
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Andreas Aarrestad
Santhosh Shanmugam

An Applied Approach to Machine
Learning for Hate Speech
Management on Social Media
Platforms

Master’s thesis in Communication Technology
Supervisor: Sule Yildirim Yayilgan
Co-supervisor: Sarang Shaikh
June 2023

Andreas Aarrestad
Santhosh Shanmugam

An Applied Approach to Machine
Learning for Hate Speech Management
on Social Media Platforms

Master’s thesis in Communication Technology
Supervisor: Sule Yildirim Yayilgan
Co-supervisor: Sarang Shaikh
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

An Applied Approach to Machine Learning
for Hate Speech Management on Social
Media Platforms

Andreas Aarrestad and
Santhosh Shanmugam

Submission date: June 2023
Main supervisor: Sule Yildirim Yayilgan, NTNU
Co-supervisor: Sarang Shaikh, NTNU

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: An Applied Approach to Machine Learning for Hate Speech
Management on Social Media Platforms

Students: Andreas Aarrestad and Santhosh Shanmugam

Problem description:

This thesis aims to analyze the practical usage of internal resources on social media
platforms to detect and mitigate hateful content. Hate speech is a complex and
nuanced issue that is influenced by a variety of contextual factors, such as the social
norms of the platform’s user base, the speaker’s language, and the relationship
between the speaker and the target of the hate speech. Existing research has paid
less attention to contextual information, instead focusing on developing generalized
models that are applicable across multiple platforms and use cases. A hate speech
detection model based solely on text might be limited in identifying unique hateful
content as a significant portion of hate speech, it is distinct and it lacks common
characteristics. Consequently, such a model may not meet the required classification
performance for effective deployment on a platform, leading to imprecise mitigation
strategies.

The deployment of a system on a social media platform that detects hate speech
involves making a set of careful considerations. The system must ensure scalability,
robustness against adversarial attacks, and overall cost-effectiveness while navigating
various legal and ethical considerations such as protection of free speech and compli-
ance with differing hate speech laws across jurisdictions. Deploying such a system
also presents the challenge of integrating the detection model into an adaptable
architecture to accommodate specific use cases, demanding input and engagement
from domain experts.

By conducting this research, we will leverage contextual data to detect and mitigate
hateful content on social media platforms while exploring potential use cases for the
proposed detection model and ensuring that it meets relevant system requirements.

Approved on: 2023-02-21
Main supervisor: Sule Yildirim Yayilgan, NTNU
Co-supervisor: Sarang Shaikh, NTNU

Abstract

The rise of hate speech on social media platforms has led to a growing need
for effective automatic hate speech management systems that can identify
and mitigate hateful content. While significant progress has been made
with recent advancements in natural language processing, there is a need
for continuous system improvement in response to government regulations,
new forms of hate speech, and evolving user behavior. The confidential
nature of proprietary algorithms used by social media companies compli-
cates these efforts, as it often restricts the depth of research insights and
hinders the open sharing of advancements. Simultaneously, contemporary
publically available research has primarily been focused on improving
the detection algorithms in simplified environments, often neglecting
to consider the broader complexities, such as incorporating contextual
information and adapting the supporting architecture surrounding the
detection model. In response, this thesis analyzes strategies for develop-
ing a system using machine learning techniques to optimize adaptability,
scalability, robustness against adversarial attacks, transparency, legal
compliance, and auditability in addition to solely the performance. We
offer a multifaceted approach to developing a hate speech management
system, exploring a variety of strategies drawn from an extensive literature
review and hands-on experimentation. By conducting a comprehensive
literature review, the thesis formulates strategies regarding the standard-
ization of input to ensure robustness, leveraging adversarial examples
during language model fine-tuning, and employing persistent monitoring
using XAI techniques. The thesis emphasizes the advantages of utilizing
GPT-based models for hate speech annotation, achieving performance
levels close to human annotation while significantly reducing time and
cost. Moreover, we underscore the benefits of incorporating contextual in-
formation as features of a hate speech detection model. Additionally, the
thesis highlights the advantages of prioritizing uniqueness and uncertainty
when selecting samples for sequential fine-tuning of the model, improving
the performance compared to random sampling. Finally, we introduce a
triage strategy that adaptively classifies instances using models of varying
complexity, depending on the inherent characteristics of each instance.
Finally, the thesis integrates all these strategies into a cohesive system
architecture.

Sammendrag

Fremveksten av hatytringer på sosiale medier har ført til et økende behov
for effektive automatiske systemer som kan identifisere og fatte tiltak mot
hatefullt innhold. Selv om det er gjort betydelige fremskritt innen språk-
behandling, er det et stort behov for videre utvikling av systemer som
addresserer statlige reguleringer, nye former for hatytringer, og endrende
brukeratferd. Den konfidensielle karakteren til proprietære algoritmer
som brukes av sosiale medier kompliserer denne innsatsen, siden den
ofte begrenser dybden av forskningsinnsikt og hindrer åpen deling av
fremskritt. Samtidig har offentlig tilgjengelig forskning først og hatt et
fokus på å forbedre deteksjonsalgoritmene, og ofte unnlatt å vurdere
de bredere kompleksitetene, for eksempel å inkludere kontekstuell infor-
masjon og tilpasse støttearkitekturen til deteksjonsmodellen. Som svar
foreslår denne oppgaven strategier for å utvikle et system ved hjelp av
maskinlæringsteknikker for å optimalisere tilpasningsevne, skalerbarhet,
robusthet mot motstandsangrep, åpenhet, juridisk etterlevelse og revider-
barhet i tillegg til kun ytelse. Vi tilbyr en mangefasettert tilnærming til
å utvikle et system for hatefulle ytringer, og utforsker en rekke strategier
hentet fra en gjennomgang av litteratur og ved praktisk eksperimentering.
Oppgaven foreslår en rekke strategier innen standardisering av input for
å sikre robusthet, finjustering av språkmodeller og bruk av vedvarende
overvåking med XAI-teknikker fra litteratur. Oppgaven understreker for-
delene ved å bruke GPT-baserte modeller mot hatytringer, og viser til
ytelsesnivåer nær menneskelig nivå samtidig som modellene reduserer
tid og kostnad betydelig. Videre understreker oppgaven fordelene ved
å gi modeller kontekstuell informasjon for å kunne oppdage hatefulle
ytringer. I tillegg fremhever oppgaven fordelene ved å prioritere unikhet
og usikkerhet ved valg av sampling for sekvensiell finjustering av mo-
dellen, noe som forbedrer ytelsen sammenlignet med tilfeldig sampling.
Oppgaven foreslår også en prioriteringsstrategi som adaptivt klassifiserer
instanser ved hjelp av modeller med varierende kompleksitet, avhengig
av de iboende egenskapene til hver instans. Til slutt integreres alle disse
strategiene i en sammenhengende systemarkitektur.

Preface

The research presented in this thesis was conducted at the Department
of Information Security and Communication Technology under the super-
vision of Dr. Sule Yildirim Yayilgan and Sarang Shaikh. It represents the
culmination of our integrated five-year Master’s program at the Norwegian
University of Science and Technology (NTNU).

From the first year of university, we have always found ourselves work-
ing together on projects, learning how to play off each other’s strengths
and balance out our weaknesses. Yet, this thesis was a whole new ball
game; it was bigger and more demanding than anything we had tackled
before. Although we had a background in data science, natural language
processing and linguistics were new ground for us, resulting in a steep
learning curve. Despite the challenges, our research brings significant and
useful contributions to the field.

We are grateful to our supervisors for their consistent support and
guidance throughout this research process. We also want to acknowledge
the SOCYTI research project for inspiring our study of hate speech and
its prevention. We wish the project continued success.

Finally, we would like to express our gratitude to our families and
friends for their unwavering support and encouragement. We especially
thank our dear friend Olav Førland for dedicating his time proofreading
our thesis.

Andreas Aarrestad and Santhosh Shanmugam
Trondheim, 2023

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Specification . 3

1.2.1 Goal . 3
1.2.2 Research Questions . 3
1.2.3 Subgoals . 4
1.2.4 Scope . 5

1.3 Research Approach . 6
1.4 Research Design . 7
1.5 Outline of Thesis . 9

2 Background 11
2.1 Hate Speech . 11

2.1.1 Prevalence and Dynamics in Social Media 11
2.1.2 Platforms’ Incentives for Action 13

2.2 Twitter . 14
2.2.1 Interaction Model . 15
2.2.2 Components of a Conversation Chain 16

2.3 Hate Speech Management Systems 16
2.3.1 System Components . 17
2.3.2 System Evolution and the Need for Research 18

2.4 Machine Learning . 19
2.4.1 Statistical Classification . 19
2.4.2 Supervised Learning . 19
2.4.3 Performance Metrics for Supervised Classification Models . . 21
2.4.4 Neural Networks . 22

vii

2.4.5 Deep Learning . 24
2.4.6 Hyperparameters . 24
2.4.7 Transfer Learning . 24
2.4.8 Lifecycle Framework . 24

2.5 Natural Language Processing . 26
2.5.1 Language Representation . 27
2.5.2 Transformer . 28
2.5.3 BERT . 29
2.5.4 GPT . 30

3 Literature Review 33
3.1 Current Hate Speech Management Systems for Social Media Platforms 33
3.2 Models Used for Hate Speech Detection 34

3.2.1 State-of-the-Art Models . 35
3.2.2 Comparison of Transformer-Based Models 36

3.3 Intricacies of Identifying Hate Speech 39
3.4 Usage of Context in Hate Speech Detection 40
3.5 Hate Speech Datasets . 42

3.5.1 Challenges of Annotation . 42
3.5.2 Challenges of Large-Scale Crowdsourcing 43
3.5.3 Machine-Generated Datasets 44
3.5.4 Using GPT Models for Data Labeling 45

3.6 System Properties for Feasibility and Practicality 46
3.6.1 Legal Compliance and Data Efficiency 46
3.6.2 Robustness Against Adversarial Attacks 47
3.6.3 Transparency and Auditability 48
3.6.4 Maintainability and Consistent Performance 50
3.6.5 Adaptability, Availability, and Scalability 50
3.6.6 Effects of Detection Cost . 52

4 Methodology 55
4.1 Computing Environment and Resources 56
4.2 Identifying Core System Properties 56
4.3 Postulating Domain-Specific Strategies 60
4.4 Refining Existing Hate Speech Dataset 62

4.4.1 Retrieving Contextual Information with the Twitter API . . 63
4.4.2 Filtering . 63

4.5 Exploration of GPT-Based Annotation 65
4.5.1 Establishing an Unbiased Hate Speech Definition 65
4.5.2 Data Preparation for Outsourcing 66
4.5.3 Outlining Trade-Off Determinants for Cost Efficiency 67
4.5.4 Estimating the Optimal Combination of Factors 73

4.6 Developing Hate Speech Classifiers for the Evaluation of Quantitative
Strategies . 75
4.6.1 Model Architectures and Domain Adaptation Approach . . . 76
4.6.2 Design Choices for Sequential Fine-Tuning of BERT models . 78
4.6.3 Feature Engineering for Meta Learner 80
4.6.4 Preparation of Textual Input Features 80
4.6.5 Optimization of Hyperparameters 81
4.6.6 Assessing Impact on Classification Cost 82

4.7 Quantitative Analysis of Cross-Validation Trials 84
4.7.1 Trial for Evaluating Significance of Contextual Strategy . . . 85
4.7.2 Trial for Evaluating Significance of Sampling Strategy 86

4.8 Unifying Strategies in a Joint System Architecture 87
4.9 Limitations of Methodology . 87

5 Results and Discussion 89
5.1 Specialized Strategies for Hate Speech Management 89

5.1.1 Integration of Contextual Information in Detection Model . . 89
5.1.2 Standardizing Input Format for Detection Model 95
5.1.3 Detection Triage Scheme . 96
5.1.4 Continuous Sequential Fine-Tuning 99
5.1.5 Enhanced Sampling Heuristic of Uniqueness and Uncertainty 102
5.1.6 Advancing Robustness During Fine-Tuning 105
5.1.7 Persistent Monitoring With Explainable AI 106

5.2 Implementations of Strategies for Unified System Architecture 106
5.2.1 Preprocessing . 107
5.2.2 Implementation of Triage Scheme 108
5.2.3 Monitoring-Governed Fine-Tuning Triggers 109
5.2.4 Real-Time Stream Sampling 110
5.2.5 Validation of Fine-Tuned Models 110

5.3 Implications for Industry . 111
5.4 Limitations of Results . 113

6 Conclusion 115
6.1 Summary of Thesis . 115
6.2 Main Contributions . 116
6.3 Significance for Society . 117
6.4 Future Work . 117
6.5 Closing Remarks . 118

References 121

Appendix

A Supplementary Figures and Tables 129

List of Figures

1.1 Scope of thesis . 6
1.2 Research roadmap . 8

2.1 Net harassment by marginalized group 12
2.2 Schema graph for users and tweets in Twitter’s interaction model 15
2.3 Abstract hate speech management system architecture 17
2.4 Architecture of a multilayer perceptron 23
2.5 Generalized transfer learning workflow 25
2.6 Simplified input representation workflow in NLP 27
2.7 Architecture of Transformer block . 29
2.8 Transfer learning workflow for BERT . 29

3.1 Contextual information of a Tweet object 41

4.1 Detailed roadmap of the methodology 55
4.2 Workflow for developing augmented tweet dataset 63
4.3 Effects of reduction operations on dataset 64
4.4 The estimated performance of OpenAI’s instructGPT models 69
4.5 Condition-based multi-layer labeling scheme 70
4.6 Active labeling workflow with GPT-3 model 72
4.7 Class distribution and the corresponding uncertainty of relabeled dataset 75
4.8 High-level architectures of hate speech classifiers 79
4.9 Input sequence for ContextBERT model 81
4.10 Validation scheme for context evaluation 85
4.11 Validation scheme for sampling evaluation 86

5.1 Mapping between proposed strategies and system properties 90
5.2 ROC curves for NaiveBERT and ContextBERT 93
5.3 Classification costs given classification threshold for NaiveBERT and

ContextBERT . 93
5.4 Confusion matrices of aggregated model performances 94
5.5 F1 score of BERT, GPT, and experts given BERT’s uncertainty 97
5.6 Cumulative performance for a data annotation triage system 98

xi

5.7 Main effect of factors on utility . 101
5.8 Cohen’s kappa between original and new labels 101
5.9 Sampling heuristic workflow . 103
5.10 Proposed strategies integrated into the machine learning lifecycle 107
5.11 Implementation of adaptive triage scheme 109
5.12 Real-time sampling streams . 110
5.13 Proposed detection architecture . 112

List of Tables

2.1 2x2 confusion matrix for a binary hate speech classification problem . . 21

3.1 Comparison of transformer-based pre-trained NLP models 37
3.2 Taxonomy of hate speech . 40
3.3 Subset of incorrectly labeled positives in the Founta et al. dataset . . . 44
3.4 Effect of adversarial perturbation through sub-word level manipulation . 47

4.1 Paired relative importance of system properties of a hate speech manage-
ment system . 59

4.2 System property overall importance matrix 60
4.3 Data foundation for labeling instances with GPT 67
4.4 Response matrix for fractional factorial design experiments 74
4.5 Engineered features for meta learner . 81

5.1 Performance results of cross-validation trials for classifiers 91
5.2 Wilcoxon signed-rank test of performance differences between classifiers 92
5.3 Regression model summary of fractional factorial design trials 100
5.4 Cross-validation results of sampling . 104
5.5 Hypothesis test of the performance of sampling 105

A.1 Raw feature summary of developed dataset 129
A.2 Instruction levels . 130
A.3 Hyperparameters for NaiveBERT and ContextBERT 131
A.4 Hyperparameters for ContextBoost . 131

xiii

List of Acronyms

ADL Anti-Defamation League.

AHP Analytical Hierarchy Process.

AI Artificial Intelligence.

ALBERT A Lite BERT.

API Application Programming Interface.

AUC ROC Area Under the Curve of the Receiver Operating Characteristic.

BERT Bidirectional Encoder Representations from Transformers.

BoW Bag of Words.

CD Continuous Delivery.

CNN Convolutional Neural Network.

CSR Corporate Social Responsibility.

DistilBERT Distilled BERT.

DOE Design of Experiments.

EDA Exploratory Data Analysis.

FNR False Negative Rate.

FPR False Positive Rate.

GDPR General Data Protection Regulation.

GPT Generative Pre-Trained Transformers.

IAA Inter Annotator Agreement.

xv

IID Independent and Identically Distributed.

LR Logistic Regression.

LSTM Long Short-Term Memory.

MCDM Multi-Criteria Decision-Making.

MLM Masked Language Model.

MLP Multilayer Perceptron.

NER Named Entity Recognition.

NLP Natural Language Processing.

NLTK Natural Language Toolkit.

NPV Negative Predictive Value.

NSP Next Sentence Prediction.

NTNU Norwegian University of Science and Technology.

OLS Ordinary Least Squares.

POS Part-of-Speech Tagging.

PPCR Predicted Positive Condition Rate.

PPV Positive Predictive Value.

RE Requirements Engineering.

RNN Recurrent Neural Network.

RoBERTa Robustly Optimized BERT.

ROC Receiver Operating Characteristic Curve.

SD Standard Deviation.

Sklearn Scikit-learn.

SST Stanford Sentiment Treebank.

SVM Support Vector Machine.

TF-IDF Term Frequency-Inverse Document Frequency.

TNR True Negative Rate.

TPE Tree-Structured Parzen Estimator.

TPR True Positive Rate.

TSAR Text Scheme Adversary Recognition.

UN United Nations.

URL Uniform Resource Locator.

XAI Explainable AI.

Chapter1Introduction

This chapter provides a concise introduction to our research, presenting its motivation,
goal, scope, and the research questions that will be addressed. It highlights the
significance of our work and the potential contributions it may have and gives a brief
overview of the following thesis structure.

1.1 Motivation

The online world has become a space for free expression and communication for
people worldwide. However, the anonymity and ease of access to these platforms
have also led to a rise in hateful speech, which in turn causes harm to individuals [75],
incurs a loss of revenue for the platform [19], exacerbates existing social divisions [88],
and even incites real-world violence [36]. Combating hateful speech has become an
investment priority for social media companies, a major target for regulatory action,
and a central focus for efforts in natural language research.

Given the vast amount of social media posts, relying solely on manual solutions
like human moderation can lack scalability, be time-consuming, and less effective [31].
This highlights the necessity for automated hate speech management systems. A
dedicated system optimizes resources by reducing the burden on human moderators
and ensures a standardized approach to managing hate speech. Following the system’s
predefined rules, guidelines, and policies can address all instances of hate speech
objectively and uniformly. In contrast, relying solely on human intervention may
result in inconsistencies, and subjective judgments as individual moderators may
have different interpretations and personal biases [74]. While non-system approaches,
such as educational campaigns or legal frameworks, are crucial in combating hate
speech, dedicated systems complement these efforts by offering scalable and consistent
approaches to identifying, monitoring, and responding to hate speech.

Recent research on hate speech has mainly focused on improvements in perfor-
mance rather than considering strategies for the practical implementation of a hate

1

2 1. INTRODUCTION

speech management system. This emphasizes the importance of conducting research
that focuses on strategies that are both effective and applicable in real-world settings
[57]. For social media companies, a pragmatic approach is required where the poten-
tial gains of new strategies need to be weighed against the various side effects that
come with the strategy. For instance, the added value of using a machine learning
model that optimizes performance might come at the cost of higher computational
power. In this context, there is value in developing strategies that aid social media
companies in efficiently navigating the complex task of combating hate speech while
maintaining operational efficiency. While social media platforms may have developed
systems to detect and take action against hate speech continuously, the lack of
transparency regarding the inner workings of social media companies hampers the
collective progress in combating hate speech effectively. Sharing best practices and
lessons learned across the industry is valuable. Not only may social media companies
benefit from this research, but other actors who are considering the use of automated
systems to manage hate speech may also benefit. Throughout this thesis, we have
collaborated with the SOCYTI project1, a research initiative dedicated to preventing
violence-inducing behavior in the social-cyber space of local communities.

System properties in regard to a system that manages hate speech refer to the
inherent characteristics and features of the system that ensure effective identifica-
tion, monitoring, and mitigation of hate speech. Amongst others, these properties
can include performance, scalability, adaptability to evolving language patterns,
and robustness against possible adversarial attacks. By incorporating such system
properties into the research process, the development of new strategies for hate
speech management systems can be better aligned with the real-world needs of these
companies. These strategies should optimize not only the technical system properties
of developing and deploying models for hate speech management systems but also the
economic factors that play a significant role in deciding which aspects to implement
in the final system. One of these strategies is to integrate contextual information into
the detection systems. Social media platforms collect extensive information about
the user’s demographics and their usage patterns. This metadata could be leveraged
to enhance the systems social media companies utilize to manage hate speech by
optimizing system properties [43]. Similarly, other strategies should be developed as
well.

In this manner, this thesis adopts a novel approach by focusing on contributing
to the understanding of what system properties a hate speech management system
on a social media company should include, as well as propose strategies to optimize
them. To the best of our knowledge, no such focus has been directly pursued in the
research field prior to this point. The final objective is establishing a generalized

1For more information on the SOCYTI project, visit:
https://www.bigdata.vestforsk.no/ongoing/socyti

1.2. PROBLEM SPECIFICATION 3

system architecture with these strategies. Consequently, to achieve this objective,
we will commence by identifying the operational system properties that impact
the practicality of detection systems. This thesis builds upon and extends the
research that was conducted in the preceding specialization project [105] regarding
the integration of contextual information. Consequently, there is a focus on the use of
contextual information. Hence, we will assess the effects of incorporating contextual
information to determine its feasibility as a viable strategy to optimize a subset of
the identified properties. However, as we have extended this initial scope we will
identify and analyze additional strategies that together consider all the identified
system properties. Finally, we will integrate these various strategies into a unified
system architecture while ensuring that system properties are still optimized and
implemented cost-efficiently.

1.2 Problem Specification

This section presents the overall goal, the research questions, as well as the scope of
the thesis. In preparing for this study, a preliminary literature review was carried
out in accordance with the goal of the specialization project. Here, we identified a
number of gaps in the literature which informed the development of the current goal
and the research questions. This process ensures that our research will contribute to
new insights in the research field and that our results are industrially applicable.

1.2.1 Goal

The goal of the thesis is to identify and analyze various strategies for establishing
a system architecture that effectively optimizes system properties in a hate speech
management system. This system architecture will illustrate how social media
companies can develop generalizable hate speech management systems in which
strategies that optimize different system properties can be added or removed.

1.2.2 Research Questions

The research questions depict the focus of our research, while also dividing the goal
into more concrete and manageable tasks.

RQ1 What are the strategies that optimize system properties of a hate speech
management system, with particular attention to the incorporation of contextual
information as a potential strategy?

To formulate effective strategies for a hate speech management system, it is
crucial to optimize such a system’s properties. This can involve ensuring consistent
performance in real-world scenarios, defending against adversarial attacks, adapting

4 1. INTRODUCTION

to evolving hate speech patterns, complying with legal regulations, and providing
transparency in decision-making.

Our preceding specialization project focused on the impact of integrating contex-
tual information as features to a machine learning model tasked with detecting hate
speech. While our research aims to build upon our previous specialization project
by emphasizing the real-world applicability of a hate speech management system,
adding contextual information for hate speech detection remains a pertinent strategy
to optimize essential system properties of such a system [43]. We believe integrating
contextual information will benefit a hate speech management system, resulting in
insight into the nuanced characteristics and intentions embedded within the speech.

While integrating contextual information is a noteworthy strategy, it is essential
to explore a diverse array of techniques and solutions to optimize system properties
comprehensively. By analyzing the impact of such strategies, including the integration
of context, we can gain insight into their effectiveness in managing hate speech while
considering system properties such as computational cost, real-time performance,
scalability, and data handling capabilities.

RQ2 What is a system architecture that integrates strategies optimizing system
properties, while ensuring that all properties are still optimized to the same degree?

When exploring strategies that optimize system properties of a hate speech man-
agement system, including integrating contextual information as a potential strategy,
it is crucial to consider the potential interplay and impact of these strategies on
one another. For example, the inclusion of context in the detection may hinder
the implementation of a monitoring strategy. Therefore, it becomes imperative to
devise an architecture that effectively integrates these strategies while preserving
their individual functionalities. It is important to note that our primary focus lies
in the theoretical establishment and conceptualization of this architecture. While
we acknowledge the potential practical implementation of the proposed system, our
research primarily centers on the design and theoretical aspects. This process entails
grouping comparable strategies together and determining their optimal implementa-
tion sequence. The identified strategies will ultimately form the system architecture
of a crucial aspect of the hate speech management system, ensuring that system
properties are effectively optimized. Further details can be found in subsection 1.2.4,
which covers the scope of the topic.

1.2.3 Subgoals

To achieve the overall goal and address the research questions, it is practical to
formulate some intermediate steps. We have therefore outlined the following subgoals:

1.2. PROBLEM SPECIFICATION 5

1. Identify core system properties of a hate speech management system and
postulate potential strategies to optimize these properties.

2. Develop a dataset to evaluate the quantitative aspects of the postulated strate-
gies.

3. Develop machine learning classifiers aimed at identifying hate speech for usage
in quantitative experiments.

4. Conduct quantitative experiments for the strategies where the literature was
insufficient.

5. Formulate and concretize the strategies, drawing on the qualitative findings
from the literature review and the quantitative experiments conducted.

1.2.4 Scope

A hate speech management system comprises an algorithmic framework designed to
detect and mitigate instances of hate speech by analyzing collected data, assessing
their potential harm in accordance with policies, and implementing appropriate mea-
sures to promote a safe and inclusive online environment. Hate speech management
encompasses a broader range of actions after detection, such as moderation, user
sanctions, and content removal. Additionally, the method by which data is transmit-
ted from a social media platform to the architecture responsible for detecting hate
speech is also worth considering. This can include aspects such as batch processing,
periodic updates, or real-time processing. We will delve further into hate speech
management systems in section 2.3 in the background chapter.

The focus of this research is exclusively on the part of the system responsible
for processing an abstracted input data stream and generating a labeled output
stream, as illustrated in Figure 1.1. Our thesis specifically excludes the discussion of
the mechanisms involved in how the input data stream is retrieved, as well as the
subsequent handling of the output stream. Throughout the remainder of this thesis,
we will refer to this particular part of the system as the detection architecture of a hate
speech management system. It is crucial to emphasize that the detection architecture
not only comprises a detection module but also encompasses various other modules
that address different aspects of the architecture (e.g., adaptive learning, sampling,
and maintenance). This thesis will therefore focus on strategies to establish these
modules. In this manner, we will optimize the identified system properties of this part
of a hate speech management system by suggesting appropriate strategies and finally
combining the strategies in a detection architecture. We will utilize a dataset to
simulate the input data stream in order to evaluate some of the identified strategies.
Still, there will be no focus on how each data point would have been retrieved from
the platform.

6 1. INTRODUCTION

By directing our attention solely toward the detection architecture, our research
ensures independence from other elements of the hate speech management system.
As a result, our findings become more generalized and adaptable. In doing this
research, we will also take a social media company’s perspective in order to better
tailor a detection architecture of a hate speech management system.

Figure 1.1: The scope of the thesis. We will propose an architecture for hate speech
management on social media, scoped to not delve into how the data is sourced or
what actions will be taken with the predicted labels.

The overarching research done in this thesis will be platform agnostic, meaning
that it can be applied to any social media platform. However, the basis for our trials
is a dataset derived from Twitter, which serves as a benchmark platform representing
the environments to which we aim to generalize our developed strategies and insights.
It should also be noted that the dataset contains only tweets written in English, as
accounting for multilingual tweets is not a focus of this thesis. We will also solely
distinguish between non-hateful and hateful speech and thus only utilize binary
classification.

1.3 Research Approach

We employed a pragmatic mixed approach, drawing on inductive and deductive
reasoning. From a deductive standpoint, we sought to investigate the effect of
integrating contextual information as features to a machine learning model tasked
with hate speech detection, following the preliminary research from the specialization
project. Simultaneously, we identified effective strategies and evaluation methods for
a realistic hate speech detection system through an inductive lens. By combining both
approaches, we established causal relationships while contextualizing our findings.

1.4. RESEARCH DESIGN 7

To establish a solid basis for investigation, we utilized a content analysis approach
in which we systematically analyzed relevant literature, presented in a later chapter.
Such an approach helped us to interpret the findings in relation to previous research
and identify inconsistencies or discrepancies. Additionally, the content analysis of
relevant literature helped us explore potential explanations for the patterns and
themes identified in the analysis.

In the cases where relevant literature was insufficient, we followed an experimental
approach. Literature can be insufficient when it is contradicting, inconclusive or
irrelevant in nature. For example, conflicting literature on context integration makes
it challenging to provide a definitive answer on how it should be implemented. In
these instances, it was not feasible to draw conclusive findings from the content
analysis. Consequently, by both leveraging our accumulated knowledge from previous
experiences and conducting new research experimentally, we were able to adapt the
process. This adaptability enabled us to incorporate newfound insights and adjust
our approach accordingly.

1.4 Research Design

Upon analyzing the progressive formulations of our research questions, it became
apparent that a variation of a sequential design was the most appropriate. The
inter-dependencies among the questions necessitated a step-by-step approach to
obtain reliable results. The first question served as the foundation for the second
research question. By exploring the impact of contextual information as features and
identifying similar strategies, we could gain insights into the underlying mechanisms
and dynamics of the system properties. Without a comprehensive understanding
of the system properties and corresponding strategies, it would be challenging to
develop a system architecture.

For each research question, we utilized a mixed-methods research design that
integrated both quantitative and qualitative research methods in addition to the
overall sequential design. A comprehensive explanation of these methods will be
presented in the methodology chapter. The content analysis approach employed
qualitative methods, while the experimental approach used quantitative methods.
By combining these two designs, a more comprehensive analysis of the different
strategies could be conducted to address the multifaceted challenges of hate speech
management. While qualitative methods provide a broader analysis and generate
a wider range of strategies without relying heavily on numerical data or actual
implementation, quantitative experiments, when applied to specific aspects such
as the strategy of utilizing contextual information, can offer more specific insights.
While we will delve into the detailed methods employed in the methodology chapter,
we present a roadmap of our research in Figure 1.2 to provide a more comprehensive

8 1. INTRODUCTION

understanding before presenting the findings from our literature review, which we will
present before the methodology chapter. This decision was made, as the literature
review was instrumental in choosing the methods used.

Figure 1.2: Roadmap illustrating the sequential progression of the subgoals and
the research questions in the study.

It is important to highlight that in order to gain insights into the implementation
of a hate speech management system that is to be used by a social media company,
we had to rely on informed assumptions derived from the research community. Direct
literature on how social media platforms specifically implement such systems is not
readily available, as these companies tend to keep such information confidential for
various reasons, which will be further discussed in the upcoming chapter 2.3.2.

After identifying both system properties and additional strategies, which are
presented in the methodology chapter, we evaluated each identified strategy using
both the findings from the literature review and quantitative experiments in order to
answer the first research question. For instance, to investigate the implications of
using contextual information as features, the process involved obtaining a labeled
dataset that incorporated contextual information, utilizing the dataset to train
a suitable machine learning model, and then assessing the impact on the model
compared to a baseline that did not incorporate contextual information.

1.5. OUTLINE OF THESIS 9

Thereafter, to answer our second research question, we used both the knowledge
about system properties gained from our literature review and the formulated
strategies in order to develop system components of the final system architecture.
By combining the established system components and deciding the sequence of
implementation, we developed a generalizable system architecture.

1.5 Outline of Thesis

The thesis is divided into hierarchical chapters, sections, and subsections, each
identified in the CHAPTER.SECTION.SUBSECTION format to allow for easy
navigation and reference. The thesis is structured as follows:

Chapter 2 - Background provides the background theory and preliminaries
required to understand the rest of our work. This includes a description of what
qualifies as hate speech, as well as the motivations of industry actors to eradicate
it. We will then delve into what constitutes a hate speech management system.
Additionally, we will provide an overview of natural language processing and relevant
computer science theory. Subsequently, we will delve into the current state-of-the-
art approaches and necessary prerequisites for understanding the utilization and
evaluation of a natural language model.

Chapter 3 - Literature Review presents a review of existing literature on hate
speech management, conducted preliminarily and continuously throughout the re-
search process. It focuses on the challenges of hate speech detection and dataset
acquisition, the use of context as features, and system properties for real-world appli-
cability in the development and deployment of hate speech management systems.

Chapter 4 - Methodology presents the methods employed in our research. This
includes methods for prioritizing the system properties identified from the findings of
our initial literature review. We then describe the process of identifying and evaluating
strategies that optimize the system properties. In doing this, we also present the
quantitative experiments conducted to evaluate some of the identified strategies.
Amongst others, this included analyzing the integration of contextual information.
Specifically, we present the novel process for accurately and cost-effectively labeling
the dataset used, followed by the necessary preprocessing and feature engineering,
and conclude with the model architecture and training. Finally, we present the
methods to combine the formulated strategies into a system architecture.

