
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Tor Kristian Ertsvik Andreassen

Automatic Penalty Parameter
Selection for the Distributed
Alternating Direction Method of
Multipliers

Master’s thesis in Cybernetics and Robotics
Supervisor: Damiano Varagnolo
Co-supervisor: Behdad Aminian
April 2023

Tor Kristian Ertsvik Andreassen

Automatic Penalty Parameter
Selection for the Distributed
Alternating Direction Method of
Multipliers

Master’s thesis in Cybernetics and Robotics
Supervisor: Damiano Varagnolo
Co-supervisor: Behdad Aminian
April 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Distributed optimization algorithms have become popular, in part
due to the increasing prevalence of embedded systems with com-
munication capabilities. The Alternating Direction Method of Multi-
pliers is one such algorithm. One concern is that its performance is
sensitive to the selection of the so-called penalty parameter. The con-
tribution of this thesis is to explore novel methods for automatically
selecting the penalty parameter. Two methods were explored, but
only one method saw promising results. A limitation of the method
is that its hyperparameters must be selected by the user, but it is eas-
ier to select these hyperparameters than to select the penalty param-
eter, due to their straightforward interpretation. Another limitation
is that the optimization algorithm tended to diverge when not using
complete graphs, but the specific issue underlying this problem was
identified.

iii

Sammendrag

Distribuerte optimaliseringsalgoritmer har blitt populære, delvis på
grunn av den økende utbredelsen av innvevde systemer som kan
kommunisere. En slik algoritme er Alternating Direction Method of
Multipliers. En utfordring er at ytelsen er følsom for valget av den
såkalte straffeparameteren. Denne oppgavens hovedformål er å ut-
forske nye metoder for automatisk valg av straffeparameteren. To
metoder ble evaluert, men bare én metode ga lovende resultater. En
begrensning ved metoden er at dens hyperparametre må velges av
brukeren, men siden metoden baserer seg på enkle prinsipper er det
lettere å velge disse hyperparametrene enn å velge straffeparame-
teren. En annen begrensning er at optimaliseringsalgoritmen hadde
en tendens til å divergere når komplette grafer ikke ble brukt, men
det spesifikke problemet som lå til grunn for dette ble identifisert.

v

Acknowledgements

I would like to express my gratitude to my supervisor, Damiano
Varagnolo, for his feedback and support during the course of my
thesis. I am also grateful to Behdad Aminian, who served as co-
supervisor. Working with them has significantly enhanced my skills
as an engineer. Finally, I would like to thank my family for their un-
conditional support during my studies.

vii

Contents

Abstract iii

Sammendrag v

Acknowledgements vii

List of Figures xiii

List of Algorithms xv

Acronyms xvii

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Research delimitation 2
1.4 Related work . 3
1.5 Report outline . 4

2 Theoretical background 5
2.1 Alternating Direction Method of Multipliers (ADMM) 5
2.2 Distributed optimization 6

2.2.1 Communication model 7
2.2.2 Optimization set-up 8

2.3 Distributed ADMM . 8

3 Automatic penalty parameter selection 11
3.1 Using the Fast Fourier Transform 12
3.2 Comparing finite differences of estimates 14

4 Experiments 19
4.1 Common experimental setup 19

4.1.1 Performance metric 19

ix

x CONTENTS

4.1.2 ADMM algorithm with performance metric . . 19
4.1.3 Creating random cost functions 21

4.2 Using the Fast Fourier Transform 22
4.2.1 Experimental setup 22
4.2.2 Results . 22

4.3 Comparing finite differences on problems with quadratic
cost functions . 23
4.3.1 Experimental setup 23
4.3.2 Results . 23

4.4 Comparing finite differences on problems with expo-
nential cost functions . 26
4.4.1 Experimental setup 26
4.4.2 Results . 26

4.5 Comparing finite differences on problems with quadratic
cost functions, with a random binomial graph 29
4.5.1 Experimental setup 29
4.5.2 Results . 29

5 Discussion 37
5.1 Using the Fast Fourier Transform 37
5.2 Comparing finite differences on complete graphs . . . 38
5.3 Comparing finite differences on random binomial graphs 39
5.4 Limitations and further work 40

6 Conclusion 43

List of Figures

3.1 A measure of reliability of an agent’s x estimates. The
blue sequence of x estimates in (a) is considered to
be more reliable than the orange sequence. In (b)
the (normalized) magnitudes obtained from the Fast
Fourier Transform of (a) is shown. The maximum mag-
nitude (excluding the first one, which is used for nor-
malization) gives an indication of the reliability of the
x estimates. 14

4.1 The performance of the FFT method for selecting ρ. 24

4.2 The mean maximum solution error when using the
FFT method to select ρ. 24

4.3 Box plots of the number of number of iterations re-
quired to achieve the solution error tolerance. The
FFT method was compared with using a fixed ρ. The
maximum number of allowed iterations was 100. . . 25

4.4 The performance of the finite differences method for
selectingρ, when using a complete graph and quadratic
cost functions. The results were compared with using
a fixed ρ to solve the same optimization problems.
The maximum allowed number of iterations was 100. 27

4.5 The mean maximum solution error when using the
finite differences method, using a complete graph and
quadratic cost functions 27

4.6 Box plots of the number of number of iterations re-
quired to achieve the solution error tolerance, when
using a complete graph and quadratic cost functions.
The finite differences method was compared with us-
ing a fixed ρ. The maximum number of allowed iter-
ations was 100. 28

xi

xii LIST OF FIGURES

4.7 The performance of the finite differences method for
selecting ρ, when using a complete graph and ex-
ponential cost functions. The results were compared
with using a fixed ρ to solve the same optimization
problems. The maximum allowed number of itera-
tions was 100. 30

4.8 The mean maximum solution error when using the
finite differences method, using a complete graph and
exponential cost functions 30

4.9 Box plots of the number of number of iterations re-
quired to achieve the solution error tolerance, when
using a complete graph and exponential cost func-
tions. The finite differences method was compared
with using a fixed ρ. The maximum number of al-
lowed iterations was 100. 31

4.10 Nine examples of the maximum solution error at each
iteration k, when the finite differences method was
used. A complete graph and exponential cost func-
tions were used, andρ0 = 100. The experiments plot-
ted were selected at random from the set experiments
that converged to a solution before k = 100. 32

4.11 The performance of the finite differences method for
selectingρ, when using a random binomial graph and
quadratic cost functions. The results were compared
with using a fixed ρ to solve the same optimization
problems. The maximum allowed number of itera-
tions was 100. 34

4.12 The mean maximum solution error when using the
finite differences method, using a random binomial
graph and quadratic cost functions 34

4.13 Box plots of the number of number of iterations re-
quired to achieve the solution error tolerance, when
using a random binomial graph and quadratic cost
functions. The finite differences method was compared
with using a fixed ρ. The maximum number of al-
lowed iterations was 100. 35

LIST OF FIGURES xiii

4.14 Nine examples of the maximum solution error at each
iteration k, when the finite differences method was
used. A random binomial graph and quadratic cost
functions were used, and ρ0 = 100. The experiments
plotted were selected at random from the set experi-
ments that converged to a solution before k = 100. . 36

List of Algorithms

2.1 Centralized ADMM . 6
2.2 Distributed ADMM . 10

3.1 Distributed Automatic ADMM 11
3.2 A measure of reliability based on the Fast Fourier Trans-

form. 13
3.3 Automatic penalty parameter selection using the Fast

Fourier Transform. 15
3.4 Automatic penalty parameter selection based on com-

paring finite differences of x and z. 17

4.1 A modified version of Distributed Automatic ADMM
used for assessing performance of different penalty pa-
rameter selection schemes. 20

4.2 A general framework for assessing the performance of
automatic penalty parameter selection methods. 21

xv

Acronyms

ADMM Alternating Direction Method of Multipliers.

