
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Anmol Singh

Deep Reinforcement Learning for
Spatio-Temporal Wildlife
Management

Master’s thesis in Computer Science
Supervisor: Keith L. Downing
June 2023

Anmol Singh

Deep Reinforcement Learning for
Spatio-Temporal Wildlife Management

Master’s thesis in Computer Science
Supervisor: Keith L. Downing
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Anmol Singh

Deep Reinforcement Learning for Spatio-
Temporal Wildlife Management

Master’s thesis, June 2023

Supervisor: Keith L. Downing

Data and Artificial Intelligence (DART)
Department of Computer Science (IDI)
Faculty of Information Technology and Electrical Engineering

i

Abstract

In the past 50 years, global wildlife populations have plummeted resulting in a
biodiversity crisis where a significant number of species are at risk of extinction.
This project tests the performance of various deep reinforcement learning (DRL)
algorithms on the task of spatio-temporal wildlife management, for the purpose
of maintaining biodiversity. DRL is a subfield of machine learning that combines
deep neural networks with reinforcement learning, thus enabling an RL agent to
solve complex problems in intricate environments.

In recent years, DRL has become increasingly popular due to its successful ap-
plication in games like Chess and Atari 2600. However, there have been limited
efforts to apply it to the field of wildlife management. Thus, the potential of DRL
in this field remains largely unexplored. To address this, this thesis tests vari-
ous DRL algorithms on the task of spatio-temporal wildlife management with the
purpose of maintaining biodiversity. This was done by creating a spatio-temporal
wildlife management simulation and training the DRL algorithms: DQN, A2C,
and PPO on it. The focus of this thesis was to find the best action set for the
RL agent, and the DRL algorithm with the best performance. The performance
of the algorithms was based on the sizes of the species populations.

The results show that the best action set consists of actions that add fewer
animals to the ecosystem. While all DRL algorithms were able to improve, the
results indicate that there is a trade-off between performance and stability over
training time. However, as training time increases PPO stands out as it performs
similarly to DQN and A2C while being significantly more stable. This thesis
shows the potential of DRL for wildlife management, and future work should
investigate the applicability of other AI techniques, such as convolutional neural
networks and evolutionary strategies, in this domain.

ii

Sammendrag

(This is a Norwegian translation of the abstract)

De siste 50 årene har globale dyrelivsbestander opplevd betraktelig nedgang som
har ført til en biologisk mangfoldskrise hvor et betydelig antall dyrearter har blitt
utrydningstruet. Denne oppgaven tester ytelsen til ulike algoritmer av typen dyp
forsterkende læring (DRL) innenfor romlig-temporær dyrelivsforvaltning, med
form̊al om å opprettholde biologisk mangfold. DRL er et underomr̊ade av maskin-
læring som kombinerer dype nevrale nettverk med forsterkende læring, slik at en
RL agent kan løse komplekse problemer i avanserte miljøer.

I de siste årene har DRL blitt stadig mer populært grunnet sin vellykkede an-
vendelse i spill som sjakk og Atari 2600. Det har imidlertid vært f̊a forsøk p̊a
å anvende det p̊a dyrelivsforvaltning. Dermed er potensialet til DRL i dette
feltet i stor grad uutforsket. For å adressere dette tester denne oppgaven ulike
DRL-algoritmer innenfor romlig-temporær dyrelivsforvaltning, med form̊al om å
opprettholde biologisk mangfold. Dette ble gjort ved å lage en romlig-temporær
dyrelivsforvaltningssimulator, og trene DRL-algoritmene: DQN, A2C og PPO
p̊a den. Fokuset til denne oppgaven var å finne det beste handlingssettet for RL
agenten, og å finne DRL-algoritmen med best ytelse. Ytelsen til algoritmene ble
basert p̊a størrelsene til artspopulasjonene.

Resultatene viser at det beste handlingssettet best̊ar av handlinger som legger
til et mindre antall dyr til økosystemet. Selv om alle DRL-algoritmene forbedret
seg, tyder resultatene p̊a at det er en avveining mellom ytelse og stabilitet over
treningstiden. Ettersom treningstiden øker, skiller PPO seg ut ved at den yter
p̊a niv̊a med DQN og A2C samtidig som den er betydelig mer stabil. Denne
oppgaven har vist potensialet til DRL for dyrelivsforvaltning, og framtidig arbeid
bør undersøke hvordan andre AI-teknikker, som konvolusjonelle nevrale nettverk
og evolusjonsstrategier, kan anvendes i dette domenet.

iii

Preface

This master’s thesis was written at the Department of Computer Science (IDI)
at the Norwegian University of Science and Technology (NTNU).

I would like to thank my supervisor Prof. Keith L. Downing for his valuable
feedback and guidance during the course of this project.

Anmol Singh

Trondheim, 11th June 2023

iv

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Goal and Research Questions . 3

1.3 Research Method . 4

1.4 Contributions . 4

1.5 Thesis Structure . 4

2 Background Theory and Motivation 5

2.1 Wildlife Management . 5

2.2 Simulating Biological Ecosystems 6

2.3 Reinforcement Learning . 13

2.3.1 General RL System . 14

2.3.2 TD-learning . 16

2.3.3 Q-learning and SARSA . 17

v

vi TABLE OF CONTENTS

2.3.4 Neural Networks as Function Approximators 18

2.3.5 Actor-Critic . 19

2.4 Summary . 22

3 Related Work 23

3.1 Structured Literature Review . 23

3.2 Traditional Approaches in Wildlife Management 24

3.2.1 Stochastic Dynamic Programming 24

3.2.2 Spatio-Temporal Animal Reduction (STAR) 25

3.2.3 Population Viability Analysis (PVA) 27

3.3 Reinforcement Learning in Wildlife Management 30

3.3.1 Deep Reinforcement Learning for Conservation Decisions . 30

3.4 Reinforcement Learning in Grid Environments 30

3.4.1 Deep Q-Network . 31

3.4.2 Actor-Critic . 34

3.4.3 PPO . 38

3.4.4 Evolutionary Strategies . 42

3.5 Summary . 44

4 Methodology 47

4.1 System Overview . 47

4.2 Spatio-temporal Wildlife Environment 48

4.2.1 BioEnvironment . 50

4.2.2 Renderer . 55

4.2.3 BioGymWorld . 56

4.2.4 Environment Parameters 62

TABLE OF CONTENTS vii

4.3 RL Algorithms . 64

4.3.1 DQN . 64

4.3.2 A2C . 66

4.3.3 PPO . 66

4.4 Experimental Plan . 67

4.5 Summary . 69

5 Results and Discussion 71

5.1 Results . 71

5.2 Discussion . 82

5.2.1 Finding the Best Action Set 82

5.2.2 Comparing DRL Algorithm Performance 84

5.3 Summary . 87

6 Conclusion 89

6.1 Overview . 89

6.2 Goal Evaluation . 91

6.3 Contributions . 93

6.4 Ethical considerations . 94

6.5 Future Work . 94

Bibliography 97

A DRL Algorithm Policies 101

viii TABLE OF CONTENTS

List of Figures

2.1 Lotka-Volterra predator-prey model graph 8

2.2 Lotka-Volterra phase-plane diagram 9

2.3 Phase-plane of stable limit cycle 11

2.4 Phase-plane of stable equilibrium 11

2.5 Phase-plane of tri-trophic model 12

2.6 General RL system . 14

2.7 Actor-Critic overview . 21

3.1 STAR conceptual model . 25

3.2 STAR culling pigs example . 27

3.3 Management actions in WildLift diagram 29

3.4 DQN overview . 33

3.5 A3C overview . 36

3.6 Actor-Critic performance on wildfire mitigation 38

3.7 PPO positive advantage . 40

3.8 PPO negative advantage . 41

3.9 CAPTAIN overview . 43

ix

x LIST OF FIGURES

4.1 System overview . 48

4.2 Wildlife simulation component overview 49

4.3 Species population representations 50

4.4 Action unit . 52

4.5 Simulation dispersal . 55

4.6 Graphical representation of wildlife environment 56

4.7 Critical thresholds . 58

5.1 DQN performance (action multiplier = 10x) 72

5.2 A2C performance (action multiplier = 10x) 73

5.3 PPO performance (action multiplier = 10x) 74

5.4 DQN performance (action unit size = 2× 2) 75

5.5 A2C performance (action unit size = 2× 2) 76

5.6 A2C performance (action unit size = 2× 2) 77

5.7 DRL performance over environment time steps 78

5.8 DRL performance over wall clock time 79

5.9 DRL performance over equal wall clock time 80

A.1 DQN action sequence . 102

A.2 A2C action sequence . 103

A.3 PPO action sequence . 104

List of Tables

4.1 Spatio-temporal environment parameters. 62

4.2 Tri-trophic system parameter values used in experiments. 63

4.3 DQN hyperparameters used in experiments. 65

4.4 A2C hyperparameters used in experiments. 66

4.5 PPO hyperparameters used in experiments. 67

5.1 Actions taken by the DRL algorithms 81

5.2 Biodiversity performance of the DRL algorithms 82

xi

xii LIST OF TABLES

Chapter 1

Introduction

This chapter serves as an introduction to this thesis. Section 1.1 covers the
background and motivation behind the thesis. The research goal and research
questions for this thesis are presented in section 1.2. Section 1.3 presents the
research method used for answering the research questions. The contributions of
this thesis are covered in section 6.3. Finally, section 1.5 gives an overview of the
structure of this thesis.

1.1 Background and Motivation

The planet is currently facing a biodiversity crisis. According to the World Wild-
life Fund (WWF), the global wildlife population has decreased by 69% in the last
50 years (WWF, 2022a). This is an unprecedented trend, that does not seem to
slow down. There are several factors contributing to this trend, including changes
in how humans use land and sea, habitat destruction, climate change, and invas-
ive non-native species. Ecosystems are destroyed and altered as a consequence
of these factors, which in turn lead to biodiversity loss.