Chapter 5 - Results and Discussion presents and discusses the identified strategies
to develop and deploy hate speech management systems that meet the identified
system properties. This includes an overview of the different identified strategies of
the hate speech management system, as well as results from the quantitative analyses.

10 1. INTRODUCTION

All the strategies will be consolidated into a single, cohesive system architecture.
The chapter will also include a discussion of the strengths and limitations of the
proposed strategies.

Chapter 6 - Conclusion will summarize the contributions of the thesis, outline
the significance of our findings for the industry and society, and discuss potential
future directions for the research.

Chapter2Background

This chapter presents an overview of the background knowledge needed in order to
understand the domain and the task at hand. By clarifying the preliminary aspects
of the research, this section aims to establish the context for the subsequent analyses
and findings.

2.1 Hate Speech

Hate speech is a pervasive and complex phenomenon that usually refers to various
forms of speech that expresses hate against an individual or group based on their in-
herent characteristics. It often causes significant emotional distress and psychological
harm to its targets. It creates an environment of fear, anxiety, and insecurity, con-
tributing to a hostile social climate. Combating it requires investments in education,
awareness, legal frameworks, and a societal commitment to promote diversity.

2.1.1 Prevalence and Dynamics in Social Media

In recent years, the landscape of hate speech has significantly shifted because of the
emergence of social media. With billions of interconnected users, the digital world
has provided users with powerful channels for communication and expression but
simultaneously created a fertile ground for hate to spread in an instantaneous and
wide-reaching fashion.

Scale

The amount of online hate speech has increased exponentially with the rise of social
media platforms. In the first quarter of 2023, Meta removed 11 million pieces of
content from their Facebook platform because of violations of their hate speech
policies, up from 10.6 million in the proceeding quarter according to the most recent
community standards enforcement report [45]. Teens are especially exposed to hate

11

12 2. BACKGROUND

speech online; one study from 2021 found that over 70% of respondents between the
ages of 18 and 25 have witnessed online hate speech in the last three months [63].

Targets

Hate speech often targets individuals or groups based on attributes such as their
race, religion, ethnicity, heritage, gender identity, or sexual orientation. Particularly,
marginalized groups are often disproportionately the targets of such discourse. As
seen in the net harassment in Figure 2.1, all the marginalized groups face a significant
amount of harassment online. Individuals in the LGBTQ+ community (lesbian,
gay, bisexual, transgender, queer/questioning, and others) report especially high
harassment rates. These extreme figures highlight the urgent need for further
investment into research which can be applied to real-life systems, as protecting
marginalized groups should be a top priority in diverse societies.

Figure 2.1: Net harassment by marginalized group in the United States in the 2022
Online Hate and Harassment survey by the ADL1[75]. Severe harassment includes
experiencing physical threats, sustained harassment, stalking, sexual harassment,
doxing2, and swatting3.

Amplification Factors

The inherent nature of digital space and the incentives of social media companies
give rise to a range of amplification factors that makes hate speech persist easily
on the platforms. First, anonymity can often embolden users to direct hate toward
others without facing personal consequences. Additionally, hate can be directed

1The Anti-Defamation League (ADL) is an international anti-hate organization.
2Doxing is searching for and publishing personally identifiable information about an individual,

usually for reasons such as exposure, blackmail, or public shaming.
3Swatting is a harassment technique that involves making false reports to emergency services,

usually with the goal of tricking law enforcement to respond to a target individual’s home address.

2.1. HATE SPEECH 13

toward unfamiliar users, potentially reducing empathy and facilitating the expression
of hateful sentiments.

Most social media platforms operate with an advertising-based4 revenue model,
and they are thus paid in relation to how much engagement they get from users. As
such, it is in their interest to design their recommendation algorithms5 such that they
maximize user engagement, which often translates into showing users content similar
to what they have interacted with earlier on. These algorithms prioritize content
that aligns with a user’s beliefs and preferences, reinforcing their biases and fostering
an environment conducive to hate speech [18]. This can lead to the radicalization
of individuals, the proliferation of discriminatory ideologies, and the formation of
echo chambers that perpetuate and amplify hate speech within a community [88]. In
this manner, hate speech can potentially incite violence against targeted individuals
or groups. It can encourage individuals who hold extreme views to act upon their
prejudices, leading to physical attacks, harassment, or even acts of terrorism [36].

Relationship with Real-World Incidents

Online hate speech has been linked to real-world violence in numerous instances.
According to a study conducted in 2019 by academics from Cardiff University’s
HateLab, it was discovered that a rise in hate speech on social media platforms could
directly contribute to an increase in real-world crimes targeting minority groups
[100]. The researchers analyzed crime data from London alongside Twitter data and
observed a correlation between the number of "hate tweets" originating from a specific
location and an escalation in racially and religiously aggravated crimes in that area.
Similarly, former U.S. President Donald Trump’s frequent use of hate speech and
divisive rhetoric has been linked to a rise in hate crimes and a normalization of
discriminatory beliefs and behaviors [50].

The intensity of hate speech tends to escalate during significant global events.
According to a study conducted by the AI security company Light, there was a
significant 900% surge in hate speech tweets targeting Chinese individuals and China
between December 2019 and March 2020, coinciding with the beginning of the
COVID-19 pandemic [33].

2.1.2 Platforms’ Incentives for Action

Though there is an ethical responsibility of platforms to protect their users from
hateful content, it’s important to recognize that these companies might not prioritize

4An advertising-based revenue model is a common revenue model for companies offering digital
services where the users do not pay to use the service, but are instead exposed to ads by third-party
advertisers which pay for exposure.

5Social media companies use recommendation algorithms to automate the selection, ranking,
and presentation of content for a specific user on the platform.

14 2. BACKGROUND

ethical considerations in decision-making. However, there are still legal, financial,
and reputational factors that incentivize social media companies to remove hateful
content from their platforms.

Reducing Risk of Litigation

Some jurisdictions have introduced legislation to regulate the responsibility of social
media platforms to take appropriate measures to remove hateful content. The content
moderation provisions of the Digital Services Act of the European Union may, for
example, require companies to remove what is deemed hateful content [19]. Failure
to adhere to government regulations might result in the company paying large fines
or criminal charges to executives, depending on the severity of the non-compliance
and the jurisdiction.

Improving Public Image

Advertisers are concerned with the ethical values of the platforms they display their
advertisements [76]. Therefore, having good relations with advertisers is important to
maintain steady ad revenue streams. Additionally, CSR6 has become an increasingly
important strategy where companies’ commitment to social issues can help attract
investors and strategic partnerships.

Increasing User Growth

User satisfaction is important as, needless to say, users do not like being harassed.
Therefore, addressing hateful speech and providing users with inclusive social spaces
can increase user retention rates and make the user base more diverse, leading to
higher user growth rates for the platform.

2.2 Twitter

Twitter is an American social media platform that provides users with the ability to
share content, engage in conversations, and connect with others in a real-time global
context. By default, the content on Twitter is public, allowing the platform’s over
350 million users to view a vast majority of the approximately 6,000 posts posted per
second. Central to the platform are tweets, which are multi-modal posts containing
text, limited to 280 characters, as well as images, videos, URLs, and hashtags. Tweets
are commonly accessed through a user’s feed, a personalized and dynamic stream of
posts designed to maximize user engagement.

6Corporate social responsibility is a strategic business model in which companies adopt sustain-
able practices that provide risk management and value creation by taking accountability for their
impact on society.

2.2. TWITTER 15

Twitter serves as a platform for governments, corporations, and individuals to
make official announcements and communicate with others. Influencers, brands, and
activist movements leverage its extensive global reach for advertising and influencing
the public, while individuals utilize it to share opinions, experiences, and creative
works. This versatility positions Twitter as a significant platform for studying and
understanding online public discourse.

2.2.1 Interaction Model

The platform facilitates various interactions among users, between users and tweets,
as well as between tweets themselves. Given the vast range of interactions available,
we will only outline the ones that influence our thesis. These are typically those
that establish relationships or are quantifiable statistics present in the metadata. An
overview of the interactions can be seen in Figure 2.2.

Figure 2.2: Schema graph for users and tweets in Twitter’s interaction model.

Interactions Among Users

Apart from private messaging, users interact with each other mainly through the
interactions "following" and "listing". These interactions enable the user to personalize
their content consumption on the platform, as following and listing will enable the
user to decide what content is displayed.

Follow: Subscribes to another user’s future tweets, making them visible in
the feed.

List: Adds another user to a customized list, allowing the user’s future
tweets to be viewed in a dedicated feed.

16 2. BACKGROUND

Interactions Between Users and Tweets

Users interact with tweets through engagement actions such as posting, liking,
replying, and mentioning.

Post: Publishes a tweet that is shared with users that have followed or
listed the user.

Like: Showing appreciation for a tweet by liking it. Likes are anonymous,
but the number of likes is visible on a tweet.

Mention: Adds a clickable reference to another user’s account in a tweet to
notify or credit them, allowing for direct attribution.

Reply: A comment is added below a tweet and is threaded to maintain
conversation context. The number of replies is stored as a metric.

Interactions Between Tweets

Similarly, tweets interact with other tweets. In this manner, tweets can be instantiated
from existing ones.

Retweet: When someone shares another person’s tweet, it allows the retweeter’s
followers to see it on their own timeline, giving it visibility under
the retweeter’s name.

Quote: Enables users to share another person’s tweet while adding their
own commentary or context, allowing it to be seen by their followers
along with their additional insights.

2.2.2 Components of a Conversation Chain

A Twitter conversation chain typically refers to a series of connected tweets part of a
common thread. This occurs when users reply, retweet, or quote a tweet. Regarding
retweets and quotes, the original tweet is often referred to as the parent tweet, and a
response tweet is considered a child tweet. While a parent tweet can have multiple
child tweets, a child tweet can only have one parent tweet. Similarly, the user who
posted the parent tweet can be referred to as the parent author, and the user who
responded can be referred to as the child author.

2.3 Hate Speech Management Systems

Social media companies have employed various strategies to manage hate speech
on their platforms. The management of hate speech encompasses continuously
identifying and responding to instances of hate speech. Although a standardized
naming convention for the various aspects of a hate speech management system is

2.3. HATE SPEECH MANAGEMENT SYSTEMS 17

currently unavailable, our research has identified three distinct elements [83]. The
first element involves defining community guidelines and determining how posts on
the platform are directed to a detection architecture. This usually involves user
response mechanisms (e.g., reporting, flagging) and real-time processing approaches.
The second element, which we refer to as the detection architecture as outlined in
subsection 1.2.4, encompasses the detection, which includes both human moderation
and automated tools for detection, and the associated support architecture in place
to optimize relevant system properties of detection. The final element involves taking
appropriate actions against speech identified as hate speech. Collectively, these stages
form a comprehensive hate speech management system as depicted in Figure 2.3.

Figure 2.3: Abstract hate speech management system architecture. Our scope
focuses on the component between the input and output interfaces.

2.3.1 System Components

Before the actual detection of hate speech, most social media companies establish
community guidelines that outline acceptable behavior and content standards. These
guidelines explicitly prohibit hate speech, with the company itself responsible for
defining the specific parameters that classify hate speech. For example, Twitter
has established criteria to identify and address hateful conduct, including but not
limited to hateful references, slurs, and dehumanization, as outlined in their policy
on hateful conduct [28]. Some companies have also established partnerships with
advocacy groups, experts, and civil society organizations to refine their guidelines.
The guidelines serve as a basis for determining what content should be removed or
restricted.

After establishing community guidelines posts must be sent to the detection
architecture. There are several approaches to accomplish this. Social media platforms
encourage their users to report content that violates their community guidelines,
leading to the direct transfer of reported posts to the detection architecture. However,
such an approach is reactive, requiring users to encounter hateful content before

18 2. BACKGROUND

any action can be taken against the offending post. Ullmann [91] describes such
approaches as unethical as the posts will still cause the recipients psychological harm
before being taken down. Therefore, the majority of social media companies have
implemented some form of processing of all posts. The decision of whether to perform
this processing in real-time or periodically using batch processing is therefore an
important aspect.

Traditionally the detection architecture consisted of human moderators. Social
media platforms most often employ teams of moderators who review reported or
flagged content to assess its compliance with the guidelines. Moderators evaluate
factors such as context, intent, potential harm, cultural nuances, and severity of the
offense to determine whether a particular piece of content qualifies as hate speech.
Due to the complex nature of hate speech, moderators employ multiple categories to
classify the various types of hate speech (e.g. aggressive, harmful, satirical), enabling
the company to take targeted actions accordingly.

In recent years, social media companies have utilized automated tools to aid in
the detection architecture of the hate speech management system in addition to
human moderation. These tools employ various state-of-the-art machine learning
technologies to analyze content and identify instances of policy violations. Automated
systems can flag suspicious content for further human review or even remove it directly
based on predefined rules. However, due to the complexities of hate speech, these
automated tools are not always foolproof and require continuous refinement and
human oversight. This human oversight with multiple moderators frequently leads
to significant cost implications for social media companies [84]. This matter will be
further elaborated on in the literature review.

Once an instance of hate speech is detected and its classification is confirmed
through human oversight, the appropriate action is determined based on its severity
in relation to the violated guidelines. This constitutes the last system component
and can include making a post less visible, removing a post from the entire platform,
or even banning a user.

2.3.2 System Evolution and the Need for Research

Although hate speech management systems exist today, new forms of hate speech,
emerging trends, and evolving user behavior require continuous improvement. As
these factors evolve, it is essential to recognize that previous community guidelines
may become outdated, necessitating the implementation of new ones. In addition,
automated systems often struggle with the context, sarcasm, and cultural nuances
of the evolving language, leading to errors in classification. The existing detection
architecture that utilizes these automated systems may require the implementation of
novel strategies to adapt to evolving inputs or new restrictions imposed by authorities.

2.4. MACHINE LEARNING 19

As new types of hate speech emerge, there may also be a need to introduce new
measures or actions to address them effectively. With this in mind, there is a
constant need for ongoing research to enable the development and implementation of
an up-to-date hate speech management system.

Regarding the availability of such research, while social media companies have
made efforts to combat hate speech, they may not publicly disclose all the details of
their management systems. Companies often guard their proprietary technologies
and algorithms to maintain a competitive edge. Consequently, there is no current
standardized system for managing hate speech. Companies are also dependent on
continuous research in this field in order to receive external feedback and knowledge.
Therefore, we will focus our research on enhancing accessibility to pertinent informa-
tion and advancing the field. This thesis exclusively concentrates on the detection
architecture, disregarding components such as community guidelines, data transfer
to the detection architecture, and the subsequent course of action post-detection.

2.4 Machine Learning

Machine learning is a sub-field of artificial intelligence (AI) concerned with leveraging
data to develop methods that make machines capable of learning patterns and
making predictions without being programmed explicitly. In this subsection, we aim
to navigate the domain of machine learning in the context of binary hate speech
detection and present relevant concepts.

2.4.1 Statistical Classification

Statistical classification is a branch of machine learning that aims to enable models
to categorize instances in a dataset into predefined classes by learning statistical
patterns in their characteristics. These characteristics are often referred to as features
and are represented in a numerical feature vector. An algorithm that implements a
classification scheme is commonly referred to as a classifier and produces an output
prediction given an input.

2.4.2 Supervised Learning

Machine learning is generally categorized into three paradigms: supervised learning,
unsupervised learning, and reinforcement learning. In supervised learning, the feature
vectors are accompanied by corresponding ground truth labels which are provided to
the classification models. The feature vectors are the inputs, and the labels are the
output that the model tries to predict. Hate speech detection usually demands a
supervised approach to be performative, as hate speech is a subjective concept, and

20 2. BACKGROUND

a machine would require the judgment of a human to determine what is hate speech
and what is not.

Moving into a mathematical framework for supervised learning, we define X and
Y as the set of feature vectors and label vectors in a dataset, respectively. xi ∈ X and
yi ∈ Y represent samples from i-th elements in these sets. The hypothesis function
f : X → Y maps the feature vectors from X to labels in Y . In the context of machine
learning, a model tries to optimize this function by approximating the underlying
relationship between the input data and the desired outputs. Given a set of n

input-output pairs and a hypothesis function f parameterized by a parameter vector
w, we define the objective function E(w) as the cumulative sum of a loss function L

over all samples n as seen in equation 2.1. The objective function, therefore, serves
to quantify the performance of the model given the parameter w.

E(w) =
n∑

i=1
L(f(xi; w), yi) (2.1)

The loss function L quantifies the discrepancy between the prediction of the
model, f(xi; w), and the true value, yi. In binary classification problems, it is often
given by the cross-entropy loss as defined in equation 2.2. This essentially measures
how efficient the predictions are in terms of encoding information about the true
outcomes when assuming a different distribution. Here, pi represents the model’s
predicted probability of a particular class for the i-th instance.

LCE(pi, yi) = −yi · log(pi) − (1 − yi) · log(1 − pi) (2.2)

The aim of the supervised learning scheme is to find the optimal parameter values
w∗ that would minimize the objective function E(w) as denoted in equation 2.3.
This process of finding the optimal parameter values is commonly referred to as
training and usually involves applying optimization techniques that iteratively adjust
the parameter vector w based on the inputs x and corresponding target labels y.

w∗ = arg min
w

E(w) (2.3)

If the classifier is not able to capture the underlying patterns in the data, it’s said
to be underfitting. If the classifier performs well but generalizes poorly to unseen
instances, it’s said to be overfitting. Generalization refers to the ability of a trained
model to accurately perform on unseen or new data that it has not been previously
exposed to during training.

2.4. MACHINE LEARNING 21

2.4.3 Performance Metrics for Supervised Classification Models

Several metrics are used to measure the performance of classification models, each
offering different insights into a model’s effectiveness. We have selected metrics that
we found to best align with the characteristics of our data and the experimental
design we employed.

Classification Outcomes

Our task of hate speech detection is a binary task, and we are therefore concerned
with binary classification. In a supervised binary classification task, we encounter
four potential outcomes when comparing a model’s prediction ŷ to the true label y.
These outcomes can be organized in what is called a confusion matrix, illustrated in
Table 2.1. When applying the model to a set of data, it is conventional to use the
same notation (TP, FN, FP, TN) to refer to the counts representing the number of
each of these outcomes.

Predicted Condition

Predicted Hate
ŷ = 1

Predicted Non-Hate
ŷ = 0

Actual
Condition

Hate
y = 1

True Positive (TP)
Hit

False Negative (FN)
Type II Error

Non-Hate
y = 0

False Positive (FP)
Type I Error

True Negative (TN)
Correct Rejection

Table 2.1: 2x2 confusion matrix for a binary hate speech classification problem.

Fundamental Metrics

From the outcomes mentioned, we can further define four basic metrics, as seen in
equation 2.4, that are often used in binary classification tasks: Positive Predictive
Value (PPV), Negative Predictive Value (NPV), True Positive Rate (TPR) and True
Negative Rate (TNR).

PPV = T P
T P +F P NPV = T N

T N+F N

TPR = T P
T P +F N TNR = T N

T N+F P

(2.4)

Precision and Recall

Precision and recall are conventional metrics used in supervised classification problems
that provide complementary perspectives on model performance. Precision quantifies

22 2. BACKGROUND

the model’s ability to detect relevant instances, while recall quantifies its ability to
avoid missing instances.

Precision = wpositive · PPV + wnegative · NPV
Recall = wpositive · TPR + wnegative · TNR

(2.5)

Conventionally, in binary classification problems, precision and recall are evaluated
considering the positive class, which is typically the class of interest. This approach,
often referred to as binary, treats precision as the Positive Predictive Value (PPV) and
recall as the True Positive Rate (TPR). However, in cases of severe class imbalance in
the dataset, it may be more appropriate to use the weighted forms of these metrics, as
defined in equation 2.5. With this approach, the metrics are computed separately for
each class, and the weighted sum of the metrics is calculated to provide an unbiased
evaluation of the model’s performance. We denote wpositive and wnegative as the
proportion of instances that belong to the positive and negative class, respectively,
in the dataset. It is essential to note that the sum of wpositive and wnegative always
equals 1, representing the entirety of the dataset.

F1 Score

It is common to balance both precision and recall by computing the F1 score, which
represents the harmonic mean of the two metrics. A high F1 score indicates that the
model performs well in terms of both precision and recall. In other words, the model
accurately distinguishes hateful instances from others while capturing a significant
portion of the hateful instances. The weighted F1 score is defined in equation 2.6.

F1 = wpositive · 2 · PPV · TPR
PPV + TPR + wnegative · 2 · NPV · TNR

NPV + TNR (2.6)

ROC AUC

The Receiver Operating Characteristic (ROC) curve depicts the TPR plotted against
the false positive rate (FPR) at various classification thresholds, and serves as a
graphical representation of the inherent trade-off between TPR and FPR. The area
under this curve (AUC-ROC) is the integral of this curve. While not as interpretable,
it serves as a powerful metric as it can measure performance independent of the
threshold and the class balance.

2.4.4 Neural Networks

Neural networks are a broad term that refers to any computational system made up
of interconnected layers of units called neurons. Just like the brain that serves as its

2.4. MACHINE LEARNING 23

inspiration, a neural network processes data by passing it through interconnected
layers. The most basic version of a neural network is a Multilayer Perceptron (MLP)
where the network forms a directed graph and each neuron computes a weighted sum
of its inputs, adds a bias term, and applies a non-linear transformation to the result.

Figure 2.4: Architecture of a multilayer perceptron.

Within the context of the supervised learning framework as defined in subsec-
tion 2.4.2, the parameters w of an MLP network consist of the weights of the
links between neurons and the bias of each neuron. This can be denoted as
w = {W1, b1, ..., WL, bL} where Wl and bl represent the weight matrix of the
links and the bias vector for the l-th layer zl, respectively. The hypothesis function
f is the forward pass as denoted in equation 2.7, where gl is the activation function
applied after layer l, implementing non-linearity into the model and enhancing its
ability to capture complex patterns in the data. In a supervised classification problem,
the weights and biases are updated as the network is trained using a large number
of input-output pairs. In the context of hate speech detection on a social media
platform, a single input to the model, such as a text string or post, is referred to as
an instance, and the output would be a binary label indicating whether the instance
contains hate speech or not (i.e., hate or non-hate).

z0 = x
zl = gl(Wlzl−1 + bl) for l = 1, ..., L

ŷ = zL

(2.7)

24 2. BACKGROUND

2.4.5 Deep Learning

Deep learning expands upon the foundational principles of neural networks through
the incorporation of numerous layers, augmenting the system’s capacity and enhancing
its capacity for generalization across intricate patterns. Such deep neural networks
facilitate representation learning, such that manual feature extraction is not needed
as the layers learn a more abstract representation of the data.

2.4.6 Hyperparameters

Model parameters that are not learned during training, but instead set explicitly, are
commonly referred to as hyperparameters. Selecting appropriate hyperparameters
is essential for optimizing the performance of a machine learning model as it can
have a significant impact on the model’s ability to generalize and avoid overfitting.
Tuning hyperparameters is essential to strike the right balance between performance
and generalization, leading to a model that performs optimally on unseen data. It
often involves a trial-and-error process, where different values are tested to find the
best configuration.

2.4.7 Transfer Learning

Transfer learning is a technique in deep learning where one is concerned with applying
the knowledge learned during a source task to a new and related target task. The
training of the source model, commonly referred to as pre-training, is often done on
a generalized task with large amounts of data. When re-purposing the pre-trained
model, the parameters of the lower layers in the neural network are typically frozen,
and the model is trained on a target dataset, a process commonly referred to as
fine-tuning, as depicted in Figure 2.5.

2.4.8 Lifecycle Framework

With machine learning techniques now being implemented in safety-critical applica-
tions, insufficient performance or inaccuracies in machine learning algorithms can
in these applications lead to irreversible system malfunction. The usage of machine
learning techniques in such critical systems has therefore evolved into a cycle of
multiple stages in order to achieve higher levels of assurance. This is an intricate and
iterative process, commencing with the acquisition of data for training a machine
learning model, and culminating in the integration of said model into the system’s
operational framework.

The following stages are presented by Ashmore et al. [4], who describe the
methods available from the literature for ensuring high levels of assurance in a
framework which is coined the machine learning lifecycle:

2.4. MACHINE LEARNING 25

Figure 2.5: Generalized transfer learning workflow where knowledge and represen-
tations, often via learned model parameters, are transferred from a source model to
a target model.

1. Data Management

2. Model Learning

3. Model Verification

4. Model Deployment

The first three stages concern the creation and maintenance of the machine
learning model, while the last stage concerns the deployment of the developed
model within an operational system. In this manner, the machine learning lifecycle
can represent the detection architecture while the operational system in which the
architecture will be deployed is the hate speech management system.

The data management stage comprises data collection, augmentation, preprocess-
ing, and analysis. The result of this process is a training dataset and a verification
dataset.

The subsequent model learning stage includes choosing an adequate model through
training. This entails training models on the obtained training dataset with a
corresponding loss function, followed by adequate hyperparameter tuning. Following
the initial training phase, the model may also undergo multiple fine-tuning iterations.
The model that achieves the best results, may continue to the next stage. If

26 2. BACKGROUND

satisfactory levels of performance are never met, the data management stage must
be re-conducted.

At the model verification stage, the primary focus revolves around the task of
guaranteeing that the optimal performance of the trained model generalizes well.
The previously obtained verification dataset is used for this task before it computes
the error of generalization. If this error exceeds a predefined threshold, the process
must revert back to either the model learning stage or the data management stage.
While this primarily pertains to the model’s performance, other system properties
can also be examined in a similar manner during this stage. This stage ultimately
produces a verified model.

Finally, the model deployment stage comprises the integration of the verified
machine learning model with other components of the entire system. This also
involves the continuous monitoring of the model and its updating through offline
maintenance or continuous sampling to enhance the datasets used for fine-tuning.
Such approaches will be further reviewed in the subsequent literature review chapter.
This stage results in the successful deployment and operation of a fully functional
system.

2.5 Natural Language Processing

Natural Language Processing (NLP) is a subfield of AI focused on giving machines
the ability to understand natural language7. Amongst other areas of use, this involves
developing computational models that enable computers to understand, analyze and
generate natural language. Machine learning techniques have significantly advanced
NLP, enabling machines to analyze and generate language in a more efficient manner.

As different stakeholders have expressed their interest in NLP, the field itself has
evolved into multiple subfields. Search engines make use of NLP to retrieve relevant
information from large amounts of unstructured text data. More recently, chatbots
and virtual assistants that can understand and respond to human language have
been developed. In larger systems, NLP is used to understand and draw conclusions
from large amounts of natural language.

A combination of these subfields, amongst others, is relevant in the case of hate
speech detection. The continuous improvement of NLP models through progress
in the field of machine learning and data analysis empowers hate speech detection
systems to adapt and evolve, consequently keeping up with the ever-changing nature
of language and the emergence of new forms of hate speech.

7Natural language is the form of communication that humans use to convey meaning through
spoken or written words.

2.5. NATURAL LANGUAGE PROCESSING 27

2.5.1 Language Representation

In order to make machines able to process natural language, we need to provide
the model with a format in which it can understand. Although humans are capable
of understanding language in its raw and nuanced form, machines need a more
structured and numerical representation in order to process it effectively. This
process can be broken down into two sub-processes; tokenization and vectorization.

This process becomes even more crucial in the domain of hate speech detection,
given the inherently non-generalizable nature of the online text, characterized by fac-
tors such as increased grammatical errors, abbreviations, emojis, and the substitution
of letters with numbers.

Figure 2.6: Simplified input representation workflow in NLP, showing how a
sentence is represented as a series of embedding vectors.

Tokenization

Tokenization is the process of breaking down text into smaller units, commonly
referred to as tokens. Often, these tokens are words. The tokenizer module is equipped
with a fixed vocabulary to which it will map strings. In the case of unknown, highly

28 2. BACKGROUND

complex compound words or morphological variations8, the tokenization process
may result in a single word being segmented into multiple tokens, as depicted at the
beginning of Figure 2.6. Here, specialized tokens are added as well to convey structure
and aid information processing; the CLS token summarizes the input sequence for
classification tasks, while the SEP token separates different segments within a single
input sequence. This approach helps handle the diversity and complexity of human
language. Each of these tokens is further represented by an integer identifier.

Vectorization

For a machine to understand the relationships between words, it is not enough to
represent a text as a string of integers. The model needs a way to group related
concepts or linguistic structures together. Therefore, the tokens will be encoded into
vectors called embeddings, which capture the semantic and syntactic relationships
between tokens based on the order and context in which they appear. This represen-
tation enables a neural network to learn and update the embeddings by being fed
large amounts of natural language data.

2.5.2 Transformer

The transformer is a groundbreaking deep learning architecture. The transformer
takes an input sequence and performs a series of operations to generate an output
sequence that encompasses richer and more comprehensive information derived
from the input. An important aspect of these operations is a novel self-attention
mechanism that enables the transformer to effectively capture complex dependencies
in the data, regardless of the sequential order, enabling it to handle sequential
data in a parallelized fashion [93]. Outlining the complete inner workings of the
Transformer architecture is outside the scope of our research, but we want to mention
that it consists of transformer blocks, as depicted in Figure 2.7. By stacking multiple
transformer blocks on top of each other, information flows through the model, and
each block refines the representations learned from the previous block. This multi-
layered architecture enables a model to capture hierarchical dependencies and extract
high-level features from the input sequence. These factors have contributed to the
transformer’s success and its ability to achieve state-of-the-art performance across a
variety of NLP tasks.

Transfer learning with transformer-based models has proven to be highly effective.
In the context of NLP and transformers, this involves pre-training a transformer-based
model on a large corpus of unlabeled text data in a semi-supervised manner.

8In the context of linguistics, a morphological variation refers to the change in the form of a
word to express different meanings or grammatical features such as tense, case, gender, number, or
mood.

2.5. NATURAL LANGUAGE PROCESSING 29

Figure 2.7: Architecture of a single layer, commonly referred to as a transformer
block, within the encoder component of a Transformer model.

2.5.3 BERT

In 2018 researchers at Google leveraged the findings of the preceding year’s research
that introduced the transformer to publish Bidirectional Encoder Representations
from Transformers (BERT), a revolutionizing NLP model with bidirectional training
and word representations [15].

Figure 2.8: Transfer learning workflow for BERT. The knowledge transfer is done
by re-using the pre-trained base layers from the source model that contain abstract
linguistic and worldly knowledge.

BERT functions as a pre-trained generalized framework that can be further

30 2. BACKGROUND

customized through fine-tuning to enable its application to an array of NLP tasks,
thus enabling it to attain a remarkable level of performance across multiple domains.
BERT’s impressive performance stems from the transformer architecture and the
Masked Language Model (MLM) pre-training. MLM is a training method in which
some words in a sentence are randomly masked or replaced with a specialized masking
token with the objective of predicting the original words based on the surrounding
context. This technique allows BERT to learn the relationships between words and
their contexts in a bidirectional manner, meaning that it can understand the meaning
of a word based on both the preceding and succeeding words. Additionally, BERT
utilizes the Next Sentence Prediction (NSP) technique, where it learns to determine
whether a pair of randomly sampled sentences occur consecutively in the original text
or if they are selected from different sections of the text. BERT is able to pre-train
bidirectional representations from unlabeled text by accounting for the preceding
and the following context [15]. This enables BERT to be fine-tuned for various tasks,
such as hate speech detection, without the need for a task-specific framework. After
pre-training, a classification head is added to the model, facilitating its adaptation for
specific tasks like hate speech detection. Figure 2.8 illustrates both the pre-training
and fine-tuning processes.

2.5.4 GPT

In the course of writing this thesis, OpenAI unveiled their ChatGPT chatbot which
swiftly captured the world’s attention. The chatbot utilized GPT-3.5, an advanced
GPT framework known as the Generative Pre-trained Transformer 3, consisting
of 175 billion parameters [9]. GPT-3.5 is part of a broader family of large lan-
guage models called Generative Pre-Trained Transformers (GPT). The GPT family
represents a breakthrough in natural language processing, leveraging transformer-
based architectures and extensive pre-training on large-scale datasets to generate
coherent and contextually relevant text. The large parameter count of GPT-3.5
frameworks also contributes to their ability to capture intricate patterns, syntactic
structures, and semantic relationships in human language. The ChatGPT model
was initially trained on a massive corpus of publicly available text data from the
internet. Similar to BERT, it takes advantage of the transformer architecture but
makes use of multi-task unsupervised learning in pre-training. Consequently, the
input text returns the specific NLP task the model has to perform, making the
GPT frameworks useful in instruction-based models. By providing the model with
specific instructions or prompts, developers can guide the model to perform desired
tasks or generate outputs according to specific requirements. This instruction-based
approach allows for fine-grained control and customization of the model’s behavior.
One notable capability of GPT is its ability to perform few-shot demonstrations,
which involves training the GPT-based model on a limited amount of example data
to perform a specific task. While GPT frameworks excel in pre-training on a vast

2.5. NATURAL LANGUAGE PROCESSING 31

corpus of data, they can also be fine-tuned on narrower, more specific tasks with a
few examples. Using these capabilities, developers can create specialized models for
specific applications or domains using only a handful of example data points.

