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Abstract

This master thesis explores the application and performance of a state observer al-
gorithm within a software-in-the-loop (SIL) setup. Software-in-the-loop testing is a
method used in model testing where control systems are tested in a simulated envir-
onment. The control system algorithm is a Nonlinear Passive Observer, proposed
by Thor I. Fossen. SIMA is used for simulating the virtual environment, explicitly
focusing on replicating a physical experiment for motions of the substructure on the
model of a floating o↵shore wind turbine design known as INO WINDMOOR 12
MW.

Physical experiments are usually conducted in an ocean basin with a model-scale
version of the turbine. Wind turbine testing is known for being di�cult due to the
scaling e↵ects of forces from both wind and waves. Adaptation of a cyber-physical
experimental setup aims to make these experiments more realistic by simulating the
dynamics that are di�cult to encapsulate in a physical testing environment. In this
case, the mooring system is simulated and correct forces are applied by the use of
tension lines controlled using Cable Driven Parallel Robots (CDPR).

The research aims to verify the feasibility and e↵ectiveness of the NPO algorithm as
a wave filter for the structure. Using HLCC, a software developed by SINTEF, it is
possible to simulate the observer as a functional mock-up unit (FMU) and connect it
to SIMA. Wave filtering is the process of removing the high-frequent component in
the measured position of a floating body exposed to waves. The observer algorithm
enables the reconstruction of low-frequent motions based on measured signals. By
providing accurate estimates of the low-frequency response for the floater one is able
to better estimate nonlinear wave loads and hence optimize turbine and mooring
system design.

The findings indicate that the NPO algorithm can be used within this SIL setup,
where both SIMA and HLCC prove to be valuable tools. It is crucial to possess a
thorough understanding of the model to be used in the model-based estimator, as
insu�cient knowledge introduces uncertainty, hindering optimal performance and
algorithm tuning. This research contributes to the broader objective of developing
more e�cient and streamlined solutions for the mooring system of o↵shore wind
turbines, making it a competitive and favorable option for clean energy generation,
aligned with the green shift initiative.
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Sammendrag

Denne masteroppgaven utforsker anvendelsen og ytelsen til en tilstandsestimator i
en “programvare-i-sløyfe” (SIL) konfigurasjon. “Programvare-i-sløyfe” er en metode
som brukes i utvikling av modeller der kontrollsystemer kan testes i et simulert miljø.
Kontrollsystemalgoritmen er en ikke-lineær passiv tilstandsestimator (NPO), utledet
av Thor I. Fossen. SIMA brukes til å simulere det virtuelle miljøet, med fokus p̊a
å gjenskape et fysisk eksperiment for bevegelser av flyterstrukturen til modellen av
en flytende o↵shore vindturbin kalt INO WINDMOOR 12 MW.

Fysiske eksperimenter gjennomføres som regel i et havbasseng med en modellskala
versjon av turbinen. Slike eksperimenter er kjent for å være utfordrende p̊a grunn av
skalae↵ektene for̊arsaket av krefter fra b̊ade vind og bølger. Ved å tilpasse oppsettet
etter en hybrid løsning, kan eksperimenter gjøres mer realistiske ved å simulere
dynamikken som er vanskelig å fange opp i det fysiske testmiljøet. I dette tilfel-
let simuleres forankringssystemet til turbinen, og dets krefter p̊aføres ved bruk av
spenningslinjer kontrollert av kabeldrevne parallelle roboter.

Forskningen har som mål å verifisere tilpasningen og e↵ektiviteten til NPO-algoritmen
anvendt som et bølgefilter for strukturen. Ved hjelp av HLCC, en programvare
utviklet av SINTEF, er det mulig å simulere tilstandsestimatoren som en funksjon-
ell mock-up-enhet (FMU) og koble den til SIMA. Bølgefiltrering omfatter prosessen
med å fjerne den høyfrekvente komponenten i den målte posisjonen til et flytende
legeme som er eksponert for bølger. NPO-algoritmen gjør det ogs̊a mulig å rekon-
struere lavfrekvente bevegelser basert p̊a målte signaler. Ved å gi nøyaktige estima-
ter av den lavfrekvente responsen til flyteren, er man i stand til å bedre estimere
ikke-lineære bølgelaster p̊a strukturen og dermed optimalisere vindturbin- og for-
ankringssystemdesignet.

Resultatene indikerer at NPO-algoritmen kan brukes innenfor dette SIL-oppsettet,
hvor b̊ade SIMA og HLCC viser seg å være nyttige verktøy. Det er avgjørende å ha
en grundig forst̊aelse av modellen som skal brukes, da utilstrekkelig kunnskap fører
til usikkerheter som kan hindre optimal ytelse og justering av algoritmen. Denne
forskningen bidrar til målet med å utvikle mer e↵ektive og lønnsomme løsninger
for forankringssystemet til o↵shore vindturbiner. Dette vil igjen bidra til å gjøre
o↵shore flytende vind til et konkurransedyktig og gunstig alternativ for produksjon
av ren energi, i tr̊ad med den grønne skiftet.
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Chapter 1
Introduction

1.1 Motivation

The idea for this project originates from a joint e↵ort “competence project for
business, (KPN)” initiative called CYBERLAB, carried out by SINTEF, NTNU,
and Aarhus University. A joint e↵ort project is a project in which key actors in
the industry join forces to enhance overall understanding in a specific field. The
purpose of the CYBERLAB project is to raise competence in methods to study the
dynamical behavior of a lattice of floating structures. The project aims to optimize
mooring systems for o↵shore floating wind turbines to be more cost- and energy
e�cient.

The first step toward making more e�cient systems is to increase understanding
of their behavior and be able to model them precisely. CYBERLAB believes that
this can be obtained by combining physical and numerical experimentation in a
cyber-physical approach. Data and models for the tests conducted in this report are
provided by SINTEF and CYBERLAB.

1.2 Background

1.2.1 Floating o↵shore wind turbine technology

Moving wind turbines out into the ocean o↵ers great advantages in terms of stronger
and more consistent wind resources. More available space o↵ers the possibility of
building larger turbines which generate more power. Most o↵shore turbines today
are mounted to the seabed by monopiles, 81.2% of the installed OWT were mono-
piles in 2020(WindEurope 2020). This design is favored for water depths up to 60
meters. For depths beyond 60 meters, dynamics of the monopile structure will be
compromised by wave interactions (Kallehave et al. 2015). Figure 1.1 shows some
concepts of turbines with floating substructures.
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Four most common concepts for floating o↵shore wind turbines. INO
WINDMOOR 12MW is a semi-submersible design(DNV 2021).

1.2.2 Historical development of physical testing

The history of o↵shore wind turbine concept testing and marine model testing has
roots in the early development of renewable energy and naval architecture, respect-
ively. O↵shore wind turbines emerged in the 1970s as a response to the oil crisis
leading to an increased global interest in renewable energy sources. In 1991, the
first large-scale o↵shore wind farm was commissioned in Vindeby, Denmark with
a total capacity of 5MW, providing 2200 Danish households with power (Orsted
n.d.). Since then, lower costs and technological advancements have led to increas-
ingly larger turbines. Currently, the largest o↵shore wind farm project in the world is
named “Dogger Bank” which aims to have a combined installed capacity of 3.6GW,
providing electricity for up to 6 million homes (Farm n.d.).

Marine model testing, originating from William Froude’s experiments, evolved and
expanded in the 20th century to include o↵shore structures. Today, it remains vital
for ship and o↵shore structure optimization, utilizing advanced technologies like
Computational Fluid Dynamics (CFD) and Augmented Reality (AR).

The intersection of these two fields can be seen in the development and testing of
o↵shore wind turbines. Marine model testing is used to simulate the behavior of
turbines in various sea conditions and to optimize the design of support structures.

1.2.3 The reality today

In 2021, it was estimated that the global average temperature had increased 1.1
degree Celsius since pre-industrialization and that the period 2015-2021 was the
warmest ever recorded. The UN has set the goal of limiting the increase in average
temperature to a maximum of 1.5 degree Celsius by 2050, (Nations n.d.). To reach
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the goal of the UN while feeding a constantly growing population, humanity needs
more clean, reliable, and a↵ordable sources of energy.

The DNV Energy Transition Outlook estimates that, due to higher and more reliable
wind speeds and fewer constraints on hub heights and site locations, o↵shore wind
will show an average annual growth of 13 % from 2020 to mid-century (Ch. 2.1 in
DNV 2022, page 61). Furthermore, it expects the o↵shore wind capacity to increase
by 56-fold from today’s level and toward 2050 (Ch. 3 in DNV 2022, page 85).

Currently, o↵shore wind turbines are mainly individually fixed to the seabed. As the
turbines are moved further o↵shore, floating solutions become more attractive. One
of the most limiting factors for available floating wind turbines is that mooring far
o↵shore is expensive. A recent estimate suggests that the combined costs of mooring
and substructure of an o↵shore FWT will make up 35% of the total investment cost
(Figure 1.2). Additionally, relatively large spacing between the turbines is required
to minimize wake e↵ects from the wind (Eliassen n.d.). When several turbines are
moored as an interconnected grid structure, the cost and impact on the seabed of the
mooring system could be significantly reduced. This raises, however, an optimization
problem with distance and wake e↵ects. A grid structure can enable a more cost-
and material-e↵ective solution for o↵shore wind, which might be the key to making
this the preferable design for o↵shore floating wind turbines (T. M. Sauder n.d.).

Before connecting the wind turbines together and assessing the interactions between
several turbines, it is crucial to have more information on the loads and motions that
a↵ect each individual turbine. This thesis is part of a project aiming to streamline
the testing and estimation of these loads on floating turbines by applying principles
from cyber-physical testing.

Figure 1.2: Capital expenditure of installing o↵shore wind turbines(Committee
2020).
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1.2.4 Cyber-physical testing and principles

Cyber-physical testing is a method that combines physical experiments with nu-
merical simulations. An experiment using this technique is performed in real-time
and controlled using a control system. The main advantage of this method is that
it enables the testing of coupled systems that can’t be tested using either physical
experiments or numerical models alone. The cyber-physical approach is attractive
for problems with infrastructure issues, scaling incompatibilities, low e�ciency, or
optimization problems as the setup allows an e�cient change in boundary condi-
tions.

The three main purposes of conducting experimental testing for marine operations
defined by Steen (2014) are:

• To achieve relevant design data to verify the performance of actual concepts
for ships and other marine structures

• Verification and calibration of theoretical methods and numerical codes

• To obtain a better understanding of physical problems.

Humans have performed physical and empirical experiments for as long as they
have existed, the early historical developments of cyber-physical experiments are
described in Nakashima (2020) and the first experiment was likely conducted for
buildings and infrastructures in 1975 by Takanashi (Takanashi 1975). It is only
in the recent 10 years that this method has been applied to marine experiments
(Abbiati 2022).

For testing objects in a marine environment, three main facilities have been de-
veloped for various testing. These are towing tanks, cavity tanks, and ocean basins.
All of these have been designed to imitate the real world as much as possible.

In recent years and with the development of new technology, turbines have grown
larger and been designed for use farther o↵shore. This also implies new challenges
for testing, where conventional facilities have become too small to ensure su�cient
similarity between the model and full scale. As a result of this, cyber-physical
testing has become more relevant. The method is also known as hybrid testing or
Hardware-in-the-loop (HIL) testing.

The principle of cyber-physical testing is to divide the setup into two substructures,
one physical with the model and one numerical which simulates the dynamics that
either are di�cult to model or won’t fit in the traditional ocean basin. The two
systems are then connected using an active truncation system, controlled by a control
system responsible for balancing the actuated forces and velocities. This will ensure
compatibility and equilibrium between the substructures.
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Figure 1.3: Cyber-physical substructures for marine testing(T. Sauder 2022c).

The figure above portrays a typical setup for maritime experimentation using cyber-
physical principles. The physical substructure is the model located in an ocean
basin equipped with wave-makers capable of producing realistic sea states on a
model scale. The numerical substructure here represents the mooring system of
the model for testing. This is helpful as most ocean basins are not deep enough
to fit a fully scaled mooring system, simply due to their depth and di�culties in
modeling weight, forces, and deflections in acceptable time. The mooring in this
case will be modeled based on catenary equations. Experiments with wind and
deep water operations are other examples where dynamics can be simulated for a
better dynamical representation. A visual representation of the various software
and hardware components and their connection in a cyber-physical control system
is given in the figure below.

Figure 1.4: Control system perspective on cyber-physical setup for testing(T. Sauder
2022c).

From the two figures above, it becomes obvious that this kind of experimental setup
yields multiple layers of complexity. The two most apparent are perhaps stability
and delay. These two phenomena are excited by so-called artefacts, a collective term
for calibration error, actuator dynamics, noise, jitter, loss of signal, etc. Further,
this leads to the study of fidelity for the system which is a critical part as the loss
of fidelity often occurs before the loss of stability (T. Sauder 2022a).
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The concept of cyber-physical testing is still under development and continuous im-
provements are being made to ensure correct and accurate results. One of the biggest
weaknesses of this method today is that it requires a system that responds fast
enough. Computational delay, actuator, and sensor dynamics are limiting factors.

Summarizing advantages and disadvantages of cyber-physical testing

Advantages Disadvantages
Cost-e↵ective:
Simulations have lower cost than
physical materials and equipment

Complexity :
Requires expertise in physical
and computational modeling

Flexibility :
Modifiable and adjustable model,
iterative design and optimization

Fidelity :
Not fully capturing the complexity
and nuance of real-world systems

E�ciency :
Faster simulations and dynamics

Accuracy :
Accuracy of model limited to
quality of inputs and outputs

Safety :
Conduct experiments in virtual
environment eliminating dangerous
and hazardous conditions

Hardware/software issues :
Easily impacted by failure
and inaccuracies in both
software and hardware

Table 1.1: Summarizing some important advantages and disadvantages of a cyber-
physical approach.

1.2.5 Case-study: INO 12MW Floating Wind Turbine

The model used as a case study in this thesis is the INO WINDMOOR 12MW
floating wind turbine, a concept delivered by Inocean and a part of WINDMOOR, a
KPN project funded by the Research Council of Norway and o↵shore wind industry.
The project spans over 4 years, commencing in 2019 (SINTEF n.d.). The project’s
primary objective is to enhance the load analysis methods to facilitate the creation
of even more e�cient designs for floating wind turbine farms (Inocean n.d.). This
objective aligns with the goal of CYBERLAB.

The turbines are to be installed at a water depth of 150 meters and the design is
based on the IEA 10MW design which is an updated version of the DTU 10MW.
The design has further been scaled up to meet the rated electrical power supply of
12MW. Some relevant characteristics are presented in Figure 1.5 and tables 1.2 and
1.3.
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Figure 1.5: Concept figure of INO WINDMOOR 12MW FWT(Inocean n.d.)

INO WINDMOOR 12MW Substructure Parameters
Parameter Explanation Symbol Unit
M Mass 14176 t
T Draft 15.5 m
Tn,1 Natural period in surge 97.3 s
Tn,2 Natural period in sway 98 s
Tn,6 Natural period in yaw 88 s
Lp Pontoon length 46 m
Cdy,p Pontoon drag coe�cient 4817.5 [-]
Lc Column length 15.5 m
Cdy,c Column drag coe�cient 7687.5 [-]
XCoG Longitudinal centre of gravity 0.38468 m
YCoG Transversal centre of gravity 0.0 m
ZCoG Vertical centre of gravity 4.3178 m
Ixx Inertia along longitudinal axis 2.7328 · 1010 kg ·m2

Iyy Inertia along transversal axis 2.7064 · 1010 kg ·m2

Izz Inertia along vertical axis 1.2968 · 1010 kg ·m2

a11,0 Surge zero frequency added mass 8.2 · 106 kg
a22,0 Sway zero frequency added mass 8.2 · 106 kg
a66,0 Yaw zero frequency added mass 8.3 · 109 kg ·m2

Table 1.2: INO WINDMOOR 12MW Substructure parameters(Souza 2021)
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Turbine Parameters
Parameter Explanation Symbol Unit
DR Rotor diameter 216.9 m
DH Hub diameter 5.0 m
LB Blade length 105.4 m
Vin Cut-in wind speed 4.0 m/s
Vrated Rated wind speed 10.6 m/s
Vout Cut-out wind speed 25.0 m/s
MTS Maximum tip speed 88.6 m/s
Mblade Single blade mass 60 000 kg
Mhub Hub mass 63 024 kg
Mnacelle Nacelle mass 600 000 kg

Table 1.3: INO WINDMOOR 12MW Turbine parameters(Souza 2021)

Not all of the above characteristics are directly relevant to this thesis, but they serve
as a reference of magnitude and sizes, see Souza 2021 for more details.

1.3 Objective and scope

The main objective of this thesis is to:

verify the wave filtering ability of a nonlinear passive observer for wind turbine
application before physical basins tests by using cyber-physical principles applied to

software-in-the-loop testing

The observer should be able to completely separate the wave-frequent and low-
frequent components of the motion of the floater based on its simulated position.
It should also provide an estimate of the velocity which is within the magnitude
of the velocity which can be derived from the low-pass filtered position. The bias
estimate of the observer should converge towards a constant value without too much
high-frequent signal content.

Ideally, the observer should also be tuned such that it fulfills all the above-mentioned
criteria for all three degrees of freedom and for varying environmental conditions.
Another desired outcome from this testing is to propose measures that will stream-
line marine software-in-the-loop testing and make simulations more e�cient and
reliable.

Both the algorithm and the provided simulation model are complex systems. There
is put some emphasis on understanding how the systems work separately and to-
gether in a common simulation environment. The tools used to perform simulations
are not publicly available and not known to the writer at the beginning of this
project.

This report builds on an earlier project which studied wave filtering using the nonlin-
ear passive observer design proposed by Fossen and Strand (Fossen 1998). Relevant
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literature on the observer will be presented and can be used as a basis for later
experiments on floating wind turbine parks using shared mooring. The observer
extracts low-frequency (LF) motions and loads. Its performance and ease of tuning
will be demonstrated through numerical experiments.

Research is continued by testing wave filtering with a Nonlinear Passive Observer
and measuring its performance in a simulated real-world environment. The previous
project tested the isolated observer algorithm’s e↵ectiveness with synthetic input
signals.

To achieve this, a software-in-the-loop setup will be used, and the wave loads will be
connected to the observer through the HLCC software program, which is specifically
designed for hydrodynamic lab tests.

1.4 Main contribution

The main contributions of this thesis can be summarized as follows:

• Literature study of the nonlinear passive observer algorithm, derivation and
areas of use. All relevant theory presented in Chapter 2.

• Adjusting an algorithm mainly used for station-keeping purposes of vessels to
fit a floating wind turbine design.

– Practical study of the nonlinear passive observer using synthetic signals
in Matlab and Simulink and adjusting the observer to handle input from
simulations in SIMA.

