-LH mixing in the valence band. This
additional factor only serves to rotate all effective fields by the
same amount, thereby not affecting the direction dependence
of the Cooper-pair propagator.

As expected, in the limit of dominating Zeeman coupling
[Fig. 3(a)] the period of the oscillations is independent of the
direction of propagation of the Cooper pair since spin rota-
tions are in this case not related to the direction of propagation
of Cooper pairs. In the spin-orbit-dominated case the oscilla-
tions in C(r) occur always in a direction perpendicular to B‖
for the case of the Rashba-type spin-orbit coupling assumed
here.

As was pointed out in Ref. [63], in the two limiting cases
of strongly dominating ESO or EZ the propagator simplifies
considerably:

C(r) ≈ K

r2
×

{
cos (|d|r) for EZ � ESO,

cos ([ẑ × d] · r) for ESO � EZ
(29)

with d = B‖/B0W being a vector that characterizes the spatial
oscillations of the propagator.

The dependence of the supercurrent on the in-plane field as
plotted in Figs. 3(a)–3(c) follows from evaluating the follow-
ing integral (setting the electron charge e = 1):

Ic(B‖) = 4

∣∣∣∣λlλr

∫∫ L

0
dy dy′ C(W, y′ − y)

∣∣∣∣, (30)

which can be performed (semi)analytically in the two limits
discussed above. For the case of EZ � ESO we rewrite (30) as

Ic(B‖) = 2I0

∫ q

1
dρ

cos(αρ)

ρ

(
L

W
√

ρ2 − 1
− 1

)
, (31)

where I0 = 4K|λlλr | sets the scale of the supercurrent, we
introduced the parameter q =

√
1 + (L/W )2, and we used

α = B‖/B0. In the limit of a long junction, i.e., L � W , we

can approximate q → ∞, yielding

Ic1(B‖) = I0
πL

2W
|πα[J0(α)H1(α) − J1(α)H0(α)]

+ 2[1 − αJ0(α)]|, (32)

where Jn(x) are Bessel functions of the first kind and Hn(x) are
Struve functions. We note that we neglected the second term in
(31), which implies the assumption that α is not exponentially
small, i.e., α � e−L/W . An approximate analytic solution of
(31) for general L/W is presented in the Supplemental Mate-
rial [65]. For the second case, ESO � EZ, we find in the same
limit of L � W

Ic2(B‖) ≈ I0
πL

W
e−|Bx/B0|| cos(By/B0)|. (33)

Comparing to Figs. 3(a) and 3(c) we see that the analytic
expressions (32) and (33) indeed capture the behavior of
the critical current as a function of B‖ in the two limiting
cases: For large Zeeman fields the current shows “damped”
oscillations as a function of B‖ and for dominating spin-orbit
coupling the behavior becomes direction dependent, showing
oscillations for B‖ being perpendicular to the mean direction
of current flow and rapid decay for B‖ parallel to the current.

B. Smaller HH-LH splitting

The second situation we will consider is when we have a
smaller HH-LH splitting and/or orbital coupling Ex. In this
case the second-order terms (16)–(19), which are proportional
to δ2

HL, can be dominating. Formally, this will be the case
when

EZ, ESO �
√

δHLEx, (34)

and the total coupling field then becomes

β+(θ ) = 12

δ2
HL

( − iE3
SOe3iθ + 5E2

SOEZei(2θ+φB )

+ 8iESOE2
Zei(θ+2φB ) − 4E3

Ze3iφB
)
. (35)

If we do not assume anything about the ratio ESO/EZ, then all
four terms could contribute significantly.

We thus assume throughout this section that the inequality
(34) holds so that the total field β can be approximated by
(35), and we start by numerically exploring the behavior of
the critical current as a function of in-plane field, over a range
of Eso/EZ. In Fig. 4 we show the calculated critical current,
where we used (a) ESO/κB0 = 0.157, (b) ESO/κB0 = 1.19,
(c) ESO/κB0 = 1.97, (d) ESO/κB0 = 3.16, and (e) ESO/κB0 =
3.94, where now κB0 = (δ2

HLvF/96W )1/3 and in all cases we
again used an aspect ratio of L/W = 10. In the limits of small
or large ESO/κB0 [Figs. 4(a) and 4(e)] we see qualitatively
similar behavior as for the case of large HH-LH splitting [cf.
Figs. 3(a) and 3(c)], whereas the intermediate regime shows
several new features. With this in mind we now discuss the
different parameter regimes, which will provide some under-
standing of the critical-current patterns we observe.