Chapter3Literature Review

In this chapter, we will present the findings derived from our initial literature review.
Firstly, it will present some valuable findings about current hate speech management
systems. Subsequently, it will offer a review of the current state-of-the-art hate
speech detection models, encompassing a comparative analysis of various models.
Additionally, we will explore the challenges associated with identifying hate speech,
investigate the utilization of contextual information in hate speech detection, examine
the issues related to hate speech datasets, and finally explore the system properties of
a hate speech management system. The literature review done in the specialization
project [105] preceding this thesis still holds. While certain sections in this thesis
draw from the previous project, they have mostly been modified and expanded to
better align with the specific focus of this thesis.

3.1 Current Hate Speech Management Systems for Social
Media Platforms

As mentioned in the previous chapter social media companies utilize various strategies
in establishing their hate speech management systems. Information about these
specific hate speech management systems has traditionally been kept private both
due to competitive advantages and privacy issues. There is, however, some publicly
available information about community guidelines for such systems and the actions
taken after detection. In April 2023, Twitter implemented new community guidelines
and enforcement measures [28]. Twitter now prioritizes the significance of free speech
by predominantly reducing the visibility of content rather than outright removing it
from the platform. Instances that warrant removal or user suspensions are considered
more intricate and undergo a comprehensive examination. This indicates the presence
of user reporting mechanisms and human moderation. In addition to this, Twitter
made parts of its code database publicly available1. In this repository, we can find
the training codes for the Trust and Safety models, and specifically the training codes

1https://github.com/twitter/the-algorithm

33

34 3. LITERATURE REVIEW

for the models that detect toxic tweets and abusive content. Therefore, it is apparent
that Twitter also makes use of automated systems for detection. Furthermore, they
emphasize the value of context and how a number of factors, including the severity
of the textual content, are taken into account before action is issued [84]. Hence,
it is also apparent that there is a need for a detection architecture that is able
to analyze more than just the textual content while also being able to pick up on
continuously evolving language. The publicly available training codes for the Trust
and Safety models indicate the use of both BERT and other customized language
models. In order to comprehend the rationale behind this decision, as well as other
decisions made in the training codes, it is necessary to conduct a review of the current
components pertaining to the detection of hate speech.

3.2 Models Used for Hate Speech Detection

The field of hate speech detection has been rapidly evolving over the last few years.
Initially, the employed tactics included simpler supervised learning approaches such
as logistic regression (LR)2 or support vector machines (SVMs), which relied on
lexical resources like the Bag of Words (BoW)3 and term frequency-inverse document
frequency (TF-IDF)4. SVMs are popular classification models that identify the
hyperplane that best separates the data points into different classes. With this
technique, the model is much less prone to overfitting as it tries to maximize the
distance to the nearest training data point, or support vectors, of each class. However,
hate speech detection often involves more intricate and nonlinear patterns in the
data, which can limit the ability of SVMs to capture complex relationships effectively.
SVMs can also be computationally intensive when dealing with larger datasets which
is often the case for hate speech datasets.

In recent years, research concerning the use of deep learning to detect hate
speech has emerged and has yielded state-of-the-art results [7]. By training on large
amounts of labeled data, deep learning frameworks can learn to identify hate speech
in text accurately. Several of these studies have explored the use of recurrent neural
networks (RNNs), such as Long Short-Term Memory (LSTM), and convolutional
neural networks (CNNs). These frameworks are particularly effective in capturing
sequential dependencies in text data, making them well-suited for tasks like language
modeling, speech recognition, and machine translation. RNNs can process input
sequences of variable length and learn to generate meaningful representations of text,
capturing contextual information and improving the quality of NLP tasks. However,

2LR is a statistical model that is suitable for binary classification as it can be interpreted as a
probability for an input belonging to a certain class.

3BoW is a simple representation of the presence of specific words that maps a word to its
frequency.

4TF-IDF returns a weight representing the number of occurrences of a term in a single document,
scaled by the inverse of the number of documents it appears in.

3.2. MODELS USED FOR HATE SPEECH DETECTION 35

these frameworks still require large amounts of training data and computing power,
which can be costly and time-consuming. In addition, the lexical detection methods
the deep learning frameworks used still tended to have low precision as they were
dependent on specific words in their categorization [14].

3.2.1 State-of-the-Art Models

Since the introduction of transformers, recent studies on hate speech detection have
indicated that transformer-based embedding methods fine-tuned for hate speech
detection outperform the previous state-of-the-art approaches [42]. Today, there are
various models making use of the transformer. Mutanga, Naicker, and Olugbara [49]
showed that the DistilBERT transformer-based model outperforms other transformer-
based models and an attention-based LSTM in detecting hate speech, while also
allowing parallelization. Additionally, as transformer-based models utilize transfer
learning, the size of the training data necessary is greatly reduced. DistilBERT is, as
the name suggests, a distilled version of BERT introduced in 2019 by researchers from
Hugging Face and the University of Ottawa [64]. It retains 97% of the original BERT
model’s performance using only half the number of parameters [64]. The training
time, therefore, is greatly reduced, while the parallelization makes it possible to
learn effective trends toward the classification of hate speech in resource-constrained
environments.

Similar to DistilBERT, other methods have been presented to improve BERT
and have consequently also been fine-tuned for hate speech detection. RoBERTa,
a Robustly optimized BERT approach, was introduced by Facebook earlier in the
same year as DistilBERT [39]. Rather than focusing on reducing the inference time,
the researchers have focused on increasing its prediction metrics by re-training the
BERT model using more data and computing power. Consequently, it outperforms
both DistilBERT and BERT.

ALBERT (A Lite BERT) is another transformer-based framework and NLP
model that was introduced by Lan et al. in 2019 [35]. ALBERT is designed to be a
more parameter-efficient variant of BERT. This is done through a technique named
cross-layer parameter sharing, i.e., sharing parameters between layers and reducing
the number of parameters overall. The original BERT model consists of 110 million
parameters (BERT-base) or 340 million parameters (BERT-large). ALBERT, on
the other hand, achieves a reduction of 18x to 57x in parameter count compared to
BERT. For example, ALBERT-base may have around 12 million parameters, while
ALBERT-large could have around 18 million parameters. However, this requires
longer training times to ensure that the shared parameters are learned correctly,
which further increases the training time and computational cost. Despite this,
studies have proven that ALBERT performs as well as, and in some cases better than,

36 3. LITERATURE REVIEW

all the mentioned models [101] in detecting hate speech. However, this is observed
only when the parameter count is increased to a value that closely aligns with the
number of parameters in BERT.

In recent years, the emphasis has shifted towards improving not just the size but
also the training efficiency. XLNet is an extension of BERT that is trained using a
permutation language modeling task rather than the MLM task [102]. In this task,
the XLNet-based model is trained to predict a sequence of words by considering
all possible permutations of the words in the sequence. This enables XLNet to
capture long-range dependencies between words and to model interactions between
them in a more effective way than BERT while maintaining the performance in
hate speech detection [48]. Similarly, ELECTRA is a pre-training framework that
improves the efficiency and effectiveness of training by using a modified version of
the generator-discriminator architecture [11]. Instead of MLM, ELECTRA trains a
generator model to replace some of the words in the input sentence with plausible
alternatives and a discriminator model to determine if each word in the modified
sentence is original or replaced. Malik et al. [42] show that while BERT and ALBERT
perform slightly better than ELECTRA on most hate speech benchmark datasets,
ELECTRA achieves among the best classification accuracy while being sufficiently
computationally efficient.

3.2.2 Comparison of Transformer-Based Models

Based on the above-mentioned findings, we will now compare the described pre-
trained transformer-based models based on key attributes that hold significant value
for social media companies. Specifically, we will assess the models in terms of their
size, inference time, and performance by referencing their corresponding papers.

By using pre-trained transformer-based models a social media company is able
to leverage their contextual understanding and transfer learning capabilities to
effectively capture complex patterns and nuances within the limited data, yielding
more accurate and reliable results. Furthermore, transformer-based models exhibit
lower computational demands compared to directly employing RNNs, CNNs, or
SVMs, which will reduce costs. Hence, the careful selection of an optimal pre-trained
transformer-based model that strikes a balance between performance and cost is of
relevance for a social media company aiming to effectively manage hate speech on its
platform while maintaining cost efficiency.

As there exist multiple versions of each of the above-mentioned pre-trained models,
we opt to utilize the base versions as it provides a reliable representation of the
model’s characteristics while being moderately sized. Additionally, it should be noted
that we compare the models in their original form, without fine-tuning them for
hate speech detection or incorporating a classification layer. It is possible that the

3.2. MODELS USED FOR HATE SPEECH DETECTION 37

outcomes may differ when considering this fact, but as the same classification layer
and the fine-tuning process would have been applied to all the models mentioned,
any changes in the sizes would have been similar for all models.

The above-mentioned studies [101] [42] [48] [49], indicate that the transformer-
based models of our comparison exhibit similar performance when used for hate
speech detection. However, as they have not made use of the same dataset, these
performance scores are not comparable. Consequently, our comparison includes model
sizes and their corresponding performance on the GLUE benchmarking tasks as
reported by the authors of the models. The GLUE benchmarking tasks are a collection
of various NLP tasks that have been widely utilized to assess the effectiveness of NLP
models and the benchmark score represents an average performance on all these tasks
[94]. While the majority of tasks in the GLUE collection are not directly relevant
to detecting hate speech, the performance in these types of tasks can still affect the
ability to detect hate speech. Therefore, we include the benchmark average scores for
these tasks. In order to further understand the hate speech classification capabilities
of the models, we also specifically include the results of the Stanford Sentiment
Treebank (SST-2) task. This particular task is focused on binary classification and
aims to differentiate a sentence’s sentiment as either positive or negative.

Model Parameters Size1 GLUE Benchmark Score SST-2 Score

BERTBASE 110M 440 MB 79.6% 93.5%
XLNet 110M 440 MB 88.4% 93.35%
RoBERTaBASE 125M 477 MB 86.35% 94.8%
DistilBERTBASE 66M 252 MB 77% 91.3%
ALBERTBASE 12M 46 MB 80.1% 90.3%
ELECTRABASE 110M 440 MB 83.5% 93.4%
1 Approximate size when implemented in the PyTorch deep learning library

Table 3.1: Comparison of transformer-based pre-trained NLP models evaluated on
hate speech detection tasks.

Model Size and Performance

Considering the vast number of users and the high frequency of tweets on Twitter, it
is reasonable to assume that the memory usage of each of the compared models is
comfortably below Twitter’s available resources. However, the platform might run on
devices with different storage capabilities and multiple instances of the model might
be necessary, as we will describe in later subsections. Therefore, it will still be ideal
to choose a model that requires a minimal amount of resources while maintaining
high performance. The size of a hate speech detection model has a significant
impact on the cost of running a hate speech management system. Generally, larger
models require more computational resources and memory, which results in increased

38 3. LITERATURE REVIEW

hardware costs. If a GPT-3-based model is used in its entirety, it utilizes 175 billion
parameters, requiring around 660GB to store [9]. Employing expansive generalized
models, such as GPT-3, for the objective of detecting hate speech may thus be
excessively comprehensive and computationally demanding.

Using BERT, XLNet, and ELECTRA requires about 440MB of storage, while
RoBERTa requires around 477MB. Considering its high performance and smaller
size, we concluded that XLNet was a better choice than RoBERTa. As stated earlier,
DistilBERT focused on reducing the number of parameters [64], and consequently, the
model is reduced even more in size. However, although smaller in size, DistilBERT
runs the risk of lower performance. ALBERT uses the least amount of parameters
and consequently the least memory usage. However, as can be observed in Table 3.1,
the base version of ALBERT will have lower performance than the rest. Consequently,
in regard to performance and size XLNet is seemingly an optimal choice.

Inference Duration in Relation to Model Size

Apart from the size, the inference time is also a critical factor for a social media
company as it induces a cost. The inference time is closely linked to the model
architecture used. Assuming identical hardware and software specifications, BERT
and XLNet will have the lengthiest inference times, with BERT being slightly faster
than XLNet. As reported by the authors of the ELECTRA paper, ELECTRA is
known to have faster inference times compared to BERT and XLNet while achieving
similar or better performance, hence a more cost-efficient training procedure [11]. The
DistilBERT authors have reported even lower inference times due to their distilled
architecture [64]. Specifically, they report that the inference time on one of the
GLUE downstream tasks was only 60% of the time required by the base version
of BERT. But as stated, DistilBERT’s lower performance will not be ideal. Hence,
ELECTRA will therefore be the optimal choice in terms of inference times.

On the other hand, considering the requirements set forth by the Digital Services
Act which mandate the timely removal of hate speech from social media platforms,
it is advantageous to utilize multiple deployed models. This approach, which will be
described in later sections, ensures greater efficiency in meeting time constraints and
effectively addressing the issue of hate speech. As the increased cost of longer inference
times can be justified by using multiple deployed models, all the aforementioned
models would be suitable for real-time detection. Therefore ELECTRA, renowned
for its impressive inference speeds, may not necessarily be the optimal choice, as
faster inference speeds alone are not crucial. An optimal model choice for a social
media company is therefore one that balances performance, size, and inference time.
In our comparison, XLNet is such a model.

3.3. INTRICACIES OF IDENTIFYING HATE SPEECH 39

Challenges Regarding Choice of Model

Although the current state-of-the-art hate speech detection models reach F1-scores
above 93%, there exist over-fitting and sampling issues [2]. Agrawal and Awekar
[1] have proven this in their research when using a deep learning model trained on
tweets to detect cyberbullying on data from Wikipedia and Formspring. In doing so,
they found that transfer learning from Twitter to the two other domains achieves
less than 10% F1-score. Similarly, Dadvar and Eckert [13] perform transfer learning
from a model trained on tweets to a dataset with YouTube comments, retrieving an
F1-score of 15%. However, in a realistic setting, there is not necessarily a criterion
that the performance of a model trained on a specific platform is maintained when
making use of it on other platforms. To counter this argument, Gröndahl et al. [25]
confirms in their study of several state-of-the-art hate speech detection models that
the performance degradation is also prevalent when performing transfer learning
on a model trained on one dataset of tweets to two other similarly labeled datasets
of tweets. Specifically, they experienced a drop from the original 93% F1-score to
33% and 47%. The research done by Gröndahl et al. [25] argues that the "model
architecture is less important than the type of data and labeling criteria" being
used. Hence, as research utilizes datasets that lack complete comparability, it often
becomes challenging to arrive at a definite conclusion regarding the most suitable
model to employ.

3.3 Intricacies of Identifying Hate Speech

Kovacs et al. [31] discuss why automatic hate speech detection on social media is
difficult. First of all, there are challenges concerning the text itself. For instance,
words can be obfuscated (both in an intentional attempt and due to misspellings),
expressions can have different denotations (e.g., slurs), and the interpretations can
change over time. On top of that, implicit hate speech is often masked as not being
hateful at all. For instance, disguised hate speech often is seemingly innocuous by
using pseudo-intellectual arguments or humor/satire, but in reality, it serves to justify
discrimination and perpetuate harmful stereotypes as seen in Table 3.2.

The definition of hate speech itself also poses a challenge as it often varies and
remains open to interpretation. Various definitions have been proposed, all of them
subject to the cultural norms of the geography in which they are created [74]. In
addition, hate speech is commonly grouped under broader terms like abusive language,
offensive language, or toxicity [61]. Consequently, models have a tendency to recognize
patterns that prioritize the more frequently appearing categories, such as insult, and
demonstrate lower proficiency in identifying hate speech [22].

Another important aspect of hate speech is that it follows a long tail distribution

40 3. LITERATURE REVIEW

Hate Speech Type Examples Notes

Explicit
Racial slurs "Wop" Denotes racial hatred
Homophobic insults "Faggot" Targets individuals based on

sexual orientation

Implicit
microaggressions "You’re so articulate for a

black person"
Disguised as compliments, but
reinforce stereotypes

dog whistles "Urban crime" Coded language used to ex-
press prejudice

Disguised
pseudo-intellectual arguments
(e.g., scientific racism)

"Biologically white people are
more evolved"

Use of pseudo-science to jus-
tify discrimination

humor/satire (e.g., racist
jokes)

"A lot of dads in the hood likes
to go and get milk"

Cloaked as humor, but perpet-
uates stereotypes

Table 3.2: Taxonomy of hate speech, categorized into explicit, implicit, and disguised
types, along with their specific characteristics and implications.

in regard to uniqueness. Zhang and Luo [103] discuss how a large portion of hate
speech is unique and does not share the same characteristics of other hate speech,
such as using commonly used hateful words and compositions. Models without the
means of translating linguistic sequences to logical arguments would in such cases
be unable to establish common traits that make unique hateful content identifiable.
They end their paper by discussing possible future work where they suggest the
inclusion of contextual information to achieve higher accuracy in the detection of
tweets from the long tail.

3.4 Usage of Context in Hate Speech Detection

The concept of leveraging context for deeper insights is not a novel notion. Nonethe-
less, making use of the available context is no easy task. Markov and Daelemans [43]
prove that the performance of a transformer-based pre-trained model significantly
improves by adding relevant annotated context. This is in contrast to previous
research done by both Pavlopoulos in 2020 [59] and later Menini in 2021 [44]. In both
papers, they conclude that while context notably affects the annotation process, as
fewer tweets were annotated as abusive when the context was provided to annotators,
it did not yield any improvements in performance. Markov and Daelemans, on the
other hand, point out that the shortcomings of their peers were due to the lack
of relevant contextual information. Their peers’ work had included only previous
comments or posts which proved not to be of significant value. The challenge is thus
discovering relevant context that can provide the machine learning models with the

3.4. USAGE OF CONTEXT IN HATE SPEECH DETECTION 41

necessary data to create trends towards the classification when the tweet alone is not
sufficient.

To discover relevant context, testing with different combinations of the available
contextual features is necessary. Unsvåg does exactly this in her Master’s thesis [92].
Unfortunately, the thesis did not yield any decisive results and concluded that only
the “Network” feature (i.e., a combination of the features "number of followers" and
"number of friends") caused some improvement to the classifier’s performance. Unsvåg
points out that a limitation of her research was the Twitter API itself (specifically
Tweepy, a Python library for accessing the Twitter API) as it did not make all the
user features publicly available. The features that were available through Tweepy
proved mostly not to be of value. In particular, Unsvåg makes use of non-textual
features that are represented as counts or booleans (e.g., gender, number of favorites,
whether the geographical position is enabled or not, and number of followers and
friends) which proved to be inconsequential in influencing the accuracy of the machine
learning model. Features containing information about the parent tweet of a reply,
the user description, or the actual geographical location of a tweet, as depicted in
Figure 3.1, were not directly made available by Tweepy at the time Unsvåg did
her work. However, as such features contain more information than counts and
booleans, we believe making use of such information will have a positive impact on
the performance of the model.

Figure 3.1: Hierarchical breakdown of properties of a Tweet object which can be
regarded as contextual information in hate speech classification.

42 3. LITERATURE REVIEW

3.5 Hate Speech Datasets

To analyze the added value of contextual information in the classification problem,
the dataset will have to include relevant context while also being labeled using a
fair and unbiased annotation scheme. Initially, the majority of datasets categorized
content as either hateful or non-hateful using binary classification. As hate speech
has become more prevalent the need to have more detailed categories has emerged,
resulting in more nuanced labels (e.g., offensive, racist, sexist). Regardless of the
number of labels, most datasets exhibit an uneven distribution of non-hateful and
hateful speech, as abusive tweets are relatively uncommon (typically ranging from
0.1% to 3%, depending on the label) [23]. This disproportion ultimately leads to
inferior classification performance due to the limited training opportunity on specific
features.

3.5.1 Challenges of Annotation

The challenges of annotation are also a concern. The challenge of annotating hate
speech is mainly due to the obscurity of the definition of hate speech itself, as
mentioned above. A social science study performed by Brown [8] states that "hate
speech is now often used as an umbrella label for all sorts of hateful/insulting/abusive
content", and that the annotators could incorrectly label hate speech through their
own biases if they are not provided with a precise definition.

Davidson et al. [14] outline that hate speech is a subtype of the broader sphere of
offensive language and that consequently these terms are often used interchangeably.
Hence, they had the annotators categorize the instances as either "hate speech",
"offensive speech", or "neither offensive nor hate speech". As a result, they found a
bias in the annotation; racist or homophobic instances were mostly categorized as
hate speech, and sexist instances were mostly categorized as offensive. Furthermore,
instances that were earlier labeled as hate speech in research done by Waseem et
al. [97] only gained the label offensive but not hate speech. Waseem, Davidson, et
al. [96] then collaborated on identifying the sources of the annotation confusion.
In their research, they identified that there were misunderstandings about whether
there existed abusive language directed toward some generalized group as opposed
to a specific individual.

Research done by Talat et al. in 2022 [74] implies that socially biased systems are
still a concern within NLP. As an example, in the labeling of hate speech datasets,
the annotators must make assumptions regarding the intent of the author. Hence,
there might exist contradicting labels within a dataset after a round of annotation.
The Inter-Annotator Agreement (IAA) is frequently used to assess the consistency
of labels within a dataset. When acceptable IAAs have been reached the majority
label is used to acquire a ground truth. However, the term "majority" may not be as

3.5. HATE SPEECH DATASETS 43

definitive as desired in this context. Frequently, researchers depend on one single
label as the ground truth, hence there is a risk of neglecting the lack of consensus,
fluctuations, and subjectivity that may arise from the obtained ground truth [58].
In this manner, the majority label reached using the IAA is often affected by the
subjectivity of an annotator.

3.5.2 Challenges of Large-Scale Crowdsourcing

The work of Founta et al. [23] focused mainly on labeling large datasets effectively
while keeping the IAA low. This was done by introducing a novel (at the time of
publishing) methodology to detect and mitigate the obscurity of label assignments for
the annotators. With this methodology, they produced a dataset of 80,000 English
tweets while minimizing the cost and, in their opinion, maintaining the quality
of the annotation. To address the possible lack of annotation of minority classes
they designed a boosted random sampling technique, in which text analysis and
preliminary crowdsourcing rounds were used to design a model that can pre-select
tweets to fit into the chosen minority classes. Then the boosted set and randomly
sampled set are mixed to create a more balanced dataset. Founta et al. [23] point
out that these preliminary rounds also could reduce the ambiguity of the labels.
The labeling itself used between 5 and 20 annotators per tweet, who were all paid
according to a specifically designed payment plan.

The examples depicted in Table 3.3 show the range of what is labeled as hateful
in the dataset of Founta et al. [23]. It is evident that the label of hate speech has
not been consistently applied. Awal et al. [6] created a framework to analyze the
annotation inconsistency in multiple hate speech datasets. The authors discovered
that the Founta et al. dataset contained numerous instances of duplicate tweets.
Furthermore, some of these tweets were labeled with opposing labels, which added
to the dataset’s inconsistency. In addition, Founta et al. do not mention anything
about their regard to the crowd workers’ subject matter expertise or social and
cultural backgrounds. If not adequately taken into consideration, the lack of subject
matter expertise and cultural backgrounds can affect the labeling. In the Founta
et al. dataset this is especially evident in the tweets regarding politics, as tweets
discussing Donald Trump are often labeled as hateful regardless of their sentiment.
The human annotators’ beliefs and identities ultimately bias the labeling [65].

There is also reason to believe that the questionable hate speech labeling is due
to a vague definition of hate speech [6]. According to Founta et al., hate speech
is defined as "the language used to express hatred towards a targeted individual
or group, or is intended to be derogatory, to humiliate, or to insult the members
of the group, on the basis of attributes such as race, religion, ethnic origin, sexual
orientation, disability, or gender". While this definition aligns with the one commonly

44 3. LITERATURE REVIEW

Tweet Parent Tweet

One guy was hoping Trump kicks out all
Mexicans and builds the wall when he him-
self is Hispanic. People hurt my brain.

I need to stop putting my opinions on Face-
book. Any opposition I get seem to be deep
in their own ultra conservative holes.

@JohnTrumpFanKJV @complxgrl GOD
sent TRUMP to help us and to save our
Country! And We ELECTED TRUMP!
GOD Bless DONALD Trump

The Russians did not cause Donald Trump
to win the Presidency. God caused Donald
Trump to win the Presidency!

@dosnostalgic @YouTube "This video is
blocked in your country"... I’m in Canada,
this regional-based web media thing is
stupid.

I do love the Money for Nothing (1985)
music video, which is what eventually lead
to ReBoot https://t.co/9xCPGjYt0T

Table 3.3: Subset of incorrectly labeled positives in the Founta et al. dataset,
representing instances misclassified as hate speech.

used in legal matters, Assimakopoulos et al. [5] argue that crowdsourced annotation
schemes should avoid using the label "hate speech" directly. This is because, as
previously stated, different annotators may have varying thresholds for determining
what qualifies as hatred and what does not. In their work, they present a novel
multi-layer annotation scheme, wherein they pose a series of progressively detailed
yes-no inquiries. Given the answers of the annotators, the interested party will then
be able to set their own criteria for hate speech (i.e., a combination of answers that
define what should be labeled hate speech). For this reason, the interested party will
be able to indirectly control annotator disagreement in some cases and adapt what
constitutes hate speech. They emphasize that such a scheme still does not eradicate
the disagreements as there still exists ambiguity in the text, yet it does result in a
notable reduction.

3.5.3 Machine-Generated Datasets

Lately, there has been a shift towards generating data points rather than merely
collecting and labeling them, aimed at addressing the issue of imbalance, as well
as removing the need for labeling. This approach enables the design of targeted
data points that effectively train the model for specific use cases. Hartvigsen et al.
[27] address this by introducing Toxigen, an extensive machine-generated dataset
specifically designed for detecting adversarial and implicit hate speech. In doing so,
they tailor hate speech to specific demographic groups and employ distinct implicit
formulations of hate speech, thus showcasing the customization aspect of machine
generation. To ensure the quality of the dataset, they perform a human evaluation
on a challenging subset of ToxiGen, revealing that annotators face difficulties in
discerning between machine-generated text and human-written language. Finally,

3.5. HATE SPEECH DATASETS 45

they demonstrate the dataset’s use cases by illustrating that finetuning a toxicity
classifier on Toxigen significantly enhances its performance on human-written data.

3.5.4 Using GPT Models for Data Labeling

As mentioned in the previous chapter, GPT models have obtained impressive few-shot
performance on various NLP tasks. Following the debut of ChatGPT, there has been
an emerging interest in employing GPT frameworks for data labeling [95] [16].

It is natural to question why GPT frameworks cannot be utilized directly for
inference. Due to their substantial size, GPT frameworks are prone to high latency,
making them impractical for large-scale inference in NLP tasks. This means that
utilizing such a framework for processing a considerable amount of data may result
in significant delays, limiting their practicality for such applications. Furthermore,
a GPT framework, in its entirety, is not easily accessible to the public (at the
time of writing this thesis). Additionally, each GPT-based model’s API cost rises
proportionally to the number of instances they process during inference. Therefore,
it is more practical to utilize this powerful tool to create a ground truth for a smaller,
more cost-effective model.

Attempting to generate synthetic data points for an entire dataset using a GPT-
based model will lead to subpar classification performance compared to using real
data points [46], rendering it impractical. However, a GPT-based model can be
used to label real data points, which requires a manageable amount of resources and
cost. Employing such a model to label training data for smaller, in-house models
that are deployed for inference results in a significantly lower cost (ranging from
50% to 95% less) compared to having humans label the data [95]. In experiments
performed by Wang et al., the smaller in-house models trained with labels generated
by a GPT-3-based model often outperform the raw GPT-3-based model in terms of
accuracy. They also prove that there is a theoretical upper-bound to the error rate
of the models trained on the labels generated by the GPT-3-based model, i.e., the
error rate of the model trained using labels generated by the GPT-3-based model
can be lower than that of the GPT-3-model itself.

In this manner, the labeling evades the bias and inconsistencies of human moder-
ators, however as GPT-3-based models are trained on human-made content, there
is a risk that the model also has a bias. To ensure adequate quality labels, Wang
et al. propose an active labeling strategy in which human annotators relabel data
labeled by GPT-3 that has the lowest confidence scores. This is possible, as GPT-3
also returns the log probabilities for each token together with the generated text that
indicates the uncertainty of the proposed label. By defining a threshold logit, human
moderators are able to manually relabel the labels that have a substantially high
logit uncertainty.

46 3. LITERATURE REVIEW

3.6 System Properties for Feasibility and Practicality

In this section, we will explore some of the system properties that are important to a
hate speech management system. Understanding these properties is crucial for the
development and implementation of effective strategies that are necessary for a hate
speech management system. By examining the key characteristics and components
of such systems, we can gain insights into how they operate and identify potential
challenges and opportunities for improvement.

3.6.1 Legal Compliance and Data Efficiency

Hate speech detection is a priority for social media platforms due to recent devel-
opments in regulation on accountability of content moderation. As stated in the
previous chapter, landmark EU legislation approved by the European Council in
October 2022, the Digital Services Act, will from the year 2024 upgrade the rules
on content regulation on social media platforms [19]. This act might, among other
requirements, compel designated social media companies to enforce hate speech
frameworks and promptly remove any content that is deemed hateful from their
platforms within a specific time constraint. To account for this time constraint,
the system must be able to process a high intensity of tweets. Twitter records an
average of 5,700 tweets per second on their platform [85]. On a few occasions, the
platform has reached almost 10,000 tweets per second. Therefore, a necessary system
requirement is the capability to handle such a significant volume of data.

A system using a machine learning model will also have to take into account the
ethics and privacy demands of the geographical area it is deployed. Most prevalent
are the regulations to protect personal data such as the General Data Protection
Regulation in the European Union (GDPR). Under GDPR, personal data must
be processed lawfully, fairly, and transparently [21]. In the case of a hate speech
detection system, it must have a "lawful basis for processing personal data", such as
getting the individual’s consent [90]. The system must also provide clear information
about the data processing activities to the individuals whose data is being processed.
There also exists various laws against discrimination on any platform. Amongst
others, these include discrimination based on age, race, sex, and disability [41]. Hence,
the individuals should be able to obtain human intervention in the decision-making
process, be able to express their point of view, and be able to challenge the decision
made by a hate speech management system. The laws, however, differ significantly
across various countries and the system must consequently be adjusted depending on
the location it is deployed.

3.6. SYSTEM PROPERTIES FOR FEASIBILITY AND PRACTICALITY 47

3.6.2 Robustness Against Adversarial Attacks

The research done by Gröndahl et al. [25], mentioned above, also touches upon
the problem of adversarial attacks and the challenges of the protection mechanisms
against these types of attacks. They show that various hate speech detection models
are vulnerable to attacks such as changing word boundaries, typo insertions, or the
addition of harmless words. Similarly, Oak finds that changing the text slightly
degrades the performance of a Random Forest5 hate speech classifier by 20% [52]. In
this manner, an adversary might prevent the detection of a hateful user or force the
model to classify normal users as hateful [24]. As a consequence, the hate speech
management system’s integrity will be called into question. The general public’s trust
in the platform might then diminish and more may become hesitant to engage with or
use the platform. Previous research has achieved some progress in protecting against
these types of attacks by incorporating adversarial examples, e.g., the examples
depicted in Table 3.4, in the training of the model.

Original Sentence Adversarial Example Classification

go back to where you
came from these fucking
immigrants are destroy-
ing america
Score: 95% Toxic

Split: go back to where
you came from these fu
cking im migrants are de
stroying america

59% Non-Toxic

Merge: go back towhere
you came from these
fucking immigrantsare de-
stroying america

54% Non-Toxic

Drop (Mid): go back
to where you came from
these fuckin immgrants
are destroying america

63% Non-Toxic

Drop (Last): go back
to where you came from
these fuckin immigrant
are destroyin america

52% Non-Toxic

Table 3.4: Effect of adversarial perturbation through sub-word level manipulation
on a classifier’s toxicity score. The table is adapted from Adversarial Examples for
Hate Speech Classifiers by Oak [52].

However, as per the research of Gröndahl et al. [25], "adversarial training does not
completely mitigate the attacks" and does not stand the test of time as it only protects
against specific types of attacks. In a realistic setting, when models are deployed

5A random forest classifier is a machine learning algorithm that combines the predictions of
multiple decision trees to make its predictions.

48 3. LITERATURE REVIEW

and updated with new non-adversarial data samples, adversarial training will not be
sufficient. Omar and Mohaisen study the temporal impact of adversarial training on
naturally-evolving language models [53]. While they confirm that adversarial training
does significantly improve performance on the specific attacks that are included as
examples in the training, they also confirm the problem of adapting to new attacks.
Models trained on the same dataset attain high accuracy in their predictions but
perform badly when evaluated with other datasets, even after training models with
adversarial examples. Hence, they find that adversarial training is task-dependent
and dataset-dependent.