– Proposing a streamlined method of tuning the observer based on its input.

• Building and verifying the model of floater by simulating decay tests. Display-
ing the importance of correct modeling for observer performance.

• Displaying the use of FMUs in HLCC and SIMA as simulation tools.

• Proposing a simulation setup for cyber-physical experiments with allocation,
observer and mooring.

• Simulations of scenarios with di↵erent disturbances to explore the performance
of the model within the validity range.

9
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1.5 Structure and organization of the thesis

This project is organized into 5 main chapters. A brief description of the contents
follows below:

Chapter 1: Introduction Introducing the project including background, motiva-
tion, and contributions.

Chapter 2: Nonlinear Passive Observer A review of the nonlinear passive
observer algorithm proposed by Thor I. Fossen and relevant theory.

Chapter 3: Verification study Presentation of method used in verification test-
ing. Explaining the setup for software-in-the-loop testing and its components. This
includes the simulation tools SIMA, HLCC, and their coupling.

Chapter 4: Results Presentation of the most relevant results from the study and
discussion of their significance.

Chapter 5: Conclusion Concluding remarks and suggestions for further work

Bibliography Presenting all references used in the development of this project

Appendices

• Appendix A: left out, but relevant theory for the interested reader.

• Appendix B: Figures, tables, and plots.

• Appendix C: Code and models

10



Chapter 2
Nonlinear Passive Observer theory

This chapter presents the relevant theory for the development of a Nonlinear Passive
Observer for wave-filtering applications on ship structures. Further work will apply
the theories described here on floating o↵shore wind turbines. Most of the theory
presented in this chapter is based on the work done in the preliminary report written
the past fall as a build-up to this thesis. The chapter will first present the required
background theory before deriving the Nonlinear Passive Observer Algorithm.

2.0.1 Summary of literature review

Nonlinear wave loads and motions are frequently studied and several numerical
methods have been created to calculate loads on floating structures. WAMIT-S and
Hydrostar, based on potential flow theory, are currently the most popular methods.
The paper of T. Sauder 2021 suggests an additional method for estimating nonlinear
wave loads through a cyber-physical setup.

Regarding previous work done on estimation techniques and in particular design of
a Nonlinear Passive Observer (NPO), academic work done by Thor I. Fossen has
been reviewed. This includes di↵erent methods and applications of the algorithm
for usage on ship structures (Fossen 1991, Fossen 1994, Fossen 1998, Fossen 2021).

As theoretical background and support, the works of Khalil, Chen, Faltinsen, and
Sørensen have been reviewed. Keywords include non-linear control, passivity, Lya-
punov, Kalman filtering, hydrodynamics, and linear control.

11
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2.1 Wave theory

A sea state is composed of several harmonic waves with di↵erent frequencies. Two
incident waves with di↵erent frequencies will cause a nonlinear pressure load on
the structure at both the sum, (!2 + !1) and di↵erence frequency (!2 � !1), in
addition to zero-frequency and mean loads. This is caused by the multiplication of
two harmonic functions at di↵erent frequencies (T. Sauder 2022b). Visually, this is
shown as:

Figure 2.1: Visual representation of the creation of sum- and di↵erence frequen-
cies(T. Sauder 2022b).

As seen in the figure, this phenomenon will also imply a wider frequency range
of loads. For moored structures, one is most concerned with the forces caused by
di↵erent frequencies as these are likely to cause resonant motions in the horizontal
plane (Faltinsen 1990). Figure 2.1 also shows why di↵erent frequencies are associated
with low-frequency loads and motions. Figure 2.2 shows the separated frequency
components of a single wave.

Figure 2.2: Low- and wave-frequency motions(Sorensen 2018).

A wave can be divided into a low-frequent and a high-frequent component. The
main goal of this thesis is to use an observer algorithm to split an incoming wave
into these two components. Further, the low-frequent component is of particular
interest when performing load analysis on the body in waves.

The motion of a floating object in waves can be described using the concept of
added mass, which is the apparent increase in the mass of the object caused by its
motion through the fluid. The added mass depends on the frequency of the motion
of the object through the fluid and is typically proportional to the mass of the fluid
displaced by the object. This is described in more detail in Section A.1.

12
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2.2 Observer theory

An observer, also known as a state estimator, is a mathematical algorithm used
to estimate an immeasurable internal state of a system based on its input and
output signals. By comparing the estimated state with the actual measurements,
the observer can filter out noise and disturbances in the signals, enhancing the
accuracy and reliability of the system’s output. The observer essentially acts as
a virtual sensor, filling in the gaps where direct measurements are unavailable or
unreliable. There are mainly two types of observers:

• Model-based estimator : an observer algorithm based on a dynamic model of
the system and measured signals

• Signal-based estimator : an observer algorithm based on measured signals and
statistical principles

2.2.1 Dynamic system definition

Dynamic systems refer to mathematical models used to describe the behavior and
evolution of systems over time. A dynamic system typically consists of a set of
variables representing a state that changes over time, based on mathematical equa-
tions or rules. The system is often categorized based on the properties of its state
variable.

A linear system is a system where all equations are proportional and can be described
as a linear combination of its state variables. Linear systems will also satisfy the
superposition principle. If the system produces the same response regardless of when
it is excited by an input or impulse, it is a Linear Time-Invariant (LTI) system and
can be presented using the following state-space equations:

ẋ = Ax(t) +Bu(t) (2.1a)

y = Cx(t) +Du(t) (2.1b)

where A, B, C, and D are real matrices, x(t) is the system state at time t, u(t) is
the input to the system at time t, and y(t) is the observed output of the system at
time t. The system matrices A, B, C, and D hold values for the general dynamics
of the system, i.e. the mass, sti↵ness, and damping coe�cients, while the input u(t)
for example represents a voltage or a force (Chen 2013).

Most real-world systems are time-varying and will produce di↵erent responses de-
pendent on when the impulse is applied. This implies that the system dynamics will
then change so that the system matrices will also be time-dependent(Chen 2013).

For some applications, it is convenient to consider a mapping from the input to the
output for a given impulse response. This is usually done by means of a transfer
function. For a one-degree-of-freedom Linear Time-Invariant (LTI) system, this is

13
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calculated by dividing the Laplace transform of the output by the Laplace transform
of the input.

ĝ =
ŷ

û
=

L[output]
L[input] (2.2)

2.2.2 Nonlinear systems

A system that cannot be described by linear equations, is nonlinear. Such systems
often require more sophisticated tools and methods to analyze and understand their
behavior. One of the key challenges in nonlinear systems theory is to identify and
classify the various types of nonlinearities that can arise in a system and to develop
methods for studying the behavior of these systems in di↵erent regimes. For a
nonlinear system, the state-space representation is:

ẋ = f(t, x, u) (2.3)

y = h(t, x, u) (2.4)

These two relations are generalized from the equations of a linear system (2.1), as
unspecified functions. In some cases, it is convenient to state the equations without
a specific presence of input u(t):

ẋ = f(t, x) (2.5)

This is called an unforced state equation, where input is not necessarily zero, but
can be expressed as a specific function of time, a given feedback function, or a
combination denoted u = �(t, x). By replacing u(t) with � in the general state
equation (2.3), it becomes unforced. Another special case is when the state equation
doesn’t depend explicitly on time:

ẋ = f(x) (2.6)

These are called time-invariant or autonomous systems, which are independent of
time shifts (Khalil 2015b). In proofs involving non-linear state-space representations,
it is often required that the function be piecewise continuous and locally Lipschitz
over the relevant time domain. For practical applications, it is enough to consider
that the derivative of a function is continuous and bounded. This is explained in
more detail in Appendix A, Section A.7.

14
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2.2.3 Observability

In order to develop an observer algorithm for a dynamical system, observability is
necessary. An observable system enables the estimation of an initial state variable in
finite time when the inputs and outputs are known. A linear time-invariant system
is observable if the following matrix has full column rank, and where n denotes the
number of state variables(Chen 2013):

O =

2

664

C
CA
...

CAn�1

3

775 (2.7)

2.3 Wave filtering

Signal filtering is the process of manipulating a signal to enhance its quality, ac-
curacy, or interpretability while reducing unwanted components such as noise or
interference. It involves applying a mathematical algorithm or filter to the input
signal to alter its frequency content or temporal characteristics. Di↵erent types of
filters, such as low-pass, high-pass, band-pass, or notch filters, are employed depend-
ing on the specific requirements of the application. The goal of wave filtering is to
remove the wave-frequent motions shown in figure 2.2 and further reconstruct an
estimate of the low-frequent motions based on noisy measurements of heading and
position (Fossen 2021).

Under normal operating conditions, the control of a surface body is concentrated
around the low-frequency motions, avoiding the correction of oscillatory motions
caused by first-order wave forces. This also has practical application, as adjustment
for wave-frequency motions would lead to wear and tear of thrusters, high fuel
consumption, and unacceptable operational conditions (Sorensen 2018).

When it comes to floating o↵shore wind turbines, low-frequency motions are of
interest when designing mooring systems since low-frequent motions can occur at
resonance frequencies and therefore trigger large motions and loads (Faltinsen 1990,
Chap.5). The first step of wave filtering is to remove the wave content with a
high frequency which is typically done using a low-pass filter. The Laplace transfer
function of a low-pass filter is given as:

H(s) =
Output

Input
= K

1

⌧s+ 1
(2.8)

where ⌧ is the time constant and K is the filter gain. The frequency response of the
filter can alternatively be written as:

H(s) =
!0

s+ !0
(2.9)
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For irregular waves, the filtering procedure is done by dividing the wave into in-
dividual sinusoidal components that act together. A notch filter can then be used
to extract a specific range of frequencies from the range of sinusoidal components.
When filtering the wave, this attenuation range will be based on a wave model,
which will be derived later and can for example be expressed as:

h(s) =
s2 + 2⇣!ns+ !2

n

(s+ !n)2
(2.10)

⇣ 2 (0, 1) controls the magnitude of the notch, while the notching frequency, !n is
chosen close or equal to the peak frequency of !0. If the single-notch filter does not
cover the whole wave frequency range, adding more notch filters in series will solve
this (Fossen 2021).

2.3.1 Why a NPO

NPO is an abbreviation for “Nonlinear Passive Observer”. The purpose of an ob-
server is to estimate immeasurable inputs which then can be used by a control
system. The NPO in this project is a model-based observer, which implies that for
it to function correctly it needs an accurate mathematical model of the system with
precise estimates of relevant characteristics such as mass, sti↵ness, and damping.
The algorithm is favored over a low-pass filter such as a Butterworth filter due to
its estimation capabilities with less phase distortion.

The state-of-the-art and most widely used observer is the Kalman filter design. One
of the drawbacks of this method and the motivation factor for the development of
the NPO is that the Kalman filter has a relatively large number of parameters.
These parameters must be tuned through trial and error, and the process is often
time-consuming. The NPO guarantees global convergence of all estimation errors
to zero, contrary to the Kalman filter.

For this study, an NPO proves to be very convenient, as it can also be used for
wave filtering. The filtering is obtained by using a cuto↵ frequency equal to the
wave spectrum peak frequency, resulting in a notch e↵ect. When the dominating
wave frequency is known and hence the motion frequency to be filtered, the observer
should produce a notch filter e↵ect in the frequency range of disturbances caused
by incident waves (Fossen 1998).

As with similar algorithms, the NPO can also be used for general state estimation
based on observer characteristics. If the model is adapted, it can be used in other
types of processes. The filtering e↵ect can also be used for station-keeping and
dynamic positioning of marine structures such as ships.

The nonlinearity of the observer is introduced by the rotation of the matrices and
due to the avoidance of linearization in the algorithm. Passivity theory ensures the
convergence of the observer. Only one set of observer gains is needed to cover the
entire state space which significantly simplifies the tuning parameters. Passivity also
implies that the phase of the error dynamics is limited by 90 degrees, which gives
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excellent stability properties (Fossen 2021). For the NPO, passivity is also used as
a tool for determining the filter cuto↵ frequency; see page 325 in (Fossen 2021) for
more.

2.4 Passivity

Passivity refers to the ability to not be able to produce energy. A passive device
is therefore only able to dissipate energy. For an input-output system, the system
will be passive if an increase in the output requires an increase in the input. Most
physical systems are passive. Passivity can be compromised by phase lags from
sensors, actuators, and communication delays.

A linear system is passive if all input-to-output trajectories satisfy the following
inequality for a given amount of mechanical energy represented by an arbitrary
scalar function, V (t) at time t with a continuous first derivative:

V (t)  V (0) +

Z
T

0

y>(⌧)u(⌧) d⌧ for all T > 0 (2.11)

V (0) represents the system at rest, and the integral represents the external energy
input, y>u. The integral will represent the energy going into the system; hence
the system will be passive for as long as it only consumes energy. This can also be
related to the rate of change for the energy in the system by this inequality(Fossen
1994):

u>(t)y(t) � V̇ (t) (2.12)

Alternatively, one can state that the system...

• is a passive mapping if u>y � 0, implying a lower bound for, V (t).

• will have no energy dissipation, hence be lossless if u>y = 0.

• is input strictly passive if u>y � ↵ · u> + � > 0, 8u 6= 0. Where ↵ > 0 and �
is a constant.

• is output strictly passive if u>y � ↵ · y> + � > 0, 8y 6= 0.

From this, we can also say that the system is intrinsically stable. In the frequency do-
main, we relate to passivity using the positive real condition, and for SISO-systems;
Re(G(j!)) > 0 at all frequencies.

Relating this to the properties of control systems, one can say that

• The inverse of a passive system is passive
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• The parallel interconnection of passive systems is passive

• The feedback interconnection of passive systems is passive

These properties will be useful later and show that, for a system with uncertain
or variable characteristics, it is desirable to use the passive feedback law to ensure
closed-loop stability (Mathworks n.d.).

2.4.0.1 The Passivity Theorem

Passivity can be used to demonstrate the stability of a plant, and the passivity
theorem states that the feedback connection of two passive subsystems is passive.
Applying more assumptions, the same plant can also be shown to have an asymptot-
ically stable equilibrium at its origin and that the input-output mapping is finite-gain
L2 stable. Passivity further yields that the phase of a positive real transfer function
cannot exceed 90, For a system with one transfer function that is strictly positive
real, the upper limit of the overall loop phase will be equal to 180 degrees.

Figure 2.3: Example of a negative feedback system

Figure 2.3 presents a negative feedback system consisting of the two transfer func-
tions, H1 and H2. Stability of the loop can be defined using either the Nyquist
criterion, requiring a loop phase less than 180 degrees or the small-gain theorem(see
Appendix A: Section A.8 for definition). Passivity applies to the same system if the
feedback connection of the two systems, H1 and H2, is passive; the overall system
will also be passive (Khalil 2015b).

From the passivity argument of the whole loop one can further state that the origin
is asymptotically stable when u is zero and the following conditions are met:

• H1 and H2 are strictly passive (the energy absorbed by the system is equal to
the change in stored energy when x(t) = 0)

• H1 and H2 are strictly passive output and zero-state observable (no solutions
can stay in a point other than the zero solution, x(t) = 0).

• One of H1 or H2 is strictly passive and the other is output strictly passive and
zero-state observable. A combination of the two conditions above
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If the storage functions V for both components are radially unbounded, the origin
will be globally asymptotically stable (Khalil 2015b).

2.5 Stability

The stability of a linear system is a property of its equilibrium point. An equilib-
rium of a dynamical system is stable if all solutions starting at nearby points stay
nearby; otherwise, it is unstable. Instability occurs when an initial state of the sys-
tem produces an unbounded response. Asymptotic stability adds to the definition
of stability the notion that the solution also approaches the equilibrium as time ap-
proaches infinity. This section leaves out stability theory for time-invariant systems
and focuses mainly on two relevant terms. The theory in this section is based upon
definitions from the book “Nonlinear Control” by Hassan K. Khalil (Khalil 2015b).

Input-output stable (IO): For some systems, it is convenient to treat the dy-
namics as a black box and only consider their input and output, this is especially
useful for systems with time delays or other elements which are di�cult to physically
model or represent in state-space. When describing such systems, it is often more
convenient to use norms.

The norm of a signal, ||u|| is used to measure and describe the magnitude of a signal.
A norm should satisfy the following properties(Khalil 2015b):

• The norm of a signal is zero i↵ the signal is identically zero and is strictly
positive otherwise

• Scaling a signal results in a corresponding scaling of the norm. ||au|| = |a|·||u||.

• The norm satisfies the triangle inequality, which states that the norm of a sum
is less than or equal to the sum of the two norms; ||u1 + u2||  ||u1||+ ||u2||.

Norms can be defined in terms of larger spaces of continuous functions, such as Lm

p
.

The subscript p is used to define the type of p-norm and its space, generally, a value
given as 1 < p < 1. For p = 2, the space will represent the inner product space of
the norm, u>u. The superscript m denotes the dimension of the norm signal u.

Lm

p
consists of all measurable functions u : R ! Rm that satisfies:

||u||Lp =

✓Z 1

0

||u(t)||p dt
◆1/p

< 1 (2.13)

Using this definition, input-output stability can then be defined by the general
definition of L stability, which is given by introducing a mapping operator, H that
specifies y in terms of u.

The mapping H, is L stable if there exists a gain function, g defined for all positive x
values and a non-negative constant � such that the following inequality is satisfied:
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||(Hu)⌧ ||L  g(||u⌧ ||L) + � (2.14)

for all values of u belonging to a L space and a ⌧ defined for positive values of x. It
can further be said to be finite-gain L stable for two non-negative constants � and
� such that:

||(Hu)⌧ ||L  �(||u⌧ ||L) + � (2.15)

for the same conditions. � is the bias term for the system with a gain less than or
equal to the value of �. From definition 6.2 in (Khalil 2015b). If the system can be
said to be L1 then for every bounded input, u(t), the output Hu(t) is also bounded.

By further studying stability theory, it becomes apparent that many of the properties
are complementary, which will be useful when later defining Lyapunov stability for
a nonlinear system.

Input-to-state stability (ISS): limits unbounded growth and instability for sys-
tems a↵ected by both internal dynamics and external inputs. In order for a system
to be ISS-stable, there should exist a class of functions such that for any given time
and initial state, a bounded input will produce a solution that satisfies the following
inequality:

||x(t)||  �(||x(t0)||, t� t0) + �(sup
t0⌧t

||u(⌧)||), 8t � t0 (2.16)

This inequality guarantees that the state will be bounded for any bounded input.
In order for the system response, x(t) to be smaller than the function � and such
that the function �, defined for an upper bounded input, u two new requirements
are introduced. The function � should be of class KL and � should be of class K.

• A function belongs to the K-class if it is a scalar continuous function that is
strictly increasing and defined as 0 in the origin. One can also define a class
K as a gain function for use in control design.

• A continuous scalar function �(r, s) belongs to the KL class if the two depend-
ent variables have the following relation. For a fixed s, the function maps to
the class K when r varies. For a fixed r, the function decreases with respect
to s so that �(r, s) ! 0 is as s ! 1.