We first consider the case where the g factor κ is relatively
large, so that for most fields of interest one has

EZ � ESO �
√

δHLEx. (36)
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FIG. 4. Numerically calculated critical current as a function of
in-plane magnetic field, B‖ = (Bx, By ), assuming small HH-LH split-
ting δHL . We explore (a) ESO/κB0 = 0.157, (b) ESO/κB0 = 1.19,
(c) ESO/κB0 = 1.97, (d) ESO/κB0 = 3.16, and (e) ESO/κB0 = 3.94,
where now κB0 = (δ2

HLvF/96W )1/3. For all plots the aspect ratio is
set at L/W = 10, the scale of the critical current is described by
Imax = I0πL/W .

In that case we can approximate

β+(θ ) ≈ 48E2
Z

δ2
HL

(
2iESOei(θ+2φB ) − EZe3iφB

)
, (37)

i.e., the behavior of β is dominated by the two terms H (2)
2,1 and

H (2)
3,0 . Comparing this expression with Eq. (28) we see that

the effective coupling field is similar to that in the case of
large δHL, the main difference being an additional factor that is
quadratic in EZ. This means that, within the range of validity
of (37), limiting expressions for the Cooper-pair propagator
can be derived that look very similar to Eq. (29). We thus find

C(r) ≈ K

r2
cos (|d|r) for EZ � ESO, (38)

where now d = (B‖/B0)3(b̂‖/W ), with b̂‖ being the unit vec-
tor pointing in the direction of B‖ and B0 still being defined
by κB0 = (δ2

HLvF/96W )1/3. The only difference with the cor-
responding limit in Eq. (28) is indeed a cubic versus linear
dependence on B‖, which explains the main difference in
appearance between Figs. 4(a) and 3(a). In the limit of a large
aspect ratio L � W we thus obtain the same approximate
analytic expression Ic1(B‖) as presented in Eq. (32), the only
difference being that one now needs to insert α = (B‖/B0)3.

When ESO is increased, as is done in Figs. 4(b)–4(e), the
opposite limit of ESO � EZ will of course not be reached
while still satisfying (36). However, in that hypothetical limit
one would find from (37) that C(r) ≈ (K/r2) cos([ẑ × d] ·
r), analogously to the case of large δHL, again with d =
(B‖/B0)3(b̂‖/W ). This would ultimately yield the same ap-
proximate expression for the critical current in the limit of
L � W as before,

Ic2(B‖) ≈ I0
πL

W
e−|B2

‖Bx/B3
0|∣∣cos

(
B2

‖By/B3
0

)∣∣, (39)

again with a cubic instead of linear dependence on the fields.
Although this limit will obviously never be reached, the
change in behavior of the critical current from Fig. 4(a) to 4(b)
can be understood as a first step into the intermediate regime
between the two limits, similar to the difference between
Figs. 3(a) and 3(b) but now with a cubic dependence on the
in-plane field.

We now turn our attention to the opposite case of a rela-
tively small g factor κ , so that

ESO � EZ �
√

δHLEx (40)

for most fields of interest. In that case the main competing
coupling terms will be H (2)

0,3 and H (2)
1,2 , yielding approximately

β+(θ ) ≈ 12E2
so

δ2
HL

(−iESOe3iθ + 5EZei(2θ+φB ) ). (41)

This is qualitatively the same as the coupling field in (28),
where the energy scale Ex is replaced by E2

SO/δHL. The
Cooper-pair propagator thus becomes

C(r) ≈ K

r2
cos ([ẑ × d] · r) for ESO � EZ, (42)

with d = (5E2
SO/4κ2B2

0)(B‖/B0W ), still using the same κB0 =
(δ2

HLvF/96W )1/3, and in the limit L � W the critical current
takes again the form

Ic2(B‖) ≈ I0
πL

W
e−γ |Bx/B0|| cos(γ By/B0)|, (43)

with γ = 5E2
SO/4κ2B2

0. We indeed see that the numerical re-
sults presented in Figs. 4(e) and 3(c) coincide, up to scaling
factors.

We can again qualitatively understand the phenomenology
of the change in the pattern of critical current when moving
toward the intermediate regime by decreasing ESO: When
the Zeeman term becomes more important, the competition
between the two terms in (41) will start a transition from a
periodic critical-current pattern along By [Figs. 4(e) and 3(c)]
toward a circularly symmetric pattern with a linear depen-
dence on B‖ as described by (32) with α = γ B‖/B0 [compare
Fig. 4(d) with 3(b)]. The true limit yielding such a circular
pattern will again not be reached since (41) will break down
already when ESO � EZ.

The remaining “intermediate” plot shown in Fig. 4(c) can
be roughly interpreted as a hybrid result between the two
regimes discussed above: At small fields, a circularly sym-
metric linear-in-field limiting pattern emerges that is expected
from using (41) for small ESO (the large-field limit for the
case of dominating spin-orbit interaction), which transitions at
larger fields into the oscillating pattern along By described by
(39) resulting from assuming small EZ in (37) (the small-field
limit for dominating Zeeman coupling).