Moh et al. [47] propose four different preprocessing defense techniques that effec-
tively prevent certain types of adversarial attacks, reducing the need for adversarial
training. The techniques together constitute a framework for detecting and reacting
to specific adversarial attacks, Text Scheme Adversary Recognition (TSAR). The
defense techniques employed in the TSAR framework capitalize on the attackers’ ob-
jective to retain the post’s readability while evading detection mechanisms. Attackers
seek to convey a message while simultaneously avoiding detection. Specifically, the
TSAR framework protects against the removal of whitespaces, intentional typograph-
ical errors, and the "Love" attack. The love attack involves strategically inserting a
word with an extremely positive sentiment, thereby tricking the hate speech model
into failing to detect the underlying hate speech within the post. The techniques
employed within the TSAR framework effectively mitigate these types of attacks by
implementing diverse methods to standardize the input. This includes separating
composite words, removing words that violate the grammar of a sentence (if it is
not classified as negative by a sentiment analyzer), and building a dictionary of
misspelled words for correction. Finally, the training is done on the cleaned data.
Though such a framework reduces the need for training on adversarial examples, the
problem of adaptability still remains as the defense techniques only protect against
specific types of attacks.

3.6.3 Transparency and Auditability

Transparency encompasses the essential aspects of interpretability and explainability.
In regards to a machine learning system, interpretability refers to the ability to
understand and make sense of the internal workings of a machine learning model
or system. Explainability, on the other hand, focuses on providing understandable
explanations for the outputs or decisions made by a machine learning model. Being
able to interpret the results of a model in terms that are understandable in a business
context is often crucial in the process of selecting a model. In fact, this ability can
even be more important than performance considerations [55]. In the context of the
transformer architecture, interpretability, and explainability can be challenging due
to its complex structure and attention mechanisms. Their inner workings are often

3.6. SYSTEM PROPERTIES FOR FEASIBILITY AND PRACTICALITY 49

less transparent compared to simpler models like decision trees or linear regression.
Decision Trees are therefore often used in practice as their transparent branching logic
can be used for auditing [26]. However, the attention mechanism in the transformer
architecture can provide insights into which parts of the input text are most significant
for making predictions. Specifically, the attention mechanism allows the model to
assign different weights or importance to different positions or tokens in the input
sequence. This impacts both explainability and interoperability, as analysts can
gain insights into the model’s decision-making process and provide human-friendly
explanations based on attention patterns. It’s important to note that while the
attention mechanism provides valuable interpretability and explainability, it may not
be sufficient on its own for complete transparency [93].

In the case of hate speech detection, the need to understand why the model
classifies an instance as hate speech will provide an administrator the ability to better
fine-tune the model. Alongside the measures aimed at combating illegal content
online, the Digital Services Act emphasizes the need for transparency measures and
effective user safeguards [20]. These include provisions for users to challenge content
moderation decisions made by platforms. Being transparent about the reasons for
flagging can help educate users about what constitutes hate speech and encourage
them to be more mindful of their language. Additionally, providing a reason for the
flagging can also help build trust between the social media company and its users, by
demonstrating a commitment to promoting a safe and respectful online environment.

The Alan Turing Institute highlights the ethical factors and governance processes
that should be considered when deploying AI to the public [37]. Amongst others, they
usher the need for human responsibility throughout the whole AI project delivery
chain. They point out that as machine learning models leverage existing data to make
decisions they can be susceptible to inheriting latent biases that already exist within
the data. When it comes to detecting hate speech, the datasets utilized are not only
imbalanced in terms of the degree of being hateful, but they can also exhibit biases
related to factors such as race, gender, and so on. These biases can be exploited
by the machine learning model. Consequently, having the ability to comprehend
the reasoning behind a model’s decision is advantageous for both the user and the
company.

Due to the recent demand for transparent models, an emerging field is eXplainable
AI (XAI). The field focuses on creating AI systems that are transparent and in which
the model’s output is explainable with human language [17]. Various methods have
been proposed to better understand a model’s decision. Analyzing the value of the
different features given as input to a model is one such method. However, language
models typically operate on sentence embeddings, which represent the semantic
meaning of the entire sentence rather than individual features. Due to the nature of

50 3. LITERATURE REVIEW

sentence embeddings, dissecting and attributing importance to specific features within
a sentence becomes less straightforward. Traditional feature importance analysis
techniques, such as feature weights or gradients [72], may not directly apply in this
context. Instead, alternative approaches must be explored to unravel the decision-
making process of language models. Hendricks et al. [29] devised a model capable
of generating both a predicted label and an accompanying explanation justifying
its appropriateness specifically for the classification task of visual recognition. Such
methods will increase the transparency as the model becomes more interpretable.

3.6.4 Maintainability and Consistent Performance

Monitoring can be used to ensure consistency in the model’s behavior after deployment
to a platform. This includes monitoring the evolving input data, possible classification
bias, and overall performance. Sculley et al. [67] address the issue of hidden
technical debt in machine learning systems, emphasizing the significant and ongoing
maintenance costs that these systems can accrue when deployed in real-world scenarios.
In their paper, they highlight that machine learning systems, which rely on external
data, may be susceptible to feedback loops and correction cascades. Feedback
loops occur when a machine learning model makes decisions that affect the data it
receives, and these changes further influence the model’s output. This can result
in a reinforcing cycle that magnifies any biases or errors in the system, leading to
unreliable results. Correction cascades can occur when a machine learning model
makes a mistake and attempts to correct it, but these corrections lead to further
errors and require more corrections, leading to a snowball effect that can be difficult
to control. This highlights the importance of ensuring that machine learning systems
are designed with appropriate safeguards to prevent these types of feedback loops and
correction cascades from occurring. By monitoring its performance in a production
environment, we can also deploy such safeguards in real-time. In practice, this is
done by collecting data in multiple stages of the lifecycle, so for both the upstream
and the downstream data analysis. Upstream data analysis in the context of hate
speech detection refers to the analysis of data collection and necessary preprocessing.
Likewise, downstream data analysis refers to the analysis of the training, evaluation,
and deployment of the model. In the case of hate speech, it is important to analyze
the data against known features that could bias the model, such as race, gender, age,
income groups, etc., to ensure model fairness.

3.6.5 Adaptability, Availability, and Scalability

As stated earlier, hate speech is a dynamic area of speech that is constantly evolving,
i.e., the rate of the linguistic shift occurring in online social media is high [30]. This
is not ordinarily accounted for after training a model once. With this in mind, it is
essential to fine-tune the model continuously (i.e., sequential fine-tuning) to ensure

3.6. SYSTEM PROPERTIES FOR FEASIBILITY AND PRACTICALITY 51

consistent performance over time. In addition, the previously mentioned process of
feedback loops, i.e., incorporating feedback from the model’s output back into its
input, can be used intentionally. As long as the loops are designed carefully, such
a process allows the model to be adjusted to better fit the data and produce more
accurate predictions [89].

In addition, the evaluation of the trained model will also have to reflect the
model’s adaptability to linguistic shifts. A standard for evaluating the trained model
is, as we will demonstrate in the subsequent chapter, by evaluating with a subset
of the initial dataset. Such a standard for evaluation assumes that the train set
and the data encountered when the model is deployed are both independent and
identically distributed (IID) [3]. Failure to implement measures to increase the
likelihood of the IID assumption can lead to over-fitted models lacking robustness, as
demonstrated by Wiegand et al. [99] and Rahman et al. [62]. However, in the case of
hate speech detection in which the ratio between hate and non-hate is imbalanced, a
sampling strategy to balance the classes might be needed [70]. Datasets of this type
present a significant challenge to classifiers, as accurately classifying the minority
samples becomes problematic due to their small number. Ordinarily, oversampling
techniques, such as randomly duplicating instances from the minority class until it is
balanced with the majority class, are used [98]. However, this results in additional
preprocessing steps which might increase the latency of the system.

Regardless, to ensure that the model is trained on a dataset that has a distribution
that is both independent and identical to the distribution of the data it will encounter
during deployment while maintaining enough instances for both classes, it is essential
to account for this in the system. In regards to software engineering, accounting for
such aspects is the field of continuous delivery (CD). CD is a widely used technique
in software engineering that aims to streamline the software development process.
This approach involves creating an automated pipeline for building, testing, and
deploying software changes, which helps to accelerate the development cycle and
improve the overall efficiency of the workflow.

Sato et al. [66] established a framework demonstrating how CD can be utilized
in machine learning projects. They emphasize the distinction between offline models
and online models. Offline learning, also known as batch learning, involves training
the model on a fixed dataset before making predictions. In this approach, the model
is trained on a fixed set of examples and cannot learn from new data as it becomes
available. Online learning models employ algorithms and techniques that allow them
to continuously enhance their performance with the influx of new data, constantly
learning in a production environment. This is further proven in the work by Kading et
al. [32], concluding that "continuous learning can be directly achieved by continuous
fine-tuning". This is necessary in environments where data arrives continuously, as is

52 3. LITERATURE REVIEW

the case in hate speech detection.

Additionally for hate speech detection, an up–to–date model is necessary every
time leaving no room for waiting until the model is fully adjusted. Hence there is a
need for mechanisms to increase the availability of the model. Sato et al. propose
the utilization of multiple models, with the incoming data being distributed among
them. They mention that a model can be deployed in multiple ways. In some cases,
it is possible to have multiple models performing the same task, while other cases
might necessitate models performing different tasks. As an example, one could train
separate models to be specialized in different types of hate speech (e.g., sexism,
racism). In this manner, the scalability of the system can also be achieved. In
evaluating each model they also emphasize the need to evaluate model performance
against multiple data slices to uncover biases that may exist due to imbalanced
training data. While overall test and validation results may appear satisfactory,
examining performance across various data subsets is necessary to ensure a fair
representation of the real-world distribution.

3.6.6 Effects of Detection Cost

The model training stage incurs a significant economic cost due to the computational
resources required for the training procedure [69]. In a study analyzing the cost of
NLP models, BERT’s full training procedure resulted in a cost anywhere between
$50K and $1.6M in cloud computing resources depending on the chosen model size.
The training set size, the number of parameters in the model, and the number of
operations are all factors that impact this cost. Not only is cost a concern but also
the impact computationally intensive training has on the environment. Strubell et
al.’s research on the environmental impact of training machine learning models [71]
found that a single training cycle utilizing a neural framework emits an amount of
CO2 equal to what four average cars emit over their entire lifetimes. The authors
emphasize the importance of researchers being aware of the environmental impact
of model training and advocate for the community to prioritize computationally
efficient hardware and algorithms.

Due to the significant associated expenses the utilization of machine learning
remains limited, thereby hindering its optimal deployment. Parker and Ruths, active
researchers in the field of hate speech detection for the past decade, point out that
"there is a profound disconnect between the computer science research community
and other stakeholder groups " [57]. Their research suggests that "outside of computer
science, there is virtually no discussion of automated hate speech detection as a tool
for mitigating hate speech or for any other use. Despite this, they state that there
is still a demand for a multi-stakeholder, holistic solution. The current emphasis
on improving the performance of hate speech detection models may have led to a

3.6. SYSTEM PROPERTIES FOR FEASIBILITY AND PRACTICALITY 53

relative neglect of their practical applications for stakeholders. As mentioned in
our background, most social media platforms have established their own definitions,
guidelines, and policies to tackle hate speech. As a consequence, many social media
platforms still heavily rely on user moderation [91]. Twitter makes use of global
review teams that are continuously trained on the latest hate speech trends and
variations [84]. Therefore, the issue of scalability persists as manual labor poses a
significant obstacle to efficient moderation processes.

Chapter4Methodology

In this chapter, we present the methods and design choices we employed to address
the subgoals and the research questions by using the research approach and design
described in the introduction. Figure 4.1 presents a detailed roadmap of the method-
ology, grouping the methods utilized in stages that reflect their related nature in the
chapter.

Figure 4.1: Detailed roadmap of the methodology, enumerating each step with its
corresponding subsection. The arrows represent the sequential manner in which the
methods are presented in this chapter, reflecting the progression of our thesis work.

55

56 4. METHODOLOGY

In the upcoming sections, we will first describe the methodologies used to identify
the core system properties of our scoped hate speech management system. Subse-
quently, we will outline the methods employed to identify domain-specific strategies
aimed at optimizing these system properties, followed by a qualitative evaluation
to verify their effectiveness in optimizing the desired system properties. Then, we
will delve into the methodologies utilized to quantitatively evaluate the strategies
where the qualitative evaluation was insufficient. This entailed the development of a
dataset that included contextual information in which we also evaluated an annota-
tion strategy, the development of models needed for the quantitative experiments,
and finally the evaluation of two other strategies using these models and dataset.
Lastly, we will explain the method used to integrate the formulated strategies into a
generalized system architecture. In doing this, we will utilize the results from both
the qualitative and quantitative evaluations of the identified strategies.

4.1 Computing Environment and Resources

Computationally-intensive processing tasks such as inference and hyperparameter
optimization in the quantitative experiments were done on a 20.04 Ubuntu server
with an AMD EPYC 7443 24-Core @ 2.85GHz CPU, 60 GB of RAM, and a 1 TB
disk. For GPU acceleration, we used an NVIDIA GRID A100-10C vGPU with 10
GB VRAM and CUDA version 11.4.

We used a virtual Python 3.9.1 environment to ensure the reproducibility and
consistency of our research. Exploratory development was performed using Jupyter
Notebooks to facilitate interactive and dynamic modeling of data and allowed for
rapid iteration and refinement of code. We leveraged the Natural Language Toolkit
(NLTK) library [40] for various natural language processing tasks, the Scikit-learn
library [81] for machine learning analysis, the PyTorch deep learning library [80]
for deep learning tasks, and the Transformer [82] library to implement transformer
models.

4.2 Identifying Core System Properties

In order to identify the most relevant system properties of the detection architecture
of a hate speech management system and the corresponding strategies to optimize
them, we used theory from requirements engineering (RE) which is the process of
defining, documenting, and maintaining requirements [51]. In RE there are ordinarily
two processes, namely gathering and implementation. Our research involved both
processes as we both identified system properties of the detection architecture and
later suggested strategies to optimize the identified properties. The methodology for
identifying and suggesting strategies will be presented in the next section. This section

4.2. IDENTIFYING CORE SYSTEM PROPERTIES 57

will present the methodologies presented to gather system properties, i.e. obtain the
system properties of the detection architecture of a hate speech management system.

While the theory of RE aids in determining system properties, it is essential to
acknowledge that system requirements and system properties are separate and distinct
concepts. System requirements are specific and measurable, while system properties
represent essential and desirable attributes of the system. System requirements serve
as a concrete manifestation of system properties to develop a particular system. Our
research focuses on proposing a generalized system architecture with strategies to
optimize system properties, rather than developing a specific system. Meeting these
system properties to a precise degree requires defining system requirements, which
falls outside the scope of this thesis.

In addition, since the aim of our research is to analyze strategies for this generalized
architecture rather than produce an exact solution, we employed a traditional linear
RE methodology [68] to identify relevant system properties. It is worth noting that
the system properties of a hate speech management system are dynamic in nature
and can change. A linear RE methodology will not account for evolving system
properties but will suffice to establish the mentioned generalized architecture.

Before the gathering of system properties, we first conducted a domain analysis
[104] in order to gain a more comprehensive understanding of the field. In doing so,
we conducted research on various aspects of the field of hate speech detection and
previous hate speech management systems. This included analysis of existing system
information, organizational standards, government regulations, and the demands of
stakeholders. These analyses are further elaborated on in our literature review.

To identify relevant system properties of the detection architecture of a hate
speech management system using the information gathered from the domain analysis,
we employed a task analysis approach. This involved examining the top-down task
hierarchy of the detection architecture and categorizing the literature from the
domain analysis into the different steps of this hierarchy. By dividing the information
gathered from the domain analysis into such a hierarchy it was much easier to
identify relevant information. This approach is well-suited for our case, given that
the detection architecture of a hate speech management system involves a pipeline
of several stages. Specifically, we employed the machine learning lifecycle definition
proposed by Ashmore et al. [4] to retrieve a top-down task hierarchy of the detection
architecture. As described in the background chapter, this hierarchy comprises
the stages of data management, model learning, model verification, and model
deployment. By adopting this approach, we were able to isolate different stages of the
system and pinpoint properties related to different aspects of the specific stages. In
practice, this involved documenting all the system properties of the different stages

58 4. METHODOLOGY

that were mentioned in the literature we reviewed.

The following system properties were mentioned: legal compliance, scalability,
adaptability, customizability, robustness against adversarial attacks, cost, trans-
parency, performance, maintainability, latency, data efficiency, availability, and
auditability. In this context, customizability refers to the system’s capacity to be
tailored for additional functionality, while adaptability denotes the system’s capability
to adjust to changes in the distribution of incoming data. The performance property
and adaptability property are also distinct in nature. The performance property
encompasses the model’s ability to classify any instances at a given time, while adapt-
ability specifically focuses on the model’s ability to classify new instances or handle
unseen data. Additionally, it is important to note that performance encompasses a
wide range of metrics employed to evaluate the classification capabilities of a system.
In the subsequent sections, we will utilize more precise metrics that address specific
facets within the overarching concept of performance.

Since identifying and suggesting strategies that optimize all of the documented
system priorities would require an extensive amount of time, it became necessary to
select the most crucial system properties to prioritize and focus on. To accomplish this,
it was necessary to prioritize the documented system properties based on the insights
gained from our comprehensive literature review. This allowed us to identify the
properties that we considered most crucial in light of the acquired knowledge. Hence,
we needed a multi-criteria decision-making (MCDM) technique, which allowed for
the comparison and evaluation of different criteria based on their relative importance
and impact.

We used the most cited MCDM technique, namely the analytical hierarchy
process (AHP) [73]. This process involved conducting a pairwise comparison of each
property based on their relative value and cost. The pairwise comparison approach
is less sensitive to judgmental errors that are common in techniques using absolute
assignments, as it involves redundancy. It is important to acknowledge that the
comparison and prioritization process was conducted internally, making it susceptible
to the influence of our subjective opinions. Ideally, the comparison should be carried
out by multiple industry actors and an average should be used. Using this method,
we assessed each property and assigned a numerical value indicating its level of
importance relative to the compared properties.

Before prioritizing, we first put aside the system properties that constituted non-
negotiable, hard requirements. Since these system properties need to be optimized
regardless, prioritizing them becomes redundant. Consequently, legal compliance
was not included in the prioritization, but handled with the necessary attention later
on. Similarly, we opted for the perspective that a hate speech management system

4.2. IDENTIFYING CORE SYSTEM PROPERTIES 59

can be classified as either auditable or non-auditable. Hence, this property also
resulted in a hard requirement and was consequently removed from the prioritization.
The prioritization also did not explicitly include cost as a separate factor. This was
because the cost could be viewed as a comprehensive property encompassing all the
mentioned properties. In other words, it would always be optimal to reduce cost, but
never at the expense of compromising compliance with a property. Consequently,
when identifying and suggesting strategies to optimize the system properties in
later sections, we did not directly consider the cost. However, when choosing the
optimal strategies in the generalized system architecture among the multiple identified
strategies, we have prioritized those that effectively optimize the desired property
while minimizing costs. For instance, when choosing a sampling strategy for the
fine-tuning of a hate speech detection model, we have specifically considered options
that offer cost reduction without compromising the optimization of desired system
properties.

Sca
la

bili
ty

Adapta
bili

ty

Cust
om

iza
bili

ty

Robust
nes

s

Late
ncy

Per
fo

rm
ance

Tra
nsp

ara
ncy

M
ain

ta
in

abili
ty

Data
Effi

cie
ncy

Availa
bili

ty

Scalability 1.00 0.50 8.00 3.00 6.00 0.25 3.00 4.00 6.00 4.00
Adaptability 2.00 1.00 8.00 3.00 6.00 0.33 4.00 4.00 7.00 5.00
Customizability 0.13 0.13 1.00 0.2 0.50 0.11 0.25 0.20 0.33 0.33
Robustness 0.33 0.33 5.00 1.00 3.00 0.17 3.00 3.00 5.00 3.00
Latency 0.17 0.17 2.00 0.33 1.00 0.17 2.00 2.00 3.00 2.00
Performance 4.00 3.00 9.00 6.00 6.00 1.00 7.00 6.00 8.00 8.00
Transparency 0.33 0.25 4.00 0.33 0.50 0.14 1.00 2.00 3.00 2.00
Maintainability 0.25 0.25 5.00 0.33 0.50 0.17 0.50 1.00 0.50 0.50
Data Efficiency 0.17 0.14 3.00 0.33 0.33 0.13 0.33 2.00 1.00 0.50
Availability 0.25 0.20 3.00 0.33 0.50 0.13 0.50 2.00 2.00 1.00

Table 4.1: Paired relative importance of system properties of the detection archi-
tecture of a hate speech management system. Each value represents the relative
importance of the row property over the column property.

As we were prioritizing ten properties, we used a scale of 1-10, where 1 indicated
equal importance and 10 indicated high importance. Table 4.1 represents the relative
importance of each row compared to its corresponding column, with the decimal
number in each cell indicating the magnitude of importance of the row over the column.
As previously stated, these numbers are derived through internal prioritization, where
we assigned a value between 1 and 10 to each cell based on our understanding from
the literature review of the detection architecture of a hate speech management
system. As an example, scalability is prioritized as eight times more important than
customizability.

After creating the matrix of pairwise comparisons, we used averaging over normal-

60 4. METHODOLOGY

ized columns to compute the eigenvalues of the matrix. Averaging over normalized
columns involves calculating the mean value for each column in the matrix after
scaling the values in each column to have a comparable range or distribution, ensur-
ing that no single column dominates the overall average calculation. The retrieved
vectors, namely the priority vectors, represent the relative value of each system
property compared to the other system properties. Higher values indicate greater
importance, while lower values indicate lesser importance. Table 4.2 reveals that
performance was the most significant factor, followed by adaptability and scalability,
while customizability was deemed to be the least important. We decided to mainly
focus on the five most significant properties. As can be observed, this ended up
being: performance, adaptability, scalability, robustness against adversarial attacks,
and transparency. In addition to these, we also included the previously separated
hard requirements: legal compliance and auditability.

Property Eigenvalue

Performance 0.337
Adaptability 0.190
Scalability 0.154
Robustness 0.098
Transparency 0.098
Availability 0.087
Maintainability 0.078
Data Efficiency 0.062
Latency 0.056
Customizability 0.038

Table 4.2: System property eigenvalue matrix representing the overall relative
importance of properties.

4.3 Postulating Domain-Specific Strategies

After selecting the relevant system properties, we utilized the findings from our
literature review to identify possible strategies to optimize the selected system
properties, thus addressing the first subgoal. By initially exploring various strategies,
we could then evaluate them in order to identify the ones that are most suitable for
inclusion in the generalizable detection architecture of a hate speech management
system. This entailed making a note of all potential approaches to enhance the
optimization of relevant system properties from the findings of our literature review.
A special emphasis was placed on reviewing the literature on the use of contextual
information in order to suggest a better strategy involving contextual information.
Some strategies were retrieved directly from one source from the findings of the

4.3. POSTULATING DOMAIN-SPECIFIC STRATEGIES 61

literature review and others were synthesized using multiple sources. In identifying
and suggesting strategies that optimize the identified system properties, we used
the theory of goal-oriented RE [34] to explore and analyze the strategies for each
property. The system properties now served as the goals to be met, and in this
manner, we analyzed the strategies required to optimize them. Goal-oriented RE
offers the advantage of allowing for the verification that the identified strategies are
aligned with the established goals, i.e., optimizes the system properties. Each strategy
was therefore evaluated to verify that it optimized the desired system properties. In
this manner, we are able to establish the strategies that should be included in the
generalizable detection architecture.

The evaluation first entailed a qualitative evaluation based on other findings from
the literature review that either supported or verified the impact of an identified
strategy. In evaluating and verifying the identified strategies we tried to obtain
multiple sources that confirmed the strategy’s validity. In this manner, we considered
the feasibility and effectiveness of all the identified strategies based on available data
from the literature review. The following strategies were established based purely
on the literature review and will solely be elaborated on qualitatively in the results
chapter:

• Standardization of input to increase robustness

• Adversarial examples in the fine-tuning of the model

• Persistent monitoring using XAI techniques

Some of the identified strategies lacked sufficient literature-based support to
defend their viability. Therefore, we concluded that complementary quantitative
evaluation was necessary to assess the feasibility of these, as outlined in our research
approach. As a result, we determined that the following potential strategies warranted
quantitative experiments for proper evaluation:

• The integration of relevant contextual information

• A detection triage scheme that adaptively routes classifications from a lightweight
language model to GPT and human moderation

• An active labeling scheme with GPT-based models and human moderators for
continuous fine-tuning

• A sampling strategy that prioritizes uniqueness and uncertainty

62 4. METHODOLOGY

The evaluation of each strategy through quantitative experiments necessitated
the availability of a dataset. Therefore, in the subsequent sections, we will elaborate
on our methodology for acquiring a suitable dataset while concurrently exploring the
strategy of the GPT-driven labeling scheme. Then, we will outline the methodology
used to leverage the obtained dataset in order to develop hate speech classifiers. These
classifiers will subsequently be used to evaluate the strategy concerning contextual
information and the proposed sampling strategy. The results obtained from all of
these quantitative experiments will be used to evaluate the proposed triage scheme,
which combines elements from both the GPT-driven labeling scheme and classification
using a lightweight model. The formulated strategies from both the qualitative and
quantitative evaluations and the corresponding optimized system properties are
presented in the subsequent results chapter.

4.4 Refining Existing Hate Speech Dataset

The evaluation of strategies that demand quantifiable trials when qualitative analysis
falls short depends upon the availability of an appropriate dataset. We opted to use
an existing dataset for our research as we aimed to focus our thesis on other aspects
of the field rather than data collection. As described in our literature review, the
work of Founta et al. [23] culminated in a dataset consisting of 80,000 samples of
tweets and their assigned labels from crowdsourcing. This dataset was provided to
us at the beginning of our specialization project, and we were tasked with analyzing
and drawing insights from it.

Furthermore, our literature review revealed, as described in subsection 3.5.2,
that inconsistencies and poor labeling practices in the dataset had been previously
identified. Despite attempts to obtain a better dataset, no suitable alternatives were
available, leaving us with no choice but to use the available dataset. Despite the
limitations of the dataset, it still includes a substantial amount of valuable content
(e.g., instances of hateful content). Therefore, we opted to use this dataset as a
basis for our research and refine it as needed to fit our research objectives. Figure
4.2 depicts the enhancements made to the Founta et al. dataset. Using an existing
dataset, therefore, offers the following advantages:

1. Allowing us to allocate more time towards the primary goal of the thesis,
rather than having to collect new samples.

2. Establishing a comparative baseline for the performance of the GPT-based
labeling scheme.

3. Providing access to the unique tweet identifiers of hate speech-labeled tweets
for data collection, ensuring the presence of reliable hate speech samples.

4.4. REFINING EXISTING HATE SPEECH DATASET 63

Figure 4.2: Workflow for developing augmented tweet dataset from the dataset
provided by Founta et al.

4.4.1 Retrieving Contextual Information with the Twitter API

The Twitter API1 allows developers to access and interact with Twitter data and
functionality. Of particular relevance, the API provides means to programmatically
retrieve tweet objects and their associated data simply by querying for their unique
tweet identifier. This makes it possible to iterate over each tweet identifier in the
Founta et al. dataset and gather the contextual information as defined in section
3.4 from the tweet object and the associated metadata. However, we ended up with
a considerably reduced dataset when retrieving the tweet objects from the Twitter
API, likely due to the considerable age of the dataset. Over time, much of the
data may have been removed by the users themselves or by Twitter’s hate speech
filters. Nevertheless, the dataset remains sufficient enough for our purposes. Most
importantly, it contains a high degree of the implicit hate speech described in Table
3.2, a pressing problem to address within this domain.

4.4.2 Filtering

In order to ensure a scientific approach to our analysis of adding contextual infor-
mation, we employed a strict sampling and filtering process. Our objective was to
prioritize cases that exhibited intricate nuances, thus potentially requiring contextual
information for precise labeling. To accomplish this, we implemented a filtering
process to exclude samples that, based on existing literature, were deemed less likely
to benefit from contextual information.

1An Application Programming Interface (API) is a set of protocols, methods, and tools that
facilitate communication and data exchange between software applications.

64 4. METHODOLOGY

An important step in the filtering process was the removal of non-conversational
tweets from the dataset. Previous literature regarding the integration of contextual
information had not observed significant improvements when analyzing this specific
category of tweets. Hence, the decision to remove them aimed to narrow down the
sample to instances that were expected to be more focused and contextually rich.
Therefore, we excluded standalone tweets and retweets, reducing the dataset size by
a significant margin. Similarly, we eliminated quote tweets and replies whose parent
tweets were not available, likely due to a violation of Twitter’s content guidelines.
Finally, we excluded samples that were previously labeled as spam by the original
dataset annotators, as we frequently found these samples to be lacking in semantic
value and/or conceptual significance.

The following summarizes the rules applied in the filtering procedure:

FR1 Exclude non-reply or non-quote samples
FR2 Remove conversational tweets that are lacking parent objects
FR3 Remove samples that were classified as spam by the original annotators

Figure 4.3: Waterfall plot demonstrating the effects of the size-reducing operations
on the dataset.

As a result of the data retrieval and filtering process, we were left with 8103
raw samples, representing approximately 10% of the original Founta et al. dataset
as seen in Figure 4.3. The hate class proportion increased from 4.54% to 5.31%,
highlighting a persistent imbalance in the dataset. A feature summary of the dataset
after filtering can be seen in Table A.1 in the Appendix.

Despite the considerable reduction in our dataset’s size, we still consider it
valuable for our experimental applications. Improved performance on this dataset
could arguably lead to an increase in overall performance, albeit to a lesser extent.

4.5. EXPLORATION OF GPT-BASED ANNOTATION 65

Reducing the dataset to this specific focus allows us to more easily identify the
potential impacts of our strategies, although this comes with the trade-off of the
dataset potentially being less representative of the real data stream on a social media
platform.

4.5 Exploration of GPT-Based Annotation

Labeling has been considered a costly and complicated task since it requires the
hiring of individuals. However, labeling schemes can now be accomplished using
sophisticated language models after recent advancements in their competence and
affordability, as described in the literature review. In this section, we will describe
our development of a GPT-driven labeling strategy, which will then be applied to
get our dataset labeled with contextual information for usage in quantitative trials.
The results of these experiments will decide the potential of the labeling scheme as a
strategy within the final system architecture.

Although having obtained a preprocessed dataset that included labels and relevant
contextual information, the validity of the labeling had to be considered. While the
method of labeling in Founta et al. was somewhat questionable and not up-to-date,
there was a more significant concern for our research. Specifically, the annotators did
not have access to contextual information during the annotation process. Therefore,
we had to relabel the dataset by inferring the context and incorporating it into the
labeling process to obtain a reliable ground truth for our analysis.

Because of the subtle nature of the indicators associated with the labels, we
estimated that each sample took at least 40 seconds to label by a human moderator
using a multi-layered labeling scheme as outlined by Assimakopoulos et al [5]. This
would entail a lower bound of 90 hours for the entire dataset for one person without
taking any breaks. We would also risk incorporating our internal biases into the
dataset. Moreover, a crucial aspect of our research involves the real-world applicability
of a hate speech detection system, which highlights the importance of selecting a
labeling scheme that accurately reflects real-world use cases. Therefore, the labeling
scheme has to be time-efficient, as well as scalable. Due to these limitations, we
decided to outsource the labeling task, as manually evaluating each sample is both
too time-consuming and vulnerable to subjective influences. As stated earlier, we
recognized this as an opportunity to explore a GPT-driven labeling scheme, a strategy
we outline in subsection 3.5.4 of our literature review.

4.5.1 Establishing an Unbiased Hate Speech Definition

As we can define the criteria for hate speech ourselves, we wanted to employ a
debiasing methodology to mitigate biases when labeling and remove ambiguity from

66 4. METHODOLOGY

the hate speech definition. Founta et al. developed their definition by consulting
contemporary related works and dictionaries. We compared this definition with
that of the UN2 and some others to get a good overlook. The definition of hate
speech used by the UN [86] encompasses a broader range of characteristics (e.g.,
nationality, color, and descent) when compared to the definition used by Founta
et al. Hence we added this to our definition. However, the definition of UN also
includes the ambiguous term "or other" as an identity factor. Based on our analysis
of the literature, it is evident that establishing clear boundaries is crucial in achieving
consistent labeling. Hence, "or other" is removed. Consequently, we ended up with
the following definition of hate speech which is pretty similar to that of Founta et al.
[23], albeit with minor alterations in the attributes included:

Hate Speech Language used to express hatred towards a targeted individual or
group, or is intended to be derogatory, to humiliate, or to insult
the members of the group, on the basis of attributes such as race,
religion, ethnicity, sexual orientation, disability, nationality, descent,
color or gender.