FFT Fast Fourier Transform.

IoT Internet of Things.

xvii

Chapter 1

Introduction

1.1 Background

It is becoming increasingly common for embedded systems to have
communication capabilities. This gives rise to ad-hoc networks of
sensors and actuators that can generate massive amounts of data.
This phenomenon is often referred to as the Internet of Things (IoT).
The data produced can be analyzed to extract valuable insights, and
to make better decisions. Examples of applications are regression,
classification, control systems, and resource allocation.

Mathematical optimization algorithms are needed for many classes
of data analysis and decision making. However, classical optimiza-
tion algorithms are typically posed in a centralized context. That is,
the algorithms assume the optimization is performed by a single en-
tity with access to all of the data.

In the aforementioned distributed context of an ad-hoc network
of entities, there is no pre-defined central entity responsible for data
analysis. Furthermore, introducing a central entity might be infea-
sible. For instance, the bandwidth of the network might be too low
to transfer all data to the central entity for processing. In addition, a
central entity might not have enough computational power to pro-
cess all of the data in a reasonable amount of time. Instead, it might
be desirable to exploit the computational power of all the entities in
the network. For these reasons, distributed optimization algorithms
are sought.

The Alternating Direction Method of Multipliers (ADMM) is an
algorithm for solving convex optimization problems [1]. It is widely
used in a variety of domains, including machine learning and control
systems. ADMM is commonly presented in a centralized form, but it

1

2 CHAPTER 1. INTRODUCTION

turns out that the algorithm is amenable to distributed computation
as well [2], which makes it interesting for IoT applications.

1.2 Problem statement

In a distributed setting, each step of an optimization algorithm re-
quires communication. Because bandwidth may be at a premium, it
is desirable to solve the optimization problem with as few steps as
possible. The number of steps k needed to arrive at a solution is thus
the performance metric of interest in this thesis.

Similar to other optimization algorithms, ADMM can be tuned in
order to increase its performance. For ADMM, the so-called penalty
parameter is critical. While ADMM can be competitive with state-
of-the-art methods, selecting a bad penalty parameter can ruin the
performance.

The goal of this thesis is to find new methods for selecting the
ADMM penalty parameter in a distributed setting. In particular, I
want to explore methods that use information from neighboring en-
tities to select the parameter. That is, the penalty parameter should
be selected based on how other entities are performing.

1.3 Research delimitation

ADMM is applicable to a wide variety of problems, but this thesis
cannot close all knowledge gaps. Therefore, the following delimita-
tions were made.

• Only convex optimization problems are considered.

• There are many ways to formulate ADMM as a distributed al-
gorithm. In this thesis, the only formulation used is the one
developed by Notarstefano et al. [2]. An implementation of
this version of distributed ADMM is provided in the software
library DISROPT [3], and this implementation was used for
performing all experiments.

• Experiments were not performed on real-world cost functions.
Since the goal of this thesis is to develop new methods, us-
ing arbitrary cost functions was deemed sufficient for testing.
Therefore, only quadratic and exponential cost functions were
evaluated.

1.4. RELATED WORK 3

• The goal is not to find methods for selecting the penalty pa-
rameter with zero input from the user. Instead, it is adequate
to formulate methods that have hyperparameters that may be
tuned. The idea is that it should be easier to tune the hyper-
parameters than to select the penalty parameter.

1.4 Related work

While automatic penalty parameter selection is still an open field
of research, some methods have been proposed. For the centralized
version of ADMM, the most common method is residual balancing [1,
4]. This method works by ensuring that the so-called residuals –
measures of primal and dual feasibility – are of similar magnitudes.
The residual balancing scheme has also been adapted to distributed
contexts [5]. In this setting each entity has it’s own local residuals
that are balanced.

Unfortunately, residual balancing suffers from two major issues.
First, the scaling of the decision variable impacts the size of the
residuals. For instance, if the decision variable x is scaled such that
x ← αx (with α ≫ 1), the solution of the optimization problem
remains unchanged. However, the residuals will not be the same as
in the unscaled problem. This sensitivity to scaling results in subpar
performance for unfavorably scaled problems [4].

Secondly, residual balancing does not guarantee convergence.
The solution to this is to set the penalty parameter to a fixed value
after a given number of iterations [1]. If that happens, and if the
residual balancing scheme fails to find a good penalty parameter
before it is turned off, the performance will suffer.

Another method for selecting the penalty parameter is known as
Adaptive ADMM [6]. This method uses estimates of the dual func-
tion’s curvature to select the penalty parameter, and is similar to
rules used for gradient descent. A distributed version of this method
has been developed, the so-called Adaptive Consensus ADMM [7].
These methods are promising, but they are still relatively new com-
pared to residual balancing, so only a limited set of data is available
regarding their performance in different contexts.

4 CHAPTER 1. INTRODUCTION

1.5 Report outline

This thesis is organized as follows. Chapter 2 presents the theoretical
background needed to understand ADMM. ADMM is presented both
in the centralized form and in the distributed form. Chapter 3 details
two new algorithms for automatically selecting the penalty param-
eter. Chapter 4 presents the experiments performed to assess the
performance of the two aforementioned algorithms for automatic
penalty parameter selection. Chapter 5 discusses the results of the
experiments. Finally, a conclusion is provided in Chapter 6.

Chapter 2

Theoretical background

2.1 Alternating Direction Method of Multi-
pliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM) is a pop-
ular optimization method that is easily adapted to distributed prob-
lems. While this thesis focuses on ADMM in a distributed context, I
begin by providing a review of ADMM in a centralized setting, fol-
lowing Boyd et al. [1] and Notarstefano et al. [2, Appendix A.4].

Suppose that we have an optimization problem of the form

minimize
x ∈ Rn, z ∈ Rm

f (x) + g(z)

subject to Ax + Bz = c,

x ∈ Cx ,

z ∈ Cz

(2.1)

where f : Rn → R and g : Rm → R are convex functions. The
constraint sets Cx and Cz are convex, closed, and nonempty. Further-
more, A∈ Rp×n, B ∈ Rp×m, and c ∈ Rp.

The augmented Lagrangian of Equation (2.1) is

Lρ(x , z,λ) = f (x)+ g(z)+λT (Ax−Bz−c)+
ρ

2
∥Ax+Bx−c∥2

2 (2.2)

where λ ∈ Rp is the Lagrange multiplier (or dual variable), and
ρ > 0 is the penalty parameter.

ADMM is conducted as follows. At each iteration k ≥ 0 the fol-
lowing steps are carried out sequentially

5

6 CHAPTER 2. THEORETICAL BACKGROUND

x k+1 = argmin
x∈Cx

Lρ(x , zk,λk) (2.3)

zk+1 = argmin
z∈Cz

Lρ(x
k+1, z,λk) (2.4)

λk+1 = λk +ρ(Ax k+1 + Bzk+1 − c) (2.5)

where z0 and λ0 can be selected arbitrarily. Algorithm 2.1 de-
scribes the entire centralized ADMM algorithm.

It can be shown that ADMM converges to a globally optimum
solution under rather mild conditions [1, pp. 15–17].

