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Introduction:Management of patients with brain metastases is often based on

manual lesion detection and segmentation by an expert reader. This is a time-

and labor-intensive process, and to that end, this work proposes an end-to-

end deep learning segmentation network for a varying number of available MRI

available sequences.

Methods: We adapt and evaluate a 2.5D and a 3D convolution neural

network trained and tested on a retrospective multinational study from two

independent centers, in addition, nnU-Net was adapted as a comparative

benchmark. Segmentation and detection performance was evaluated by: (1)

the dice similarity coe�cient, (2) a per-metastases and the average detection

sensitivity, and (3) the number of false positives.

Results: The 2.5D and 3D models achieved similar results, albeit the 2.5D

model had better detection rate, whereas the 3D model had fewer false

positive predictions, and nnU-Net had fewest false positives, but with the

lowest detection rate. On MRI data from center 1, the 2.5D, 3D, and nnU-

Net detected 79%, 71%, and 65% of all metastases; had an average per patient

sensitivity of 0.88, 0.84, and 0.76; and had on average 6.2, 3.2, and 1.7 false

positive predictions per patient, respectively. For center 2, the 2.5D, 3D, and

nnU-Net detected 88%, 86%, and 78% of all metastases; had an average per

patient sensitivity of 0.92, 0.91, and 0.85; and had on average 1.0, 0.4, and 0.1

false positive predictions per patient, respectively.

Discussion/Conclusion: Our results show that deep learning can yield

highly accurate segmentations of brain metastases with few false positives

in multinational data, but the accuracy degrades for metastases with an area

smaller than 0.4 cm2.
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1. Introduction

Brain metastases are the most common intracranial tumors
among both primary and secondary tumors (Johnson and
Young, 1996). Contrast enhanced magnetic resonance imaging
(MRI) is routinely used for diagnosis and assessment of
treatment response, as well as determining the lesion size
and multiplicity (Takei et al., 2016). Manual detection and
delineation of brain tumors on high resolution multisequence
3D MR image-series for clinical assessment such as radiation
therapy is time- and labor-intensive. To this end, automated
delineation and detection of brain tumors have been an active
avenue of research to ease the burden on radiologists and
improve treatment planning (Bauer et al., 2013).

Current regimen for brain metastases treatment planning
includes stereotactic radiotherapy, whole brain radiotherapy,
surgical excursion and chemotherapy where the number of
metastases, location and unidimensional measurements are used
for treatment planning (Lin and DeAngelis, 2015). However,
studies have shown that volumetric assessment show less
intra- and interobserver variability compared to unidimensional
measurements (Bauknecht et al., 2010). Nonetheless, given that
volumetric analysis of brain metastases would add complexity,
costs and workload, this approach is not universally endorsed
by expert groups (Lin et al., 2015). To this end, robust
automated delineation of brain metastases that can generalize
to different clinical protocols and centers is imperative to
facilitate volumetric analysis of brain metastases while avoiding
observer variability.

Recent advances in deep learning have ushered a new gold-
standard in computer-based learning. Traditional deep learning
methods include image classification (Russakovsky et al., 2014;
He et al., 2016; Krizhevsky et al., 2017; Tan and Le, 2019;
Dosovitskiy et al., 2020), segmentation (Ronneberger et al.,
2015) and object detection (Girshick et al., 2013; Redmon
et al., 2016). In medical imaging, several deep learning methods
have been developed and used to automate tedious and time-
consuming tasks, perhaps most clearly exemplified in detection
and segmentation of pathology (Ronneberger et al., 2015;
Milletari et al., 2016; Kamnitsas et al., 2017; Isensee et al., 2020a).

Specifically, deep learning methods have been successfully
developed and tested for primary brain tumors, thanks in part
to the publicly available BraTS dataset (Menze et al., 2015).
Recent studies on in-house data have also shown great promise
in using deep learning for detection and segmentation of brain
metastases (Charron et al., 2018; Bousabarah et al., 2020; Grøvik
et al., 2020; Xue et al., 2020; Zhang et al., 2020; Jünger et al.,
2021), with DeepMedic (Kamnitsas et al., 2017) and U-Net
(Ronneberger et al., 2015) like architectures commonly used as
the deep learning method. However, common challenges raised
are high rates of false positive and inaccurate segmentation of
smaller lesions (Charron et al., 2018; Bousabarah et al., 2020;
Dikici et al., 2020; Grøvik et al., 2020, 2021; Zhang et al., 2020;

Zhou et al., 2020a). In addition, multiple studies show a high
degree of dataset homogeneity due to the exclusion of patients
not receiving stereotactic radiosurgery or single center studies
(Cao et al., 2021; Hsu et al., 2021; Jünger et al., 2021; Rudie et al.,
2021).