4.5.2 Data Preparation for Outsourcing

Before sending the dataset for third-party labeling, we performed data cleaning and
reduction operations to reduce costs, mitigate noise, address ethical considerations,
and reduce the risk of privacy violations. Although our data is entirely collected
from a public space, we made an effort to protect personal information as users have
not given explicit consent for their data to be used for this task. Therefore, we took
steps to not outsource any information that does not hold predictive power and that
could link a tweet to a specific individual.

Selection of Essential Features

The cost of labeling is based on the number of tokens in each sample given as input
to the language model, so each sample row is condensed to contain only the critical
information required to allow for accurate labeling by an advanced annotator. The
child tweet text and parent tweet text provided the actual content of the tweets being
evaluated, which is the primary factor in determining hate speech. The child user
description and parent user description gave insight into the individuals who wrote
the tweets. These descriptions may reveal certain characteristics of the user targeted
by hate speech, thereby potentially playing a role in determining the appropriate
label. Hence, the sample row is condensed to these four textual features.

2Hate speech definition of UN: "any kind of communication in speech, writing or behavior, that
attacks or uses pejorative or discriminatory language with reference to a person or a group on the
basis of who they are, in other words, based on their religion, ethnicity, nationality, race, color,
descent, gender or other identity factors" [86].

4.5. EXPLORATION OF GPT-BASED ANNOTATION 67

Labeling Input Example Value

Child tweet [MENTION] That way they won’t be lying under oath when
they swear they aren’t doing anything illegal. (Someone else
is doing it for them).

Child user description ADHD! Family Man, Politics, Conservative, Christian,
CANADA #YQR * strongly opposed to the globalist agenda
of Trudeau. #TrudeauMustGo!

Parent tweet According 2 this article, they feel Intel agencies r using con-
tractors to illegally spy on Americans using the CIA tools
exposed by Wikileak [URL]

Parent user description Free spirit and cool cat at heart. The truth will always prevail,
count on it. Accuracy is my motive, if you ever see something
wrong, just tell me. [MENTION]

Table 4.3: Data foundation of an example row from the Founta et al. dataset to
illustrate what is used for labeling instances with GPT. The specialized tokens are
denoted in square brackets.

Tokenization of Non-Informative Elements

In the context of the classification task, we regarded mentions of other users in the raw
text itself as not informative as the communicative relationship in the conversation is
implicitly provided. Similarly, URLs are not deemed significant because they do not
contribute directly to the semantic content and meaning of the text, which is the focus
of the classification task, while also being a rare occurrence. These non-informative
elements are thus replaced with custom tokens. The process is carried out by using
the already stored character positions of mentions and URLs in the raw features.
The resulting format of each sample outsourced can be seen in Table 4.3.

4.5.3 Outlining Trade-Off Determinants for Cost Efficiency

In addition to an adequate hate speech definition and a cost-effective input, there
exist numerous configurations for the labeling schemes using language models, each
offering a unique trade-off between cost-efficiency, time investment, and performance.
We have identified four key factors that influence such trade-offs:

1. Model complexity

2. Instruction method

3. Uncertainty quantile threshold in active labeling

4. Number of in-context examples

68 4. METHODOLOGY

Empirical studies from the literature review which could be applied to this strategy
were not found. We, therefore, set out to perform empirical trials with different
configurations of factors ourselves to find the optimal balance between performance
and cost.

For our trials, we were faced with a dilemma as we tried to balance two opposing
considerations; on one hand, we would need to reduce the number of trials to account
for budgetary constraints, while on the other hand, we would need to increase the
number of trials to test more levels for each factor. A "level" in this context refers to
the specific value or setting that a factor can have in an experiment. To address both
considerations, we employed a fractional design of experiments (DOE) methodology
where we used statistical analysis to approximate optimal performance-cost trade-offs
for each factor while reducing the number of trials needed [56]. By analyzing the
variance in cost-effectiveness resulting from varying factor levels, we can identify the
most influential factors. We went with a three-level factorial design as the interactions
between the factors are arguably dependent on each other, and to account for possible
non-linear relationships. We now delve into the rationale behind choosing the selected
levels for each factor.

Model Complexity

We decided to use an instruction-based model with a few-shot learning ability so that
the model can assign labels based on the definition and some in-context examples
that we provide it with. Such models have been shown to provide context-aware
and accurate predictions that are more consistent than their non-instruction-based
counterparts, which are designed to learn relationships in the data without explicit
guidance on how to process instructions [54].

We opted for OpenAI’s instruction-based contextualized language models as they
are both performative and competitive in price, while easily accessible with an API.
As of March 2023, there were five models with varying complexities and prices.
Lacking literature applicable to our constraints, we performed small-scale empirical
trials in order to find a subset of models with promising cost-effectiveness. In order
to establish the ground truth, we labeled 300 samples ourselves using our established
definition with the multi-layered labeling scheme by Assimakopoulos et al. [5], as
depicted in Figure 4.5. To ensure the positive class was adequately represented, we
performed oversampling. Each trial was conducted with only the labeled 300 samples,
so to account for non-representative performances, we performed resampling3 on the
predicted values of each model.

3Resampling is a statistical method for generating new samples by repeatedly drawing observa-
tions from a dataset, usually done to estimate the performance of sample statistics.

4.5. EXPLORATION OF GPT-BASED ANNOTATION 69

∗ Performance adjusted for non-classifiable predictions

Figure 4.4: Estimated performance of OpenAI’s instruction-based contextualized
language models given their token cost.

From Figure 4.4, we can see that the Davinci model outperforms all the other
models with statistical significance, but at a much higher API call cost per one
thousand tokens; it is roughly ten times more expensive than the cost-optimized
version of GPT-3.5, gpt-3.5-turbo, while providing an estimated four percentage
points higher F1 score. The GPT-3.5 model does not return the log probabilities of
each token, and being able to select the most uncertain samples using human experts
is an important property of the active labeling approach. We thus ultimately opted
to only proceed with the Davinci model for the experiment, as we were convinced
that the other models would not provide us with adequate performance even if we
optimized the other factors. Also, not including the cost enabled us to reduce the
number of trials, and thus the cost of our experiment, by 67%.

Instruction Method

As with humans human annotators, it is important to provide concise and precise
instructions to the model on how it should classify the instances. In order to achieve
consistent labeling, the definition of hate speech must be presented in a manner
that reduces the possibility of internal biases. Consequently, we made use of the
multi-layered labeling scheme methodology presented by Assimakopoulos et al. [5],
which outlines how to reduce biases when annotating. Building upon the previously

70 4. METHODOLOGY

defined hate speech definition, we developed a series of progressively detailed yes-no
inquiries that together reflect the definition. By employing this multi-layer annotation
scheme in the subsequent active labeling stage, we also minimized the potential for
subjective interpretation by human annotators. This scheme can be seen in Figure
4.5.

Figure 4.5: Condition-based multi-layer labeling scheme designed to classify hate
speech in an unbiased matter.

There is however a trade-off between the quality of instruction and the cost.
The number of tokens in the prompt given to the language model is indicative of
the ultimate cost of labeling. Although we shortened the sample row by employing
feature selection, we also had to take into account the length of the instruction in
the prompt. We will therefore want to test the cost-efficiency of using a less biased
approach by including the instruction method to the GPT model as a factor in the
Design of Experiments.

The multi-layered scheme is essentially a series of conditional statements. To make
this readable and reliably interpreted by a language model, the scheme was formatted
through a series of short-circuited conditionals, where only the ensuing conditional

4.5. EXPLORATION OF GPT-BASED ANNOTATION 71

should be evaluated if the previous conditional is satisfied. Using this scheme to
mitigate bias will result in an increase in token count from 132 to 247 [77], or about
$0.0023 for the most expensive GPT-based model [78]. There is some redundancy in
the branching logic, but we deemed it necessary from our experience through trial
and error to ensure output consistency for the language models. Through iterative
experimentation, we successfully developed two formulations of the multi-layered
scheme, with one of them offering a higher level of detail. The levels for instruction
methods can be seen in Table A.2 in the Appendix.

Level 1 Definition-based

Level 2 Condition-based with low specificity

Level 3 Condition-based with high specificity

Uncertainty Quantile Threshold in Active Labeling

In addition to providing the generated tokens, the OpenAI API also returns the
unnormalized log probabilities of the most likely tokens at a given index. These log
probabilities can then be used to quantify the uncertainty during classification as
long as the model is instructed to generate the classification in a standardized form.
This is especially trivial for our case as we instruct the model to output a single
token — either a 0 or a 1 — which signifies the predicted class. We used entropy as
our uncertainty measure as it is a simple and well-established way of capturing the
confidence of classification. The log probabilities, zi, for each class in the index set
I = {0, 1} at the first token in the generated text were extracted before we applied a
Softmax function over the set J to obtain the normalized probabilities. Then, the
entropy, H(I), was trivially calculated using the Shannon entropy formula over the
index set I, as seen in Formula 4.1. We chose base-2 for computing the information
content as it aligns with the binary nature of the classification task while also being
a widely accepted convention in information theory.

pi = ezi∑
j∈J ezj

, for i ∈ I

H(I) = −
∑
i∈I

pi log2 pi

(4.1)

The labeling performance could then be improved by incorporating the uncer-
tainties of each classification in an active labeling scheme, ranking the labels by their
uncertainty, and replacing the ones that were the most uncertain with labels assigned
by an expert (i.e., a human), as demonstrated by Wang et al. [95].

72 4. METHODOLOGY

Figure 4.6: Active labeling workflow used to relabel the dataset with GPT-3 model.
The expert relabels the instances in which the GPT model is the most uncertain.

Our active labeling scheme, which employs a strategic approach to selecting data
instances for human annotation based on uncertainty levels, is depicted in Figure 4.6.
Given the constraints of a limited budget, it was necessary to carefully select the
levels at which the uncertainty quantile threshold for human annotation would be
set. These levels represent the percentage of the most uncertain data instances that
would be selected for relabeling, with the goal of improving the model’s performance,
and are as follows:

Level 1 0%

Level 2 10%

Level 3 20%

Number of In-Context Examples

The introduction of specific classification examples to the language model can be
conceptualized as a form of implicit fine-tuning. This process effectively adapts
the model to perform more specialized tasks, augmenting its general pre-trained
knowledge with specific application-oriented insights. This approach serves as a
strategy to increase the model’s ability to handle nuanced or ambiguous instances,
specifically in the context of categorizing subjective instances of hate speech. As
negative samples are more prevalent than positive samples, it was important for us
to maintain this same distribution when selecting these samples. This reduces the
risk that the model does not become biased towards negative or positive examples
when applied to the larger population. Consequently, we chose the following levels
for the number of in-context examples factor:

Level 1 0-shot

Level 2 2-shot, with one positive and one negative classification

Level 3 4-shot, with one positive and three negative classifications

4.5. EXPLORATION OF GPT-BASED ANNOTATION 73

4.5.4 Estimating the Optimal Combination of Factors

When we had established the levels for each of the four factors, we could proceed
with the design of experiments approach. It is important to note that while the
factors may improve performance, they will inevitably increase costs. With a limited
budget, we wanted to identify the most influential factors in an objective way without
performing too many experimental trials.

Objective Utility Criterion

We define an objective utility criterion to establish a concrete trade-off relationship
between performance and cost such that factor combinations can be objectively valued.
Equation 4.2 shows how the cost of a combination is calculated on a per-tweet basis.
The cost is determined by scaling the cost of inference per token, denoted as CGP T ,
by the average token count in the combination, N̄T . To this scaled cost, the cost of
oracle processing, CO, is added, which is scaled by the uncertainty quantile threshold,
TUQ. The cost of inference is fixed for all combinations as every combination uses the
same Davinci model, so CGP T is given a value of $0.02 in line with the Davinci API
pricing [78]. The active labeling cost of an oracle CO was fixed per sample to $0.14.
We used the AWS Pricing Calculator4 for estimating the costs of the Sagemaker
Ground Truth service in order to retrieve an estimate for the cost of an expert labeler
per sample.

C̄(CGP T , N̄T , CO, TUQ) = CGP T · N̄T + CO · TUQ (4.2)

We chose to use a parameterized exponential utility function as defined in equation
4.3 such that cost will matter more as the performance grows, as we do not value
cost when the performance is low. The parameters β and γ determine the desired
curvature and relative importance between the cost and the performance. We chose
a value of 0.25 for β and a value of 2 for γ as these parameters provided a curve
that aligned with our expected predictions. The performance is quantified using the
weighted F1 score as defined in equation 2.6 to account for the inherent imbalance
between hate and non-hate instances in our dataset.

U(F1, C̄; β, γ) = F1 · e−β·C̄·F γ
1 (4.3)

It is important to note that the specific configurations of the cost function C̄

and the utility function U are generalizable; they can be modified according to the
distinct needs of the entity assessing the combinations, demonstrating the method’s
adaptability to various contexts.

4https://calculator.aws/#/addService/SageMakerGroundTruth

https://calculator.aws/#/addService/SageMakerGroundTruth

74 4. METHODOLOGY

Fractional Factorial Design

It would be beneficial to explore the whole solution space in order to optimize
the cost-performance trade-off of a system that is influenced by a range of factors.
However, with one level for factor 1, three levels for factor 2, three levels for factor
3, and three levels for factor 4, the total number of possible combinations is 27.
Given our financial constraints, performing all 27 combinations was not practical.
Therefore, we implemented an orthogonal fractional design, allowing us to estimate
the main effects of each factor and some of their interaction effects independently,
while minimizing the impact of confounding factors and reducing the number of runs
to 9. An overview of trial runs with the performance, cost, and utility scores can be
seen in Table 4.4. We conducted tests on 300 samples which we labeled ourselves
using the multi-layered labeling scheme presented in Figure 4.5. Fellow students
were involved in the active labeling process to differentiate between the ground truth
labels established by us and the expert labels utilized in the active labeling phase.

Run Instruction Unc. Threshold No. Examples F1 C̄ Utility
1 Definition 0% 4-shot 0.52 0.018 0.47
2 Definition 10% 2-shot 0.67 0.026 0.63
3 Definition 20% 0-shot 0.86 0.033 0.76
4 Condition 0% 2-shot 0.56 0.014 0.55
5 Condition 10% 2-shot 0.73 0.028 0.68
6 Condition 20% 2-shot 0.90 0.042 0.76
7 Condition, specific 0% 0-shot 0.59 0.009 0.58
8 Condition, specific 10% 2-shot 0.77 0.029 0.71
9 Condition, specific 20% 4-shot 0.96 0.049 0.76

Table 4.4: Response matrix for fractional factorial design experiments.

To estimate the unique contribution of each factor on the utility, we ran an OLS5

regression as it is simple while providing easily interpretable coefficients. While the
assumption of linearity might not be entirely satisfied, the method can still prove
valuable to estimate the overall directional effect of the factors on an output variable,
which is the utility metric U in our case. Using this approach, we concluded on an
optimal combination when using condition-based instructions with low specificity
(Instruction level 2 in the Appendix A.2), 20% uncertainty quantile threshold for
active labeling, and 0 in-context examples. We performed a new small-scale test with
this new combination from which we obtained a satisfactory F1 score of 0.94. We
thus relabeled the entire dataset using this configuration of factors, achieving the
second subgoal. The resulting class distribution and uncertainty distribution in the
relabeled dataset can be seen in Figure 4.7. Here, we can observe a slight decrease in

5Ordinary least squares (OLS) is a statistical method for estimating parameters in a linear
regression model.

4.6. DEVELOPING HATE SPEECH CLASSIFIERS FOR THE EVALUATION OF
QUANTITATIVE STRATEGIES 75

class imbalance compared to what was mentioned in section 4.4.2, but it remains
noticeable, hence requiring consideration in subsequent operations.

(a) Bar plot illustrating the class distribution
with associated proportions.

(b) Violin plot illustrating the uncertainty
distribution given the class.

Figure 4.7: Comparison of class distribution and the corresponding uncertainty of
dataset relabeled with the optimal configuration of factors.

4.6 Developing Hate Speech Classifiers for the Evaluation of
Quantitative Strategies

With the successful creation of a suitable dataset, we were now ready to advance
toward the third subgoal of developing classifiers that could be used to evaluate both
the integration of contextual information and the proposed sampling strategy.

To evaluate the integration of contextual information, it was crucial to experiment
with various combinations of contextual features, as outlined in section 3.4 of our
literature review. Our dataset comprises both textual and numerical contextual
information. The textual context encompasses various elements, including the raw
data of the tweet, the raw data of the parent tweet, and the two users’ descriptions.
The numerical context involves different ids (e.g., tweet, conversation, author) and
counts (e.g., number of retweets, number of replies, number of likes). Based on our
literature review, we discovered that relying solely on numerical features produced
unsatisfactory results 3.4. Therefore, we made the decision to create two context
classifiers: one that solely considers textual features and another that incorporates
both textual and numerical features. Additionally, it was necessary to develop a
performative baseline classifier that doesn’t utilize contextual features when making
predictions to accurately measure the performance gain that could be achieved by
adding contextual information.

76 4. METHODOLOGY

Most of the contextual features are categorical or numerical features. These don’t
have the same inherent ordering or dependencies in natural language, so we cannot
use a language classifier for these either. Instead, a stacked6 model architecture can
be used in order to handle both textual and numerical data in an effective way.

Apart from being essential for quantitative experiments aimed at analyzing
contextual integration, the embeddings of the natural language model can also be
leveraged to implement the proposed sampling strategy. These embeddings serve
as a metric to gauge the uniqueness of an input. Consequently, we embarked on
the development of lightweight natural language classifiers for the following four key
reasons:

1. We need a performative baseline classifier that doesn’t utilize contextual
features when making predictions, in order to accurately measure the
performance gains of adding contextual information.

2. The natural language model can be employed independently to classify
based solely on textual context.

3. The output obtained from the language classifier can serve as a basis for
generating meta-features from textual inputs. These meta-features can then
be utilized in conjunction with other numerical features within a stacked
model.

4. The embeddings of the hidden layers of the model provide a measure for
the uniqueness or diversity of a tweet which will be used in order to test
data sampling approaches.

4.6.1 Model Architectures and Domain Adaptation Approach

As outlined in the literature review, deep transformer-based neural network models
with bidirectional processing are the most effective for our downstream7 detection
task because of their ability to capture nuanced linguistic patterns and cultural
references that are often present in hateful language [42]. As referenced earlier,
the research done by Gröndahl et al. argues that "the model architecture is less
important than the type of data and labeling criteria being used when optimizing
the performance of hate speech detection" [25]. Although this is a significant concern
when trying to achieve the best possible hate speech detection performance, the
choice of model is still critical for ensuring the feasibility and practicality of the
actual deployment on a social media platform.

6Stacking is a machine learning technique where outputs of base models serve as inputs to a
second-level meta-model.

7A downstream task refers to a task that is built upon the outputs or representations generated
by a pre-trained model.

4.6. DEVELOPING HATE SPEECH CLASSIFIERS FOR THE EVALUATION OF
QUANTITATIVE STRATEGIES 77

Choice of Base Model to Process Textual Features

From the comparison of pre-trained transformer-based models we conducted in
our literature review, we gathered that size, performance, and inference time were
important factors to consider from the perspective of a social media company. Given
that our GPU had a memory capacity of 10 GB, we had to limit our search for a
suitable model with this constraint in mind. From this comparison, we gathered that
an XLNet model, with its superior performance on benchmarking tasks, or ELECTRA,
with its state-of-the-art cost-effective training procedure and faster inference times,
was the most appropriate. However, using an already fine-tuned model would prove
advantageous to allow the model to grasp the overall characteristics of the task while
mitigating overfitting concerns regarding the limited size of the dataset. Such a model
would have to be specifically fine-tuned on a hate speech dataset, preferably implicit
hate speech. We were not able to identify publicly available XLNet or ELECTRA
models already fine-tuned for hate speech classification.

Instead, we found a fitting BERT model accessible through the Transformers
library8. The researchers behind the ToxiGen dataset, mentioned in subsection
3.5.3, released a fine-tuned version of the HateBERT9 model, which we used as
our foundation for subsequent modifications. We could then perform sequential
fine-tuning operations to create classifiers that are calibrated with our definition of
hate speech by using the dataset we created. In this manner, we ended up with
models that were both initially trained and then sequentially fine-tuned on the task
of hate speech detection.

Choice of Meta-Model to Process Numerical Features

Our approach involved a stacked model architecture, composed of a base model to
process textual data, and a second-tier meta-model designed to handle non-textual
features. This meta-model incorporated the numerical output of the language model,
in addition to other numerical contextual features, as part of its input. We wanted to
be able to investigate the usage of a range of numerical features, so a boosting10 model
would be beneficial to handle the high-dimensionality and relatively small dataset.
However, it’s essential to bear in mind that, despite their strengths, boosting models
can risk overfitting when handling high-dimensional data. While neural networks rely
on interconnected nodes directly, as described in the background chapter, boosting
algorithms combine the predictions of multiple less complex models to create a more

8https://huggingface.co/tomh/toxigen_hatebert
9HateBERT is a pre-trained model that had been re-trained for abusive language detection in

English while being the same size as the original BERT model [10].
10Boosting is an ensemble technique used for improving the performance of weak learners,

typically decision trees or simple models, by combining them in a sequential manner.

78 4. METHODOLOGY

powerful predictive model. Among boosting algorithms, XGBoost11 was specifically
selected for its capacity to manage overfitting through regularization12 and for its
efficient handling of missing data. It is available through the Python library with the
same name [87]. The L1 regularization technique it implements practically removes
the need for feature selection as it can shrink the coefficients of less important features
to zero.

Final Classifiers

A total of three classifiers were developed with varying degrees of context awareness.
An overview of these three classifiers can be seen in Figure 4.8. We have coined
the name NaiveBERT for the baseline model, which employs the HateBERT model
sequentially fine-tuned on both the ToxiGen dataset and our own dataset. We
have designated the name ContextBERT for the model that exclusively incorporates
textual features into the NaiveBERT baseline model. Finally, we named the model
that combines the output of the ContextBERT model with an XGBoost model, while
also incorporating numerical features, ContextBoost.

4.6.2 Design Choices for Sequential Fine-Tuning of BERT models

The training process is a critical component of developing effective models, and
its design choices collectively shape the model’s performance and generalization
capabilities. We, therefore, opted to use the Trainer class in the Transformers library
for managing our training process, as it not only streamlines complexities and provides
extensive customization options, but also adheres to deep learning best practices and
facilitates reproducibility. The training object was configured to use the ROC AUC
statistic on the validation set to select the most promising model at each stage, as it
provides a comprehensive understanding of the model’s performance across various
classification thresholds and is less sensitive to the class imbalance of the dataset
evident in Figure 4.7a. To account for overfitting, we set up our training object with
an early stopping callback and checkpointed the model at each epoch based on the
validation set performance. AdamW was used as the optimizer as it incorporates
weight decay during training, which can further reduce the risk of overfitting and
improve the model’s generalization ability, while also being the most conventional
optimizer for NLP-related tasks.

11XGBoost, short for eXtreme Gradient Boosting, is a machine learning algorithm that excels
in leveraging gradient boosting and decision tree ensembles, offering high predictive accuracy,
robustness against overfitting, and the ability to handle large-scale datasets with high dimensionality
and complex relationships.

12Regularization is a machine learning technique applied to models in order to prevent overfitting
by adding a penalty term to the loss function. This effectively encourages model simplicity and
improves the generalization ability.

4.6. DEVELOPING HATE SPEECH CLASSIFIERS FOR THE EVALUATION OF
QUANTITATIVE STRATEGIES 79

Figure 4.8: High-level architectures of hate speech classifiers

Standard loss functions treating all classes equally in imbalanced datasets can bias
the model towards the majority class, which may negatively impact the performance
of the model on the minority class [12]. This effect can be the most profound in cases
where the majority class contains a lot of samples that the model can classify with
high certainty, which can result in poor performance on the low-certainty samples of
the minority class. To account for this, we utilized the Focal loss function as denoted
in equation 4.4 introduced by Lin et al. [38], which has shown large improvements
in accuracy for imbalanced datasets without compromising training time. This
function adds modulating terms to the cross-entropy loss defined in equation 2.2
which down-weights the contributions of easily classified instances during training.

LF (pi, yi; γ) = −(1 − pi)γ · yi · log(pi) − pγ
i · (1 − yi) · log(1 − pi) (4.4)

The γ parameter was assigned its value through hyperparameter optimization, which
we will come back to in subsection 4.6.5.

80 4. METHODOLOGY

4.6.3 Feature Engineering for Meta Learner

We engineered features from the augmented raw dataset from section 4.4 which
we thought would provide predictive power to the classifier in the cases where
ContextBERT was uncertain. After applying data cleaning techniques to enhance
the data’s suitability for analysis, we produced meta-features from the output of the
ContextBERT model for the ContextBoost model. In such a sense, the BERT model
serves as a complex feature extractor from the four textual features, namely the child
tweet text, the parent tweet text, the child author description, and the parent author
description. The output of the BERT classifier architecture is a set of logits13 for
each class. Applying the Softmax function to these logits enables us to convert them
into class probabilities. Following this, we calculated the entropy of these probability
distributions to measure the uncertainty associated with the model’s predictions.
We hypothesize that incorporating this measure could be advantageous, as it could
encourage the model to rely more on other features when uncertainty is present. We
further quantified the sentiment of the textual features through the negative polarity
scores of the SentimentIntensityAnalyzer class in the NLTK library.

We had a lot of numerical features that we needed to transform into more
applicable features. While the XGBoost model can handle wide data, we have 16
engagement-type raw features as seen in Table A.1 where each of them might not
provide us with a lot of predictive power. We, therefore, used PCA14 in order to
reduce the dimensionality of these features into two representative features. We also
engineered a set of features like the time between when the parent and child tweet
was posted, whether or not the author uses the default profile (anonymous people
might be more hateful), or the ratio of followers between the two authors (trolls have
usually not many followers). The resulting features can be seen in Figure 4.5.

4.6.4 Preparation of Textual Input Features

Aligning the data representation with that used during pre-training is vital, as the
classifiers rely on the knowledge acquired during this process to perform effectively.
We utilized the bert-base-uncased tokenizer from the Transformers library to make
the input sequence formatting align with that of the underlying HateBERT model,
thereby ensuring consistency and compatibility.

Multiple input features are fed to the model by adding special separator tokens
between the features and concatenating them into a single string. This lets the model

13A logit refers to the unnormalized log probabilities for each class predicted by a model.
14Principal Component Analysis (PCA) is a statistical method that reduces the complexity in

high-dimensional data by transforming it into a smaller number of orthogonal features, known as
principal components, while attempting to preserve the variability in the data.

15In the context of XGBoost, the F-score represents feature importance, a concept distinct from
the usage of F-scores in traditional statistical analysis.

4.6. DEVELOPING HATE SPEECH CLASSIFIERS FOR THE EVALUATION OF
QUANTITATIVE STRATEGIES 81

Numerical contextual feature Data type F-score15

Positive class probability of BERT prediction float64 49
Entropy of BERT prediction float64 11
Feature 1 from PCA analysis float64 14
Feature 2 from PCA analysis float64 4
Negative polarity score of tweet float64 1
Negative polarity score of parent tweet float64 18
Negative polarity score of author description float64 3
Negative polarity score of parent author description float64 1
Ratio of author’s followers and follows float64 11
Account age difference of authors int64 11
Time between author account and tweet creation int64 0
Author uses default profile image boolean 1
Conversation is self reply boolean 1

Table 4.5: Engineered features for meta learner. The respective F-scores were
computed using the ’weight’ criterion in the plot_importance function from the
XGBoost library, indicating the frequency of each feature’s appearance across all
decision trees.

Figure 4.9: Sequence input format for the ContextBERT model with the specialized
tokens represented with square brackets.

correctly interpret the features as separate and can infer a relationship between them.
The format of the input sequences for the BERT model can be seen in Figure 4.9.

The computational complexity of the input size associated with the self-attention
mechanism for BERT models mentioned in subsection 2.5.2 is quadratic, so we
limited the input size as much as possible without letting it impact the performance.
To find out the optimal maximum input length for each classifier, we followed an
exploratory approach where we tokenized the inputs and plotted their distribution.
The self-attention mechanism operates on smaller chunks of the input sequence, so it’s
generally recommended to set the length to a multiple of 2n. With this methodology,
we set the max token length to 64 for NaiveBERT and 256 for ContextBERT.

4.6.5 Optimization of Hyperparameters

We used the Optuna library [79] to perform hyperparameter tuning with the Tree-
structured Parzen Estimator (TPE), a Bayesian optimization technique, as the search

82 4. METHODOLOGY

algorithm for the BERT models. The decision to use TPE was made because of its
memory-effectiveness, as we are constrained by the GPU memory capacity, and its
effectiveness in handling imbalanced datasets and high-dimensional search spaces.
The ranges set and the optimal values for the hyperparameters after 50 trials can
be seen in Table A.3 in the Appendix. We optimized for the often preferred ROC
AUC as it is a metric that is robust against class imbalance and because it provides
a complete evaluation of performance across different probability thresholds.

The XGBoost model is part of a different framework and has different hyperpa-
rameters, so we instead used the Grid Search Cross Validation class in the Sklearn
library [60] with the XGBoost model as the input estimator. These can be seen in
Table A.4 in the Appendix.

4.6.6 Assessing Impact on Classification Cost

While prioritizing performance by optimizing for ROC AUC, we also incorporated a
way to evaluate the classification cost metric to have a metric that more properly
illustrated the impact of the performance difference. The classification cost was
computed based on the proportion of binary classification outcomes, as defined in
subsection 2.4.3, and the associated cost of each outcome. The average cost per
classification decision is calculated using the formula provided in equation 4.5. This
metric is a weighted average of the costs for each type of classification outcome
normalized by the size of the data to be comparable across different dataset sizes.

CC = TP · CT P + TN · CT N + FP · CF P + FN · CF N

TP + TN + FP + FN
(4.5)

Establishing Relative Costs

Without a concrete system to estimate the absolute costs, we assigned costs to each of
the four classification outcomes on a relative basis. This way, we could compute the
relative savings in the classification costs between any two schemes. We grounded the
decision in our literature review to quantify the cost of each classification outcome
given its consequences on the properties defined in subsection 4.2 and a flat cost to
account for the system load of processing.

• Cost of false negative (CF N): Incoming legislation like the Digital Services
Act imposes penalties and legal consequences for platforms that fail to detect
instances of hate speech. This leads to both direct financial repercussions and
indirect consequences, such as damage to reputation. The failure to detect
hate speech can ultimately lead to users abandoning the platform, potentially
triggering a complete boycott of the platform. Therefore, assigning the highest

4.6. DEVELOPING HATE SPEECH CLASSIFIERS FOR THE EVALUATION OF
QUANTITATIVE STRATEGIES 83

cost to false negatives reflects the potential financial and reputational damage
incurred when hate speech goes undetected. Accordingly, false negatives were
assigned a relative cost of 100.

• Cost of false positive (CF P): When non-hateful content is mistakenly flagged as
hate speech, it creates a burden on human evaluators who need to review and
rectify these false positives. This incurs additional costs due to the increased
workload imposed on human evaluators, leading to some increased operational
expenses. False positives can also result in delayed action against genuine
instances of hate speech since human evaluators have to review and label more
instances. The longer it takes to identify and address hate speech, the higher
the potential harm caused. Moreover, if a user is mistakenly banned, it can
result in detrimental consequences for the platform’s reputation as well as
potential financial implications due to users abandoning the platform. However,
the likelihood of experiencing these repercussions is considered lower compared
to the occurrence of false negatives. As a result, false positives were assigned a
relative cost of 20.

• Cost of true positive (CT P): When hate speech is accurately detected, it is
sent to human evaluators for further review and action. While this step is
necessary, it still incurs a cost due to the involvement of human resources.
Assigning a lower cost to true positives reflects the inherent need for human
involvement but acknowledges that it is a more desirable outcome compared to
false classifications. True positives were therefore assigned a relative cost of 5.

• Cost of true negative (CT N): Instances of non-hate speech that are correctly
classified as such incur minimal costs. The lower cost assigned to true negatives
recognizes that accurately identifying non-hate speech is essential but does not
impose a significant burden on resources. Consequently, a relative cost of 1
was assigned to true negatives.

We have chosen these values ourselves, although ideally, multiple relevant actors
would have been a part of the decision process. Our chosen values are affected by
internal biases, but will however suffice to illustrate how such an evaluation should
be conducted. In this manner, false negatives lead to a significant escalation in costs
when compared to other outcomes.

Post-Processing Threshold Optimization

To better adapt our model’s predictions to the real-world costs of the established
classification errors, we’ve adopted a post-processing technique known as decision
threshold tuning. Instead of using the default threshold of 0.5, which treats false
positives and false negatives equally costly, we choose our threshold to minimize our

84 4. METHODOLOGY

classification cost CC . This optimization process involves iteratively evaluating the
cost metric for different thresholds, and then selecting the threshold that results in
the lowest cost.

We recognize that a more fitting alternative would be to integrate the cost metric
directly into the training process, through a method known as cost-sensitive learning.
While this approach could yield further improvements, we decided not to pursue this
approach due to the abstract nature of the relative cost values and the complexity
of such a scheme. However, we view cost-sensitive learning as a promising area for
future work.