This follows the definition of time-varying systems by (Khalil 2015b). These two
classes of functions can also be used to define the other types of stability for time-
varying systems. Input-to-state stability will make the origin of an unforced system
globally uniformly asymptotically stable. The Lyapunov theorem leads to input-to-
state stability in a system, as stated in (Khalil 2015b).

It can be challenging to understand how the stability classifications listed above
apply to real-world data. However, there are techniques that enable graphical rep-
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resentation and assessment of a system’s stability. The Nyquist criterion for stability
can be used for this, explained in Section A.6.

2.5.1 Lyapunov theory

The Lyapunov theory is an extended combination of input-output stability and
passivity. The theory is applicable to both autonomous and non-autonomous sys-
tems. The main advantage of Lyapunov is that it enables the study of stability
without having to solve the state equations, which is very useful for the stability
assessment of nonlinear systems.

Lyapunov theory is applied by defining a Lyapunov function, which usually rep-
resents the energy of the system. This function can also be used for plotting the
trajectories of the systems, which enables visual interpretation of the theory.

There are two methods to solve a Lyapunov equation, a direct method meant for
time-independent autonomous systems and an indirect method to cover the general
case (Fossen 1994). The Lyapunov direct method for autonomous systems is defined
given a local Lipschitz function ẋ = f(x), and a scalar Lyapunov function V (x)
defined for the region ⌦ which also satisfies the following conditions:

1. V (x) = 0 when x = xeq

2. V (x) > 0 for all x in ⌦ except x = xeq

3. rV (x) · f(x)  0 for all x in ⌦ =) xeq is stable

4. If also: V̇ (x) < 0 for all x in ⌦ (except xeq) =) xeq is Locally Asymptotically
Stable (LAS)

5. If also: ⌦ = Rn (whole state space) and V (x) is radially unbounded, ||x|| !
1 =) V (x) ! 1, then xeq is Gloablly Asymptotically Stable (GAS)

Condition 1 and 2 imply that the Lyapunov function is positive definite and condi-
tion 3 states that the derivative is negative definite.

For a more intuitive and visual representation of the theorem, one can use Lyapunov
surfaces to describe the stability. An example of such surfaces is shown for an
arbitrary Lyapunov function in figure 2.4.
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Figure 2.4: Level surfaces of a Lyapunov function (Hossain et al. 2017)

If a trajectory crosses a Lyapunov surface, given as V (x) = ki for i = {1, 2, 3}, it
will be entrapped by the set belonging to the Lyapunov function according to the
condition; V̇  0. For most cases, this surface will converge towards the origin, and
in all cases, it is able to contain the origin within a ball (Khalil 2015b).

The convenience of this theorem is that it can be applied without having to solve
the di↵erential equation. The main drawback is that it can be di�cult to find the
Lyapunov functions as there is no systematic approach to deriving them (Khalil
2015b).

2.5.1.1 Lyapunov Stability Theorem for non-autonomous systems

The main di↵erence when assessing the Lyapunov stability of a nonautonomous
system instead of an autonomous system is that, in addition to the previously stated
conditions for the Lyapunov function, it is now also demanded that the functions
must be decrescent due to the added time dependence:

• V (x, t)  V0(x) 8t � 0 where V0(x) > 0

If the function fulfills all these conditions, an equilibrium of the non-autonomous
system satisfying f(x⇤, t) = 0 will be globally asymptotically stable (GAS) (Fossen
1994).

2.6 Formulation of NPO

Based on the above-mentioned theory, the NPO can be derived considering the
nonlinear low-frequency six-degree of freedom (6-DOF) body-fixed coupled equations
model for a marine craft as defined by Fossen (Chapter 2, Fossen 2021)

⌘̇ = J✓(⌘)⌫ (2.17a)

M ⌫̇ +C(⌫)⌫ +D(⌫)⌫ + g(⌘)+ g0 = ⌧ + ⌧wind + ⌧wave (2.17b)
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where both ⌘, ⌫ and their relationship have been defined in Section A.3. M is the
rigid-body mass matrix which also includes the added mass of the structure. C is
the added mass, rigid-body Coriolis, and centripetal matrix caused by rotation of
the body position with respect to the inertial frame. D is the damping matrix of
the system. g(⌘) and g0 are to the hydrostatic forces and restoring forces acting on
the body. The terms on the right side of the equation are the control inputs, ⌧ and
environmental forces from wind, ⌧wind and waves, ⌧wave.

2.6.1 System model

From the system equations, a model can be derived by applying the following as-
sumptions:

• Structural symmetries for port and starboard of the object: M = M> > 0
and D > 0, where the added mass terms are independent of wave frequency
such that Ṁ = 0. A stationary mass matrix is valid due to the fact that
motions are assumed small and therefore not frequency-dependent.

• Zero-mean Gaussian white noise driven bias w = 0 and measurements v =
0.

• Small wave-induced yaw disturbance yields, less than 5 degrees: R( (t)) =
R( ) = R(y3), y3 =  +  w ⇡  

This yields a simplified 3-DOF system model which can be written with respect to
an earth-fixed frame using the following equations.

⇠̇ = Aw⇠ (2.18a)

⌘̇ = R( )⌫ (2.18b)

ḃ = �T�1b (2.18c)

M ⌫̇ = �D⌫ +R>( )b+ ⌧ + ⌧wind (2.18d)

y = ⌘ + ⌘w = ⌘ +Cw⇠ (2.18e)

In the above equations, the notation, ⇠ is introduced. This is a state vector con-
taining perturbations with respect to the equilibrium state of the system such that
⌘w = Cw⇠ models the wave-frequent response. b is the bias term, and T is a matrix

23



CHAPTER 2. NONLINEAR PASSIVE OBSERVER THEORY 24

that holds the positive bias time constants. Alternately, equations 2.18a, 2.18b and
2.18e can be represented using the state-space form:

⌘̇0 = A0⌘0 +B0R( )⌫ (2.19a)

y = C0⌘0 (2.19b)

where the A0 matrix holds the value for Aw and the C0 matrix holds Cw (Fossen
2021). The values of Aw and Cw are selected based on resonance frequencies, damp-
ing ratios, and the peak period of the sea state (T. Sauder 2021). y is the measured
position and the position vector, ⌘0 is defined as

⌘̂0 =


⇠̂>

⌘̂>

�
(2.20)

2.6.2 Observer equations

The observer equations are designed to copy the dynamics of the system and result
in 15 ordinary di↵erential equations.

˙̂⇠ = Aw⇠̂ +K1(!0)ỹ (2.21a)

˙̂⌘ = R( )⌫̂ +K2ỹ (2.21b)

˙̂b = �T�1b̂+K3ỹ (2.21c)

M ˙̂⌫ = �D⌫̂ +R>( )b̂+ ⌧ + ⌧wind +R>( )K4ỹ (2.21d)

ŷ = ⌘̂ +Cw⇠̂ (2.21e)

Where ỹ = y � ŷ is the estimation error. Note that some literature uses another
notation for K3 and K4 to put emphasis on its relation to the Lyapunov analysis.
K3 =

1
�
⇤ and K4 =

1
�
K. � is a gain scaling parameter and ⇤, K are gain matrices

(Fossen 1998).

Alternately, the equations listed above can be expressed in a state-space form:

˙̂⌘0 = A0⌘̂0 +B0R( )⌫̂ +K0(!0)ỹ (2.22a)

ŷ = C0⌘̂0 (2.22b)
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In this case, the gain vector is expressed as:

K0(!0) =


K1(!0)
K2

�
(2.23)

The system is represented in a block diagram in Figure 2.5.

Figure 2.5: Block diagram of the NPO (Fossen 2021).

2.6.2.1 Observer estimation errors

Further, the error dynamics can be defined by establishing the following estimation
errors:

V elocity : ⌫̃ = ⌫ � ⌫̂ (2.24a)

Bias : b̃ = b� b̂ (2.24b)

Position : ⌘̃0 = ⌘0 � ⌘̂0 (2.24c)

Using these relations, some of the observer equations can be restated as follows:

˙̃⌘0 = [A0 �K0(!0)C0]⌘̃0 +B0R( )⌫̃ (2.25a)

˙̃b = �T�1b̃�K3ỹ (2.25b)

The dynamics of the velocity estimation error:

M ˙̃⌫ = �D⌫̃ +R>( )b̃�R>( )K4ỹ (2.26)
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By further defining a variable, x̃ = [⌘̃0 , b̃]> and with: z̃ = K4ỹ � b̃ the error
dynamics can be restated as follows:

˙̃x = Ax̃+BR( )⌫̃ (2.27a)

z̃ = Cx̃ (2.27b)

Using the terms above, two new error terms can be introduced as ✏z = �R>(t)z̃ and
✏z = R(t)⌫̃. Consult chapter 11 in Fossen 2021 for the formulation of the matrices.
The advantage of this formulation is that one can now rewrite the block diagram in
figure 2.5 which allows a more intuitive understanding of the system. This is first
done by rescheduling and grouping the block diagram as follows in figure 2.6.

Figure 2.6: Block diagram of error dynamics to NPO(Fig.4 in Fossen 1998)

which is further simplified in the following figure 2.7:

Figure 2.7: Passive block diagram configuration of the NPO(Fig. 7 in Fossen 1998)

Introducing linear relations and a new state vector enables another formulation of
the observer error system consisting of two linear blocks, H1 and H2 (Fossen 2021).

H1 : M ˙̃⌫ = �D⌫̃ + ✏z (2.28a)

H21 : ˙̃x = Ax̃+B✏⌫ (2.28b)
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H22 : ˙̃z = Cx̃ (2.28c)

Given appropriate terms of H1 and H2, one can establish that the observer fulfills
requirements for both passivity and stability. This will be explained in more detail
in the following sections. The derivations of the above equations were all derived by
Thor I. Fossen in his papers: (Fossen 2021, Fossen 1998 and Fossen 1994).

2.6.3 Convergence of the NPO

The word convergence in the context of control system theory relates to stability
analysis and the fact that for a dynamical system it is desired that the error converges
to zero. The stability theory derived earlier in the report will now be applied to the
system model to prove the convergence of the observer.

The first step is to show that the velocity error dynamics given by H1 in Equa-
tion 2.28 is strictly passive, this can be done by defining a positive definite storage
function, S. The physical explanation of this is that energy is dissipated due to
hydrodynamic damping.

S =
1

2
⌫̃>M ⌫̃ (2.29)

Di↵erentiating this storage function with respect to ⌫̃ and substituting for the error
signal, ✏z yields:

✏>
z
⌫̃ = Ṡ +

1

2
⌫̃>(D +D>)⌫̃ (2.30)

This equation states that the block H1 is strictly passive for the mapping from ✏z to
⌫̃. In addition, the block H2 can be shown to be passive by applying the Kalman-
Yakubovich-Popov (KYP) lemma. This lemma states that the square transfer func-
tion matrix, Z(s) = C(sI � A)�1B is strictly positive real, given the following
equations.

PA+A>P = �Q (2.31)

B>P = C (2.32)

These relations will hold under the assumption that the A matrix is Hurwitz i.e. the
eigenvalues should all have negative real parts. In addition to the pair of matrices
(A,B) being controllable and (A,C) being observable. Then the matrices P and
Q should be defined such that they are positive definite, satisfying the relations:
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P = P> (2.33a)

Q = Q> (2.33b)

This will ensure that the transfer function H2 and its mapping, ✏⌫ ! z̃ is passive
given that the set of matrices (A, B, C) can be defined as strictly positive real
(SPR).

2.6.3.1 Observer stability properties

After having established that block H1 can be strictly passive and H2 can be made
passive, it is now time to establish that the plant is stable. This is done by defining
the Lyapunov function of the observer as follows:

Vobs = ⌫̃>M ⌫̃ + x̃>
0 P x̃0 > 0, 8⌫̃, x̃0 6= 0 (2.34)

which is a passive function for the positive constant matrix, P = P> > 0. Applying
a time di↵erentiation of the Lyapunov candidate along the trajectories of ⌫̃ and x̃0

yields the following:

V̇obs = �⌫̃>(D> +D)⌫̃ + x̃>
0 (PA0 +A>

0 P )x̃0,

+ 2⌫̃>R>( )B>
0 P x̃0 � 2⌫̃>R>( )z̃0

(2.35)

Defining the variable, Q1 as:

D> +D = Q1 > 0 (2.36)

And demanding that P satisfies the Lyapunov equation:

PA0 +A>
0 P = �Q2 < 0 (2.37)

Where both matrices, Q1,Q2 are positive definite. The two last terms in the equa-
tion of the derivative (2.35) will be canceled by stating that a new constant, C0 is
given as:

C0 = B>
0 P (2.38)

These definitions result in a restatement of the derivative:

V̇obs = �⌫̃>Q1⌫̃ + x̃>
0 Q2 < 0, 8⌫̃, x̃0 6= 0 (2.39)

which satisfies all assumptions made for a function to be Lyapunov stable and both
⌫̃ and x̃0 = [⇠̃>, ⌫̃>, b̃>]> will converge exponentially towards zero, making the
function Globally Exponentially Stable (GES) (Marius F. Aarset 1998).
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2.7 Involved tuning parameters and their mean-
ing

Previously in this report, the blocks H1 and H2 have been defined using the KYP
lemma and choosing a storage function that solves the Lyapunov equations. In order
for these blocks to satisfy the established assumptions and ensure passivity as well
as stability for the observer, proper gains have to be chosen. The full demonstration
and derivation of decoupled transfer functions are found in Fossen (2021). This
thesis focuses on the main results of this derivation.

The observer gain matrices are defined in such a way that the error mapping is
strictly positive real (SPR). Fossen suggests the following gains based on the de-
coupled system in surge, sway and yaw implying that the gain matrices should have
a diagonal structure:

K1(!0) =

2

6666664

k1 0 0
0 k2 0
0 0 k3
k4 0 0
0 k5 0
0 0 k6

3

7777775
(2.40)

with the corresponding values for the coe�cients:

k1,2,3 = �2(⇣ni � ⇣i)
!ci

!i

(2.41a)

k4,5,6 = 2!i(⇣ni � ⇣i) (2.41b)

As seen from the equations above, K1 is dependent on a cuto↵ frequency, !ci and a
damping value, ⇣i. This gain controls the wave-estimator part of the observer and
produces the estimate of the wave position, ⌘w. Choosing the wrong values of these
two will cause the observer to be unable to separate the wave frequency from the
rest of the signal.

K2 =

2

4
k7 0 0
0 k8 0
0 0 k9

3

5 (2.42)

k7,8,9 = !ci

From the equation above, one can see that K2 also relates to the filter properties of
the observer, as !ci denotes the cuto↵ frequency. K2 is also referred to as “position
injection” indicating that adjusting this parameter will a↵ect the position estimates.
This can also be seen from Figure 2.5 which also shows the relation between K3 and
the bias estimate in the observer.
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K3 = 0.1 ·K4 (2.43)

K4 = diag(M ) =

2

4
m1 0 0
0 m2 0
0 0 m3

3

5 (2.44)

K4, also called “velocity injection” can be chosen based on the masses of the system
and relates to the velocity estimates of the system. In all cases, increasing the gain
puts more emphasis on the related characteristics of the system.

Figure 2.8: Bode plot of wave filtering(Fossen 1998)

Figure 2.8 shows a bode plot of the transfer functions for a decoupled marine system
in surge with an incoming wave spectrum. The figure also displays the relative
di↵erence between the bias time constants, Ti, the relation K3/K4 = �i/Ki, the
dominating wave frequency in the given wave spectrum, !oi and finally the cuto↵
frequency, !ci. Fossen (2021) states that if the relation;

1

Ti

<<
K3i

K4i
< !oi < !ci, i 2 (1, 3) (2.45)

between the tuning parameters is fulfilled, the Kalman-Yakubovich-Popov (KYP)
lemma and Strictly Positive Real (SPR) requirement will also be satisfied.
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2.7.1 Bias modelling

The bias is caused by the slowly-varying environmental disturbances, i.e. second
order wave drift loads, currents, wind, and unmodeled dynamics. These are, in
turn, usually modeled as a Wiener process (Fossen 2021). For this application, the
bias forces in surge, sway, and yaw are assumed to be slowly varying (Fossen 1998).

By using a simplified environmental model, wave frequency motions and bias states
can be neglected (Fossen 1998). Marius F. Aarset (1998) further extends this to
the general case by including a dynamic model for wave filtering and bias state
estimation. The NPO will, contrary to a linearized or extended Kalman filter,
guarantee that the bias state estimation will converge toward zero in addition to all
estimation errors (Fossen 2021). The bias model from the NPO is given by:

˙̂b = �T̂�1b̂+K3ỹ (2.46)

where the first term includes low-pass filtering for T > 0 instead of just integrating
the white noise term, K3ỹ. This ensures exponential stability, whereas the model
without a low-pass term only will give asymptotic stability (Fossen 2021). In a DP
system, an integral action is used to counteract the biased terms.
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Chapter 3
Simulation-based testing and verification

study

3.0.1 Verification studies

To ensure good estimates and correct calculations, modeling should be combined
with experiments. The common practice when designing and testing complex sys-
tems is to use a model-based design approach or a v-model design. One key benefit
of this method is its ability to enable abstraction, automation, collaboration, sim-
ulation, and analysis on multiple levels. The figure below tries to encapsulate the
key elements of both methods.

Figure 3.1: V-model for model-based design

In a step-wise approach to testing and verification, the process usually begins with
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the conception of a desired product; in this case an experimental setup of an o↵shore
wind turbine. The development of this concept can be done using model-in-the-loop
testing (MIL), where controller logic is tested on a simulated model of the plant.
This was done in the preliminary project, where the NPO was tested and verified
in SIMULINK using synthetic signals.

The next step is software-in-the-loop (SIL) testing, the main focus of this thesis.
Controller logic is replaced by a controller block to verify hardware conversion, in
this case, done by extracting the NPO as an FMU. This increases the level of fidelity
compared to MIL. Further, the system behavior is evaluated in the simulated envir-
onment from SIMA while assessing functionality and performance without physical
hardware.

Before converting to the use of hardware in the testing, a possible intermediate
step can be taken, this is known as processor-in-the-loop (PIL), and can then be
introduced to test whether the processor is capable of running the controller logic.

Hardware-in-the-loop (HIL) testing is conducted by creating a physical control sys-
tem and running simulations with it. The HIL simulator operates in real-time and
remains in closed-loop synchronization with the control computer system’s hard-
ware and software. Its purpose is to facilitate e�cient and realistic testing of the
control system’s performance, functionality, and ability to handle failures (Skjetne
and Egeland 2005). Communication routines, like UDP, can be utilized to verify
communication channels and the I/O interface. Once the HIL testing has given
satisfying results, the system is ready to be tested using only hardware components.
For this thesis, the complete hardware test conducted in an ocean basin will also be
the final product in Figure 3.1.