In this study, we implemented and evaluated 2.5D and 3D
models for brain metastases segmentation that were tested on
multinational data with different clinical protocols and a varying
number of input MRI sequences. The high-resolution network
for 2.5D and 3D segmentation (Wang et al., 2019) was adopted
in combination with mixup augmentation (Zhang et al., 2017),
and deep supervision (Wang et al., 2015). We demonstrate that
the proposed 2.5D and 3D deep learning-based segmentation
models can successfully be used for segmentation on two
separate clinical protocols, whilst reducing the number of false
positives previously reported for both cohorts without reducing
the number of successfully detected metastases (Grøvik et al.,
2020, 2021; Yi et al., 2021). Method performance was evaluated
by adopting the nnU-Net (Isensee et al., 2020a) framework as
a comparative benchmark. The model weights for the 2.5D and
3D networks have been made publicly available.1

2. Materials and methods

2.1. Multinational dataset information

This retrospective multinational study was approved by
the Regional Medical Ethics Committee for Oslo University
Hospital (OUH) and the Institutional Review Board at Stanford
University. The OUH dataset (TREATMENT; clinicaltrials.gov
identifier: NCT03458455) consisted of 65 patients eligible
for stereotactic radiotherapy with pre- and post-contrast T1-
weighted fast spin echo (SPACE) and a 3D fluid-attenuated
inversion recovery (FLAIR) image-series. The Stanford dataset
consisted of 156 patients that underwent imaging with a 3D
inversion recovery fast spoiled gradient echo (BRAVO), pre-
and post-contrast T1-weighted fast spin echo (CUBE), and a 3D
FLAIR. Additional scan parameters and patient demographics
are given in Tables 1, 2, respectively.

The OUH ground truth annotations were established by two
working radiologists with 5 and 14 years of experience. For the
Stanford dataset, ground truth annotations were established by
two neuroradiologists with 8 and 2 years of experience. Twenty-
six of the original ground truth annotations were later revised
and edited by the working neuroradiologist with now 5 years
of experience.

To test model generalizability and robustness, model
training was performed by only including data from the Stanford
cohort. Hundred patients were randomly selected for the
training dataset, 10 patients were randomly selected for model

1 https://github.com/JonOttesen/Met-Seg
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TABLE 1 An overview of the MRI sequence related parameters.

3D BRAVO 3D T1 CUBE/SPACE 3D FLAIR

Stanford cohort

TR∗ (ms) 12.02/8.24 550/602 6,000

TE∗ (ms) 5.05/3.24 9.54/12.72 119/136

Flip angle∗ (deg) 20/13 90 90

FOV (mm2) 240 × 240 250 × 250 250 × 250

Inversion time∗ (ms) 300/400 - 1,880/1,700

Acquisition matrix 256 × 256 256 × 256 256 × 256

Slice thickness (mm) 1 1 1–1.6

# of slices 160 270–320 270–320

Acquisition plane Axial Sagittal Sagittal

OUH Cohort

TR (ms) 700 5,000

TE (ms) 12 387

Flip angle 120 120

FOV (mm2) 230 × 230 230 × 230

Inversion time (ms) - 1,800

Acquisition matrix 256 × 256 256 × 256

Slice thickness (mm) 0.9 0.9

# of slices 192 208

Acquisition plane Sagittal Sagittal

TR, repetition time; TE, echo time; FOV, field-of-view; BRAVO, T1-weighted inversion recovery prepped fast spoiled gradient-echo; CUBE, T1-weighted fast spin-echo; FLAIR, fluid
attenuated inversion recovery. Varying parametric values are denoted by asterisk (∗) notation and ‘/’.

TABLE 2 Patient demographics for both hospital cohorts and the

number of patients with a given number of metastases.