C. Weak spin-orbit coupling

The final limit we can consider is that of vanishing spin-
orbit coupling αR → 0. In this case the surviving coupling
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FIG. 5. Numerically calculated critical current in the absence
of spin-orbit coupling. (a)–(c) The dependence of the current
on an in-plane field, where (a)

√
3ExδHL/12(κB0)2 = 0.252, (b)√

3ExδHL/12(κB0)2 = 2.52, and (c)
√

3ExδHL/12(κB0)2 = 25.2,
with κB0 = (δ2

HLvF/96W )1/3. (d)–(f) Fraunhofer-type patterns of
critical current as a function of a small additional out-of-plane mag-
netic field Bz, giving the total flux  through the junction, using√

3ExδHL/12(κB0)2 = 2.52 [see (b)]. The directions of the in-plane
fields are indicated in (b): (d) along ŷ, (e) along x̂, and (f) diagonally
along (x̂ + ŷ)/

√
2. For all plots the aspect ratio is set to L/W = 10,

the scale of the critical current is described by Imax = I0πL/W , and
0 = h/2e is the flux quantum.

terms are H (2)
1,2 and H (3)

3,0 , yielding the total field

β+(θ ) = −4EZ

δHL

(√
3Exei(2θ+φB ) + 12E2

Z

δHL
ei3φB

)
. (44)

In Fig. 5 we show the dependence of the resulting critical
current on the applied magnetic field, for different ratios of
ExδHL/E2

Z. In the top row of panels we plot the critical cur-
rent as a function of the in-plane field, where we have used
(a)

√
3ExδHL/12(κB0)2 = 0.252, (b)

√
3ExδHL/12(κB0)2 =

2.52, and (c)
√

3ExδHL/12(κB0)2 = 25.2. We defined again
κB0 = (δ2

HLvF/96W )1/3 and used an aspect ratio of L/W =
10 for the junction. In the bottom row we added for reference
the Fraunhofer-type patterns of critical current that emerge
when a small perpendicular magnetic field Bz is added in the
intermediate case of Fig. 5(b). The direction of each B‖ is
indicated with a dashed line in Fig. 5(b): the in-plane magnetic
field in 5(d) points along ŷ (red dashed line), 5(e) along x̂
(green dashed line), and 5(f) along (x̂ + ŷ)/

√
2 (blue dashed

line).
In the two limiting cases, for small and large ExδHL/(κB0)2

[Figs. 5(a) and 5(c), respectively], we see, as expected, pat-
terns that are similar to those for the Zeeman-dominated cases
investigated above, showing the same circularly symmetric
patterns with a “linear” dependence on B‖ in the former case
and the “cubic” dependence in the latter [cf. Figs. 3(a) and
4(a)]. In the intermediate case Fig. 5(b), where

√
3ExδHL =

12(κB0)2, we expect a crossover from the pattern seen in
Fig. 5(c) at small fields (where Ex dominates) to the pattern
of Fig. 5(a) for large fields (where EZ dominates). Closer
inspection of Fig. 5(b) seems to confirm this behavior, also

for increasing field; when we plot for even larger B‖ � 5 B0

the pattern indeed becomes circularly symmetric again.
Deriving approximate expressions for the Cooper-pair

propagator in the two limits again,

C(r) ≈ K

r2
×

{
cos (ar) for ExδHL � E2

Z,

cos (br) for ExδHL � E2
Z

(45)

with a = (
√

3ExδHL/12κ2B2
0)(B‖/B0W ) and b =

(B‖/B0)3(1/W ), we can again arrive at approximate analytic
expressions in the limit L � W . In both cases one finds
again the functional form of Eq. (32), where one now has
to use αa = (

√
3ExδHL/12κ2B2

0)(B‖/B0) and αb = (B‖/B0)3,
respectively, as expected.

The additional structure observed in Fig. 5(b) around B‖ ≈
B0 can be understood from considering the propagator exactly
at the point where

√
3ExδHL = 12(κB‖)2, where one finds

C(r) = K

r2
cos (c · r), (46)

with c = 4(3)1/4
√

E3
x /δHLv2

F b̂‖. This leads straightforwardly
to an analytic expression for the critical current in the limit
L � W ,

Ic ≈ I0
πL

W
e−|γ sin φB|| cos(γ cos φB)|, (47)

with γ = 4(3)1/4
√

E3
x W 2/δHLv2

F, where we again emphasize
that this expression is derived for the specific field strength
where

√
3ExδHL = 12(κB‖)2. This indicates that there can be

an intermediate regime, where the pattern of Ic(B‖) does not
look like a set of concentric high-current rings but only has
significant supercurrent flowing when B‖ is oriented along
±x̂. This is indeed consistent with the features we observe
in Fig. 5(b) around B‖ ≈ 1.5 B0. This behavior can be qual-
itatively understood from considering Eq. (44) again: When√

3ExδHL = 12(κB‖)2 the two competing terms have exactly
the same magnitude. Most carriers that contribute to the cur-
rent will propagate approximately in the x direction where
θ = 0, π . For those carriers, the total coupling thus becomes
∝eiφB + ei3φB , which indeed vanishes for fields along ±ŷ: in
those directions the coupling terms H (1)

1,2 and H (2)
3,0 interfere

destructively.