To prevent ecosystems from reaching their tipping point and protect the world’s
wildlife, drastic measures are needed. In addition to more sustainable produc-
tion and consumption, more wildlife conservation efforts are also needed. Wildlife
conservation aims at protecting endangered wildlife and also facilitating sustain-
able ecosystems (WWF, 2022b). There are various ways of conserving wildlife,
such as creating protected areas. This is a form of wildlife management. Wild-

1

2 CHAPTER 1. INTRODUCTION

life management aims at maintaining stable ecosystems through manipulation of
population sizes (Mengak, 2008). This can be done through manipulating re-
sources available for different species, but also through other measures, such as
hunting. This thesis focuses on manipulative wildlife management, where the
wildlife populations are altered directly. In this thesis, the term ”manipulative”
is often omitted, and ”manipulative wildlife management” is simply written as
”wildlife management”.

In recent years, artificial intelligence (AI) has shown promise as a powerful tool
for conservationists in various ways. AI technology has been used to identify and
track wildlife, detect poachers and differentiate between species (Fritz, 2022).
Much of this development is due to the increase in available computing hardware
and available data. However, the AI technology used in these tools often relies
on supervised learning, which in turn relies on large amounts of data. Since data
collection can be expensive, and in some cases impractical, there is a need to
explore new and creative ways for AI to facilitate wildlife conservation decisions.
One such method, which has shown promise, is reinforcement learning (RL). RL is
an AI technique that trains an agent to interact intelligently with an environment,
through repeatedly taking actions and observing their effects on the environment.
Since the agent learns solely through getting rewards by interacting with the
environment, it is important to have a well-defined environment and a reasonable
reward structure. It also means that there is no need for large amounts of data,
which is an advantage RL has over supervised learning. Another advantage RL
has in this field is that ecologists often create and utilize simulations, which can
serve as a good starting base for an RL environment. Furthermore, deep neural
networks can be combined with RL to solve increasingly complex problems. This
is known as Deep Reinforcement Learning (DRL). These advances, in addition to
some recent work done on RL in wildlife conservation (specifically the CAPTAIN
framework), have shown promising results. To my knowledge, DRL has not yet
been applied to the task of spatio-temporal wildlife management. This serves
as the motivation for this thesis, where a spatio-temporal wildlife management
simulation is created, and three DRL algorithms are trained and tested on it,
with the aim of keeping a diverse and stable ecosystem.

1.2. GOAL AND RESEARCH QUESTIONS 3

1.2 Goal and Research Questions

The research goal and research questions of this thesis are stated below.

Goal Statement

To explore the use of different deep reinforcement learning (DRL)
algorithms on the task of spatio-temporal wildlife management, with
the aim of maintaining a diverse and stable ecosystem.

Based on this goal statement, two research questions were formulated.

Research Question 1

What action set yields the best performance on the task of spatio-
temporal wildlife management, when accounting for the costs that it
entails?

Research Question 2

Which DRL algorithm yields the best performance on the task of
spatio-temporal wildlife management: Deep Q-Network (DQN), Ad-
vantage Actor-Critic (A2C), or Proximal Policy Optimization (PPO)?
What are the trade-offs between these?

Research question 1 looks to investigate what type of action enables the RL agent
to keep a stable and diverse ecosystem when accounting for the costs that come
with it. This research question is motivated by the fact that there is no obvious
action set on the given task that enables the RL agents to act optimally and in
a cost-effective way. The second research question is inspired by three popular
DRL algorithms used in related work that have achieved valuable results in grid
environment tasks: DQN, A2C, and PPO. The motivation behind this research
question is to investigate which of these algorithms navigate the spatio-temporal
wildlife environment best.

4 CHAPTER 1. INTRODUCTION

1.3 Research Method

To address the research goal and more specifically the research questions posed in
this thesis, a spatio-temporal wildlife simulation was created. Such a simulation
functions as an RL environment, where RL algorithms can and were tested. An-
other reason for creating such a simulation is that ecologists and conservationists
regularly use simulation when taking decisions, hence it is not unfamiliar to the
problem field. This makes it easier to find good models, which could be used in
the simulation.

1.4 Contributions

To my knowledge, DRL has not been applied to spatio-temporal wildlife manage-
ment before. Hence, this thesis contributes to the field of wildlife management
by exploring the applicability of various DRL algorithms on it. This thesis gives
a better understanding of how effective the different DRL algorithms are on the
problem posed, which one yields the best performance, and what the most effect-
ive action set might be.

1.5 Thesis Structure

This thesis consists of 6 chapters. Chapter 1 serves as an introduction to the
thesis, and presents the research goal and questions to be answered in this thesis.
Background theory essential to understanding related work and methodology is
presented in chapter 2. Related work in both the field of wildlife management
and RL are covered in chapter 3. Chapter 4 presents the methodology used
for answering the research questions, and how the experiments were carried out.
The results from these experiments, as well as a discussion of them, are presented
in chapter 5. Finally, in chapter 6, the research questions are answered and a
conclusion is drawn.

Chapter 2

Background Theory and
Motivation

The following chapter is based on a similar chapter written in my specialization
project (Singh, 2022). This chapter aims to provide background knowledge on
key concepts and techniques encountered later on in this thesis. Section 2.1 gives
a brief overview of the field of wildlife management and traditional methods of
conducting wildlife management. Section 2.2 introduces the mathematical basis
for the wildlife simulation used in this thesis. Section 2.3 aims at providing a
basic understanding of reinforcement learning to the reader. Section 2.4 serves
as a summary of the whole chapter.

2.1 Wildlife Management

There are multiple different definitions and interpretations of wildlife manage-
ment, Fryxell (2014) gives a general definition of the term as well as provides
an overview of the field. According to Fryxell (2014, p. 2), wildlife manage-
ment can be defined as ”management of wildlife populations in the context of the
ecosystem”. The purpose of wildlife management has traditionally been game,
hunting wildlife for sport, however in recent years aspects such as conservation
and protection of endangered species have also been included.

5

6 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

There are two types of wildlife management, custodial and manipulative. Cus-
todial management aims at protecting wildlife from external threats that might
affect their population or habitat. Rather than directly influencing and stabil-
izing populations, custodial management focuses on letting natural processes be
undisturbed. Manipulative management, on the other hand, regulates wildlife
populations to keep the ecosystems in balance. This would be done by increas-
ing the population if it is unacceptably low, or decreasing the population if it
is unacceptably high. This kind of management is also used for harvesting pur-
poses. The regulation of populations can either be direct, such as hunting and
killing, or indirect, such as altering food supply and habitat. In this thesis, the
RL agent will balance wildlife populations through manipulative management.
For simplicity, the term ”manipulative wildlife management” is simply referred
to as ”wildlife management” in this thesis.

Fryxell (2014) presents four different ways to manage wildlife population:

• Making it increase

• Making it decrease

• Harvesting it for a continuing yield

• Leaving it alone but observing it

What action to take depends on the current state of the ecosystem and the desired
goal among other factors.

2.2 Simulating Biological Ecosystems

Biological ecosystems are complex, oftentimes consisting of multiple species in-
teracting and affecting each other in an intricate environment. Species can have
different relationships with each other, one of them being that of predator-prey.
In a predator-prey relationship, the predator species consumes the prey spe-
cies, which makes it possible for the predator species to survive and reproduce.
The prey in that case might be a predator in another relationship with a spe-
cies further down the food chain. A well-known and widely used way to model
predator-prey ecosystems is through the Lotka-Volterra equations. These equa-
tions were developed by both the American biophysicist Alfred J. Lotka, and the
Italian mathematician Vito Volterra independently of each other, at the same

2.2. SIMULATING BIOLOGICAL ECOSYSTEMS 7

time (Lotka, 1925; Volterra, 1928). The first-order differential equations are
given below:

dN1

dt
= αN1 − βN1N2 (2.1)

dN2

dt
= δN1N2 − γN2 (2.2)

These equations model the growth over time of species 1, which is the prey, and
species 2 which is the predator eating species 1. N1 is the population of species
1, and N2 is the population of species 2.

Equation 2.1 models the growth of the population of species 1 at a given time.
The first term in the equation, αN1, represents how the population of species
1 grows by consuming food (which is assumed to always be available to them).
The parameter α represents the rate at which species 1 grows over a time step.
The second term, βN1N2, models how the population of species 1 decreases as a
result of being eaten by species 2. This effect relies on how many predators there
are, N2, how many preys there are, N1, and how many preys a predator eats over
one time step, β.

Equation 2.2, similarly equation 2.1, models the growth in population for species
2. Just like the second term in equation 2.1, the first term in this equation
represents the effect of species 2 hunting and eating species 1. However, instead
of modeling the decrease in the population of species 1, this term models the
increase in the population of species 2. The population of species 2 does not
necessarily increase as much as the population of species 1 decreases. This is
represented by having separate parameters for the rate of decrease in population
for species 1, β, and the rate of increase in population for species 2, δ. The second
term in the equation, γN2, represents the decrease in the population of species
2 as a result of natural reasons such as death. The parameter γ represents the
rate at which this decrease happens.

Most realistic predator-prey models, including the Lotka-Volterra model, have
cyclic dynamics, meaning that there are cyclic fluctuations of both the prey
and predator populations. It is worth noticing how the two different species’
populations react to each other. If the prey population is high, the predator
population is growing fast, but when the number of predators increases, more
prey is eaten leading to their population decreasing. This would in turn lead to
less food for the predators, meaning that their population would decrease. This
cycle continues as long as the ecosystem remains undisturbed. Figure 2.1 shows

8 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

this cyclic dynamic through an example of predator and prey populations over
time when modeled with Lotka-Volterra equations 2.1 and 2.2.

Figure 2.1: Graph over fox (predator) and rabbit (prey) populations over time
in a Lotka-Volterra predator-prey model. Figure created using code provided by
Bhupendra (2017).

Figure 2.1 shows the populations on the y-axis and time on the x-axis, but it is also
possible to plot the two populations on their own separate axis to create a phase-
plane diagram. Phase-plane diagrams can be useful to understand the dynamics
of non-linear systems, such as the Lotka-Volterra model. Figure 2.2 shows the
corresponding phase-plane diagram to figure 2.1. The phase-plot diagram shows
a few of the cycles that the system can end up in. What cycle a system ends up
in is decided by the initial conditions.

2.2. SIMULATING BIOLOGICAL ECOSYSTEMS 9

Figure 2.2: Phase-plane diagram over fox (predator) and rabbit (prey) pop-
ulations in a Lotka-Volterra predator-prey model. The different cycles are de-
termined by the initial conditions of the system. The smaller arrows show the
direction that certain state develops towards. Figure created using code provided
by Bhupendra (2017).