Demographics OUH cohort Stanford
cohort

Gender 35 F/30M 105 F/51 M

Age range 32–86 32–92

Primary cancer

Lung 45 99

Breast 20 33

Skin/melanoma – 7

Genitourinary – 7

Gastrointestinal – 5

Miscellaneous – 5

# of metastases 151 860

≤ 3 54 58

4–10 10 46

≥ 10 1 52

validation, and the remaining 51 patients were used for model
testing. Moreover, all 65 patients from the OUH were used for
model evaluation. In total, 860 and 151 metastases from the
Stanford and OUH cohorts were used for model evaluation,
respectively. A flowchart of the study design is illustrated in
Figure 1, where cohort A and B represent the Stanford and OUH
cohort, respectively.

2.2. Model architecture

In this study, two deep learning models were implemented
and tested: one 2.5D architecture for slice-wise segmentation
and a 3D architecture for volume-wise segmentation. Both the
2.5D and 3D networks are based on the high-resolution net
V2 (HRNetV2) (Wang et al., 2019). The 2.5D and 3D variants
were adopted to evaluate whether a 2D or 3D segmentation
approach is best suited for brain metastases segmentation.
The general model architecture is illustrated in Figure 2.
Because previous studies have raised the issue of reduced
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FIGURE 1

Two patient cohorts from di�erent institutions (A and B) were annotated by working radiologists, coregistered, and brain extracted. Cohort A
was divided into a training/validation set and a test set, whilst cohort B was kept as an independent test set. Three models were trained on the
training set from cohort A, and evaluated on the test set from cohort A and cohort B. Two of the models were trained with input-level dropout
to allow for a variable number of input MR sequences.

FIGURE 2

The general model architecture that takes either five slices from one to four sequences as inputs for the 2.5D model or a volume from one to
four sequences for the 3D model. For the 2.5D model, the inputs are upscaled with bilinear upscaling before downsampling through a
convolutional operation. The model prediction is a probability map between 0 and 1.

performance for small metastases, all model inputs for the 2.5D
model were upscaled by two-fold bilinear upscaling followed
by a convolutional operation for resolution reduction. This
additional upscaling operation showed improved performance
during an initial testing phase but was not performed on the 3D
model variant due to memory constraints. In addition to the two
architectures above, the self-configurable nnU-Net was adopted
as a comparative benchmark since the nnU-Net pipeline has
previously shown state-of-the-art performance inmedical image
segmentation tasks (Isensee et al., 2020b).

HRNetV2 was chosen as the reference model because the
architecture combined with object contextual representation
(Yuan et al., 2019) has previously archived state-of-the-art

performance on the cityscape dataset (Cordts et al., 2016). In
addition, H2NF-Net—a HRNetV2 like model achieved second
place in the BraTS challenge 2020 (Jia et al., 2020). Unlike H2NF-
Net, we opted to use a U-Net like decoder for the 3D network to
decrease memory constraints during training.

2.3. Preprocessing

Every MRI sequence was coregistered to either the
BRAVO sequence from the Stanford patient-cohort or the T1-
weighted post-contrast image-series from the OUH patient-
cohort. Coregistration was performed using the nordicICE

Frontiers inNeuroinformatics 04 frontiersin.org

https://doi.org/10.3389/fninf.2022.1056068
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Ottesen et al. 10.3389/fninf.2022.1056068

software package (NordicImagingLab, Bergen, Norway) by
maximizing normalized mutual information. Brain extraction
was performed using the deep learning method HD-BET
(Isensee et al., 2019) on the T1-weighted pre-contrast image-
series and the resulting brain masks were propagated to all
other image-series. Every MRI sequence was oriented in the left
posterior superior direction after coregistration.

The brain extracted image-series were (if necessary) rescaled
to a voxel size of 0.9375 × 0.9375 × 1 mm by trilinear
interpolation, and the corresponding ground truth annotations
were interpolated by nearest interpolation. Minimal artifacts
were encountered in the interpolation process of the brain
extracted image-series.

All image-series were standardized with a mean of zero
and standard deviation of one. The standardization processes
excluded all non-brain extracted voxels, i.e., all excluded voxels
were zero-valued.