D. Discussion

The results presented above could be useful for characteriz-
ing the effective spin physics within the heavy-hole subspace
in a two-dimensional hole gas in experiment. Comparing a
measured pattern of critical current as a function of in-plane
field qualitatively with the patterns for the limiting and in-
termediate cases we present above could give an indication
of the dominating spin-mixing mechanism in the heavy-hole
subspace.

First and foremost, the largest amount of information can
be gained if one observes a transition from one pattern to
another upon increasing the magnitude of the field, e.g., from
“lobes” to rings, as this can yield quantitative information
about the ratio of the relevant terms in the Hamiltonian. Most
of the intermediate patterns we show above, Fig. 3(b) (EZ ∼
ESO for large

√
δHLEx), Figs. 4(b)–4(d) (EZ ∼ ESO for small
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√
δHLEx), and Fig. 5(b) (EZ ∼ √

δHLEx for ESO = 0), look
qualitatively different in terms of the direction along which
the lobes appear, the periodicity of the lobes, and the order of
the transitions from lobes to rings. A critical-current pattern
measured in a system that happens to be in one of the interme-
diate regimes can thus often be unambiguously connected to a
parameter regime in our theory. For instance, lobes appearing
along the x direction [Fig. 5(b)] are always an indication of
negligible spin-orbit coupling and the intermediate regime
EZ ∼ √

δHLEx.
In general, the more information about the system is avail-

able, the more precise conclusions one can potentially draw
from a comparison to our theory. For instance, if it is known
that the spin-orbit coupling is non-negligible and that the Zee-
man coupling dominates over the SOI, then the periodicity of
the oscillations as a function of in-plane field can reveal infor-
mation about the HH-LH splitting: Linearly spaced isotropic
oscillations [Fig. 3(a)] show that one is in the large HH-LH
splitting limit, where Eq. (27) holds, while “cubicly” spaced
isotropic oscillations [Fig. 4(a)] suggest relatively small HH-
LH splitting, where Eq. (34) holds. The same holds if the
system has negligible spin orbit; a linear pattern [Fig. 5(c)]
signals large HH-LH splitting and a cubic pattern [Fig. 5(a)]
the opposite. Equally spaced lobes for magnetic fields along
the junction [Figs. 3(c) and 4(e)] are always a sign of strong
Rashba-type spin-orbit coupling, similar to the electronic case
[63].

Comparing the regimes we consider above with realis-
tic experimental parameters, we see that often one will be
in a situation where

√
ExδHL � EZ, ESO, i.e., the one con-

sidered in Secs. III A and III C: Focusing for example on
Ge-based 2DHGs, one typically has a HH-LH splitting of
δHL ∼ 20–80 meV and an “off-diagonal Fermi energy” of
Ex ∼ 1–10 meV, whereas the Zeeman and spin-orbit energies
EZ and ESO are significantly smaller. We thus believe that
currently the results presented in Secs. III A and III C are the
most relevant ones for experiment. However, since all energy
scales depend in a different way on γ1,2,3 and the “bare” g

factor in the valence band (all material parameters) as well
as the thickness and asymmetry of the quantum well (device
parameters), the opposite limit considered in Sec. III B can be-
come relevant for other materials and/or less conventionally
designed quantum wells.

IV. CONCLUSION

In this paper we studied an SNS junction where the normal
part consists of a two-dimensional hole gas in which only
the lowest (heavy-hole) subband is populated. We investigated
the dependence of the critical current through the junction on
the direction and magnitude of an applied in-plane magnetic
field. Due to the underlying p-type nature of the valence band,
the manifestation of the in-plane Zeeman effect as well as
the spin-orbit coupling inside the heavy-hole subband has
an intricate structure, yielding many qualitatively different
spin-mixing mechanisms that could be at play. We present a
systematic analysis of the different regimes that potentially
could be reached by varying the g factor, the strength of
a Rashba-type spin-orbit coupling, the out-of-plane confine-
ment length, and the heavy-hole carrier density. Applying a
semiclassical approximation for the normal region (assuming
the Fermi wavelength to be the smallest relevant length scale)
we present a straightforward numerical method for calcu-
lating the critical current in the junction. The simplicity of
the resulting expressions allows us to derive (approximate)
analytic expressions for the critical current in all limiting
cases, which show good agreement with the numerical results.
These results could therefore potentially serve as a tool for
investigating the detailed effective spin physics within the
heavy-hole subspace of a two-dimensional hole gas.
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I. DERIVATION OF EQ. (4) IN THE MAIN TEXT

The current in the ground state is given by

I(ϕ) =
2e

ℏ
∂F

∂ϕ
, (1)

where ϕ is the phase difference between the two superconductors and F is the free energy, F = −T lnTr{e−H/T },
where T is the temperature (using kB = ℏ = 1).