Algorithm 2.1: Centralized ADMM
Initialization: z0 and λ0

for k = 0,1, . . . do
Compute x k+1 using Equation (2.3)
Compute zk+1 using Equation (2.4)
Compute λk+1 using Equation (2.5)

end for

2.2 Distributed optimization

In Section 2.1 I provided a brief review of ADMM in a centralized
context. That is, the algorithm makes two key assumptions that ren-
der it unsuitable for distributed computation: the optimization rou-
tine is performed by a single entity, and that single entity has access
to all data.

In a distributed environment, these requirements can often not
be met. As mentioned in Chapter 1, there are several limitations
inherent to the distributed setting. Specifically, the communication
bandwidth between entities may not be big enough to transmit all
data to a central entity in a reasonable amount of time. In addition,
it might be desirable to exploit the computational power of all the
entities in a network, as opposed to only utilizing a single entity’s
power. Therefore, methods that take these limitations into account
are needed.

Distributed optimization algorithms takes said limitations into

2.2. DISTRIBUTED OPTIMIZATION 7

account.1 These algorithms do not rely upon having a single entity
perform the entire optimization algorithm, and they do not require
a single entity to have access to all data. Instead, the entities, called
agents, cooperate to solve the optimization problem.

When considering a distributed algorithm, the form of the op-
timization problem (such as the one presented in Section 2.1 in
the case of centralized ADMM) must be modified to incorporate the
notion of several agents. In addition, the communication between
agents must be modeled, using ideas from graph theory.

There is an important caveat to the communication model and
optimization set-up I present in this section. There are several choices
that can be made when describing the communication model and
the form of the optimization problem. For instance, one could allow
the communication graph to be time-varying. Regarding the opti-
mization problem, one must for instance decide if all agents share
the same constraints, or if each agent has its own individual con-
straints. However, the focus of this paper is not on evaluating com-
plex models, but rather finding novel approaches for penalty param-
eter selection. Therefore, I will only consider simple models. If more
complex models are needed, Notarstefano et al. [2] provides an ex-
cellent overview of distributed optimization, with different types of
optimization set-ups and algorithms.

2.2.1 Communication model

We model the communication between agents as an undirected graph
G, with N nodes representing the agents. E is the set of edges. Agent
i and agent j are only able to communicate directly if there is an edge
from i to j in E . In this case they are said to be neighbors. The set of
neighbors reachable from agent i is denoted Ni. Finally, the graph
is not time-varying, and it is connected. A more formal description
of communication models for distributed optimization can be found
in [2].

1As an aside, so-called parallel optimization algorithms exist. Like distributed
algorithms, they exploit the computational power of all entities in a network. How-
ever, they are not suitable for distributed environments because, unlike distributed
algorithms, they rely upon transmitting intermediate results to and from a central
entity. On the other hand, distributed optimization algorithms only require an en-
tity to exchange data with it’s neighbors. Parallel optimization algorithms are not
a topic of this thesis, and as such are not elaborated on further.

8 CHAPTER 2. THEORETICAL BACKGROUND

2.2.2 Optimization set-up

The optimization set-up used in this thesis is known as cost-coupled
optimization [2]. This set-up is suitable when the cost function can
be written as a sum of local cost functions fi(x) that are only known
by agent i. Furthermore, there are N agents in total, and they all
share the same constraint set C. More formally, the problem can be
written as

minimize
x ∈ Rn

N
∑

i=1

fi(x)

subject to x ∈ C.

(2.6)

2.3 Distributed ADMM

In this section I describe a version of ADMM that can solve a prob-
lem of the form in Equation (2.6), following Notarstefano et al. [2].
First, let each agent i have its own copy x i ∈ Rn of the optimization
variable x . Now, we need to ensure consistency between all copies
x1, . . . , xN . Therefore, we add a so-called coherence constraint by in-
troducing an auxiliary variable z ∈ Rn.

minimize
x1,...,xN

z

N
∑

i=1

fi(x i)

subject to x i ∈ C i ∈ {1, . . . , N},
x i = z, i ∈ {1, . . . , N}.

(2.7)

The optimization set-up in Equation (2.7) is more amenable to
distributed optimization than the previous one, because it no longer
relies upon each agent having global knowledge of the optimization
variable x . Instead, each agent keeps a local copy x i, which will be
enforced to be similar among all agents during optimization due to
the coherence constraint x i = z.

Unfortunately, the coherence constraint in its current form is
posed as a global variable z among all agents, in a similar man-
ner to how x used to be global. We want to get rid of this global
variable, such that each agent only needs to communicate with its
neighbors. Therefore, we amend the coherence constraint such that
it only requires coherence among an agent’s neighbors.

2.3. DISTRIBUTED ADMM 9

minimize
x1,...,xN
z1,...,zN

N
∑

i=1

fi(x i)

subject to x i ∈ C, i ∈ {1, . . . , N},
x i = zi, i ∈ {1, . . . , N},
x i = z j, (i, j) ∈ E .

(2.8)

We can derive the augmented Lagrangian for Equation (2.8).
We’ll give each coherence constraint its own dual variable λi j. Define
X , Z , andΛ as three vectors stacking all the copies of the primal, aux-
iliary primal, and dual variables, respectively. Then the augmented
Lagrangian is

Lρ (X , Z ,Λ) =
N
∑

i=1

�

fi (x i) +
∑

j∈Ni∪{i}

λT
i j

�

x i − z j

�

+
ρ

2

∑

j∈Ni∪{i}

∥x i−z t
j∥

2

�

.

(2.9)

The optimization problem we arrived at in Equation (2.8) can
be solved using the ADMM algorithm described in Section 2.1. The
optimization variables x and z are replaced by the vectors X and Z
stacking the copies of the primal and auxiliary variables. Further-
more, f (X) =
∑N

i=1 fi(x i) and g(Z) = 0. As for the constraint sets,
Cx = C and Cz = RN ·n. The coefficients in the equality constraint
AX + BZ = c are

A=
�

IN ·n
IN ·n

�

(2.10)

B =
�

Adj⊗ In

IN ·n

�

(2.11)

c = 0 (2.12)

where ⊗ is the Kronecker product, Adj is the adjacency matrix of G,
In is the n×n identity matrix, and IN ·n is the Nn×Nn identity matrix.

As mentioned, by using the definitions above, we can apply ADMM
to Equation (2.8) [2]. The optimization steps are

10 CHAPTER 2. THEORETICAL BACKGROUND

x k+1
i =argmin

x i∈C
fi(x i) +

�

∑

j∈Ni∪{i}

�

λk
i j

�T
�

x i +
ρ

2

∑

j∈Ni∪{i}

∥x i − zk
j ∥

2

(2.13)

zk+1
i =argmin

zi

−
�

∑

j∈Ni∪{i}

�

λk
ji

�T
�

zi +
ρ

2

∑

j∈Ni∪{i}

∥x k+1
j − zi∥2 (2.14)

λk+1
ii =λk

ii +ρ
�

x k+1
i − zk+1

i

�

(2.15)

λk+1
i j =λ

k
i j +ρ
�

x k+1
i − zk+1

j

�

(2.16)

Because the optimization step for zi is an unconstrained quadratic
program, we can find an explicit solution:

zk+1
i =

∑

j∈Ni∪{i}
x k+1

j

|Ni|+ 1
+

∑

j∈Ni∪{i}
λk

ji

ρ (|Ni|+ 1)
. (2.17)

The full algorithm for distributed ADMM, from the perspective
of agent i, is given in Algorithm 2.2.