The Lotka-Volterra equations have over time been developed and modified into
increasingly complex models that consider additional biological aspects. One such
model is presented in Fryxell (2014, p. 158) and was based on work by Michael L.
Rosenzweig and Robert H. MacArthur (Rosenzweig and MacArthur, 1963). The
equations to this model are shown below:

dN1

dt
= rmaxN1(1−

N1

K
)− aN1N2

1 + ahN1
(2.3)

dN2

dt
=

acN1N2

1 + ahN1
− dN2 (2.4)

This model takes into account multiple biological factors, including carrying ca-
pacity. Carrying capacity refers to the average population size of a species an
area is able to hold due to limited resources (Britannica, 2022). The original
Lotka-Volterra equations have no limitation on the size of the prey population,

10 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

as shown by the first term in equation 2.1 which implies exponential growth.
Rosenzweig and MacArthur’s model incorporates carrying capacity mathematic-
ally by changing the first term in equation 2.1 from αN1 to rmaxN1(1 − N1

K) in
equation 2.3, where rmax is the maximum reproduction per prey over a time unit
and K is the carrying capacity. The first term changes from implying exponen-
tial growth to logistic growth, which is more realistic as there is always limited
resources in ecosystems.

Another biological aspect considered by this model is functional response. Func-
tional response is a term popularized by the Canadian ecologist C. S. Holling, and
it refers to the individual predator’s behavior when it comes to consuming prey
(Holling, 1959). Holling described three types of functional responses. Type 1
functional response assumes that the predator has an unlimited appetite, meaning
that the number of prey it consumes grows linearly with the prey density. This
type of behavior is assumed in the Lotka-Volterra equations but is an unrealistic
assumption as no animal has an unlimited appetite. Type 2 functional response
has the more realistic assumption of predators having a limited appetite. This
means that the number of prey eaten by a predator levels off as the prey density
grows. Type 3 functional response is similar to type 2 but additionally takes into
account that it is more difficult for predators to find and consume prey at lower
prey densities. Rosenzweig and MacArthur’s model adopts the type 2 functional
response. This type of response is represented by the second term of equation
2.3 and the first term of equation 2.4. The parameter a represents the amount of
area predators search during one time unit, and h represents the handling time,
the time it takes for a predator to consume one prey. Conversion of prey con-
sumption to predator offspring is represented by the parameter c. Equation 2.4
also contains a parameter d, which is similar to γ in equation 2.2 in that they
represent the decrease in the predator population due to natural reasons such as
death, over one time unit.

The dynamics of Rosenzweig and MacArthur’s model can vary, and depend on the
values of the parameters in the model. Two of the possible dynamics are explained
by Fryxell (2014): stable limit cycle and stable equilibrium. A model has a stable
limit cycle if all starting states converge towards a pattern of repeating cycles,
this is shown in figure 2.3. Depending on the carrying capacity of the prey,
the system can also converge toward an equilibrium, where both the prey and
predator populations are constant. This is shown in figure 2.4. A more detailed
analysis of the different dynamics was carried out by Tanner (1975).

2.2. SIMULATING BIOLOGICAL ECOSYSTEMS 11

Figure 2.3: Phase-plane diagram
of a stable limit cycle (Fryxell, 2014).

Figure 2.4: Phase-plane diagram
of a stable equilibrium (Fryxell,
2014).

Rosenzweig and MacArthur’s two-species predator-prey model can be expanded
into a three-species model. There are multiple different relationships that three
species can have in nature, such as two predator species competing for one prey
species or one predator species consuming two prey species. Another type of
relationship can be found in tri-trophic systems, where there is one predator
species (hereby referred to as the apex predator) consuming another predator
species (hereby referred to as the mesopredator), which in turn consumes the
prey. This kind of tri-trophic model is described in Fryxell (2014, p. 167), and
its equations are given below:

dN1

dt
= rmax(1−

N1

K
)− aN1N2

b+N1
(2.5)

dN2

dt
=

aeN1N2

b+N1
− dN2 −

AN2N3

B +N2
(2.6)

dN3

dt
=

AEN2N3

B +N2
−DN3 (2.7)

This model shares many of the parameters with the two-species model described
in the equations 2.3 and 2.4, however, there are some differences and additional
parameters. The parameter a represents the rate of prey consumption by a meso-
predator, and b represents the number at which the mesopredator consumption of

12 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

the prey is half of its maximum. Parameter e represents the same as c in equation
2.4. The uppercase parameters represent the same as the lowercase parameters
but with respect to the relationship between the mesopredators and the apex
predators. Another difference is that the type 2 functional response is modeled
with the Michaelis-Menten equation1.

This type of tri-trophic model has been analyzed in Hastings and Powell (1991),
where it is shown that the different populations have complex aperiodic fluctu-
ations that never repeat, meaning that there is deterministic chaos. A phase-plane
diagram of the system is shown in figure 2.5.

Figure 2.5: Phase-plane diagram of a tri-trophic model, showing its dynamics.
The x-axis represents the prey population, the y-axis represents the mesopred-
ator population, and the z-axis represents the apex predator population (Hast-
ings and Powell, 1991). The diagram resembles an upside-down teacup. The
prey and mesopredator populations fluctuate while the apex predator population
is increasing, creating the ”cup”, until the apex predator population collapses,
creating the ”handle”.

1The Michaelis-Menten equation stems from biochemistry and models enzyme kinetics. The
equations can be used to model type 2 functional response as the reaction rate levels off with
growing substrate concentration. The equation contains a variable (b in equation 2.6 and B in
equation 2.7) which represents the point at which the reaction rate is half of its maximum. In
a predator-prey system, reaction rate would represent the rate at which a predator consumes
prey, and substrate concentration would represent prey density (Hauge, 2020).

2.3. REINFORCEMENT LEARNING 13

To stabilize a chaotic tri-trophic system, it is possible to introduce intraspecific
competition at the apex predator level, meaning competition between individuals
of the same species. This is not uncommon in nature, one example being wolf
packs competing with each other for territory. To incorporate this into the tri-
trophic model, equation 2.7 can be replaced with equation 2.8.

dN3

dt
=

AEN2N3

B +N2
−DN3 −

sN2
3

γ
(2.8)

The parameter s is the maximum rate of apex predators per capita, and γ is the
maximum apex predator density. This additional mortality rate stabilizes the
system from chaos to a stable limit cycle.

The models discussed represent a simplified and idealized representation of the
real world, hence there are some unrealistic scenarios that might arise when
working with these models. One of these scenarios is named the atto-fox problem
(Lobry and Sari, 2015). The atto-fox problem refers to systems displaying a
stable limit cycle where populations become unrealistically low but still manage
to rebound and grow. For example, the predator population could shrink to
10−18 individuals, and still be able to grow. This is of course not possible in the
real world, as any species with less than two individuals would become extinct.
One simple approach to handle this problem is to set a population threshold for
each species for when they are declared extinct.

In summary, simple predator-prey models can become increasingly complex when
taking into account realistic biological aspects. When going from a two-species
model to a tri-trophic system, the model can even display chaos.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a field of machine learning that focuses on training
agents to behave intelligently in an environment through getting rewards. While
supervised learning relies on labeled data to learn, RL only needs a defined envir-
onment and reward function to learn how to act intelligently in the environment.

14 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

2.3.1 General RL System

An overview of a general RL system is shown in figure 2.6. An agent performs
an action that changes the environment. The agent then observes the new state
it is in, and additionally gets rewards (also called reinforcements) based on this
state.

Figure 2.6: An overview of a general RL system. An agent interacts with
an environment by taking actions, moving to new states, and receiving rewards
based on the state that it ends up in.

The environment that an RL agent interacts with can be viewed as a Markov
Decision process (MDP). Russell (2016, p. 647) gave the following definition of
an MDP:

”A sequential decision problem for a fully observable, stochastic en-
vironment with a Markovian transition model and additive rewards
..., and consists of a set of states (with an initial state s0); a set
ACTIONS(s) of actions in each state; a transition model P (s′|s, a);
and a reward function R(s).”

A Markovian transition model relies on the Markov assumption: The current
state is only dependent on a fixed finite number of previous states. Usually,
a first-order Markov process is assumed, meaning that the current state only
depends on the previous state. The Markov assumption simplifies the transition
model, as it doesn’t need to take into account the full history of states the agent
has been in when predicting the next state.

Based on the actions the agent takes, and the rewards it receives, the agent
constructs a policy (often denoted by π). A policy tells the agent what action
to take in a certain state. An optimal policy will suggest the action that leads

2.3. REINFORCEMENT LEARNING 15

to the highest expected value (also referred to as utility). One way to define the
value of a state is through the Bellman equation (Sutton and Barto, 2018):

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (2.9)

The equation defines the value of being in a state s given policy π, as the imme-
diate reward, r, of getting to a state s′, plus the discounted (γ is the discount
factor for future rewards) expected value of that next state s′ (given the policy
π), all of which is weighted by the probability of getting that reward and ending
up in that state, given that action a is performed in state s. This calculation
is done for all possible states s′ and rewards r, given action a is performed in
state s, and summed over. This sum is weighted by the probability of performing
action a in state s, given the policy π. This weighted sum is summed over for all
possible actions a. In short, the Bellman equation defines the value of a state s,
given a policy π, as the sum of all possible future values and rewards (s′ and r),
weighted by their probability.

The term p(s′, r|s, a) in equation 2.9 is known as the transition model of the
environment. When the reward function is deterministic, meaning that the re-
ward associated with going from any state s to s′, when performing action a,
is deterministic, this term can be simplified to p(s′|s, a). In this thesis the RL
problem will have a deterministic reward function, hence the rest of this chapter
will utilize this simplification.

RL agents can either be model-based or model-free. A model-based agent aims
to learn the transition model of the environment. The transition model of the
environment can be learned by keeping track of the number of times the agent
ends up in state s′ when performing action a in state s, and dividing that by the
total number of times the agent has performed action a in state s. The learned
transition model can be inserted into a variation of the Bellman equation, and
the value function could then be solved by dynamic programming. The value
function could then be used to decide which action in a certain state would give
the highest expected utility. However, dynamic programming is limited in that
it is computationally infeasible when the state space becomes very large.