Working in an interaction picture, we split the full Hamiltonian, H = H0 +Ht, into the tunnel coupling term Ht

[see Eq. (2) of the main text], which we will treat perturbatively, and an unperturbed part H0. In this picture all
operators gain time dependence governed by H0 only, and we can define a so-called S-matrix as

S = Tτ exp

{
−
∫ β

0

dτ ′Ht(τ
′)

}
, (2)

where Tτ is the imaginary-time time-ordering operator and β = 1/T . From this definition it follows that

F = F0 − T ln⟨S⟩0, (3)

where ⟨. . . ⟩0 is the Gibbs statistical average over the unperturbed ground state (below we will drop the subscript 0,
which is implied from now on).

It is straightforward to show (see, e.g., Chapter 15 in Ref. [1]) that

F = F0 − T (⟨S⟩con − 1), (4)

where

⟨S⟩con = 1 + Ξ1 + Ξ2 + . . . , (5)

is the sum over all fully connected diagrams contributing to ⟨S⟩,

Ξn =
(−1)n

n!

∫ β

0

dτ1 · · · dτn⟨TτHt(τ1) · · ·Ht(τn)⟩con. (6)

We are interested in the lowest-order correction that depends on the phase difference of the two superconductors,
which is fourth order in the coupling Hamiltonian Ht,

Ξ4 =
1

4!

∫ β

0

dτ1 · · · dτ4 ⟨T̂τ Ĥt(τ1)Ĥt(τ2)Ĥt(τ3)Ĥt(τ4)⟩. (7)

We thus insert the coupling Hamiltonian, written as

Ĥt =
∑
σ

∫
dy

[√
λl
πνeff

e2πiφl(y)ψ̂†
σ(0, y)Ψ̂σ,L(0, y) +

√
λr
πνeff

e2πiφr(y)ψ̂†
σ(W, y)Ψ̂σ,R(W, y) + H.c.

]
, (8)

in terms of the coupling parameters λl,r introduced in the main text. Here, νeff is the effective one-dimensional
tunneling density of states of the superconducting contacts (assumed to be equal in the two superconductors, for
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simplicity), ψ̂†
σ(r) and Ψ̂†

σ,L(R)(r) are the creation operators for an electron with spin σ at position r in the normal

region and the left(right) superconducting contact, respectively, and the phases φl,r(y) are defined through

φl(y)− φr(y
′) = ϕ+

π(y + y′)BzW

Φ0
, (9)

with Φ0 = h/2e the flux quantum. These phases thus incorporate the phase difference of the two superconductors as
well as the orbital effect of an out-of-plane magnetic field. We note that with this gauge choice the field operators
Ψ̂(†)(r) for the electrons in the superconductors are no longer dependent on the superconducting phases.

We collect the contributions to Ξ4 that depend on ϕ and apply Wick’s theorem to separate them into single-particle
Green functions, yielding

Ξ4 = T 4 λlλr
2π2ν2eff

∑
σ1..4
k1..4

∫
dy1..4

∫ β

0

dτ1..4

×
[
− e

i
2∆φ(y1,y2,y3,y4)e−iωk1

(τ1−τ2)Gsc
eh(0, y1, σ1; 0, y2, σ2; iωk1

)e−iωk2
(τ3−τ4)Gsc

he(W, y3, σ3;W, y4, σ4; iωk2
)

× e−iωk3
(τ3−τ1)G(W, y3, σ3; 0, y1, σ1; iωk3)e

−iωk4
(τ4−τ2)G(W, y4, σ4; 0, y2, σ2; iωk4)

− e−
i
2∆φ(y1,y2,y3,y4)e−iωk1

(τ1−τ2)Gsc
eh(W, y1, σ1;W, y2, σ2; iωk1

)e−iωk2
(τ3−τ4)Gsc

he(0, y3, σ3; 0, y4, σ4; iωk2
)

× e−iωk3
(τ3−τ1)G(0, y3, σ3;W, y1, σ1; iωk3)e

−iωk4
(τ4−τ2)G(0, y4, σ4;W, y2, σ2; iωk4)