Algorithm 2.2: Distributed ADMM
Initialization: ρ, z0

i , λ0
ii, and λ0

i j for all j ∈Ni

for k = 0,1, . . . do
Gather λk

ji from neighbors j ∈Ni

Compute x k+1
i using Equation (2.13)

Gather x k+1
j from neighbors j ∈Ni

Compute zk+1
i using Equation (2.17)

Gather zk+1
j from neighbors j ∈Ni

Compute λk+1
ii using Equation (2.15)

foreach j ∈Ni do
Compute λk+1

i j using Equation (2.16)
end foreach

end for

Chapter 3

Automatic penalty parameter
selection

In this chapter, I describe two algorithms developed for automatic
penalty parameter selection. To allow for varying the penalty param-
eter, Algorithm 2.2 is slightly modified. Instead of a fixed penalty
parameter ρ, there is now a ρk for each iteration k. The modified
algorithm, henceforth referred to as Distributed Automatic ADMM,
is described in Algorithm 3.1.

Algorithm 3.1: Distributed Automatic ADMM
Initialization: ρ0, z0

i , λ0
ii, and λ0

i j for all j ∈Ni

for k = 0,1, . . . do
Gather λk

ji from neighbors j ∈Ni

Compute x k+1
i using Equation (2.13)

Gather x k+1
j from neighbors j ∈Ni

Compute zk+1
i using Equation (2.17)

Gather zk+1
j from neighbors j ∈Ni

Compute λk+1
ii using Equation (2.15)

foreach j ∈Ni do
Compute λk+1

i j using Equation (2.16)
end foreach
Compute ρk+1 using one of the algorithms presented in
this thesis

end for

11

12 CHAPTER 3. AUTOMATIC PENALTY PARAMETER SELECTION

3.1 Using the Fast Fourier Transform

The idea behind this algorithm is to consider the reliability of neigh-
boring estimates. That is, if the neighboring x k estimates are unreli-
able, then we should focus on consensus. If instead they are reliable,
we should focus on optimization.

A measure of reliability is needed. The idea is that if the sequence
of x k

j received from agent j is changing a lot, it means that the es-
timates are unreliable. We should therefore focus on consensus, as
mentioned. If on the other hand the sequence of x k

j is stable, we may
place more emphasis on optimization of the objective function. The
idea is presented visually in Figure 3.1a.

A simple measure of reliability is as follows. Consider a vector
w containing the l last x k received from neighbor j. The vector is
essentially a sliding window over the sequence of x k

j received from
neighbor j. We use the Fast Fourier Transform (FFT) to assess to
which degree the estimates in w are changing. A set of frequency-
domain magnitudes M is computed from the FFT of w. Each mag-
nitude Mi is normalized by dividing it by the first element M0 of M .
Then, the maximum (normalized) magnitude M j

max, normalized of the
set {Mi : i ̸= 0 } is found.

This routine is performed for each neighbor in Ni, and a maxi-
mum normalized magnitude M ∗ among an agent’s neighbors is found:

M ∗ =max
j∈Ni

M j
max, normalized. (3.1)

This magnitude M ∗ will be the measure of reliability used. The
full algorithm is described in Algorithm 3.2.

To justify why the magnitudes from the FFT are used, consider
the following intuition. Assume that the sequences of x k can be mod-
eled as a linear trend plus a sinusoidal component. If the sinusoidal
component has a lot of power compared to the linear part, the x
estimates will oscillate a great deal, and thus they are unreliable.
Therefore, we want to avoid a high Mi for i > 0, and thus the max-
imum M ∗ defined in Equation (3.1) is of interest. This concept is
illustrated in Figure 3.1b.

Now that a measure of reliability is established, an algorithm for
updating the penalty parameter based on reliability can be derived.
Algorithm 3.3 is a simple implementation of this idea. If the normal-
ized maximum amplitude M ∗ is greater than some threshold ε, the
estimates are considered to be reliable, and the penalty parameter
is decreased by 5%. That is, ρk+1 = ρk × 0.95. On the other hand,

3.1. USING THE FAST FOURIER TRANSFORM 13

Algorithm 3.2: A measure of reliability based on the Fast
Fourier Transform.

function FindMaxMagnitude(Ni, l)
input: set of neighbors Ni; length l of sliding window w

to use for computing FFT
output: normalized maximum magnitude M ∗ among

neighbors’ x sequences
initialization: M ∗ = 0

foreach j ∈Ni do

w=
�

x k−(l−1)
j , . . . , x k

j

�

wFFT = FFT(w)

M = ;
for i← 0 to l do

Mi =
�

�wFFT
i

�

�

end for

// find maximum value of M except for first
element

Mmax =maxi ̸=0 Mi

// normalize by M0

Mmax, normalized =
Mmax
M0

if Mmax, normalized > M ∗ then
M ∗ = Mmax, normalized

end if
end foreach

return M ∗

end function

14 CHAPTER 3. AUTOMATIC PENALTY PARAMETER SELECTION

(a) Sequence of x estimates (b) Fast Fourier Transform

Figure 3.1: A measure of reliability of an agent’s x estimates. The
blue sequence of x estimates in (a) is considered to be more re-
liable than the orange sequence. In (b) the (normalized) magni-
tudes obtained from the Fast Fourier Transform of (a) is shown.
The maximum magnitude (excluding the first one, which is used
for normalization) gives an indication of the reliability of the x es-
timates.

if M ∗ is less than ε, the estimates are considered to be less reliable,
and the penalty parameter is increased by 5%.

Note that, since Mi is normalized by M0 for all i > 0, a threshold
of, for instance, ε = 0.1 would mean that if the largest sinusoidal
component has 10% or more of the power of the linear component,
we are no longer considering the estimates to be reliable, and vice
versa.

Algorithm 3.3 can be used to select ρk in each iteration of Algo-
rithm 3.1.

3.2 Comparing finite differences of estimates

Another measure of reliability is based on comparing the set of

∥x k
j − x k−1

j ∥ (3.2)

received from all neighbors. The idea is that the change in x
from one iteration to the other should be similar in magnitude for
all agents. If they are disparate, it indicates that we should focus
more on consensus. If they are similar, we may instead place more
emphasis on optimization.

This gives rise to an issue. By simply letting ρ → ∞ we can
ensure that ∥x k

j − x k−1
j ∥ is always similar for all agents. The question

3.2. COMPARING FINITE DIFFERENCES OF ESTIMATES 15

Algorithm 3.3: Automatic penalty parameter selection us-
ing the Fast Fourier Transform.

input: set of neighbors Ni; length of sliding window l;
iteration number k; previous penalty parameter ρk;
threshold ε for the reliability of M ∗

output: new penalty parameter ρk+1

if k < l then
/* wait until we have received enough x

estimates to create a sliding window of
length l */

return ρk

end if

M ∗ = FindMaxMagnitude(Ni, l)
if M ∗ > ε then
ρk+1 = ρk × 1.05

else
ρk+1 = ρk × 0.95

end if

16 CHAPTER 3. AUTOMATIC PENALTY PARAMETER SELECTION

is then, how can we ensure that the magnitudes are similar, while
still ensuring that optimization of the cost function takes place? In
other words, how do we know if we increased ρ by too much?

