
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e
an

d
Pe

tr
ol

eu
m

M
as

te
r’s

 th
es

is

Ștefan Cătălin Crăciun

Integrated Boundary Conditions and
HPC schemes for enhanced
Viscoacoustic Modeling

Master’s thesis in Petroleum Geophysics
Supervisor: Børge Arnsten
July 2023

Ștefan Cătălin Crăciun

Integrated Boundary Conditions and
HPC schemes for enhanced
Viscoacoustic Modeling

Master’s thesis in Petroleum Geophysics
Supervisor: Børge Arnsten
July 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Geoscience and Petroleum

Abstract

This thesis presents a comprehensive investigation of the viscoacoustic wave equation, focusing on
Absorbing Boundary Conditions and High Performance Computing.

We show that the C-PML boundary conditions are equivalent to a Standard Linear Solid vis-
coelastic kernel that incorporates a time-dependent density and bulk modulus. We implement a
finite difference scheme that uses the same wave equation both inside and outside the absorbing
zone, thus it is only the model parameters that change to effectively absorb the wavefield.

Two different viscoelastic models are implemented: the Standard Linear Solid and Maxwell mech-
anisms. The former was shown to better simulate realistic wave attenuation, while the latter
provides frequency-independent attenuation, which might be more desirable for an absorbing
boundary.

The thesis also investigates a series of optimization strategies aimed at improving the performance
of seismic experiments, making even a personal laptop capable of running complex simulations.
These different optimization schemes are implemented on a single-core CPU, multiple cores, or the
GPU using Python, C, and Julia programming languages. The results have shown that Python,
when equipped with the right modules and packages, can be a powerful tool for optimization,
capable of rivaling C and CUDA in terms of performance. We also explored the capabilities of
Julia, a high-level language designed for scientific computing and demonstrate its potential to
outperform C.

i

Acknowledgements

First of all, I want to thank my supervisor, Prof. Børge Arnsten. I am deeply grateful for his
guidance, patience, and insight. His expertise has been invaluable throughout this process, and I
am fortunate to have been able to learn from him.

I also want to convey my sincere thanks to my girlfriend, Xiao. She has been there for me during
all the tough times, always ready to lend a hand with difficult coding problems. When I found
myself stuck in code debugging for endless hours, it was her support and motivation that helped
me push through.

Lastly, I express my gratitude to my family for their support. They granted me the opportunity to
attend NTNU, a decision that has opened numerous doors and led to many wonderful experiences.

In conclusion, this project has been a remarkable journey, one filled with challenges, learning, and
growth. The experiences and knowledge I’ve gathered during this process are invaluable. To all
those who have contributed to this journey in one way or another, thank you.

iii

Table of Contents

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Boundary Conditions . 2

1.3 High Performance Computing . 3

1.4 Objectives . 4

2 Viscoacoustic Wave Theory 5

2.1 Wave Equation . 5

2.2 The Finite-Difference Method . 7

2.2.1 Derivatives . 7

2.2.2 Higher Order Operators . 8

2.2.3 Discretization and Staggered Grids . 12

2.2.4 Analytical Solution . 14

2.2.5 Numerical Stability, Dispersion and Anisotropy 14

2.3 Boundary Conditions . 18

2.3.1 Viscoelastic Media . 19

2.3.2 Time-Dependent Density . 20

2.3.3 Standard Linear Solid Model . 21

2.3.4 Maxwell Model . 23

2.3.5 Viscoelastic Equations of Motion . 25

2.3.6 Discretization and Staggered Grids . 29

2.3.7 Absorbing Boundaries and Tapering . 32

2.3.8 Comparison with C-PML . 34

3 Numerical Implementation and Optimization 36

3.1 Saxpy . 36

3.1.1 Single Core CPU . 36

3.1.2 Multiple Core CPU . 44

3.1.3 GPU . 47

3.1.4 Apple Silicon Chip . 54

3.2 Viscoacoustic Finite Difference Modelling . 56

v

4 Results 59

4.1 Viscoacoustic Modelling . 59

4.1.1 Comparison with the Analytical Solution 59

4.1.2 Absorbing Boundaries . 61

4.1.3 Standard Linear Solid vs Maxwell . 65

4.2 Benchmarks . 72

4.2.1 Performance Metrics . 72

4.2.2 Test Systems . 72

4.2.3 Saxpi . 73

4.2.4 Viscoacoustic Modelling . 74

5 Conclusion and Discussion 78

Bibliography 80

vi

List of Figures

1 Snapshot of horizontal ground movement modeled using a finite difference tech-
nique. The depicted scenario is a simulation of the M5.3 Roermond earthquake that
occurred in the Cologne region of Germany in 1992, using a 3D representation of
the sedimentary basin. The red and blue colors represent horizontal ground velo-
cities that are positive and negative, respectively. The lower wave velocity found
in the sedimentary basin enhances seismic motion relative to the adjacent bedrock,
resulting in a significant extension of the trembling duration. 1

2 The Frontier Supercomputer, which is the world’s fastest supercomputer as of July
2023, managing to achieve a performance of 1.102 exaFLOPS (1018 FLOPS). . . . 3

3 3D Cartesian coordinate system in which the domain Ω resides 5

4 Visual representation of Taylor operators weights for the central derivative (f c(x)).
The derivative is computed for the red circle. The OX axis defines the grid point
location in relation to the derivative location (x[0]). It can be noted how the mag-
nitude of the weights decreases as the distance from the derivation point increases.
In this case the operator length is 8, meaning that the interpolation radius of the
derivative is 8 grid points. In total, this derivation stencil includes 16 points. Also,
it can be seen that the weights are anti-symmetric in relation to x[0]. 10

5 First derivative for a Ricker Wavelet with a central frequency of 25Hz. The time step
used for the derivative is 5ms (dt = 5ms). The black lines represents the analytical
solution; the blue dotted line is the forward difference (O(dx)); the orange dotted line
is the backward difference (O(dx)); the green dotted line is the central difference of
order 2 (O(dx2)) and the red dotted line is the central difference of order 4 (O(dx4)).
The operators that have a higher order are closer to the analytical solution. 11

6 It can be seen how the high order finite-difference schemes converge more rapidly to
the correct derivative on a regular grid, if one reduces the grid spacing dx. 11

7 Staggered Grid schematic; σxx, σzz and K are defined on the regular grid vertexes,
while vx, vz, ρx and ρz are defined on the staggered grid, which is displaced by half
a grid point. 13

8 Explosion of the finite-difference solution represented in trace form. The blue line
denotes the finite-difference approximation of the wavefield. It can be seen how the
solution explodes at around 0.18 seconds, as the numerical errors get accumulated
over time. 15

9 Wavefield propagation in the subsurface showcasing the explosion of the finite-
difference solution at different time steps (Nt = 25, 50, 75 and 100). It can be
seen how the wavefield disintegrates as time progresses. 16

10 Dispersion in the finite-difference method. The blue line denotes the finite-difference
approximation of the wavefield, while the red line shows the analytical solution. It
can be seen how the wavelet becomes dispersive and disintegrates. 17

11 Numerical Anisotropy in the finite-difference method. It can be seen that the dis-
persion is the strongest at 0° and 90° with respect to the grid and the smallest at
45°. 17

12 Wavefield propagation in the subsurface showcasing the Dirichlet boundary condi-
tions. It can be seen how the wavefield is perfectly reflected back into the medium
as it reaches the rigid boundaries. The polarity is also reversed. 18

13 Stress–strain curves for an elastic material (left) and a viscoelastic material (right).
The red shaded area represents the hysteresis loop and shows the amount of energy
lost (in the form of heat dissipation) in the loading and unloading cycle. 19

vii

14 Standard Linear Solid Model. The mechanical model consists of two elastic springs
(with the elastic modulus k) and a dashpot (where η is the viscosity of the material).
σ is the applied stress and ϵ is the deformation. 21

15 Maxwell Model, consisting of one elastic spring (with the elastic modulus k) and
a dashpot (where η is the viscosity of the material) connected in series. σ is the
applied stress and ϵ is the deformation. 24

16 Staggered Grid for the Viscoacoustic wave equation schematic; σxx, σxx, γ, Ku and
the α parameters are defined on the regular grid vertexes, while vx, vz, ρux, ρuz, θ
and the η parameters are defined on the staggered grid, which is displaced by half
a grid point. 30

17 The subsurface model enclosed by an absorptive medium. The Acoustic Medium is
obtained for a high quality factor (Qmax = 104). The Absorptive medium has a
decreasing quality factor given by a tapering function, starting from the inner edge
(the red dotted line) until it reaches the Qmin value (Qmin = 1.1), the black outer
line. 33

18 Example of the Q-model tapering, where Qmax = 104, Qmin = 1.1 and Nb = 15. . 33

19 Basic elements of a Single Core CPU; The core contains the ALU (Arithmetic Logic
Unit), which performs arithmetic and logic operations; The Control Unit tells the
ALU what operation to perform and in which order to perform them; The L1, L2
and L3 caches are very fast and expensive memory that store temporary data that’s
actively being used by the CPU; The DRAM (Dynamic Random Access Memory)
is the main memory used by the computers. While it can be very large, it is much
slower than the Cache memory. The DRAM is not part of the CPU itself but is an
external component. The CPU communicates with the DRAM through a memory
bus. 37

20 The Saxpy computation implemented using Cython; the yellow lines show all inter-
actions with Python. 40

21 Basic elements of a Multiple Core CPU; Each core has its own memory cache, but
all the cores also have access to shared memory. Tasks are sent to the CPU, and
then they are distributed across the cores for simultaneous processing. 44

22 The Cython implementation using Multithreading; a lighter yellow line indicates
fewer interactions with Python. 45

23 Basic elements of an Nvidia GPU; Each green square could represent a CUDA
core. These cores have a lower clock rate than their CPU counterpart, but they
can number in the thousands. The GPU has its own private memory, usually called
GDDR RAM (Graphics Double Data Rate Random Access Memory). This is a type
of synchronous memory that is specifically designed for GPUs. 47

24 Example of heterogeneous computing when executing a script. The computationally
heavy areas are performed by the GPU (red), while the less demanding serial code
is performed by the CPU (blue). 48

25 Example of Thread hierarchy, showcasing a 2D grid containing 2D blocks. 49

26 Example of Thread hierarchy, where the threads are organized in 2D blocks. 49

27 The Unified memory architecture found on all Apple M-series devices. The CPU
and GPU are integrated in the same chip. 54

28 The execution flow of the Main file. The computationally heavy areas are denoted
with Red, while the less demanding code blocks are blue. 56

29 The execution flow of the AC2D file. The computationally heavy areas are denoted
with Red, while the less demanding code blocks is blue. 57

viii

30 Comparison of the Acoustic analytical solution (red) with the simulated Viscoacous-
tic solution (blue). It can be seen how these two overlap, thus proving that the
Viscoacoustic solution is reduced to the Acoustic case when a large Quality factor
is chosen. 60

31 Comparison of the Acoustic analytical solution (red) with the simulated Viscoacous-
tic solution (blue). It can be seen how the numerical solution is attenuated when
choosing a small Quality factor (Q = 1.5). 60

32 Snapshots from the Viscoacoustic simulation using the SLS model. Parameters:
201x201 square mesh, dx = 10m, dt = 0.5ms, Nt = 2000 (giving a total simulation
time of 1s). The differentiator length is 8. The model is homogeneous, with a P
wave velocity of 2000m/s, a density of 2000kg/m3 and a quality factor of 105. The
Q model is tapered at the borders, reaching a Qmin value of 1.1. The source pulse is
a Ricker Wavelet with a dominant frequency of 25Hz, which is placed in the middle
of the model (x = 1000m, z = 1000m). Nb = 20 (Number of grid points for the
absorbing boundary). 61

33 Snapshots from the Viscoacoustic simulation using the Maxwell model. Parameters:
201x201 square mesh, dx = 10m, dt = 0.5ms, Nt = 4000 (giving a total simulation
time of 2s). The differentiator length is 8. The three layered model has an increasing
velocity/density with depth. The quality factor is 105. The Q model is tapered at
the borders, reaching a Qmin value of 1.1. The source pulse is a Ricker Wavelet
with a dominant frequency of 25Hz, which is placed in the middle of the first layer
(x = 1000m, z = 350m). Nb = 30 (Number of grid points for the absorbing boundary). 62

34 Marmousi velocity model (top) and density model (bottom). The mesh is 500x174
with dx = 20m. 63

35 Snapshots from the Viscoacoustic simulation using the Marmousi model. Paramet-
ers: 500x174 mesh, dx = 20m, dt = 0.5ms, Nt = 8000 (giving a total simulation
time of 4s). The differentiator length is 8. The quality factor is 105. The Q model
is tapered at the borders, reaching a Qmin value of 1.1. The source pulse is a Ricker
Wavelet with a dominant frequency of 10Hz. Nb = 30. 64

36 The Seismogram obtained from the simulation by placing a line of hydrophones just
below the water-air interface. Here, the absorbing boundary area is cut from the
seismogram . 65

37 Edge Artifacts from the SLS mechanism. The source is a Ricker wavelet with a
dominant frequency of 15Hz. The absorbing boundary width is 30 grid points. . . 66

38 The reflection artifacts for the Standard Linear Solid mechanism (top) and Maxwell
mechanism (bottom). For each case, we show the results for a dominant frequency
of 15Hz (left) and 25Hz (right). 67

39 Trace comparison between the Maxwell and SLS mechanisms for a wavelet with a
dominant frequency of 15Hz. 68

40 Trace comparison between the Maxwell and SLS mechanisms for a wavelet with a
dominant frequency of 25Hz . 68

41 Frequency versus attenuation response for the Maxwell and SLS mechanisms. The
dominant frequency of the propagating wavefield is 15Hz (f0 = 15Hz). The Quality
factor is 1.1, c0 = 2000m/s and z = 150m. 71

42 Julia serial CPU (black), Multithread (blue), and GPU (red) Saxpy implementations
with varying problem sizes. The OY ans OX axis are logarithmic here. The runtime
is given in milliseconds. 73

ix

43 Serial CPU implementations for one shot using the viscoacoustic finite-difference
method with varying problem size: Python For Loop (orange), NumPy (green),
Numba (black), Cython (purple), C (blue) and Julia (red). The runtime is given in
seconds. 74

44 Multithread implementations for one shot using the viscoacoustic finite difference
method with varying problem size: Numba (black), Cython (purple), C (blue) and
Julia (red). The number of threads is set at 16. The runtime is given in seconds. . 75

45 GPU implementations for one shot using the viscoacoustic finite difference method
with varying problem size: Numba CuPy (black), CUDA C (blue), Julia CUDA
(red) and Julia Metal M1 (purple). The blocksize is 16x16. The runtime is given in
seconds. 76

46 CPU, Multithread and GPU implementations using Numba: Python Numba serial
CPU (black), Multithread Numba (blue) and Numba CuPy GPU (green). 76

47 The relative speedup of the different implementations when compared to the Numba
serial CPU version. 77

List of Tables

1 Finite-Difference Coefficients for a Staggered Grid as defined by Holberg 1987. l is
the length of the differentiator (for a given l value, the total number of neighboring
points used in the numerical derivation is 2 ∗ l). 12

2 Hardware Characteristics . 72

List of Source Codes

1 The variable declaration for Saxpy implemented using Python: a is a float32 scalar
and x and y are NumPy arrays filled with float32 random values (between 0 and 10). 38

2 The Saxpy computation implemented using a simple for loop. 38
3 The Saxpy computation implemented using NumPy vectorization. 38
4 The Saxpy computation implemented using Numba. 39
5 The variable declaration for Saxpy implemented using C: a is a float32 scalar and x

and y are dynamically allocated arrays filled with float32 random values (between
0 and 10). 41

6 The Saxpy computation implemented in C. 41
7 The interface file for SWIG . 42
8 The variable declaration for Saxpy implemented using Julia: a is a float32 scalar

and x and y are arrays filled with float32 random values (between 0 and 10). . . . 43
9 The Saxpy computation implemented using a for loop in Julia 43
10 The vectorized Saxpy computation in Julia . 44
11 The Multithreaded Saxpy computation implemented using Numba. 45
12 The C implementation using Multithreading . 46
13 The Julia Multithreaded implementation of Saxpy 46
14 The Python GPU implementation of Saxpy . 50
15 The CUDA GPU implementation of Saxpy . 51
16 The Julia vectorized GPU implementation of Saxpy 52
17 The Julia kernel GPU implementation of Saxpy . 53
18 The Julia Metal vectorized GPU implementation of Saxpy 55
19 The Julia Metal kernel GPU implementation of Saxpy 55
20 The Ac2dvx GPU kernel implemented in Julia; Here we use a 2D grid and block. . 58

x

1 Introduction

1.1 Motivation

Seismic modeling plays an important role when it comes to understanding and exploring the
subsurface structures and features of the Earth. Several disciplines, which include the exploration
of natural resources, seismic hazard assessment, and the understanding of the Earth’s internal
structure, benefit from using this method.

Seismic modeling can identify prospective areas for the exploration of natural resources such as oil,
natural gas, and minerals by providing high-resolution images of subsurface geological formations.
This serves to optimize the extraction process, reduce risks, and enhance the resource management
overall. Moreover, it is essential for assessing seismic risks, predicting potential earthquakes, and
comprehending their impact (Figure 1). It enables scientists to simulate seismic wave propagation,
aiding them in estimating the magnitude and potential damage caused by earthquakes in various
regions. Furthermore, it provides geoscientists with a valuable instrument for studying the Earth’s
crust and deeper structures, thereby shedding light on the planet’s geological history.

Several numerical modeling techniques, such as: finite difference, finite element, and spectral
methods, can be used for seismic wave propagation (Igel 2017). In order to derive the wavefield
solution, the elastic properties for a grid-based geological model are required. The media in question
can be acoustic, elastic, or viscoelastic (in each case the materials being isotropic or anisotropic).

Figure 1: Snapshot of horizontal ground movement modeled using a finite difference technique.
The depicted scenario is a simulation of the M5.3 Roermond earthquake that occurred in the
Cologne region of Germany in 1992, using a 3D representation of the sedimentary basin. The red
and blue colors represent horizontal ground velocities that are positive and negative, respectively.
The lower wave velocity found in the sedimentary basin enhances seismic motion relative to the
adjacent bedrock, resulting in a significant extension of the trembling duration.

Source: Igel and Stupazzini 2015

As computational power increased exponentially with time, it allowed for bigger and finer models
to be tackled. Combining this with advances in the computational algorithms, this has allowed
for numerous cutting-edge subsurface imaging techniques, such as diffraction and wavefront tomo-
graphy (Devaney and Oristaglio 1984; Wu and Toksöz 1987; Pratt and Worthington 1988; Gan
et al. 1995; Gelius 1995; Xie et al. 2018), reverse time migration (Baysal et al. 1983; McMechan
1983; Dai et al. 2011; Xu et al. 2011; Y. Zhang et al. 2013), and full-waveform inversion (Tarantola
1984; Pratt and Worthington 1990; Sambridge et al. 1991; Virieux and Operto 2009; Vigh et al.

1

2014; Li and Demanet 2016). All of these methods rely heavily on numerical seismic wave modeling
in order to generate high-resolution images of the subsurface.

There have been great incentives to find ways to improve the methods described above. Finite
difference has been one of the core methods utilized for the simulation of seismic wave propagation,
due to its relative simplicity, ease of implementation on computers, but also for its sturdiness. The
work presented in this thesis will focus on two main areas, namely: Absorbing Boundary Conditions
and High Performance Computing.

1.2 Boundary Conditions

The seismic wave equations are mathematically described by partial differential equations, which
pertain to the continuous domain. But, due to the limited capacity of computer memory, it is
essential to use a 2-D or 3-D grid of finite size in numerical modeling. An infinite computational
domain cannot be modeled, thus when using computers to simulate seismic waves, a transition
from the continuous to the discrete domain must be made. The edges of the chosen subsurface
model act as boundaries, and if the boundary conditions are not tackled effectively they produce
unwanted reflections, called artifacts, or even instability. The boundary reflections are undesirable
because they do not correspond to any actual boundaries in the simulated real-world scenarios,
thus distorting the numerically simulated data. As a result, it is essential to reduce or eradicate as
best as possible these artificial edge effects, as they superimpose over the true wavefield solutions
and distort it.

Several numerical strategies have been developed over the years to reduce or eliminate the artifi-
cial effects that arise at the model’s boundaries. Clayton and Engquist 1977 and Reynolds 1978
introduced a non-reflecting boundary condition technique where the wave equation at the model
edges is replaced with the one-way wave equations, which has been shown to be highly effective at
absorbing any artificial reflections caused by wave propagation perpendicular (or close to) to the
model boundaries. This method only allows wave transmission at the boundaries, thus effectively
suppressing reflections. Higdon 1991 carried this concept one step further by incorporating the 2D
time-domain acoustic and elastic wave modeling for these absorbing boundary conditions. How-
ever, the main problem with this method is that it is unable to effectively suppress the artificial
reflections caused by waves traveling at small or oblique angles to the model’s borders. In order
to tackle this challenge, Cerjan et al. 1985 proposed a solution in the form of a gradational at-
tenuation scheme in the time-domain, accomplished by incorporating absorbing zones around the
model’s edges. Their method demonstrated that this gradational attenuation scheme is simpler
than the aforementioned absorbing boundary conditions, and it was effective for all time-domain
wave modeling problems. Then, Sochacki et al. 1987 and Serón et al. 1996 introduced additional
damping terms into the wave equation, which facilitated better attenuation within the absorbing
zone.