4.7 Quantitative Analysis of Cross-Validation Trials

In addressing the fourth subgoal, which involved conducting quantitative experiments
for strategies where the literature was insufficient, we sought to employ a rigorous
cross-validation methodology. K-fold cross-validation is an evaluation technique
where the original dataset is divided into k subsets, called folds, of equal size. The
model is subsequently trained k times, each iteration altering the combination of folds
that compose the training and test sets. We performed k-fold cross-validation with
k=10 for the trials where statistical significance was a primary concern, demanding
a more rigid trial approach. With 10-fold cross-validation, we split the data into 10
smaller chunks referred to as folds. To account for the class imbalance, we utilized
a stratified approach to assert the same class imbalance in each split. With 10
performance measures for each classifier, we could then use statistical methods to
assert the significance of the potential gains. The cross-validation schemes employed
for each trial are visualized in subsections 4.7.1 and 4.7.2.

When comparing the performance of machine learning models, using traditional
t-tests is often not appropriate as they impose strict statistical assumptions, such
that the data is independent and identically distributed approximately according
to a normal distribution. While performance metrics such as the F1 score or ROC
AUC are indeed constrained within the range of 0 to 1, their distributions are often
skewed due to the properties of the underlying data, rather than these constraints.
Therefore, they typically do not satisfy the assumption of normality. Moreover, the
assumption of independence can be compromised when performance measures are
computed for various models using the same data folds, as this induces a dependence
between the evaluations. Therefore, we used the Wilcoxon signed-rank test16 instead.

16The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test commonly used
to assess whether there is a significant difference between the median of a paired sample and a
hypothesized value, or if the difference between two paired samples is significant.

4.7. QUANTITATIVE ANALYSIS OF CROSS-VALIDATION TRIALS 85

H0 : MD = 0
H1 : MD ̸= 0

(4.6)

While we anticipate a positive direction of difference, it’s possible that the
performance could decrease if the added features only introduce noise without
contributing predictive power. Therefore, given the uncertainty about the direction
of the expected effect, we used a conventional two-sided hypothesis test. This approach
is used when the prior hypothesis doesn’t strongly suggest a specific direction. The
hypotheses can be seen in equation 4.6 where MD is the median difference between
pairs of observations derived from performance metrics such as the F1 score or the
ROC AUC.

4.7.1 Trial for Evaluating Significance of Contextual Strategy

To compare NaiveBERT with ContextBERT, we trained each model with the same 9
folds and tested on the remaining fold a number of 10 times as outlined in Figure
4.10. We then got a distribution of performances that could assess the significance
using the hypothesis test as outlined.

Figure 4.10: Stratified 10-fold cross-validation scheme used for testing the perfor-
mance difference between NaiveBERT and ContextBERT. Class proportions are not
to scale.

To test the performance gain from ContextBERT to ContextBoost, we needed
the output of ContextBERT for each of the data points as a basis for computing the
meta-features. However, this introduced a potential problem with data leakage, where
ContextBERT performed inference on samples it had inadvertently been trained
on. We avoided this by storing the model’s predictions on the test set for each split.
These stored predictions were then used as part of the input for ContextBoost during

86 4. METHODOLOGY

its own cross-validation process. However, this scheme introduced a potential bias.
While mitigated to a certain extent by providing diverse training samples across folds
in the cross-validation process, the predictions from ContextBERT were inevitably
influenced by the specific subset of data used for training in each fold. Consequently,
these predictions could reflect the biases inherent to the particular training data used
in each fold. However, we found this trade-off necessary to avoid compromising the
data integrity in our experiments.

4.7.2 Trial for Evaluating Significance of Sampling Strategy

Upon delving into sequential fine-tuning, we found that the existing literature fell
short in terms of providing a comprehensive formulation and evaluation of sampling
methods for extracting suitable samples for fine-tuning the model post-deployment
for the hate speech management domain. As such, we found it necessary to develop a
cost-efficient and scalable sampling method for sequential fine-tuning of the detection
model. We wanted to test if using the uniqueness and classification complexity of the
instances to sample yields better results than sampling randomly. To compute proxies
for these properties, we needed a model which had been fine-tuned on instances of
the dataset already. To avoid data leakage, we used one of the folds in each split
to train the model initially, and then we could use the resulting model to perform
inference on 8 of the folds we’ve designated as the sample space. Each of the sampling
methods could then freely use the same sample space, and was set to draw 20% of
the data given some approach from this space for further fine-tuning. Afterward,
the sequentially fine-tuned model would be tested on the test data similarly to the
context trials. This scheme is visualized in Figure 4.11.

Figure 4.11: Stratified 10-fold cross-validation scheme used for testing the per-
formance difference between random sampling and the uniqueness and uncertainty
sampling heuristic. Class proportions are not to scale.

4.8. UNIFYING STRATEGIES IN A JOINT SYSTEM ARCHITECTURE 87

4.8 Unifying Strategies in a Joint System Architecture

Once the strategies to optimize the identified system properties had been established
after verification through both qualitative and quantitative evaluation, we faced a
new task. The next step, corresponding to the fifth subgoal, was to combine these
strategies effectively in a way that still allowed each system property to be optimized.
This necessitated taking into account the interdependencies between the different
strategies.

We employed the previously mentioned machine learning lifecycle definition by
Ashmore et al. [4] in order to categorize strategies. This involves determining the
specific stage of the lifecycle to which each strategy corresponds. It is important
to note that the formulated strategies do not exclusively belong to a single stage
but were assigned to the most suitable stage. By categorizing the strategies based
on the stage in the machine learning lifecycle where they are implemented, we were
able to define system components. In this process, we also made reference to our
literature review to identify the essential considerations required for the successful
implementation of each strategy within the overall architecture. This approach
allowed us to leverage existing knowledge and best practices, further enhancing the
effectiveness and robustness of the implemented strategies in the system architecture.

Ideally, we would have also been able to perform simulations to evaluate the
entire final system architecture. Unfortunately, with limited time, we only performed
theoretical analysis to evaluate the architecture developed. This theoretical analysis
is based on our initial literature review, as well as the quantitative experiments
conducted.

4.9 Limitations of Methodology

Although this thesis has identified several system properties for implementing a hate
speech management system on social media platforms, it is important to note that
there are other properties that have not been considered in this research. As social
media platforms and hate speech evolve, new properties may arise, and each platform
may prioritize different properties based on their specific needs and objectives. For
instance, some platforms may prioritize scalability and might choose to have fewer
human moderators, while others may prioritize accuracy and might choose to have
more human moderators. This calls for an iterative requirements engineering process
rather than the linear process we presented in our methodology.

Some limitations should be acknowledged regarding the methods that we have
used to create our dataset. First, it was limited to the English language. The
pre-trained language models have shown lower performance for other languages than

88 4. METHODOLOGY

English, and hate speech in one language might not be the same as hate speech in
another language. Additionally, there are cultural norms and rules attached to each
language. These factors could mean that the findings may not prove generalizable
to other languages. Secondly, the dataset used in this study was limited in size and
diversity. It is likely that some types of hate speech were underrepresented or not
included in the dataset. Furthermore, hate speech continues to evolve and adapt to
the measures put in place by social media platforms. A new form of hate speech
may require additional contextual information to classify accurately. It is also worth
acknowledging that we employed a dataset that we created ourselves. This dataset
was developed based on our own definition of hate speech, utilizing GPT-labeling with
in-context examples that we formulated and active labeling performed by ourselves as
annotators. Hence, it is important to acknowledge that this process carries the risk
of introducing our implicit biases into the dataset and consequently influencing the
outcomes of the quantitative experiments. Ideally, the definition of hate speech, the
GPT in-context examples, and the active labeling should have been collaboratively
crafted and executed by a group of individuals.

Another limitation is regarding the processing. As social media users become
more diverse, platforms may need to consider how their models perform across
different languages and cultural contexts. Additionally, our research only takes into
account textual posts and their corresponding contextual information. However, a
comprehensive hate speech management system could take into account multimodal
communication; social media posts can also consist of images and videos.

Our results show that the transformer-based language models that exist today
can be used to ensure performance, scalability, and cost-efficiency. However, it is
important to note that solely relying on the size, inference time and performance
of models may not necessarily yield the optimal strategy. As highlighted in our
literature review, research also emphasizes the significance of effectively training the
model. While XLNet and BERT may be the most cost-effective in terms of size and
performance, ELECTRA employs a more efficient training architecture. In all of our
presented strategies, we have made the assumption that the first round of training of
the model is already accounted for, which may not always be the case for a social
media platform.

Chapter5Results and Discussion

In this chapter, we will outline and discuss the strategies that we have identified,
grounded both in experimental findings and existing literature. We will then propose
the detection architecture of a hate speech management system that integrates these
strategies. Finally, we will consider the practical implications that arise from our
findings, the necessary preconditions for integrating the proposed architecture, as
well as the limitations of the results.

5.1 Specialized Strategies for Hate Speech Management

We will present the strategies in a structured manner, outlining each strategy
before evaluating its impact on relevant system properties. Figure 5.1 depicts the
mappings between the proposed strategies and the system properties they optimize.
The evaluations are based on theoretical analysis from our literature review and
the results from the quantitative methods described in the previous chapter. If
quantitative experiments were conducted to validate a strategy, we will present and
discuss the results.

5.1.1 Integration of Contextual Information in Detection Model

In the rigorous context experiment that we carried out, we found that the performance
of our baseline classifier as seen in Table 5.1 aligns well with what we have seen in the
existing literature. Furthermore, there is a minimal distinction in the performance
of the other developed classifiers. This is natural, considering there are often only
incremental advancements when approaching the optimal value. In situations where
the model does not account for noise, inherent flaws, or complexities in the data, this
is to be expected. In relation to the Digital Services Act, lowering the FNR could
lead to increased compliance with the regulatory restrictions related to removing hate
speech. Hence, even small improvements hold significance, reducing costs for social
media platforms. This is the case when including only textual contextual features in
the learning process as we now will present.

89

90 5. RESULTS AND DISCUSSION

Figure 5.1: Mapping between the proposed strategies and the system properties
they mainly affect.

The significance of the performance difference between NaiveBERT and Con-
textBERT, as well as between ContextBERT and ContextBoost, can be found in
Table 5.2. The comparison between NaiveBERT and ContextBERT reveals improve-
ments in the precision and the ROC AUC. However, the impact on the recall and
the F1 score remains inconclusive. Additionally, incorporating ContextBERT leads
to a reduction in cost. When moving from ContextBERT to ContextBoost, we see
a gain in the recall but also in the cost metric and reductions in the precision and
the F1 score. Due to the lack of significant evidence and the additional complexity
introduced by ContextBoost with the two-step architecture, our strategy will not
include the integration of numerical contextual features, but only the textual, con-
textual features. We leave finding a use for additional numerical contextual features
for future work.

We can visualize the performance gain of ContextBERT over NaiveBERT with
the ROC plot. From Figure 5.2, ContextBERT has significantly higher discrimination

5.1. SPECIALIZED STRATEGIES FOR HATE SPEECH MANAGEMENT 91

Split Precision Recall F1 ROC AUC CC

1 0.921 0.930 0.924 0.919 5.420
2 0.928 0.921 0.924 0.912 5.491
3 0.920 0.916 0.918 0.923 5.584
4 0.931 0.931 0.931 0.913 5.003
5 0.924 0.932 0.927 0.883 5.825
6 0.914 0.917 0.916 0.883 6.247
7 0.914 0.910 0.912 0.888 5.820
8 0.926 0.928 0.927 0.925 4.904
9 0.923 0.931 0.926 0.910 5.539
10 0.921 0.911 0.916 0.915 5.538

Mean ± SD 0.922 ± 0.005 0.923 ± 0.008 0.922 ± 0.006 0.907 ± 0.015 5.537 ± 0.390

(a) NaiveBERT

Split Precision Recall F1 ROC AUC CC

1 0.926 0.926 0.926 0.926 4.998
2 0.933 0.922 0.927 0.924 4.906
3 0.927 0.921 0.924 0.924 4.882
4 0.936 0.927 0.931 0.937 4.604
5 0.924 0.906 0.914 0.905 5.332
6 0.920 0.907 0.913 0.907 5.707
7 0.931 0.927 0.929 0.913 5.444
8 0.937 0.919 0.927 0.924 4.834
9 0.929 0.915 0.921 0.918 4.553
10 0.927 0.916 0.921 0.918 5.045

Mean ± SD 0.929 ± 0.006 0.918 ± 0.008 0.923 ± 0.007 0.921 ± 0.010 5.031 ± 0.366

(b) ContextBERT

Split Precision Recall F1 ROC AUC CC

1 0.920 0.926 0.923 0.930 4.881
2 0.906 0.924 0.896 0.916 4.483
3 0.914 0.927 0.905 0.914 5.022
4 0.916 0.930 0.914 0.927 4.558
5 0.914 0.926 0.917 0.891 5.098
6 0.899 0.914 0.904 0.907 5.449
7 0.928 0.922 0.886 0.907 4.952
8 0.918 0.930 0.909 0.924 4.670
9 0.922 0.931 0.910 0.929 4.975
10 0.916 0.925 0.919 0.921 4.881

Mean ± SD 0.915 ± 0.008 0.925 ± 0.005 0.908 ± 0.011 0.916 ± 0.012 4.897 ± 0.280

(c) ContextBoost

Table 5.1: Performance results of stratified 10-fold cross-validation trials for the
three classifiers. The bottom line for each model displays the mean and standard
deviation of the metrics.

power; the TPR is higher for every FPR value. Having an increasing TPR for every
FPR value indicates that ContextBERT is able to correctly identify more instances of
hate speech while maintaining a low FPR. In other words, ContextBERT effectively
distinguishes between hate speech and non-hate speech, correctly classifying hate
speech instances as positive while minimizing the misclassification of non-hate speech
instances as positive.

92 5. RESULTS AND DISCUSSION

Precision Recall F1 Score ROC AUC CC

ContextBERT - NaiveBERT
Median of paired differences 0.005 -0.005 0.001 0.012 -0.493
W-statistic 0 14 26 0 0
P-value <0.001∗ 0.193 0.922 <0.001∗ <0.001∗

ContextBoost - ContextBERT
Median of paired differences -0.015 0.006 -0.007 -0.007 -0.164
W-statistic 0 3 5 10 0
P-value 0.002∗ 0.021∗ 0.020∗ 0.084 0.105

∗ Statistically significant given α = 0.05

Table 5.2: Wilcoxon signed-rank tests for performance differences between the three
classifiers. Each comparison measures the performance of the first model relative to
the second. For the precision, recall, F1 Score, and ROC AUC, positive median
differences indicate higher scores for the second model, while negative differences
favor the first model. For the CC metric, which we aim to minimize, the opposite is
true: negative differences indicate better performance for the second model.

While we have seen significant performance gains by including certain contextual
features, it is hard to quantify the impact of this on an operational ground by reviewing
the classification metrics alone. Table 5.2 demonstrates that there is significance
in the reduction of the classification cost CC given the relative costs and threshold
optimization post-processing as described in subsection 4.6.6. Correspondingly, Table
5.1 outlines a 9.14% reduction of the mean classification cost (from 5.537 to 5.031),
which is a substantial amount. However, there is a trade-off between performance
and the inference cost. Following the quadrupling of the input size, we saw the mean
of the eval_samples_per_second metric, which represents the number of samples
the model can perform inference on per second, in the Trainer class decrease from
868 to 271. While these numbers should be interpreted cautiously due to their
dependency on hardware conditions and may lack rigorous generalizability, they serve
to illustrate the potential cost-performance trade-off that needs to be considered.
This 69% decrease could have serious financial consequences on an already strained
infrastructure of detection models. Figure 5.3 plots the classification cost over the
classification threshold for NaiveBERT and ContextBERT.

Using the optimized thresholds based on lowering the classification cost, we
plotted the resulting classification outcomes in confusion matrices to contextualize
the impact of the performance gain from NaiveBERT to ContextBERT and from
using a standardized classification threshold to a cost-optimized one. Figure 5.4
illustrates that the overall classification patterns changes for both models when
adopting a cost-optimized threshold. Both models experience reductions in the
false negative rate as expected since we have designated this as the most costly

5.1. SPECIALIZED STRATEGIES FOR HATE SPEECH MANAGEMENT 93

Figure 5.2: ROC curves for NaiveBERT and ContextBERT for the last cross-
validation split, displaying the relationship between the TPR and FPR across classi-
fication thresholds.

Figure 5.3: Classification costs given classification threshold for NaiveBERT and
ContextBERT for the last cross-validation split.

outcome. Nevertheless, it is apparent that this post-processing optimization comes
at a price; there has been a notable increase in the misclassification rate. This needs
to be countered by further review and verification, which is the current industry
practice as outlined in subsection 2.3.1, as such dramatic false positive rates would
lead to unjustified actions, jeopardizing legitimate users’ experience, and negatively

94 5. RESULTS AND DISCUSSION

impacting the credibility of the platform.

(a) NaiveBERT with standard classification
threshold

(b) ContextBERT with standard classifica-
tion threshold

(c) NaiveBERT with cost-optimized classifi-
cation threshold

(d) ContextBERT with cost-optimized clas-
sification threshold

Figure 5.4: Confusion matrices of aggregated classification outcomes with various
post-processing techniques for trials of contextual information.

In addition to the performance property, there is also a concern about transparency.
Incorporating contextual information will lead to an increase in the number of features,
which in turn would have a negative impact on the transparency of the detection
system. Transparency will be affected if the system fails to provide clear explanations
or insights into how the contextual information is used and weighted in the machine

5.1. SPECIALIZED STRATEGIES FOR HATE SPEECH MANAGEMENT 95

learning model. This can be achieved by conducting an analysis to determine the
importance and weighting of the features used in the model. This analysis should
involve techniques such as feature importance scores and sensitivity analysis that
provide insights into how each feature contributes to the model’s predictions [72].
This could in turn lead to higher interpretability and transparency.

5.1.2 Standardizing Input Format for Detection Model

Our literature review revealed adversarial attacks as a significant problem for hate
speech detection. Often, adversarial attacks in the context of hate speech detection
aim to maintain the post’s readability while letting the hateful speech of the post
go undetected by performing small alternations to the input text, as can be seen in
Table 3.4. One cost-effective approach to increase the model’s robustness to such
attacks is to preprocess in order to standardize the input text. Standardizing the
input through preprocessing involves making necessary modifications to the text,
ensuring uniformity. The applied modifications to the text will effectively undo
some of the alterations introduced by the adversarial attack. This enables us to
counter certain types of adversarial attacks and restore the integrity of the data. To
standardize the input, we implement the TSAR framework by Moh et al. [47]. The
framework consists of three preprocessing steps to account for three different types of
adversarial attacks that Moh et al. developed specifically for hate speech detection.
It’s important to note that individually, the attacks listed below will likely not bypass
the detection of hate speech when employing a state-of-the-art transformer-based
model. However, when combined, these attacks may potentially evade detection by
the model. These preprocessing steps are as follows:

1. Firstly, to account for the lexical attacks that exploit the removal of whitespaces
to evade the detection model, a mitigation approach involves segmenting
composite words into their smallest root forms. For a transformer-based model
such as BERT, removing whitespaces would alter the tokenization process,
leading to incorrect interpretation. Combined with the rest of the listed attacks,
the text might become unintelligible. By reverting this attack, we can better
preserve the original intent of the text [47].

2. The second essential preprocessing step involves considering intentional typo-
graphical errors. To undermine the model’s recognition of hate speech, an
adversary may rearrange the letters within a word. To mitigate this attack, a
dictionary lookup technique matches the unknown word with words containing
the same number of characters and total ASCII value. This dictionary may
include both widely recognized hateful words and negatively charged terms.
By employing this approach, the unknown word is substituted with the word

96 5. RESULTS AND DISCUSSION

that is deemed most probable to be the original word prior to rearranging its
letters.

3. Finally, to counteract the attack of injecting a word with an overwhelmingly
positive sentiment into the hateful post, it is necessary to analyze the post’s
grammatical sentence structure. Words that violate grammar rules and lack
negative sentiment are identified and removed as a precautionary measure.
This can be done through part-of-speech tagging and sentiment analysis [47].

Implementing the preprocessing steps of TSAR significantly decreases the likeli-
hood of these specific adversarial attacks by standardizing the input format. Em-
ploying preprocessing to enhance robustness against adversarial attacks offers the
advantage of reducing input size and thus lowering the cost of inference. However, it
is important to note that this approach introduces some additional latency due to
the inclusion of extra preprocessing steps.

While improving robustness against adversarial attacks, these measures may also
decrease the model’s accuracy on non-adversarial examples. This is because some
preprocessing defense techniques may also alter the clean examples and introduce
noise that affects the model’s accuracy [47]. For instance, there are cases where
the composite word carries a distinct meaning that is not simply a combination
of the separated root words. In such situations, applying this approach can lead
to unintended repercussions. Hence, the extent to which these techniques are
implemented must be appropriately adjusted.

5.1.3 Detection Triage Scheme

To have a high classification performance across all levels of complexity of a social
media post, one needs an annotation scheme that can consistently classify instances
with high complexity. Traditionally, human annotators have been utilized to ensure
the correctness of the detection outputted from the machine learning model. However,
such annotators have much higher costs and are less scalable. Therefore, there are
real incentives for reducing cost while introducing flexibility and scalability to the
detection module. We have analyzed annotation with BERT, GPT, and human
moderation in order to develop an optimal annotation strategy. It’s important to
note that BERT was employed as a demonstration to showcase the concept of a
lightweight language model. Therefore, our strategy encompasses a broader scope
and is not limited to the use of BERT alone. Similarly, we have employed a specific
GPT model to showcase the potential impact of utilizing such a model.

1Kernel Density Estimation is a non-parametric method for estimating a probability density
function by using kernels as weights.

5.1. SPECIALIZED STRATEGIES FOR HATE SPEECH MANAGEMENT 97

Figure 5.5: The F1 score of BERT, GPT, and experts (i.e., human moderators)
given BERT’s uncertainty score. The performance of BERT is estimated via cross-
validation on the entire dataset, while the GPT and expert performances stem
from the optimal configuration tests during relabeling. Each scheme’s performance
reflects resampled means across nine bins, with a 95% confidence interval per bin.
The prediction distribution is computed using a KDE1-weighted approach with a
bandwidth parameter of 0.05.

By exploiting the log-probability output of the BERT model, which acts as our
default detection model, we are capable of using the entropy as a reliable measure of
the model’s expected performance on a given instance. It demonstrates a predictable
correlation with BERT’s performance. In Figure 5.5, we can see the performances
of annotation with BERT, GPT, and human moderators given the entropy of the
BERT model. Intuitively, we can observe that the performance of BERT rapidly
degrades as the entropy of its predictions increase. While this is a cheap and scalable
way of detecting hate speech, it is seemingly not able to capture all the nuances in
more complex instances.

GPT models have the ability to process large volumes of text quickly and efficiently,
allowing for the automated analysis of a vast amount of data. By employing GPT,
both the time and cost associated with annotation will be significantly reduced.
We observe that the performance remains relatively stable until around the 70th
percentile and that it can process more intricate pieces of hate speech. However, the
transparency in the annotation process will be reduced when using a GPT-based
model. GPT models are considered black-box models, meaning their decision-making
process is not easily interpretable or explainable. To mitigate the transparency
challenges with GPT-based models, it is possible to instruct the GPT model to
append a reasoning for the classification, hence incorporating an important XAI
principle similar to the technique used by Hendricks et al. [29] as explained in the

98 5. RESULTS AND DISCUSSION

literature review. To implement this approach, the prompt given to the GPT model
should be modified to include specific instructions that guide the model to generate
a justification for the predicted label, ensuring transparency and explainability of
the model’s decision-making process.

The human experts consistently outperform other entities irrespective of the level
of uncertainty, but experts are expensive, and it’s hard to scale day-to-day. Human
moderators have limitations in terms of their capacity to review content manually.
They may be restricted by time, availability, and the sheer amount of data to analyze.
Scaling up a human moderation team to handle increasing volumes of content can
be challenging and costly. Consequently, relying solely on human moderators for
addressing the issue of hate speech annotation is not only expensive but also not
scalable in the event of a surge in its intensity.

Figure 5.6: Cumulative performance of an example 60-35-5 resource split for a data
annotation triage system. The cumulative performances of the individual labeling
schemes are also shown. BERT is utilized for the least uncertain 60% samples of
the data, GPT covers the 60th to 95th percentile, and experts are employed for the
remaining top 5% quantile. The contribution of the annotation method for each
quantile within the triage system is illustrated in the lower section.

These findings pave the way for the design of a triage system that uses a lightweight
language model as the default model for detection and facilitates further processing for
the more challenging cases. In the cases when the uncertainty reaches a certain level
that has empirically shown suboptimal performance, we can pass on the annotation
job to a more complex (and expensive) annotator. The choice between the GPT
model and human annotators would be made contingent upon the initial uncertainty

5.1. SPECIALIZED STRATEGIES FOR HATE SPEECH MANAGEMENT 99

level as identified by the lightweight language model and the optimal trade-off between
performance and cost as identified by the company.

The split between resources is customizable and would depend on aspects such
as the cost of the resources, the load on each of the resources, and the set trade-off
between cost and performance. A data annotation triage scheme is shown in Figure
5.6, where we can see that the cumulative performance would be comparable to solely
using GPT or experts for annotation, but with added automation and flexibility. In
this manner, the scalability of the annotation is substantially increased.

It is important to point out that the performance of our BERT model should
be regarded as a lower limit because our model only has been trained on a small
dataset. In a real setting, we would expect a lightweight language model such as
BERT to have significantly more comparable results with larger models, and that our
results using the specific BERT model should be merely treated as a proof of concept.
Consequently, such a triage system will be included in our detection architecture.

5.1.4 Continuous Sequential Fine-Tuning

From our literature review, we have gathered that continuous fine-tuning can ensure
consistent performance over time [32]. In the specific use case of hate speech detection,
where the rate of the linguistic shift occurring in online social media is high [30],
continuous fine-tuning is essential. However, instructing the model to be fine-tuned
is not the largest challenge; it is the supporting architecture that involves precise
validation and labeling that needs to be defined.

The process of continuous sequential fine-tuning commences with a pre-trained
model with the appropriate classification head, as described in subsection 2.5.3,
designed specifically for detecting hate speech. However, since the model’s knowledge
is based on a specific training dataset, it may struggle to accurately identify newly
emerging forms of hate speech or account for shifts in language usage. The process
of continuous sequential fine-tuning involves routinely adjusting the model with
recently labeled data which accurately represents the changing patterns of hate
speech. One of the key advantages of such a strategy is its ability to maintain the
existing knowledge of the model while incorporating new information. Rather than
discarding the previously learned patterns, continuous sequential fine-tuning leverages
them as a foundation, allowing the model to build upon its existing understanding
incrementally. Therefore, this strategy enables the model to adapt and maintain its
performance over time as the distribution of upstream data changes.

In regards to transparency, the use of fine-tuning can make the model more
complex and harder to interpret. This can make it more difficult to understand how
the system functions, and hence it will be harder to identify any potential sources

100 5. RESULTS AND DISCUSSION

of bias or error. Versioning and documentation of each fine-tuning cycle will make
the fine-tuning process auditable, as well as allow for a quick and easy rollback to a
previous version in the event of errors or issues arising in the latest version. This
will help administrators understand why the system may behave unexpectedly and
how to interpret the results, subsequently increasing transparency.

Ensuring the system’s adaptability by continuously updating the model with
regular fine-tuning would likely increase costs. The cost of the additional human
resources needed for human evaluation, the cost of collecting and labeling tweets,
and the cost of storing datasets may add up. However, the benefits of an adaptable
model may outweigh the added costs in the long run, as it can improve the model’s
accuracy and effectiveness in identifying novel hate speech while being robust against
adversarial attacks.

Parameter Coef Std. Err. t P>|t|

Intercept 0.6590 0.005 123.986 0.000
Instruction method 0.0367 0.011 3.259 0.047∗

Uncertainty threshold 0.1050 0.011 9.310 0.003∗

In-context examples -0.0089 0.004 -2.222 0.113
Instruction method : uncertainty threshold -0.0089 0.004 -2.222 0.113
Instruction method : in-context examples 0.0034 0.014 0.248 0.820
Uncertainty threshold : in-context examples -0.0176 0.014 -1.275 0.292

Dep. Variable: Utility R-squared: 0.990
Model: OLS Adj. R-squared: 0.973
Method: Least Squares F-statistic: 58.57
No. Observations: 9 Prob (F-statistic): 0.00344

∗ Statistically significant given α = 0.05

Table 5.3: Regression model summary of fractional factorial design trials. The
interaction terms between two parameters are denoted with a colon (:) in between.

Continuous fine-tuning inherently necessitates continuous labeling since it is a
supervised learning task. Depending on the frequency of fine-tuning, this can incur a
significant cost. To account for this, we want to use the knowledge we gained about
GPT-based annotation in section 4.5. This involves using a GPT-driven labeling
scheme similar to that outlined in the triage scheme in subsection 5.1.3, but without
a lightweight language model such as BERT as the default model as we need to avoid
feedback loops. The significance of the factors for the GPT-driven labeling scheme
on the utility metric as defined in equation 4.3 can be seen in Table 5.3. We can see
that both the instruction method and the uncertainty quantile threshold for active
labeling have a significant influence on the utility. To gain a deeper understanding of
the significance, we plotted the main effects of each factor in Figure 5.7. Here, it is

5.1. SPECIALIZED STRATEGIES FOR HATE SPEECH MANAGEMENT 101

Figure 5.7: Main effect of factors on utility with standard deviation of fractional
factorial design trials.

evident that the effect of the number of in-context examples remains inconclusive.
However, the active labeling scheme demonstrates a notably significant impact. This
suggests that employing GPT with active labeling for labeling during continuous
fine-tuning emerges as a cost-effective and competitive alternative to relying solely
on human annotators.

Figure 5.8: Cohen’s kappa between the original Founta et al. labels, where the
"abusive" class was assigned non-hateful, and the GPT scheme labels of our dataset.
Resampling was utilized to compute each value and its corresponding confidence
interval of the kappa values. The prediction distribution given the uncertainty score
is computed using KDE.

102 5. RESULTS AND DISCUSSION

To ground the performance of the labeling scheme, we compare it with the original
labels of the Founta et al. dataset using Cohen’s kappa2 metric. In data annotation,
Cohen’s Kappa is frequently employed to evaluate the agreement between different
annotators categorizing or labeling data. It’s preferred over conventional performance
metrics like the ROC AUC, as both sets of labels serve as the ground truth. In Figure
5.8, we plotted the agreement of the annotators given the uncertainty of the GPT
model. Identifying a trendline for the GPT model presents more of a challenge than
in the BERT model. This is largely due to the large confidence intervals associated
with the GPT model, which arise from its more sporadic entropy distribution, with
values typically further removed from both 0 and 1.

Furthermore, we notice a negative value indicating a level of disagreement that is
lower than what would be expected by chance. This occurrence is highly improbable
and is likely attributed to the aforementioned noise. Nevertheless, we can still observe
that the agreement is likely highest when the uncertainty of the GPT model is low.
Considering the significance of the previously discussed active labeling scheme tests,
it becomes evident that both the GPT and BERT models possess the capability
to distinguish instances based on their complexity, a measure determined by the
degree of difficulty the model encounters when trying to predict the correct label.
This demonstrates the concept that the uncertainty of the GPT model, in a similar
fashion to the uncertainty of the BERT model, can be effectively utilized as a basis
for determining whether further review by a human is warranted.

It is important to note that implementing such a strategy carries the risk of
introducing positive feedback loops. The human evaluators may have their own
biases or misunderstandings of what constitutes hate speech, which could result in
incorrect labels. This could then feed back into the system and potentially reinforce
the biases or errors in the model, resulting in even less accurate predictions. We can
reduce the probability of such occurrences by using multiple evaluators for each label
in combination with the above-mentioned GPT-based active labeling scheme.

5.1.5 Enhanced Sampling Heuristic of Uniqueness and
Uncertainty

In implementing a fine-tuning strategy, the existing literature strongly emphasized
the importance of developing a sampling strategy that takes both the uniqueness
and uncertainty into account [103]. A quantifiable uniqueness metric is the cosine
similarity of the input data compared to earlier processed data. By leveraging the
embeddings from a lightweight language model like the base layers of BERT, which

2Cohen’s Kappa is a statistical coefficient that measures the level of inter-rater reliability or the
degree of agreement between two raters, while taking into account the probability of agreement
occurring by chance.

5.1. SPECIALIZED STRATEGIES FOR HATE SPEECH MANAGEMENT 103

is a high-dimensional vector representation of the input text, we can estimate the
uniqueness of the input data in relation to what it has already been trained on.
This is done by computing the high-dimensional centroid3 for each class (hateful or
non-hateful) for the small-scale set of samples the model had already been trained
on. However, the output size of BERT base layer embeddings is 768, which could
pose computational and practical challenges due to the curse of dimensionality4.
To mitigate these issues and increase computational efficiency, we apply Principal
Component Analysis (PCA) to reduce the dimensionality of the embeddings. With
this technique, we reduce the dimensionality to 50, determined by selecting the point
using the elbow heuristic5, where adding further dimensions resulted in a significantly
smaller increase in the explained variance.