The level of process development can be tracked using a software-to-hardware (SW-
to-HW) ratio. In this case, the SW-to-HW ratio represents the extreme where the
system is a pure simulation study, in the SIL phase. This eliminates the requirement
for the system to run in real-time, limiting the scope of operation. However since the
whole process is simulated, it is important to consider simulator functionality, such
as failure modes and accuracy (Skjetne and Egeland 2005). Another advantage of
SIL comes from the absence of physical hardware components, making it more more
accessible and allowing testing at an earlier stage in the design and development
process of a system.

For further discussions, it is helpful to di↵erentiate between the three terms valid-
ation, verification, and calibration. Validation refers to the study of whether the
model at hand solves the correct equations for its intended purpose. Verification
seeks to discover if the model is solving its respective equations correctly. Calibra-
tion is about finding the parameters that fit best in a theoretical model with a given
structure. The rest of this thesis is focused on verification and calibration.
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3.1 Software-in-the-loop testing and method

As already mentioned, SIL testing evaluates software systems without physical hard-
ware. It simulates inputs and outputs, ensuring software performs as expected. This
enables early testing and saves time and resources as it removes the risk of hard-
ware damage. It detects defects, verifies behavior, and optimizes performance. A
thorough understanding of system components and careful design of the simulation
environment is crucial for SIL testing in hybrid systems.

In this project, the controller will be tested in simulation with data simulated from
the virtual environment in SIMA (Simulation Workbench for Marine Applications).
An overview of the configuration of the two di↵erent simulation software is displayed
below. For the physical experimental setup, HLCC will send tension commands in
model scale instead of winch angles to SIMA.

Figure 3.2: Software-in-the-loop system overview

3.2 SIMA

SIMA, developed by SINTEF, is a dynamic simulation platform for the modeling,
optimization, and analysis of marine systems. SIMA imports files from hydrodynam-
ical software such as WAMIT, RIFLEX, SIMO, and SESAM. RIFLEX is focused
on load, response, fatigue, and probabilistic analysis of flexible elements and optim-
ization design for risers in o↵shore oil and gas production. SIMO is a tool for the
analysis of static and dynamic responses for o↵shore wind turbines, it is also useful
for structural integrity and reliability tests.

In this project, SIMA is used to simulate the response of the substructure to the
INO WINDMOOR 12MW wind turbine, showcased in Figure 3.3. The output from
this simulation is sent to HLCC with the model of the NPO. As this testing is
preliminary to physical experiments and intended as verification studies, the focus
of the loading conditions will be around the intended conditions for physical tests.
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Figure 3.3: Overview of example model of INO12 MW SIMA

3.2.1 Simulation model description

Figure 3.3 is an example model of the INO WINDMOOR 12MW turbine that can
be found in SIMA. The model consists of a turbine, tower, blades, and mooring
system modeled using RIFLEX elements while the floater has been modeled in
SIMO. Dynamic analysis of RIFLEX elements is often more resource-demanding,
than SIMO elements and is likely to cause longer run time. To ensure that the
simulation is both feasible and e�cient, it was deemed necessary to simplify the
model.

This thesis is mainly interested in the hydrodynamic response of the floating sub-
structure and not the turret e↵ects. Experimentation with the model and gradual
removal of the dynamic RIFLEX components deemed faster simulations with fewer
dynamic elements. Comparisons between the simplified and full model have been
verified in decay tests and modifications to compensate for the removed tower and
blade bending moments and sti↵ness were applied. This work was carried out by
Vishnu as a part of his doctoral research. With little di↵erence in dynamic response
and significantly faster simulation times, it was decided to continue simulations with
only the SIMO body of the floater. A close-up visualization and an overview of the
full model are shown in figures 3.4 and 3.5.

Figure 3.4: Detailed floater model in
SIMA

Figure 3.5: Full SIMO model overview
with actuation lines
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3.2.2 Deviations between project report and SIMA model

There are some di↵erences between the project report describing the full model
of INO WINDMOOR 12MW Souza (2021) and the model used for simulations in
SIMA. The most noticeable are the masses of the substructure.

Souza (2021) presents a mass of 14.176 · 106 kg, whereas the model in SIMA has
a mass of 13.99 · 106 kg. This gives a total di↵erence of 186 kg. Not the biggest
di↵erence, but worth noting. Other relevant deviations are listed in the table below.

Unit Souza 2021 SIMA Di↵erence Percentage of report
Mass 14.176 · 106 13.99 · 106 186 · 103 98.69%
Ixx 2.7292 · 1010 2.7328 · 1010 �3.6 · 107 100.13%
Iyy 2.7205 · 1010 2.7064 · 1010 141 · 106 99.48%
Izz 1.2985 · 1010 1.2968 · 1010 17 · 106 99.87%

Table 3.1: Di↵erences between values in Souza and SIMA

3.2.3 Linear and quadratic damping

An important di↵erence with this experimental setup compared to the one in the
o✏ine simulations is the introduction of time-varying forces in the model. The
o✏ine simulations were conducted using sinusoidal synthetic inputs and without any
quadratic damping. The introduction of this force is important as it is relatively
dominant in terms of magnitude when compared to linear damping. Linear damping
in the model comes from the linear damping matrix and viscous e↵ects whereas the
nonlinear and quadratic damping is caused by the terms from Morison’s equation,
more detailed descriptions and derivations of these terms are given in chapter A,
Section A.2.

Degree of freedom Linear damping coe�cient Unit
Surge, Dl1 1442.2 [Ns/m]
Sway, Dl2 1442.2 [Ns/m]
Yaw, Dl6 2.61 · 106 [Nms/rad]

Table 3.2: Linear damping matrix values from SIMA

Since the NPO is a model-based observer algorithm, it will be a↵ected by the intro-
duction of this new force. The result will be a di↵erent behavior as it will experience
more forces that are not directly explained by the model. This will be observable as
an increase in the bias force calculated by the observer. The first goal of the simu-
lations is therefore to identify this e↵ect on the results and then adjust the model
with respect to the new input. This thesis neglects interactions between columns in
the model and assumes that the force in surge and sway then will be equal.
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3.2.4 Wave simulation

The main reason why SIMA is chosen as the simulation environment for this type
of testing is its ability to generate realistic wave series and the following response of
a body exposed to these waves. One goal of this report is to simulate the behavior
of a model in an experimental setup before conducting physical experiments. It is
therefore advantageous to be able to replicate the wave conditions which will be
applied in the physical setup.

The generation of wave series in this thesis is done using a three-parameter JON-
SWAP (Joint North Sea Wave Project) spectrum in SIMA. The JONSWAP spec-
trum is selected based on its ability to provide a simple, yet e↵ective description
of the statistical properties of ocean waves. This is essential for predicting wave
behavior and designing structures that can withstand the forces of waves. Listed
below are the three parameters and their physical definition.

• Significant wave height (Hs): The average height of the one-third highest waves
in a wave record.

• Peak wave period (Tp): The wave period at which the energy density is highest
in the wave spectrum.

• Peak enhancement factor (�): A dimensionless parameter that describes the
ratio of the energy density at the peak frequency to the energy density at the
spectral tail.

Unless stated otherwise, the simulations in this thesis have been conducted with a
significant wave height of 6 meters, a peak period of 7.55 seconds, and an enhance-
ment factor of 3.3. Figure 3.6 shows the resulting JONSWAP spectrum for these
conditions.

Figure 3.6: JONSWAP wave spectrum from SIMA for Hs = 6 and Tp = 7.55

When conducting physical tests on floating structures like this turbine it is common
practice to categorize environmental loads for comparison of simulation scenarios
with varying waves. This can be done by establishing an analogy to wave steepness
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of regular waves, which refers to the ratio between the height and length of the
wave. In general, waves with higher steepness are more powerful and can cause
more damage than waves with lower steepness. It also describes how much energy
the wave contains and its behaviour as it propagates through the water.

We define steepness by the following relation:

� =
Hs

T 2
p

(3.1)

The initial simulation state has a steepness factor of 0.11. Additionally, seven wave
conditions have been divided into two groups of constant steepness and will be used
in simulation and experimentation. The parameters of the first group are given:

Condition Significant wave height Peak period Steepness
[-] (Hs) [m] (Tp) [s] (�) [-]
1 3.75 7 0.08
2 6.19 9 0.08
3 11.00 12 0.08
4 14.97 14 0.08

Table 3.3: First set of sea-states with similar steepness

The second group:

Condition Significant wave height Peak period Steepness
[-] (Hs) [m] (Tp) [s] (�) [-]
1 2.00 7 0.04
2 3.74 9 0.05
3 6.19 12 0.04

Table 3.4: Second set of sea-states with similar steepness

3.2.5 SIMA in SIL setup

Figure 3.7 illustrates the details of the “SIMA Model block” previously shown in in
Figure 3.2. This figure shows that the SIMA model receives a command in terms
of winch angles from HLCC and provides measurements of position and applied
forces among others to HLCC. The signal received by the HLCC component is sent
through a JAVA-control block which translates the signal into readable input for
SIMA. The winch angles are sent to the modeled winches in SIMA, each responsible
for actuating the desired force to the fixed elongation couplings and further onto the
floater model.
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Figure 3.7: Detailed SIMA model for software-in-the-loop system

SIMA then measures the positional data, containing information on the position
and orientation of the floater, and sends it as output through the JAVA-control to
the HLCC software.

The winches in SIMA have been modeled using a “generic external controller sys-
tem”. This system receives signals from the JAVA control and controls the winches
by measuring the position of the floater and lines.

3.3 HLCC

HydroLab Centralized Control (HLCC) is a system designed for remote monitoring
and control of various aspects in a hydrodynamic laboratory using a centralized
controller. This typically includes real-time monitoring of experiments, data acquis-
ition and analysis, instrument control, and system administration tasks. Having a
single point of access for all users reduces the need for manual intervention, which
can increase the e�ciency and accuracy of experiments. The software builds on the
National Instruments (NI) framework called LabVIEW (Laboratory Virtual Instru-
ment Engineering Workbench), a graphical programming language widely used in
measurement and automation applications. HLCC is the other module in Figure 3.2.
The figure resembles Figure 1.4 and portrays the subroutines of HLCC which will
be explained in further detail later.
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Figure 3.8: HLCC divided into FMUs

Modules for monitoring and controlling aspects of the experiments are loaded into
HLCC using “Functional Mockup Units” (FMUs). This is a standardized format
based on the “Functional Mock-up Interface” (FMI), supporting both Model Ex-
change and Co-Simulation (Functional Mock-up Interface (FMI) Standard website
n.d.). The compatibility of FMUs enables them to be used in a wide range of
applications and streamlines the process of model exchange and integration.

HLCC utilizes DLL subroutines to run the FMUs. DLL stands for ”Dynamic Link
Library”. It is a type of file that contains code and data that can be used by
multiple programs at the same time. When an application needs to use a DLL, it
can dynamically load the DLL into its memory space at runtime. This allows the
application to access the functions and data provided by the DLL, without having
to include the entire code of the DLL within its own executable file. This makes the
application more e�cient and easier to maintain. Another advantage of DLLs is that
they can be updated independently of the applications that use them. This means
that improvements can be made to a DLL, without requiring the application to be
updated or recompiled (Microsoft Learn - Troubleshoot Windows Client: Dynamic
Link Library n.d.).

3.3.1 Using HLCC for simulations

When first launching the application, the user is asked to appoint a project number
and what type of input is desired to use for the experiment. The options, in this
case, include input as DLLs, a signal-stream enabling the reading of data from a .txt
file as input, and SIMA-simulated signals by the use of SIMA-Hybrid. In Figure 3.9,
all the relevant modules for this project are shown. Each DLL is denoted with DLL
in addition to the name of the FMU which is loaded.
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Figure 3.9: HLCC initialization

In the pictures below, the experimental setup in HLCC for this thesis is showcased.
Figure 3.10a shows the configuration of the observer algorithm as a DLL in HLCC.
The top field shows the path from which the file is imported, and below there are
four buttons that make it possible to start the simulation and reload it with or
without changes made to the input parameters. The close button removes the FMU
from the DLL.

(a) Configuration window in HLCC (b) Input and output in HLCC

Figure 3.10: Overview of a DLL in HLCC

Further down in the picture, the current status is shown. This field will show an error
message if it occurs. The DLL-defined period is the set time step of the simulation
and the DLL running period refers to the sampling time for the relevant DLL. HLCC
is also equipped with an option for synchronizing the run-time of the respective DLL
with the input from another DLL or the internal clock of the computer. This is useful
for experiments where the inputs of various DLLs are dependent on each other.
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At the bottom of the figure, the required input parameters can be assigned to the
given input streams. Below the inports selector, one can find a button for saving
the output. This should be pressed for all the modules one wishes to save input
and output. After assigning inports, the pane to the right, Figure 3.10b displays all
available inputs and outputs for the loaded DLL module, in this case, the wave- and
low-frequent components of the incoming signal. Additionally, the real-time section
also allows the plotting of the signal in a graph generator implemented in HLCC,
which can be seen in Figure 3.11b.

(a) Parameteres window in HLCC (b) Plotting function window in HLCC

Figure 3.11: Overview of a DLL in HLCC

Figure 3.11a contains all the given parameters for the given model. This section also
allows modification of these parameters, which can be reloaded for each simulation
or changed back to initial values in the configuration panel. The final section of the
DLL object in HLCC is shown in Figure 3.11b, which shows the values selected for
plotting in real-time, as mentioned previously.

3.3.2 SIMA-Hybrid

The interface that enables connection from HLCC to SIMA is a DLL called SIMA-
Hybrid. To establish a connection between SIMA and HLCC, a local area network is
employed, using the standard IPv4 loopback tra�c protocol address, 127.0.0.1. Ad-
ditionally, port numbers for transmitting (TX) and receiving (RX) data packets are
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assigned values to ensure proper transmission between the two software. The values
can be seen implemented in Figure 3.12. Once a valid connection is established,
data flow during simulation is controlled by the JAVA control from Figure 3.7.

Information exchange between the two software is enabled through the use of the
User Datagram Protocol (UDP), a fundamental protocol within the Internet Pro-
tocol (IP) suite. UDP does not guarantee reliable packet delivery and lacks error
checking, flow control, or congestion control mechanisms. However, it is a fast and
lightweight protocol, making it suitable for real-time communication applications
that require high throughput and low latency, such as the one in question.

Figure 3.12: UDP settings in SIMA-HYBRID, HLCC

Figure 3.13 shows the rest of the interface in SIMA-HYBRID. To the top left,
one can see that SIMA-Hybrid subscribes values from the winch controller. In the
section below, with signals to remote, one can see that the module sends 7 values
to SIMA, these include the commanded angles for all six winches as well as the
current simulation time in HLCC. The top right has various options for when data
should be sent to SIMA, in this configuration it is sent with a fixed rate of 10 ms. In
the bottom right, the values which HLCC receives from SIMA are shown with their
real-time value during simulation in the RX-values column. As with the signals from
the remote, an additional time signal is sent from SIMA. These two-time signals are
compared in the JAVA control block to ensure that the simulation times in both
environments correspond to each other.
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Figure 3.13: Interface of SIMA-HYBRID in HLCC

3.3.2.1 Subroutines in SIMA-Hybrid and synchronization

Supporting the process within SIMA-HYBRID are two DLLs; the CoordinateTrans-
form.fmu and the ComputeLoad.fmu. The CoordinateTransform.fmu takes the po-
sitional data from SIMA and applies the theory in Section A.3 in order to rotate
the positional input to the correct reference frame, in this case, the body frame.
ComputeLoad.fmu is not essential for the setup to work as it only serves as a quality
check that the applied and measured line tension matches. The updated signals are
then ready to be sent into the remaining loop of the HLCC, shown in Figure 3.8.

Figure 3.14: SIMA-HYBRID block with subroutines

As mentioned earlier in this section and showcased in Figure 3.10a and 3.13, it
is possible to subscribe values from another DLL when running simulations. In
order to synchronize the simulation with respect to the schematic block diagram in
Figure 3.8 the following synchronization is applied in the following DLLs in HLCC:

• CoordinateTransform.fmu is synced with the internal clock of the computer

• ComputeLoad.fmu is synced with CoordinateTransform.fmu, which can altern-
atively be synced with the internal clock as it is not as important or a part of
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the loop in the figure.

• Observer.fmu is also synced with CoordinateTransform.fmu

• Mooring.fmu is synced after observer.fmu

• Allocation.fmu synced after mooring.fmu

• WinchTension.fmu synced after allocation, ensuring the most updated value
for the commanded line tension

3.3.3 Observer

The observer is built, based on the theory in chapter 2, and the FMU is generated
from the Simulink model used in the project thesis, shown in chapter C, Figure C.1.
It receives the input from ComputeLoad.fmu, consisting of the measured, but rotated
position of the floater from SIMA, ⌘MoCap = ⌘ + ⌘w. As output, it returns the
estimated low- and wave-frequent position, ⌘̂, the velocity, ⌫̂ as well as the bias
force. The analysis of this report is performed on the output from the observer.
This implies that the data from this block should be saved during the simulation.
The interface and adjustable parameters are shown in Figure 3.11a.

3.3.4 Mooring

With reference to Figure 1.4 the mooring represents the numerical substructure that
is simulated in the cyber-physical setup. Mooring.fmu therefore represents a virtual
mooring configuration, meaning that there are no actual mooring lines connected to
the floater model. The corresponding forces are instead applied by the winches in
SIMA based on the position and velocity data received from the observer block. The
calculations for mooring forces are based on the equation below which is derived in
T. Sauder (2021), equation 8.

⌧m = �R( )>R(↵m)[DmR(↵m)
>R( )⌫ +KmR(↵m)

>(⌘ � ⌘ref )] (3.2)

The given variables, which also can be found in the FMU, and their explanation are
listed below

• ⌧m: desired mooring force vector

• ↵m: main axis direction with respect to North

• Km = diag(ki, kt, krot): inline, transverse, rotational sti↵ness

• Dm = diag(di, dt, drot): inline, transverse, rotational damping

• ⌘ref = (N0, E0, 0)>: equilibrium point or setpoint
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The equation can further be simplified by stating that the damping term, ↵, and
the equilibrium are zero, yielding the following:

⌧m = �R( )>Km⌘ (3.3)

The mooring.fmu takes estimated position and velocity as inputs and calculates
the mooring line loads which are further sent to the allocation block. In order to
ensure stability and accurate simulations, the FMU is also equipped with values for
the maximum allowable change of rate in heading and position as well as a forced
period.

3.3.5 Allocation

The allocation block gets the forces acting on the virtual mooring system and com-
putes the tension that should be exerted on the structure for each of the six actuator
lines in the cable-driven parallel robot (CDPR). In other words, its purpose is to
calculate and distribute the correct pull forces acting on the object. The change in
tension for the controller is found by solving equation 9 in T. Sauder (2021):

�T = A†
c
(⌧ � AcT0) (3.4)

⌧ is the input received from the mooring.fmu and the allocation block produces
the output: {T} = (T0 + �T ). As changeable parameters, the allocation.fmu has
a variable for the adaptive gain of T0 and limits for the maximum and minimum
desired tension.