The introduction of the perfectly matched layer (PML) method in electromagnetic wave modeling
by Berenger 1994 marked a significant advance in eliminating artificial reflections. Since then,
numerous researchers have effectively adapted this method for acoustic and elastic wave modeling
(Francis and Tsogka 2001; Komatitsch and Tromp 2003; Komatitsch and Martin 2007; W. Zhang
and Shen 2010). Drossaert and Giannopoulos 2007 introduced an improved version of the PML,
called convolutional perfect matched layer (C-PML). This method offers improvements by increas-
ing absorption and reducing dispersion in the absorbing layer at the cost of increased computational
complexity. The universal applicability of the PML method to any first-order wave equation in
arbitrary media (W. Zhang and Shen 2010) has made it the method of choice for seismic wave
modeling problems. One of the main disadvantages of the PML method is that for all first-order
spatial derivatives in the time domain, additional recursive calculations are required. In addition,
its application to second-order wave equations is not as straightforward (Komatitsch and Tromp
2003). Moreover, the effectiveness of the PML method is highly dependent on selecting the proper
parameters for the absorbing zones in relation to the area or volume of interest (W. Zhang and
Shen 2010).

The main idea behind PML is represented by a complex coordinate transformation which leads

2

to replacing derivatives in the wave equation (Komatitsch and Martin 2007; Carcione and Kosloff
2013). Since the theory behind this method was originally derived from Maxwell’s equations, the
mathematical equations behind it are complex, abstract and it is hard to find correlations with
seismic waves and the physical properties of rocks. Carcione and Kosloff 2013 managed to re-
interpret the C-PML absorbing boundaries in terms of mechanical models and have shown their
relationships in the time and frequency domain. Thus, the C-PML boundary conditions can be
described by a wave equation with time-dependent bulk modulus and density.

1.3 High Performance Computing

Moore’s Law predicts that the number of transistors in an integrated circuit doubles about every
two years. What could have been achieved decades ago only by complex and expensive supercom-
puters nowadays can be achieved by regular smartphone devices. The limits of performance and
computational power are pushed further up every year (Figure 2), enabling scientists to develop
new technologies for energy, medicine, materials, and so forth (Oak Ridge National Laboratory
2023). Today, seismic simulations require complex computations over millions or even billions of
grid points and entail large datasets. Using supercomputers and HPC schemes, these extensive
simulations can be completed in a reasonable period of time.

Figure 2: The Frontier Supercomputer, which is the world’s fastest supercomputer as of July 2023,
managing to achieve a performance of 1.102 exaFLOPS (1018 FLOPS).

Source: Oak Ridge National Laboratory 2023

One of the main challenges for students, Ph.D. candidates, researchers, or even professors that
work with seismic modeling is that not everyone has access to such supercomputers, or the access
is limited, as it is a shared resource that many people desire to use. Even more, it is not that
straightforward to write code and work with these supercomputers, if your coding experience is
limited. Sometimes, processing data locally is required. When debugging code, running tests,
implementing new methodologies, or when you are in the field you do not have access to a super-
computer or workstation. But, with the recent advances, you can turn your own personal laptop
into a computing machine that can process complicated models in a decent amount of time, if done
properly.

The programming languages that are most commonly used in this area of scientific computing
are C, C++, and Fortran. Most students nowadays that pursue geophysics do not have a coding
background or are not familiar with these languages. That is not to say that programming is not an
essential skill that every geophysicist should have, but even at a university level, it is preferred to
use high level, easy to use programming languages such as Python. Python has made programming
more accessible, reducing the learning curve traditionally associated with scientific computing, due
to its simple syntax and extensive libraries. Maybe the most important aspect is that it has a vast

3

amount of free and open-source libraries. Packages such as NumPy, SciPy, Matplotlib, Pandas, or
PyTorch are easy to use and allow students to process, view and interpret their data with relative
ease. But, the major problem with Python is that it is very slow from a computational point of
view.

1.4 Objectives

The first main objective of this thesis is to try to make the theory behind C-PML easy to under-
stand, ground it in terms that are more related to rock properties and get more insight into the
boundary condition problem in order to see what aspects can be improved in the future. We will
test a modified version of the C-PML method with a time dependent density and bulk modulus
that uses the same wave equations both inside and outside the absorbing boundaries, thus it is
only the model/material parameters that change.

The second main objective of the thesis is to test whether nowadays a personal laptop is enough
to perform seismic modeling and if it is still necessary to use languages such as C or C++ when
implementing simulations or if there are ways to easily speed up your performance even when using
Python or other similar languages.

In order to achieve these objectives, we will use the 2D acoustic/viscoacoustic wave equation
implemented using a finite difference scheme. Chapter 2 will present the basic theory behind
Finite Difference and the Boundary Conditions that are going to be implemented. Chapter 3 will
showcase the methodology for computing in an efficient manner by using a simple problem (Saxpy
- Single-Precision A·X Plus Y) and test the performance using different programming languages
and implementing the code both on the CPU (Single Core and Multithread) and the GPU. In
Chapter 4, we show how the new boundary conditions perform, while also showcasing the time
performance of the different HPC implementations. The final chapter draws the conclusions in the
work done in this thesis and proposes what further improvements can be made for future work.

4

2 Viscoacoustic Wave Theory

In this chapter, the theory required to numerically solve the 2D acoustic wave equation using the
finite difference method is presented. Also, we show how the viscoacoustic wave equation with
the new absorbing boundary conditions are derived and implemented. In the end, the equivalence
between the C-PML method and viscoelasticity is made.

2.1 Wave Equation

The seismic wave equation is typically depicted by a hyperbolic partial differential equation. This
equation is derived from two fundamental principles: Newton’s second law, which provides the
equation of motion, and Hooke’s law, which provides the constitutive relation.

Let us consider an elastic medium Ω represented using a 3D Cartesian coordinate system. The
domain is characterized by the density ρ(x) and Lamé parameters λ(x) and µ(x) at each spatial
point x, where x = (x, y, z) is any point in the domain Ω shown in Figure 3.

Figure 3: 3D Cartesian coordinate system in which the domain Ω resides

According to Ikelle and Amundsen 2005, the equation of motion for an elastic medium is given by:

ρ(x)∂2t ui(x, t) = ∂jσij(x, t) + fi(x, t) (1)

where ui(x) is the particle displacement in the i direction, t is the time, σij is the stress tensor
and fi is a driving force (representing any external force applied to the material) in the i direction,
where i, j = (x, y, z).

Hooke’s law provides the constitutive relationship between the stress tensor and particle displace-
ment:

σij(x, t) = cijklekl + qij (2)

where cijkl is the elastic tensor (Hooke’s tensor), ekl is the strain tensor and qij is the driving stress
(any external stress applied to the material).

5

For an isotropic material, the elastic tensor takes the form (Hudson 1981):

cijkl = λδijδkl + µ (δikδjl + δilδjk) (3)

where δ is the Kronecker delta function, which is 1 if its indices are equal and 0 if they are not
(Ikelle and Amundsen 2005):

δij =

{
0 for i ̸= j
1 for i = j

i, j = x, y, z (4)

Thus, we can rewrite (1) and (2) as:

ρ(x)∂2t ui(x, t) = ∂jσij(x, t) + fi(x, t), (5)

σij(x, t) = λ(x)ekkδij + 2µeij + qij . (6)

where the cubic dilatation is given by ekk = exx + eyy + ezz.

By considering the expression for strain as a function of particle displacement (Ikelle and Amundsen
2005), the strain tensor eij can be rewritten as:

eij =
1

2
[∂iuj(x, t) + ∂jui(x, t)] (7)

By expanding the individual terms of the equations (5) and (6), we obtain the 3D isotropic elastic
wave equations:

ρ∂2t ux = ∂xσxx + ∂yσxy + ∂zσxz + fx,

ρ∂2t uy = ∂xσyx + ∂yσyy + ∂zσyz + fy,

ρ∂2t uz = ∂xσzx + ∂yσzy + ∂zσzz + fz,

σxx = λ (exx + eyy + ezz) + 2µexx + qxx,

σyy = λ (exx + eyy + ezz) + 2µeyy + qyy,

σzz = λ (exx + eyy + ezz) + 2µezz + qzz,

σxy = 2µexy + qxy,

σxz = 2µexz + qxz,

σyz = 2µeyz + qyz.

(8)

The 2D set of equations can be derived by assuming non-zero particle displacements only in the
xz plane, where x denotes the horizontal distance and z is the depth. Also, in order to get the
velocity-stress formulation, we consider that ∂tui = vi. Thus, the 2D velocity stress formulation for
the elastic wave equations can be described by the following system of partial differential equations:

ρ∂tvx = ∂xσxx + ∂zσxz + fx,

ρ∂tvz = ∂xσzx + ∂zσzz + fz,

∂tσxx = (λ+ 2µ) ∂xvx + λ∂zvz + ˙qxx,

∂tσzz = λ∂xvx + (λ+ 2µ) ∂zvz + ˙qzz,

∂tσxz = µ (∂zvx + ∂xvz) + ˙qxz.

(9)

Finally, to obtain the 2D acoustic wave equation, we set the second Lamé parameter (the shear
modulus), represented by µ, to zero. The first Lamé parameter can be written in terms of Bulk
and Shear modulus as 10, so the first Lamé parameter is equivalent to the bulk modulus in the
acoustic case.

6

λ = K − 2µ

3
(10)

Thus, the velocity strain formulation for the 2D isotropic acoustic wave equation is given by:

ρ∂tvx = ∂xσxx + fx,

ρ∂tvz = ∂zσzz + fz,

∂tσxx = K (∂xvx + ∂zvz) + ˙qxx,

∂tσzz = K (∂xvx + ∂zvz) + ˙qzz.

(11)

Both the density and the bulk modulus are spatially dependent (ρ = ρ(x), K = K(x)), but time
independent.

2.2 The Finite-Difference Method

The previously examined equations describe the behavior of seismic waves in a continuous domain.
Unfortunately, there are no analytical solutions available in order to quickly solve these equations
in complex heterogeneous media and predict how the wavefield will look like in a certain medium
at a certain time. As a result, we utilize computers that simulate the wavefield using numerical
approximations of these equations.

The Finite-Difference method is one of the most popular and successful numerical techniques used.
Its mathematical simplicity and adaptability make it so that an algorithm can be quickly fitted
to the problem at hand (Igel 2017). The basic principle of the method is that the derivatives in
the differential wave equations are replaced by numerical approximations. This method can be
implemented either using an explicit or implicit scheme. This thesis will focus on the explicit
method, which consists of predicting the future wavefield at a certain time and spatial location
in terms of its known value at the current and previous time step and by knowing the present
neighboring location values. Thus, the wavefield is solved recursively time step by time step (Ikelle
and Amundsen 2005).

The first applications of the finite-difference method applied to elastic wave propagation started in
the 1970s (Alterman and Karal 1968, Boore 1970, Alford et al. 1974 and Kelly et al. 1976). One of
the most popular implementations of the finite difference explicit scheme for the wave equation is
the staggered grid method, first used by Madariaga 1976 and Virieux and Madariaga 1982. Later,
Virieux adapted the method for SH and P-SV 2D wave propagation (Virieux 1984 and Virieux
1986). In order to improve the accuracy of the numerical approximations, high-order operators
were introduced (Levander 1988 and Graves 1996).

2.2.1 Derivatives

In the simplest form, the derivative of a function f(x) is the difference between two values of
the function, which forms the slope as the limit approaches zero. The three most common ways
to express this concept are the forward derivative (12), backward derivative (13) and centered
derivative (14). In these equations, we consider f(x) to be a continuous function.

∂xf(x) = lim
dx→0

f(x+ dx)− f(x)

dx
(12)

∂xf(x) = lim
dx→0

f(x)− f(x− dx)

dx
(13)

∂xf(x) = lim
dx→0

f(x+ dx)− f(x− dx)

2dx
(14)

7

In the finite difference method, the subsurface model parameters are defined on a grid. Thus,
for the equations written above, instead of using the limit, we use a finite distance between the
grid points (dx), that gives a numerical approximation. By using the Taylor expansion, we can
obtain both the finite approximations and the accuracy order for the forward, backward and central
derivatives, respectively.

The fundamental principle underlying the Taylor series is that it approximates a function close to
a given point. The Taylor series of the function f(x+ dx) is defined as follows:

f(x+ dx) =

∞∑
n=0

f (n)(x)

n!
dxn (15)

This is an infinite sum, which can be truncated after a few terms. If we unroll equation 15, we
obtain:

f(x+ dx) = f(x) + f ′(x)dx+
1

2!
f ′′(x)dx2 +

1

3!
f ′′′(x)dx3 + ... (16)

Since in this example case, we are interested in the first derivative only, all the higher order
derivatives, which denote the higher order terms are truncated. In the same manner, the Taylor
expansion of f(x − dx), f(x + 2dx), f(x − 2dx), and so on, can be done. If we rearrange the
terms in equation 16, we obtain the forward derivative formulation on a grid (17). Using a similar
approach the backward and central derivatives can be obtained (18, 19):

∂xf
+ =

f(x+ dx)− f(x)

dx
+O(dx) (17)

∂xf
− =

f(x)− f(x− dx)

dx
+O(dx) (18)

∂xf
c =

f(x+ dx)− f(x− dx)

2dx
+O(dx2) (19)

where O(dxm) denotes the accuracy of the numerical approximation of the derivative. For the
forward and backward derivative, m is 1, while for the central derivative m is 2. So, the central
difference formula has an extra order of accuracy, even though it has the same computational cost.

2.2.2 Higher Order Operators

For the forward derivative (17), the weights for f(x + dx) and f(x) are 1 and -1 respectively. A
derivative can be expressed as a weighted sum of function values at different neighboring points. By
including more neighboring points, the accuracy of the derivative increases. A systematic way to
determine the weights that have to be multiplied with the function values at different locations in
order to obtain the finite derivative approximations can be done by solving a system of equations.

As an example, the central derivative formula will be considered. The goal is to determine the first
derivative of the function f(x), based on the function values at four neighboring points f(x+ dx)
f(x+ 2dx), f(x− dx) and f(x− 2dx):

∂f(x)

∂x
≈ a f(x+ dx) + b f(x− dx) + c f(x+ 2dx) + d f(x− 2dx) (20)

These terms can be expressed as a system of four equations as follows:

8

a f(x+ dx) = a

[
f(x) + f

′
(x)dx+

1

2!
f

′′
(x)dx2 +

1

3!
f

′′′
(x)dx3 + . . .

]
b f(x− dx) = b

[
f(x)− f

′
(x)dx+

1

2!
f

′′
(x)dx2 − 1

3!
f

′′′
(x)dx3 + . . .

]
c f(x+ 2dx) = c

[
f(x) + 2f

′
(x)dx+ 22

1

2!
f

′′
(x)dx2 + 23

1

3!
f

′′′
(x)dx3 + . . .

]
d f(x− 2dx) = d

[
f(x)− 2f

′
(x)dx+ 22

1

2!
f

′′
(x)dx2 − 23

1

3!
f

′′′
(x)dx3 + . . .

]
(21)

where a, b, c, and d denote the weights. In order to find the weights that allow us to calculate
the first derivative of the function, the equations are summed up and the higher order terms are
eliminated:

af(x+ dx) + bf(x− dx) + cf(x+ 2dx) + df(x− 2dx) ≈
f(x)[a+ b+ c+ d]+

+ dxf ′(x)[a− b+ 2c− 2d]+

+
1

2!
dx2f ′′(x)[a+ b+ 4c+ 4d]+

+
1

3!
dx3f ′′′(x)[a− b+ 8c− 8d]

(22)

A system of linear equations can be formed:

a+ b+ c+ d = 0

a− b+ 2c− 2d =
1

dx
a+ b+ 4c+ 4d = 0

a− b+ 8c− 8d = 0

(23)

This system can be expressed in matrix form as:

1 1 1 1
1 −1 2 −2
1 1 4 4
1 −1 8 −8

a
b
c
d

 =

0
1
dx
0
0

 (24)

Solving this system using matrix inversion will provide the weights a, b, c and d, corresponding to
f(x+ dx), f(x− dx), f(x+ 2dx) and f(x− 2dx), respectively.

a
b
c
d

 =

8

12dx
− 8

12dx
− 1

12dx
1

12dx

 (25)

Inserting the weights back into equation 20 gives use the 4th order finite difference approximation
of the derivative:

f
′
(x) =

f(x− 2dx)− 8f(x− dx) + 8f(x+ dx)− f(x+ 2dx)

12dx
+O(dx4) (26)

It can be noticed that the modulus of the weights closer to the function location where we want to
compute the derivative are bigger than the ones further away from it. Using the same algorithm,
the weights for any random operator length can be computed (Figure 4).

9

Figure 4: Visual representation of Taylor operators weights for the central derivative (f c(x)). The
derivative is computed for the red circle. The OX axis defines the grid point location in relation to
the derivative location (x[0]). It can be noted how the magnitude of the weights decreases as the
distance from the derivation point increases. In this case the operator length is 8, meaning that
the interpolation radius of the derivative is 8 grid points. In total, this derivation stencil includes
16 points. Also, it can be seen that the weights are anti-symmetric in relation to x[0].

This algorithm can be adapted for higher order forward and backward derivatives also. The same
principle can also be applied for the second or third derivative.

In order to visualize and verify the accuracy of the different numerical approximations of the
derivative we can take a signal source in the form of a Ricker wavelet and compare the analytical
solution with the different finite difference operators, as shown in Figure 5. Another way to compare
the accuracy of these different methods is to see how quick they converge to the analytical solution
by varying the size of the grid increment (Figure 6).

10

Figure 5: First derivative for a Ricker Wavelet with a central frequency of 25Hz. The time step
used for the derivative is 5ms (dt = 5ms). The black lines represents the analytical solution; the
blue dotted line is the forward difference (O(dx)); the orange dotted line is the backward difference
(O(dx)); the green dotted line is the central difference of order 2 (O(dx2)) and the red dotted line
is the central difference of order 4 (O(dx4)). The operators that have a higher order are closer to
the analytical solution.

Figure 6: It can be seen how the high order finite-difference schemes converge more rapidly to the
correct derivative on a regular grid, if one reduces the grid spacing dx.

The weights can be computed in many different ways, the Taylor expansion being just one of the
methods available.

In this thesis, the coefficients are found through an optimization process described by Holberg 1987.
This method concentrates on finding the right weights that minimize the errors in the numerical

11

simulations rather than minimizing the error in terms of the higher order derivatives in the Taylor
expansion. The coefficients that are going to be used in our numerical simulations are shown in
Table 1.

l α = 1 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7 α = 8
1 1.0021
2 1.1452 -0.0492
3 1.2036 -0.0833 0.0097
4 1.2316 -0.1041 0.0206 -0.0035
5 1.2463 -0.1163 0.0290 -0.0080 0.0018
6 1.2542 -0.1213 0.0344 -0.0170 0.0038 -0.0011
7 1.2593 -0.1280 0.0384 -0.0147 0.0059 -0.0022 0.0007
8 1.2626 -0.1312 0.0412 -0.0170 0.0076 -0.0034 0.0014 -0.0005

Table 1: Finite-Difference Coefficients for a Staggered Grid as defined by Holberg 1987. l is the
length of the differentiator (for a given l value, the total number of neighboring points used in the
numerical derivation is 2 ∗ l).

2.2.3 Discretization and Staggered Grids

In order to run a simulation of the seismic wave propagation using finite differences, the subsurface
model properties (acoustic case: Density and Bulk Modulus) and the wavefield characteristics
(particle velocity and stresses) must be discretized both in space and in time.

Let us consider a regular grid defined as follows:

x = i∆x, i = 0, 1, 2, . . . , Nx,

z = k∆z, k = 0, 1, 2, . . . , Nz,

t = n∆t, n = 0, 1, 2, . . . , Nt.

(27)

where Nx and Nz are the number of grid points in the x and z directions. Nt is the total number
of time steps. Each location in the grid can be accessed through the position vector x defined as
x = (x, z). This is considered the reference grid.

In addition, a second grid that is offset or staggered relative to the regular grid will be defined. In
the staggered-grid technique, not all quantities in Equation 11 are located at the same grid points.
Certain parameters are defined as being half a grid point displaced in relation to the reference grid
(Figure 7).

The stresses and the bulk modulus are defined on a regular grid as follows:

σxx(x, t) = σxx(x, z, t),

σzz(x, t) = σzz(x, z, t),

K(x) = K(x, z).

(28)

The particle velocities vx and vz and the density ρ are defined on staggered grids as follows:

vx(x, t) = vx(x+∆x/2, z, t),

vz(x, t) = vz(x, z +∆z/2, t),

ρx(x) = ρ(x+∆x/2, z),

ρz(x) = ρ(x, z +∆z/2).

(29)

12

Figure 7: Staggered Grid schematic; σxx, σzz and K are defined on the regular grid vertexes, while
vx, vz, ρx and ρz are defined on the staggered grid, which is displaced by half a grid point.

In Figure 6, it was shown that the error for a finite difference approximation of a derivative depends
on the size of the spatial increment dx. By using the staggered grid technique, we are able to reduce
the grid size by a factor of two, thus enhancing the accuracy. We can do this by first substituting
the differentiations in equation 11, namely ∂x and ∂z, with the numerical operators d+x , d

−
x , d

+
z ,

and d−z .