2.4. Training

The 2.5D model was trained for 150 epochs, and a single
epoch contained ∼12,000 randomly selected brain slices; by
extention, each epoch contained ∼12,000 training examples.
In the selection process, image slices with metastases were
weighted ten-fold compared to non-metastases slices (Grøvik
et al., 2020). AdamW (Loshchilov and Hutter, 2017) was used
as the optimizer with an initial learning rate of 5× 10−4,
with an initial warm up period of 10 epochs followed by the
cosine annealing learning rate scheduler (Loshchilov andHutter,
2016), weight decay of 0.01, Amsgrad enabled (Reddi et al.,
2018), and a batch size of 16. After every epoch, the model was
evaluated on all non-zero and non-augmented slices from the 10
validation patients.

The 3D model was trained for 1000 epochs, and a
single epoch contained 95 volumes; by extension, each epoch
contained 95 training examples. AdamW (Loshchilov and
Hutter, 2017) was used with a learning rate of 5 · 10̂(−3)
with an initial linear warm up period for the first 50 epochs,
afterwards cosine annealing was used as the learning rate
scheduler (Loshchilov and Hutter, 2016), and a batch size of 2.
After every epoch, the model was evaluated on non-augmented
patches from the 10 validation patients.

All data augmentation performed is detailed in Table 3 with
the corresponding probability for said augmentation. To handle
any missing input MRI image-series and enforce robust models
that generalize tomultiple clinical protocols, input-level dropout
(Grøvik et al., 2021) was used during training. All image-
series had a 25% probability of being omitted and if all image-
series were omitted, one sequence was randomly selected to
be included. Data augmentation was performed through the
Monai framework (Consortium, 2022) except mixup (Zhang
et al., 2017) and input-level dropout (Grøvik et al., 2021). Note

that mixup was not performed for the 3Dmodel as initial testing
showed a decrease in performance.

Network optimization was performed by minimization of a
compound loss of equal weighting between the Focal Tversky
loss (Salehi et al., 2017) and a weighted binary cross entropy
(BCE) loss function. Compound loss was chosen since it has
been shown to improve the robustness of the segmentation
(Ma et al., 2021), and compound loss is used by the state-of-
the-art nnU-Net (Isensee et al., 2020a). Unlike nnU-Net, the
focal Tversky loss function was used instead of the dice loss to
emphasize hard examples and handle class imbalance (Abraham
and Khan, 2018). In weighted BCE, every segmented ground
truth voxel was weighed ten-fold compared to non-segmented
voxels. The loss function used is given by

Loss(y, yˆ) = FocalTversky(y, yˆ)+ BCE(y, yˆ)

+ β · y · BCE(y, yˆ), (1)

where β = 10 is the ten-fold weighted segmented voxels.
Focal Tversky loss was used to emphasize the detection of true
positives, i.e., metastases. Note, batchwise focal Tversky was used
for 2.5D segmentation, whilst imagewise focal Tversky was used
for 3D segmentation.

Memory consumption was reduced through mixed
precision training, and all slices were randomly cropped once
per input to a patch size of 176 × 176 or 128 × 128 × 128
while maximizing the inclusion of brain tissue by centering
the cropping around the central region of the brain. The total
training time was approximately 20 and 75 hours for the 2.5D
and 3D networks, respectively. Both models were trained on
a Nvidia A100 with 40GB of memory, whereas the nnU-Net
was trained on a RTX 3090 with default settings and a 5-fold
cross validation training scheme. Note, input-level dropout was
not implemented into the nnU-Net pipeline, for that reason,
two versions of nn-UNet were trained: one version trained
with the BRAVO sequence and one version trained without the
BRAVO sequence.

2.5. Evaluation

Segmentation performance was evaluated using a slice-wise
dice similarity coefficient given by

Dice = (2 · TP)/(2 · TP + FP + FN), (2)

where TP is the number of correctly predicted metastases voxels,
FP is the number of missed metastases voxels and FN is the
number of erroneously predicted non-metastases voxels. All
correctly predicted zero-slices were given a perfect dice score
of 1.

Detection performance was evaluated by the rate of
metastases detection (sensitivity), the mean per patient

Frontiers inNeuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2022.1056068
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Ottesen et al. 10.3389/fninf.2022.1056068

TABLE 3 An overview of the augmentation methods used, the network that used said augmentation method and the corresponding probability for

their use.