For a given T0, the change in tension, �T can be obtained from a Moore-Penrose
pseudo-inverse of the configuration matrix Ac. The main advantage of the Moore-
Penrose pseudo-inverse is that it guarantees the existence of a unique symmetric
solution and minimizes the error; ||Ax � b|| = |�T |2. The values are further sent
to the winch tension controller which applies the calculated tension to the SIMA
model

3.3.6 Winch control

A crucial component of the simulation is the DLL that governs the operation of
the winches. As mentioned in the section for SIMA-Hybrid, the block is subscribed
to the output of the winch controller and the JAVA control is implemented in a
way such that it compares the simulation times from both SIMA and HLCC before
opening the data stream between the two.

winchTensionControllerSIMA.fmu receives inputs from the allocation block, the po-
sitional vector from the coordinate transformation block, as well as the measured
line tension value and simulation time from SIMA-Hybrid. The output of this block
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is seven signals, consisting of one signal for each of the six winches indicating the
commanded change in ✓, along with a clock-timer signal. These output signals are
sent to the SIMA-Hybrid block for further processing.

The FMU is fitted with adjustable parameters for controlling the winch radius, line
sti↵ness, an internal gain for tension control as well as a variable for activating the
controller.

3.4 How is data processed - experimental method

After loading all the necessary DLL modules in HLCC and establishing a connection
with SIMA, the user is prepared to carry out a simulation. Before starting, all
parameters should be adjusted in the observer and SIMA based on the problem
being investigated.

First start a dynamic analysis in SIMA from the initial condition of the project.
The simulation is then designed to stop at a given percentage, in this case, 8%
of completion, indicating that the static analysis is complete and that it awaits
input from HLCC before starting the dynamic calculations. To proceed with the
simulation, the winch tension controller in HLCC must be activated. Proper reset
of the internal clock timer of the winch tension controller before starting is critical
for the simulation to run correctly, as failure to do so is likely to result in an error
and simulation failure.

The procedure for conducting simulations with the current setup is organized in the
flow chart below:
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Start dynamic analysis in SIMA

Reload and start DLLs in HLCC in the following order

Allocation.fmu

ComputeLoad.fmu

CoordinateTransformation.fmu

Mooring.fmu

Observer.fmu

Start the saving of output from HLCC

winchTensionControllerSIMA.fmu

SIMA finish
dynamic analysis

Stop HLCC save and
ensure saving of data is completed

SIMA dynmod error

Restart SIMA

Post-process data

Yes

No
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3.4.1 Post-processing in MATLAB

The post-processing of data has been done in MATLAB, and the routine was divided
into three di↵erent files; one for processing data and assigning variables, one for
computing the performance, and one for plotting.

The file format in which HLCC stores simulation data is tdms defrag a type of file
format used in National Instruments (NI) software and hardware systems. It is a
binary file format that is used to store measurement data acquired from NI systems.
The file format; tdms defrag is optimized for reading and writing data quickly by
organizing the data in contiguous blocks on the hard drive. This helps to improve
performance when reading or writing large amounts of data.

3.4.2 Performance criteria

Having collected data for a simulation and wanting to compare its performance with
other simulations, a quantitative result and mean of measuring the performance of
the system has been developed. As this project seeks to verify that the proposed
observer can perform an online estimation and wave filtering it will be benchmarked
against o✏ine estimates. For the o✏ine estimates, the whole times series will be
available allowing phase-free wave filtering. The performance criterion is denoted, ✏,
and inspired by mathematical theory for norms on Lp-spaces, previously described
in Section 2.5.

||x||
p
=

Z 1

0

|x(t)|p dt
�1/p

(3.5)

From the general expression, the L2 norm with an inner product structure is derived.
This corresponds to the square root of the integral of the di↵erence between the two
values over the time of the entire series. The root makes the equation homogeneous
and the factor 1

T
will compensate for an otherwise increasing error over time.

✏ =

s
1

T

Z
T

0

(f̂ � f ⇤)2 dt (3.6)

the result can further be divided by the norm of the latter function to normalize the
result for any arbitrary input.

✏ =

vuut
R

T

0 (f̂ � f ⇤)2 dt
R

T

0 f ⇤2 dt
(3.7)

f̂ represents the online filtered result while f ⇤ is the “o✏ine” low-pass filtered result,
generated by applying a Lanczos filter in MATLAB to the measured position. It
is referred to as an o✏ine estimate since the function has access to both past and
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future values of the time series. The reason why the Lanczos filter is used as the
o✏ine measurement is that it is able to provide a low-pass filtered signal of the
input function while increasing the sampling frequency when interpolating between
values.

3.4.3 Workflow in post-processing

The following flowchart portrays the workflow when processing data after a success-
ful simulation.

Start post-processing

Load data

Run processing.m

Run computing.m

Run plotting.m

Copy values from computing.m to excel-sheet

Compare more runs
simultaneously?

Run compare.m

Exit

yes

no
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3.4.3.1 processing.m

The processing routine is done to ensure that the tdms-file is loaded correctly into
MATLAB for further analysis. The file from HLCC in .tdms format is read using
the tdmsread() function from the Data Acquisition toolbox. Data can then be
accessed as a “cell” type containing tables with the project information, inputs, and
outputs from HLCC. The order in which data is stored in the cell might vary, so the
processing routine also ensures that the correct input and output are found based
on the table sizes in the cell.

As the saving of the simulation starts and ends at di↵erent times, measures are
done to ensure similar responses. All data where input is constant or zero at the
beginning and end of the time series is removed as this indicates that the simulation
in SIMA has not started yet or is already done.

Ideal filtering is applied using the .Lanczos function in MATLAB. This is a low-pass
filter set with a cuto↵ period of 30 seconds for the full-scale model, well above the
intended incoming wave periods for these simulations.

During simulations, it was discovered that using a timestep, dt for the lowpass filter,
defined by subtracting elements in the time vector from HLCC gave a varying value
for dt. To avoid this in further simulations, the time step was therefore set to the
mean of the gradient of the time vector, which in most cases corresponded to 5ms
seconds. Large deviations from a 5ms mean and 1ms standard deviation should
be handled, and the simulation should most likely be performed again. A larger
timestep, equal to the one in SIMA of 0.063 was tested but this gave a high-frequent
result which will be wrong when trying to display an ideal filtered low-frequent
signal.

The filter is applied to the measured positional data, ⌘MoCap in all three degrees of
freedom. It is also desirable to have a reference for the velocity estimates produced
by the observer algorithm. This has been done by applying ideal filtering to the
gradient of the filtered positional data:

r⌘
dt

(3.8)

which resulted in velocities for the global reference frame. In order for it to be
compared with the data produced by the observer, the rotational matrix, Rn

b
defined

in Section A.3 is applied, making it a filtered local velocity estimate denoted as
{u, v, r} for surge, sway, and yaw.

3.4.3.2 computing.m

This routine computes indicators for the performance of all measurable outputs of
the observer in all three degrees of freedom as well as a total sum of performance.
The indicators are given as:
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bind1 , bind2 and bind3 for bias:

sP
(bias� Fi)2

(FiT )2
(3.9)

Fi is the mean of the reference force along the respective degree of freedom in
surge, sway, and yaw. T is the length of the time series over which the indicator is
computed, normalizing the result.

u, v, and r for velocities:

sP
(⌫ � ⌫filt)2

(
P
⌫filt)2

(3.10)

where ⌫ is the estimated velocity and ⌫filt is the derivative of the filtered position
found in processing.m. N,E, and  for position:

sP
(⌘ � ⌘filt)2

(
P
⌘filt)2

(3.11)

⌘ is the estimated low-frequency position and ⌘filt the low-pass filtered measured
position.

3.4.3.3 plotting.m

As proven in the work leading up to this thesis, just looking at the performance
indicator computed for each simulation is not enough to fully evaluate whether
a simulation was good or not. Small indicator values, should ideally yield good
estimates and a successful simulation. However, some cases showed that simulations
could have a good indicator but poor response with for example wave-frequency
content in the estimated low-frequent response.

The purpose of this routine is to make plots of all the outputs. It generates a total
of seven plots; one for the displacement in all three degrees of freedom (surge, sway,
and yaw), one plot with a sliced response in surge, one plot with all the velocities,
one with the reference force in the mooring system as well as bias forces for surge
and yaw.

All these plots prove useful when looking closer at why the observer performs as it
does in the given simulation. It also enables visual detection of any irregularities or
discrepancies in the simulation.
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3.4.3.4 compare.m

A separate script has been made in order to compare the responses from multiple
simulations in the same plot. This script implements the functionality of pro-
cessing.m and plotting.m in one file and makes it flexible for more simulations at
the same time.

One di�culty with this program is that the start and end of the time series have
been saved for slightly di↵erent times, in addition to having di↵erent time steps.
In an attempt to avoid these di↵erences, only the middle of the time series have
been compared. This is achieved by dividing the series in the middle and then only
extracting the leading and following third from this point of the series. Plotting
these curves gave an acceptable alignment which can be used for further analysis. It
is worth noting that the plots from this code should not be compared with respect
to their intermediate phase di↵erence, only in terms of magnitudes and frequency
content.

Reference values for bias force, position, and velocity estimates have been calculated
as the mean of input for the position, of derived velocity and reference mooring force.
This value is not likely to be very accurate but serves as a measure for the comparison
of responses in terms of magnitudes and convergence.

3.4.4 Collection of simulation data

As the simulation cases grew in numbers, it became evident that a means to store
and compare their performance indicator values was necessary. This has been done
by creating a table in Excel containing all relevant information for each simulation.
The sheet proved handy for tracking progress, changes, improvements, and group
data based on parameters. Some built-in features of Excel have also been used
to make visual comparisons, i.e. plots and conditional formatting. Some of these
results will be presented as tables in the results chapter later on.

3.5 Model verification

In order to verify the model parameters of the INO WINDMOOR 12MW FWT
model for use in the observer algorithm, a decay test using HLCC to provoke move-
ment in SIMA has been conducted. The result from this decay test is then compared
to the ordinary di↵erential equation (ODE) solution of a mass-spring-damper system
with the same characteristics as the FWT. The ODE has been defined and solved
in MATLAB using the ODE45 command.

By changing the ”bypassObserver” parameter of the NPO in HLCC from 0 to 1, the
observer changes from being a state estimator to just copying the input as output,
i.e. bypassing the incoming signal. This ensures that the simulated response is
not a↵ected by any dynamics in the observer algorithm. The decay test is then
conducted by starting the simulation with no environmental loads and waiting a

53



CHAPTER 3. SIMULATION-BASED TESTING AND VERIFICATION
STUDY 54

few seconds for a steady-state response of the substructure. This can be seen during
simulation in HLCC by plotting the measured position. Once the transient ends
and the structure moves with as small motions as possible, the positional reference
in the mooring.fmu can be changed. The transient usually ends after 30-50 seconds.
Changing the positional reference in mooring.fmu results in the system trying to
bring the structure to its new reference and maintain the position.

The simulations for decay tests have been run for a longer time of about 1000
seconds compared to the other simulations to ensure that a steady state is reached
before and after setting the new positional reference. For analysis and comparison in
MATLAB, the signals from ”CoordinateTransform.fmu” was extracted from HLCC,
the purpose of this was to get data in the proper reference frame. All positional
references used in decay tests are listed below, note that it is the model-scaled
reference that is used as all parameters in HLCC are in this scale:

Degree of freedom Full-scale reference Model-scale reference
Surge, N0 10 [m] 0.25 [m]
Sway, E0 10 [m] 0.25 [m]
Yaw,  0 5 [deg] 5 [deg]

Table 3.5: Positional references for decay tests

The model solved using ODE45 builds on the system equation simplified into an
equation of motion representing a mass-spring-damper system:

(M + A)⌫̇ +D1⌫ +D2⌫|⌫|+K(⌘ � ⌘ref ) = 0 (3.12)

Which is solved for acceleration and given as input to the ODE45 function:

⌫̇ = (M + A)�1[�K(⌘ � ⌘ref )�D1⌫ �D2⌫|⌫|] (3.13)

For evaluating and comparing results, the critical damping can be computed using
the formula:

ccritical = 2 ·
p
K · (M + A) (3.14)

and then the damping ratio is further found by:

⇣ =
D1

ccritical
(3.15)

Model parameters for fitting are found by starting with the values from SIMA and
making adjustments until alignment is achieved. An alternative method of verifying
a model using decay tests is to compute the period of oscillations from the natural
frequency:
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!n =

r
K

M + A
(3.16)

And check whether the response from decay tests has the same period. This method
will often have less accuracy but serves useful as an initial check of parameters.

3.6 Tuning of observer algorithm

This section presents the procedure of tuning the nonlinear passive observer al-
gorithm which has been performed in this thesis.

The process of tuning has been done as an iterative parameter study, i.e. changing
the input in one parameter while keeping the others constant and then observing
the change in output before moving on to the next parameter once satisfied with
the obtained result.

The FMU with the observer is loaded with the gain terms normalized as 1. Tuning
is then done by multiplying the gain constant by a value in HLLC and assessing the
response of the system. Results from simulations are compared based on indicators
and plots and the most promising values of the respective parameter are kept while
moving on to the next. Repeat for all degrees of freedom, starting with a focus on
tuning surge. For the parameters where it is possible to make changes with respect
to the degree of freedom, all should be changed equally with respect to the degree
of freedom.

The order of what parameters to tune has been predetermined, beginning with the
bias term, ensuring convergence with as few oscillations as possible. Moving on to
the velocity terms, where it is desired that the estimated velocity approaches the
low-pass filtered velocity, derived from the position of the floater. Then the terms
related to positional estimates are tuned before finally making adjustments to the
wave filtering, bias time constant, and damping to see if some improvements can be
made.
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Results

In this chapter, the simulated results will be presented, more than 200 simulations
have been carried out and not all will be portrayed. Their average length has been
of 1500 seconds in SIMA, corresponding to about 200 seconds when plotted and
post-processed. This has proven su�cient, allowing the system to reach a steady
state. The first goal of running these simulations is to showcase how the observer
can be tuned in order to obtain a balanced result with the best possible performance.
Secondly, it aims to show how the proposed software-in-the-loop setup can be used
to verify a model concept.

Results will be judged based on calculated performance indicators and generated
plots. The results of all simulations have been collected and saved. Generally, the
analysis will be focused on velocity and position estimates, as some simulations
revealed that some total and bias indicator values provided misleading results. The
bias will be commented upon when relevant during the fitting process.

4.1 Model verification

The provided model had default parameters related to another project, these can
be seen in Table B.1. In order for the observer to function as desired, its parameters
must be adapted to the current simulation model. This was discovered by running
an initial simulation with default parameters, yielding a response for which the
observer was not able to provide estimates for the velocity. Revising the initial
model parameters reveals that the quadratic damping term holds alarmingly large
values compared to the other parameters. Additionally, it was discovered that the
masses did not agree with the values in Souza (2021).

This section presents the results from this study as figures with the response from
SIMA for decay tests in surge, sway, and yaw compared to a solution provided by
the ordinary di↵erential equation with respective model parameters in MATLAB.
The procedure is based on the method of model verification described earlier in
Section 3.5 and the tests have been conducted using the listed positional references,
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the results are as follows.

Figure 4.1: ODE fit vs SIMA response in surge

Figure 4.1 shows the surge decay test compared to the simulated response of an
Ordinary Di↵erential Equation (ODE) fitted with parameters from SIMA. The two
responses demonstrate a satisfactory alignment during the initial three oscillations.
However, a phase shift occurs thereafter. Despite this phase shift, it is evident that
the level of decay and damping remains relatively consistent between the two curves.
The phase shift can be attributed to two factors. Firstly, the response in SIMA does
not achieve complete stillness before altering the surge reference, resulting in a minor
phase di↵erence between the two responses from the outset. Secondly, at the bottom
of the third oscillation, a jitter can be observed in the SIMA signal. This jitter is
likely to introduce a delay in the response, which propagates through the signal and
contributes to the observed discrepancy. At 120 seconds the two responses align
again.

The same test is conducted in sway with results shown in chapter B, Figure B.1a.
In this, the reference is changed in E0 instead of N0. The resulting response is
quite similar to the surge analysis where satisfactory alignment is obtained between
SIMA and the ODE simulation. However, there are a few distinctions between the
two simulations. The main di↵erence is that the response from SIMA is practically
still before changing reference. Despite this, the phase shift still occurs. There are
also no obvious signs of jitter in the signal. Given the good fit observed during
the initial three oscillations and the acceptable similarity in relative damping, no
additional adjustments were made to further refine the response.

The yaw decay simulations did not yield a fit as satisfactory as those obtained for
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the two previous scenarios. Initial simulations suggested that the system was either
too sti↵ or had excessive mass. Updated sti↵ness parameters were provided based
on those used in the physical experimental setup, where the mooring system was
replaced by linear springs. Their values can be seen in the second line in Table 4.1.
A third source of values was discovered when studying the setup used for o✏ine
simulations of the model which can be seen in Table B.3.

Origin ki [N/m] kt [N/m] krot [Nm/deg]
Initial values 53.36 53.36 5.449
Experimental setup 62.2 59.94 1.983
O✏ine simulation 58.48 59.95 79.33

Table 4.1: Mooring sti↵ness for three conditions

The three sets of sti↵ness show good alignment in terms of inline and transversal
sti↵ness across all three cases. However, there is a noticeable di↵erence in rotational
sti↵ness. This was believed to be the main cause of misalignment between SIMA
and the ODE solution in yaw. Further research revealed more sources of error.

It was also discovered that the given mass and linear damping coe�cient in yaw were
expressed in radians per second. SIMA provides measurements in degrees. Applying
a conversion factor of 180

⇡
= 57 yielded a matching response between SIMA and the

fitted ODE solution, which can be seen in Figure B.1b. This proved a useful lesson
and highlights the significance of correctly scaling units in order to achieve accurate
results. It is essential to ensure that such scaling and unit details are adequately
documented in both SIMA and HLCC for future reference.

The values of all fitted ODE solutions are given in the table below:

DOF M+A K Dl Dq Ccr ⇣
Surge 338 62.2 0.139 389 269 < 1%
Sway 338 59.94 0.139 389 269 < 1%
Yaw 3.53 1.983 0.1098 0.06 5.29 2%

Table 4.2: Fitted model parameters

The damping ratio from Table 4.2 might give the misconception that the system is
lightly damped. However, the parameter only indicates that the system has little
linear damping, and when comparing the values of Dl and Dq it is evident that the
system is dominated by quadratic damping, especially for surge and sway. The ratio
is included as a mean for comparing the damping of the degrees of freedom.