These operators establish the connection between the reference and the staggered grid. Let us
consider a function f(x). The derivative of this function in the x direction can be approximated
at f(x+∆x/2) and at f(x−∆x/2) by:

f ′(x+∆x/2) = d+x f(x),

f ′(x−∆x/2) = d−x f(x)
(30)

The d+ and d− differentiators are given by (Holberg 1987):

∂+ =
1

∆x

L∑
l=1

αl[f(x+ l∆x)− f(x− (l − 1)∆x)]

∂− =
1

∆x

L∑
l=1

αl[f(x+ (l − 1)∆x)− f(x− l∆x)]

(31)

where ∆x is the grid size increment, L is the operator length, αl are the coefficients defined in
Table 1. The same principle can be applied for the z-direction.

Thus, the numerical approximation of equation 11 can be written as:

∂tvx = ρ−1
x d+x σxx + fx,

∂tvz = ρ−1
z d+z σzz + fz,

∂tσxx = K
(
d−x vx + d−z vz

)
+ ˙qxx,

∂tσzz = K
(
d−z vz + d−x vx

)
+ ˙qzz.

(32)

With regards to time, the Leapfrog method (explicit time-stepping) will be implemented and the

13

time derivatives will be approximated using the central difference formulation:

f ′(t) =
f(t+∆t/2)− f(t−∆t/2)

∆t
(33)

where ∆t is the time step increment.

Algorithm for the Two-Dimensional Case

In order to formulate the complete numerical solution of the 2D finite difference acoustic equations,
we will first consider the pseudo-stress σ, defined as:

σ =
1

2
(σxx + σzz) (34)

Using the equation for the numerical approximation of the time derivative (33), the particle velocity
components and the stresses from (32) can be computed as:

vx(t+∆t/2) = ∆t[ρ−1
x d+x σxx(t) + ρ−1

x fx(t)] + vx(t−∆t/2),

vz(t+∆t/2) = ∆t[ρ−1
z d+z σzz(t) + ρ−1

z fz(t)] + vz(t−∆t/2),

σ(t+∆t) = ∆tK
(
d−x vx(t+∆t/2) + d−z vz(t+∆t/2)

)
+∆tq̇ + σ(t).

(35)

2.2.4 Analytical Solution

In order to verify the accuracy of the computed numerical model, it is useful to compare it against
an analytical solution, which is possible for a homogeneous medium. The solution is given by
Green’s function, which for the 2D homogeneous acoustic problem takes the following form:

G(x, z, t) =
1

2πVp
2

H

(
(t− ts)−

|r|
Vp

)
√
(t− ts)2 −

r2

Vp
2

(36)

where H denotes the Heaviside function:

H(x) =

{
0 x < 0
1 x ≥ 0

(37)

G is the Green’s function, (x, z) are the spatial coordinates, the source is located at (xs, zs), (t) is
time, Vp is the constant P-wave velocity in the medium, ts is the time at which the source is active

and r is the source-receiver distance (offset), calculated as r =
√
(x− xs)2 + (z − zs)2.

From equation 36, it can be seen that the analytical solution is a damped Heaviside function,
caused by the geometrical spreading of the wave.

2.2.5 Numerical Stability, Dispersion and Anisotropy

For the set of equations defined in 35, the wave motion parameters (vx, vz and σ) are computed
recursively for each time step. In order to calculate the particle-velocity components at time step
(t+∆t/2) and the stress components at time step (t+∆t), the particle-velocity components from

14

the previous time step (t − ∆t/2) and the stress components from the current time step (t) are
required.

This process of recursive calculations can result in numerical instability. Each error that is in-
troduced in the numerical solution, even if it is relatively small, can be amplified over successive
time steps. For an inappropriate choice of time sampling interval, spatial sampling interval and
velocity the numerical solution may produce instabilities, anomalies and can even explode. In the
most simple form for the 2D case, the stability/CFL (Courant–Friedrichs–Lewy) criterion takes
the form:

V pmax ∗ ζ ∗ ∆t

dx
≤ 1√

2
(38)

where V pmax is the maximum P wave velocity in the model, ∆t is the time sampling interval and
dx is the spatial grid interval. The factor ζ depends on the length of the differentiator operator,
dimension of the problem (1D, 2D, 3D) and the overall algorithm.

An example of the explosion of the finite difference solution is shown in Figure 8 and Figure 9,
respectively. In this case, a homogeneous medium was used (V p = 2000m/s, ρ = 2000kg/m3).
The source is represented by a Ricker wavelet with a dominant frequency of 25Hz, the grid interval
is 10m, the time sampling interval is 2.74 ms and the Length of the differentiator is 3.

Figure 8: Explosion of the finite-difference solution represented in trace form. The blue line denotes
the finite-difference approximation of the wavefield. It can be seen how the solution explodes at
around 0.18 seconds, as the numerical errors get accumulated over time.

By using the CFL criterion, we can derive the optimum time sampling interval for a given velocity
and spatial grid. But a stable solution is not necessarily an accurate one. Numerical dispersion is
the phenomenon in which the wave speed of a numerical solution varies with frequency, resulting
in the dispersion of the wave packets as they propagate through a medium. This error is caused by
the truncation that occurs when spatial derivatives are approximated. Dispersion becomes more
pronounced for higher frequency components. In order to reduce this phenomena, the wavelength
must be sampled with an adequate number of grid points. According to Virieux 1986, a derivative
approximation of second order accuracy (O2) requires a minimum of ten grid points per wavelength,
while Levander 1988 shows that a fourth-order approximation requires a minimum of five grid points
per dominant wavelength. An example of wave dispersion is shown in Figure 10. The disintegration

15

of the pulse is really strong and there is a significant difference between the simulation response
and the analytical solution.

The last major aspect to consider is numerical anisotropy, which refers to the dependence of the
accuracy of the numerical solution on the direction of wave propagation. An example of this is
shown in Figure 11. The wave propagation is least precise along the grid directions (typically
along the coordinate axes), while accuracy increases in other directions. This effect is especially
pronounced for derivation stencils with fewer points or when using high central frequencies for the
source pulse.

Both dispersion and anisotropy can be suppressed by utilizing stencils with a higher order accuracy
and using a spatial grid that offers a large enough number of grid points per wavelength.

Figure 9: Wavefield propagation in the subsurface showcasing the explosion of the finite-difference
solution at different time steps (Nt = 25, 50, 75 and 100). It can be seen how the wavefield
disintegrates as time progresses.

16

Figure 10: Dispersion in the finite-difference method. The blue line denotes the finite-difference
approximation of the wavefield, while the red line shows the analytical solution. It can be seen
how the wavelet becomes dispersive and disintegrates.

Figure 11: Numerical Anisotropy in the finite-difference method. It can be seen that the dispersion
is the strongest at 0° and 90° with respect to the grid and the smallest at 45°.

17

2.3 Boundary Conditions

The last aspect of finite difference modeling that has not been addressed are the boundary condi-
tions. These convey how the wavefield behaves at the edges of the subsurface model.

In the most simple form, they are given by the Dirichlet boundary conditions as:

Left boundary (x = 0) : vx(t+∆t/2) = 0,

Right boundary (x = Nx) : vx(t+∆t/2) = 0,

Top boundary (z = 0) : vz(t+∆t/2) = 0,

Bottom boundary (z = Nz) : vz(t+∆t/2) = 0.

(39)

These conditions ensure that there is no movement of the medium at the boundaries at any given
time, thus simulating a perfectly rigid boundary where waves are completely reflected (Figure 12).

Figure 12: Wavefield propagation in the subsurface showcasing the Dirichlet boundary conditions.
It can be seen how the wavefield is perfectly reflected back into the medium as it reaches the rigid
boundaries. The polarity is also reversed.

While this might be desirable for the top boundary, as it can simulate a Water-Air or Land-Air
interface, for the other boundaries it is needed to employ a method that absorbs the energy of
the waves as they approach these artificial boundaries. From these, C-PML is one of the most
successful and used methods that are deployed.

In the following, we will derive a visco-acoustic implementation of the equations in 11, by introdu-
cing a time dependent bulk modulus and density, and then show how these equations are equivalent
to C-PML.

18

2.3.1 Viscoelastic Media

For an elastic medium, the stress only depends on the local strain at each point in space and time
and the total energy of the system is conserved. For a linear viscoelastic medium, the stress at
a given point in space and in time depends on the whole time history of the strain at that point
(Hudson 1981). Thus, viscoelastic materials exhibit a time-dependent response to stress. This
means that when these materials undergo a change in deformation as a result of applied stress,
the reaction is not instantaneous but rather develops gradually. This response is depicted by a
time-dependent function that characterizes the behavior of the material. This function contains
the stress or strain history of the viscoelastic material (Carcione and Casula 1992). These types of
media are said to have ’memory’. This implies that the present response of the material to stress
is greater influenced by events in the recent past and as time passes, they diminish. The main
implication of this is that the total energy of the system is not conserved anymore, but a part of
it is dissipated (usually in the form of heat loss). So, waves that propagate in such materials are
damped.

An example of how an elastic versus a viscoelastic stress-strain relation over time might look like
is shown in Figure 13. It can be seen that in the elastic case, both the stress and strain changes
over time are in phase, while in the viscoelastic case, stress and strain are out of phase during the
loading and unloading cycle.

Figure 13: Stress–strain curves for an elastic material (left) and a viscoelastic material (right).
The red shaded area represents the hysteresis loop and shows the amount of energy lost (in the
form of heat dissipation) in the loading and unloading cycle.

The stress and the strain history are linearly related up to a given point in time. The strain resulting
from any increase in stress is cumulative, adding to the strain already present in the material due
to previous stress events. Boltzmann’s generalization of Hooke’s law to the viscoelastic case is
given by (Hudson 1981) as:

σij = ψijkl ∗ ėkl (40)

where σij represents the components of the stress tensor, ψijkl is the relaxation tensor, that
describes how the material responds to stress over time and ėkl denotes the strain rate tensor.

The ”∗” denotes the convolution operation. For two arbitrary functions a(t) and b(t), the convo-
lution operation is defined as:

a(t) ∗ b(t) =
∫ t

0

a(t− τ)b(τ)dτ (41)

where τ , in our case, will represent the relaxation time.

19

By integrating by parts equation 40 and setting the initial condition e(t = 0) = 0 we get:

σij(t) = ψ(0)ijklekl(t) +

∫ t

0+

ψ̇ijkl(t− τ)ekl(τ)dτ (42)

If we consider that ψ(0) = cijkl (Hudson 1981), where cijkl is the appropriate stiffness tensor for
the elastic case (unrelaxed elastic modulus), we can rewrite equation 42 as:

σij(t) = cijklekl(t) +

∫ t

0+

ψ̇ijkl(t− τ)ekl(τ)dτ (43)

This equation shows that the stress at any given time (t), depends on the unrelaxed elastic modulus,
the current strain ekl(t), and a relaxation term. It can be seen that the case of perfect elasticity
can be obtained by making the relaxation term (the time integral) equal to zero.

We define the time derivative of the relaxation function as:

ψ̇ = ϕ(t) (44)

Using this formulation of the rate of change of the relaxation function, we can rewrite equation 43
as:

σij(t) = cijklekl +

∫ t

0+

ϕijkl(t− τ)ekl(τ)dτ (45)

This can be rewritten as a convolution of the stiffness of the material and strain, integrated over
time:

σij(t) = cijkl(t) ∗ ekl(t) (46)

where cijkl is given by:

cijkl(t) = ψ(0)ijklδ(t) + ϕijkl(t) (47)

where ψ(t = 0) corresponds to the unrelaxed modulus.

A similar equation can be written for the time-dependent viscoelastic Lamé parameters (ϕλ(t) and
ϕµ(t)), if an isotropic medium is considered.

λ(t) = λuδ(t) + ϕλ(t),

µ(t) = µuδ(t) + ϕµ(t).
(48)

The Lamé parameters are expressed as a sum of their unrelaxed components (λu, µu), and time-
dependent parts (ϕλ(t) and ϕµ(t)).

2.3.2 Time-Dependent Density

A time relaxation process for the density can be introduced using a similar approach as for the
Lamé parameters (equation 48). We relate the inverse of the effective density of the material to a
function of time (ρ−1

eff (t)) as follows:

ρ−1
eff (t) = ρ−1

eff (0)δ(t) + χ(t) (49)

20

Substituting ρ−1
eff (0) into the equation with the initial (unrelaxed) density ρ−1

u gives:

ρ−1
eff (t) = ρuδ(t) + χ(t) (50)

Thus, the density can be expressed as the sum of the unrelaxed component (ρ−1
u) and time-

dependent part, χ(t).

Now, we need a mechanical model in order to model the behavior of our viscoelastic material. In
other words, to describe the relaxation function ψ(t). In this thesis, we will consider the Standard
Linear Solid Model and the Maxwell model.

2.3.3 Standard Linear Solid Model

There are numerous models that have been derived in order to represent a viscoelastic media. The
following equations can be derived regardless of the chosen model. According to Carcione and
Casula 1992, the Standard Linear Solid Model can represent processes such as grain boundary
relaxations (Figure 14).

Figure 14: Standard Linear Solid Model. The mechanical model consists of two elastic springs
(with the elastic modulus k) and a dashpot (where η is the viscosity of the material). σ is the
applied stress and ϵ is the deformation.

Source: Modified after Carcione and Casula 1992

Thus, the components of the relaxation tensor ψijkl are given by:

ψ(t) = Kr

[
1−

(
1− τϵ

τσ

)
exp (−t/τσ)

]
H(t) (51)

where Kr represents the relaxed elastic modulus. The SLS (standard linear solid) element is
characterized by two relaxation times, τσ and τe, for strain and stress, respectively. H(t) is the
Heaviside step function, given as:

21

H(t) =

{
0 if t < 0

1 if t ≥ 0
(52)

This ensures the causality principle , meaning that the current values of stress do not depend on
the future values of stress (Hudson 1981).

The time derivative of the relaxation function (ϕ(t) = ψ̇) becomes:

ϕ(t) =

[(
Kr

τσ

)(
1− τϵ

τσ

)
exp (−t/τσ)

]
H(t). (53)

The unrelaxed modulus (ψ(t = 0)), Ku, is related to the relaxed modulus Kr through equation 54:

Ku =
τϵ
τσ
Kr (54)

Rearranging the terms, we can write Kr as:

Kr =
Ku
τϵ
τσ

(55)

Finally, the ϕ function can then be expressed in terms of the unrelaxed modulus as follows:

ϕ(t) =

(
exp (−t/τσ)

τϵ

)
Ku

(
1− τϵ

τσ

)
(56)

We rewrite the equation as:

ϕ(t) =

(
exp (−t/τσ)

τϵ

)
∆K (57)

In the ∆K term, the extent of the bulk modulus relaxation time is included.

∆K = Ku

(
1− τϵ

τσ

)
(58)

A similar equation can be written if we consider the Lamé parameters. The ϕλ(t) and ϕµ(t) terms
are defined in a similar way to equation 57, but each of them has separate relaxation times for the
first and second Lamé parameters (τλσ , τ

µ
σ , τ

λ
ϵ , and τ

µ
ϵ):

ϕλ(t) =

(
exp

(
−t/τλσ

)
τλϵ

)
∆λ (59)

ϕµ(t) =

(
exp (−t/τµσ)

τµϵ

)
∆µ (60)

where ∆λ and ∆µ are:

∆λ = λu

(
1− τλϵ

τλσ

)
∆µ = µu

(
1− τµϵ

τµσ

) (61)

22

Time-Dependent Density

For density, the time-dependent part, χ(t), is given as:

χ(t) =

(
exp (−t/τρσ)

τρϵ

)
∆ρ (62)

where ∆ρ is:

∆ρ = ρu

(
1− τρϵ

τρσ

)
(63)

Q-model Parametrization

The last step is to link the relaxation times (τσ and τϵ) to a more relatable and intuitive subsurface
parameter, the quality factor (Q). This is a dimensionless parameter that characterizes the energy
dissipation caused by anelastic (viscoelastic) processes in the Earth’s subsurface. Waves traveling
in a medium with a high Q-factor will experience less damping, whereas, in a medium with a low
Q-factor, waves attenuate rapidly.

According to Carcione and Casula 1992, for a standard linear solid model with a single element
the Q-factor is defined as:

Q(ω) = Q0
1 + ω2τ20
2ωτ0

(64)

where ω is the angular frequency and Q0 and τ0 are given as:

Q0 =
2τ0

τϵ − τσ
,

τ20 = τϵτσ.

(65)

ω = 1/τ0 denotes the frequency for which the Q-factor reaches its minimum value, corresponding
to the absorption peak.

Thus, if we give a Q-model and a chosen frequency as input parameters for the finite difference
simulation, the relaxation times τσ and τϵ can be computed as:

τϵ =
τ0
Q0

[√
Q2

0 + 1 + 1

]
,

τσ =
τ0
Q0

[√
Q2

0 + 1− 1

]
.

(66)

2.3.4 Maxwell Model

A similar approach to the one described for the Standard Linear Solid can be followed to derive
the equations for the Maxwell Model. According to Carcione and Casula 1992, the Maxwell Model
can be associated with the attenuation caused by a viscoelastic fluid (Figure 15).

23

Figure 15: Maxwell Model, consisting of one elastic spring (with the elastic modulus k) and a
dashpot (where η is the viscosity of the material) connected in series. σ is the applied stress and
ϵ is the deformation.

Source: Modified after Carcione and Casula 1992

In this case, the relaxation function ψ takes the form:

ψ(t) = Ku exp (−t/τ0)H(t) (67)

where Ku represents the unrelaxed elastic modulus.

The time derivative of the relaxation function (ϕ(t) = ψ̇):

ϕ(t) = −∆K
1

τ0
exp (−t/τ0)H(t) (68)

where ∆K = Ku.

A similar equation can be written if we consider the Lamé parameters and density.

ϕλ(t) = −∆λ
1

τλ0
exp

(
−t/τλ0

)
ϕµ(t) = −∆µ

1

τµ0
exp (−t/τµ0)

χ(t) = −∆ρ
1

τρ0
exp (−t/τρ0)

(69)

where ∆λ = λu, ∆µ = µu and ∆ρ = ρu.

The Q-value is related to τ0 by:

τ0 = Q(ω)/ω (70)

24

2.3.5 Viscoelastic Equations of Motion

In the previous section, it was shown that for a viscoelastic medium, an extra term that encompasses
the time relaxation for the Lamé parameters and density needs to be added to the equations.

Thus, we can write the viscoelastic equations of motion and the constitutive relation, while also
accommodating a time-dependent density. This introduces a relaxation process for the density
that is similar to that of a viscoelastic medium. The motion equations and constitutive relation
given in (5) and (6) can be rewritten as follows:

∂2t ui(x, t) = ρ−1
u (x)∂jσij(x, t) + fi(x, t)

+ χ(x, t) ∗ ∂jσij(x, t)
σij(x, t) = λu(x, t)ekkδij + 2µu(x, t)eij + qij(x, t)

+ δijϕλ(x, t) ∗ emm + 2ϕµ(x, t) ∗ eij

(71)

where χ, ϕλ and ϕµ are the time derivatives of the relaxation function for density, the first and
second Lamé parameters, respectively. ρu, λu and µu are the unrelaxed density, first and second
Lamé parameters, respectively.

For the 2D (non-zero particle displacements only in the xz plane) acoustic case, we set the second
Lamé parameter to zero. These equations unfold to the following individual components:

∂2t ux = ρ−1
u ∂xσxx + fx + χ ∗ ∂xσxx,

∂2t uz = ρ−1
u ∂zσzz + fz + χ ∗ ∂zσzz.

(72)

And the stress-strain relations become:

σxx = λu (exx + ezz) + qxx

+ ϕλ ∗ [exx + ezz]

σzz = λu (exx + ezz) + qzz

+ ϕλ ∗ [exx + ezz]

(73)

Velocity-Stress Formulation

Given the velocity vi = u̇i and the property that (f ∗ g)′ = f ′ ∗ g = f ∗ g′, one gets:

∂tvx = ρ−1
u ∂xσxx + fx

+ χ ∗ ∂xσxx
∂tvz = ρ−1

u ∂zσzz + fz

+ χ ∗ ∂zσzz

(74)

The stress-strain relations in this case becomes:

σ̇xx = λu (ėxx + ėzz) + q̇xx

+ ϕλ ∗ [ėxx + ėzz]

σ̇zz = λu (ėxx + ėzz) + q̇zz

+ ϕλ ∗ [ėxx + ėzz]

(75)

25

Memory Functions

In this format, the convolution operation adds a significant computational cost. It can be eliminated
by defining some memory variables and including the time convolution into one set of variables.
This implies a recursive computation of the memory functions.

γλ(t) =
1

∆λ
ϕλ ∗ [ėxx + ėzz] ,

θkij(t) =
1

∆ρ−1
χ ∗ ∂k [σij] .

(76)

where ∆λ and ∆ρ are decided based on the viscoelastic model used.

Standard Linear Solid

For the Standard linear solid the expressions for the γ and θ functions are given as:

γλ =

[
exp

(
−t/τλσ

)
τλϵ

]
∗ [ėxx + ėzz] ,

=

[
exp

(
−t/τλσ

)
τλϵ

]
∗ ėxx +

[
exp

(
−t/τλσ

)
τλϵ

]
∗ ėzz,

= γλx + γλz

θkij =

[
exp (−t/τρσ)

τρϵ

]
∗ ∂kσij .