Method Probability 2.5D network 3D network

Mixup 100% Yes No

InputLevelDropout 25% pr sequence Yes Yes

Vertical flipping 25% Yes Yes

Horizontal flipping 25% Yes Yes

Random head rotation 25% Yes Yes

Mean intensity shift 10% Yes Yes

Std intensity shift 10% Yes Yes

Random contrast change 10% Yes Yes

Random histogram intensity shift 10% Yes Yes

Random head alignment 10% No Yes

All augmentation was performed courtesy of the Monai (Consortium, 2022) framework except Input-level dropout (Grøvik et al., 2021) and mixup (Zhang et al., 2017).

TABLE 4 The dice similarity coe�cient, metastases detection sensitivity, the average metastases detection sensitivity per patient, and the average

number of false positive metastases per patient with the corresponding standard deviation for the Stanford and OUH cohorts.

Cohort Model Dice Sensitivity Sensitivity per
patient

False positives per
patient

Stanford 2.5D 0.84 ± 0.13 0.79 0.88 ± 0.19 6.2 ± 11.4

Stanford 3D 0.84 ± 0.13 0.71 0.84 ± 0.18 3.2 ± 6.5

Stanford nnU-Net 0.85 ± 0.13 0.65 0.76 ± 0.26 1.7 ± 3.5

OUH 2.5D 0.93 ± 0.04 0.88 0.92 ± 0.15 1.0 ± 1.1

OUH 3D 0.93 ± 0.04 0.86 0.91 ± 0.17 0.4 ± 0.7

OUH nnU-Net 0.94 ± 0.05 0.78 0.85 ± 0.23 0.1 ± 0.4

Only non-single voxel metastases were counted as metastases for the sensitivity, in contrast, all voxels were considered when evaluating the dice similarity coefficient and the number of
false positives.

sensitivity and the total number of false positive metastases. The
metastases sensitivity is given by

“Sensitivity” = “Detected Lesions” /“Total Lesions”, (3)

where a lesion is defined as the fully connected 3D region of
voxels. A metastasis was defined as detected if the prediction
had a 10% or larger overlap with a 3D fully connected region
in the ground truth annotations. Only connected voxel regions
in the ground truth larger than a single voxel were considered
as a metastasis when evaluating the detection sensitivity. A
prediction was labeled as a false positive if a 3D fully connected
prediction had less than 10% overlap with the ground truth
annotations. All non-connected single voxel predicted regions
were omitted when the model sensitivity, per patient sensitivity,
and false positives were estimated. Note that non-connected
single voxel predicted regions were not omitted when calculating
the dice similarity coefficient.

Input-level dropout was not performed during inference.
However, since the OUH cohort lacked the BRAVO sequence,
only the T1-weighted pre/post-contrast and FLAIR were used

during inference. The probability threshold was chosen to
maximize the dice similarity coefficient on the validation dataset
for the respective models.

3. Results

The dice similarity coefficient, sensitivity, the average
sensitivity per patient, and the mean number of false positive
predictions per patient for the Stanford and OUH cohorts are
given in Table 4. A threshold of 0.98 and 0.99 was used for the
predictions from the 2.5D and 3D models, respectively. The
dice coefficient and sensitivity were higher for the OUH cohort
compared to the Stanford cohort, while achieving a reduced rate
of false positives for all three models.

The fraction of the total number of metastases detected, i.e.,
sensitivity was 0.79, 0.71, and 0.65 for the 2.5D, 3D, and nnU-
Net, respectively. In contrast, the per patient sensitivity was 0.88,
0.84, and 0.76; this variation is mainly caused by a single patient
outlier with 153 metastases where only 56, 46 and 41 metastases
were successfully detected. In total: 676, 607, and 556 metastases
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FIGURE 3

Histogram plots of the number of correctly predicted metastases and the number of missed metastases as a function of the maximum
metastatic area in the axial plane and metastatic volume for the Stanford patient test cohort for all three models tested. Metastases larger than
120 (area) or 500 (volume) voxels were excluded to improve readability. TP denote true positive metastases, i.e., correctly predicted metastases,
and TN denotes true negative metastases, i.e., not predicted metastases.

out of 860 metastases were successfully detected by the 2.5D, 3D,
and nnU-Net, respectively.