To this end, consider zk. Since this auxiliary variable is the co-
herence constraint, it gives an indication of what the x k values are
across all neighbors. Then zk − zk−1 must be a measure of the speed
of convergence among all neighbors, and the finite difference

�

zk − zk−1
�

−
�

zk−1 − zk−2
�

(3.3)

gives an indication of the acceleration of x k steps across all neigh-
bors.

The algorithm for updating ρ is based on balancing the two
quantities

x k
j − x k−1

j

 (3.4)

and

�

zk − zk−1
�

−
�

zk−1 − zk−2
�

. (3.5)

It follows a similar intuition to residual balancing, but uses dif-
ferent quantities for comparison.1

The algorithm works as follows. If the set of neighboring x step
magnitudes are different, increase ρ. If not, and if the magnitude
of z acceleration is low, decrease ρ. The full algorithm is described
in Algorithm 3.4.

1Residual balancing is based on comparing

x k − zk

 and

zk − zk−1

.

3.2. COMPARING FINITE DIFFERENCES OF ESTIMATES 17

Algorithm 3.4: Automatic penalty parameter selection
based on comparing finite differences of x and z.

input: set of neighbors Ni; iteration number k; previous
penalty parameter ρk

output: new penalty parameter ρk+1

if k < 3 then
/* wait until we have received enough x

estimates to compute second-order finite
differences */

return ρk

end if

compute ∥∆x i∥ using Equation (3.4)
compute ∥∆x j∥ for each neighbor j using Equation (3.4)
compute ∥∆2z∥ using Equation (3.5)

compute median M of
�

∆x j : j ∈Ni ∪ i
	

compute maximum M+ of
�

∆x j : j ∈Ni ∪ i
	

compute minimum M− of
�

∆x j : j ∈Ni ∪ i
	

if M+ > 10M or M− < 0.1M then
ρk+1 = ρk × 1.2

else if ∥∆2z∥< 10∥∆x i∥ then
ρk+1 = ρk × 0.8

else
ρk+1 = ρk

end if

Chapter 4

Experiments

4.1 Common experimental setup

4.1.1 Performance metric

The goal of this thesis is to evaluate different methods for automatic
penalty parameter selection. The performance metric selected was
therefore how many iterations would be needed to reach a certain
level of accuracy.

To this end, the centralized solution x⋆ to the global problem

argmin
x∈C

∑

i

fi(x)

was computed ahead of time. This makes it possible to evaluate
the performance metric as the number of iterations k needed for all
solutions x i to be within some small distance ε of x⋆.

4.1.2 ADMM algorithm with performance metric

To measure the performance, the versions of ADMM proposed in Al-
gorithm 2.2 and Algorithm 3.1 were used, with a small modification.
At the end of each iteration, the maximum solution error

E =max
i
∥x k

i − x⋆∥ (4.1)

was computed, and if at some k the error E was less than the
solution error tolerance ε the algorithm would terminate. If not, the
algorithm would continue until it reached the maximum allowed
number of iterations K .

19

20 CHAPTER 4. EXPERIMENTS

Algorithm 4.1: A modified version of Distributed Auto-
matic ADMM used for assessing performance of different
penalty parameter selection schemes.

Initialization: x⋆, ε, K , ρ0, z0
i , λ0

ii, and λ0
i j for all j ∈Ni

for k = 0,1, . . . , K do
Gather λk

ji from neighbors j ∈Ni

Compute x k+1
i using Equation (2.13)

Gather x k+1
j from neighbors j ∈Ni

Compute zk+1
i using Equation (2.17)

Gather zk+1
j from neighbors j ∈Ni

Compute λk+1
ii using Equation (2.15)

foreach j ∈Ni do
Compute λk+1

i j using Equation (2.16)
end foreach

E =maxi ∥x k
i − x⋆∥

if E < ε then
Terminate algorithm early

else
Compute ρk+1

end if
end for

The full algorithm used for Distributed Automatic ADMM is de-
scribed in Algorithm 4.1. The extension to Distributed ADMM with
a fixed penalty parameter is immediate (in that case, ρk+1 = ρk al-
ways).

To get a reasonable perspective of the performance of the various
algorithms for automatically selecting ρ, it is not enough to look at
only one run of Algorithm 4.1. Instead, N runs of the algorithm were
performed, with different cost functions for each n ∈ {1, . . . , N}. Fur-
thermore, each agent was assigned its own, random cost function.
This general framework for assessing performance is described in Al-
gorithm 4.2. Clearly, after running the algorithm, the performance
of N different runs of ADMM had been collected, and these N runs
were used to compute the average performance.

4.1. COMMON EXPERIMENTAL SETUP 21

Algorithm 4.2: A general framework for assessing the per-
formance of automatic penalty parameter selection meth-
ods.

initialization: number of experiments to perform N ; set P
of (initial) penalty parameters; maximum
solution error tolerance ε

for n= 1, . . . , N do
create a new graph G
create a new cost function fi(x i) at random
compute solution x⋆ = argmin

∑

i fi(x)

foreach ρ ∈ P do
run DistributedADMM (Algorithm 4.1 with fixed
penalty parameter ρk = ρ)

run DistributedAutomaticADMM (Algorithm 4.1 with
initial penalty parameter ρ0 = ρ, and automatic
selection of subsequent ρk)

end foreach
end for

4.1.3 Creating random cost functions

To get a convex quadratic cost function at random, the following
procedure was followed. Each agent i has it’s own local cost func-
tion fi(x i) = Ai x

2+Bi x . The coefficients must be selected at random
such that fi(x i) is convex. The coefficient for the quadratic term was
selected by drawing a random number from the standard normal
distribution, and then squaring it. The coefficient for the linear term
was selected by drawing another random number from the standard
normal distribution, and multiplying it by 3. In other words, the nor-
mal distribution was sampled

ai ∼N (0, 1),
bi ∼N (0, 1),

and the coefficients

22 CHAPTER 4. EXPERIMENTS

Ai = a2
i ,

Bi = 3bi

associated with fi(x i) were computed.
A similar procedure was followed to get random convex expo-

nential functions. For each agent i, two random numbers αi and
βi were sampled from the standard normal distribution. The ran-
dom exponential function associated with agent i is then given by
fi(x i) = α2

i exp (βi x).

4.2 Using the Fast Fourier Transform

4.2.1 Experimental setup

The goal of this experiment was to determine whether using the Fast
Fourier Transform to select the penalty parameter (Algorithm 3.3) is
a practical method. Because of this, the experiments were performed
under ideal conditions. By ideal, I mean that the network topology
was fully connected, and only quadratic cost functions were used.

The experiment was conducted according to Algorithm 4.2. The
decision variable x was mono-dimensional, and a complete graph
was used. N = 100 iterations of the loop were performed. 10 agents
were used. 10 penalty parameters were evaluated, spaced evenly
on a logarithmic scale from 10−4 to 102. A random quadratic cost
function was assigned to each agent for each run of the experiment,
and the common constraint set was 1 > x i > −1 for all iterations.
The solution error tolerance ε was 10−6.

4.2.2 Results

Figure 4.1 shows the mean performance of the algorithm, that is,
the mean number of iterations needed to reach the given solution
error tolerance. This mean is plotted for each penalty parameter
ρ ∈ P evaluated. Figure 4.2 shows the mean maximum solution
error among all agents (mean of Equation (4.1)) achieved for each
penalty parameter. Both figures compare the results of using the FFT
algorithm with the usage of a fixed penalty parameter.

Figure 4.1 shows that the mean number of iterations needed was
slightly less compared with using a fixed ρ. However, Figure 4.2
shows that the algorithm tended to diverge for small initial ρ.