(77)

We will take γλx as an example to show how we can replace the convolution operation with a
recursive relation. By considering:

γλx (t+∆t) =

∫ t+∆t

0

1

τλϵ
exp

(
− t+∆t− τ

τλσ

)
ėxx(τ)dτ

γλx (t+∆t) =
1

τλϵ
exp

(
−∆t

τλσ

)∫ t+∆t

0

exp

(
− t− τ

τλσ

)
ėxx(τ)dτ

γλx (t+∆t) =
1

τλϵ
exp

(
−∆t

τλσ

)∫ t

0

exp

(
− t− τ

τλσ

)
ėxx(τ)dτ

+
1

τλϵ
exp

(
−∆t

τλσ

)∫ t+∆t

t

exp

(
− t− τ

τλσ

)
ėxx(τ)dτ.

(78)

By considering that ėxx(t) is constant in the interval t to t+∆t, the second integral is approximated
as following:

γλx (t+∆t) =
1

τλϵ
exp

(
−∆t

τλσ

)∫ t

0

exp

(
− t− τ

τλσ

)
ėxx(τ)dτ

+
1

τλϵ
exp

(
−∆t

τλσ

)
ėxx(t)

∫ t+∆t

t

exp

(
− t− τ

τλσ

)
dτ

(79)

After solving the integral we get:

26

γλx (t+∆t) = γλx (t) exp

(
−∆t

τλσ

)
+
τλσ
τλϵ

[
1− exp

(
−∆t

τλσ

)]
ėxx(t)

(80)

By assuming that the time step interval is very small (∆t ≪ 1) the previous equation can be
further simplified:

γλx (t+∆t) = γλx (t) exp

(
−∆t

τλσ

)
+

∆t

τλϵ
ėxx(t)

(81)

In the same manner the equations for γλz and θ can be written.

Maxwell Solid

For the Maxwell solid the expressions for the γ and θ functions are given as:

γλ =

[
− 1

τλ0
exp

(
−t/τλ0

)]
∗ [ėxx + ėzz]

=

[
− 1

τλ0
exp

(
−t/τλ0

)]
∗ ėxx +

[
− 1

τλ0
exp

(
−t/τλ0

)]
∗ ėzz

= γλx + γλz

θkij =

[
− 1

τρ0
exp (−t/τρ0)

]
∗ ∂kσij

(82)

As in the previous case, we take γλx as an example to show how we can replace the convolution
operation with a recursive relation. By considering:

γλx (t+∆t) = −
∫ t+∆t

0

1

τλ0
exp

(
− t+∆t− τ

τλ0

)
ėxx(τ)dτ

γλx (t+∆t) = − 1

τλ0
exp

(
−∆t

τλ0

)∫ t+∆t

0

exp

(
− t− τ

τλ0

)
ėxx(τ)dτ

γλx (t+∆t) = − 1

τλ0
exp

(
−∆t

τλ0

)∫ t

0

exp

(
− t− τ

τλ0

)
ėxx(τ)dτ

− 1

τλ0
exp

(
−∆t

τλ0

)∫ t+∆t

t

exp

(
− t− τ

τλ0

)
ėxx(τ)dτ

(83)

By considering that ėxx(t) is constant in the interval t to t+∆t, the second integral is approximated
as following:

γλx (t+∆t) = − 1

τλ0
exp

(
−∆t

τλ0

)∫ t

0

exp

(
− t− τ

τλ0

)
ėxx(τ)dτ

− 1

τλ0
exp

(
−∆t

τλ0

)
ėxx(t)

∫ t+∆t

t

exp

(
− t− τ

τλ0

)
dτ

(84)

After solving the integral we get:

27

γλx (t+∆t) = γλx (t) exp

(
−∆t

τλ0

)
+

[
1− exp

(
−∆t

τλ0

)]
ėxx(t)

(85)

By assuming that the time step interval is very small (∆t ≪ 1) the previous equation can be
further simplified:

γλx (t+∆t) = γλx (t) exp

(
−∆t

τλ0

)
+

∆t

τλ0
ėxx(t)

(86)

In the same manner, the equations for γλz and θ can be written.

Viscoelastic Equations

This gives the final form of the viscoelastic equations (87).

∂tvx = ρ−1
u ∂xσxx + fx + θx∆ρ

−1,

∂tvz = ρ−1
u ∂zσzz + fz + θz∆ρ

−1,

σ̇xx = λu (ėxx + ėzz) + q̇xx + γλ∆λ,

σ̇zz = λu (ėzz + ėxx) + q̇zz + γλ∆λ.

(87)

where

ėxx = ∂xvx,

ėzz = ∂zvz.
(88)

The memory functions given in equation 76 can be rewritten in the recursive form as:

γλ(t) = α1γλ(t−∆t) + α2 (ėxx + ėzz) ,

θkij(t) = η1θkij(t−∆t) + η2∂kσij .
(89)

where the α1, α2, η1 and η2 coefficients depend on the chosen viscoelastic model.

For the Standard Linear Solid mechanism they are defined as:

α1 = exp

(
−∆t

τλσ

)
,

α2 =
∆t

τλϵ
,

η1 = exp

(
−∆t

τρσ

)
,

η2 =
∆t

τρϵ
.

(90)

28

While for the Maxwell mechanism they are defined as:

α1 = − 1

τλ0
exp

(
−∆t

τλ0

)
,

α2 =
∆t

τλ0
,

η1 = − 1

τρ0
exp

(
−∆t

τρ0

)
,

η2 =
∆t

τρ0
.

(91)

2.3.6 Discretization and Staggered Grids

In addition to the discretization scheme defined for the acoustic case, we need to add the memory
functions (θ and γ) and the α and η coefficients on several regular and staggered grids (Figure
16).

Thus, the new discretization scheme is defined as follows. The stresses, γ function and the unrelaxed
bulk modulus are defined on a regular grid as follows:

σxx(x, t) = σxx(x, z, t),

σzz(x, t) = σzz(x, z, t),

γ(x, t) = γ(x, z, t),

Ku(x, t) = Ku(x, z, t).

(92)

Since in the acoustic case γµ = 0, we will consider that γλ = γ. λ and K are used interchangeably
as they are equivalent in the acoustic case.

The particle velocities (vx and vz), θ functions and the density are defined on staggered grids as
follows:

vx(x, t) = vx(x+∆x/2, z, t),

vz(x, t) = vz(x, z +∆z/2, t),

θx(x, t) = θx(x+∆x/2, z, t),

θz(x, t) = θz(x, z +∆z/2, t),

ρux(x) = ρux(x+∆x/2, z),

ρuz(x) = ρuz(x, z +∆z/2).

(93)

The visco-elastic coefficients α1, α2 are defines on a regular grid, while η1 and η2 are defined on a
staggered grid:

α1x(x) = α1x(x, z),

α2x(x) = α2x(x, z),

α1z(x) = α1z(x, z),

α2z(x) = α2z(x, z),

η1x(x) = η1x(x+∆x/2, z),

η2x(x) = η2x(x+∆x/2, z),

η1z(x) = η1z(x, z +∆z/2),

η2z(x) = η2z(x, z +∆z/2).

(94)

29

Figure 16: Staggered Grid for the Viscoacoustic wave equation schematic; σxx, σxx, γ, Ku and
the α parameters are defined on the regular grid vertexes, while vx, vz, ρux, ρuz, θ and the η
parameters are defined on the staggered grid, which is displaced by half a grid point.

Thus, the numerical approximation of equation 87 can be written as:

∂tvx = ρ−1
uxd

+
x σxx + fx + θx∆ρ

−1
x ,

∂tvz = ρ−1
uz d

+
z σzz + fz + θz∆ρ

−1
z ,

σ̇xx = Ku

(
d−x vx + d−z vz

)
+ q̇xx + γ∆λ,

σ̇zz = Ku

(
d−x vx + d−z vz

)
+ q̇zz + γ∆λ.

(95)

Algorithm for the Two-Dimensional Case

For the numerical solution of the 2D finite difference viscoacoustic equation, again, we will first
consider the pseudo-stress (σ) defined as:

σ =
1

2
(σxx + σzz) (96)

The particle velocity components and the stresses can be computed as:

vx(t+∆t/2) = ∆t[ρ−1
uxd

+
x σxx(t) + fx(t)]+

+ θx(t)∆ρ
−1
x ∆t+ vx(t−∆t/2),

vz(t+∆t/2) = ∆t[ρ−1
uz d

+
z σzz(t) + fz(t)]+

+ θz(t)∆ρ
−1
z ∆t+ vz(t−∆t/2),

σ(t+∆t) = ∆tKu

[
d−x vx(t+∆t/2) + d−z vz(t+∆t/2)

]
+∆tq̇+

+ γ(t+∆t/2)∆K∆t+ σ(t).

(97)

30

We now split the γ function into two parts γx and γz as follows:

σ(t+∆t) = ∆tKu

[
d−x vx(t+∆t/2) + d−z vz(t+∆t/2)

]
+∆tq̇

+∆t [γx(t+∆t/2)∆K + γz(t+∆t/2)∆K] + σ(t).
(98)

The θ functions are updated as:

θx(t+∆t) = η1xθx(t) + η2x∂xσ(t),

θz(t+∆t) = η1zθz(t) + η2z∂zσ(t).
(99)

The γ functions are given by:

γx(t+ 3/2∆t) = α1xγx(t+∆t/2) + α2xd
−
x vx(t+∆t/2)

γz(t+ 3/2∆t) = α1zγz(t+∆t/2) + α2zd
−
z vz(t+∆t/2)

(100)

The α and η coefficients are computed based on the chosen viscoelastic model. Also, λ and K are
used interchangeably as they are equivalent in the acoustic case.

Standard Linear Solid

The coefficients are given as:

α1x = exp

(
−dx(x)∆t

τλσ

)
,

α2x =
dx(x)∆t

τλϵ
,

α1z = exp

(
−dz(z)∆t

τλσ

)
,

α2z =
dz(z)∆t

τλϵ
,

η1x = exp

(
−dx(x)∆t

τρσ

)
,

η2x =
dx(x)∆t

τρϵ
,

η1z = exp

(
−dz(z)∆t

τρσ

)
,

η2z =
dz(z)∆t

τρϵ
.

(101)

∆λ and ∆ρ−1 are given as:

∆λ = λu

(
1− τλϵ

τλσ

)
,

∆ρ−1 = ρ−1
u

(
1− τρϵ

τρσ

)
.

(102)

31

Maxwell

The coefficients are given as:

α1x = − 1

τλ0
exp

(
−dx(x)∆t

τλ0

)
,

α2x =
dx(x)∆t

τλ0
,

α1z = − 1

τλ0
exp

(
−dz(z)∆t

τλ0

)
,

α2z =
dz(z)∆t

τλ0
,

η1x = − 1

τρ0
exp

(
−dx(x)∆t

τρ0

)
,

η2x =
dx(x)∆t

τρ0
,

η1z = − 1

τρ0
exp

(
−dz(z)∆t

τρ0

)
,

η2z =
dz(z)∆t

τρ0
.

(103)

∆λ and ∆ρ−1 are given as:

∆λ = λu,

∆ρ−1 = ρ−1
u .

(104)

For both the Standard Linear Solid and Maxwell models, the profile functions dx and dz have the
form:

dx(x) = (x/L)2,

dz(y) = (z/L)2.
(105)

where L is the length of the absorbing layer.

2.3.7 Absorbing Boundaries and Tapering

The absorbing boundary conditions can be implemented using the viscoacoustic set of equations
by defining a strongly absorbing medium in a border zone with width Nb (or L). Such a subsurface
model is shown in Figure 17. In addition to the Velocity and Density model, we must define a
subsurface Quality factor model (Q-model). For the medium itself, we can simulate the acoustic
case by setting a very high Quality factor (Q = 104). This will result in relaxation times that are
close to zero, thus the relaxation terms in equation 97 will cancel out and the equation simplifies
to the acoustic case. A more realistic attenuation can also be simulated (10 ≤ Q ≤ 200). In order
to dampen the seismic waves in the border zone of the medium, we set a Q value of Qmax at the
inner boundary (taken from the Q-model) and then the Q value is gradually reduced to Qmin at
the outer boundary. The manner in which the Q values decrease from Qmax to Qmin is given by
a tapering function.

The tapering (profile) functions dx(x) and dz(z) given in (105) ensure that the damping is gradually
increased from the interior of the absorbing layer to the outer boundary, which allows for a smooth
transition that minimizes unwanted reflections at the boundaries. In our case, the Q-model varies
proportionally with the square of the distance from the inner border:

32

dx(x) =
(x

Nb

)2
(106)

Where Nb is the number of grid points in the absorbing boundary and x is the distance in the
absorbing zone. Such a tapering profile for the Q-model is shown in Figure 18.

Figure 17: The subsurface model enclosed by an absorptive medium. The Acoustic Medium is
obtained for a high quality factor (Qmax = 104). The Absorptive medium has a decreasing
quality factor given by a tapering function, starting from the inner edge (the red dotted line) until
it reaches the Qmin value (Qmin = 1.1), the black outer line.

Figure 18: Example of the Q-model tapering, where Qmax = 104, Qmin = 1.1 and Nb = 15.

33

2.3.8 Comparison with C-PML

In order to implement the C-PML method, each spatial derivative within the attenuation region
is replaced by a time convolution (Komatitsch and Martin 2007). For simplicity, we consider the
1D case:

∂if → s ∗ ∂if, i = x, z; (107)

where f is either a stress component or a particle velocity.

s(t) =
δ(t)

ϵ
+ a exp(−bt)H(t). (108)

The absorbing parameters (constants) are given by ϵ, a and b.

Thus the C-PML implementation for the acoustic wave equation defined in 11 modified for the 1D
case is:

v̇(x, t) = s(t) ∗
[
ρ−1(x)∂xσ(x, t)

]
σ̇(x, t) = s(t) ∗ [K(x)∂xv(x, t)] + q̇(x, t)

(109)

where s is given by equation 108.

Carcione and Kosloff 2013 points out that these C-PML boundary conditions are actually the
kernel of a viscoelastic model, where both the time dependent Bulk Modulus and the Density can
be given by the Standard Linear Solid mechanism.

If s(t) ∗ ρ−1(x) → ρ−1(x, t) and s(t) ∗ κ(x) → κ(x, t) then:

v̇(x, t) = ρ−1(x, t) ∗ ∂xσ(x, t),
σ̇(x, t) = K(x, t) ∗ ∂xv(x, t) + q̇(x, t).

(110)

which is the stress-strain relation for a visco-elastic medium (46). The kernel simplifies to the
acoustic case when s(t) = δ(t).

We can determine the equivalence between the relaxation times (τσ and τϵ) in the viscoacoustic
wave equation based on the standard linear solid mechanism and the relaxation parameters (ϵ, a
and b) in the C-PML method by comparing the C-PML equation with our SLS equation (48, 56):

s(t) =
δ(t)

ϵ
+ a exp(−bt)H(t),

λ(t) = λuδ(t) + λu
1

τϵ

(
1− τϵ

τσ

)
exp (−t/τσ)H(t).

(111)

Comparing the equations we see that:

λu =
1

ϵ
,

λu
1

τϵ

(
1− τϵ

τσ

)
= a,

1

τσ
= b.

(112)

34

Solving for τϵ, τσ and λu:

λu =
1

ϵ
,

τϵ =
1

b+ aϵ
,

τσ =
1

b
.

(113)

35

3 Numerical Implementation and Optimization

The term High Performance Computing (HPC) usually refers to the use of supercomputers and
parallel processing techniques for solving complex computational problems (Landro and Amundsen
2018). The supercomputer part will be neglected, the thesis being focused on the regular user that
wishes to run seismic modeling experiments on his personal machine.

In this chapter, the code implementation of the viscoacoustic wave equation, with a concentration
on leveraging HPC techniques to maximize computational efficiency, will be addressed. Based
on the piece of hardware that performs the computations, the methods that are going to be
benchmarked can be divided into three main branches: Single Core (Serial) CPU, Multiple Core
(Multithread) CPU, and Graphics Card (GPU). Each of these will be implemented using C, Python,
and Julia (also making use of different libraries and compilers that can accelerate the code). In
addition, the capabilities of the Apple silicon M1, which integrates the CPU and GPU onto a single
chip, will be shown.

We will showcase and exemplify these various techniques using a simple and easy to implement
problem, namely SAXPY (Single-precision AX Plus Y), a function that is frequently used as a
performance metric. The full code for all the Saxpy and Finite Difference implementations can be
viewed in the attached GitHub repository (see Appendix).

3.1 Saxpy

Saxpy is a basic linear algebra operation that takes the simple form of y = ax+ y, where x and y
are vectors of 32-bit floats with N elements and a is a 32-bit float scalar. In expanded form, the
operation is given as:

y[1] = a · x[1] + y[1]

y[2] = a · x[2] + y[2]

y[3] = a · x[3] + y[3]

...

y[N] = a · x[N] + y[N]

(114)

In other words, each element of the x vector is multiplied by the scalar a, and then added to the y
vector, the final result either being overwritten over the original elements of the y vector (in order
to save memory space), or saved in a new vector z.

3.1.1 Single Core CPU

Modern CPUs (Central Processing Units) are typically designed with multiple cores, each core
being capable of independently executing instructions. This enables the execution of multiple
processes concurrently, a concept known as parallelism, which substantially boosts computational
speed and efficiency.

In the conventional method of computation, when writing and then executing regular scripts, only
a single core from the CPU is utilized. This is known as a serial implementation of the code, in
which a single operation is performed on a single piece of data at a time (Figure 19). This bears
the name of Single Instruction Single Data (SISD). Here, instructions are executed sequentially,
one after the other (Cheng et al. 2014). While single core CPUs can attain high clock speeds,
the serial nature of their processing imposes inherent limitations on the execution time of large
computation problems.

36

Unfortunately, the basic code syntax of most programming languages target a single core, and if
we want to make use of more, we need to use specific libraries and make modifications to the code
itself to enable parallelization where it is possible.

Nonetheless, good performance can be attained with a single core also, if done properly, and the
size of the problem is relatively small.

Figure 19: Basic elements of a Single Core CPU; The core contains the ALU (Arithmetic Logic
Unit), which performs arithmetic and logic operations; The Control Unit tells the ALU what
operation to perform and in which order to perform them; The L1, L2 and L3 caches are very
fast and expensive memory that store temporary data that’s actively being used by the CPU; The
DRAM (Dynamic Random Access Memory) is the main memory used by the computers. While it
can be very large, it is much slower than the Cache memory. The DRAM is not part of the CPU
itself but is an external component. The CPU communicates with the DRAM through a memory
bus.

Source: Modified after Cheng et al. 2014

Python

Python is a high-level, interpreted programming language with a focus on code readability and
productivity. It supports procedural, object-oriented, and functional programming paradigms
(Python Documentation 2023). Python’s extensive collection of open source libraries and modules
makes it suitable for a variety of tasks. In the past years, it has seen significant improvements in
the field of scientific computation, allowing for a variety of options for those who wish to use it
as a replacement to C/C++. Python’s syntax is clear and straightforward, making it an excellent
choice for beginners. However, the biggest disadvantage is that being an interpreted language, it
is significantly slower than compiled languages such as C. Nonetheless, when execution speed is
crucial, Python can be integrated with C or be optimized with tools and modules, which can help
boost the speed in a significant way.

For all the Python implementations, a is defined as a float32 variable (a = 3.1415), while the x
and y arrays are populated with random float32 numbers between 0 and 10. The size variable
indicates the number of elements in the arrays (Listing 1).

37

import numpy as np

size = 1e6 # No. of elements in arrays

a = np.float32(3.1415) # scalar value (np.float32)

x = 10*np.random.rand(size).astype(np.float32) # array

y = 10*np.random.rand(size).astype(np.float32) # array

Listing 1: The variable declaration for Saxpy implemented using Python: a is a float32 scalar and
x and y are NumPy arrays filled with float32 random values (between 0 and 10).

NumPy (Numerical Python) is an open-source library that provides support for large multidi-
mensional arrays and matrices, together with a collection of functions to operate on these arrays,
including mathematical, logical, shape manipulation, sorting, discrete Fourier transforms, basic
linear algebra, basic statistical operations, random simulation, and so forth. NumPy’s functions
are written in C, which provides performance comparable to conventional compiled languages while
retaining Python’s flexibility and ease of use (NumPy Developers 2023).

Saxpy Python For Loop CPU

The most straightforward and rudimentary approach to perform the Saxpy operation is by using
a simple for loop that executes the operation on each element of the x and y arrays (Listing 2).

This method is not the most efficient way to conduct the Saxpy function, particularly for large
vectors, despite its simplicity and ease of implementation. The Python interpreter introduces a
significant latency when interpreting the for loop. In contrast to compiled languages, Python
scripts must be interpreted line-by-line during execution, resulting in a performance penalty (Py-
thon Documentation 2023). This overhead is accentuated in the context of a for loop, where a
single operation (in this instance, the Saxpy operation) is continually executed multiple times.
Also, Python employs dynamic typing, which enables a great deal of flexibility, but can result in
additional runtime time spent verifying and converting data types. Even though we have expressly
defined these arrays as 32-bit floats, Python’s dynamic type verification may still incur additional
performance overhead.

for i in range(size):

y[i] = a * x[i] + y[i]

Listing 2: The Saxpy computation implemented using a simple for loop.