16 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

2.3.2 TD-learning

A model-free agent does not require a model of the environment. One such
approach is Temporal-difference learning (TD learning). TD learning updates
the value of a state S under a policy π with the value of a successive state S′,
hence the name temporal-difference (Sutton and Barto, 2018). The value update
equation for one-step TD, also called TD(0), is given below:

V (St) = V (St) + α(Rt+1 + γV (St+1)− V (St)) (2.10)

Here, V represents an estimate of the value function vπ, α represents the learn-
ing rate: how much influence the observation (the transition from St to St+1)
should have on the value of St. The reward received when going from St to St+1,
is represented by Rt+1. The component Rt+1 + γV (St+1) is referred to as the
TD-target, while Rt+1+γV (St+1)−V (St) is the TD-error. Since TD-learning up-
dates state-values using other existing state-value estimates, it is a bootstrapping
method.

Equation 2.10 is known as one-step TD as the estimated value of the first suc-
cessive state, V (St+1), is used. If the value of the n-th successive state had been
used it would be called n-step TD, and the TD-target would be:

Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnVt+n−1(St+n) (2.11)

Gt:t+n is known as the n-step return. Vt+n−1 is the estimate of vπ at time t+n−1.
If n goes to infinity (meaning to a terminal state in the environment), it would
be called a Monte Carlo method. In Monte Carlo methods the TD-target is the
sum of discounted rewards only, and does not use any state-value estimate, hence
it is not a bootstrapping method.

The idea behind TD learning is that the value of a state will converge toward its
true equilibrium as the number of observations increases. This convergence may
take more time, but in exchange, the agent does not need to learn a model of the
environment.

Both dynamic programming and TD learning approaches calculate the values of
the different states in the environment, under a certain policy. However, for most
applications, it would be useful if the agent itself learned what actions to take.
To do this the agent needs to explore the different actions it can take in different
states, in order to gain knowledge about the environment. However, it also needs
to exploit the knowledge it gains by taking actions that lead to high-value states.

2.3. REINFORCEMENT LEARNING 17

The balance between exploration and exploitation is important as it affects the
agent’s ability to reach a reasonably good policy. One way to balance these
two aspects is to assign a large positive value estimate to relatively undiscovered
state-action pairs, which decreases with the number of times that state-action
pair is explored.

2.3.3 Q-learning and SARSA

One notable RL method is Q-learning. Q-learning is a one-step TD learning
approach, that instead of state-values, learns Q-values. Q-values can be viewed
as the value of executing an action a in a state s. The update equation for
Q-values is similar to the one for state-values in TD-learning (equation 2.10):

Q(s, a) = Q(s, a) + α(R+ γmax
a′

Q(s′, a′)−Q(s, a)) (2.12)

While equation 2.10 calculated values based on a fixed policy π, equation 2.12
does not. The Q-value Q(s, a) is calculated based on the highest Q-value in the
successive state, maxa′ Q(s′, a′). It is important to note that the selection of
action to execute in the successive state s′ is not based on what results in the
highest Q-value. The selection of action to take in a state needs to take into
account the balance between exploration and exploitation, and might therefore
not choose the action leading to the highest Q-value. The algorithm chooses
actions to execute according to a behavior policy while constructing a target policy
aimed to approximate the optimal one. Because of this, Q-learning is referred to
as an off-policy, as the Q-values are not calculated based on the actual policy of
the agent (the behavior policy), but on the action a′ that results in the highest
Q(s′, a′) (the target policy). An on-policy method, such as SARSA (State-Action-
Reward-State-Action), would use the executed action a′ in the successive state
s′ when calculating the Q-value Q(s, a), meaning that the target policy equals
the behavior policy. The equation for updating Q-values in a SARSA approach
is given below:

Q(s, a) = Q(s, a) + α(R(s) + γQ(s′, a′)−Q(s, a)) (2.13)

The distinction between Q-learning and SARSA can be seen by the absence of
the maxa′ operator. The action a′ in the equation is the one that is actually
executed by the agent in the successive state s′.

18 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

To decide what actions to execute when performing Q-learning (or SARSA), it is
usual to utilize an ϵ-greedy policy. An ϵ-greedy policy usually chooses the action
with the highest Q-value, but, with a probability of ϵ, it might choose an action
randomly. This allows for both exploration and exploitation of what the agent
has learned.

One potential concern of Q-learning is maximation bias. Maximation bias refers
to the positive bias that might occur when choosing the action leading to the
maximum Q-value. The positive bias might occur since the maximization is done
over an estimate of the true Q-value, and not the actual true Q-values. This bias
can in turn lead to non-optimal behavior for the RL agent, which in turn would
affect its performance.

The Deep Q-Network (DQN) algorithm combines Q-learning and neural net-
works, which are described in the next section. The DQN algorithm is described
in further detail in section 3.4.1.

2.3.4 Neural Networks as Function Approximators

An important aspect of RL algorithms is how to represent the value function (or
Q-function). It is possible to store these in a table, one entry for each state (or
state-action pair), together with its value (or Q-value). However, when the state
space becomes large, this becomes infeasible. Another issue with this approach is
that the agent does not have any information about the value of a state it never
has been in, as it does not have an entry for that state in the table.

These issues can be handled by function approximation. Function approximation
aims to learn an approximation of the true value function. Neural networks, also
called Artificial Neural Networks, is one way to do this. Neural networks, more
precisely, multi-layer perceptrons, are non-linear universal function approximat-
ors (Hornik et al., 1989). This means that they have the capacity to approximate
any function, and this can be done with significantly fewer parameters than states
in an environment.

Another valuable aspect of function approximation is that it allows for gener-
alization, meaning that by learning about the value of one state, the function
approximator could also learn about the values of other states, even the ones
the agent has never visited. This is because the function approximator changes
its parameters based on the value it observes of a state at a certain time, and
the parameters might also change the function approximator’s value estimates of
other states.

2.3. REINFORCEMENT LEARNING 19

These attributes, in addition to recent advances in deep learning, have made deep
RL (DRL) increasingly popular. Deep learning refers to the use of deep neural
networks, meaning networks with multiple hidden layers. However, the use of
neural networks is not problem free. The networks navigate through the solution
space for the approximate function and might end up in local minima, which
could restrict them from finding good solutions.

2.3.5 Actor-Critic

The RL methods discussed in previous sections focused on learning a good value
function (e.g. Q-values) and choosing actions based on this. An alternative ap-
proach is to learn both a value function and a policy function. The policy function
chooses what actions to take. This approach is called actor-critic methods, where
the actor refers to the policy that is learned, and the critic refers to the learned
value function.

Actor-critic methods fall under a category of RL methods called policy gradient
methods. Policy gradient methods aim to learn a parameterized policy to take
actions, rather than basing what actions to take on a learned value function.
However, a value function might still aid in learning the parameters of the policy,
such as in actor-critic methods. The objective of policy gradient methods is to
maximize some performance measurement, J(θ), where θ represents the para-
meters of the policy. If the performance measure is defined as the true value of
the starting state given the policy πθ determined by a set of parameters θ, the
policy gradient theorem (PGT) can be proven (Sutton and Barto, 2018, p. 326):

∇θJ(θ) ∝
∑
s

µ(s)
∑
a

Qπ(s, a)∇θπ(a|s, θ) (2.14)

which says that the partial derivative of the performance measurement with re-
spect to the policy parameters, ∇θJ(θ), is proportional to the sum of the prob-
ability of being in a state s given policy π, µ(s), times the sum, over all possible
actions a, of the Q-values for that action-state pair, which is multiplied with the
partial derivative of the probability, under policy π, of choosing that action given
the state and policy parameters. PGT presents an expression for the gradient
of the performance with regard to the parameters of the policy. Policy gradient
methods aim to make changes to the policy parameters θ that are close to these
gradients.

20 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

The classical REINFORCE algorithm updates its policy parameters by the fol-
lowing equation:

θt+1 = θt + αGt
∇θπ(At|St, θt)

π(At|St, θt)
(2.15)

where the next time step policy parameters θt+1 are equal to the current time
step policy parameters θt, plus a term in the direction of the partial derivative of
the policy. This term is the product of the step size α, the cumulative discounted
reward from time step t till the end of the episode Gt and the partial derivative
of the policy probability of selecting action At in state St with regards to the
policy parameters, divided by the policy probability of that action, given the
same state.

As REINFORCE uses the accumulated rewards until the episode end to update
its policy, it is a Monte Carlo approach. Actor-critic methods, on the other hand,
update policy parameters (and value function parameters) using TD error:

θt+1 = θt + αδt
∇θπ(At|St, θt)

π(At|St, θt)
(2.16)

where δt is the TD error at time step t:

δt = Rt+1 + γv̂(St+1, w)− v̂(St, w)

This equation is similar to the TD error in equation 2.10. v̂ is the state value
function parameterized by w, and is also referred to as the critic. Actor-critic
methods are considered TD methods as the state-values are used to update the
policy indirectly through the TD error.

The term ∇θπ(At|St,θt)
π(At|St,θt)

in equation 2.16 is often written as ∇θ log π(At|St, θt) in

literature and pseudocode. This is based on the identity ∇ log x = ∇x
x . It is

also common to refer to the TD error as an estimator for the advantage function.
The advantage function measures the advantage of taking an action in a state
and is therefore formally defined as A(at, st) = Q(at, st) − V (st). Notice that
the notation for the action taken at time t has changed from At to at, as the
capital A is now representing the advantage function. By employing this notation,
the equation for the policy gradient estimator which is most frequently used, is
obtained:

2.3. REINFORCEMENT LEARNING 21

ĝ = Êt[∇θ log πθ(a|st)Ât] (2.17)

where ĝ is the policy gradient estimator, Êt represents the average over a finite
batch of experiences, πθ(a|st) is the policy given the parameters θ, and Ât is the
advantage function at time t.

An overview of the general actor-critic architecture is shown in figure 2.7.

Figure 2.7: An overview of general actor-critic architecture. Both the actor and
critic receive the state of the environment. The critic also receives the reward
related to the previous state-action pair. The critic uses the reward and the
new state to calculate the TD error, which is used to calculate its loss gradients.
The TD error is sent to the actor to update its policy parameters according to
equation 2.16. The actor also chooses the next action, based on its parameters
and the new environment state.