4.3. FINITE DIFFERENCES EXPERIMENT 1 23

The fact that the mean number of iterations required was less
for the FFT algorithm (despite the algorithm in general being worse
than using a fixed ρ) can be explained by Figure 4.3, which shows
box plots of the number of iterations needed. The FFT algorithm
had more outliers for small ρ. The higher number of outliers gives a
justification for why the average number of iterations required was
smaller than when using a fixed penalty parameter.

4.3 Comparing finite differences on prob-
lems with quadratic cost functions

4.3.1 Experimental setup

The experiment was conducted according to Algorithm 4.2 (and it
was similar to the FFT experiment in Section 4.2). The decision
variable x was mono-dimensional, and a complete graph was used.
N = 100 iterations of the loop were performed. 10 agents were used.
10 penalty parameters were evaluated, spaced evenly on a logarith-
mic scale from 10−4 to 102. A random quadratic cost function was
assigned to each agent for each run of the experiment, and the com-
mon constraint set was 1 > x i > −1 for all iterations. The solution
error tolerance ε was 10−6.

4.3.2 Results

Similar plots as in the FFT experiment (Section 4.2) were generated.
Figure 4.4 shows the mean number of iterations required to reach
the solution error tolerance. Figure 4.5 shows the average maximum
solution error. Figure 4.6 shows the box plots of the number of iter-
ations performed.

In this experiment, the automatic algorithm for selecting ρ per-
formed better than using a fixed ρ, on average. The mean number
of iterations required (Figure 4.5) was significantly lower than for
the fixed penalty parameter, except close to the best fixed penalty
parameter (among the ρ tested).

For the mean maximum solution error (Figure 4.5), the fixed
penalty parameter outperformed the automatic tuning algorithm close
to the best fixed ρ. However, the automatic tuning algorithm was
less sensitive to an initially chosen bad ρ.

24 CHAPTER 4. EXPERIMENTS

Figure 4.1: The performance of the FFT method for selecting ρ.
Mean number of iterations k required to achieve the solution error
tolerance. The results were compared with using a fixed ρ to solve
the same optimization problems. The maximum allowed number
of iterations was 100.

Figure 4.2: The mean maximum solution error when using the FFT
method to select ρ. The result was compared with using a fixed ρ.

4.3. FINITE DIFFERENCES EXPERIMENT 1 25

(a) Automatically selected ρ

(b) Fixed ρ

Figure 4.3: Box plots of the number of number of iterations re-
quired to achieve the solution error tolerance. The FFT method was
compared with using a fixed ρ. The maximum number of allowed
iterations was 100.

26 CHAPTER 4. EXPERIMENTS

On average, both algorithms failed to reach the solution error
tolerance ε = 10−6. The box plots (Figure 4.6) show that there was
always a large number of experiments that terminated at k = 100
iterations without achieving the desired solution error tolerance.

4.4 Comparing finite differences on prob-
lems with exponential cost functions

4.4.1 Experimental setup

The results in Section 4.3 were promising, but the usage of quadratic
cost functions could give a false impression of how well the algo-
rithm performed, since they typically are quite easy to solve. There-
fore, a similar experiment as before – except with exponential cost
functions – was performed.

The experiment was conducted according to Algorithm 4.2. The
decision variable x was mono-dimensional, and a complete graph
was used. N = 100 iterations of the loop were performed. 10 agents
were used. 10 penalty parameters were evaluated, spaced evenly
on a logarithmic scale from 10−4 to 102. A random exponential cost
function was assigned to each agent for each run of the experiment,
and the common constraint set was 1 > x i > −1 for all iterations.
The solution error tolerance ε was 10−6.

4.4.2 Results

The same plots as before were generated. Figure 4.7 shows the mean
number of iterations required to reach the solution error tolerance.
Figure 4.8 shows the average maximum solution error. Figure 4.9
shows the box plots of the number of iterations performed.

The mean number of iterations required (Figure 4.7) was quite
close between the two methods, but the automatic penalty parame-
ter selection algorithm still came out ahead. The average maximum
solution error (Figure 4.8) was lower when using the automatic tun-
ing. Once again, the exception to both these statements was when
the initial penalty was selected close to the best ρ ∈ P.

The box plots (Figure 4.9) once more show how there still was a
significant amount of iterations that terminated at k = 100 without
achieving the desired solution error tolerance. However, when au-
tomatically selecting ρ, if the initial ρ was bad, a larger proportion

4.4. FINITE DIFFERENCES EXPERIMENT 2 27

Figure 4.4: The performance of the finite differences method for
selecting ρ, when using a complete graph and quadratic cost func-
tions. The results were compared with using a fixed ρ to solve the
same optimization problems. The maximum allowed number of it-
erations was 100.

Figure 4.5: The mean maximum solution error when using the
finite differences method, using a complete graph and quadratic
cost functions. The result was compared with using a fixed ρ.

28 CHAPTER 4. EXPERIMENTS

(a) Automatically selected ρ

(b) Fixed ρ

Figure 4.6: Box plots of the number of number of iterations re-
quired to achieve the solution error tolerance, when using a com-
plete graph and quadratic cost functions. The finite differences
method was compared with using a fixed ρ. The maximum num-
ber of allowed iterations was 100.

4.5. FINITE DIFFERENCES EXPERIMENT 3 29

of experiments achieved the desired tolerance before k = 100.
Finally, Figure 4.10 shows nine examples of how the maximum

solution error (among all agents) progresses at each step k. The ex-
amples were selected at random from the set of experiments that
converged before k = 100, with ρ0 = 100. The figure shows that
the convergence speed tended to be superlinear if the algorithm con-
verged.

4.5 Comparing finite differences on prob-
lems with quadratic cost functions, with
a random binomial graph

4.5.1 Experimental setup

Using a complete graph might not be realistic. In real world systems,
it might not be possible to establish a connection between all agents
in a distributed network. Therefore, the algorithm for selecting ρ
must also perform well on graphs that are not fully connected. Thus,
an experiment with random graphs was performed.

The experiment was conducted according to Algorithm 4.2. The
decision variable x was mono-dimensional, and a random binomial
graph was used with edge probability p = 0.3. N = 100 iterations
of the loop were performed. 10 agents were used. 10 penalty pa-
rameters were evaluated, spaced evenly on a logarithmic scale from
10−4 to 102. A random quadratic cost function was assigned to each
agent for each run of the experiment, and the common constraint
set was 1> x i > −1 for all iterations. The solution error tolerance ε
was 10−4.

Due to this thesis being time constrained, combined with the
fact that running these experiments took a significant amount of
time, the difficulty of the experiment had to be lowered somewhat.
Therefore, the solution error tolerance was chosen higher than be-
fore. Furthermore, quadratic cost functions were used.

4.5.2 Results

The same plots as before were generated. Figure 4.11 shows the
mean number of iterations required to reach the solution error tol-
erance. The automatic tuning performs slightly better than when
using a fixed ρ.

30 CHAPTER 4. EXPERIMENTS

Figure 4.7: The performance of the finite differences method for
selecting ρ, when using a complete graph and exponential cost
functions. The results were compared with using a fixed ρ to solve
the same optimization problems. The maximum allowed number
of iterations was 100.

Figure 4.8: The mean maximum solution error when using the
finite differences method, using a complete graph and exponential
cost functions. The result was compared with using a fixed ρ.