With both the cluster and the embeddings of each instance reduced, we compute
the cosine similarity to the nearest cluster of each embedding, normalized to [0,1]
instead of [-1, 1]. The classification complexity was represented using the uncertainty
of the model, through computing the entropy as we have done earlier. The combined
metric is then the weighted sum of the two metrics. This workflow can be seen in
Figure 5.9.

Figure 5.9: Sampling heuristic workflow for computing the combined uniqueness
and uncertainty metric.

The evaluations of the cross-validation sampling trials using this sampling scheme
are presented in Table 5.4. In this case, we can observe reduced generalizability
across all metrics when comparing the model’s performance on the test set to the
context trials presented in Table 5.2. This outcome is anticipated since the model
was trained on a significantly smaller dataset for each split. Instead, we are interested

3A clustering centroid is a central point computed by taking the mean in each dimension within
a group of data points.

4The curse of dimensionality is when distances between data points lose their informativeness
or discriminatory power in high-dimensional data due to diminishing differences.

5In PCA, the elbow heuristic identifies the optimal number of components by analyzing the
plot of cumulative explained variance. It pinpoints the point where the variance explained starts
diminishing.

104 5. RESULTS AND DISCUSSION

in the performance gain by moving from random sampling to our heuristic sampling
method. We see improvements in all metrics except for the precision.

Split Precision Recall F1 ROC AUC CC

1 0.894 0.863 0.877 0.781 7.271
2 0.897 0.838 0.862 0.766 6.896
3 0.902 0.864 0.880 0.844 6.170
4 0.884 0.815 0.848 0.814 6.974
5 0.893 0.852 0.869 0.744 7.302
6 0.890 0.828 0.854 0.725 7.584
7 0.899 0.800 0.838 0.795 7.180
8 0.906 0.816 0.850 0.825 6.899
9 0.912 0.837 0.865 0.827 6.162
10 0.911 0.820 0.853 0.835 6.242

Mean ± SD 0.899 ± 0.009 0.833 ± 0.022 0.860 ± 0.013 0.795 ± 0.040 6.869 ± 0.510

(a) Random Sampling

Split Precision Recall F1 ROC AUC CC

1 0.893 0.867 0.879 0.796 7.131
2 0.891 0.848 0.867 0.772 6.709
3 0.906 0.855 0.875 0.866 6.311
4 0.884 0.862 0.872 0.819 6.857
5 0.888 0.869 0.878 0.752 7.162
6 0.881 0.881 0.881 0.736 7.560
7 0.887 0.874 0.880 0.806 6.852
8 0.895 0.838 0.862 0.832 6.612
9 0.909 0.877 0.890 0.834 6.031
10 0.916 0.895 0.904 0.852 5.890

Mean ± SD 0.895 ± 0.011 0.867 ± 0.016 0.879 ± 0.012 0.806 ± 0.043 6.712 ± 0.521

(b) Uniqueness and uncertainty heuristic sampling

Table 5.4: Cross-validation results of random sampling and sampling heuristic of
uniqueness and uncertainty. The NaiveBERT model was used for both cases.

The significance of the findings is presented in Table 5.5. We see significance
in all the metrics, which shows improvement moving from random sampling to the
sampling heuristic, and non-significance in the decrease in the precision. Sampling
with uniqueness and uncertainty leads to statistically significant improvements in
the recall, F1 score, ROC AUC, and our classification cost. Hence, we regard such a
sampling strategy as viable in regard to performance. Using such a sampling scheme
for their lightweight detection model, a social media company might enhance the
chances of refining the model with hate speech data while making the sequential
fine-tuning process more cost-effective by minimizing the possibility of repeating the
same refinements unnecessarily.

However, we would need to make a small trade-off; a degree of randomness must
be maintained to ensure a distribution representative of actual data [99] [62]. We did
not include randomness in the trials because it might dilute the observed effects of
the sampling strategy. In some cases, the model may exhibit confidence in instances
it perceives as having low complexity. If we solely rely on this sampling scheme,
the model would never be trained on such samples. This would be particularly
problematic for the model’s adaptability, as it would struggle to handle new linguistic

5.1. SPECIALIZED STRATEGIES FOR HATE SPEECH MANAGEMENT 105

Precision Recall F1 Score ROC AUC CC

Heuristic - Random
Median of Paired Differences -0.004 0.031 0.018 0.010 -0.141
W-statistic 10 3 3 0 3
P-value 0.084 0.010∗ 0.010∗ 0.002∗ 0.010∗

∗ Statistically significant given α = 0.05

Table 5.5: Hypothesis test of the performance of the sampling strategy. The
comparison measures the performance of the sampling heuristic relative to random
sampling. For the precision, recall, F1 Score, and ROC AUC, positive median
differences indicate higher scores for the sampling heuristic, while negative
differences favor random sampling. For the CC metric, which we aim to minimize,
the opposite is true: negative differences indicate better performance for random
sampling.

expressions that emerge over time. The sampling method could then miss out on
instances crucial for updating the model, as it may not comprehend the nuances
of previously unseen hate speech. Therefore, it is crucial that this heuristic is not
treated as an absolute. Instead of relying solely on our heuristic for sampling, our
approach aims to increase the likelihood of sampling based on the heuristic while
still maintaining a certain level of randomness.

5.1.6 Advancing Robustness During Fine-Tuning

Including adversarial examples in the fine-tuning can increase the robustness against
adversarial attacks. This involves continuous research into the latest adversarial
attacks and techniques. Once identified, we can generate samples of those attacks
and add them to the fine-tuning batches. During training, the model will learn to
recognize and defend against those specific attacks. To ensure that the model is
continuously updated to defend against the latest adversarial attacks, we need to
regularly review and add new samples of attacks as they arise to the fine-tuning batch.
This will involve ongoing monitoring of the model’s performance and identifying any
weaknesses or vulnerabilities that need to be addressed.

However, including adversarial examples during model fine-tuning may also
increase the cost, as this requires continuous research into the latest adversarial
attacks and techniques. Another aspect to consider is the potential impact on
model performance and generalization when including adversarial examples in the
fine-tuning process. Continuous monitoring and evaluation can help identify any
degradation in performance on non-adversarial inputs and guide adjustments in the
training methodology to ensure a balance between robustness and generalization.

106 5. RESULTS AND DISCUSSION

5.1.7 Persistent Monitoring With Explainable AI

After deploying the model an important strategy is regularly scheduled monitor-
ing. The monitoring should include regularly scheduled data analysis. This can
be achieved through the use of XAI techniques, such as the feature importance
techniques described earlier 3.6.3, which provide insights into how the model works
and why it makes certain predictions. These techniques can help identify areas that
need improvement. For example, if certain metadata features consistently lead to
misclassifications, the model can be fine-tuned to better handle those features. It can
also help identify potential sources of bias in the model’s decision-making process,
allowing for targeted interventions to address those biases. In analyzing the data
it is important to involve diverse stakeholders, including individuals from underrep-
resented or marginalized communities who may be disproportionately affected by
hate speech. This can help ensure that the system takes into account a range of
perspectives and is developed in a way that is fair and equitable.

Using XAI for monitoring improves auditability and transparency. By regularly
analyzing data, organizations can create documentation that tracks changes in
upstream and downstream data, as indicated in the literature review 3.6.4. This
ensures a clear record of modifications and enables easy traceability of those changes.
This is especially important for evolving systems as it enables organizations to
maintain a comprehensive understanding of how the system has evolved over time.
By leveraging XAI for monitoring, organizations can gain valuable insights into
the decision-making processes of their models and ensure accountability in their
operations.

5.2 Implementations of Strategies for Unified System
Architecture

With our domain-specific strategies defined, we will now unify these into one system
architecture using the methodology outlined in section 4.8. Our system architecture
builds upon the initial depiction of a hate speech management system presented
in Figure 2.3 from the background chapter. Based upon this initial illustration,
we define the detection approach, the preprocessing and post-processing parts, and
extend the support architecture encompassing monitoring and the essential modules
necessary for continuously fine-tuning the lightweight detection model.

Figure 5.10 illustrates the stages of the machine learning lifecycle in conjunction
with the proposed strategies. This categorization enables us to define the system
components of the detection architecture more effectively. The strategies of the data
management stage constitute the preprocessing component which receives an input
data stream and thereby is the first system component in the detecting architecture

5.2. IMPLEMENTATIONS OF STRATEGIES FOR UNIFIED SYSTEM
ARCHITECTURE 107

Figure 5.10: Proposed strategies integrated into the machine learning lifecycle
defined by Ashmore et al. [4]., thereby illustrating the system components of the
final architecture.

of a hate speech management system. Similarly, the model learning and deployment
stages form the support architecture designed to accommodate the evolving language
model. Finally, the model verification stage generates the labeled data stream that
feeds into subsequent stages of the hate speech management system, such as an
action center, and therefore is the last system component of the architecture. With
this categorization of the established strategies, we can observe that the architecture
forms an iterative process, in which the system continuously adapts.

Following the establishment of the system components, we utilized relevant
findings from our literature review to increase the validity and reliability of the com-
ponents when combining them into one architecture. This led us to identify various
considerations and adaptions that were necessary in order to unify the strategies
into one architecture. This section will first outline these necessary considerations
and adaptions before presenting the final detection architecture. While we have
incorporated relevant literature to support our findings, it is essential to validate and
enhance the proposed detection architecture through quantitative experimentation,
including validation and reliability testing. We acknowledge that this aspect requires
further attention and investigation in future work.

5.2.1 Preprocessing

In the first step of our detection architecture, we preprocess the incoming data
stream. In our case of using Twitter as the data source, this consists of Tweets but
could be adapted to any type of data stream objects. Then, we need to extract the
necessary features that show predictive power. These features should constantly
be adapted to the changing nature of online communication in an ongoing feature
engineering process. From what we have tested and observed in subsection 5.1.1
regarding the contextual information strategy, contextual features should be extracted

108 5. RESULTS AND DISCUSSION

here. With the features extracted, we need to defend against specific adversarial
attacks using the TSAR framework as outlined in the strategy in section 5.1.2 by
standardizing the features that can be influenced by users such as the tweet body.
With these features standardized, we need to anonymize in accordance with GDPR as
outlined in the literature review 3.6.1. This does not necessarily imply the complete
removal of sensitive information; rather, it necessitates transparent treatment of the
data with the explicit consent of the users involved. Lastly, we carry out essential
data transformations, such as tokenization, which are imperative for the data to be
processed by the lightweight detection model. These transformations pave the way
for subsequent feature extraction and processing within the detection model.

5.2.2 Implementation of Triage Scheme

As stated in subsection 5.1.3, the triage scheme strategy combines the use of a
lightweight language model, an instruction-based GPT model, and human moderators
on the basis of the uncertainty level of the lightweight language model. We use
this to assess whether to employ GPT or human moderators for further review,
strategically utilizing a GPT model when suitable, and relying on human moderators
when required.

To implement the triage scheme, we utilize a prioritizer to assign priorities to
the instances based on some prioritization parameters (such as the cost of each
predictive outcome, e.g., classification costs), the predicted class, and the prediction
uncertainty of the lightweight language model. Then, a routing module will decide
what happens next to the sample based on the system state and the sample’s
priority. The system state variable is determined by continuously monitoring factors
such as the intensity of incoming data and the availability of human moderators,
which can be quantified through a queue occupancy metric. This allows for a
dynamic distribution of the output samples generated by the lightweight language
model. Consequently, this approach facilitates the redirection of samples with high
prediction uncertainties to human moderators. If the queue of samples awaiting
human moderation surpasses a predefined threshold or if the prediction uncertainty
falls within specific thresholds, samples may be directed toward GPT-based labeling.
Likewise, samples with prediction uncertainties below a certain threshold can be
directly forwarded to the subsequent stage of the hate speech management system,
such as an action center. Additionally, by incorporating prioritization parameters
and the predicted class as parameters in the routing of the outputted samples from
the language model, the routing of the samples become even more customizable.
For instance, a system could opt to exclusively route positive samples to human
moderation or prioritize samples with high classification costs. By incorporating a
routing strategy that considers all these parameters, the system achieves enhanced
scalability while still preserving adequate performance and transparency through

5.2. IMPLEMENTATIONS OF STRATEGIES FOR UNIFIED SYSTEM
ARCHITECTURE 109

human moderation.

Figure 5.11: Implementation of adaptive triage scheme

Figure 5.11 illustrates the potential appearance of the described scheme. The
lightweight language model generates the predicted class and its corresponding
uncertainty. This information, along with a set of prioritization parameters, is
utilized to assign a priority to the sample. The assigned priority then determines
whether the sample should undergo GPT review, human moderator review, or no
review at all. Additionally, the system state, including factors like the queue size for
samples awaiting human moderator review, may influence the routing process.

5.2.3 Monitoring-Governed Fine-Tuning Triggers

The sampling rate of the sampling strategy should be determined by considering the
available resources and the rate at which posts are generated. To achieve the most
cost-effective scheduling of fine-tuning, the trigger for fine-tuning should be both
performance-based and based on changes in the distribution. When the performance
of the model falls below a designated threshold, it will trigger the fine-tuning pipeline
automatically. One way to detect whether the model has become outdated is by
monitoring the distribution of the data in production through upstream data analysis.
Hence, there is an inter-dependency between the sampling strategy and the monitoring
strategy using XAI. This analysis involves examining the characteristics of the input
data, such as the frequency of different types of hate speech and language patterns.
Then using anomaly detection techniques or statistical methods, such as tracking
the mean or variance of specific features, we can detect substantial changes in the
data distribution. Both triggers require the establishment of thresholds, which must
be determined by considering the resources at hand.

However, it is also important to ensure that the interval between each fine-tuning
session is long enough to allow for a large enough batch to culminate each time, hence
a minimum interval time should be upheld in addition to the triggers. Subsequently, it

110 5. RESULTS AND DISCUSSION

is necessary to take into account the available computational resources for fine-tuning
as well as the time required to accumulate a sufficiently large batch of data. Similarly,
to account for the possibility of one of the triggers for fine-tuning being met after a
significant duration, it is crucial to implement measures that prevent the fine-tuning
batch from growing excessively. One approach is to set a maximum size for the batch,
whereupon reaching this threshold, the oldest samples are replaced with newer ones.
By employing this approach, the batch will consistently remain up-to-date, even if
the triggers for fine-tuning are not met for an extended period.

5.2.4 Real-Time Stream Sampling

We apply the sampling strategy outlined in subsection 5.1.5 through a real-time data
sampling module. This module effectively captures and processes every instance
flowing through the data stream in the detection model. The sampling process
leverages the detection model’s uncertainty and the uniqueness calculated from the
base layer embeddings of each tweet. To mitigate biases introduced by the sampling
heuristic for a proper evaluation of the performance, we use a separate sampling
stream that samples the tweets completely at random. The resulting two sample
streams could then be labeled using the active labeling scheme with GPT and human
experts as outlined in the sequential fine-tuning strategy in subsection 5.1.5. This
functionality is illustrated in Figure 5.12.

Figure 5.12: Real-time sampling streams for sequential fine-tuning and performance
evaluation.

5.2.5 Validation of Fine-Tuned Models

After each fine-tuning of a model, the model needs to be evaluated in terms of
properties such as performance and transparency before replacing the previous model.
Hence, the batch of samples obtained after the proposed sampling strategy will have
to be split into a training set and a test set. The test set will be used for evaluating
the performance of the fine-tuned model. If the performance shows a statistically
significant improvement compared to the previous model, deploy the newly fine-tuned
version. If it does not meet the criteria, continue using the previous version of the
model.

5.3. IMPLICATIONS FOR INDUSTRY 111

It is important to acknowledge that even if the fine-tuned model demonstrates
improved performance metrics compared to the previous model on the current test
set, it does not automatically imply that the fine-tuned model would have exhibited
better performance metrics when tested on previous test sets. This difference in
performance is what separates the two properties, performance, and adaptability. To
ensure that the continuously evolving model does not deviate significantly from the
initial model (i.e., the model before any fine-tuning), it is advantageous to conduct
regular performance testing using the designated baseline dataset mentioned earlier.
This approach helps prevent the system from overfitting on a specific type of speech,
as well as ensures that the system is still able to detect previously hate speech it has
been previously trained on.

The newly fine-tuned model should also be evaluated in terms of transparency.
This entails an examination of the batch it has been fine-tuned and the subsequent
documentation of relevant information regarding the data of the batch. To ensure an
accurate representation of the data that the model has been trained and sequentially
fine-tuned on, the designated baseline dataset should consist of an extract from the
original training set that is regularly updated with additional samples, in order to
maintain a fair representation of the real-world distribution as suggested by Sato et al.
[66]. To avoid excessive growth, a maximum size for the benchmark dataset should
be defined. When this maximum size is reached, the addition of new samples should
replace the oldest additional samples in the dataset. The extract of the original
training set should constitute the largest portion and should remain unchanged. In
this manner, both the performance testing and the comparison with incoming tweets
to retrieve unique tweets will be kept up-to-date.

An illustration of the detection architecture can be seen in Figure 5.13. Here, the
data flow is represented by red arrows in which incoming data is inputted into the
preprocessing module while the final labels are produced from the triage scheme.

5.3 Implications for Industry

The practical implications of this thesis are beneficial for social media companies
that seek to implement an effective hate speech management system. By identifying
system properties and proposing strategies to optimize them, this thesis offers research
and insights into the field of hate speech detection, serving as a guiding resource for
companies in the development and deployment of a hate speech management system.
Moreover, the strategies and system architecture proposed in this thesis provide
a generalizable framework that can assist social media companies in developing
and implementing an effective hate speech management system. The presented
architecture serves as a solid foundation for the detection architecture of a hate

112 5. RESULTS AND DISCUSSION

Figure 5.13: Proposed detection architecture for hate speech management system,
implementing the established strategies. The on-line flow of data is displayed in red.

5.4. LIMITATIONS OF RESULTS 113

speech management system, allowing for flexible integration of strategies that can be
easily added or removed as needed.

After conducting the literature review, it is evident that the field of hate speech
detection is constantly and rapidly evolving. Therefore, it is crucial for a social media
platform to keep up with the latest advances in the field. It is worth noting that
while the presented strategies are specific, they can be customized and are merely
suggestions as to what a social media company should focus on. In this manner,
the strategies are intended to serve as exploratory suggestions of how a social media
company can approach the problem of hate speech on their platform, rather than
strict rules. Hence, they should be regarded as flexible guidelines that can be adjusted
and tailored to meet the unique challenges and requirements of each platform.

Before deploying the proposed architecture, thorough testing and simulation of
the proposed strategies and the architecture as a whole must be conducted. As our
proposed architecture is generalizable, we have not defined any specific thresholds
or other values necessary to implement the detection architecture. This involves
various tasks, such as developing the prioritizer within the triage scheme to allocate
priorities according to a specific routing strategy, establishing an optimal sampling
rate for the sampling strategy, and defining thresholds for performance-based and
distribution-based triggers, among others. Before implementing the architecture,
system requirements must be therefore be specified in order to define necessary
thresholds and values. Once these thresholds and values have been established, the
detection architecture can be integrated into the overarching hate speech management
system. Within this system, further considerations need to be made, including
determining the approach for data extraction and transfer of this data to the detection
architecture, as well as defining the appropriate actions to be taken based on the
labeled output.

5.4 Limitations of Results

While the results were promising, they came with a set of limitations inherent to the
exploratory nature of our research design. First of all, we did not implement and
test all of the proposed strategies in the final system architecture as this was not
the scope of our work. Despite the system architecture’s basis in previous research
and available documentation, it is possible that actual implementation may reveal
additional issues or interdependencies that have not been considered. Therefore,
it is crucial to note that the strategies presented are only suggestions and serve
as an example of how a hate speech management system should consider factors
beyond mere hate speech detection. Future research will need to address the actual
implementation of the proposed system architecture.

114 5. RESULTS AND DISCUSSION

While our quantitative experiments yielded significant results, it is important
to question the validity of these findings given the nature of our dataset. First,
our dataset is relatively small in size, which may limit the generalizability of our
conclusions. Furthermore, the ratio between hateful speech and non-hateful speech
in our dataset may not accurately reflect the distribution observed on popular social
media platforms. If the prevalence of hate speech on social media platforms is
considerably lower than what is represented in our dataset, our strategies could have
a lesser impact.

We did not find any significant predictive power in the numerical features when
used as the only input features, and not surprisingly, neither when added to the
BERT output. This might be a problem regarding the quality of the numerical
features that we had access to. As the performance with the language model alone
was pretty high, there is not a lot of room for improvement. For numerical features
to impact predictive power, we would have had to find features that would provide
guidance in the cases where the model is unsure from the textual input alone. A
model with user profiling might have had other results as one might find interesting
correlations with earlier behavior of the same user.

While we had chosen BERT based on the relevant literature, it is important to
note that the results obtained from the various quantitative experiments may vary
when using a different model. To ensure consistency, the same experiments should
be performed using the different language models presented in the comparison of
models from our literature review in subsection 3.2.2. Generally, more quantitative
experiments are needed to ensure the validity of our results.

When implementing the described system there is also the decision of actions
to take when hate speech is detected, which we have only briefly touched upon.
Freedom of speech is a fundamental right, and social media platforms should ensure
that their policies and hate speech management systems do not unduly restrict free
expression. Therefore, it is essential to strike a balance between protecting users
from hate speech and ensuring that the policies and systems do not infringe upon
free speech. Our results did not account for this as of now.

Chapter6Conclusion

This chapter will serve as the concluding section of the thesis, offering an overview
of the key findings. It will also align the research questions with the corresponding
answers derived from the results, and discuss the significance of our results for society.
Lastly, potential avenues for future work will be discussed.

6.1 Summary of Thesis

The primary aim of this thesis was to investigate a practical machine learning
approach for managing hate speech on social media platforms, specifically focusing on
the impact of integrating contextual information and optimizing system properties.
This essentially entailed the development of a detection architecture for a hate speech
management system. To fulfill this aim, we posed the following research questions:

What are the strategies that optimize system properties of a hate speech manage-
ment system, with particular attention to the incorporation of contextual information
as a potential strategy?

What is a system architecture that integrates strategies optimizing system proper-
ties, while ensuring that all properties are still optimized to the same degree?

By addressing these research questions, this thesis aimed to analyze strategies
that optimized system properties of the detection architecture of a hate speech
management system. We then proposed a detection architecture that unified the
developed strategies into one architecture. The ultimate goal was to contribute to
the ongoing efforts to create a safer and more inclusive online environment, where
users can express themselves without fear of harassment or discrimination.

115

116 6. CONCLUSION

Addressing the 1st Research Question

In addressing the first research question, we first identified relevant system properties
and then formulated strategies that optimized them. In doing so we began by
identifying multiple relevant strategies from our initial literature review. Subsequently,
we thoroughly evaluated these strategies through qualitative and quantitative methods
to ascertain their viability for integration into the final system architecture. By
employing this methodology, a set of strategies was generated, which were deemed
viable through a combination of relevant literature and quantitative experiments.

Addressing the 2nd Research Question

To address the second research question, we employed the strategies formulated
and categorized them according to the machine learning lifecycle definition by
Ashmore et al. [4]. Additionally, we consulted relevant literature to ensure the
compatibility of these strategies within the same system, while still optimizing the
desired system properties. This involved addressing specific edge cases that required
careful consideration. Furthermore, we developed an illustration of the system
architecture incorporating the formulated strategies.

6.2 Main Contributions

This thesis contributes to the applied machine learning field for hate speech man-
agement on social media platforms by focusing on the integration of contextual
information and the optimization of system properties. The key contributions are:

– Identification and formulation of strategies: This research introduces
unique strategies derived from a comprehensive literature review. These strate-
gies tackle critical system properties for effective hate speech detection and
management, such as the standardization of input, adversarial examples, and
persistent monitoring using XAI techniques.

– A novel approach to data labeling: The developed strategy for cost-
effectively labeling hate speech data using a GPT model and active labeling
provides a practical solution that maintains high accuracy while reducing costs.

– Validation of contextual information importance: The work validates the
critical role of contextual information in hate speech detection, demonstrating
improved performance of a BERT model when textual contextual information
is incorporated.

– Innovation in fine-tuning process: The thesis introduces a novel sampling
strategy for fine-tuning a BERT model, which prioritizes unique samples

6.3. SIGNIFICANCE FOR SOCIETY 117

and instances with high uncertainty. This approach significantly outperforms
traditional random sampling methods.

– Triage scheme proposal: A dynamic triage scheme is proposed that routes
classifications made by the lightweight language model to a GPT model, human
moderation, or immediate action. This scheme optimizes resource allocation
and improves the system’s overall efficiency.

– Integrated detection architecture: The proposed strategies are integrated
into a system architecture following a machine learning deployment workflow
definition. The architecture considers implementation aspects to ensure that
the strategies coexist effectively, providing a comprehensive blueprint for social
media companies to adapt and employ.

Through these contributions, the thesis provides a concrete and generalizable
framework for managing hate speech on social media platforms, advancing the field
and offering practical tools for companies and researchers alike. More details about
these contributions can be found in the respective chapters.

6.3 Significance for Society

Proposing research that aids in developing a hate speech management system for
social media platforms holds significance for society. Implementing such a system
promotes a safer and more inclusive digital environment. By actively detecting
and mitigating instances of hate speech, the system contributes to creating a more
welcoming space for diverse perspectives and encourages respectful dialogue.

Furthermore, the management of hate speech helps protect vulnerable communities
from harm. Online platforms have become breeding grounds for harassment and
targeted abuse, which can have severe psychological, emotional, and even physical
consequences. By swiftly identifying and addressing hate speech, the system reduces
the risk of harm and supports the well-being of individuals who may otherwise be
subject to discrimination, threats, or harassment.

6.4 Future Work

Although the proposed system architecture draws upon literature findings and results
from quantitative experiments of specific strategies within the architecture, it is
important to note that the architecture as a whole has not undergone quantitative
experimentation. Therefore, future work should focus on implementing and evaluating
the proposed system architecture to validate its functionality as intended. In doing
this, a simulation environment is needed in which posts can be generated continuously

118 6. CONCLUSION

and fed to the system. The simulation time should be long enough to ensure a realistic
depiction of how the incoming distribution changes over time. In this manner, we
can verify the adaptable nature of the system. Furthermore, it is crucial to employ
an appropriate number of human moderators for both the GPT labeling of the
fine-tuning batches and the triage scheme.

Given the limitations of our dataset in terms of size and content, it is recommended
that future work replicate the experiments using a larger dataset. This would provide
a more robust and comprehensive analysis of the proposed methods. There are
several approaches to creating a comprehensive dataset. It is crucial to collect data
over an adequate period of time and ensure a reliable and unbiased labeling process.
In this manner, exploring the potential of GPT labeling can be a valuable avenue
for further investigation. Additionally, the reliability of machine-generated datasets
could also be further researched to uncover their full potential and implications.

Another intriguing aspect to explore is the fine-tuning of both XLNet and ELEC-
TRA models for hate speech detection. Although these models were identified as
suitable candidates for a hate speech management system, we were unable to obtain
a pre-trained model specifically fine-tuned for hate speech. It would be valuable
to investigate whether the results differ when utilizing another model for this pur-
pose. The model’s pre-training objectives and architectures might vary, leading to
differences in how they learn and represent language, potentially influencing their
effectiveness in hate speech detection.

Lastly, our strategies have based a wide range of decision-making on aspects such
as entropy, as a proxy for uncertainty, and cosine similarity to centroids, as a measure
of uniqueness. While these metrics have proven to work for our experiments, future
research should consider exploring these further. Instead of manually computing the
entropy from the output post-analysis, machine learning architectures that inherently
incorporate these should be explored. Similarly, a more comprehensive exploration
of uniqueness is warranted to fully understand the benefits and applications.

6.5 Closing Remarks

In conclusion, our Master’s thesis presents strategies for the detection architecture of
a hate speech management system, aimed at addressing the pervasive issue of online
hate speech on social media platforms. Through extensive research, analysis, and
the formulation of innovative strategies, we have provided a solid foundation for a
proactive and effective approach to combating hate speech on social media platforms.

While our work lays the groundwork for a realistic hate speech management
system, it is important to recognize that the fight against hate speech is an ongoing

6.5. CLOSING REMARKS 119

and ever-evolving battle. As technology advances and societal dynamics shift, it will
be crucial to adapt and improve our methods and strategies continually. Successfully
implementing the proposed system architecture requires collaboration and cooper-
ation among various stakeholders, including social media platforms, policymakers,
researchers, and users.

As we conclude this thesis, we hope that our research inspires further explo-
ration, innovation, and practical applications in the field of hate speech management.
Through continuous efforts, we can work towards a future where social media plat-
forms not only amplify voices but also actively promote respect, empathy, and
understanding, fostering a society that embraces diversity and rejects hate in all its
forms.

References

[1] Sweta Agrawal and Amit Awekar. «Deep Learning for Detecting Cyberbullying
Across Multiple Social Media Platforms». In: CoRR abs/1801.06482 (2018). url:
http://arxiv.org/abs/1801.06482.

[2] Aymé Arango, Jorge Pérez, and Barbara Poblete. «Hate Speech Detection is Not as
Easy as You May Think: A Closer Look at Model Validation». In: Proceedings of
the 42nd International ACM SIGIR Conference on Research and Development in In-
formation Retrieval. SIGIR’19. Paris, France: Association for Computing Machinery,
2019, pp. 45–54. url: https://doi.org/10.1145/3331184.3331262.

[3] Sylvain Arlot and Alain Celisse. «A survey of cross-validation procedures for model
selection». In: Statistics Surveys 4.none (2010), pp. 40–79. url: https://doi.org/10.1
214/09-SS054.

[4] Rob Ashmore, Radu Calinescu, and Colin Paterson. «Assuring the machine learning
lifecycle: Desiderata, methods, and challenges». In: ACM Computing Surveys (CSUR)
54.5 (2021), pp. 1–39.

[5] Stavros Assimakopoulos, Rebecca Vella Muskat, et al. «Annotating for Hate Speech:
The MaNeCo Corpus and Some Input from Critical Discourse Analysis». English. In:
Proceedings of the Twelfth Language Resources and Evaluation Conference. Marseille,
France: European Language Resources Association, May 2020, pp. 5088–5097. url:
https://aclanthology.org/2020.lrec-1.626.

[6] Md Rabiul Awal, Rui Cao, et al. On Analyzing Annotation Consistency in Online
Abusive Behavior Datasets. 2020.

[7] Pinkesh Badjatiya, Shashank Gupta, et al. «Deep Learning for Hate Speech Detection
in Tweets». In: (June 2017).

[8] Alexander Brown. «What is Hate Speech? Part 2: Family Resemblances». In: Law
and Philosophy 36.5 (Oct. 2017), pp. 561–613. url: https://doi.org/10.1007/s10982-
017-9300-x.

[9] Tom B. Brown, Benjamin Mann, et al. Language Models are Few-Shot Learners.
2020. url: https://arxiv.org/abs/2005.14165.

[10] Tommaso Caselli, Valerio Basile, et al. HateBERT: Retraining BERT for Abusive
Language Detection in English. 2021.

[11] Kevin Clark, Minh-Thang Luong, et al. ELECTRA: Pre-training Text Encoders as
Discriminators Rather Than Generators. 2020.

121

http://arxiv.org/abs/1801.06482
https://doi.org/10.1145/3331184.3331262
https://doi.org/10.1214/09-SS054
https://doi.org/10.1214/09-SS054
https://aclanthology.org/2020.lrec-1.626
https://doi.org/10.1007/s10982-017-9300-x
https://doi.org/10.1007/s10982-017-9300-x
https://arxiv.org/abs/2005.14165

122 REFERENCES

[12] Yin Cui, Menglin Jia, et al. «Class-Balanced Loss Based on Effective Number of
Samples». In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2019.

[13] Maral Dadvar and Kai Eckert. Cyberbullying Detection in Social Networks Using
Deep Learning Based Models; A Reproducibility Study. 2018. url: https://arxiv.org
/abs/1812.08046.

[14] Thomas Davidson, Dana Warmsley, et al. «Automated Hate Speech Detection and
the Problem of Offensive Language». In: Proceedings of the International AAAI
Conference on Web and Social Media 11 (May 2017), pp. 512–515. url: https://ojs
.aaai.org/index.php/ICWSM/article/view/14955.

[15] Jacob Devlin, Ming-Wei Chang, et al. «BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding». In: 2018. url: https://arxiv.org/abs/1
810.04805.

[16] Bosheng Ding, Chengwei Qin, et al. Is GPT-3 a Good Data Annotator? 2022. url:
https://arxiv.org/abs/2212.10450.