Parameterizing policy might have several advantages over value parameteriza-
tion, with one being that a good policy function might be easier to approxim-
ate than a good value function. This is naturally dependent on the RL task
and might vary from problem to problem. Another advantage of approximating
policy function is that the action selection probabilities change more smoothly
than an ϵ-greedy strategy based on a value function would. This is because a
small change in action-values could change what action has the highest value,
thereby significantly changing the action selection probabilities. Since the policy

22 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

function changes more smoothly in policy-gradient methods, it has stronger con-
vergence guarantees (Sutton and Barto, 2018).

The actor-critic algorithms A2C and PPO, which are tested on the spatio-
temporal simulation in this thesis, are presented in section 3.4.2 and 3.4.3.

2.4 Summary

In summary, this chapter has provided the necessary background information
on the problem domain, wildlife management, and the solution technique, re-
inforcement learning, to understand the related work and methodology of this
thesis. Section 2.1 gave a brief introduction to wildlife management, why it is
important to ecosystems, and the appropriate actions for it. Section 2.2 presen-
ted the mathematical basis for simulating a biological ecosystem, by starting
with a simple model and building upon it, making it more complex but also more
realistic. Such an ecosystem simulation is necessary as it serves as an environ-
ment where an agent can test and improve its wildlife management skills. The
agent is trained using the AI method of reinforcement learning. The final section
of this chapter, section 2.3, serves as an introduction to reinforcement learning
(RL) and deep reinforcement learning (DRL). It gives the reader the necessary
fundamental knowledge to understand the related work in this field, as well as
the DRL algorithms utilized in this thesis.

Chapter 3

Related Work

The following chapter is based on a similar chapter written in my specialization
project (Singh, 2022). This chapter presents related work in the field of wild-
life management and conservation, and reinforcement learning. To collect and
select what work to be included in this chapter, a structured literature review
was carried out. This process is described in section 3.1. Section 3.2 provides
an introduction to some non-AI methods for wildlife management and conserva-
tion, which have been traditionally common. Section 3.3 presents RL methods
used to facilitate wildlife management and conservation, which have become an
increasingly popular research field. Section 3.4 covers some work done in similar
problem spaces as this thesis, RL in grid environments. Finally, a summary of
the work presented in this chapter as well as their value to this thesis is presented
in section 3.5.

3.1 Structured Literature Review

This thesis was partly inspired by the CAPTAIN project (presented in section
3.4.4). The CAPTAIN project presents one way of utilizing RL for wildlife con-
servation. To gain some background knowledge of wildlife management and con-
servation, the relevant parts of Fryxell (2014) were read.

The literature search was done to get a better understanding of the traditional
(non-AI) and AI approaches used in wildlife management. To do this, the search
engines Google and Google Scholar were utilized. Initial searches and papers,

23

24 CHAPTER 3. RELATED WORK

even though not necessarily relevant to this thesis, gave a better understanding of
the vocabulary used in the field. This led to a collection of more specific keywords.
For the literature search on traditional solutions for wildlife management, these
keywords were used: wildlife conservation, wildlife management, predator-prey,
and spatio-temporal. For AI approaches, these keywords were used: Artificial
Intelligence, reinforcement Learning, wildlife conservation, and spatio-temporal.
This search led to some papers on the intersection of RL and wildlife management,
however, to get a deeper understanding of RL in grid environments where the
state space consists of smaller cells, another search was done with the keywords:
Reinforcement Learning, grid and cell selection.

When choosing what papers to include in this study, the following factors were
looked at:

• Relevancy to the problem investigated in this thesis

• Publishing date

• Whether it was published in a journal

• Number of citations

Relevance to the thesis problem was naturally an important criterion. It was
preferred that more recent research be included, no older than 20 years old. It
was also advantageous if the paper had been published in a reputable journal,
such as Nature. A higher number of citations was also preferred.

3.2 Traditional Approaches in Wildlife Manage-
ment

3.2.1 Stochastic Dynamic Programming

A significant part of spatial conservation planning, a form of wildlife manage-
ment, is to decide upon the geographical areas that are to be protected and
conserved. Often times there is a restriction on the amount of area that can be
protected as a consequence of limited resources. This means that there has to
be a prioritization of what areas to protect. Wilson et al. (2006) prioritized the
allocation of conservation resources to five regions in Southeast Asia when taking
into account the different levels of biodiversity, threat, ongoing habitat destruc-
tion, and cost. The optimal solution to this problem was found using stochastic

3.2. TRADITIONAL APPROACHES IN WILDLIFE MANAGEMENT25

dynamic programming (SDP). However, SDP was shown to be computationally
intractable for more than a few regions, due to the ”curse of dimensionality”.
Wilson et al. (2006) also solved the problem using two different heuristics which
only looked one time-step ahead, making them computationally cheaper, and
achieved results close to the optimal one in certain cases. This work shows that
even ecosystems with simple dynamics can get computationally intractable with
traditional methods (non-AI algorithms).

3.2.2 Spatio-Temporal Animal Reduction (STAR)

McMahon et al. (2010) created an interactive Microsoft Excel spreadsheet model
to facilitate wildlife managers and researchers planning the control and reduction
of an invasive species, named the Spatio-Temporal Animal Reduction (STAR)
model. The STAR model aims to be a user-friendly and intuitive framework,
which could also be used by non-experts. The model considers both the biological
and financial aspects, as well as the spatial and temporal ones. Figure 3.1 shows
a conceptual model of the STAR framework.

Figure 3.1: Conceptual model of the STAR framework. The user inputs biolo-
gical, economic, and culling parameters. It is also possible for the user to specify
spatial limitations such as whether or not a culling should occur in a cell. The
framework will optimize the goal set by the user, and output whether or not it
is possible to achieve the goal as well as the cost, number of animals culled, etc.
(McMahon et al., 2010).

26 CHAPTER 3. RELATED WORK

It is assumed in the model that the reduction of invasive species is done through
culling. Culling is a process of reducing a wildlife population by killing some
individuals. The biological input consists of population growth, carrying capacity,
initial density, and dispersal capacity, while the economic input consists of the
number of funds available, return from culls, overhead expenses, and operating
costs. It is also possible to specify desired culling density and the efficiency of
hunting. The STAR model has several control layers, which lets the user specify
the geographical areas (represented as cells in STAR) that shouldn’t be culled or
that have high vexation values.

The user can set different management goals, that STAR will optimize. The user
can get the maximum culling rate given a budget and a set of specified cells, or
if a target density for an area is specified (referred to as the control area) if a
budget and culling rate is sufficient to reach that density. There is also an option
to minimize cost-benefit on a set of cells given a budget. These optimization
problems are solved by iterating through the possible solutions, evaluating them,
and choosing the one that performs best according to the relevant metric, such
as cost-benefit. This brute-force approach works in the STAR model, as the
solution space is discrete since the optimization algorithm only considers whole
percentages when iterating through solutions. However, if the solution space was
continuous, or the discrete solution space was larger, this approach would become
computationally infeasible.

McMahon et al. (2010) applied the STAR framework on different invasive spe-
cies in Kakadu National Park, Australia. Figure 3.2 shows an example of the
framework being applied to cull pigs in a control area in the national park.

The STAR framework can easily be applied to other geographical areas with dif-
ferent species. For example, Wiggins et al. (2014) utilized the STAR framework
on the problem of controlling the Tasmanian pademelons on agricultural land in
Tasmania. The authors used it to compare the cost and benefits of different in-
tensity levels of reduction. The relatively simple and intuitive framework makes
it easy for non-experts to use it, however, it also means that some simplifications
have been made. For example, the biological simulation of the system only ac-
counts for one species and does not consider how culling animals of one species
might affect the other species in the ecosystem.

Even though the methods used in this framework are not relevant to this thesis,
it shows how wildlife management problems can be modeled. For example, it
gives a better understanding of what factors to include when designing a reward
function, state space, and action space in an RL environment. It also highlights
the limitations of brute-force solutions.

3.2. TRADITIONAL APPROACHES IN WILDLIFE MANAGEMENT27

Figure 3.2: Example of STAR being applied to cull pigs in Kakadu National
Park, Australia (McMahon et al., 2010). (a) Cellular map in representing the
national park, control areas are red. (b) Projection of the pig population in the
national park (dark gray) and the control area (light gray). (c) Distribution of
pigs in the national park before culling. The higher the density of pigs, the darker
the shade of green. (d) Distribution of pigs after culling in the control areas. (e)
Distribution of pigs after culling in the control areas and adjacent cells.

3.2.3 Population Viability Analysis (PVA)

Fryxell et al. (2020) looked at how habitat fragmentation and loss in Ontario,
Canada due to commercial logging and other human activities, affected the wood-
land caribou population growth. The research was conducted through a popu-
lation viability analysis (PVA). PVA is a method that uses data about species
in an ecosystem, such as annual survival rate and birth rate, with mathematical
models to estimate their probability of survival over a longer time period. The
study looked at both individual and spatially explicit PVA models. The study
suggested that woodland caribou adult survival rates in logged landscapes were

28 CHAPTER 3. RELATED WORK

declining as a consequence of wolf predation. This shows how changes in the spa-
tial environment, such as habitat loss, can alter the dynamics of an ecosystem,
and thus potentially lead to a steady decline of a species in that environment. To
combat the population decline, Fryxell et al. (2020) suggested reducing the wolf
density.

PVA is a useful tool when analyzing wildlife populations and estimating their fu-
ture development, but it does not give any information on how active management
decisions might affect the ecosystem. A software framework for this is presented
by Nagy-Reis et al. (2020) and is called WildLift. WildLift estimates the per-
formance of different management strategies relative to some given performance
metric. Similarly to Fryxell et al. (2020) this study looks at an ecosystem con-
sisting of caribou, moose, and wolf. The wolf preys on both moose and caribou,
but the main aim of wildlife management is to protect the caribou population
from declining. The software allows for different types of management actions,
which are shown in figure 3.3. There are two types of habitat management ac-
tions: Linear feature restoration (LFR) and Linear feature deactivation (LFD).
LFR aims at restoring the habitat of the ecosystem to its natural state through
means such as tree planting. This can take several years. LFD attempts to slow
down wolf movement speed, which can be done by blocking through fencing or
tree-felling. Demographic augmentation is another type of management action
and can be done in three ways: Maternal Penning (MP), Conservation Breeding
(CB), and Predator Exclosure (PE). MP protects both adult female caribou and
their calves from predation for a temporary period, so that their probability of
survival is higher. CB is breeding caribou in captivity, and then releasing them
into the wild, with the aim of increasing their abundance. PE are enclosed areas
where predators and other competing species are removed so that the prey can
breed and increase in abundance. A third type of management action is more
short-sighted predator-prey management: Wolf Reduction (WR) and Moose Re-
duction (MR). WR intends to reduce the mortality rate of caribou by decreasing
the population of the primary predator. MR aims to reduce the wolf population
to reduce caribou mortality, by reducing the abundance of moose, which it preys
upon.