4.1.1 Discussion of model verification

Model parameters that provided a good fit between SIMA and the ODE solution
in MATLAB were found. After about three oscillations a phase di↵erence can be
observed for surge and sway. This shift in phase might be caused by a jitter in the
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incoming signal from SIMA. A closer inspection of the curve reveals a deviation from
the smooth sinusoidal signal at the bottom of the oscillation after the third top. This
will likely accumulate over time and lead to a propagating di↵erence between the
two signals. One reason for the disparity in the signals can also be attributed to the
complexity of the SIMA model, which incorporates more intricate forces compared
to a basic mass-spring-damper equation.

The simulations and results in this section have been generated without the ob-
server and with the mooring model using the measured position directly from SIMA.
This functionality was enabled by setting the “bypassObserver” parameter in the
observer.fmu to 1. An initial attempt was made with the parameter “bypassOb-
server” set to 0. This proved critical as the dynamics of the observer a↵ected the
response of the substructure. The test will provide a wrong response as the observer
a↵ects the mooring with wrong position estimates. Despite this, it is still possible to
make a fit, but the ODE parameters will deviate significantly from those in SIMA.
Resulting in larger mass and linear damping. Errors like this can cause faulty model
verification which will a↵ect the result of the estimates provided by the observer.

The assumption that the quadratic damping coe�cient in surge and sway could
be set equal is supported and kept based on these simulations. This section also
shows the importance of having a good understanding of the physical system when
verifying and modeling, wrong units and conversions can cause severe problems and
a forced fit might yield an unstable system.

It is important to note that the verification of model parameters for yaw has been
done in degrees. The internal dynamics of the observer computes values using ra-
dians, while its input and output will be in degrees. SIMA also works with angle
measurements in degrees. This explains the relatively small values in yaw when com-
pared to surge and sway for mass and quadratic damping. The observer algorithm
will scale the terms of linear and quadratic damping by multiplying with (180

⇡
) and

(180
⇡
)2. This will give values of Dl,6 = 6.2908 [Ns

rad
] and Dq,6 = 197 [Nms

rad
]. However,

the mass is not being scaled in the observer model, so it must be scaled manually
before assigning it to the observer. By also multiplying this value by (180

⇡
), the mass

for yaw to be used in the observer will be equal to 202.6 kg. If this is not properly
done, the observer will still be stable, but the estimates in yaw will be wrong.

4.2 Updated model parameters

Having verified and updated the model parameters, a new simulation was conducted
to see if improvements had been made. Values are shown in Table B.2 and the
updated response in surge has been plotted in the figure below.
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Figure 4.2: Simulations with updated model parameters

The observer is now able to make a velocity estimate and the bias also converges
toward the negative mean of the reference force. From this point on it is assumed
that the model parameters are correct and remaining discrepancies can be adjusted
for by tuning the other model parameters.

4.3 Tuning

Following the establishment of the fitting model parameters, the process of tuning
the observer was initiated using the procedure from Section 3.6. This section aims
to present the obtained results throughout the observer tuning procedure.

The focus was primarily directed toward the surge direction. However, considering
the model’s similarity in sway, it was assumed that adjusting the parameters in a
similar manner as for surge would also lead to satisfactory tuning in sway. This
assumption will be revisited later in this chapter.

4.3.1 Bias tuning, K3

The initial parameter that undergoes tuning is the bias gain, denoted as K3. This
parameter is expected to have minimal impact on other parameters, making it re-
latively easy to adjust. The desired outcome is for the bias to converge towards
the mean wave drift force, equal to the negative mean of the applied mooring force.
This value is hereby referred to as the bias reference value. The signal should also
be without high-frequency or wave-like components. The presence of high-frequency
content in the bias force indicates an excessively large gain, while a slow convergence
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towards a mean value suggests an insu�cient gain. The objective is to strike a bal-
ance where the bias gain is appropriately tuned to facilitate convergence towards
the reference while maintaining a bias signal that is free from undesired frequency
components.

Figure 4.3: Bias plotted for various values of K3 = [1, 3, 5, 10

The above figure presents the bias force for four simulations corresponding to dif-
ferent values of K3, specifically 1, 3, 5, and 10. The average of the mooring force
for all simulations is also plotted as a reference using a green dotted line, while the
negative of its mean is depicted by a black dotted line. From the lower four curves,
it can be observed that an increase in the K3 gain leads to a larger bias force with
progressively more oscillations in the force, as expected. As previously noted, a bias
gain constant of K3 = 1 is insu�cient for the bias to converge within the simulation
time frame. It is anticipated that by adjusting the bias time constant, denoted as
Tb, the curve can be smoothed out. Further investigation into this matter will be
conducted. The table below displays the indicator values for the simulations.
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Indicator values in surge
Simulation Bias, b1 Velocity, u Position, N
1,K3=1 1.30 1.27 0.22
2,K3=3 1.54 0.92 0.17
3,K3=5 1.65 0.85 0.16
4,K3=10 1.72 0.81 0.16
5,K3=0,5 1.10 1.53 0.25

Table 4.3: Indicator values for varying bias gain with the smallest and largest values
highlighted.

To compare the e↵ects of reducing the bias gain constant, an additional simulation
was conducted. The corresponding values for this simulation are displayed in the
fifth line of Table 4.3.1. Surprisingly, the reduction in the bias gain resulted in the
lowest indicator value, while an increase in K3 led to a higher indicator value for
bias. From Table 4.3.1 increasing K3 also seemingly has a positive e↵ect on the
indicator values for velocity and position. Since the emphasis is on bias, the impact
of tuning on the other parameters is downplayed, although it still demonstrates
their interdependency. The response of the simulation with the reduced gain is also
compared to the first simulation, which is provided in the appendix, Figure B.2 that
portrays an even slower convergence than for K3 = 1.

The purpose of this simulation case was to establish the gain term, K3 that would
ensure that the bias force converged toward the mean wave drift force. As observed,
an increasing gain yielded a faster convergence, but a more oscillating force. In this
case, the value from the second simulation with K3 = 3 is chosen as this is the first
to ensure convergence. K3 is di↵erent from the other gains in the way that it is only
adjustable in one DOF and not all three. It would perhaps be an improvement to
allow this gain to be adjusted in all directions, allowing more flexibility. Through-
out the simulations, it was observed that in certain scenarios, an increase in gain
adversely a↵ected the bias indicator for other degrees of freedom. This phenomenon
could potentially lead to misleading results, prompting the decision to downplay
the importance of total and bias indicator values. Consequently, only the indicator
values for surge are presented in the tables hereafter.

4.3.2 Velocity injection gain, K4

The next parameter for tuning is K4 which governs the velocity estimates. A total
of 12 simulations have been conducted with varying values of K4 in combination
with K3. Four of the simulations are shown in the same figure, with the parameters
from the table below:
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Simulation K3 K4,i

1 3 1
2 3 3
3 3 5
4 3 10

Table 4.4: Simulation values for K4

The subsequent figure shows the response in velocity estimate when altering the
value of K4 with the updated value for K3 from the previous section.

Figure 4.4: ⌫ plotted for various values of K4

The plot shows that increasing the gain, K4 gives an estimate with more wave-
frequent content, but seemingly less phase delay. This e↵ect can also be observed
in Figure B.4 where the bias force becomes more high-frequent for the higher values
of K4.

Equation 2.45 states that the relation K3
K4

should be less than the frequency of the

incoming wave and larger than 1
Ti
, in numerical values: 1

Ti
= 1 << K3

K4
< !0 =

1.195 < !c = 1.22. By solving for K4:

K3

K4
= 1.111 < 1.195 (4.1)

one obtains a value of 2.7.
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Indicator values in surge
K3 K4,i Velocity,

u
Position,
N

1 0.5 2.13 0.32
3 0.5 1.51 0.26
1 1 1.35 0.22
3 1 0.92 0.17
1 3 0.55 0.11
3 2.6 0.51 0.10
3 2.7 0.53 0.10
3 3 0.50 0.09
1 5 0.43 0.08
3 5 0.39 0.07
1 10 0.40 0.06
3 10 0.38 0.06

Table 4.5: Indicator values in surge for varying values of K3 and K4

Table 4.5 shows that an increase in K4 yields better estimates for both velocity and
position based on the indicators in surge. However, it is important to keep in mind
plotted responses from earlier where increasing the gain too much results in a more
high-frequent response. Considering this, the optimal solution from this was taken
as a middle value, marked in yellow which also fulfills the frequency relation from
Equation 2.45.

4.3.3 Position injection gain, K2

Once both the bias and velocity injection were tuned to a satisfactory response,
the next quantity for tuning is the position injection gain which is adjusted by the
change in K2. When tuning K2 it is desired that the estimated position aligns with
the o✏ine low-pass filtered position.

Figure B.5a shows that when increasing only K2 and leaving K3 = K4 = 1, the
positional estimates get less phase delay, lower amplitudes, and becomes more high-
frequent, as was seen for K4. Meanwhile, it can be observed from Figure B.5b that
increasing the value of K2 also leads to larger amplitudes in the velocity estimate.

Further, the system response has been simulated for the updated value of K3 while
changing K2 to see if the updated bias gain a↵ects the results in any critical way.
Figure B.6 exhibits a similar trend as previously observed, wherein an augmentation
in K2 continues to result in an increase in the amplitude of the velocity estimate.
Figure 4.5 displays indicator values from the simulations, grouped with respect to
K2. The observations from figures B.5 and B.6 are confirmed by the indicator as
larger K2 values lead to a larger velocity indicator and a smaller indicator for the
positional estimate. The bias indicator remains relatively constant.
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Figure 4.5: Indicator values for K3 = 3 and varying K2 in surge only

Di↵erentiation between the simulations has been done based on indicators, where
the choice falls on K2,i = 1, the value that is used further on. This is supported
by the observation that a too large increase in the gain will result in the positional
estimate being corrupted by wave frequencies.

4.3.4 Final tuning in surge

Having looked at the e↵ect of tuning the various gains, the purpose of this section is
to see the e↵ect when applying all adjustments simultaneously. Three sets of values
have been chosen for further comparison and study.

Indicator values in surge
K2,i K3 K4,i Velocity,

u
Position,
N

0.5 3 2.7 0.48 0.13
1 3 2.7 0.50 0.10
3 3 2.7 1.06 0.08

Table 4.6: Indicator values in surge for combined tuning parameters

Based on this, it is decided to keep the values of K2 = 1, K3 = 3 & K4,i = 2.7
since it yields a balanced result for all indicators when comparing with the other
two simulations of K2,i = 0, 5 or 1. The following figure shows the response for all
degrees of freedom using these values.
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Figure 4.6: Simulation with tuned parameters in head seas. Note that the values
for sway and yaw are very small.

Figure 4.6 shows that the observer exhibits satisfactory performance in surge with
no significant deviations observed in sway or yaw. It is important to mention that
the platform is not subjected to environmental conditions that would induce notable
motion in sway or yaw, resulting in a minimal response, and these should not be
given undue emphasis.

4.3.5 Wave filter tuning, K1

In contrast to the other three gain terms, K1 is not adjusted by simple scalar mul-
tiplication. As stated in Section 2.7, K1 influences the wave filtering characteristics
of the observer and is governed by the two parameters, !0 and ⇣i, representing the
cuto↵ frequency and damping ratio, respectively. For further investigations, the
observer gain values: K2 = 1, K3 = 3, and K4,i = 2.7 are used. This section
will present the outcomes obtained from simulations where the cuto↵ frequency and
damping ratio have been adjusted, highlighting their impact on the system. Their
initial values are given as cuto↵ frequency, !c = 1.22, and damping ratio, ⇣ = 0.1.
The incoming wave has a model scale period of 1.195 seconds.

Based on the observations depicted in Figure B.7, it can be concluded that an
increase in damping results in a higher presence of high-frequency content in the
low-frequency estimated position. Excessive damping, with a factor of 1, renders the
observer incapable of estimating the wave frequency. Consequently, the estimated
low-frequency signal becomes equivalent to the incoming wave signal or the motion
of the floater. This can also be deduced by Equation 2.41 for which the entire
equation cancels out, resulting in zero gain. Conversely, a damping factor of 0.5
yields an inadequate velocity estimate characterized by a significant amount of high-
frequency content. This suggests that the final value for damping should approach

66



CHAPTER 4. RESULTS 67

zero. Notably, the initial value of 0.1 proves to be suitable in this context.

When considering the cuto↵ frequency, it is observed that lower cuto↵ frequencies
lead to improved velocity and positional estimates when only considering the indicat-
ors values in Figure 4.7. Conversely, for cuto↵ frequencies higher than 1.22 seconds,
the opposite trend is observed. These observations are confirmed by looking at the
figures Figure B.9 and B.10 which shows increasing velocity amplitudes and more
high-frequent content in the positional estimates as the cuto↵ period increases.

Figure 4.7: Surge indicator values for change in Tc.

Relating these observations to Equation 2.45, a general guideline is established: the
cuto↵ frequency should always be chosen to be greater than the incident wave period.
However, this guideline is not followed in the first two simulations, where the cuto↵
frequency is smaller than the incident wave period.

4.3.6 Bias smoothing, Tb

As mentioned in Section 4.3.1, the bias time constant should contribute towards
smoothing the signal of the bias force. Simulations yield that setting the bias time
constant to zero renders the observer unable to generate estimates. Selecting values
within the range of 0.5 to 2 for the bias time constant does not yield significant
di↵erences in simulation results, except for the default value of 1, which significantly
improves the performance. This value is the only value that ensures convergence of
the bias force which can be seen in Figure B.11. Figure B.12 also provides velocity
estimates of smaller amplitudes when compared to the other responses, which is
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a desired e↵ect. The significant improvement of having Tb = 1 is reflected in the
Table 4.7 which shows indicator values in surge for various values of Tb.

Indicator values in surge
Tb Bias, b1 Velocity, u Position, N
0.5 1.32 1.25 0.22
1 1.57 0.50 0.10
1.5 1.25 1.32 0.22
2 1.26 1.33 0.23

Table 4.7: Indicator values in surge change in Tb

To address the oscillations in the bias force caused by K3 = 10 in Figure 4.3,
simulations were conducted with varying Tb to assess whether the oscillations could
be reduced or smoothed out as expected. However, the response in Figure B.13
shows that adjusting Tb does not bring about substantial changes in this case either.
A general tuning guideline can be derived from Equation 2.45, which states that 1

Ti

should be less than K3
K4

or, in this case, Ti should be greater than or equal to 1. As
of now Tb = 1 provides the most promising result and is therefore kept.

4.4 Wave peak period assumed by observer, Tp,obs

A key feature of the observer is the parameter, Tp,obs which is the assumed peak
period of the incoming wave. The presented results are obtained from simulations in
which the observer’s estimated peak period is varied while keeping a constant peak
period of the incident wave constant. The full-scale wave period is 7.55 seconds,
corresponding to 1.195 seconds in model scale. Notably, setting the observer’s peak
period to zero renders it incapable of generating accurate estimates. Most of the
indicator values remain consistent across the di↵erent peak periods, but the velocity
estimate demonstrates the most notable improvement with increasing observer peak
periods.
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Figure 4.8: Surge indicator values for change in Tp,obs.

There exists an inverse relationship between the improvement of the velocity estim-
ate and the positional estimate when adjusting the observer’s peak period. When
the observer’s peak period is smaller than the incident wave period, the velocity
estimate deteriorates, whereas a larger peak period leads to an improved velocity
estimate but a worsened positional estimate. Simulation results indicate that having
the observer’s peak period close to, yet slightly higher than the incident wave period
yields the most favorable response.

4.5 Response to di↵erent angles

Having obtained an adequate result for tuning in surge from Section 4.3.4 with the
plotted response of Figure 4.6, the studies proceeded with testing the observer al-
gorithm and model response for environmental loads acting from other directions.
The following simulations have been conducted with the optimal parameters from
the earlier tests. Environmental loads have been simulated for the following direc-
tions; 30, 60, 90, and 180 degrees, and will be compared to the tuned example where
the environment was set to 0 degrees. All responses for all degrees of freedom can
be seen in Section B.10.

The general observation made for these simulations is that the response in all de-
grees of freedom is satisfactory. The bias reaches its reference and the estimates for
position and velocities are seemingly accurate without too much wave frequent con-
tent. The assumption that surge and sway are su�ciently similar to be fine-tuned
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using identical parameter adjustments appears to still be valid. One of the most
intriguing findings from these simulations is the response in yaw. It is evident in all
simulations that the mooring force applied in yaw exhibits higher frequency com-
pared to the forces in surge and sway. This observation also clarifies the oscillations
in the bias force for yaw, which are more pronounced than those in the other two
degrees of freedom.

Sum of indicator values in surge, sway and yaw
Simulation Total Bias Velocity Position
1 (0deg) 9.83 5.60 0.50 0.36
2 (30deg) 5.57 3.16 0.48 0.34
3 (60deg) 5.76 3.10 0.64 0.45
4 (90deg) 5.55 3.14 0.44 0.35
5 (180deg) 5.64 3.23 0.49 0.35

Table 4.8: Sum of indicator values in all degrees of freedom for varying environmental
direction.

When considering the performance indicators, the response is generally similar across
all degrees of freedom, except for the simulation involving weather from a 60-degree
angle. In this particular case, the performance indicator, highlighted in red, increases
by approximately 30% for both velocity and positional estimates. Figure 4.9 is the
plotted response for the environment with a direction of 60 degrees. This figure
shows no obvious sign as to why the response in yaw should be any poorer than for
the other simulations.

Figure 4.9: Simulation with the environment from 60 degrees.

The values for the total indicator and bias have also been recorded. These values
for the initial simulation with weather from 0 degrees are inconsistent with the
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remaining values which fall within a similar range. It has been commented upon
earlier that for some simulations, the bias indicator yields inconsistent values. The
claim for reducing its significance is supported by this observation. The deviation
in the total value can be attributed to an increase in the bias indicator.

A closer inspection of the values for the various degrees of freedom reveals that the
larger positional indicator value for the third simulation is driven by an increase
in yaw estimate. The value in yaw is 0.25 compared to the average of 0.15 from
the other simulations, an increase of 66%. For the velocity, it is observed that the
discrepancy is mainly caused by an increase in sway. All other values are 0.01 and
the value for estimated velocity in sway, v for 60 degrees is 0.12.

The response in yaw only has been plotted for the simulations with 30, 60, and 90
degrees to get a closer look, this has been done in Figure B.15, B.16 and B.18. In
these figures and especially for the simulations of 30 and 90 degrees, the velocity
estimates in yaw are polluted by a high-frequent content.

4.6 Tuning yaw

In order to make up for the lacking estimates in yaw, an attempt was made in order
to tune the observer utterly. For this, the case with weather coming from 60 degrees
was chosen as it showed the biggest potential for improvement based on its indicator
values. Initial gain values were set with respect to the result obtained for tuning in
surge; K2i = 1, K3 = 3, K4i = 2, 7, i 2 (1, 2, 3). The values for surge and sway will
remain constant and the values in yaw will be changed to assess their e↵ect.