]
, (10)

where ∆φ(y1, y2, y3, y4) =
1
2 [φl(y1) + φl(y2)− φr(y3)− φr(y4)], there are sums over fermionic Matsubara frequencies

ωk = (2k + 1)πT , and we used the standard definitions

−⟨Tτ Ψ̂σ1
(x1, y1; τ1)Ψ̂σ2

(x2, y2; τ2)⟩ = T
∑
k

e−iωk(τ1−τ2)Gsc
eh(x1, y1, σ1;x2, y2, σ2; iωk), (11)

−⟨Tτ Ψ̂†
σ1
(x1, y1; τ1)Ψ̂

†
σ2
(x2, y2; τ2)⟩ = T

∑
k

e−iωk(τ1−τ2)Gsc
he(x1, y1, σ1;x2, y2, σ2; iωk), (12)

−⟨Tτ ψ̂σ1
(x1, y1; τ1)ψ̂

†
σ2
(x2, y2; τ2)⟩ = T

∑
k

e−iωk(τ1−τ2)G(x1, y1, σ1;x2, y2, σ2; iωk), (13)

where we dropped the subscripts L,R [2]. We then assume that the Andreev reflection processes described by Gsc
eh

and Gsc
he in Eq. (10) are local and energy-independent, which we do via the substitutions

Gsc
eh(0, y1, σ1; 0, y2, σ2; iωk) = πνeffσ1δ(y1 − y2)δσ2,σ̄1 , (14)

Gsc
eh(W, y1, σ1;W, y2, σ2; iωk) = πνeffσ1δ(y1 − y2)δσ2,σ̄1 , (15)

Gsc
he(0, y1, σ1; 0, y2, σ2; iωk) = −πνeffσ1δ(y1 − y2)δσ2,σ̄1

, (16)

Gsc
he(W, y1, σ1;W, y2, σ2; iωk) = −πνeffσ1δ(y1 − y2)δσ2,σ̄1

. (17)

After some rearrangements and using the relation G(W, y′, σ′; 0, y, σ; iωk) = G(0, y, σ;W, y′, σ′;−iωk)
∗ this yields

the expression

Ξ4 = λlλr

∫
dy dy′ Re

{
ei[φl(y)−φr(y

′)]
∑
k

Tr
[
Ḡ(W, y′; 0, y; iωk)σyḠ(W, y′; 0, y;−iωk)

Tσy
]}
, (18)

where we introduced the matrix notation

Ḡ(x′, y′;x, y; iωk) =

(
G↑↑(x

′, y′;x, y; iωk) G↑↓(x
′, y′;x, y; iωk)

G↓↑(x
′, y′;x, y; iωk) G↓↓(x

′, y′;x, y; iωk)

)
. (19)

Using the fact that F (4) = −TΞ4, we arrive at Eq. (4) of the main text.

II. DERIVATION OF EQ. (22) IN THE MAIN TEXT

In this Section we will show how we derive Eq. (22) from Eq. (4) in the main text; the derivation follows the same
approach as the one outlined in Ref. [4]. We start by assuming translational invariance within the normal region of
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the junction, which means that we can write the correlation function (6) in the main text as

C(r) =
T

2

∑
k

Tr
[
Ḡ(r; iωk)σyḠ(r;−iωk)

Tσy
]
, (20)

where r is now the distance vector r′ − r in terms of the coordinates used above. We then convert the sum over
Matsubara frequencies to an integral in the complex plane, which yields (assuming zero temperature for simplicity)

C(r) =
1

4πi

∫ ∞

0

dωTr
[
ḠR(r;ω)σyḠ

A(r;−ω)Tσy − ḠA(r;ω)σyḠ
R(r;−ω)Tσy

]
, (21)

in terms of the retarded and advanced Green function matrices ḠA,R. We rewrite these matrices using the two
k-dependent spin eigenstates |λk⟩,

ḠR,A(r;ω) =
1

(2π)2

∫
dk eik·r

∑
λk

|λk⟩ ⟨λk|
ω − ϵkλ ± iη

, (22)

with η = 0+ and ϵkλ the eigenenergy of the state |λk⟩. After some manipulation this yields

C(r) =
1

2(2π)4

∫
dk dk′

∑
λk,λk′

ei(k+k′)·r
(

θ(−ϵk′λ)

−ϵk′λ − ϵkλ
+

θ(ϵkλ)

ϵkλ + ϵk′λ

)
Tr
[
|λk⟩ ⟨λk|σy |λk′⟩ ⟨λk′ |T σy

]
, (23)

where θ(x) is the Heaviside step function. We rewrite this expression in terms of an integral over two variables ϵ and
ϵ′, the limits of which incorporate the effect of the step functions,

C(r) =
1

2(2π)4

∫
dk dk′

∑
λk,λk′

ei(k+k′)·r Tr
[
|λk⟩ ⟨λk|σy |λk′⟩ ⟨λk′ |T σy

]