3.2. TRADITIONAL APPROACHES IN WILDLIFE MANAGEMENT29

Figure 3.3: Diagram of the different management actions possible in WildLift,
and how they affect the ecosystem. There are three types of management ac-
tions: Habitat management (green outline), Demographic augmentation (orange
outline), and Predator-prey management (pink outline) (Nagy-Reis et al., 2020).

There are different ways to measure performance, depending on your aim. The
performance measures used in this study were population growth rate, number
of new individuals introduced, and also cost. The study evaluated the perform-
ance on these metrics of the different management actions by using PVA. Of the
different management actions, only WR lead to an increase in the caribou popula-
tion, suggesting that predator-prey management might be effective in stabilizing
ecosystems short term.

In summary, PVA can be a valuable tool for wildlife managers, providing them
with an estimate of the consequences of different actions on the population of a
species. However, wildlife managers usually have multiple performance measures
to keep in mind, and the number of actions can become large when accounting for
the degree an action is to be applied, and where and when it is to be applied. This
makes the already challenging task of wildlife management even more complex.
This opens up the door for reinforcement learning.

30 CHAPTER 3. RELATED WORK

3.3 Reinforcement Learning in Wildlife Manage-
ment

3.3.1 Deep Reinforcement Learning for Conservation De-
cisions

Lapeyrolerie et al. (2021) explored the use of DRL in the domain of wildlife
conservation. The authors highlighted some benefits of using RL in the domain
of conservation compared to other ML methods. RL, in contrast to supervised
and unsupervised learning, does not require large amounts of data to be collected.
This is because the environment the RL agent interacts with serves as the source
of data. Another advantage is that biologists and conservationists are familiar
with creating and utilizing ecological simulations, which can serve as a fitting
basis for RL environments.

To demonstrate the potential of DRL, the authors applied it to several conser-
vation decision problems. Two of the problems were sustainable harvesting of
fish and ecosystem management for avoiding tipping points. The DRL agent
trained on these problems achieved impressive results. It is worth noting, as the
authors also pointed out, that these problems were relatively simple. However,
even though these problems were simple, they display the potential of DRL on
conservation problems.

To create the RL environment in which the conservation problems took place,
the authors used the OpenAI gym framework. Gymnasium, a framework based
on OpenAI gym, was used to create the wildlife simulation in this thesis. A more
detailed description is provided in chapter 4.

3.4 Reinforcement Learning in Grid Environments

Reinforcement learning in grid environments has generally revolved around train-
ing an agent to navigate through the grid, however, there have been a few applic-
ations of RL where the agent has been optimized to select cells. This subsection
presents the DRL algorithms tested in this thesis, as well as some applications of
them in cell-selection tasks.

3.4. REINFORCEMENT LEARNING IN GRID ENVIRONMENTS 31

3.4.1 Deep Q-Network

Deep Q-Network (DQN) is an algorithm to train a neural network based on the
Q-learning method (described in section 2.3.3). The algorithm was first described
by Mnih et al. (2013), who successfully applied it to play several Atari 2600 games.
They represented the action-value function (Q-function) with a neural network
and its parameters, θ. This neural network is referred to as the Q-network. The
Q-network can be trained by minimizing the following loss function, L, after
every iteration, i:

Li(θi) = Es,a∼ρ(·)[(yi −Q(s, a; θi))
2] (3.1)

where Es,a∼ρ(·) refers to the expected value when sampling state s and action
a from the probability distribution ρ(·) based on the behavior policy. The term
yi is the TD-target: yi = Es′∼ε[r + γmaxa′Q(s′, a′; θi−1)|s, a]. ε represents the
environment the agent interacts with. The Q-value of the successive state-action
pair in yi is calculated using the parameters from the previous iteration, θi−1. The
gradient of the loss function with regards to the Q-network parameters ∇θiLi(θi)
could then be used to update the Q-network parameters. The equation for the
gradient is given below:

∇θiLi(θi) = Es,a∼ρ(·);s′∼ε[(r + γmaxa′Q(s′, a′; θi−1)−Q(s, a; θi)) ∇θiQ(s, a; θi)]
(3.2)

∇θi represents the gradient with regards to the Q-network parameters θ at time
step i. The gradient of the loss function is equal to the expected value of the TD
error multiplied by the gradient of the Q-value function (the Q-network). The
expectations in this equation can be removed. This is possible as one could think
of the single sample generated in a time step as drawn from the distributions ρ
and ε, thereby converging towards the true expectations after many samples.

If the algorithm had trained the Q-Network on every transition sample generated
each time step, it would have been online learning. However, the algorithm
employs an offline learning method, where the Q-Network is trained on batches
of randomly chosen samples that are collected in a replay memory. This method
is also known as experience replay, and builds on ideas from the Neural Fitted
Q-Iteration method presented by Riedmiller (2005). Offline learning has several
advantages when training a neural network, as training with batches can lead to
more stable learning and quicker convergence.

32 CHAPTER 3. RELATED WORK

Mnih et al. (2015) built further upon their previous work on the algorithm. Sim-
ilarly to the initial algorithm, the updated implementation of DQN uses experi-
ence replay: training on random batches of previous experiences. At each time
step t the experience, defined as et = (st, at, rt, st+1), is added to a dataset
Dt = e1, ..., et, which stored in a replay memory of finite size. The Q-network
is trained using minibatches of experiences that are randomly sampled from this
replay memory. This is an advantage as consecutive experiences often have a
strong correlation, which could negatively affect the learning of the Q-network.
Randomizing the experiences in a minibatch breaks this correlation, leading to
less variance in updates to the Q-network.

One difference between the initial DQN algorithm and the updated one is the ad-
dition of a target network. Instead of generating Q-values used in the TD-target
from the previous iteration Q-network parameters θi−1, the target network with
parameters θ− is used. Q-values generated by the target network are represented
by the symbol Q̂. The TD-target equation with the described changes becomes
yi = Es′∼ε[r + γmaxa′ Q̂(s′, a′; θ−)|s, a]. This leads to the following gradient
being the basis for stochastic gradient descent:

∇θiLi(θi) = Es,a∼ρ(·);s′∼ε[(r + γmaxa′Q̂(s′, a′; θ−)−Q(s, a; θi))∇θiQ(s, a; θi)]
(3.3)

This equation is a variation of equation 3.2 but with the addition of a separate
target network. The target network itself clones the Q-network periodically,
meaning that after a set amount of time steps C, the target network is updated
so that Q̂ = Q.

Since an update to the Q-network that increases a Q-value for one state-action
pair Q(a, st) would likely increase the Q-values of successive state-action pairs
Q(a, st+1), it would increase the TD-target yi. This could lead to the policy di-
verging. A time delay between updating the target network makes the correlation
between the Q-values and the TD-target weaker, thereby making divergence less
likely and the policy more stable. An overview of how the different components
in DQN are used to train the algorithm is shown in figure 3.4.

Wang et al. (2018) applied Q-learning on the task of sparse mobile crowdsensing.
The RL agent was trained to select one cell in the grid to collect data from every
cycle (time step) to ensure a certain quality of the inferred data, with the aim of
selecting as few cells as possible. A cell could either be selected for data collection
or not, meaning that it had two possible states. The size of the state space would
therefore become 2 to the power of the number of grid cells.

3.4. REINFORCEMENT LEARNING IN GRID ENVIRONMENTS 33

Figure 3.4: Overview of DQN architecture with a target network. The black
arrows show how the Q-network chooses an action based on the current state st.
Once the action has been performed in the environment, the experience is stored
in the replay memory. From the replay memory, minibatches of random exper-
iences are trained on. To train the Q-network, the loss needs to be computed.
The blue arrows represent the flow of information leading to the calculation of
DQN loss. Gradients based on this loss are then used to update the Q-network.
For every C number of steps, the target network copies the Q-network.

The authors used Q-learning to optimize the agent on the task and tested two
approaches to learning the Q-function, one being table-based and the other based
on a Deep Recurrent Q-Network (DRQN). Tabular Q-learning aims to learn the
Q-function as a table. This approach has been used in traditional RL algorithms,
however, the state space grows exponentially with regard to the grid size, mean-
ing that the table storing the Q-values would become intractable for large grid
problems. The second approach, DRQN, deals with this problem, also referred to

34 CHAPTER 3. RELATED WORK

as the ”curse of dimensionality”, by utilizing a deep neural network to learn the
Q-function. Instead of dense layers, LSTM (Long-Short Term Memory) layers
were used between input and output in the network, to capture the temporal
aspect of the problem. DRQN achieved better results than other, widely used
cell selection algorithms, displaying the potential of Q-Networks to learn good
value functions in cell-selection tasks.

3.4.2 Actor-Critic

Following the success of DQN on Atari 2600 games, Mnih et al. (2016) applied
asynchronous reinforcement learning methods to the same domain and achieved
significantly better results. The idea behind asynchronous methods is to asyn-
chronously run multiple workers in parallel, often each on their own CPU thread,
and each interacting with their own instance of the RL environment. Each worker
can then make changes to the globally shared parameters according to their ex-
periences. This makes the experience replay used in DQN, no longer necessary.
Even though experience replay has its advantages when training neural networks,
it has the memory cost of having to store transitions. It also cannot, by definition,
be used in on-policy algorithms. Asynchronous methods avoid these drawbacks
and also allow different workers to explore different parts of the environment at
the same time. This is beneficial as it makes the data more diverse, instead of
only being determined by which parts of the environment a single agent has ex-
plored. Diverse data lead to more robust training. Since asynchronous methods
run workers in parallel, they also have the practical advantage of faster train-
ing. Four different asynchronous methods were tested: one-step SARSA, one-
step Q-learning, n-step Q-learning, and advantage actor-critic. Out of these, the
Asynchronous Advantage Actor Critic (A3C), the only policy-gradient method,
performed best.