4.5. FINITE DIFFERENCES EXPERIMENT 3 31

(a) Automatically selected ρ

(b) Fixed ρ

Figure 4.9: Box plots of the number of number of iterations re-
quired to achieve the solution error tolerance, when using a com-
plete graph and exponential cost functions. The finite differences
method was compared with using a fixed ρ. The maximum num-
ber of allowed iterations was 100.

32 CHAPTER 4. EXPERIMENTS

Figure 4.10: Nine examples of the maximum solution error at
each iteration k, when the finite differences method was used.
A complete graph and exponential cost functions were used, and
ρ0 = 100. The experiments plotted were selected at random from
the set experiments that converged to a solution before k = 100.

4.5. FINITE DIFFERENCES EXPERIMENT 3 33

Figure 4.12 shows the average maximum solution error. The ex-
tremely high average shows that the optimization algorithm diverged.
However, the box plots (Figure 4.13) show that there was a lot
of outliers that did achieve the desired solution tolerance before
k = 100 iterations. Therefore, the algorithm sometimes converged,
but this fact did not show up in Figure 4.12 due to the mean error
of the diverging estimates dominating the ones that converged.

Finally, Figure 4.14 shows nine examples of how the maximum
solution error (among all agents) progresses at each step k. The ex-
amples were selected at random from the set of experiments that
converged before k = 100, with ρ0 = 100. The figure shows that
the convergence speed tended to be superlinear if the algorithm con-
verged.

34 CHAPTER 4. EXPERIMENTS

Figure 4.11: The performance of the finite differences method for
selecting ρ, when using a random binomial graph and quadratic
cost functions. The results were compared with using a fixed ρ
to solve the same optimization problems. The maximum allowed
number of iterations was 100.

Figure 4.12: The mean maximum solution error when using the
finite differences method, using a random binomial graph and
quadratic cost functions. The result was compared with using a
fixed ρ.

4.5. FINITE DIFFERENCES EXPERIMENT 3 35

(a) Automatically selected ρ

(b) Fixed ρ

Figure 4.13: Box plots of the number of number of iterations re-
quired to achieve the solution error tolerance, when using a ran-
dom binomial graph and quadratic cost functions. The finite differ-
ences method was compared with using a fixed ρ. The maximum
number of allowed iterations was 100.

36 CHAPTER 4. EXPERIMENTS

Figure 4.14: Nine examples of the maximum solution error at each
iteration k, when the finite differences method was used. A random
binomial graph and quadratic cost functions were used, and ρ0 =
100. The experiments plotted were selected at random from the set
experiments that converged to a solution before k = 100.

Chapter 5

Discussion

5.1 Using the Fast Fourier Transform

Selecting the penalty parameter using the Fast Fourier Transform
did not work as expected. The performance for low initial penalty
parameters was bad, with large mean solution errors. However, for
large initial ρ, the performance of the FFT method was better.

The reason the algorithm did not work is that the sequence of x k

estimates received from neighbors were quite smooth. This smooth-
ness is present whether the initial penalty parameter is selected too
low or too high. For instance, if ρ0 is too high, too much focus is
placed on consensus over optimization. Therefore, the estimates will
quickly converge to a common value for all agents. The estimates
will then remain at that value, since almost no emphasis is placed
on optimizing
∑

i fi(x).
Similarly, if the penalty parameter is selected too low, almost no

emphasis will be put on consensus. Therefore, each agent’s x i will
quickly converge to the local solution of fi(x). The estimates will
remain there, since almost no emphasis is put on consensus.

As mentioned, in both of these cases the sequence of x k received
from neighbors will be smooth. Due to this, the Fast Fourier Trans-
form will always return small magnitudes (see Algorithm 3.2).

The small magnitudes will lead to a decrease in ρ (see Algo-
rithm 3.3). This is a good choice when ρ0 is selected too high. This
explains the good performance for large initial penalty parameters.
However, as mentioned, the x k sequences are always smooth, and
therefore ρ will also decrease when ρ0 is selected too low. This
is clearly the wrong choice. This explains the bad performance for
small initial penalty parameters.

37

38 CHAPTER 5. DISCUSSION

For these reasons, the algorithm proposed in Algorithm 3.2 is not
a good measure of the reliability of neighboring estimates. There-
fore, the proposed FFT method for selecting ρ does not work.

During the course of this thesis, a large amount of time was spent
trying to improve this method. Despite this, no improvement was
found, and near the end of the thesis I ceased experimenting with
the FFT method.

5.2 Comparing finite differences on com-
plete graphs

When evaluating the finite differences method with complete graphs
and quadratic cost functions, the results were encouraging. The av-
erage maximum solution error varied between 10−2 to 10−3, while
the average for the fixed ρ varied between 100 and 10−4. While us-
ing a fixed ρ resulted in better average performance in the best case,
the performance was worse than the finite differences method when
ρ was selected badly.

The results for quadratic cost functions were promising. How-
ever, optimization problems with quadratic cost functions tend to
be quite easy to solve, so performing experiments with other types
of cost functions was deemed necessary.

When performing experiments with the same complete graphs,
but with exponential cost functions, the results remained favorable
for the finite differences method. If a good initial penalty parameter
was selected, the performance was still better when using a fixed ρ.
However, for all other ρ0, the performance was better for the finite
differences method.

The fact that the convergence speed tended to be superlinear
(if the algorithm converged) is very interesting. ADMM can achieve
superlinear performance, but it is only proven under very specific
conditions [1].

The results of the experiments with exponential cost functions
solidified the confidence in the finite differences method. A summary
of the results is that the sensitivity to the initially chosen penalty
parameter was much lower when using the finite differences method
than when using a fixed penalty parameter. It is difficult to select the
best possible ρ0 ahead of time, so the fact that the finite differences
method was less sensitive indicates that the method has potential
for application in the real world.

5.3. FINITE DIFFERENCES ON RANDOM BINOMIAL GRAPHS 39

5.3 Comparing finite differences on random
binomial graphs

The finite differences method was evaluated on random binomial
graphs. As mentioned, due to time constraints and the large compu-
tational burden required to run the experiments, the solution error
tolerance had to be increased. Quadratic cost functions were also
used, since the primary goal was to observe the performance on a
graph that was not fully connected.

The mean number of iterations required to achieve the solution
tolerance remained less than when using a fixed ρ (Figure 4.11) .
However, the mean solution distance (Figure 4.12) was extremely
large, at 108 for all ρ ∈ P. The interpretation of this is that the
algorithm tended to diverge.

It is important to note that the algorithm did not always diverge.
The mean solution distance was large because, when computing the
mean, the results from diverging experiments dominated the results
where the solution error was small. A more complete picture of the
performance is shown in the box plots (Figure 4.13), where there
are many outliers that reach the desired solution tolerance.

Having an algorithm that tends to diverge is clearly bad. How-
ever, the performance on complete graphs makes me hopeful that
the algorithm can be amended to also work on random graphs. Sadly,
the thesis was time-constrained, and therefore there was no more
time for developing the algorithm further.

Nevertheless, I can provide some thoughts on why the algorithm
would diverge on a graph that is not fully connected. Consider for
instance a random graph where there is one agent that is much less
connected than all other agents. It follows that the set of agents
that are very connected have more information available to select
ρ. Because of this, the less connected agent may choose a ρ which
is very different compared to the other agents.

This can become a problem. Recall that each agent i chooses its
dual variable associated with neighbor j according to

λk+1
i j = λ

k
i j +ρ
�

x k+1
i − zk+1

j

�

,

and updates its auxiliary primal variable zi according to

zk+1
i =

∑

j∈Ni∪{i}
x k+1

j

|Ni|+ 1
+

∑

j∈Ni∪{i}
λk

ji

ρ (|Ni|+ 1)
.