Saxpy Python NumPy CPU

As it was mentioned before, NumPy has an extensive library that allows to execute calculations
using pre-compiled and optimized C functions, but using a for loop does not take advantage of this
aspect. Instead, we must make use of vectorization, which enables us to conduct computations on
entire arrays concurrently rather than iterating over them (NumPy Developers 2023). As shown
in Listing 3, the Saxpy operation can be implemented with a single line of Python code, with the
entire operation performed element by element on the NumPy arrays x and y.

y = a * x + y

Listing 3: The Saxpy computation implemented using NumPy vectorization.

38

NumPy’s array-based operations substantially reduces the overhead imposed by the Python inter-
preter and enables us to take advantage of the underlying C-based implementation when iterating
over the for loop. Dynamic typing may incur some delay, but the effect is less pronounced due to
NumPy’s efficient array operations management.

Using NumPy’s vectorized operations is intuitive and also reduces the lines of code needed. This
is a major benefit in terms of code readability and maintenance. The main drawback with this
approach arises when dealing with nested loops and non-elementwise operations, such as a stencil,
as these sometimes cannot be easily vectorized.

Saxpy Python Numba CPU

Numba is a just-in-time compiler for Python that can generate machine code from a subset of
Python and NumPy code. It can be adapted and implemented for CPU (serial and multithread)
and GPU, substantially enhancing the speed of numerical and scientific computations. It translates
Python functions into optimized machine code at runtime using the LLVM compiler library, thus
greatly enhancing the performance (Numba Documentation 2023). JIT compilation is the process
of compiling source code during execution (just-in-time), as opposed to ahead-of-time (AOT)
compilation, in which the source code is compiled before execution. In the most simple form, in
order to optimize a function, you simply attach the @jit decorator ahead of it, and Numba will
try to optimize the function automatically as best as possible (Listing 4).

from numba import jit

@jit(nopython=True)

def saxpy_numba(a, x, y):

size = x.shape[0]

for i in range(size):

y[i] = a * x[i] + y[i]

return y

y = saxpy_numba(a, x, y)

Listing 4: The Saxpy computation implemented using Numba.

The @jit decorator instructs Numba to compile the function in ”no Python” mode (without using
the Python interpreter). This mode is optimized for performance and is most effective when the
function uses only NumPy arrays and loops. Unfortunately, this does not work with Python
objects.

Numba provides a balance between the simplicity and readability of Python and the efficacy of
lower-level programming languages. The main disadvantage of using Numba is that it introduces
an additional layer of complexity to the code. It requires knowledge of how the JIT compiler
works, how to take advantage of it, and what its limitations are. Thus, one needs to adapt the
code accordingly.

Saxpy Python Cython CPU

The Cython programming language is a superset of Python that combines the simplicity of Python
with the performance of C by permitting calls to C functions and the declaration of C types.
This enables the compiler to produce highly efficient C code from Cython code. Once generated,
the C code compiles with all main C/C++ compilers (Cython Documentation 2023). After the
translation from Cython to C, we obtain a module that can be imported to Python, allowing for
fast computations and integration with the rest of the Python code.

All the Cython functions need to be contained in a .pyx file, which will be later compiled. The

39

Saxpy operation is implemented using a for loop structure. Static typing is used, which can
substantially accelerate the execution of code. Also, we use @cython.boundscheck (False),
@cython.wraparound (False), and @cython.cdivision (True) to disable bounds checking, neg-
ative indexing, and C-style division, respectively. This will further increase the performance (Figure
20).

Figure 20: The Saxpy computation implemented using Cython; the yellow lines show all interac-
tions with Python.

Cython also provides an annotated view of the functions you write that highlights all of its interac-
tions with Python. By minimizing these interactions as much as possible, we can further improve
the efficiency. In the case of our function, the main interaction is the conversion of NumPy variable
arguments to C variable arguments.

To call the Cython function within a Python script, you first need to import the compiled module,
similar to how you would import any other Python module: from saxpy_cython import *. Then
you can call the Cython Saxpy function as: y = saxpy_cython(a, x, y).

Again, as with Numba, the primary disadvantage of Cython is that it adds complexity and requires
additional knowledge for effective use.

C

C is a general-purpose, compiled programming language (the C code is transformed into machine
code by a compiler before it is run) that provides low-level memory access and is highly efficient. It
is a procedural language that has a static type system. Its syntax is more complex than Python’s,
making it less beginner friendly. Also, memory management needs to be done manually (no
automatic garbage collection) and it does not support Object Oriented Programming. However,
its speed makes it the preferred programming language for high performance computing (which is
also the case in the present). As a compiled language, C is significantly faster than Python and
other interpreted languages.

For all the C implementations, a is defined as a float32 variable (a = 3.1414), while x and y are
pointers to memory blocks populated with random float32 numbers between 0 and 10 (Listing 5).
Pointers are variables that store the memory address of other variables (in our case, the memory
address for the arrays). By using pointers, we are able to work directly with the system’s memory
and use it more efficiently, which is important when working with large data.

The malloc() function is utilized to dynamically allocate a memory block of the specified byte size.
It is important to note that these allocated memory blocks are contiguous, so array elements are
stored in adjacent memory locations. This allows for efficient access to array elements. However,

40

because the is no automatic memory management, the arrays must be freed when they are no
longer required in order to prevent memory breaches.

While C code is very fast, this comes with some compromises. It lacks a lot of features present in
languages like Python, such as: array index bound checking, automatic garbage collection, runtime
type checking, exception management, and so forth. Thus, it can become cumbersome to use for
someone that does not have a background in programming.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main() {

long long size = 1e6; // No. of elements in arrays

float a = 3.1415f; // scalar value

float* x = (float*)malloc(size * sizeof(float)); // pointer

float* y = (float*)malloc(size * sizeof(float)); // pointer

srand(time(NULL));

for (long long i = 0; i < size; i++) {

x[i] = ((float)rand()/(float)(RAND_MAX/10));

y[i] = ((float)rand()/(float)(RAND_MAX/10));

}

// Free allocated memory!

free(x);

free(y);

return 0;

}

Listing 5: The variable declaration for Saxpy implemented using C: a is a float32 scalar and x
and y are dynamically allocated arrays filled with float32 random values (between 0 and 10).

Saxpy C For Loop CPU

The Saxpy operation is implemented in C using a for loop that iterates over the arrays (Listing
6). As the memory blocks allocated for the arrays are contiguous, accessing array elements is done
efficiently.

void saxpy(float* x, float* y, float a, long long size) {

for (long long i = 0; i < size; i++) {

y[i] = a * x[i] + y[i];

}

}

Listing 6: The Saxpy computation implemented in C.

41

Saxpy SWIG Wrapper

The Simplified Wrapper and Interface Generator (SWIG) is an interface compiler that links C and
C++ programs to a number of high-level programming languages. By using the information from
the C header files, it generates the linking code required for languages, such as Python, to access
the underlying C code. One of the main advantages is that it requires minimal or no changes to
the existing C code (SWIG Documentation 2023).

For the Saxpy operation, the C function we want to wrap can be, for instance, the one used in
the previous section. We only need the function header file (.h file). Then, we construct a SWIG
interface file (.i file) containing instructions on how to encapsulate our C function for SWIG. This
interface file instructs SWIG how to convert the C function arguments to Python arguments. One
of the main advantages is that NumPy arrays are also supported. An example of a code block that
may be included in a SWIG interface file for the Saxpy function is shown in Listing 7.

%module wrapper

%{

#define SWIG_FILE_WITH_INIT

#include "wrapper.h"

%}

%include "numpy.i"

%init %{

import_array();

%}

%apply (float* INPLACE_ARRAY1, int DIM1) {(float* x, int sizex),(float* y, int

sizey)}↪→

%include "wrapper.h"

%clear (float* INPLACE_ARRAY1, int DIM1);

Listing 7: The interface file for SWIG

In order to generate the wrapper code and then compile it as a Python module, we also need a
setup.py file that specifies the module name and the compilation arguments. Then, we can gen-
erate the module using the terminal command: swig -python wrapper.i && python setup.py

build ext --inplace. Now, the wrapper can be imported into a Python script as any other
module and the Saxpy wrapper function can be called with: y = wrapper.saxpy(a, x, y).

SWIG’s primary benefit is that it enables the user to access C’s speed for computation heavy
problems while still being able to use Python and its extensive library ecosystem. But, it adds
extra complexity, as you still need to be familiar with C and also learn all the caveats of SWIG for
effective use.

Julia

Julia is a high-level, high-performance, dynamic programming language that was designed for
the purpose of scientific and numerical computing, with performance comparable to statically
typed languages, such as C. Julia utilizes just-in-time (JIT) compilation, which is powered by the
LLVM compiler, and type inference in order to translate the Julia code into efficient machine code
at runtime (Julia Documentation 2023). Julia is dynamically typed, but type inference is used
to determine the types of variables and expressions. This enables it to generate more efficient

42

machine code, as it can optimize for particular types. Julia also supports multiple dispatch, which
boosts performance by enabling the compiler to optimize code execution based on the types of
the function parameters. It also has extensive libraries for: plotting, benchmarking your code,
optimization modules and parallel computing both on the CPU and GPU. The JIT compilation,
type inference and multiple dispatch all contribute to a boost in speed that makes Julia a great
alternative to C.

Some disadvantages with Julia are related to the fact that it is a relatively young programming
language (around ten years of development), thus it has a smaller community and is still maturing.
Also, it has a 1-based indexing, which can be problematic and cause confusion sometimes, as 0-
based indexing is the norm. Lastly, the JIT compilation can introduce overhead the first time a
function is called (JIT latency), which sometimes can be significant (Julia Documentation 2023).
In other words, the first time you execute a script/function, the compiler has to translate the Julia
code into machine code, which takes some time. However, once the function has been compiled,
subsequent queries to the function will be executed quickly because the machine code is cached.
This reduces the impact of JIT latency on large time intensive computational problems, where the
initial compilation time is just a small fraction of the total execution time.

For all the Julia implementations, a is defined as a float32 constant (a = 3.1414), while the x and
y arrays are populated with random float32 numbers between 0 and 10 (Listing 8).

size = 1e6 # No. of elements in arrays

const a = Float32(3.1415) # scalar value (float32)

x = 10*rand(Float32, size) # array

y = 10*rand(Float32, size) # array

Listing 8: The variable declaration for Saxpy implemented using Julia: a is a float32 scalar and
x and y are arrays filled with float32 random values (between 0 and 10).

Saxpy Julia CPU

In Julia, the Saxpy operation can be implemented in different ways, all of them showcasing good
performance. We can iterate over each element with a for loop as shown in Listing 9. Here we can
use the BenchmarkTools module to measure the performance of the function. The @benchmark

macro executes the operation multiple times and returns some statistics, such as the mean and
median execution time, that can be utilized for performance analysis. Julia facilitates all the
necessary tools in order to easily test your code. The first execution of a function will include the
extra compilation time, but subsequent calls will be faster because Julia caches the compiled code.

using BenchmarkTools

function saxpy(a,x,y)

for i in 1:length(x)

y[i] = a * x[i] + y[i]

end

end

@benchmark saxpy(a,x,y)

Listing 9: The Saxpy computation implemented using a for loop in Julia

43

Julia also supports vectorization similar to NumPy, allowing for effective element-wise operations
involving arrays (addition, subtraction, multiplication, etc). To implement this, we must make use
of the dot syntax (.), which needs to be added before any mathematical operands (Listing (10)).

function saxpy(a,x,y)

y .= a .* x .+ y

end

Listing 10: The vectorized Saxpy computation in Julia

3.1.2 Multiple Core CPU

Multithreading refers to a script that can take advantage of the multiple cores of the CPU by
making the cores work on the same task at the same time. Thus, a single instruction set is applied
to the dataset, the data being distributed across the cores. An example of this is an array multiplied
by a scalar value. If two cores would be used, then the workload will be ’cut’ in two, each half being
given to a different core. This is possible because no information exchange is required between the
cores to perform this computation. Thus, the available computing capacity is increased, and the
time required to solve the problem will be halved.

Figure 21: Basic elements of a Multiple Core CPU; Each core has its own memory cache, but
all the cores also have access to shared memory. Tasks are sent to the CPU, and then they are
distributed across the cores for simultaneous processing.

Source: Modified after Cheng et al. 2014

Saxpy Python Numba Multithread CPU

Numba also has Multithreading capabilities. The @jit decorator can automate the execution of
NumPy array expressions across multiple CPU cores, making it easy to write parallel loops (Numba
Documentation 2023).

44

To create a parallelized version of the Saxpy function using Numba, we just need to add the @jit
decorator with the following arguments: nopython=True, parallel=True. For a further speed up,
we can also add fastmath=True.

@jit(nopython=True,parallel=True,fastmath=True)

def saxpy_numba(a, x, y):

size = x.shape[0]

for i in numba.prange(size):

y[i] = a * x[i] + y[i]

return y

Listing 11: The Multithreaded Saxpy computation implemented using Numba.

The parallel=True argument enables automatic parallelization. In this mode, Numba will identify
any loops that can be parallelized and then alter them to execute concurrently across multiple
threads. You can indicate which loops are to be parallelized by using the numba.prange function.
The fastmath=True argument enables mathematical optimizations that may result in quicker
execution times at the expense of precision.

In order to set the number of threads that are going to be used in the execution of the code, we can
use the following line: numba.set_num_threads(alpha), where alpha is the number of threads.

Saxpy Python Cython Multithread CPU

To use Cython’s support for multithreading, we use the prange function to parallelize the for loop,
thereby improving performance by distributing computation across multiple CPU cores (Figure 22).
The desired number of threads to be used is given as one of the function arguments.

Figure 22: The Cython implementation using Multithreading; a lighter yellow line indicates fewer
interactions with Python.

Python’s Global Interpreter Lock (GIL) is a mechanism that prevents concurrent execution, allow-
ing only one thread to execute at a time. This is primarily used to facilitate memory management,
but it can be a performance bottleneck. By adding nogil=True to the Cython function, will cause
the GIL to be deactivated for that section of code, allowing for parallel execution on multiple
threads.

It is important that in the compilation of the .pyx file, the ”−fopenmp” flag is included. OpenMP
is an API that supports multiplatform shared-memory parallel programming in C, C++, and
Fortran (OpenMP Documentation 2023). It is used to facilitate parallel computations in Cython
by spawning multiple execution threads within a single process.

45

Saxpy C Multithread CPU

In C, the most straightforward way to implement multithreaded operations is by using the OpenMP
library. For the Saxpy function, we can use the OpenMP directive #pragma omp parallel to
parallelize the for loop (Listing 12).

#include <omp.h>

void saxpy(float* x, float* y, float a, long long size) {

long long i;

#pragma omp parallel for default(none) private(i) shared(a, x, y, size)

for (i = 0; i < size; i++) {

y[i] = a * x[i] + y[i];

}

}

Listing 12: The C implementation using Multithreading

The default(none) clause informs the compiler that no variables are shared between threads by
default. This is a best practice for ensuring that we have total control over which variables are
shared between threads and which are not.

The clause private(i) instructs the compiler to consider the i variable as thread-private. Each
thread will have its own copy of i, and modifications to i in one thread will not impact its value
in another.

Lastly, shared(a, x, y, size) specifies that these variables are shared between all threads (all threads
can read and write to these variables). The number of threads to be utilized can be set with
omp_set_num_threads(alpha); where alpha is the number of threads.

Saxpy Julia Multithread CPU

In order to use Multithreading in Julia, no external module has to be imported, as the Threads
module is part of Julia’s standard library. Thus, it is simple to write multithreaded code in Julia,
as the module provides several tools for managing threads and writing multithreaded code.

The number of threads to be used has to be specified before executing the script. This is done
by setting the following environment variable: JULIA_NUM_THREADS = alpha, where alpha is the
thread count, prior to launching Julia. Modifying the number of threads while Julia is operating
cannot be done.

For the Saxpy function, we can automatically parallelize the for loop by using the Threads.@threads
macro (Listing 13).

function saxpy(a,x,y)

Threads.@threads for i in eachindex(x)

y[i] = a * x[i] + y[i]

end

end

Listing 13: The Julia Multithreaded implementation of Saxpy

The eachindex(x) function generates an iterator that traverses each index of the array, and the
Threads.@threads macro distributes these iterations across multiple threads (Julia Documenta-
tion 2023).

46

3.1.3 GPU

The use of Graphics Processing Units (GPUs) for scientific computing is arguably one of the most
important developments in the field of High Performance Computing. GPUs were initially designed
for rendering graphics and their main use was in the gaming industry, but they have since evolved
into structures capable of conducting multiple mathematical operations simultaneously, making
them ideally adapted for large scale data processing. For the following section, we will consider
the architecture of an Nvidia GPU, which could be found in a regular workstation.

Modern GPUs can be thought of as containing thousands of lesser CPUs (Figure 23). This immense
parallel architecture enables them to efficiently handle tasks that can be divided into multiple
smaller tasks, such as the computations typically required in numerical simulations.

Figure 23: Basic elements of an Nvidia GPU; Each green square could represent a CUDA core.
These cores have a lower clock rate than their CPU counterpart, but they can number in the
thousands. The GPU has its own private memory, usually called GDDR RAM (Graphics Double
Data Rate Random Access Memory). This is a type of synchronous memory that is specifically
designed for GPUs.

Source: Modified after Cheng et al. 2014

The GPU is not meant to replace the CPU. CPUs are optimized for complex tasks and logic
problems, while GPUs, with their immense parallelism, excel at image rendering, machine learning,
and numerical simulations. This is where the paradigm of Heterogeneous computing is introduced
(Figure 24).

This refers to the concept of building software and scripts that use both the CPU and the GPU
(Cheng et al. 2014). The sequential, less computationally intensive parts are executed on the
CPU, while the intensive parallels part can be executed on the GPU, thus allowing for optimal
performance.

The ”host” and ”device” are terms that are usually used in this context. Typically, ”host” refers
to the CPU and its memory, whereas ”device” refers to the GPU and its memory. It is important
to note that the current norm is that the CPU and GPU both have their own respective memory.
Thus, ”host code” refers to the portions of code that are executed on the CPU, whereas ”device
code” refers to the portions of code executed on the GPU.

47

Figure 24: Example of heterogeneous computing when executing a script. The computationally
heavy areas are performed by the GPU (red), while the less demanding serial code is performed
by the CPU (blue).

Source: Modified after Cheng et al. 2014

In the context of GPU programming, the functions are replaced with kernels. In other words, a
function that is written for parallel execution on the GPU. When a kernel is called, it is executed
in parallel by each core of the GPU concurrently.

One important aspect to consider in GPU programming is that the execution model is hierarchical
and consists of several components that have a specific terminology (Figure 25).

TheDevice refers to the GPU itself, which executes the kernels that are sent. TheGrid represents
the problem space in its entirety. In other words, all threads spawned by a single kernel launch are
collectively called a grid (Cheng et al. 2014). Also, all the threads within a grid share the same
global memory (Figure 23). The grid is divided into an array of blocks that all utilizes the same
kernel. Pertaining to each case scenario, 1D, 2D, or 3D grids can be defined.

A Block is a collection of threads that can cooperate which each other and exchange data through
shared memory. A block can be 1D, 2D, or 3D, similar to a grid. All threads within a block can
synchronize their execution.

Threads are the smallest element of the hierarchy (Figure 26). Each thread executes a single
instance of the kernel function. Threads from different blocks cannot cooperate with each other.
Each thread has a unique ID, that can be accessed using two parameters: the blockID, giving the
block index within a grid, and the threadID, the thread index within a block.

48

Figure 25: Example of Thread hierarchy, showcasing a 2D grid containing 2D blocks.

Source: Modified after Cheng et al. 2014

Figure 26: Example of Thread hierarchy, where the threads are organized in 2D blocks.

Source: Modified after Cheng et al. 2014

The dimension choice for the blocks and grids can have a direct effect on the efficiency and per-
formance of the kernel. At the moment, the maximum number of threads that can be allocated per
block for a regular Nvidia GPU is 1024. Following this hierarchy scheme, the GPU (device) can
execute kernels across a grid of blocks, with multiple threads executing the kernel in each block.

49

Saxpy Python CuPy Numba GPU

For the Python GPU computation, we will consider the implementation on an Nvidia device and,
at its core, will make use of the CUDA toolkit. CUDA (Compute Unified Device Architecture) is
an NVIDIA-developed parallel computing platform and application programming interface (API)
model (NVIDIA CUDA Documentation 2023). CUDA’s central concept is to utilize the massive
parallel processing capacity of Nvidia GPUs to execute computations. Its syntax is similar to the
C language.

The integration of CUDA into Python can be done easily by making use of the Numba and CuPy
libraries. CuPy is an open-source library that has a similar interface to NumPy for creating and
manipulating GPU arrays. It allows users to write GPU accelerated code in a similar way you
would use NumPy, resulting in a significant array performance increase (CuPy Documentation
2023). Numba also provides GPU capabilities and allows the user to write CUDA kernels in
Python syntax in a straightforward way and then execute them on the GPU without needing to
know CUDA or C (Numba Documentation 2023).

Combining Numba and CuPy is a powerful tool that allows to create kernels by only modifying
only a few lines of code. Numba gives the user a fine control when creating the CUDA kernels,
while CuPy provides a GPU accelerated version of the NumPy interface, making it easier to create
arrays, offload them to the GPU and manipulate the data.