For the independent cohort (OUH cohort), the sensitivity
was 0.88, 0.86, and 0.78 with a corresponding sensitivity per
patient of 0.92, 0.91 and 0.85 for the 2.5D, 3D, and nnU-
Net, respectively. Unlike the Stanford cohort, there wasn’t any
notable outlier due to fewer metastases per patient. In total: 133,
130, and 118 metastases out of 151 metastases were successfully
detected by the 2.5D, 3D, and nnU-Net, respectively.

Figures 3, 4 show the number of correctly predicted and
non-predicted metastases as a function of the metastatic volume
and largest metastatic area in the Stanford and OUH cohorts,
respectively. The largest non-detected metastatic volume was
0.53, 1.83, and 1.13 cm3; the largest non-detected axial area was
1.0, 2.0, and 1.4 cm2 on the Stanford cohort for the 2.5D, 3D,
and nnU-Net, respectively. With respect to the OUH cohort, the
largest non-detected metastatic volume was 0.018, 0.31, and 4.4
cm3; the largest non-detected axial area was 0.09, 1.1, and 3.7
cm2 for the 2.5D, 3D, and nn-UNet, respectively.

Violin plots of the false positive distribution for both cohorts
are given in Figure 5. The number of false positives varied greatly
between patients, and the maximum number of false positives
for a single patient on the Stanford cohort was 62, 40, and 15;
the maximum number of false positives for a single patient on
the OUH cohort was 4, 3, and 2. The median number of false

positives on the Stanford cohort was 2, 1, and 0 for the 2.5D,
3D, and nnU-Net. In the OUH cohort, both 3D models had a
median number of false positives of 0, and the 2.5D network had
a median number of 1. We note that the outlier patients greatly
skew the false positive average value, and if the three patients
with largest number of false positives were excluded, the average
number of false positives per patient would be 3.6, 1.9, and 1.0
for the 2.5D, 3D, and nnU-Net, respectively.

Figures 6, 7 show the resulting probability maps
for representative slices from the Stanford and OUH
cohorts, respectively.

4. Discussion

In this work, we have tested and evaluated 2.5D, 3D, and
nnU-Net for brain metastases segmentation. Our results suggest
that all methods can successfully segment and detect brain
metastases with few false positives on multinational data. To
that end, we have developed robust deep learning segmentation
models that can accurately segment brain metastases for a
varying number of available MRI image-series: BRAVO, T1
pre/post contrast and FLAIR. Model evaluation was performed
on multinational data from two large university hospitals, from
which one cohort was not used during model training.
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FIGURE 4

Histogram plots of the number of correctly predicted metastases and the number of missed metastases as a function of the maximum
metastatic area in the axial plane and metastatic volume for the OUH cohort for all three models tested. Metastases larger than 120 (area) or 500
(volume) voxels were excluded to improve readability. TP denote true positive metastases, i.e., correctly predicted metastases, and TN denotes
true negative metastases, i.e., not predicted metastases.

FIGURE 5

Violin plot of the number of false positives per patient for the Stanford and OUH cohorts for the 2.5D, 3D, and nnU-Net. Patients with more than
10 false positives were excluded to improve readability. This accounts to five patients in the Stanford cohort and zero patients in the OUH
cohort. The median number of false positives were either 2, 1, or 0 in the Stanford cohort and 1 or 0 in the OUH cohort.

The results from Table 4 shows that nnU-Net predicts fewer
false positives and have a slightly higher dice similarity score
than the proposed 2.5D and 3D networks, but with a reduced
overall sensitivity and a per patient sensitivity. This follows
the design philosophy where true positives were deemed more
important false positives resulting from the use of focal Tversky

loss and upweighting of metastases slices. Nonetheless, nnU-
Net provide accurate segmentation of brain metastases with few
false positives.