[17] Derek Doran, Sarah Schulz, and Tarek R. Besold. What Does Explainable AI Really
Mean? A New Conceptualization of Perspectives. 2017.

[18] Mehdi Elahi, Dietmar Jannach, et al. «Towards responsible media recommendation».
In: AI and Ethics 2.1 (Feb. 2022), pp. 103–114. url: https://doi.org/10.1007/s43681
-021-00107-7.

[19] European Commission. Digital Services Act: Commission welcomes political agree-
ment on rules ensuring a safe and accountable online environment. url: https://ec.e
uropa.eu/commission/presscorner/detail/en/ip_22_2545.

[20] European Commission. Europe fit for the Digital Age: new online rules for platforms.
url: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europ
e-fit-digital-age/digital-services-act-ensuring-safe-and-accountable-online-environ
ment/europe-fit-digital-age-new-online-rules-platforms_en#tailored-asymmetric-
obligations.

[21] European Parliament and of the Council. Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation). [Online;
accessed March 27, 2023]. 2016. url: https://gdpr-info.eu/.

[22] Paula Fortuna, Juan Soler, and Leo Wanner. «Toxic, Hateful, Offensive or Abusive?
What Are We Really Classifying? An Empirical Analysis of Hate Speech Datasets».
English. In: Proceedings of the Twelfth Language Resources and Evaluation Con-
ference. Marseille, France: European Language Resources Association, May 2020,
pp. 6786–6794. url: https://aclanthology.org/2020.lrec-1.838.

[23] Antigoni-Maria Founta, Constantinos Djouvas, et al. Large Scale Crowdsourcing and
Characterization of Twitter Abusive Behavior. 2018.

https://arxiv.org/abs/1812.08046
https://arxiv.org/abs/1812.08046
https://ojs.aaai.org/index.php/ICWSM/article/view/14955
https://ojs.aaai.org/index.php/ICWSM/article/view/14955
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2212.10450
https://doi.org/10.1007/s43681-021-00107-7
https://doi.org/10.1007/s43681-021-00107-7
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_2545
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_2545
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/digital-services-act-ensuring-safe-and-accountable-online-environment/europe-fit-digital-age-new-online-rules-platforms_en#tailored-asymmetric-obligations
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/digital-services-act-ensuring-safe-and-accountable-online-environment/europe-fit-digital-age-new-online-rules-platforms_en#tailored-asymmetric-obligations
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/digital-services-act-ensuring-safe-and-accountable-online-environment/europe-fit-digital-age-new-online-rules-platforms_en#tailored-asymmetric-obligations
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/digital-services-act-ensuring-safe-and-accountable-online-environment/europe-fit-digital-age-new-online-rules-platforms_en#tailored-asymmetric-obligations
https://gdpr-info.eu/
https://aclanthology.org/2020.lrec-1.838

REFERENCES 123

[24] Edita Grolman, Hodaya Binyamini, et al. «HateVersarial: Adversarial Attack Against
Hate Speech Detection Algorithms on Twitter». In: Proceedings of the 30th ACM
Conference on User Modeling, Adaptation and Personalization. UMAP ’22. Barcelona,
Spain: Association for Computing Machinery, 2022, pp. 143–152. url: https://doi.o
rg/10.1145/3503252.3531309.

[25] Tommi Gröndahl, Luca Pajola, et al. All You Need is "Love": Evading Hate-speech
Detection. 2018. url: https://arxiv.org/abs/1808.09115.

[26] Karl Hansson, Siril Yella, et al. «Machine learning algorithms in heavy process
manufacturing». In: American Journal of Intelligent Systems 6.1 (2016), pp. 1–13.

[27] Thomas Hartvigsen, Saadia Gabriel, et al. «ToxiGen: A Large-Scale Machine-
Generated Dataset for Adversarial and Implicit Hate Speech Detection». In: Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Dublin, Ireland: Association for Computational Linguistics,
May 2022, pp. 3309–3326. url: https://aclanthology.org/2022.acl-long.234.

[28] Hateful Conduct. Website. Twitter. url: https://help.twitter.com/en/rules-and-poli
cies/hateful-conduct-policy (last visited: June 5, 2023).

[29] Lisa Anne Hendricks, Zeynep Akata, et al. Generating Visual Explanations. 2016.
[30] Bernie Hogan and Anabel Quan-Haase. «Persistence and Change in Social Media».

In: Bulletin of Science, Technology & Society 30.5 (2010), pp. 309–315. url: https:
//doi.org/10.1177/0270467610380012.

[31] György Kovács, Pedro Alonso, and Rajkumar Saini. «Challenges of Hate Speech
Detection in Social Media». In: SN Computer Science 2.2 (Feb. 2021), p. 95. url:
https://doi.org/10.1007/s42979-021-00457-3.

[32] Christoph Käding, Erik Rodner, et al. «Fine-tuning deep neural networks in contin-
uous learning scenarios». In: Computer Vision–ACCV 2016 Workshops: ACCV 2016
International Workshops, Taipei, Taiwan, November 20-24, 2016, Revised Selected
Papers, Part III 13. Springer. 2017, pp. 588–605.

[33] L1ght. Toxicity during coronavirus: Report by L1ght. https://l1ght.com/Toxicity_d
uring_coronavirus_Report-L1ght.pdf. Accessed: 05 18, 2023. 2020.

[34] A. van Lamsweerde. «Goal-oriented requirements engineering: a guided tour». In:
Proceedings Fifth IEEE International Symposium on Requirements Engineering. 2001,
pp. 249–262.

[35] Zhenzhong Lan, Mingda Chen, et al. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. 2019. url: https://arxiv.org/abs/1909.11942.

[36] Zachary Laub. «Hate Speech on Social Media: Global Comparisons». In: (June 2019).
Updated on June 7, 2019 3:51 pm (EST). url: https://www.cfr.org/backgrounder
/hate-speech-social-media-global-comparisons (last visited: June 5, 2023).

[37] David Leslie. «Understanding artificial intelligence ethics and safety». In: arXiv
preprint arXiv:1906.05684 (2019).

[38] Tsung-Yi Lin, Priya Goyal, et al. «Focal Loss for Dense Object Detection». In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV). Oct.
2017.

https://doi.org/10.1145/3503252.3531309
https://doi.org/10.1145/3503252.3531309
https://arxiv.org/abs/1808.09115
https://aclanthology.org/2022.acl-long.234
https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
https://doi.org/10.1177/0270467610380012
https://doi.org/10.1177/0270467610380012
https://doi.org/10.1007/s42979-021-00457-3
https://l1ght.com/Toxicity_during_coronavirus_Report-L1ght.pdf
https://l1ght.com/Toxicity_during_coronavirus_Report-L1ght.pdf
https://arxiv.org/abs/1909.11942
https://www.cfr.org/backgrounder/hate-speech-social-media-global-comparisons
https://www.cfr.org/backgrounder/hate-speech-social-media-global-comparisons

124 REFERENCES

[39] Yinhan Liu, Myle Ott, et al. RoBERTa: A Robustly Optimized BERT Pretraining
Approach. 2019. url: https://arxiv.org/abs/1907.11692.

[40] Edward Loper and Steven Bird. NLTK: The Natural Language Toolkit. 2002. url:
https://arxiv.org/abs/cs/0205028.

[41] Lov om likestilling og forbud mot diskriminering (likestillings- og diskriminer-
ingsloven). 2017. url: https://lovdata.no/pro/NL/lov/2017-06-16-51.

[42] Jitendra Singh Malik, Guansong Pang, and Anton van den Hengel. Deep Learning
for Hate Speech Detection: A Comparative Study. 2022.

[43] Ilia Markov and Walter Daelemans. «The Role of Context in Detecting the Target
of Hate Speech». In: Proceedings of the Third Workshop on Threat, Aggression
and Cyberbullying (TRAC 2022). Gyeongju, Republic of Korea: Association for
Computational Linguistics, Oct. 2022, pp. 37–42. url: https://aclanthology.org/202
2.trac-1.5.

[44] Stefano Menini, Alessio Palmero Aprosio, and Sara Tonelli. Abuse is Contextual,
What about NLP? The Role of Context in Abusive Language Annotation and Detection.
2021. url: https://arxiv.org/abs/2103.14916.

[45] Meta Transparency Rweport. https://transparency.fb.com/data/community-standa
rds-enforcement/. Accessed: May 28, 2023.

[46] Selina Meyer, David Elsweiler, et al. «Do We Still Need Human Assessors? Prompt-
Based GPT-3 User Simulation in Conversational AI». In: CUI ’22. Glasgow, United
Kingdom: Association for Computing Machinery, 2022. url: https://doi.org/10.114
5/3543829.3544529.

[47] Melody Moh, Teng-Sheng Moh, and Brian Khieu. «No "Love" Lost: Defending
Hate Speech Detection Models Against Adversaries». In: 2020 14th International
Conference on Ubiquitous Information Management and Communication (IMCOM).
2020, pp. 1–6.

[48] Swapnanil Mukherjee and Sujit Das. «Application of Transformer-based Language
Models to Detect Hate Speech in Social Media». In: Journal of Computational and
Cognitive Engineering (Dec. 2021). url: https://ojs.bonviewpress.com/index.php
/JCCE/article/view/105.

[49] Raymond T Mutanga, Nalindren Naicker, and Oludayo O Olugbara. «Hate Speech
Detection in Twitter using Transformer Methods». In: International Journal of
Advanced Computer Science and Applications 11.9 (2020). url: http://dx.doi.org/1
0.14569/IJACSA.2020.0110972.

[50] Brigitte L. Nacos, Robert Y. Shapiro, and Yaeli Bloch-Elkon. «Donald Trump:
Aggressive Rhetoric and Political Violence». In: Perspectives on Terrorism 14.5
(2020), pp. 2–25. url: https://www.jstor.org/stable/26940036 (last visited: May 15,
2023).

[51] Bashar Nuseibeh and Steve Easterbrook. «Requirements Engineering: A Roadmap».
In: Proceedings of the Conference on The Future of Software Engineering. ICSE
’00. Limerick, Ireland: Association for Computing Machinery, 2000, pp. 35–46. url:
https://doi.org/10.1145/336512.336523.

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/cs/0205028
https://lovdata.no/pro/NL/lov/2017-06-16-51
https://aclanthology.org/2022.trac-1.5
https://aclanthology.org/2022.trac-1.5
https://arxiv.org/abs/2103.14916
https://transparency.fb.com/data/community-standards-enforcement/
https://transparency.fb.com/data/community-standards-enforcement/
https://doi.org/10.1145/3543829.3544529
https://doi.org/10.1145/3543829.3544529
https://ojs.bonviewpress.com/index.php/JCCE/article/view/105
https://ojs.bonviewpress.com/index.php/JCCE/article/view/105
http://dx.doi.org/10.14569/IJACSA.2020.0110972
http://dx.doi.org/10.14569/IJACSA.2020.0110972
https://www.jstor.org/stable/26940036
https://doi.org/10.1145/336512.336523

REFERENCES 125

[52] Rajvardhan Oak. «Poster: Adversarial Examples for Hate Speech Classifiers». In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’19. London, United Kingdom: Association for Computing Machinery,
2019, pp. 2621–2623. url: https://doi.org/10.1145/3319535.3363271.

[53] Marwan Omar and David Mohaisen. «Making Adversarially-Trained Language
Models Forget with Model Retraining: A Case Study on Hate Speech Detection».
In: Companion Proceedings of the Web Conference 2022. WWW ’22. Virtual Event,
Lyon, France: Association for Computing Machinery, 2022, pp. 887–893. url: https:
//doi.org/10.1145/3487553.3524667.

[54] Long Ouyang, Jeff Wu, et al. Training language models to follow instructions with
human feedback. 2022.

[55] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D. Lawrence. «Challenges in Deploying
Machine Learning: A Survey of Case Studies». In: ACM Comput. Surv. 55.6 (Dec.
2022). url: https://doi.org/10.1145/3533378.

[56] Gyung-Jin Park. «Design of experiments». In: Analytic methods for design practice
(2007), pp. 309–391.

[57] Sara Parker and Derek Ruths. «Is hate speech detection the solution the world wants?»
In: Proceedings of the National Academy of Sciences 120.10 (2023), e2209384120.
url: https://www.pnas.org/doi/abs/10.1073/pnas.2209384120.

[58] Amandalynne Paullada, Inioluwa Deborah Raji, et al. «Data and its (dis)contents:
A survey of dataset development and use in machine learning research». In: Patterns
2.11 (2021), p. 100336. url: https://www.sciencedirect.com/science/article/pii/S26
66389921001847.

[59] John Pavlopoulos, Jeffrey Sorensen, et al. «Toxicity Detection: Does Context Really
Matter?» In: Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics. Online: Association for Computational Linguistics, July 2020,
pp. 4296–4305. url: https://aclanthology.org/2020.acl-main.396.

[60] Fabian Pedregosa, Gaël Varoquaux, et al. «Scikit-learn: Machine Learning in Python».
In: (2012). url: https://arxiv.org/abs/1201.0490.

[61] Fabio Poletto, Valerio Basile, et al. «Resources and benchmark corpora for hate
speech detection: a systematic review». In: Language Resources and Evaluation 55.2
(June 2021), pp. 477–523. url: https://doi.org/10.1007/s10579-020-09502-8.

[62] Md Mustafizur Rahman, Dinesh Balakrishnan, et al. An Information Retrieval
Approach to Building Datasets for Hate Speech Detection. 2021. url: https://arxiv.o
rg/abs/2106.09775.

[63] Ashley Reichelmann, James Hawdon, et al. «Hate Knows No Boundaries: Online
Hate in Six Nations». In: Deviant Behavior 42.9 (2021), pp. 1100–1111. url: https:
//doi.org/10.1080/01639625.2020.1722337.

[64] Victor Sanh, Lysandre Debut, et al. DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. 2019. url: https://arxiv.org/abs/1910.01108.

https://doi.org/10.1145/3319535.3363271
https://doi.org/10.1145/3487553.3524667
https://doi.org/10.1145/3487553.3524667
https://doi.org/10.1145/3533378
https://www.pnas.org/doi/abs/10.1073/pnas.2209384120
https://www.sciencedirect.com/science/article/pii/S2666389921001847
https://www.sciencedirect.com/science/article/pii/S2666389921001847
https://aclanthology.org/2020.acl-main.396
https://arxiv.org/abs/1201.0490
https://doi.org/10.1007/s10579-020-09502-8
https://arxiv.org/abs/2106.09775
https://arxiv.org/abs/2106.09775
https://doi.org/10.1080/01639625.2020.1722337
https://doi.org/10.1080/01639625.2020.1722337
https://arxiv.org/abs/1910.01108

126 REFERENCES

[65] Maarten Sap, Swabha Swayamdipta, et al. Annotators with Attitudes: How Annotator
Beliefs And Identities Bias Toxic Language Detection. 2021. url: https://arxiv.org
/abs/2111.07997.

[66] Danilo Sato, Arif Wider, and Christoph Windheuser. «Continuous delivery for
machine learning». In: Martin Fowler 9 (2019).

[67] David Sculley, Gary Holt, et al. «Hidden technical debt in machine learning systems».
In: Advances in neural information processing systems 28 (2015).

[68] Qadeem Khan Shams-ul-Arif and SAK Gahyyur. «Requirements engineering pro-
cesses, tools/technologies, & methodologies». In: International Journal of reviews in
computing 2.6 (2009), pp. 41–56.

[69] Or Sharir, Barak Peleg, and Yoav Shoham. «The cost of training nlp models: A
concise overview». In: arXiv preprint arXiv:2004.08900 (2020).

[70] Mayuri S Shelke, Prashant R Deshmukh, and Vijaya K Shandilya. «A review on
imbalanced data handling using undersampling and oversampling technique». In:
Int. J. Recent Trends Eng. Res 3.4 (2017), pp. 444–449.

[71] Emma Strubell, Ananya Ganesh, and Andrew McCallum. «Energy and policy
considerations for modern deep learning research». In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 09. 2020, pp. 13693–13696.

[72] Mirka Saarela and Susanne Jauhiainen. «Comparison of feature importance measures
as explanations for classification models». In: SN Applied Sciences 3.2 (Feb. 2021),
p. 272. url: https://doi.org/10.1007/s42452-021-04148-9.

[73] Thomas L Saaty. What is the analytic hierarchy process? Springer, 1988.

[74] Zeerak Talat, Aurélie Névéol, et al. «You reap what you sow: On the Challenges of
Bias Evaluation Under Multilingual Settings». In: Proceedings of BigScience Episode
#5 – Workshop on Challenges & Perspectives in Creating Large Language Models.
virtual+Dublin: Association for Computational Linguistics, May 2022, pp. 26–41.
url: https://aclanthology.org/2022.bigscience-1.3.

[75] The ADL website. url: https://www.adl.org/resources/report/online-hate-and-har
assment-american-experience-2022 (last visited: May 9, 2023).

[76] The New York Times website. url: https://www.nytimes.com/2020/06/29/business
/dealbook/facebook-boycott-ads.html (last visited: May 9, 2023).

[77] The OpenAI website. url: https://platform.openai.com/tokenizer (last visited:
Mar. 27, 2023).

[78] The OpenAI website. url: https://openai.com/pricing/ (last visited: Mar. 13, 2023).

[79] The Optuna Python library. https://optuna.org/. Accessed: May 29, 2023.

[80] The PyTorch Python library. https://pytorch.org/. Accessed: May 29, 2023.

[81] The Scikit-learn Python library. https://scikit-learn.org/. Accessed: May 29, 2023.

[82] The Transformers Python library. https://huggingface.co/docs/transformers/index/.
Accessed: May 29, 2023.

https://arxiv.org/abs/2111.07997
https://arxiv.org/abs/2111.07997
https://doi.org/10.1007/s42452-021-04148-9
https://aclanthology.org/2022.bigscience-1.3
https://www.adl.org/resources/report/online-hate-and-harassment-american-experience-2022
https://www.adl.org/resources/report/online-hate-and-harassment-american-experience-2022
https://www.nytimes.com/2020/06/29/business/dealbook/facebook-boycott-ads.html
https://www.nytimes.com/2020/06/29/business/dealbook/facebook-boycott-ads.html
https://platform.openai.com/tokenizer
https://openai.com/pricing/
https://optuna.org/
https://pytorch.org/
https://scikit-learn.org/
https://huggingface.co/docs/transformers/index/

REFERENCES 127

[83] The Twitter website. url: https://help.twitter.com/en/rules-and-policies/enforcem
ent-options (last visited: Feb. 8, 2023).

[84] The Twitter website. url: https://help.twitter.com/en/rules-and-policies/enforcem
ent-philosophy (last visited: Mar. 10, 2023).

[85] The Twitter website. url: https://blog.twitter.com/engineering/en_us/a/2013/new
-tweets-per-second-record-and-how (last visited: Mar. 29, 2022).

[86] The UN website. url: https://www.un.org/en/genocideprevention/hate-speech-stra
tegy.shtml (last visited: Mar. 21, 2023).

[87] The XGBoost Python library. https://xgboost.ai/. Accessed: May 29, 2023.

[88] Robin Thompson. «Radicalization and the Use of Social Media». In: Journal of
Strategic Security 4.4 (2011), pp. 167–190. url: http://www.jstor.org/stable/264639
17 (last visited: June 5, 2023).

[89] Shoujie Tong, Qingxiu Dong, et al. Robust Fine-tuning via Perturbation and Inter-
polation from In-batch Instances. 2022.

[90] Twitter GDPR. https://gdpr.twitter.com/. Accessed: May 18, 2023.

[91] Stefanie Ullmann and Marcus Tomalin. «Quarantining online hate speech: technical
and ethical perspectives». In: Ethics and Information Technology 22.1 (Mar. 2020),
pp. 69–80. url: https://doi.org/10.1007/s10676-019-09516-z.

[92] Elise Fehn Unsvåg. Investigating the Effects of User Features in Hate Speech Detection
on Twitter. url: http://hdl.handle.net/11250/2560363.

[93] Ashish Vaswani, Noam Shazeer, et al. Attention Is All You Need. 2017. url: https:
//arxiv.org/abs/1706.03762.

[94] Alex Wang, Amanpreet Singh, et al. GLUE: A Multi-Task Benchmark and Analysis
Platform for Natural Language Understanding. 2019.

[95] Shuohang Wang, Yang Liu, et al. «Want To Reduce Labeling Cost? GPT-3 Can
Help». In: Findings of the Association for Computational Linguistics: EMNLP 2021.
Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov.
2021, pp. 4195–4205. url: https://aclanthology.org/2021.findings-emnlp.354.

[96] Zeerak Waseem, Thomas Davidson, et al. «Understanding Abuse: A Typology of
Abusive Language Detection Subtasks». In: Proceedings of the First Workshop on
Abusive Language Online. Vancouver, BC, Canada: Association for Computational
Linguistics, Aug. 2017, pp. 78–84. url: https://aclanthology.org/W17-3012.

[97] Zeerak Waseem and Dirk Hovy. «Hateful Symbols or Hateful People? Predictive
Features for Hate Speech Detection on Twitter». In: Proceedings of the NAACL
Student Research Workshop. San Diego, California: Association for Computational
Linguistics, June 2016, pp. 88–93. url: https://aclanthology.org/N16-2013.

[98] Vitor Werner de Vargas, Jorge Arthur Schneider Aranda, et al. «Imbalanced data
preprocessing techniques for machine learning: a systematic mapping study». In:
Knowledge and Information Systems 65.1 (Jan. 2023), pp. 31–57. url: https://doi.o
rg/10.1007/s10115-022-01772-8.

https://help.twitter.com/en/rules-and-policies/enforcement-options
https://help.twitter.com/en/rules-and-policies/enforcement-options
https://help.twitter.com/en/rules-and-policies/enforcement-philosophy
https://help.twitter.com/en/rules-and-policies/enforcement-philosophy
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://www.un.org/en/genocideprevention/hate-speech-strategy.shtml
https://www.un.org/en/genocideprevention/hate-speech-strategy.shtml
https://xgboost.ai/
http://www.jstor.org/stable/26463917
http://www.jstor.org/stable/26463917
https://gdpr.twitter.com/
https://doi.org/10.1007/s10676-019-09516-z
http://hdl.handle.net/11250/2560363
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://aclanthology.org/2021.findings-emnlp.354
https://aclanthology.org/W17-3012
https://aclanthology.org/N16-2013
https://doi.org/10.1007/s10115-022-01772-8
https://doi.org/10.1007/s10115-022-01772-8

128 REFERENCES

[99] Michael Wiegand, Josef Ruppenhofer, and Thomas Kleinbauer. «Detection of Abusive
Language: the Problem of Biased Datasets». In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, June 2019, pp. 602–608. url:
https://aclanthology.org/N19-1060.

[100] Matthew L Williams, Pete Burnap, et al. «Corrigendum to: Hate in the Machine:
Anti-Black and Anti-Muslim Social Media Posts as Predictors of Offline Racially
and Religiously Aggravated Crime». In: The British Journal of Criminology 60.1
(Sept. 2019), pp. 242–242. url: https://doi.org/10.1093/bjc/azz064.

[101] Tomer Wullach, Amir Adler, and Einat Minkov. Fight Fire with Fire: Fine-tuning
Hate Detectors using Large Samples of Generated Hate Speech. 2021. url: https://a
rxiv.org/abs/2109.00591.

[102] Zhilin Yang, Zihang Dai, et al. XLNet: Generalized Autoregressive Pretraining for
Language Understanding. 2020.

[103] Ziqi Zhang and Lei Luo. Hate Speech Detection: A Solved Problem? The Challenging
Case of Long Tail on Twitter. url: https://arxiv.org/abs/1803.03662.

[104] Didar Zowghi and Chad Coulin. «Requirements Elicitation: A Survey of Technique,
Approaches and Tools». In: Jan. 2005, pp. 19–46.

[105] Andreas Aarrestad and Santhosh Shanmugam. Analyzing the Performance Gain
of Hate Speech Detection by Providing Machine Learning Models with Contextual
Resources. Project report in TTM4502. Department of Information Security, Com-
munication Technology, NTNU – Norwegian University of Science, and Technology,
Dec. 2022.

https://aclanthology.org/N19-1060
https://doi.org/10.1093/bjc/azz064
https://arxiv.org/abs/2109.00591
https://arxiv.org/abs/2109.00591
https://arxiv.org/abs/1803.03662

AppendixASupplementary Figures and Tables

Feature Data Type Non-Null Count Unique Values
tweet id String 8103 8103
conversation id String 8103 7954
child author id String 8103 7955
parent author id String 8103 7238
child tweet place id String 324 255
parent tweet place id String 293 228
tweet raw String 8103 8103
tweet type int64 8103 2
tweet retweet count int64 8103 48
tweet reply count int64 8103 18
tweet like count int64 8103 72
tweet quote count int64 8103 12
tweet mentions object 5822 5519
tweet urls object 2257 2252
tweet hashtags object 1022 1015
tweet created at Timestamp 8103 8066
author name String 8103 7795
author username String 8103 7955
author description String 8103 7054
author profile image url String 8103 7786
author followers count int64 8103 3742
author following count int64 8103 3107
author tweet count int64 8103 7428
author listed count int64 8103 595
author created at Timestamp 8103 7954
parent tweet raw String 8103 7961
parent tweet language String 8103 40
parent tweet type int64 8103 3
parent tweet retweet count int64 8103 1046
parent tweet reply count int64 8103 650
parent tweet like count int64 8103 1326
parent tweet quote count int64 8103 528
parent tweet mentions object 3423 3831
parent tweet urls object 3188 3437
parent tweet hashtags object 1511 1456
parent tweet created at Timestamp 8103 7924
parent author name String 8103 7119
parent author username String 8103 7238
parent author description String 8103 6731
parent author profile image url String 8103 7186
parent author followers count int64 8103 5936
parent author following count int64 8103 3270
parent author tweet count int64 8103 7079
parent author listed count int64 8103 2042
parent author created at Timestamp 8103 7238
label int64 8103 3
Total 8103

Table A.1: Raw feature summary of developed dataset

129

130 A. SUPPLEMENTARY FIGURES AND TABLES

Instruction Level 1: Definition-Based
Assign a class to a given child tweet, using the provided classification examples and the contextual
information that includes the user’s description, the parent tweet and the parent tweet user’s
description. The class is determined using the following definition of speech:
"Language used to express hatred towards a targeted individual or group, or is intended to be
derogatory, to humiliate, or to insult the members of the group, on the basis of attributes such
as race, religion, ethnicity, sexual orientation, disability, nationality, descent, colour or gender."
Assign the speech to Class 1 if it fits with this definition, and to Class 0 if it does not.

Instruction Level 2: Condition-Based
Assign a class to a given child tweet, using the provided classification examples and the contextual
information that includes the user’s description, the parent tweet and the parent tweet user’s
description. The class is determined using the following evaluation process:
1. Does the language express negative attitudes towards a targeted individual or group?

- If "no", assign the speech to Class 0 and stop evaluating.
- If "yes", proceed to the next question.

2. Is the negative attitude intended to be either derogatory, humiliating, or insulting?
- If "no", assign the speech to Class 0 and stop evaluating.
- If "yes", proceed to the next question.

3. Is the target identified based on attributes such as race, religion, ethnicity, sexual orienta-
tion, disability, nationality, or gender?
- If "no", assign the speech to Class 0 and stop evaluating.
- If "yes", proceed to the next question.

4. Are the attributes used as a basis for the derogatory, humiliating, or insulting negativity
expressed towards the target?
- If "no", assign the speech to Class 0 and stop evaluating.
- If "yes", assign the speech to Class 1.

Instruction Level 3: Condition-Based with High Specificity
Assign a class to a given child tweet, using the provided classification examples and the contextual
information that includes the user’s description, the parent tweet and the parent tweet user’s
description. The class is determined using the following evaluation process:
1. Does the language express negative attitudes towards a targeted individual or group?

Consider context and tone; avoid hasty judgments based on isolated words.
- If "no", assign the speech to Class 0 and stop evaluating.
- If "yes", proceed to the next question.

2. Is the negative attitude intended to be derogatory, humiliating, or insulting? Assess the
intention by examining the overall message and tone.
- If "no", assign the speech to Class 0 and stop evaluating.
- If "yes", proceed to the next question.

3. Is the target identified based on attributes such as race, religion, ethnicity, sexual ori-
entation, disability, nationality, or gender? Be cautious of implicit or coded language
targeting these attributes.
- If "no", assign the speech to Class 0 and stop evaluating.
- If "yes", proceed to the next question.

4. Are the attributes used as a basis for the derogatory, humiliating, or insulting negativity
expressed towards the target? Evaluate whether the negativity directly targets the
attribute, rather than a general or unrelated critique.
- If "no", assign the speech to Class 0 and stop evaluating.
- If "yes", assign the speech to Class 1.

Table A.2: Instruction levels

131

Hyperparameter Range NaiveBERT ContextBERT
Learning rate 5 · 10−6 to 5 · 10−5 3.74 · 10−5 3.70 · 10−5

Batch size 8, 16, 32 32 32
Number of epochs 2 to 5 2 2
Warmup steps 0 to 500 220 263
Weight decay 0.0 to 0.01 0.00082 0.0070
Dropout rate 0.0 to 0.5 0.19 0.29
Focal parameter γ 1, 2, 3, 4 2 2

Table A.3: Hyperparameters for NaiveBERT and ContextBERT

Hyperparameter Range ContextBoost
Max depth 3, 5, 7, 10 3
Learning rate 0.001, 0.01, 0.1, 0.2 0.01
Subsample fraction 0.5, 0.7, 1.0 0.5
Feature subsampling fraction 0.4, 0.6, 0.8, 1.0 0.8
Number of estimators 100, 200, 500 200
L2 regularization parameter λ 0.01, 0.1, 1 1
Focal parameter γ 1, 2, 3, 4 2

Table A.4: Hyperparameters for ContextBoost

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Problem Specification
	Goal
	Research Questions
	Subgoals
	Scope

	Research Approach
	Research Design
	Outline of Thesis

	Background
	Hate Speech
	Prevalence and Dynamics in Social Media
	Platforms' Incentives for Action

	Twitter
	Interaction Model
	Components of a Conversation Chain

	Hate Speech Management Systems
	System Components
	System Evolution and the Need for Research

	Machine Learning
	Statistical Classification
	Supervised Learning
	Performance Metrics for Supervised Classification Models
	Neural Networks
	Deep Learning
	Hyperparameters
	Transfer Learning
	Lifecycle Framework

	Natural Language Processing
	Language Representation
	Transformer
	BERT
	GPT

	Literature Review
	Current Hate Speech Management Systems for Social Media Platforms
	Models Used for Hate Speech Detection
	State-of-the-Art Models
	Comparison of Transformer-Based Models

	Intricacies of Identifying Hate Speech
	Usage of Context in Hate Speech Detection
	Hate Speech Datasets
	Challenges of Annotation
	Challenges of Large-Scale Crowdsourcing
	Machine-Generated Datasets
	Using GPT Models for Data Labeling

	System Properties for Feasibility and Practicality
	Legal Compliance and Data Efficiency
	Robustness Against Adversarial Attacks
	Transparency and Auditability
	Maintainability and Consistent Performance
	Adaptability, Availability, and Scalability
	Effects of Detection Cost

	Methodology
	Computing Environment and Resources
	Identifying Core System Properties
	Postulating Domain-Specific Strategies
	Refining Existing Hate Speech Dataset
	Retrieving Contextual Information with the Twitter API
	Filtering

	Exploration of GPT-Based Annotation
	Establishing an Unbiased Hate Speech Definition
	Data Preparation for Outsourcing
	Outlining Trade-Off Determinants for Cost Efficiency
	Estimating the Optimal Combination of Factors

	Developing Hate Speech Classifiers for the Evaluation of Quantitative Strategies
	Model Architectures and Domain Adaptation Approach
	Design Choices for Sequential Fine-Tuning of BERT models
	Feature Engineering for Meta Learner
	Preparation of Textual Input Features
	Optimization of Hyperparameters
	Assessing Impact on Classification Cost

	Quantitative Analysis of Cross-Validation Trials
	Trial for Evaluating Significance of Contextual Strategy
	Trial for Evaluating Significance of Sampling Strategy

	Unifying Strategies in a Joint System Architecture
	Limitations of Methodology

	Results and Discussion
	Specialized Strategies for Hate Speech Management
	Integration of Contextual Information in Detection Model
	Standardizing Input Format for Detection Model
	Detection Triage Scheme
	Continuous Sequential Fine-Tuning
	Enhanced Sampling Heuristic of Uniqueness and Uncertainty
	Advancing Robustness During Fine-Tuning
	Persistent Monitoring With Explainable AI

	Implementations of Strategies for Unified System Architecture
	Preprocessing
	Implementation of Triage Scheme
	Monitoring-Governed Fine-Tuning Triggers
	Real-Time Stream Sampling
	Validation of Fine-Tuned Models

	Implications for Industry
	Limitations of Results

	Conclusion
	Summary of Thesis
	Main Contributions
	Significance for Society
	Future Work
	Closing Remarks

	References
	Supplementary Figures and Tables