The Saxpy operation is implemented using a Numba kernel as shown in Listing 14. The kernel is
declared by adding the @cuda.jit decorator, which compiles the function on the GPU in a JIT
fashion.

import cupy as cp

import numba.cuda as cuda

@cuda.jit

def saxpy_kernel(a, x, y):

i = cuda.grid(1)

if i < x.size:

y[i] = a * x[i] + y[i]

x = 10 * cp.random.rand(size).astype(cp.float32)

y = 10 * cp.random.rand(size).astype(cp.float32)

Set up the grid and block dimensions

threads_per_block = 1024

blocks_per_grid = (x.size + (threads_per_block - 1)) // threads_per_block

saxpy_kernel[blocks_per_grid, threads_per_block](a, x, y)

cp.cuda.Device().synchronize()

Listing 14: The Python GPU implementation of Saxpy

By using the i = cuda.grid(1) function, a unique index for each thread (i) across the grid is
calculated. The operand 1, denotes the dimension of the problem. The Saxpy operation is executed
if the thread’s index falls within the range of the size of the input vectors. This check is essential
for preventing out of bounds accesses, as the total number of threads (determined by the grid and
block dimensions) may exceed the size of the vector.

The x and y arrays are constructed similarly to NumPy, but using the cp (CuPy) annotation
instead. The primary difference between NumPy and CuPy is where the arrays are stored. CuPy
creates arrays directly in the GPU’s device memory, whereas NumPy generates arrays that are

50

stored in the DRAM memory, which is accessed by the CPU. These arrays can also be created
with NumPy on the CPU and then transferred, using CuPy, to the GPU.

The Grid and Block dimensions are established using a 1D layout. The number of threads per
block is set to 1024 (the maximum possible value), and the number of blocks per grid is cal-
culated to cover all elements of x and y. As CUDA operations are typically asynchronous, the
cp.cuda.Device().synchronize() line is used to ensure that all CUDA operations have been
completed before the program continues.

Saxpy C CUDA GPU

In order to use Nvidia’s CUDA capabilities, we can directly write the kernels within a C script,
but save the file with a .cu extension. Listing 15, illustrates how to implement this on the Saxpy
operation.

#include <cuda.h>

__global__ void saxpy(float *x, float *y, float a, long long size)

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < size)

y[i] = a * x[i] + y[i];

}

int main() {

// Allocate memory for the arrays on the GPU

float* d_x, *d_y;

cudaMalloc(&d_x, size * sizeof(float));

cudaMalloc(&d_y, size * sizeof(float));

// Copy the data from the CPU to the GPU

cudaMemcpy(d_x, x, size * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_y, y, size * sizeof(float), cudaMemcpyHostToDevice);

// Set the Block and Grid dimensions

int threadsPerBlock = 1024;

int blocksPerGrid = (size + threadsPerBlock - 1) / threadsPerBlock;

// Execute kernel

saxpy<<<blocksPerGrid, threadsPerBlock>>>(d_x, d_y, a, size);

// Wait for GPU to finish before accessing on host

cudaDeviceSynchronize();

// Copy the data from the GPU to the CPU

cudaMemcpy(y, d_y, size * sizeof(float), cudaMemcpyDeviceToHost);

// Free memory

cudaFree(d_x);

cudaFree(d_y);

return 0;

}

Listing 15: The CUDA GPU implementation of Saxpy

51

The kernel is defined using the __global__ function, indicating that it will be executed on the
GPU. The unique thread index i is computed by using the block index (blockIdx.x), the number
of threads in each block (blockDim.x), and the thread index within the block (threadIdx.x).
This index is used to access the corresponding elements in each array, and while the index resides
within the array dimensions, the operation is executed.

In order to allocate memory on the GPU for the arrays, the cudaMalloc command is used.
The data is then copied from the host to the device using the cudaMemcpy function and the
cudaMemcpyHostToDevice argument.

The block and grid dimensions are then defined, with the number of threads per block set to the
maximum of 1024 and the number of blocks per grid calculated to ensure that all x and y elements
are covered.

After the kernel function is executed, we use the cudaDeviceSynchronize command to ensure all
the GPU computations are finished before proceeding. After, the data is sent back from device to
host, the GPU memory is liberated using cudaFree.

This combination of kernel execution, memory management, and data transfer forms the basis of
the majority of CUDA C programs, allowing the GPU’s capability to be utilized directly within
the C programming language.

Saxpy Julia GPU

For the GPU implementation in Julia, the CUDA.jl module is utilized. This package provides a
high-level interface for CUDA programming, allowing GPU kernels to be written directly in Julia.
This can be done both by using a high or low level of abstraction.

The high-level, vectorized approach is easily implemented and resembles the NumPy API, and is
almost the same as the Julia CPU implementation, the only difference being given by how the
arrays are defined in the first place (Listing 16).

using BenchmarkTools

using CUDA

function saxpy(a,x,y)

y .= a .* x .+ y

end

x = CUDA.rand(Float32, size)

y = CUDA.rand(Float32, size)

@benchmark CUDA.@sync saxpy(a,x,y)

Listing 16: The Julia vectorized GPU implementation of Saxpy

Using the CUDA. annotation before the arrays ensures that they are created on the GPU directly
and the operations on them are also performed by the GPU. Utilizing the CUDA.@sync macro
guarantees that all GPU computations are completed prior to benchmarking. The arrays can also
be created on the host and transferred later to the device. The main advantage with this approach
is that kernel and threading hierarchy are implemented automatically. The garbage collection is
done automatically, so the memory does not have to be freed manually.

52

On the other hand, the low-level, manual kernel approach offers greater control over the computa-
tion’s execution and optimization (Listing 17).

function saxpy_gpu_kernel!(a,x,y)

i = (blockIdx().x - 1)* blockDim().x + threadIdx().x

if i <= length(y)

@inbounds y[i] = a * x[i] + y[i]

end

end

nthreads = CUDA.attribute(device(),CUDA.DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK)

nblocks = cld(size, nthreads)

@benchmark CUDA.@sync @cuda(

threads = nthreads,

blocks = nblocks,

saxpy_gpu_kernel!(a,x,y)

)

Listing 17: The Julia kernel GPU implementation of Saxpy

In this case, the kernel is defined manually. The index of each thread is calculated in a similar fash-
ion to C and Numba. The @cuda macro is used to execute the kernel function and the @inbounds
macro is used to disable bounds checking. This allows to create more complex custom kernels and
manually set the thread hierarchy.

53

3.1.4 Apple Silicon Chip

In 2020, Apple started producing their own set of chips for their working stations, switching from
the Intel x86 64 architecture to Apple Silicon ARM. The M1 chip, the first of this generation,
has introduced a unified memory architecture, presenting a new approach to memory management
that facilitates faster computation. Moreover, the CPU and GPU are integrated into the same
chip.

The Unified Memory Architecture enables the CPU and GPU to share the same physical memory
system (Figure 27). The paradigm was that the CPU and GPU have their own separate memory,
requiring data transfer between them, which added time transfer delays. On M1 devices, the CPU
and GPU cores can read and write to the same memory space, eliminating the need for synchroniz-
ation protocols and data copying between distinct CPU and GPU memory banks (Apple Developer
Documentation 2023). This results in significant performance increases when dealing with applica-
tions that use Heterogeneous computing. From a coding perspective, managing the data transfers
between the CPU and GPU can be complicated. Using the unified memory architecture, data
management becomes easier and reduces the complexity of the code.

Figure 27: The Unified memory architecture found on all Apple M-series devices. The CPU and
GPU are integrated in the same chip.

In order to utilize the capabilities of the Apple silicon chip, the Metal Shading Language (based on
C++), also created by Apple, is required. But using it to develop scripts can be quite cumbersome.
By using Julia and the Metal.jl module, users are able to utilize Apple’s M1 GPUs capabilities by
providing an interface to the Metal framework. The package is based on the same foundations as
CUDA.jl and it uses the same syntax and principles (Julia Metal 2023).

Just like CUDA.jl, Metal.jl provides both high and low level abstractions when implementing the
Saxpy function. In the vectorized version, we define the arrays using the MtlArrays function
(Listing 18). It is important to note that here the arrays are stored in the unified memory and the
MtlArrays annotation only instructs that the operations involving them are to be executed on the
GPU.

54

using BenchmarkTools

using Metal

function saxpy(a,x,y)

y .= a .* x .+ y

end

x = MtlArray(rand(Float32, size))

y = MtlArray(rand(Float32, size))

@benchmark saxpy(a,x,y)

Listing 18: The Julia Metal vectorized GPU implementation of Saxpy

The low-level approach permits greater control over the execution and optimization of computations
by creating the kernel manually and setting the threading hierarchy. As shown in Listing 19, the
@metal macro is used to execute the kernel function. In this package, the synchronization is done
automatically.

using BenchmarkTools

using Metal

function saxpy_kernel(a,x,y)

i = thread_position_in_grid_1d()

if i <= length(x)

@inbounds y[i] = a * x[i] + y[i]

end

return nothing

end

x = MtlArray(rand(Float32, size))

y = MtlArray(rand(Float32, size))

threads = 1024

groups = cld(size, threads)

@benchmark @metal threads=threads groups=groups saxpy_kernel(a,x,y)

Listing 19: The Julia Metal kernel GPU implementation of Saxpy

55

3.2 Viscoacoustic Finite Difference Modelling

In the last subchapter, we examined several Saxpy implementation strategies, as it is easy to
showcase the basis of each method with just a few lines of code. Now, we will be concentrating
on incorporating these techniques into the Viscoacoustic finite difference modeling script. As the
implementation of this is quite extensive and it spans over several files, we will not showcase it
in detail but rather describe the main structure of it. At their core, the computation heavy parts
can be implemented using the same principles as shown with Saxpy, but with an added layer of
complexity.

In order to have a more detailed overview of how each method is implemented, all the source code
for both the Saxpy and Viscoacoustic modeling can be found in the GitHub repository attached
(see Appendix). Pertaining to the finite difference modeling script, the Python CPU For Loop
folder also contains a detailed explanation of the code.

All the 2D viscoacoustic libraries, whether of the programming language used or CPU/GPU im-
plementation, have a Main file, where all the modeling parameters are set (Velocity, Density,
Q-model, absorbing boundaries, relaxation times, etc.), the source wavelet/receivers and their co-
ordinates are defined and the Solver, where all the computations are taking place, is called. The
general execution flow in the Main file is shown in Figure 28.

Figure 28: The execution flow of the Main file. The computationally heavy areas are denoted with
Red, while the less demanding code blocks are blue.

56

This strategy promotes a modular approach and code reuse, making the code simpler to man-
age, debug and implement using the different optimization techniques. The source files that are
imported include methods for: the source, receiver, model, AC2D solver, differentiator and visual-
ization. The Model module computes the appropriate relaxation parameters based on the chosen
viscoelastic mechanism (Standard Linear Solid or Maxwell).

In Python, in order to encapsulate the data and functions related to these items we use classes. In
the C implementations, we use structs, which are user-defined data types that enable us to store
various data types together. This is especially beneficial when we want to combine variables that
are related. For instance, a struct may comprise all the variables required for the receivers. Even
though you cannot explicitly associate functions with structs, the functions themselves can accept
structs as parameters. In Julia, mutable structs are used, which enable us to modify their fields.

From the showcased execution flow, the most important code block is represented by the AC2D
solver, where the finite difference computations based on the equations defined in 97 are executed.

The general flow is shown in Figure 29.

Figure 29: The execution flow of the AC2D file. The computationally heavy areas are denoted
with Red, while the less demanding code blocks is blue.

In the figure, the computationally intensive portions are highlighted in red. Thus, it is here where
the optimization methods can be implemented most effectively. It can be seen that the AC2D
solver, which conducts the finite difference computations, is where the majority of these intensive
computations take place. This function accounts almost for the entirety of the execution time of
the simulation. Thus, the different optimization techniques will be implemented on the functions
that are called in the solver.

An example of how one of these kernels might look like is shown in Listing 20, where the particle
velocity computation in the x directions using the CUDA.jl module is implemented. All other case
scenarios are executed in a similar fashion (Note: for all the GPU implementations, a 2D Grid and
Block size were chosen).

57

function Ac2dvx_kernel!(vx_gpu, exx_gpu, thetax_gpu, rho_gpu, drhox_gpu,

eta1x_gpu, eta2x_gpu, dt, nx, ny)↪→

x = threadIdx().x + blockDim().x * (blockIdx().x - 1)

y = threadIdx().y + blockDim().y * (blockIdx().y - 1)

if x <= nx && y <= ny

@inbounds vx_gpu[x, y] = dt * (1.0 / rho_gpu[x, y]) * exx_gpu[x, y] +

vx_gpu[x, y] + dt * thetax_gpu[x, y] * drhox_gpu[x, y]↪→

@inbounds thetax_gpu[x, y] = eta1x_gpu[x, y] * thetax_gpu[x, y] +

eta2x_gpu[x, y] * exx_gpu[x, y]↪→

end

return

end

Listing 20: The Ac2dvx GPU kernel implemented in Julia; Here we use a 2D grid and block.

58

4 Results

In the first section of this chapter, we will show the effectiveness of the absorbing boundary condi-
tions implemented using viscoelastic kernels and discuss both the SLS and Maxwell models. Then,
in the second part, the benchmark results of the different code implementations for viscoacoustic
modeling are presented.

4.1 Viscoacoustic Modelling

We will show that by using the discussed finite-difference implementation, we can simulate an
acoustic/viscoacoustic medium and implement absorbing boundary conditions using the same set
of equations. The edge artifacts generated by this method will then be then analyzed. For all
cases, when we refer to the Standard Linear Solid and Maxwell mechanisms, we assume that the
density is time-dependent.

4.1.1 Comparison with the Analytical Solution

In order to showcase that the Viscoacoustic equations given in (87) are reduced to the acoustic
case when we choose a sufficiently large Quality factor for the model, we can compare the results
from the simulation with the analytical solution of the acoustic case for a homogeneous isotropic
medium given in equation 36.

In this test, a 101x101 square mesh with a grid spacing interval of 10m was used, giving a subsurface
model size of 1km by 1km. The time sampling interval is 0.5ms and the total number of time
steps is 550 (giving a recording length of 0.275s). A differentiator length (radius) of 8 was chosen.

The model is homogeneous, with a P wave velocity of 2000m/s and a density of 2000kg/m3. The
Quality factor is set at 105 and the Standard Linear Solid mechanism is chosen. The source pulse
is a Ricker Wavelet with a dominant frequency of 25Hz. The absorbing boundaries are disregarded
in this case, as the modeling parameters were chosen in such a way that the wavefield does not
reach the boundaries of the model.

The source is placed in the middle of the model (x = 500m, z = 500m) and we record the wavefield
with a receiver placed at (x = 650, z = 500m). The result of the comparison between the analytical
solution and the simulated solution is shown in Figure 30. It can be seen that by using a large
Quality factor, the relaxation terms in the viscoacoustic equation are canceled out and we are left
with the acoustic case.

If we want to simulate a more realistic attenuation, then we just have to set the according Quality
factor for different types of lithologies (10 ≤ Q ≤ 200). In Figure 31, we compare the analytical
solution to a numerical simulation where the Quality factor was set to 1.5 (this is a very low value
that was chosen just to exaggerate the attenuation of the wavefield for visualization purposes). As
we will show later, the Standard Linear Solid mechanism is the more appropriate model to simulate
realistic wave attenuation as it is frequency dependent (higher frequencies are more attenuated).

59

Figure 30: Comparison of the Acoustic analytical solution (red) with the simulated Viscoacoustic
solution (blue). It can be seen how these two overlap, thus proving that the Viscoacoustic solution
is reduced to the Acoustic case when a large Quality factor is chosen.

Figure 31: Comparison of the Acoustic analytical solution (red) with the simulated Viscoacoustic
solution (blue). It can be seen how the numerical solution is attenuated when choosing a small
Quality factor (Q = 1.5).

60

4.1.2 Absorbing Boundaries

The absorbing boundary conditions can be implemented just by tapering the Q-model at the model
edges, as illustrated in Figures 17 and 18. Thus, the same viscoacoustic equations can be used
both inside the model itself and in the absorbing boundaries.

Homogeneous Model

The results for the Standard Linear Solid mechanism with a time-dependent density (equivalent
to C-PML) for a homogeneous model are presented in Figure 32. A similar result is obtained if
the Maxwell model is chosen. It can be seen that the wavefield is highly damped is it enters the
absorbing boundary area until it is completely dissipated. In this case scenario, the absorbing
boundary has a width of 20 grid points and completely envelops the model.

Figure 32: Snapshots from the Viscoacoustic simulation using the SLS model. Parameters: 201x201
square mesh, dx = 10m, dt = 0.5ms, Nt = 2000 (giving a total simulation time of 1s). The
differentiator length is 8. The model is homogeneous, with a P wave velocity of 2000m/s, a
density of 2000kg/m3 and a quality factor of 105. The Q model is tapered at the borders, reaching
a Qmin value of 1.1. The source pulse is a Ricker Wavelet with a dominant frequency of 25Hz,
which is placed in the middle of the model (x = 1000m, z = 1000m). Nb = 20 (Number of grid
points for the absorbing boundary).

61

Layered Model

The absorbing boundaries also perform well in heterogeneous cases. Figure 33 depicts the response
for a layered model using the Maxwell mechanism. The modeling parameters are the same as
with the homogeneous case, but we introduce 3 layers that have P wave velocities of 2000, 2500,
and 3000m/s, respectively. Each layer also corresponds to a respective density of 2000, 2500, and
3000kg/m3. The velocities and densities increase with depth. The source is positioned in the
middle of the first layer. In this case scenario, the absorbing boundary has a width of 30 grid
points and completely envelops the model.

The results clearly show that the wavefield is completely absorbed once it reaches the boundary
area.

Figure 33: Snapshots from the Viscoacoustic simulation using the Maxwell model. Parameters:
201x201 square mesh, dx = 10m, dt = 0.5ms, Nt = 4000 (giving a total simulation time of 2s).
The differentiator length is 8. The three layered model has an increasing velocity/density with
depth. The quality factor is 105. The Q model is tapered at the borders, reaching a Qmin value
of 1.1. The source pulse is a Ricker Wavelet with a dominant frequency of 25Hz, which is placed
in the middle of the first layer (x = 1000m, z = 350m). Nb = 30 (Number of grid points for the
absorbing boundary).

62

Marmousi Model

In this section, we present the results of applying our method to a highly complex subsurface
model. For this case scenario, we consider the Marmousi model. The top boundary is considered
perfectly reflective, and the Maxwell mechanism is utilized. Also, we place the source in the middle
of the model just below the water-air interface.

Figure 34 shows the Marmousi velocity and density models utilized. The model is rectangular
(500x174) with a grid spacing interval of 20m.

Figure 34: Marmousi velocity model (top) and density model (bottom). The mesh is 500x174 with
dx = 20m.

For the simulation, we use a time sampling interval of 0.5ms and a total simulation time of 4s
(Nt = 8000). The differentiator length (radius) is 8. The Quality factor is set at 105. The source
pulse is a Ricker Wavelet with a dominant frequency of 10Hz. The absorbing boundary width is
30. Several snapshots of the simulated wavefield are shown in Figure 35.

The corresponding seismogram is shown in Figure 36. The receivers are placed just below the
topside of the model (below the water surface) and cover the whole length of the model.

From the results, it can be seen that as the wavefield enters the absorbing edges, it is properly
damped, regardless of the incidence angle.

63

Figure 35: Snapshots from the Viscoacoustic simulation using the Marmousi model. Parameters:
500x174 mesh, dx = 20m, dt = 0.5ms, Nt = 8000 (giving a total simulation time of 4s). The
differentiator length is 8. The quality factor is 105. The Q model is tapered at the borders, reaching
a Qmin value of 1.1. The source pulse is a Ricker Wavelet with a dominant frequency of 10Hz.
Nb = 30.

64

Figure 36: The Seismogram obtained from the simulation by placing a line of hydrophones just
below the water-air interface. Here, the absorbing boundary area is cut from the seismogram

4.1.3 Standard Linear Solid vs Maxwell

Here, we will exemplify the effectiveness of the absorbing boundaries by employing and analyzing
the Standard Linear Solid and Maxwell mechanisms.

Model Parameters

For all cases, we define a 401x401 mesh with a grid interval of 10m. The time stepping interval is
0.5ms and the number of time steps is 3500 (1.75s simulation time). The differentiator length is
8. The absorbing layer has a width of 30 grid points and it encapsulates the model. The model is
homogeneous with a P wave velocity of 2000m/s and a density of 2000kg/m3. The quality factor
is 105. We place a receiver at (x = 3500m, y = 2000m).

Since the edge artifacts resulting from this method are small, we will show an amplified version of
the results (both the trace recording and the wavefield have a zoom factor of around 100 compared

65

to the results shown in the previous sections).

We have shown that a SLS mechanism with a time-dependent density is equivalent to the C-PML
boundary conditions. The amplified error resulting from this mechanism using a 15Hz Ricker
Wavelet as a source is shown in Figure 37.

Figure 37: Edge Artifacts from the SLS mechanism. The source is a Ricker wavelet with a dominant
frequency of 15Hz. The absorbing boundary width is 30 grid points.

From the figure, we can distinguish two main types of edge artifacts. The first one is a reflection
that appears as the wavefield enters the absorbing boundary. This can be seen clearly in the 1.25s
snapshot. The second one is a reflection that appears as the wavefield hits the outer boundary of
the absorbing layer. At the 1.5s snapshot, it can be seen how this second reflection develops.

In the following, we will show the behavior of these two errors when choosing different dominant
frequencies for the source signal and different viscoacoustic kernels.