The proposed 2.5D and 3D models showed robust
segmentation performance and both models achieved a dice
similarity coefficient of 0.84 and 0.93 for the Stanford and OUH
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FIGURE 6

Visualization of segmentation examples from the Stanford cohort with the ground truth annotation (red regions of interests) and the
segmentation probability map from the 2.5D network. The (bottom right) image slice belongs to the patient with 153 metastases and is one of
the worst cases from the test set.

cohorts, respectively. Moreover, the proposed models showed
high accuracy: on the Stanford cohort the models detected 79%
and 71% for the 2.5D and 3D model, respectively; on the OUH
cohort the models detected 88% and 86% of all metastases for
the 2.5D and 3D model, respectively. We note that the 2.5D
network detected more metastases than its 3D counterpart on
both cohorts, but with an increased false positive rate. This
implies that a 2.5D network exhibits increased sensitivity, but
with an increased false positive rate.

The models tested in this work performed considerably
better on the OUH cohort compared to the Stanford cohort.
This shows how different cohorts can affect model segmentation
performance. It is reasonable to assume that this variation is
caused by differences in MRI acquisitions, patient demographic
and cohort-specific variations in the characteristics of the
metastases. In general, the OUH cohort contained higher
quality and more homogeneous T1-post contrast image-series.
Moreover, since all patients in the OUH cohort were eligible for
stereotactic radiotherapy, they had fewer and larger metastases,
recently shown to provide better segmentation and prediction
results (Grøvik et al., 2021). Like previous works for brain
metastases segmentation (Charron et al., 2018; Bousabarah et al.,
2020; Dikici et al., 2020; Grøvik et al., 2020, 2021; Zhang
et al., 2020; Zhou et al., 2020a), we also noted a reduced
segmentation performance for smaller metastases, with this
trend being more pronounced for the OUH cohort. This can
be seen from Figures 3, 4 where the ratio of missed/detected

metastases was increased with decreasing lesion area. An
interesting note is that this sentiment does seem to hold true for
the metastases volume to the same degree. In general, we noted
that the Stanford cohort contained more “challenging” cases and
were less homogeneous when compared to OUH cohort. This
difference in homogeneity is due to all OUH patients were to
receive stereotactic radiotherapy, which was not case for the
Stanford cohort.

Compared to previous works on the same Stanford cohort
(Grøvik et al., 2020) and OUH cohort (Grøvik et al., 2021;
Yi et al., 2021), our model archives a similar or improved per
patient detection sensitivity with 0.88/0.83 compared to their
previously published average sensitivity of 0.83, whilst reducing
the total number of false positives from an average of 8.3 to
6.2/3.2 for the 2.5D and 3D networks, respectively. A similar, but
more pronounced effect can be seen for the OUH cohort where
the number of false positives was reduced from an average of
12.3 (Grøvik et al., 2021) to 1.0 or 0.4 per patient for the 2.5D and
3D networks, respectively. From this, it can be concluded that
the model proposed in this study produces less false positives
when compared to previous work, whilst achieving similar or
improved sensitivity.

A direct inter-study comparison of segmentation
performance in recent studies is questionable due to data
variations, as is evident from this study. Still, the model achieves
performance comparable to recent studies, with the relative
low sensitivity on the Stanford cohort being a likely result from
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FIGURE 7

Visualization of segmentation examples from the OUH cohort with the ground truth annotation (red regions of interests) and the segmentation
probability map from the 2.5D network.

the large number of small metastases and the inhomogeneous
nature of the patient cohort due to not having any inclusion
criteria. Nonetheless, the number of false positives reported
for the OUH cohort is among the lowest reported in literature
at the time of writing (Zhou et al., 2020b; Hsu et al., 2021;
Jünger et al., 2021; Pennig et al., 2021; Rudie et al., 2021). Still,
we note the relative low sensitivity for the Stanford cohort in
contrast to other work that have reported higher sensitivity
(Xue et al., 2020; Cho et al., 2021). Further improvements would
require additional training data to combat model overfitting
during training.

Although this study has shown that the proposed method
can generalize to multinational data, additional independent
data from other sites would be necessary before endorsing
clinical use and it would further strengthen this works claims
that the model can generalize across multiple institutions. We
recommend the 3D variant due to the drastic reduction in false
positives compared to the 2.5D variant while maintaining a
good sensitivity.

5. Conclusion

This study presents multiple models that can detect and
segment brain metastases on multinational MRI data with high
accuracy and a reduced number of false positive predictions
compared to previous studies. Still, robust segmentation of very
small metastases remains a challenge.
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