The process of tuning was initiated by adjusting the velocity injection term K4

since K3 already had been adjusted. The results are portrayed in Figure B.20 which
shows that an increase in K4 gives a faster convergence of the bias force at the cost
of a more high-frequent signal. Figure B.21 shows a decrease in amplitude of the
velocity estimates when increasing K4, also in this case an increased presence of
high-frequent content in the signal. Decreased amplitudes are in general a desired
e↵ect, as the simulations for change in the direction of the environment revealed
velocity estimates with too large amplitudes. This e↵ect is also reflected in the
following table where the third, fourth, and fifth lines show an increase in velocity
estimates for increasing K4
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Indicator values in yaw
K2,3 K4,3 Bias, b3 Velocity,

r
Position,
 

1 0.5 1.55 0.69 0.29
1 1 1.55 0.52 0.24
1 2.7 1.56 0.46 0.25
1 5 1.55 0.59 0.24
1 10 1.59 0.63 0.20
0.5 2.7 1.59 0.76 0.39
1 2.7 1.56 0.46 0.25
5 2.7 1.56 0.61 0.19
10 2.7 1.53 0.87 0.23

Table 4.9: Indicator values in yaw for varying values of K2,3 and K4,3.

Changing the value of K2 in yaw does not reveal much change in the estimates.
The bias force in Figure B.22 is more or less una↵ected and estimated velocity in
Figure B.23 shows slightly more high-frequent oscillations for increased K2.Table 4.9
reveals a decrease in position indicator and an increase in velocity estimates, as was
seen when tuning in surge.

4.6.1 Discussion

As discussed earlier, increasing a gain is likely to improve the performance and es-
timates of a state in the observer, up until a point where the signal gets corrupted
by higher frequencies which comes from the wave-frequent motions. Increasing K4

in yaw gives a faster convergence of bias and smaller amplitudes in velocity estim-
ates. These are both desired e↵ects, as the simulations with change in environment
revealed that the bias in yaw converged slowly and the amplitudes of velocity es-
timates were too large. Also, in this case, the biggest e↵ect on overall performance
is achieved by adjusting K4. It should be noted that a change in K4 also a↵ects
the performance in surge and sway, this yields a duality and trade-o↵ in which one
has to decide which degree of freedom is of the biggest importance. In this case,
surge and sway have been deemed the most important and it has been decided not
to change the values of gains in yaw.

One drawback of adjusting K4, in this case, is that the relation between K3 and
K4 in yaw will be a↵ected. If one wishes to maintain the same ratio as for surge
and sway, the value of K3,3 should be adjusted in line with K4. This will require
an update to the observer FMU which enables the change of K3 with respect to the
degree of freedom.
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4.7 Performance when exposed to di↵erent sea-
states

With the tuned observer, it is now desired to test how it responds to a change in
wave state and whether this will a↵ect the performance of the algorithm. A central
question that should be answered is whether the cuto↵ frequency and observer peak
period should be adjusted with respect to the wave and whether adaptive control is
necessary for optimal performance. This is done by testing for various sea states.

Initial simulation parameters give an estimated peak period of the observer set to
1.195 seconds. This corresponds to a full-scale wave period of 7.558 seconds. The
incoming wave in the simulation has a peak period of 7.55. The di↵erence is not
huge, but the observer peak period is put to be slightly larger than the incoming
wave.

Tpobs
Tpwave

=
7.56

7.55
= 1.001 (4.2)

When it comes to the cuto↵ frequency given by the observer parameter; “cutO↵W-
FObs” is initially set to 1.22 seconds, corresponding to a period of 7.716 seconds in
full scale, denoted Tc. Stating the relation between cuto↵ and incoming wave period
we have a percentage di↵erence of 2.3%.

Tcutoff

Tpwave

=
7.72

7.55
= 1.023 (4.3)

In order to test the observer under various wave conditions, three pairs of signi-
ficant wave height and peak period have been chosen from Table 3.3 and 3.4 in
Section 3.2.4. The first two sets have been tested for two conditions, while the third
and fourth have been simulated with four di↵erent conditions:
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Indicator values: Hs = 3.75m, Tp = 7s and � = 0.076

Simulation Tp [s] Tc [s] Bias, b1 Velocity, u Position, N
1 7.56 7.72 1.57 0.50 0.10
2 3.80 7.72 1.59 0.61 0.09

Indicator values: Hs = 6.19m, Tp = 9s and � = 0.076

1 7.56 7.72 1.59 0.47 0.09
2 7.56 9.03 1.58 0.52 0.11

Indicator values: Hs = 14.97m, Tp = 14s and � = 0.076

1 7.56 7.72 1.57 0.96 0.27
2 7.56 14.33 1.58 0.90 0.27
3 14.99 14.33 1.60 0.72 0.21
4 14.99 7.72 1.60 0.80 0.21

Indicator values: Hs = 6.19m, Tp = 12s and � = 0.043

1 7.56 7.72 1.58 0.64 0.21
2 7.56 12.23 1.59 0.62 0.20
3 12.02 12.23 1.61 0.52 0.18
4 12.02 7.72 1.60 0.56 0.18

Table 4.10: Indicator values in surge for di↵erent sea-states.

The first set of simulations has been tested for two di↵erent values of the assumed
peak period in the observer. The simulated wave has a smaller period than the
assumed peak period in the observer, the test aims to investigate the e↵ect of having
an estimated peak period which is larger than the incoming wave.

As can be seen in Table 4.10, the observer performs better with an overly large value
of estimated peak period compared to the incident wave. The change has a visual
e↵ect in the estimate of velocity in Figure B.24 where the second simulation has
significantly more high-frequent content. A low estimate of the peak period in the
observer gives more wave-frequent content in the estimates.

In the second set, the incoming wave has a larger period than the estimate in the
observer, this test was then conducted to see the e↵ect of an increased cuto↵ period
in the observer. From the performance indicator, there is only a small di↵erence in
values between the two simulations with a slight increase in the second case.

For the two last simulation sets, a combination of the tests from the two first sets
has been conducted. The initial simulation is used as a basis for comparison, the
second with an increased peak period, the third with an updated cuto↵ period, and
a combination where both parameters are adjusted with respect to the incoming
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wave in the fourth simulation.

When only considering the indicator value from these two simulation sets, it is clear
that the performance in surge draws an advantage of increasing the cuto↵ period.
Both the velocity and positional estimates get a reduced indicator value for the third
and fourth simulations when compared to the first and second. There is also a slight
improvement when increasing the estimated peak period in both cases. The most
prominent simulation is the one where both the cuto↵ and peak period have been
adjusted.

Both the following figure and Figure B.27 show a sliced plot for the estimated
position for all four simulations in respectively the fourth and third set. The figures
give a visual impression that in simulations 3 and 4, where the peak period has
been adjusted, the amplitudes of the wave frequency content are smaller than for
simulations 1 and 2.

Figure 4.10: Sliced plot of ⌘̂ for Hs = 6.19 and Tp = 12.

4.7.1 Discussion of changing wave periods

Based on the analysis of the two larger sea states depicted in figures 4.10 and B.27, it
is evident that the yellow and purple lines representing the last two simulations show
a reduced presence of wave-frequency content in the estimated low-frequency posi-
tion compared to the first two simulations. This observation suggests that adjusting
both peak- and cuto↵ periods provides smoother estimates of the low-frequent po-
sition with less wave-frequent content. Tuning the observer parameters based on
the incoming wave period o↵ers significant benefits to the observer. One advantage
when conducting physical experiments is that the wave period will always be known,
as it is assigned to the wave-maker for each case and can therefore be appropriately
adjusted in the observer.
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Even though the wave period is known for experiments, a suggested rule of thumb is
to err on the side of caution by using conservative estimates for both peak and cuto↵
periods, rather than risking an estimate that proves to be too low. Implementing a
safety factor is recommended as a precautionary measure to ensure this.

4.8 Increasing Hs and Tp

According to the documentation for the model of INO WINDMOOR 12MW, the
model does not account for the influence of viscous excitation. This can impact
the heave, roll, and pitch responses, particularly during high sea states close to the
platform’s natural period of oscillation, equal to 15.2 seconds. Consequently, the
second-order excitation loads may be a↵ected (Souza 2021).

It is intriguing to examine whether this omission has any discernible e↵ects. To
facilitate a comparative analysis with the earlier simulations, the sea state under
consideration is adjusted to have a significant wave height that yields the same
steepness as the previous simulation with � = 0.076, for Tp = 15.2 seconds. This
adjustment results in a significant wave height, Hs = 17.56 meters.

The first simulation is run with the tuned set of observer parameters, not adjusting
the estimated peak period in the observer and the cuto↵ frequency. For the second
simulation, both the cuto↵ period and the estimated peak period have been adjusted
to full-scale values of Tp,obs = 15.21 and Tc = 15.55 seconds. The response from these
two tests can be seen and compared in the following figures:

(a) Bias plotted for simulations with plat-
form cancellation period.

(b) ⌫̂ for simulations with platform cancel-
lation period.

Figure 4.11: Bias and velocity estimates plotted for simulations with platform can-
cellation period.

Figure 4.11a shows that correctly fitted and adapted variables for a new sea state
provide the better result, as default parameters (blue line) contain more wave-
frequent content and strains further from the reference after first finding it. Fig-
ure 4.11b also shows that the velocity estimates are better for updated parameters
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where the orange curve shows less high-frequency oscillations and in general smaller
amplitudes of the estimated velocity.

4.9 Discussion

The title of this thesis is:

Software in the loop testing of a wave filter:
with application to cyber-physical testing of a floating wind turbine

This section will discuss and elaborate on the main findings from this chapter with
respect to the title and objective of the thesis. It also aims to answer the feasibility
of this setup for experimental usage, in addition to summarizing the key elements
before drawing any conclusions.

4.9.1 General remarks

The two previous chapters present the proposed method when adapting an NPO
algorithm to a SIL setup using HLCC and SIMA, as well as the results obtained
when applying this method and conducting simulation experiments.

Based on the time spent and the attention devoted to this thesis, it becomes evid-
ent that much of this experimentation depends on a good model and a correct
setup. Uncertainties and modeling errors will cause di�culties when trying to fit a
model-based estimator to the experimental setup and the subsequent results will be
erroneous.

Caution is advised when fitting model parameters to a simulated response using
ODE, as parameters can be customized to the response in a way that will yield a
nonphysical result. Despite wrong parameters, the observer will in most cases be
stable and provide credible results. This can quickly cause misunderstandings and
propagating errors throughout the setup once implemented that will be hard to trace
back to their origin.

Once having ensured that all parameters were fitted correctly and held correct phys-
ical values with respect to the simulation model, the observer was able to separate
the wave frequencies out of the signal and generate a low-frequent estimate in all
cases. What separated a good from a poor result was the amount of wave frequencies
filtered out and with how much accuracy.

Tuning the observer proves to be a relatively straightforward procedure once the
model parameters are estimated correctly. Models with more uncertainty in para-
meters can also be tuned but will require higher gains which yields less trust in the
model. For an acceptable response, the gains do not need much fine-tuning and a
few simulations with various values for the respective gain term should be enough
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to provide an adequate response. The trick of tuning is to strike the balance where
gains have been tuned to the extent of providing accurate estimates without any
higher frequencies as a larger gain also gives more wave-frequencies in the signal.
This is observed for all the simulations. This thesis has not gone through the tedious
process of finding the perfect balance as this would require more time and tests.

The proposed method for tuning and its order of changing the di↵erent constants
in this thesis seems to work. Primarily tuning the bias term to reach its reference
without too much wave frequent signal, then the velocity injection term up until
it provides estimates which are close enough to the derived velocity before finally
adjusting the position injection term, K2. K4 is proven to have a larger e↵ect on
the system as it is more related to the system equations from Equation 2.6.1 and
should therefore be tuned before K2. This procedure also makes it easier to fulfill
the equation proposed by Fossen in Equation 2.45.

For a symmetric construction like this, the tuning in surge should provide a satisfying
result for sway as well. However, time should be devoted to tuning the algorithm
specifically in yaw in order to obtain better performance in this degree of freedom.
Despite not applying more gain in yaw, the observer responds well to changes in
the direction of the environment and sea state. It is noted that the performance
is worst for nonaxial directions calling for the structure to be moored facing the
most probable direction of waves. For an optimal solution, the parameters should
be adjusted based on the incoming wave period.

When testing the observer algorithm for extreme conditions, it does not indicate to
struggle.

Overall it can be stated that the proposed method and setup works as a platform
for evaluating the response of an o↵shore floating wind turbine preliminary to basin
tests. In order to evaluate whether it is e↵ective or not, the data should be evaluated
against data from basin tests. As the simulated model is a simplification of reality
and a real model is likely to encapsulate more dynamic e↵ects some deviations are
expected. For this to become a recommended practice, e↵ective model design and
verification is a prerequisite.

4.10 Sources of error

Over the course of this study, some sources of error have been detected, these are
listed and briefly discussed in the following:

• Lacking documentation of model parameters and di↵erences between the sim-
ulated model and the report Souza (2021) deems it di�cult to decide which
parameters are correct. This thesis has pursued to be consistent in only using
values from the simulated model.

• Restricted computational power sometimes results in delays and signal jitter
directly a↵ecting the response of the system.
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• Direct comparison of time series from di↵erent simulations is advised to be
done with care as most are not perfectly aligned and what seems like a big
di↵erence in a plot might be caused by for example delay in one simulation.

• Lag in the loop and delay between FMUs. When comparing the time series of
a parameter at di↵erent intervals in the loop one can see a slight shift in the
signal as in Figure B.28.

• Human error. Over the course of performing more than 200 simulations, having
a lot of adjustable parameters, it is worth noting that human error can occur
which could have a↵ected some results.
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Chapter 5
Conclusions

The main goal of this thesis was to:

verify the wave filtering ability of a nonlinear passive observer for wind turbine
application before physical basins tests by using cyber-physical principles applied to

software-in-the-loop testing

This chapter concludes the work done in this thesis and presents some suggestions
for further work.

5.1 Concluding remarks

This thesis focuses on the modeling and application of a wave filter for a floating
o↵shore wind turbine. The aim has been to accurately estimate the low-frequent
motions and velocities from measurements. The simulation model is based on the
INO WINDMOOR 12MW concept design. The wave filter is a Nonlinear Passive
Observer algorithm based on the theory by Thor I. Fossen. In addition, the feasibility
of testing models using general software in the loop testing setup using the tools
SIMA and HLCC has been investigated.

A software-in-the-loop testing setup was developed using cyber-physical principles,
simulating the floating platform model in SIMA as the physical substructure and
having virtual mooring as the numerical substructure. Virtual mooring was applied
using modeled actuator lines in SIMA, controlled by forces calculated in HLCC.
The setup and model have been verified through comparison using simulated decay
tests and the modeled response of a mass-spring-damper system solved by ordinary
di↵erential equations in MATLAB.

The nonlinear passive observer has been presented and is modeled in Simulink before
exporting it as an FMU for use in HLCC. By adjusting the algorithm, it is able to
filter the incoming wave signals and estimate the low-frequency position and velocity
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of the floater accurately. Moreover, the bias force aligns with its reference value.
Comparing the output from the observer with a low-pass filtered position and the
derived velocity grants a measure of performance for the algorithm. The algorithm
has been tested for several scenarios with changing environmental loads. Results
show that the system is able to separate the wave frequent content in measured
position from the low-frequent component in most cases.

For optimal performance, it is recommended to employ adaptive control that con-
siders the incoming wave characteristics. This allows the system to adapt to changes
in the wave conditions, resulting in improved performance. Obtaining good results
requires a solid understanding of the system dynamics, familiarity with the math-
ematical model, and accurate estimation of model parameters.

To conclude, the suggested SIL setup proves suitable for experimental and verifica-
tion testing of the simplified model for INO WINDMOOR 12MW. The low frequent
position and velocity can be estimated using the suggested NPO.

5.2 Further work

Below are some bullet points for suggested further work:

Modeling

• The model used in this thesis only holds the floating platform, it would be
interesting to develop a full model equipped with a tower and turbine for
testing.

• Develop model with more floating substructures and shared mooring for test-
ing.

Simulation and analysis

• The model can be tested for more varying conditions and even harsher envir-
onments from more angles to see if this has an e↵ect. SIMA also allows the
introduction of currents and wind in the model.

• Quite a substantial amount of data has been collected from all simulations.
It would be interesting to apply statistical analysis with the ordinary least
squares (OLS) method to see if any other or a more optimal solution could be
found.

• Further research into whether the bias indicator should be updated to provide
more accurate and representative performance computations. This should
be done to penalize non-convergence towards reference value and for strong
oscillations.

• Calculate the nonlinear forces acting on the structure based on the low-frequent
estimates, as done in T. Sauder (2021).
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Setup and control

• A lot of time has been spent dealing with the magnitudes of signals in HLCC.
In order to make it more user-friendly and intuitive, the implementation of
signal units in HLCC could contribute to avoiding confusion and errors in the
future.

• A functionality which allows start and reload (with or without parameter
changes) for all DLLs at the same time would be helpful in order to increase
e�ciency when testing with multiple modules
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Appendix A
Appendix A: Relevant Theory

A.1 Added mass

In fluid dynamics, added mass refers to the apparent increase in the mass of an
object caused by its acceleration through a fluid. The motion causes disturbances
in the surrounding fluid causing a force acting on the floating object that appears as
if it is an increase in the mass of the object. This force is referred to as added mass
and is dependent on the frequency of the motion of the object through the fluid.

We di↵erentiate between two phenomena called zero- and infinite-added mass. Zero
frequency added mass, A0 occurs for larger periods of motion. For lower periods,
close to the infinite frequency, the added mass, A1 approaches a constant value. At
high frequencies, the fluid is unable to adjust to the motion of the object quickly
enough, and the added mass becomes independent of the frequency of the motion.
The main di↵erence between zero and infinite frequency added mass is that the
former depends on the frequency of the object’s motion through the fluid, while
the latter does not (Chapter 3 in Faltinsen 1990 or Molin 2023 for more in-depth
information). For this application, we are mostly interested in the zero-frequency as
it is assumed that the response of the body will be in the larger periods, up towards
100 seconds.

A.2 Damping

Another relevant hydrodynamic phenomenon is damping; the process of reducing
the amplitude of motion of a body that is undergoing oscillations in a fluid. Damping
is important for controlling the motion of the body and ensuring its stability in the
fluid. There are two main categories of damping that can occur for a floating body
in waves: linear damping and quadratic damping.