In Figure 38, the different errors are plotted for both the Standard Linear Solid and Maxwell
mechanisms for a dominant frequency of 15Hz and 25Hz, respectively.

66

Figure 38: The reflection artifacts for the Standard Linear Solid mechanism (top) and Maxwell
mechanism (bottom). For each case, we show the results for a dominant frequency of 15Hz (left)
and 25Hz (right).

Firstly, from these results, we can say that the Maxwell model appears to perform better. In
the 25Hz case, the second reflection, which comes from the outer edge of the absorbing region, is
completely damped, whereas we can still see it in the SLS case. Overall, the Maxwell mechanism
seems to provide lower amplitude reflections than its counterpart. Secondly, the frequency of the
outer reflection produced by the Maxwell mechanism seems to be proportional to the original
dominant frequency of the wavefield. Whereas, for the SLS mechanism, it can be seen that the
reflection has a lower frequency than the original wavelet.

This behavior can be analyzed in more detail by looking at the trace recordings (Figure 39 and
40).

67

Figure 39: Trace comparison between the Maxwell and SLS mechanisms for a wavelet with a
dominant frequency of 15Hz.

Figure 40: Trace comparison between the Maxwell and SLS mechanisms for a wavelet with a
dominant frequency of 25Hz

68

Reflections due to abrupt change in viscosity

Again, we can see the reflections caused by the abrupt change in the viscoacoustic parameters as
the wavefield enters the absorbing region, just after the 1s mark (for every case). This reflection
is proportional to the dominant frequency of the original wavelet for both mechanisms. For the
Maxwell model it has a lower amplitude.

This phenomenon is pointed out by Borcherdt 1982, which states that in anelastic media, abrupt
variations in relaxation times can result in the emergence of reflected and refracted waves. In order
to minimize the reflections caused by the change in viscosity, the taper function for the absorbing
region could be modified in a way that allows for a smoother transition.

Reflections due to insufficient damping

From the figures, we can see that both mechanisms perform better when the dominant frequency
of the source wavelet is higher. In the 25Hz case, the Maxwell mechanism manages to completely
absorb the wavefield (no reflection observed after the 1.4s timestamp), while the SLS mechanism
shows a very low frequency reflection with a relatively small amplitude. In the 15Hz case, both
the Maxwell and SLS mechanisms are not able to completely absorb the wavefield. Again, the
SLS reflection has a lower frequency than the original wavelet, while the Maxwell model gives a
reflection with a frequency proportional to the original wavelet. Overall, the SLS error is higher
than the Maxwell one.

In the low frequency case, the damping of the wavefield in both cases could be improved by
increasing the width of the absorbing region (e.g. increase from 30 to 50 grid points).

From these results, we can say that the Maxwell mechanism appears to dampen all frequencies
of the wavefield in the same manner, while the SLS mechanism shows a frequency dependent
absorption behavior, as the higher frequencies are better damped while it struggles with the lower
frequency components.

Plane Wave

In order to analyze this frequency dependent absorption behavior, we will make use of a plane
wave. According to Ursin 1983, a downgoing wave in a homogeneous medium that has a unit
amplitude is given by:

exp(−ikz|z|) (115)

This equation describes how the amplitude of a wave changes as it travels through a medium,
taking into consideration the depth/distance from the source (|z|) and the vertical wavenumber
(kz).

The vertical wavenumber (kz) has the following expression:

kz =
ω

c
cos(θ) (116)

where θ represents the angle between the z-axis and the wave propagation direction.

For a viscoelastic medium, the bulk modulus and density can be written in the frequency domain
as:

K(ω) = K0G(ω),

ρ(ω) = ρ0G
−1(ω).

(117)

where G is the complex modulus. Thus, the wave velocity (c) can be written as:

69

c =

√
K(ω)

ρ(ω)
=

√
K0

ρ0
G(ω) (118)

Standard Linear Solid

For the SLS medium, G is given by Carcione and Casula 1992 as:

G(ω) =
1 + iωτϵ
1 + iωτσ

(119)

The wave velocity is then calculated as:

c =
1 + iωτϵ
1 + iωτσ

√
K0

ρ0
(120)

For normal incidence, the vertical wavenumber kz becomes:

kz =
ω

c0

1 + iωτϵ
1 + iωτσ

(121)

Finally, the wave in the SLS medium can be described by the expression:

exp

[
iz

(
ω

c0

)
1 + iωτϵ
1 + iωτσ

]
(122)

which can be separated into real and imaginary parts:

exp

[
iz

(
ω

c0

)
1 + ω2τϵτσ
1 + ω2τ2σ

]
exp

[(
−z
c0

)
ω2(τϵ − τσ)

1 + ω2τ2σ

]
(123)

The second part of this expression (the real part) governs the wave attenuation (amplitude atten-
uation) for SLS (C-PML). The relaxation times τϵ and τσ depend on the dominant frequency (f0)
and the Quality factor (Q). Also, in this case, the absorption is frequency dependent, as we have
the angular frequency (ω).

Maxwell

For the Maxwell medium, G is given by Carcione and Casula 1992 as:

G(ω) =

(
1− i

ωτ

)−1

(124)

The wave velocity is then calculated as:

c =

(
1− i

ωτ

)−1
√
K0

ρ0
(125)

For normal incidence, the vertical wavenumber kz becomes:

kz =
ω

c0
− i

c0τ
(126)

70

Finally, the wave in the Maxwell medium can be described by the expression:

exp

(
−iωz
c0

)
exp

(
−z
c0τ

)
(127)

The plane wave attenuation is given by the second part of this expression (the real part). τ depends
on the dominant frequency (f0) and the Quality factor (Q). In this case, the absorption is frequency
independent.

Based on the above equations, the frequency versus attenuation responses for the Maxwell and
SLS mechanisms is shown in Figure 41.

Figure 41: Frequency versus attenuation response for the Maxwell and SLS mechanisms. The
dominant frequency of the propagating wavefield is 15Hz (f0 = 15Hz). The Quality factor is 1.1,
c0 = 2000m/s and z = 150m.

From the figure, it can be seen that if the absorbing boundary width is big enough, the Maxwell
model manages to achieve complete attenuation for all frequencies, whereas the SLS model fails
to dampen the lower frequencies. This behavior for the SLS mechanism is valid regardless of how
much we increase the absorbing boundary width. This is the same behavior we had observed in
our simulations.

71

4.2 Benchmarks

In this section, we will compare the performance of our different implementations for the finite-
difference code. The code will be benchmarked in terms of runtime and relative speedup.

4.2.1 Performance Metrics

In order to test the performance of the different implementations, we will use the runtime and the
relative speedup as metrics.

For each benchmark, we will compute the runtime for different model sizes: 100x100, 250x250,
500x500, 1000x1000, 2000x2000, 3000x3000, 4000x4000, 5000x5000, and 6000x6000. For all of
them, we consider 1000 time steps, with dt = 0.5ms and a simulation time of 0.5s. The differenti-
ator length is 8, dx = 10m, vp = 2000m/s, ρ = 2000kg/m3, and Q = 104. The source is a Ricker
wavelet with a central frequency of 25Hz.

In the GPU implementation, we use a 2D grid containing 2D blocks. The block size used is 16x16.

For each test, the runtime is the arithmetic average of 3 different runs:

Runtime =
1

n

n∑
i=1

ti (128)

where the runtime is measured in seconds and n is the total number of runs (3 in our case),

The speedup is measured as the ratio of a reference implementation time (in our case the Numba
CPU serial implementation) to the time of the current tested implementation.

S =
treference
tcurrent

(129)

It is essential to note that our measurements are limited to the computational time of the AC2D
solver. In our calculations, we do not account for the time required for data preparation and saving
the final results. In addition, for the Julia CUDA and Julia Metal M1 GPU implementation, we
start the timing from the second time step iteration, as it is in the first iteration that the kernel
functions are first accessed and compiled, thus adding significant latency.

4.2.2 Test Systems

All of the benchmarks, with the exception of one, are performed on a Dell Inc. Precision 7560
laptop. The operating system is a 64-bit (x86 64) Ubuntu 22.04.2 LTS Linux distribution. Only the
Julia Metal M1 implementation (which is shown in Figure 45) will be carried on a 2020 MacBook
Pro, which is the first laptop that uses the M1 chip. The hardware specifications of the laptops
are shown in Table 2.

System CPU RAM GPU

Dell Precision 7560
Intel Core i9-11950H
11th Gen @2.6GHz x 16

64 GB Nvidia RTX A4000 Mobile

MacBook Pro 2020 Apple M1 8 cores 16GB M1 integrated GPU 8 cores

Table 2: Hardware Characteristics

72

The Intel processor has 16 threads. The RAM memory operates at a frequency of 3200MHz. The
Nvidia RTX A4000 mobile has 8 Gb of GDDR6 memory, a BUS width of 256 bit, 5120 CUDA
cores, and operates at a base frequency of 1140 MHz.

For all the implementations that require C, we use the GCC 8.5.0 compiler with the following flags:
-03, -ffast-math and -fopenmp (for the multithreaded code). For the Python implementation we
use the 3.9.13 version and for Julia we use the 1.9.2 version.

The Nvidia CUDA GPU-based implementations have been compiled with the NVCC compiler,
which is included in the CUDA software development toolkit. The NVCC compiles the CUDA
host code using the GCC compiler of the system. The CUDA toolkit version is 12.0.

4.2.3 Saxpi

All the Saxpy benchmarks will not be showcased as they resemble the finite difference results.
Thus, they can be found in the GitHub repository. Here, we only present Figure 42 that shows
how the Julia CPU, Multithread, and GPU performance scales with the problem size.

Figure 42: Julia serial CPU (black), Multithread (blue), and GPU (red) Saxpy implementations
with varying problem sizes. The OY ans OX axis are logarithmic here. The runtime is given in
milliseconds.

This visualization highlights an important observation: when considering the overall performance,
GPU implementations emerge as the fastest methods, followed by Multithread and serial CPU
implementations. However, it is essential to note that this trend holds true only for sufficiently
large problem sizes. For smaller problems, the additional overhead of GPU and Multithread
versions actually makes them slower compared to the CPU serial implementation. Consequently,
when selecting the optimal approach for computing a task, careful consideration must be given to
whether the problem size justifies the extra effort for GPU or Multiple cores optimization.

73

4.2.4 Viscoacoustic Modelling

The results presented in each of these tests are obtained from modeling a single shot using the
viscoacoustic code. The parameters used for these models are detailed at the beginning of this
chapter.

Figure 43 illustrates the runtimes associated with the serial CPU-based implementation.

Figure 43: Serial CPU implementations for one shot using the viscoacoustic finite-difference method
with varying problem size: Python For Loop (orange), NumPy (green), Numba (black), Cython
(purple), C (blue) and Julia (red). The runtime is given in seconds.

There are several important observations that can be made:

1. The Python For Loop method, despite its simplicity, struggles with the complexity of the
problem as the runtime rapidly escalates with the model size. The vectorized NumPy method
performs adequately for smaller models, but its viability decreases as the problem size in-
creases.

2. If the problem size is relatively small, most methods prove efficient, exhibiting relatively low
runtimes.

3. Numba and Cython serve as viable alternatives to C, despite their slightly inferior perform-
ance, as they are more easy to implement and work with in comparison to C.

4. C has low runtimes and scales well with the model size, but it is also the method that requires
the most lines of code and it poses more implementation challenges. The SWIG option, which
was not included here, performs similarly to C, thus making it a good wrapper option.

5. Julia outperforms the other methods. Its implementation is relatively straightforward and
similar to Python in certain aspects. The base version performs similarly to C. Here, we
show the results from an optimized version that makes use of the Loop Vectorization package.
The @turbo macro applied to each for loop enables automatic optimization, including loop
unrolling, instruction-level parallelism, and efficient use of CPU cache. This macro attempts

74

to restructure the execution so that multiple iterations of the for loop can be performed at
once using SIMD instructions.

Figure 44 presents the results of the multithreaded scripts. These indicate that all multithreaded
implementations can achieve a speedup of 2-4 times compared to their serial CPU counterparts.
Again, the C and Julia implementations deliver the best performance.

Figure 44: Multithread implementations for one shot using the viscoacoustic finite difference
method with varying problem size: Numba (black), Cython (purple), C (blue) and Julia (red).
The number of threads is set at 16. The runtime is given in seconds.

Finally, the GPU implementations are presented in Figure 45. These implementations exhibit
a substantial reduction in runtimes, achieving speedups ranging from 10 to 20 times when com-
pared to their serial CPU counterparts. The CUDA and Python Numba CuPy implementations
demonstrate similar runtime trends as the model size increases. Once again, Julia is the fastest
implementation.

Even though all of these methods rely on CUDA at their core, Julia outperforms the rest of them.
This superior performance can be attributed to Julia’s automatic optimization capabilities, which
strive to optimize the given problem as efficiently as possible.

Another important aspect is that the Numba CuPy implementation, despite its relatively poorer
performance with smaller problem sizes, matches the performance of CUDA C with larger problem
sizes. Thus, high performance can be achieved with a more user-friendly option, which is easier to
implement, and while remaining in the Python ecosystem.

Lastly, the Metal M1 implementation carried out on the MacBook Pro yields impressive results.
For smaller problem sizes, its performance closely matches the other implementations (carried
out on the Dell workstation), being only slightly slower when larger model sizes are handled.
It’s important to note that the MacBook, despite its smaller size and weight, still delivers high
performance. Moreover, it has a lower price point and is much more portable.

Figure 46 provides a comparative analysis of the Numba serial CPU, Multithread, and GPU
implementations. The large contrast in performance between these methods is evident. The CPU

75

version exhibits the least efficient scaling, while the GPU version demonstrates the most efficient
scaling. Thus, when dealing with projects that require a large number of shots to be modeled,
using the GPU can dramatically improve the runtime.

Figure 45: GPU implementations for one shot using the viscoacoustic finite difference method with
varying problem size: Numba CuPy (black), CUDA C (blue), Julia CUDA (red) and Julia Metal
M1 (purple). The blocksize is 16x16. The runtime is given in seconds.

Figure 46: CPU, Multithread and GPU implementations using Numba: Python Numba serial CPU
(black), Multithread Numba (blue) and Numba CuPy GPU (green).

76

Figure 47 shows the relative speedup of different implementations based on their runtime on the
6000x6000 model. The base reference here is considered the Python Numba serial CPU imple-
mentation.

Figure 47: The relative speedup of the different implementations when compared to the Numba
serial CPU version.

77

5 Conclusion and Discussion

This section summarizes the main takeaways from this thesis, evaluates whether the project’s
objectives were met, and discusses the limitations and future work.

In this thesis, we analyzed and implemented a viscoacoustic version of the wave equation. One of
the primary goals was to explain the C-PML boundary conditions in terms of viscoelastic kernels
and to express its principles in terms of relatable properties. We have shown that the C-PML
boundary conditions can be described by a wave equation that incorporates a time-dependent
density and bulk modulus. By using this approach, the same sets of equations can be used both
inside and outside the absorbing zone. It is only the model’s Quality factor that needs to be
changed.

Different viscoelastic models can be implemented, such as the Standard Linear Solid or Maxwell
mechanisms. The former was shown to better simulate realistic wave attenuation, while the lat-
ter provides frequency independent attenuation, which might be more desirable for an absorbing
boundary. A potential area for future improvement could be researching and testing more vis-
coelastic models, which might provide better performance.

The second major aim of this thesis was to investigate whether the current personal laptops that
are offered on the market are good enough for performing seismic modeling. To assess this, we
employed a series of optimization strategies, testing implementations on a single core CPU, multiple
cores, or the GPU using Python, C, and Julia.

From our benchmarks, we discovered that significant speed improvements can be achieved by
applying the principles of heterogeneous computing, particularly by delegating the heavy compu-
tational tasks to the GPU. This analysis has shown that there are various strategies one can adopt
to optimize their code.

Moreover, we found that Python, when equipped with the right modules and packages, can be
a powerful tool for optimization, capable of rivaling C and CUDA in terms of performance. We
also explored the capabilities of Julia, a high-level language known for its user-friendly interface,
demonstrating its potential to even outperform C.

A key takeaway from this study is the potential of unified memory, a new paradigm that is likely
to become the standard for future GPU hardware. We put this into practice by utilizing an Apple
MacBook Pro equipped with an M1 chip. The benchmarking results revealed that by using this
laptop, which is very portable and popular device among students, one can efficiently handle 2D
seismic experiments in a reasonable time frame.

These experiments provide a foundation for further development into comprehensive schemes like
Reverse Time Migration or Full Waveform Inversion. Thus, it demonstrates the increasingly ac-
cessible nature of seismic modeling, which is no longer confined to high-end, dedicated systems but
is possible on personal, portable devices.

One limitation of the benchmarks is that they use a relatively simple quantity, namely, time as a
performance metric. But, this does not tell the whole story, and does not offer any information
regarding where bottlenecks in your computation are. It is essential to determine whether your
computation is compute-bound or memory-bound, as this will dictate your optimization strategy.

In a compute-bound case, the speed of the calculation is limited by the processor’s or GPU’s speed.
In other words, the majority of the program’s time is spent performing calculations (such as the
mathematical operations of the finite difference method). In this case, the faster the processor or
the GPU is, the faster the computation will be.

On the other hand, if a computation is memory-bound, it indicates that its performance is primarily
constrained by the speed of memory access. In other words, the program spends a significant time
waiting for data to be fetched from memory rather than performing calculations.

An improved benchmarking model that takes advantage of this is the Roofline method. However,
it is more challenging to implement. But it is for sure an important future work perspective, as it

78

allows you to better compare results between different workstations and explicitly tells you if the
code performance can be further improved.

In our modeling tests, we are likely memory-bound. If we were handling a 3D model, where
the number of computations for each grid point increases, the problem would most likely become
compute-bound. In such a case, the speed of the GPU implementations compared to a CPU
implementations would also increase significantly.

In summary, this thesis has achieved its proposed objectives and provided meaningful insights
into the theory behind absorbing boundaries. It underscores the role of effective programming
and optimization strategies, demonstrating that seismic modeling can indeed be executed on per-
sonal laptops, thereby making the field more accessible. However, there’s always room for further
improvement and advancement, keeping the domain exciting and continually evolving.

79

Bibliography

Igel, H. (2017). Computational Seismology: A Practical Introduction. Oxford University Press. isbn:
9780198717409. url: https://books.google.no/books?id=zslLDQAAQBAJ.

Igel, H. and M. Stupazzini (Aug. 2015). ‘Simulation of Seismic Wave Propagation in Media with
Complex Geometries’. In.

Devaney, A. J. and M. L. Oristaglio (1984). ‘Geophysical diffraction tomography’. In: SEG Tech-
nical Program Expanded Abstracts 1984, pp. 330–333. doi: 10.1190/1.1894018. eprint: https:
//library.seg.org/doi/pdf/10.1190/1.1894018. url: https://library.seg.org/doi/abs/10.1190/1.
1894018.

Wu, R. S. and M. N. Toksöz (1987). ‘Diffraction tomography and multisource holography applied
to seismic imaging’. In: Geophysics 52, pp. 11–25.

Pratt, R. G. and M. H. Worthington (1988). ‘The application of diffraction tomography to cross-
hole seismic data’. In: GEOPHYSICS 53.10, pp. 1284–1294. doi: 10.1190/1.1442406. eprint:
https://doi.org/10.1190/1.1442406. url: https://doi.org/10.1190/1.1442406.

Gan, H., R. Ludwig and P. L. Levin (Feb. 1995). ‘Nonlinear diffractive inverse scattering for multiple
scattering in inhomogeneous acoustic background media’. In: The Journal of the Acoustical
Society of America 97.2, pp. 764–776. issn: 0001-4966. doi: 10.1121/1.412123. eprint: https:
//pubs .aip .org/asa/jasa/article - pdf/97/2/764/12210077/764\ 1\ online .pdf. url: https :
//doi.org/10.1121/1.412123.

Gelius, L.-J. (1995). ‘Generalized acoustic diffraction tomogra phy1’. In: Geophysical Prospecting
43.1, pp. 3–29. doi: https : //doi . org/10 . 1111/ j . 1365 - 2478 . 1995 . tb00122 . x. eprint: https :
//onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2478.1995.tb00122.x. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1365-2478.1995.tb00122.x.

Xie, Y., L. Li and Y. Yang (2018). ‘3D wavefront tomography: Part I 1 — NIP wavefront tomo-
graphy’. In: SEG Technical Program Expanded Abstracts 2018, pp. 5178–5182. doi: 10.1190/
segam2018-2996300.1. eprint: https://library.seg.org/doi/pdf/10.1190/segam2018-2996300.1.
url: https://library.seg.org/doi/abs/10.1190/segam2018-2996300.1.

Baysal, E., D. Kosloff and J. Sherwood (Nov. 1983). ‘Reverse-Time Migration’. In: Geophysics 48,
pp. 1514–1524. doi: 10.1190/1.1441434.

McMechan, G. (Apr. 1983). ‘Migration by extrapolation of time-dependent boundary values’. In:
Geophysical Prospecting 31, pp. 413–420. doi: 10.1111/j.1365-2478.1983.tb01060.x.

Dai, W., X. Wang and G. T. Schuster (2011). ‘Least-squares migration of multisource data with
a deblurring filter’. In: GEOPHYSICS 76.5, R135–R146. doi: 10.1190/geo2010-0159.1. eprint:
https://doi.org/10.1190/geo2010-0159.1. url: https://doi.org/10.1190/geo2010-0159.1.