A3C is similar to the actor-critic method described in section 2.3.5, but has a
couple of fundamental differences. The first difference is that there are multiple
workers running simultaneously and calculating different gradients to update the
parameters. The gradients used to update policy and value function parameters
are accumulated from all these different workers, rather than experiences from
one single agent. The second difference is that A3C is n-step TD, while the
actor-critic method described in section 2.3.5 and the DQN algorithm is one-step
TD.

A3C updates parameters using the gradient estimator from equation 2.17, where
the advantage function is approximated with the TD-error, similarly to the actor-
critic method described in section 2.3.5. The advantage function is therefore given

3.4. REINFORCEMENT LEARNING IN GRID ENVIRONMENTS 35

by the following equation:

A(st, at; θ, θv) =

k−1∑
i=0

γirt+i + γkV (st+k; θv)− V (st; θv) (3.4)

The policy parameters are represented by θ, and the value function parameters
are represented by θv. k is the number of states from the starting state to the
final state. This is upper bound by tmax, which is equal to the step size n in the
n-step TD. If a terminal state in the environment is encountered before n states
after the starting state has been visited, k will be lower. The sum and the second
term in the equation make up the n-step return (same as equation 2.11). With
the subtraction of the estimated value of the start state, the equation becomes
the n-step TD error.

Based on the advantage function and the actor-critic policy gradient estimator
from equation 2.17, the equation for accumulating policy parameters gradients
and value function gradients in A3C is given as:

dθ = dθ +∇θ′ log π(ai|si; θ′)(R− V (si; θ
′
v)) (3.5)

dθv = dθv + ∂(R− V (si; θ
′
v))

2/∂θ′v (3.6)

where R is the TD target:

R = ri + γri+1 + ...+ γk−1ri+k−1 + γkV (si+k; θ
′
v) (3.7)

θ are the global policy parameters while θ′ are the policy parameters specific to
each worker. Likewise, θv are the global value function parameters and θ′v are
the worker-specific value function parameters. The gradients are accumulated for
each state si between the starting state and the final state. Since R represents the
TD-target, the term (R− V (si; θ

′
v)) equals the TD-error, which is the advantage

function used in A3C (equation 3.4). Similarly to DQN, the loss for the critic, or
value function, is the mean squared TD error.

36 CHAPTER 3. RELATED WORK

Figure 3.5: An overview of the A3C algorithm. Multiple workers interact with
their own instance of the environment in parallel, as shown by the black arrows.
After a fixed number of steps each worker i accumulates gradients, dθi and dθv,i,
with regards to its policy θi and value function θv,i. These are asynchronously
sent to the global network to update it, as shown by the blue arrows. Once the
global network has been updated, the worker copies its parameters, indicated by
the green arrows.

With their own accumulated gradients dθ and dθv, workers update the global
parameters θ and θv asynchronously. Even though the policy and value functions
have been described as having unique parameters, it is usual for both to be
calculated by the same neural network. All layers are shared, except for the
output layers. Figure 3.5 shows an overview of A3C.

3.4. REINFORCEMENT LEARNING IN GRID ENVIRONMENTS 37

Wu et al. (2017) presented the Advantage Actor Critic (A2C) algorithm, a syn-
chronous variant of the A3C algorithm, which the researchers found to perform
better than A3C. Since it is synchronous, A2C waits for all workers to collect
their portion of experiences before applying a global update. This has the ad-
vantage of efficient GPU use since the gradients of all workers can be calculated
at once, in large batches. Efficient GPU use could lead to faster training times.

The A2C architecture is similar to the architecture of A3C, which is shown in fig-
ure 3.5. However, since A2C is asynchronous, each worker will send its gradients
to the global network at the same time, and thereafter also copy the updated
global network at the same time. This means that all workers essentially have
the same policy, which was not the case in A3C. Since all the workers have the
same policy, it is possible to instead only have the global policy interact with
multiple environments, each having different starting states. This is known as a
vectorized environment. After interacting with all the environments for a fixed
amount of steps, gradients of the network could be calculated based on the batch
of experiences collected. The gradients would then be used to update the global
network.

Altamimi et al. (2022) investigated the use of deep RL for large-scale wildfire
mitigation. Forest wildfire was formulated as an MDP, where the state space
consisted of a grid of cells representing the spatial structure of a forest. Each
cell represented a forest stand. Fire could propagate through neighboring cells,
and was affected by the wind direction. At each time step, the agent performed
an action on one cell, and in the following time step, performed an action on
the next cell. The agent could either harvest a cell by removing all timber or do
nothing and let the timber grow. For each year the volume of timber in a cell
grew. The reward grew with the timber volume and when the risk of wildfire
decreased. An off-policy actor-critic model was tested on this task, with grids of
different sizes, and was compared with other approaches. Figure 3.6 shows the
performance of actor-critic and DQN on a 3× 3 grid. The actor-critic algorithm
manages to obtain the optimal reward, while DQN does not.

For larger grids, actor-critic was compared to genetic algorithms (GA). In both
the 10×10 and 100×100 grid, the actor-critic managed to outperform GA. These
problems were too complex to solve with the value iteration algorithm.

These results showcase the potential of actor-critic methods in grid environments,
even outperforming DQN. It is worth noting that the actor-critic model imple-
mented in this paper utilized experience replay, such as in DQN. An alternative
actor-critic approach, such as A3C or A2C, might have yielded different results.

38 CHAPTER 3. RELATED WORK

Figure 3.6: Performance of actor-critic and DQN on mitigation of wildfire in a
3× 3 grid (Altamimi et al., 2022). The x-axis shows the number of episodes, and
the y-axis shows the rewards obtained. The optimal solution is shown by the red
line, and found by solving the Bellman equation with a value iteration algorithm.

3.4.3 PPO

Schulman et al. (2017a) created the Proximal Policy Optimization (PPO) al-
gorithm, which is based on the Trust Region Policy Optimization (TRPO) al-
gorithm (Schulman et al., 2017b). The TRPO algorithm is a trust region method,
with the idea behind it being that the new policy of the agent should be close to
its old policy. In other words, there should not be any significant updates when
optimizing the policy of the agent.

While traditional policy gradient methods, such as A3C and A2C, use the policy
gradient estimator from equation 2.17 to optimize performance, TRPO tries to
maximize the following ”surrogate” objective function:

LCPI(θ) = max
θ

Êt[
πθ(at|st)
πθold(at|st)

Ât] (3.8)

where LCPI(θ) is the objective with regards to the policy parameters θ. CPI
stands for ”conservative policy iteration”. πθ represents the policy we want to

3.4. REINFORCEMENT LEARNING IN GRID ENVIRONMENTS 39

change to maximize the objective, and πθold represents the old policy. Êt repres-
ents the empirical average over a finite batch of experiences. At represents the
advantage function at time t. This objective is subject to the following constraint:

Êt[KL[πθold(·|st), πθ(·|st)]] ≤ δ (3.9)

where KL[πθold(·|st), πθ(·|st)] is the Kullback–Leibler (KL) divergence, which is
used as a measurement of the distance between the two probability distributions
πθold and πθ. To satisfy the constraint, the distance needs to be less or equal
to the hyperparameter δ. TRPO has been shown to perform better or equal
to other RL algorithms such as DQN, while also demonstrating stable policy
improvements.

PPO was created with the motivation to reduce the complexity and overhead
of TRPO while utilizing its stability and performance. The clipped ”surrogate”
objective function proposed in PPO is given below:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (3.10)

where ϵ is a hyperparameter (typically ϵ = 0.2) and rt(θ) is defined as:

rt(θ) =
πθ(at|st)

πθold
(at|st)

which means that rt(θ)Ât is equal to LCPI (equation 3.8). This objective func-
tion takes the minimum of the unclipped (first term) and clipped (second term)
objective LCPI .

To get an intuitive understanding of this objective function, one could think of
rt(θ) as the change in probability of taking action at when going from policy
πθold to πθ. If rt(θ) > 1 then action at is more likely to be chosen under the
new policy πθ, compared to the old policy πθold . Likewise, if rt(θ) < 1 then
action at becomes less likely to be chosen under the new policy, and if rt(θ) = 1,
there is no change in the probability of choosing at. As with TRPO, it is desired
that updates to the policy are non-significant. That is why the second term in
the minimization operation is introduced. It clips rt(θ) to be between 1− ϵ and
1 + ϵ. To get a better understanding of how this affects the objective function,
one could look at the two scenarios where the advantage At is non-zero.

If the advantage is positive it means that the action taken at is better than what
is expected of being in state st. It would therefore be preferable to have a higher

40 CHAPTER 3. RELATED WORK

probability of choosing this action in the next policy. If the new policy is less
likely, or only slightly more likely to choose this action compared to the old policy,
the gradient of the objective function is positive, as seen in figure 3.7. However,
if r > 1 + ϵ the new policy is significantly more likely to choose this action than
the old policy, and making the succeeding policy even more likely to choose this
action could be an overly optimistic approach. Therefore, no updates are made
if r becomes larger than 1+ ϵ. This is done by clipping r when it becomes larger
than 1 + ϵ, resulting in the gradient of LCLIP becoming 0.

Figure 3.7: The value of the clipped ”surrogate” objective function LCLIP with
respect to rt(θ) when the advantage At is positive (Schulman et al., 2017a). The
x-axis represents the value of rt(θ), and the y-axis represents the value of LCLIP .
r gets clipped when it becomes greater than 1 + ϵ.

If the advantage is negative, the action taken at is worse than what is expected
of being in state st, and it is, therefore, desirable to decrease the probability of it
being selected in the new policy. However, if r is less than 1− ϵ it means that the
new policy is significantly less likely to choose this action compared to the old
policy, and further decreasing its probability of being chosen could lead to a too
significant (and too pessimistic) of an update. Therefore, the objective function
is clipped when r < 1− ϵ, as visualized in figure 3.8. If the new policy is slightly
less likely to choose at, further decreasing the probability of choosing it in the
succeeding policy would not lead to a significant update overall. Therefore, the
gradient of the objective function is negative when 1 − ϵ < r < 1. If the new
policy is significantly more likely to choose this action than the old policy, it is
desirable to ”roll back” this update (between the old policy and the new one).
This is done by not capping the LCPI objective function when r > 1.

3.4. REINFORCEMENT LEARNING IN GRID ENVIRONMENTS 41

Figure 3.8: The value of the clipped ”surrogate” objective function LCLIP with
respect to rt(θ) when the advantage At is negative (Schulman et al., 2017a). The
x-axis represents the value of rt(θ), and the y-axis represents the value of LCLIP .
r gets clipped if it is less than 1− ϵ.