40 CHAPTER 5. DISCUSSION

In the zi update, if we assume that ρ is fixed, the weighted aver-
age of the dual variables λi j essentially becomes the average of the
integrals of the errors x i − z j from k = 0 up to the current iteration.

That is, each
λi j

ρ becomes an integral of the errors x i − z j. This is
because ρ cancels out in the expression for λi j.

Now, if we assume that ρ is no longer fixed, the following might
happen. Let ρN denote the penalty parameter selected by the less
connected agent, and assume that all other agents select penalty
parameters close to ρC . Then, if ρN is very different from ρC the
algorithm may diverge.

The reasoning is as follows. In the expression for zk+1
i , dividing

by ρN will cause each λk+1
i j received from neighbors to be divided by

ρN . To become the proper integral of errors, the expression for λk+1
i j

should have been divided by ρC instead. If for instance ρC ≫ ρN ,
the error will be interpreted as larger than it actually is.

This will obviously shift the value of zi, and since zi is used for the
coherence constraints, this will also shift the solution of the primal
problem. The erroneously computed zi will also be transmitted to
neighbors, causing further issues.

The result is that the expression for the zi update is no longer
valid when varying the penalty parameter. However, if the graph is
complete, the agents may select similar enough values of ρ, such
that it is still a good approximation. This explains the results in
the previous sections. However, when introducing a random graph,
agents will no longer have the same information available, and the
zi expression no longer holds.

Finally, the fact that the convergence speed tended to be super-
linear also for random binomial graphs (once again, if the algorithm
converged) is extremely interesting. Unfortunately there was not
enough time left for me to explore this result further in this thesis.

5.4 Limitations and further work

The most important limitation is that, in a certain sense, we have
moved the problem from selecting ρ to selecting hyperparameters
for the finite differences method. However, my assertion is that it
is more difficult to select a good ρ than good hyperparameters for
the finite differences method. There is no clear interpretation of the
penalty parameter, whereas the finite differences are more inter-
pretable in the sense that they are approximations of derivatives.

5.4. LIMITATIONS AND FURTHER WORK 41

Despite this, it can be worth illuminating some issues with the
hyperparameters used in the experiments. First,ρ is increased or de-
creased by 20% in each iteration. This will clearly be too aggressive
in some situations. In other situations, for instance when the opti-
mal ρ = 1 but ρ0 = 100, we will spend many iterations decreasing
ρ by 20%. A similar argument follows for the threshold for deciding
whether to increase or decrease ρ.

In this thesis, the hyperparameters were selected somewhat ar-
bitrarily. It is not certain that these were the optimal parameters.
For instance, the divergence might have been exacerbated by the se-
lection of hyperparameters. More research is needed to determine
whether it is possible to select the hyperparameters in a better way.

Chapter 6

Conclusion

Selecting the penalty parameter for the Alternating Direction Method
of Multipliers is a challenging problem. In this thesis, I proposed
two novel methods. The FFT-based method did not work due to
the relative stability of the x sequences received from neighbors.
The method based on comparing finite differences is promising, and
saw good performance when performing experiments with complete
graphs.

There are two limitations to the finite differences method. First,
the method tends to diverge under challenging conditions, illus-
trated by the experiments on random binomial graphs. Secondly, the
method is not completely automatic, because it has hyperparameters
that must be tuned.

Above all, this project has demonstrated that using neighboring
x estimates to compute is a promising idea. However, the particular
method I arrived at in this thesis has, as mentioned, several issues.
There was not enough time to fix these issues during the course of
this thesis, but I will explore solutions to these limitations in further
research.

43

Bibliography

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed Optimization and Statistical Learning via the Alternat-
ing Direction Method of Multipliers,” Foundations and Trends®
in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011, ISSN: 1935-
8237. DOI: 10.1561/2200000016.

[2] G. Notarstefano, I. Notarnicola, and A. Camisa, “Distributed
Optimization for Smart Cyber-Physical Networks,” Foundations
and Trends® in Systems and Control, vol. 7, no. 3, pp. 253–383,
2019, ISSN: 2325-6818. DOI: 10.1561/2600000020.

[3] F. Farina, A. Camisa, A. Testa, I. Notarnicola, and G. Notarste-
fano, “DISROPT: a Python Framework for Distributed Opti-
mization,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 2666–2671,
2020, 21st IFAC World Congress, ISSN: 2405-8963. DOI: 10.
1016/j.ifacol.2020.12.382.

[4] B. Wohlberg, “ADMM penalty parameter selection by residual
balancing,” 2017. arXiv: 1704.06209.

[5] C. Song, S. Yoon, and V. Pavlovic, “Fast ADMM Algorithm for
Distributed Optimization with Adaptive Penalty,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1,
Feb. 2016. DOI: 10.1609/aaai.v30i1.10069.

[6] Z. Xu, M. Figueiredo, and T. Goldstein, “Adaptive ADMM with
Spectral Penalty Parameter Selection,” in Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics,
A. Singh and J. Zhu, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 54, PMLR, 20–22 Apr 2017, pp. 718–727.
[Online]. Available: https://proceedings.mlr.press/v54/
xu17a.html.

[7] Z. Xu, G. Taylor, H. Li, M. A. T. Figueiredo, X. Yuan, and T. Gold-
stein, “Adaptive Consensus ADMM for Distributed Optimiza-
tion,” in Proceedings of the 34th International Conference on

45

https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2600000020
https://doi.org/10.1016/j.ifacol.2020.12.382
https://doi.org/10.1016/j.ifacol.2020.12.382
https://arxiv.org/abs/1704.06209
https://doi.org/10.1609/aaai.v30i1.10069
https://proceedings.mlr.press/v54/xu17a.html
https://proceedings.mlr.press/v54/xu17a.html

46 BIBLIOGRAPHY

Machine Learning, D. Precup and Y. W. Teh, Eds., ser. Proceed-
ings of Machine Learning Research, vol. 70, PMLR, Jun. 2017,
pp. 3841–3850. [Online]. Available: https://proceedings.
mlr.press/v70/xu17c.html.

https://proceedings.mlr.press/v70/xu17c.html
https://proceedings.mlr.press/v70/xu17c.html

	Abstract
	Sammendrag
	Acknowledgements
	List of Figures
	List of Algorithms
	Acronyms
	Introduction
	Background
	Problem statement
	Research delimitation
	Related work
	Report outline

	Theoretical background
	Alternating Direction Method of Multipliers (ADMM)
	Distributed optimization
	Communication model
	Optimization set-up

	Distributed ADMM

	Automatic penalty parameter selection
	Using the Fast Fourier Transform
	Comparing finite differences of estimates

	Experiments
	Common experimental setup
	Performance metric
	ADMM algorithm with performance metric
	Creating random cost functions

	Using the Fast Fourier Transform
	Experimental setup
	Results

	Comparing finite differences on problems with quadratic cost functions
	Experimental setup
	Results

	Comparing finite differences on problems with exponential cost functions
	Experimental setup
	Results

	Comparing finite differences on problems with quadratic cost functions, with a random binomial graph
	Experimental setup
	Results

	Discussion
	Using the Fast Fourier Transform
	Comparing finite differences on complete graphs
	Comparing finite differences on random binomial graphs
	Limitations and further work

	Conclusion