Xu, s., Y. Zhang and B. Tang (Mar. 2011). ‘3D angle gathers from reverse time migration’. In:
Geophysics 76. doi: 10.1190/1.3536527.

Zhang, Y., L. Duan and Y. Xie (Sept. 2013). ‘A stable and practical implementation of least-squares
reverse time migration’. In: vol. 80, pp. 3716–3720. doi: 10.1190/segam2013-0577.1.

Tarantola, A. (1984). ‘Inversion of seismic reflection data in the acoustic approximation’. In: GEO-
PHYSICS 49.8, pp. 1259–1266. doi: 10.1190/1.1441754. eprint: https://doi.org/10.1190/1.
1441754. url: https://doi.org/10.1190/1.1441754.

Pratt, R. G. and M. H. Worthington (1990). ‘INVERSE THEORYAPPLIED TOMULTI-SOURCE
CROSS-HOLE TOMOGRAPHY.’ In: Geophysical Prospecting 38.3, pp. 287–310. doi: https://
doi.org/10.1111/j.1365-2478.1990.tb01846.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1111/j.1365-2478.1990.tb01846.x. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-
2478.1990.tb01846.x.

Sambridge, M. S., A. Tarantola and B. L. N. Kennett (1991). ‘AN ALTERNATIVE STRATEGY
FOR NON-LINEAR INVERSION OF SEISMIC WAVEFORMS1’. In: Geophysical Prospecting
39.6, pp. 723–736. doi: https://doi.org/10.1111/j.1365-2478.1991.tb00341.x. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2478.1991.tb00341.x. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1365-2478.1991.tb00341.x.

Virieux, J. and S. Operto (Nov. 2009). ‘An overview of full-waveform inversion in exploration
geophysics’. In: Geophysics 74, WCC1–WCC26. doi: 10.1190/1.3238367.

Vigh, D. et al. (Jan. 2014). ‘Elastic full-waveform inversion application using multicomponent
measurements of seismic data collection’. In: Geophysics 79. doi: 10.1190/geo2013-0055.1.

80

https://books.google.no/books?id=zslLDQAAQBAJ
https://doi.org/10.1190/1.1894018
https://library.seg.org/doi/pdf/10.1190/1.1894018
https://library.seg.org/doi/pdf/10.1190/1.1894018
https://library.seg.org/doi/abs/10.1190/1.1894018
https://library.seg.org/doi/abs/10.1190/1.1894018
https://doi.org/10.1190/1.1442406
https://doi.org/10.1190/1.1442406
https://doi.org/10.1190/1.1442406
https://doi.org/10.1121/1.412123
https://pubs.aip.org/asa/jasa/article-pdf/97/2/764/12210077/764_1_online.pdf
https://pubs.aip.org/asa/jasa/article-pdf/97/2/764/12210077/764_1_online.pdf
https://doi.org/10.1121/1.412123
https://doi.org/10.1121/1.412123
https://doi.org/https://doi.org/10.1111/j.1365-2478.1995.tb00122.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2478.1995.tb00122.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2478.1995.tb00122.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1995.tb00122.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1995.tb00122.x
https://doi.org/10.1190/segam2018-2996300.1
https://doi.org/10.1190/segam2018-2996300.1
https://library.seg.org/doi/pdf/10.1190/segam2018-2996300.1
https://library.seg.org/doi/abs/10.1190/segam2018-2996300.1
https://doi.org/10.1190/1.1441434
https://doi.org/10.1111/j.1365-2478.1983.tb01060.x
https://doi.org/10.1190/geo2010-0159.1
https://doi.org/10.1190/geo2010-0159.1
https://doi.org/10.1190/geo2010-0159.1
https://doi.org/10.1190/1.3536527
https://doi.org/10.1190/segam2013-0577.1
https://doi.org/10.1190/1.1441754
https://doi.org/10.1190/1.1441754
https://doi.org/10.1190/1.1441754
https://doi.org/10.1190/1.1441754
https://doi.org/https://doi.org/10.1111/j.1365-2478.1990.tb01846.x
https://doi.org/https://doi.org/10.1111/j.1365-2478.1990.tb01846.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2478.1990.tb01846.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2478.1990.tb01846.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1990.tb01846.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1990.tb01846.x
https://doi.org/https://doi.org/10.1111/j.1365-2478.1991.tb00341.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2478.1991.tb00341.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2478.1991.tb00341.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1991.tb00341.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1991.tb00341.x
https://doi.org/10.1190/1.3238367
https://doi.org/10.1190/geo2013-0055.1

Li, Y. and L. Demanet (Jan. 2016). ‘Full waveform inversion with extrapolated low frequency data’.
In: GEOPHYSICS 81. doi: 10.1190/geo2016-0038.1.

Clayton, R. and B. Engquist (1977). ‘Absorbing boundary conditions for acoustic and elastic wave
equations’. In: Bulletin of the Seismological Society of America.

Reynolds, A. C. (Oct. 1978). ‘Boundary conditions for the numerical solution of wave propagation
problems’. In: Geophysics 43.6, pp. 1099–1110. issn: 0016-8033. doi: 10.1190/1.1440881. eprint:
https://pubs.geoscienceworld.org/geophysics/article-pdf/43/6/1099/3157858/1099.pdf. url:
https://doi.org/10.1190/1.1440881.

Higdon, R. L. (1991). ‘Absorbing boundary conditions for elastic waves’. In: GEOPHYSICS 56.2,
pp. 231–241. doi: 10 . 1190 /1 . 1443035. eprint: https : / / doi . org / 10 . 1190 /1 . 1443035. url:
https://doi.org/10.1190/1.1443035.

Cerjan, C. et al. (Apr. 1985). ‘A Nonreflecting boundary-condition for discrete acoustic and elastic
wave-equations’. In: Geophysics 50, pp. 705–708. doi: 10.1190/1.1441945.

Sochacki, J. S. et al. (1987). ‘Absorbing boundary conditions and surface waves’. In: Geophysics
52, pp. 60–71.

Serón, F., J. Badal and F. Sm (Apr. 1996). ‘A numerical laboratory for simulation and visualization
of seismic wavefields1’. In: Geophysical Prospecting 44, pp. 603–642. doi: 10 .1111/ j . 1365 -
2478.1996.tb00168.x.

Berenger, J.-P. (1994). ‘A perfectly matched layer for the absorption of electromagnetic waves’.
In: Journal of Computational Physics 114.2, pp. 185–200. issn: 0021-9991. doi: https : / /
doi .org/10 .1006/ jcph .1994.1159. url: https ://www.sciencedirect .com/science/article/pii/
S0021999184711594.

Francis, C. and C. Tsogka (Jan. 2001). ‘Application of the Perfectly Matched Absorbing Layer
Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media’. In: Geo-
physics 66, pp. 294–307. doi: 10.1190/1.1444908.

Komatitsch, D. and J. Tromp (July 2003). ‘A Perfectly Matched Layer absorbing boundary con-
dition for the second-order seismic wave equation’. In: Geophysical Journal International 154,
pp. 146–153. doi: 10.1046/j.1365-246X.2003.01950.x.

Komatitsch, D. and R. Martin (Sept. 2007). ‘An unsplit convolutional Perfectly Matched Layer
improved at grazing incidence for the seismic wave equation’. In: Geophysics 72. doi: 10.1190/
1.2757586.

Zhang, W. and Y. Shen (July 2010). ‘Unsplit complex frequency shifted PML implementation
using auxiliary differential equation for seismic wave modeling’. In: Geophysics 75, T141–T154.
doi: 10.1190/1.3463431.

Drossaert, F. and A. Giannopoulos (Mar. 2007). ‘A nonsplit complex frequency-shifted PML based
on recursive integration for FDTD modeling of elastic waves’. In: Geophysics 72, T9–T17. doi:
10.1190/1.2424888.

Carcione, J. and D. Kosloff (Jan. 2013). ‘Representation of matched-layer kernels with viscoelastic
mechanical models’. In: International Journal of Numerical Analysis and Modeling 10.

Oak Ridge National Laboratory (2023). Frontier: America’s Next Frontier for Exploration in Sci-
ence and Technology. Accessed: 2023-05-20. url: https://www.olcf.ornl.gov/frontier/.

Ikelle, L. and L. Amundsen (2005). Introduction to Petroleum Seismology. Introduction to Petro-
leum Seismology v. 12. Society of Exploration Geophysicists. isbn: 9781560801290. url: https:
//books.google.no/books?id=o8IdyHUXpoMC.

Hudson, J. A. (1981). The Excitation and Propagation of Elastic Waves. Cambridge Monographs
on Mechanics and Applied Mathematics. Cambridge, Cambridge University Press 1980. doi:
https://doi.org/10.1002/zamm.19810610716.

Alterman, Z. and J. Karal F. C. (Feb. 1968). ‘Propagation of elastic waves in layered media by
finite difference methods’. In: Bulletin of the Seismological Society of America 58.1, pp. 367–
398. issn: 0037-1106. doi: 10.1785/BSSA0580010367. eprint: https://pubs.geoscienceworld.org/
ssa/bssa/article-pdf/58/1/367/5349940/bssa0580010367.pdf. url: https://doi.org/10.1785/
BSSA0580010367.

Boore, D. M. (1970). ‘Love waves in nonuniform wave guides: Finite difference calculations’. In:
Journal of Geophysical Research (1896-1977) 75.8, pp. 1512–1527. doi: https : / / doi . org /
10 . 1029 / JB075i008p01512. eprint: https : / / agupubs . onlinelibrary . wiley . com / doi / pdf / 10 .
1029 / JB075i008p01512. url: https : / / agupubs . onlinelibrary. wiley. com / doi / abs / 10 . 1029 /
JB075i008p01512.

81

https://doi.org/10.1190/geo2016-0038.1
https://doi.org/10.1190/1.1440881
https://pubs.geoscienceworld.org/geophysics/article-pdf/43/6/1099/3157858/1099.pdf
https://doi.org/10.1190/1.1440881
https://doi.org/10.1190/1.1443035
https://doi.org/10.1190/1.1443035
https://doi.org/10.1190/1.1443035
https://doi.org/10.1190/1.1441945
https://doi.org/10.1111/j.1365-2478.1996.tb00168.x
https://doi.org/10.1111/j.1365-2478.1996.tb00168.x
https://doi.org/https://doi.org/10.1006/jcph.1994.1159
https://doi.org/https://doi.org/10.1006/jcph.1994.1159
https://www.sciencedirect.com/science/article/pii/S0021999184711594
https://www.sciencedirect.com/science/article/pii/S0021999184711594
https://doi.org/10.1190/1.1444908
https://doi.org/10.1046/j.1365-246X.2003.01950.x
https://doi.org/10.1190/1.2757586
https://doi.org/10.1190/1.2757586
https://doi.org/10.1190/1.3463431
https://doi.org/10.1190/1.2424888
https://www.olcf.ornl.gov/frontier/
https://books.google.no/books?id=o8IdyHUXpoMC
https://books.google.no/books?id=o8IdyHUXpoMC
https://doi.org/https://doi.org/10.1002/zamm.19810610716
https://doi.org/10.1785/BSSA0580010367
https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/58/1/367/5349940/bssa0580010367.pdf
https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/58/1/367/5349940/bssa0580010367.pdf
https://doi.org/10.1785/BSSA0580010367
https://doi.org/10.1785/BSSA0580010367
https://doi.org/https://doi.org/10.1029/JB075i008p01512
https://doi.org/https://doi.org/10.1029/JB075i008p01512
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JB075i008p01512
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JB075i008p01512
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB075i008p01512
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB075i008p01512

Alford, R. M., K. R. Kelly and D. M. Boore (1974). ‘ACCURACY OF FINITE-DIFFERENCE
MODELING OF THE ACOUSTIC WAVE EQUATION’. In: GEOPHYSICS 39.6, pp. 834–
842. doi: 10.1190/1.1440470. eprint: https://doi.org/10.1190/1.1440470. url: https://doi.org/
10.1190/1.1440470.

Kelly, K. R. et al. (1976). ‘SYNTHETIC SEISMOGRAMS: A FINITE -DIFFERENCE AP-
PROACH’. In: GEOPHYSICS 41.1, pp. 2–27. doi: 10.1190/1.1440605. eprint: https://doi.org/
10.1190/1.1440605. url: https://doi.org/10.1190/1.1440605.

Madariaga, R. (June 1976). ‘Dynamics of an Expanding Circular Fault’. In: Bulletin of the Seis-
mological Society of America 66, pp. 639–666. doi: 10.1785/BSSA0660030639.

Virieux, J. and R. Madariaga (Apr. 1982). ‘Dynamic faulting studied by a finite difference method’.
In: Bulletin of the Seismological Society of America 72.2, pp. 345–369. issn: 0037-1106. doi:
10.1785/BSSA0720020345. eprint: https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/72/2/
345/5330336/bssa0720020345.pdf. url: https://doi.org/10.1785/BSSA0720020345.

Virieux, J. (1984). ‘SH-wave propagation in heterogeneous media: Velocity-stress finite-difference
method’. In: GEOPHYSICS 49.11, pp. 1933–1942. doi: 10 . 1190/1 . 1441605. eprint: https :
//doi.org/10.1190/1.1441605. url: https://doi.org/10.1190/1.1441605.

— (Jan. 1986). ‘P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference
method’. In: Geophysics 51, pp. 889–901. doi: 10.1190/1.1442147.

Levander, A. (Nov. 1988). ‘Fourth-order finite-difference P-S’. In: Geophysics 53, pp. 1425–1436.
doi: 10.1190/1.1442422.

Graves, R. W. (Aug. 1996). ‘Simulating seismic wave propagation in 3D elastic media using
staggered-grid finite differences’. In: Bulletin of the Seismological Society of America 86.4,
pp. 1091–1106. issn: 0037-1106. doi: 10.1785/BSSA0860041091. eprint: https://pubs.geoscienceworld.
org/ssa/bssa/article-pdf/86/4/1091/5343090/bssa0860041091.pdf. url: https://doi.org/10.
1785/BSSA0860041091.

Holberg, O. (1987). ‘Computational aspects of the choice of operator and sampling interval for
numerical differentiation in large-scale simulation of wave phenomena’. In: Geophysical P 35,
pp. 629–655.

Carcione, J. and G. Casula (Jan. 1992). ‘Generalized mechanical model analogies of linear vis-
coelastic behaviour,l., 235-256.’ In: Bollettino di Geofisica Teorica ed Applicata 34, pp. 235–
256.

Landro, M. and L. Amundsen (Apr. 2018). Introduction to Exploration Geophysics with Recent
Advances. isbn: 978-82-303-3763-9.

Cheng, J., M. Grossman and T. McKercher (2014). Professional CUDA C Programming. EBL-
Schweitzer. Wiley. isbn: 9781118739327. url: https://books.google.no/books?id=q3DvBQAAQBAJ.

Python Documentation (2023). Our Documentation — Python.org. Accessed: 2023-06-21. Python
Software Foundation. url: %5Curl%7Bhttps://www.python.org/doc/%7D.

NumPy Developers (2023). NumPy documentation — NumPy v1.25 Manual. Accessed: 2023-06-21.
url: https://numpy.org/doc/stable/.

Numba Documentation (2023). Numba Documentation. url: https://numba.readthedocs.io/en/
stable/index.html.

Cython Documentation (2023). Cython: C-Extensions for Python. Accessed: 2023-06-22. url: https:
//cython.org/#documentation.

SWIG Documentation (2023). SWIG Documentation. Accessed: 2023-06-22. url: https://www.
swig.org/exec.html.

Julia Documentation (2023). Julia Documentation. Accessed on June 22, 2023. url: https://docs.
julialang.org/en/v1/.

OpenMP Documentation (2023). OpenMP Documentation. Accessed on June 23, 2023. url: https:
//www.openmp.org/specifications/.

NVIDIA CUDA Documentation (2023). CUDA Documentation. Accessed: 2023-06-24. url: https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

CuPy Documentation (2023). CuPy Documentation. Accessed: 2023-06-24. url: https://cupy.dev.
Apple Developer Documentation (2023). Apple Developer Documentation. Accessed: 2023-06-23.

url: https://developer.apple.com/documentation/apple-silicon.
Julia Metal (2023). Julia Metal Documentation. url: https://juliagpu.org/post/2022-06-24-metal/.
Borcherdt, R. D. (Sept. 1982). ‘Reflection—refraction of general P-and type-I S-waves in elastic

and anelastic solids’. In: Geophysical Journal International 70.3, pp. 621–638. issn: 0956-540X.

82

https://doi.org/10.1190/1.1440470
https://doi.org/10.1190/1.1440470
https://doi.org/10.1190/1.1440470
https://doi.org/10.1190/1.1440470
https://doi.org/10.1190/1.1440605
https://doi.org/10.1190/1.1440605
https://doi.org/10.1190/1.1440605
https://doi.org/10.1190/1.1440605
https://doi.org/10.1785/BSSA0660030639
https://doi.org/10.1785/BSSA0720020345
https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/72/2/345/5330336/bssa0720020345.pdf
https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/72/2/345/5330336/bssa0720020345.pdf
https://doi.org/10.1785/BSSA0720020345
https://doi.org/10.1190/1.1441605
https://doi.org/10.1190/1.1441605
https://doi.org/10.1190/1.1441605
https://doi.org/10.1190/1.1441605
https://doi.org/10.1190/1.1442147
https://doi.org/10.1190/1.1442422
https://doi.org/10.1785/BSSA0860041091
https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/86/4/1091/5343090/bssa0860041091.pdf
https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/86/4/1091/5343090/bssa0860041091.pdf
https://doi.org/10.1785/BSSA0860041091
https://doi.org/10.1785/BSSA0860041091
https://books.google.no/books?id=q3DvBQAAQBAJ
%5Curl%7Bhttps://www.python.org/doc/%7D
https://numpy.org/doc/stable/
https://numba.readthedocs.io/en/stable/index.html
https://numba.readthedocs.io/en/stable/index.html
https://cython.org/#documentation
https://cython.org/#documentation
https://www.swig.org/exec.html
https://www.swig.org/exec.html
https://docs.julialang.org/en/v1/
https://docs.julialang.org/en/v1/
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://cupy.dev
https://developer.apple.com/documentation/apple-silicon
https://juliagpu.org/post/2022-06-24-metal/

doi: 10 .1111/ j .1365- 246X.1982 . tb05976 .x. eprint: https ://academic .oup .com/gji/article -
pdf/70/3/621/1727743/70-3-621.pdf. url: https://doi.org/10.1111/j.1365-246X.1982.tb05976.x.

Ursin, B. (1983). ‘Review of elastic and electromagnetic wave propagation in horizontally layered
media’. In: GEOPHYSICS 48.8, pp. 1063–1081. doi: 10.1190/1.1441529. eprint: https://doi.
org/10.1190/1.1441529. url: https://doi.org/10.1190/1.1441529.

83

https://doi.org/10.1111/j.1365-246X.1982.tb05976.x
https://academic.oup.com/gji/article-pdf/70/3/621/1727743/70-3-621.pdf
https://academic.oup.com/gji/article-pdf/70/3/621/1727743/70-3-621.pdf
https://doi.org/10.1111/j.1365-246X.1982.tb05976.x
https://doi.org/10.1190/1.1441529
https://doi.org/10.1190/1.1441529
https://doi.org/10.1190/1.1441529
https://doi.org/10.1190/1.1441529

Appendix: GitGub Repository

Since all the code implementations for the Saxpy function and 2D Viscoacoustic Finite Difference
Modeling are extensive they have been uploaded to a GitHub repository.

This repository contains all the source code and all the benchmarks results used in this thesis. This
can be accessed at the following link: https://github.com/StefanCatalinCraciun/Master-Thesis.git

Within the Repository there are two main folders: Saxpy and Viscoacoustic Modeling.

In the Saxpy folder we can find a jupyter notebook where all the benchmark times can be accessed
and viewed using plots. The src file contains all the source code.

The Viscoacoustic Modeling folder also contains a jupyter notebook where all the benchmark times
can be accessed and viewed using plots. For a detailed explanation of the code, the scripts within
the Python CPU For Loop folder can be viewed. Also, in the Visualization folder here you can
view several plots and a .mp4 video file that shows an animation of the propagating wavefield

84

https://github.com/StefanCatalinCraciun/Master-Thesis.git

	List of Figures
	List of Tables
	Introduction
	Motivation
	Boundary Conditions
	High Performance Computing
	Objectives

	Viscoacoustic Wave Theory
	Wave Equation
	The Finite-Difference Method
	Derivatives
	Higher Order Operators
	Discretization and Staggered Grids
	Analytical Solution
	Numerical Stability, Dispersion and Anisotropy

	Boundary Conditions
	Viscoelastic Media
	Time-Dependent Density
	Standard Linear Solid Model
	Maxwell Model
	Viscoelastic Equations of Motion
	Discretization and Staggered Grids
	Absorbing Boundaries and Tapering
	Comparison with C-PML

	Numerical Implementation and Optimization
	Saxpy
	Single Core CPU
	Multiple Core CPU
	GPU
	Apple Silicon Chip

	Viscoacoustic Finite Difference Modelling

	Results
	Viscoacoustic Modelling
	Comparison with the Analytical Solution
	Absorbing Boundaries
	Standard Linear Solid vs Maxwell

	Benchmarks
	Performance Metrics
	Test Systems
	Saxpi
	Viscoacoustic Modelling

	Conclusion and Discussion
	Bibliography