Linear damping is a type of damping where the damping force is proportional to the
velocity of the body. The main component of linear damping is radiation damping,
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caused by waves radiated by the body. Quadratic damping is proportional to the
square of the velocity of the body. The main component of quadratic damping for
a floating body in waves is viscous-quadratic damping occurring due to the friction
between the body and the fluid. Chapter 3 in Faltinsen (1990) or Molin (2023) for
more in-depth information.

The quadratic damping terms for a floating body can be calculated based on the
equation for e↵ective drag from the Morison equation, given as:

FD =
1

2
CDv|v|A (A.1)

Where the quadratic damping force is a result of the term: CDv|v|. The equivalent
equation for calculating the force in the surge for INO WINDMOOR 12MW is found
to be:
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See appendix for illustration (Figure A.3)

A.3 Reference frame

The general dynamics of a system are usually described in two parts; kinematics
and kinetics. These are respectively describing the motions and the forcing of the
system. In order to describe the kinetics of a system, a kinematic base should be
first established.

The orientation of a marine craft is usually described using six independent coordin-
ates, each representing one degree of freedom for the structure. In order to give an
accurate description of the orientation, a reference must be established. Di↵erent
references are usually referred to as reference frames. For marine applications, the
two most commonly used are the North-East-Down (NED) frame and the BODY
frame (Sorensen 2018).

The north-east-down frame uses a tangent plane to the Earth’s reference ellipsoid as
the origin, and the position is noted as {n} = (xn, yn, zn). The xn axis point to the
true north, the yn axis towards the east, and the zn axis are normal to the earth’s
surface, pointing towards the center of the earth (Fossen 2021).
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The body frame is fixed to a virtual center of the marine craft, often represented
as the origin of the guidance, navigation, and motion control systems of the craft
or coinciding with the point midships along the waterline. The reference frame is
described as {b} = (xb, yb, zb). where xn is defined along the longitudinal direction
of the craft, yb towards the transverse axis, and zb normal to the craft, pointing
downward to the sea surface (Fossen 2021).

Figure A.1: Degrees of freedom for a ship(Fossen 2021).

The position of a marine craft is often denoted using the NED frame, while the
orientation is defined in terms of Euler angles on the body frame with respect to
the NED frame. The generalized position vector can be written as:

⌘ = [x, y, z,�, ✓, ]> (A.3)

and the generalized velocity vector in the body frame is then given as:

⌫ = [u, v, w, p, q, r]> (A.4)

The motion vector which is the combination of the generalized position and velocity
vector is then written as:
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(A.5)

It is important to be able to express one set of variables given in one reference
frame in terms of another. Transformations between the two should therefore be
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established. The Euler angle transformation matrix for angles in the body frame can
be related to the velocities in the NED frame using the following rotational matrix
which is given in (Fossen 2021):

Rn

b
= R(✓nb) = Rz, Ry,✓Rx,� (A.6)

the inverse transformation is performed by using the transpose of Equation A.6. For
a detailed description and derivation of the matrices, consult chapter 2 in (Fossen
2021).

A similar transformation can be done for the angular velocities, in this case, the
transformation equation is stated as the following, also given in (Fossen 2021):

✓̇nb = T (✓nb)w
b

nb
(A.7)

When working with the full 6-DOF kinematic equations, the transformation is usu-
ally written in the form:

⌘̇ = J✓(⌘)⌫ (A.8)

where J✓ contains both the transformation matrix for linear and angular equations:

J✓ =


R(✓nb) 03x3

03x3 T (✓nb)

�
(A.9)

Assuming small angles simplifies the 3-DOF model, and allows for the following
simplified transformation relation to be stated (Fossen 2021).

⌘̇ = R( )⌫ (A.10)

A.4 Model scaling

This report will present results generated by simulations for a model of a full-scale
floating wind turbine. Therefore, it is relevant to present some basic theories behind
hydrodynamic scaling laws.

A challenge when designing and modeling objects for marine applications is the large
variation in environmental conditions, i.e., wind and waves. To achieve similarity,
by forcing a model and its full-size equivalent, there are three conditions that should
be met. The full scale and the testing model should have the following:

• Geometric similarity

• Dynamic similarity
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Parameter Unit Scaling factor
Length [m] �
Time [s]

p
�

Angular displacement [deg] �0 = 1
Structural mass [kg] �3⇢f/⇢m

Force [N] �3⇢f/⇢m
Moment [Nm] �4⇢f/⇢m
Damping [Ns/m] �2.5⇢f/⇢m

Table A.1: Scaling conversion factors.

• Kinematic similarity

Having both geometric and dynamic similarity usually implies kinematic similarity
as well. The most typical scaling rule applied to marine operations is Froude-scaling
which ensures similarity in inertia and gravitational forces. This ensures that most
of the characteristics of the wave-related full-scale phenomena are maintained.

The equation for the Froude number can be expressed as

Fn =
Up
gL

(A.11)

The scaling factor between a full-scale model and a model can be further derived as:

Vm

VF

=
1p
�

(A.12)

Where � is a scalar.

The fluid surrounding the body also introduces viscous e↵ects; an equal ratio between
the inertia and viscous forces acting on a body can be expressed using the Reynolds
number.

Re =
UL

⌫
(A.13)

Scaling a model based on both the Reynold and Froude numbers of the full-scale
system is desirable. Nevertheless, computing the velocities of the model at the scale
of � = 1 is impractical. Consequently, hydrodynamic scaling has predominantly
relied on Froude-scaling as the prevailing approach over the years.

Applying the same scaling rules to other relevant quantities gives the following
relations

⇢f and ⇢m describe the density of the fluid surrounding the full-scale structure and
the model. For most marine applications, ⇢f will correspond to the density of salt
water and ⇢m to fresh water, such that ⇢f/⇢m = 1.025.
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A.5 Controllability

Observability can also be related to another term; Controllability. The theorem of
duality states that if the pair of system matrices {A,B} is controllable if and only
if the pair {A>,B>} is observable (Chen 2013). The physical interpretation of a
controllable system is that, for a given input, the system is able to move any state
in the state space to another state within a finite amount of time. The magnitude
of the input is not bounded and can be as large as desired or possible (Chen 2013).

Mathematically, the controllability matrix can be calculated as:

C =
⇥
B AB A2B ... An�1B

⇤
(A.14)

and the system will be controllable if the matrix, C has full row rank. A system
without full-row rank has redundancy in its inputs (Chen 2013).

A.6 Sampling and the Nyquist frequency

This thesis deals with sampled analog signals that serve as inputs to an algorithm.
Some signal processing theory is therefore needed and the sampling theorem derived
by Nyquist is fundamental when working with digital systems and signals.

The theorem states that in order to reproduce an input signal digitally, the sampling
frequency should be at least twice the highest frequency contained in the original
signal in order to keep its main characteristics (Balchen 2016).

Nyquist also derived a theorem for the stability of dynamical systems that can be
interpreted visually. Without going into too much detail, the simplified theorem
states that a system that is open-loop stable is also stable if the Nyquist curve does
not encircle the point (�1 + j0) (Balchen 2016).

A.7 Lipschitz continuity

Lipschitz continuity is used to describe the form and steepness of a curve, its main
characteristic being that it limits the derivative of a curve. A function f is locally
Lipschitz at a point x0 if a neighborhood N (x0, r) = {x 2 Rn|||x� x0|| < r} where
f satisfies the Lipschitz condition:

||f(t, x)� f(t, y)||  L||x� y||, L > 0 (A.15)

The function is globally Lipschitz if it meets the above condition for all {x, y} with
the same value for the positive constant, L. Visually, this interpretation shows that
any straight line joining points on f(x) cannot have a slope with an absolute value
greater than L (Khalil 2015a).
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|f(y)� f(x)|
|y � x|  L (A.16)

Lipschitz continuity is practical when demonstrating the existence and uniqueness
of a solution to general dynamical systems and non-linear processes. The smallest
possible L that satisfies the above equation will correspond to the largest magnitude
of the slope in the given interval. The property of Lipschitz continuity can be
shown geometrically and Figure A.2 shows an example of a visual representation of
Lipschitz continuity using a sinus curve.

Figure A.2: Figure displaying Lipschitz continuity(Atwood 2011)

The continuity of f 0(x) ensures that |f 0(x)| is bounded by a constant k in the given
neighborhood. If the partial derivatives are continuous for all relevant values of x,
x 2 Rn the function will be globally Lipschitz for x if all the partial derivatives
are also globally bounded and their absolute values are bounded for all values of t
(Khalil 2015b).

A.8 Small-gain theorem

This theorem applies to a well-defined system with the two transfer functions H1

and H2 which are finite-gain L stable in feedback connection with respective gains,
�1, �2. The small-gain theorem states that the overall feedback connection is also
finite-gain L-stable if:

�1 · �2 < 1 (A.17)

This theorem proves to be very useful when studying the robustness of systems with
model uncertainties as the small-gain requirement will be met for as long as �2 is
small enough.
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A.9 Derivation of quadratic damping force in surge

Figure A.3: Derivation of quadratic damping coe�cient in surge.
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Appendix B
Appendix B: Plots

B.1 Model verification: decay

(a) ODE fitted to SIMA response in sway (b) ODE fitted to SIMA response in yaw

Figure B.1: Decay response for sway and yaw.
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B.2 K3 tuning

Figure B.2: Bias comparison with K3=1 and K3=0.5.
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B.3 K4 tuning

Figure B.3: Sliced plot of ⌘ for various values of K4.

Figure B.4: Bias plotted for various values of K4.
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B.4 K2 tuning

(a) ⌘ plotted for various values of K2. (b) ⌫ plotted for various values of K2.

Figure B.5: Simulation with varying values of K2

B.5 K2 tuning with updated K3

Figure B.6: ⌫ plotted for various values of K2 with updated K3.
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B.6 Damping factor

Figure B.7: Sliced plot of ⌘̂ for ⇣ 2 [0.1, 0.3, 0.5, 0.7].

Figure B.8: ⌫̂ for ⇣ 2 [0.1, 0.3, 0.5, 0.7].
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B.7 Cuto↵ frequency

Figure B.9: Velocity estimate for cuto↵ frequencies= [0.5, 1, 1.5, 2]

Figure B.10: Sliced position estimate for cuto↵ frequencies= [0.5, 1, 1.5, 2]
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B.8 Varying Tb

Figure B.11: Bias force for Tb = [0.5, 1, 1.5, 2]

Figure B.12: Velocity estimate for Tb = [0.5, 1, 1.5, 2]
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B.9 Varying Tb for K3 = 10

Figure B.13: Bias for K3 = 10 and Tb 2 [0.5, 1, 1.5, 2].

xvii



B.10 Response to di↵erent angles

A 30 degrees environment

Figure B.14: Simulation with the environment from 30 degrees.

Figure B.15: Yaw response for environment from 30 degrees.
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B 60 degrees environment

Figure B.16: Yaw response for environment from 60 degrees.

C Sway test - 90 degrees environment

Figure B.17: Simulation with the environment from 90 degrees.
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Figure B.18: Yaw response for environment from 90 degrees.

D Surge test - 180 degrees environment

Figure B.19: Simulation with the environment from 180 degrees.
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B.11 Yaw tuning

A K4

Figure B.20: Bias in yaw for various values of K4,3 = [2.7, 5, 10].
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Figure B.21: Velocity estimate in yaw for various values of K4,3 = [2.7, 5, 10].

B K2

Figure B.22: Bias in yaw for various values of K2,3 = [1, 5, 10].
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Figure B.23: Position estimate in yaw for various values of K2,3 = [1, 5, 10].
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B.12 Di↵erent sea-state simulations

A Hs = 3.75 and Tp = 7

Figure B.24: ⌫̂ for Hs = 3.75 and Tp = 7.
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Figure B.25: Sliced ⌘̂LF for Hs = 3.75 and Tp = 7.

B Hs = 14.97 and Tp = 14

Figure B.26: Bias for Hs = 14.97 and Tp = 14.
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Figure B.27: Sliced plot of ⌘̂ for Hs = 14.97 and Tp = 14.

B.13 Comparison of signals in HLCC

Figure B.28: Comparison of input to the observer, output from the mooring, and
coordinate transform.
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B.14 Initial simulation parameters

Simulation Parameters

Parameter Explaination Symbol Unit
Observer Parameters (HLCC)

Dl1 Linear damping in surge 0.139044 N/(m/s)
Dl2 Linear damping in sway 0.139044 N/(m/s)
Dl6 Linear damping in yaw 0.109795 N/(deg/s)
Dq1 Quadratic damping in surge 945204 N/(m/s)2

Dq2 Quadratic damping in sway 945204 N/(m/s)2

Dq6 Quadratic damping in yaw 3834.97 Nm/(deg/s)2

K2,1 Observer gain 1 [-]
K2,2 Observer gain 1 [-]
K2,3 Observer gain 1 [-]
K3 Observer gain 1 [-]
K4,1 Observer gain 1 [-]
K4,2 Observer gain 1 [-]
K4,3 Observer gain 1 [-]
M1 Mass in surge 295.799 kg
M2 Mass in sway 295.799 kg
M6 Mass in yaw 175.611 kg
Tb Bias time constant 1 s
Tp Observer peak period 1.195 s
bypassObs Observer bypass switch 0 [-]
cutoffWFObs Observer cuto↵ frequency 1.22 s
dampingWFObs Observer damping term 0.1 [-]
scale scaling factor 40 [-]

Wind Parameters (SIMA)

Direction Incoming direction of wind 0 deg
U0 Mean wind speed 1 · 10�6 m/s

Mooring Parameters (HLCC)

ki Inline mooring sti↵ness 53.56 N/m
kt Transverse mooring sti↵ness 53.36 N/m
krot Rotational mooring sti↵ness 5.449 Nm/deg)

Wave Parameters (SIMA)

Direction Incoming direction of waves 0 deg
Spread type [-] Unidirectional [-]
Spread exponent [-] 2 [-]
Number of directions [-] 11 [-]
Hs Significant wave height 6 m
Tp Wave period 7.55 s
� Peak enhancement factor, steep-

ness of spectrum
3.3 [-]

Table B.1: Initial simulation parameters.xxviii



B.15 Updated model parameters

Simulation Parameters

Parameter Explaination Symbol Unit
Observer Parameters (HLCC)

Dl1 Linear damping in surge 0.139 N/(m/s)
Dl2 Linear damping in sway 0.139 N/(m/s)
Dl6 Linear damping in yaw 0.1098 Nm/(deg/s)
Dq1 Quadratic damping in surge 389 N/(m/s)2

Dq2 Quadratic damping in sway 389 N/(m/s)2

Dq6 Quadratic damping in yaw 0.06 Nm/(deg/s)2

K2,1 Observer gain 1 [-]
K2,2 Observer gain 1 [-]
K2,3 Observer gain 1 [-]
K3 Observer gain 1 [-]
K4,1 Observer gain 1 [-]
K4,2 Observer gain 1 [-]
K4,3 Observer gain 1 [-]
M1 Mass in surge 338 kg
M2 Mass in sway 338 kg
M6 Mass in yaw 202.6 kg
Tb Bias time constant 1 s
Tp Observer peak period 1.195 s
bypassObs Observer bypass switch 0 [-]
cutoffWFObs Observer cuto↵ frequency 1.22 s
dampingWFObs Observer damping term 0.1 [-]
scale scaling factor 40 [-]

Mooring Parameters (HLCC)

ki Inline mooring sti↵ness 62.2 N/m
kt Transverse mooring sti↵ness 59.94 N/m
krot Rotational mooring sti↵ness 1.983 Nm/deg)

Table B.2: Updated model parameters.
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B.16 WP4 model

Simulation Parameters

Parameter Explaination Symbol Unit
Observer Parameters (HLCC)

Dl1 Linear damping in surge 0.139 N/(m/s)
Dl2 Linear damping in sway 0.139 N/(m/s)
Dl6 Linear damping in yaw 6.29 Nm/(deg/s)
Dq1 Quadratic damping in surge 0 N/(m/s)2

Dq2 Quadratic damping in sway 0 N/(m/s)2

Dq6 Quadratic damping in yaw 0 Nm/(deg/s)2

K2,1 Observer gain 1 [-]
K2,2 Observer gain 1 [-]
K2,3 Observer gain 1 [-]
K3 Observer gain 1 [-]
K4,1 Observer gain 1 [-]
K4,2 Observer gain 4 [-]
K4,3 Observer gain 10 [-]
M1 Mass in surge 430.61 kg
M2 Mass in sway 430.61 kg
M6 Mass in yaw 0.24 kg
Tb Bias time constant 1 s
Tp Observer peak period 0.1750 s
bypassObs Observer bypass switch 0 [-]
cutoffWFObs Observer cuto↵ frequency 1.22 s
dampingWFObs Observer damping term 0.1 [-]
scale scaling factor 40 [-]

Mooring Parameters (HLCC)

ki Inline mooring sti↵ness 58.48 N/m
kt Transverse mooring sti↵ness 59.94 N/m
krot Rotational mooring sti↵ness 79.33 Nm/deg)

Table B.3: WP4, o✏ine experiment model parameters.
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B.17 Tuned model

Simulation Parameters

Parameter Explaination Symbol Unit
Observer Parameters (HLCC)

Dl1 Linear damping in surge 0.139 N/(m/s)
Dl2 Linear damping in sway 0.139 N/(m/s)
Dl6 Linear damping in yaw 0.1098 Nm/(deg/s)
Dq1 Quadratic damping in surge 389 N/(m/s)2

Dq2 Quadratic damping in sway 389 N/(m/s)2

Dq6 Quadratic damping in yaw 0.06 Nm/(deg/s)2

K2,1 Observer gain 1 [-]
K2,2 Observer gain 1 [-]
K2,3 Observer gain 1 [-]
K3 Observer gain 3 [-]
K4,1 Observer gain 2.7 [-]
K4,2 Observer gain 2.7 [-]
K4,3 Observer gain 2.7 [-]
M1 Mass in surge 338 kg
M2 Mass in sway 338 kg
M6 Mass in yaw 202.6 kg
Tb Bias time constant 1 s
Tp Observer peak period 1.195 s
bypassObs Observer bypass switch 0 [-]
cutoffWFObs Observer cuto↵ frequency 1.22 s
dampingWFObs Observer damping term 0.1 [-]
scale scaling factor 40 [-]

Table B.4: Tuned model parameters.
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Appendix C
Appendix C: Code and models

MATLAB file folder:

• compare.m

• computing.m

• INO12MW values.m

• odeSolver.m

• one plot.m

• plotting.m

• processing.m

• Rzyx .m

HLCC file folder:

• HLCC setup

• alloc.fmu

• computeLoad.fmu

• coordinateTransformation.fmu

• mooring.fmu

• observer.fmu

• winchTensionControllerSIMA.fmu

• externalWinchController.jar

• HLCC setup.ini
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SimulationExample:

• HLCC 225 defrag.tdms

• HLCC Setup

Simulink file folder:

• observer.slx

SIMA file folder:

• CYBERLAB.stask
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C.1 Simulink model of observer

Figure C.1: Simulink model of NPO.
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