×

(∫ ∞

0

dϵ

∫
dϵ′

δ(ϵ′ − ϵk′λ)δ(ϵ− ϵkλ)

ϵ′ + ϵ
−
∫
dϵ

∫ 0

−∞
dϵ′

δ(ϵ′ − ϵk′λ)δ(ϵ− ϵkλ)

ϵ′ + ϵ

)
. (24)

We see that when ϵ > 0 and ϵ′ < 0 the two terms on the second line cancel, so

C(r) =
1

2(2π)4

∫ ∞

0

dϵ

∫ ∞

0

dϵ′
∫
dk dk′

∑
λk,λk′

ei(k+k′)·r Tr
[
|λk⟩ ⟨λk|σy |λk′⟩ ⟨λk′ |T σy

]

×

(
δ(ϵ′ − ϵk′λ)δ(ϵ− ϵkλ)

ϵ′ + ϵ
+
δ(−ϵ′ − ϵk′λ)δ(−ϵ− ϵkλ)

ϵ′ + ϵ

)
. (25)

We now define a propagator

ḡ(r, ϵ) =
1

(2π)2

∫
dk
∑
λk

eik·rδ(ϵ− ϵkλ) |λk⟩ ⟨λk| , (26)

which finally yields the expression

C(r) =

∫ ∞

0

dϵ

∫ ∞

0

dϵ′
Tr
[
ḡ(r, ϵ)σy ḡ(r, ϵ

′)Tσy + ḡ(r,−ϵ)σy ḡ(r,−ϵ′)Tσy
]

2(ϵ+ ϵ′)
, (27)

which is Eq. (22) of the main text.

III. SEMI-CLASSICAL APPROXIMATION

We now specify the Hamiltonian for the normal region [see Eq. (20) of the main text],

Hk = vF(k − kF) + β(θ) · σ, (28)
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where vF is the Fermi velocity, kF is the Fermi momentum, σ is the vector of the three Pauli spin matrices, θ is the in-
plane angle of the wave vector k, and β is the momentum-dependent effective field acting on the spin of the propagating

carriers. Introducing the projection operator Pλk = |λk⟩ ⟨λk| = 1
2 [1+λβ̂(θ) ·σ], where β̂(θ) = β(θ)/|β(θ)|, and using

that ϵkλ = vF(k − kF) + λ|β(θ)|, we can write

ḡ(r, ϵ) ≈ kF
(2π)2vF

∫ 2π

0

dθ
∑
λk

ei([ϵ−λ|β(θ)|]/vF+kF)r cos θPλk , (29)

where r = |r| and we have assumed that (ϵ − λ|β(θ)|)/vF ≪ kF, which amounts to implying that all the relevant
dynamics happen close to the Fermi energy. The in-plane angle θ in (29) is now defined to be θ = 0 in the direction
of r. Using these approximations, k in λk is approximated as |k| ≈ kF, so λk is only a function of the direction of k.

We thus denote the projector from now on as Pλθ and write

ḡ(r, ϵ) =
kF

(2π)2vF

∫ 2π

0

dθ
∑
λk

eif(θ)r cos θPλθ , (30)

with the shorthand notation f(θ) = (ϵ− λ|β(θ)|)/vF + kF. We now use that

eiz cos(θ) =
∑
n

inJn(z)e
inθ, (31)

where Jn(z) are Bessel functions of the first kind. This allows us to write

ḡ(r, ϵ) =
kF

(2π)2vF

∫ 2π

0

dθ
∑
λk

∑
n

inJn[f(θ)r]e
inθPλθ . (32)

Using again that (ϵ−λ|β(θ)|)/vF ≪ kF and the semi-classical limit kFr ≫ 1, we use the asymptotic limit of the Bessel

functions Jn(z)≈
√

2/πz cos(−z + 1
4π + 1

2nπ) for large z,

ḡ(r, ϵ) ≈ kF
(2π)2vF

∫ 2π

0

dθ
∑
λk

∑
n

√
2

πkFr
cos
(
−f(θ)r + π

4
+
nπ

2

)
ein(θ+π/2)Pλθ

=
kF

(2π)2vF

∫ 2π

0

dθ
∑
λk

∑
l

√
1

2πkFr

[
ei(f(θ)r−

π
4 )einθ + ei(−f(θ)r+π

4 )ein(θ+π)
]
Pλθ . (33)

We then make use of the fact that
∑

n e
inx = 2πδ(x), yielding

ḡ(r, ϵ) =

√
kF

(2π)3/2vF
√
r

∑
λ

[
ei(f(0)r−

π
4 )Pλ0 + ei(−f(π)r+π

4 )Pλπ

]
=

√
kF

(2π)3/2vF
√
r

∑
λ

[
ei[(ϵ−λ|β(0)|)/vF+kF]r−iπ/4Pλ0 + e−i[(ϵ−λ|β(π)|)/vF+kF]r+iπ/4Pλπ

]
, (34)

where λ0,π with λ = ± thus label the eigenstates parallel and antiparallel to r, respectively.
We now insert this semi-classical result into the expression for the Cooper-pair propagator C(r) and use that∫ ∞

0

dϵ

∫ ∞

0

dϵ′
e±i(ϵ−ϵ′)a

ϵ+ ϵ′
=

π

2a
, (35)

which yields

C(r) =
kF

(4π)2vFr2
Tr

∑
λ,λ′

[
Pλ0σy(P

λπ )Tσy + Pλ′
πσy(P

λ′
0)Tσy

] e−i(λ|β(0)|−λ′|β(π)|)r/vF . (36)

We now use that Pλk = 1
2 [1 + λβ̂(θ) · σ] and σy(Pλk)Tσy = 1

2 [1 − λβ̂(θ) · σ] which finally yields

C(r) =
kF

(4π)2vFr2

∑
λ,λ′

[
1− λλ′ β̂(0) · β̂(θ)

]
e−i(λ|β(0)|−λ′|β(π)|)r/vF , (37)

which reduces to Eq. (24) in the main text after summing over λ, λ′ = ±. In the main text we denoted the directions
parallel and antiparallel to r with θ and θ̄, respectively.
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IV. APPROXIMATE ANALYTIC SOLUTIONS OF EQ. (30)

A. C(r) = K cos(|d|r)/r2

We first consider the integral (30) in the limit where

C(r) = K cos(|d|r)/r2, (38)

which is first discussed in Sec. III.A. After switching to sum and difference coordinates, σ = 1
2 (y+ y′) and τ = y− y′,

the integral over σ can be easily performed. Substituting ρ =
√

(τ/W )2 + 1 then yields

Ic(B∥) = 2I0

∫ q

1

dρ
cos(αρ)

ρ

(
L

W
√
ρ2 − 1

− 1

)
, (39)

where I0 = 4K|λlλr| and α = B∥/B0. A solution in the limit q =
√
1 + (L/W )2 → ∞ is presented in the main

text, but for general L/W the first term in (39) is not analytically solvable. To arrive at an approximate solution we
substitute

1

ρ
√
ρ2 − 1

→ ρ2 −
√
2ρ− 2

ρ2
√
2ρ− 2

e5(1−ρ)/2 +
1

ρ2
, (40)

which is accurate within a few percent for all ρ > 1. This yields the approximate result

Ic(B∥) ≈ I0
2L

W

(
α[Si(α)− Si(qα)] +

e5(1−q)/2 − 1

q
cos(qα) + e5/2Re

[
eζ
√

π

−2ζ
erf(

√
(1− q)ζ) + ζ

(
Ei[ζ]− Ei[qζ]

)])
+ 2I0 [Ci(α)− Ci(qα)] , (41)

where Si(x) and Ci(x) are the sine and cosine integral, respectively, Ei(x) is the exponential integral function, erf(x)
is the error function, and we introduced the parameter ζ = − 5

2 + iα for concise notation.

B. C(r) = K cos(κ · r)/r2

The other limiting form the Cooper pair propagator takes is

C(r) = K
cos(κ · r)

r2
, (42)

where κ can be κ ∝ ẑ ×B∥ (as in Sec. III.A and III.B) or κ ∝ B∥ (as in Sec. III.C). In the limit of large L/W one
can approximate

Ic(B∥) ≈ I0

∫ L

0

dy′
∫ ∞

−∞
dy

cos[κxL+ κy(y − y′)]

L2 + (y − y′)2
= I0

πL

W
e−|κy|W cos(κxW ). (43)

For general L/W the original integral (i.e., without setting the limits of the second integral to ±∞) can be
(quasi)analytically solved, resulting in

Ic(B∥) = I0 cos(κxW )Re
[
e|κyW | (πω + Ei

[
− |κyW |

]
− (1 + iω)Ei

[
− (1 + iω)|κyW |

])
+ e−|κyW | (πω + Ei

[
|κyW |

]
− (1 + iω)Ei

[
(1 + iω)|κyW |

]) ]
, (44)

where ω = L/W is the aspect ratio of the junction and Ei(x) is again the exponential integral function.
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are not equivalent, which yields two choices for which superconductor interacts with the normal region at τ1.
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[4] S. Hart, H. Ren, M. Kosowsky, G. Ben-Shach, P. Leubner, C. Brüne, H. Buhmann, L. W. Molenkamp, B. I. Halperin, and

A. Yacoby, Nat. Phys. 13, 87 (2017).
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