Given the objective function LCLIP , a loss function for PPO can be constructed.
Assuming that PPO utilizes an architecture similar to A2C, where the policy
function and value function share layers in a neural network, the loss needs to
include a term for the value function error. The value function error LV F

t is
defined as:

LV F
t = (Vθ(st)− V targ

t)2

where Vθ(st) is the estimated value of state st according to value function, and
V targ
t is the TD-target similar to the one in A2C (equation 3.7).

The PPO loss function also includes an entropy bonus term that improves the
exploration of actions by encouraging the action probability distribution of the
policy to be more random. In the case of RL problems with a discrete action
space, as is the case in this thesis, the entropy bonus term S[πθ](st) is often
defined as the Shannon entropy of the action probability distribution:

S[πθ](st) = H(πθ(·|st)) = −
∑

a∈A πθ(a|st) log πθ(a|st)

where πθ is the action distribution and essentially the policy, a represents an

42 CHAPTER 3. RELATED WORK

action from the set of all possible actions A, and st represents the state of the
environment at time t.

The final PPO loss function becomes:

LCLIP+V F+S
t (θ) = Êt[L

CLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)] (3.11)

where c1 and c2 are hyperparameters deciding the weight of the value function
error and the entropy, respectively.

Notice that PPO is a policy optimization technique, similar to the policy gradient
technique used in A2C and A3C (section 3.4.2). It is therefore possible, to use
PPO as the implementation of the actor in actor-critic methods.

Schulman et al. (2017a) implemented it in an architecture similar to A2C when
evaluating its performance. PPO outperformed A2C, TRPO, and other al-
gorithms on several advanced continuous control environments, while also dis-
playing stability and reliability. This has made PPO very popular. It is widely
used, and considered as a state-of-the-art RL algorithm.

3.4.4 Evolutionary Strategies

Silvestro et al. (2022) tackled the problem of spatial conservation prioritization
with the aim of protecting biodiversity, using RL. They created a framework
named CAPTAIN (Conservation Area Prioritization Through Artificial INtel-
ligence). The framework environment is a 2D grid representing a geographical
area. The environment simulates biodiversity through aspects such as mortality,
replacement, and dispersal. The grid is built up of smaller cells that contain
information about that specific subarea. The environment contains information
about multiple variables, such as species richness, population density, anthropo-
genic disturbance, climate, and more. The framework optimizes a conservation
policy (also called protection policy) according to some biodiversity target de-
cided by the user, while also accounting for financial restrictions such as a limited
budget. The conservation policy, which is represented in the form of weights in a
neural network, tells the agent what areas to protect. This is done by protecting
protection units. A protection unit is an area consisting of multiple cells, which if
protected, is shielded from exterior influence such as anthropogenic disturbance.

3.4. REINFORCEMENT LEARNING IN GRID ENVIRONMENTS 43

Conservation policy optimization happens with respect to a reward, which can
be defined in various ways depending on the criterion for optimality. If optimal
behavior is defined to be the restriction of species extinction, the reward could
be determined by the number of species that did not go extinct at the end of a
simulation. An overview of the CAPTAIN framework is shown in figure 3.9.

Figure 3.9: Overview of the CAPTAIN Framework (Silvestro et al., 2022). a)
The simulated system consists of cells. A protection unit consists of multiple cells.
b) Different variables of the system. c) Features extracted from each protection
unit, fed through the neural network and given a probability. The neural network
represents the conservation policy of the framework.

44 CHAPTER 3. RELATED WORK

The parameters of the neural network are optimized to maximize the expected
reward received from the protection actions. This is accomplished through a
variation of Parallelized Evolutionary Strategies. Evolutionary strategies (ES)
are black-box optimization algorithms inspired by natural evolution. Salimans
et al. (2017) explored the use of ES in RL problems and gave an introduction to
how ES functions. The algorithms iterate over two phases:

1. Randomly perturb the parameters of a policy, multiple times, and evaluate
the different policy’s performance by running an episode in the environment.

2. Combine the results of each policy and its results from the episode, calculate
a stochastic gradient estimate, and update the parameters.

One of the advantages of ES is that they are highly parallelizable. Since the eval-
uation of policies with different parameters is independent of each other, multiple
workers can run in parallel. In addition to being parallelizable, the ES algorithm
also has the advantage of not needing to perform backpropagation. This means
that there is no need to calculate gradients, which can be computationally ex-
pensive. Other issues are also avoided, such as exploding/vanishing gradients.

While ES has many advantages over traditional RL algorithms, they seem to be
less effective at RL problems where actions and rewards have a high correlation.
When the rewards are sparse, and there is little correlation between individual
actions and the reward, ES shows promising results compared to other RL al-
gorithms.

The CAPTAIN framework showed promising results, being able to compete with
the state-of-the-art algorithms on the spatial conservation prioritization problem.
It also shows how a spatio-temporal wildlife simulation can be modeled as an RL
environment.

3.5 Summary

The related work presented in this chapter has been found and selected through
a structured literature review, which is described in section 3.1. Section 3.2
presented some non-AI approaches to wildlife management. These approaches
are relatively simple and are restricted to smaller problem spaces. However, they
give insight into how wildlife management problems can be modeled, which in
turn has been helpful when implementing the RL environment in this thesis. For
example, some of the studies have used 2D grids with varying colors representing

3.5. SUMMARY 45

population density. This serves as a simple, but effective way of visualizing the
spatial aspect of the environment, and is used in this thesis.

Even though RL has not been extensively used in the field of wildlife management,
it has some advantages. These are discussed in section 3.3. These advantages
also apply to the wildlife management problem in this thesis.

More detailed use of RL is described in section 3.4, which presents different RL
algorithms and discusses how some of them have been successfully applied to
other grid-environment problems. Since limited work has been done in applying
RL to wildlife management problems, some of the work discussed in this section
contain other problem domains. However, the problem space remains similar to
the one in this thesis, a 2D grid where the RL agent has to choose one or more
cells to apply an action to. It is useful to see which RL algorithms have been
applied to similar problem spaces and how they perform, as these would have
high applicability to the problem tackled in this thesis.

46 CHAPTER 3. RELATED WORK

Chapter 4

Methodology

This chapter presents the methodology for creating the system that was used to
answer the research questions posed in this thesis. An overview of the system
built is presented in section 4.1. The system consists of two major components:
The spatio-temporal wildlife environment, which is described in section 4.2, and
the RL agent. The RL agent is trained using different DRL algorithms, which
are presented in section 4.3. Section 4.4 describes how the DRL algorithms
were trained and tested on the wildlife environment to obtain the results in the
subsequent chapter. Finally, section 4.5 summarizes this whole chapter.

4.1 System Overview

To investigate and answer the research questions posed in this thesis, a software
system was created. The system was coded using the programming language Py-
thon, which is simple, flexible, and has a large number of libraries well suited for
AI programming, such as NumPy and SciPy. The system can be divided into
two major components: A spatio-temporal wildlife environment, which serves as
the RL environment, and the RL agent interacting with it. The wildlife environ-
ment simulates the physical system of wildlife, with interactions between species
over time and space. The RL agent is trained with a DRL algorithm to perform
actions in this environment, with the goal of maintaining a diverse system. Dif-
ferent DRL algorithms can be used to train the agent. A high-level overview of
the system is shown in figure 4.1. The system is naturally shaped after a general
RL system, shown in figure 2.6.

47

48 CHAPTER 4. METHODOLOGY

Figure 4.1: A high-level overview of the system built to answer the research
questions posed in this thesis. The two major components of the system are
the spatio-temporal wildlife environment and the RL agent. The RL agent is
trained by a DRL algorithm to perform actions on the environment. It receives
observations from the environment afterward.

The two major components of the system are described in the following sections.

4.2 Spatio-temporal Wildlife Environment

The spatio-temporal wildlife environment was created from the ground up, as
this made it easier to have full control over the system behavior, whilst also mak-
ing it easily modifiable. The environment consists of three smaller components:
BioEnvironment, Renderer, and BioGymWorld. Each of the components handles
different aspects of the RL environment and its interfaces.

An overview of the spatio-temporal wildlife environment and its smaller compon-
ents is shown in figure 4.2.

4.2. SPATIO-TEMPORAL WILDLIFE ENVIRONMENT 49

Figure 4.2: Detailed overview of the spatio-temporal wildlife environment com-
ponent. The component consists of three smaller components: BioGymWorld,
BioEnvironment, and Renderer. BioGymWorld, which inherits from Gymnasi-
ums gymnasium.Env class, serves as an interface between the two other com-
ponents and the RL agent. BioEnvironment hosts the logic for the wildlife sim-
ulation, while the Renderer renders a graphical representation of the simulation.
Solid lines represent the flow of information. The dashed line represents inherit-
ance. An ”operation” includes the action decided by the RL agent, resetting the
environment, and a time step in the simulation.

50 CHAPTER 4. METHODOLOGY

4.2.1 BioEnvironment

BioEnvironment hosts the biological ecosystem logic for the simulation. It holds
the state of the system at every time step and the logic for state transitions. It
models a tri-trophic system, as described in section 2.2.

Inspired by the cellular map representation used in the CAPTAIN project and
the STAR framework (both discussed in chapter 3), the tri-trophic system is
represented as three separate two-dimensional grids, one grid for every species.
Since the three different grids represent the same geographical area, they can be
thought of as different layers of the area, each displaying the spatial distribution
of the population of a specific species. The grids consist of cells, which represent
species populations in smaller areas within the grids. This representation of the
system captures the spatial aspect of the environment, while also making it easier
to get an overview of the entire system.

The BioEnvironment component stores and operates on the different species pop-
ulation grids as matrices. The matrices are graphically represented as population
density grids by the Renderer component (more details in section 4.2.2). Both
representations of the species populations are shown in figure 4.3.

Figure 4.3: A 5×5 environment with the two types of species population repres-
entations: Matrices, as stored in the BioEnvironment component, and population
distribution grids, as rendered by the Renderer component. Darker cells in the
grids represent a higher population density.

4.2. SPATIO-TEMPORAL WILDLIFE ENVIRONMENT 51

Each time a BioEnvironment component is created or reset, the cell populations
of the different species are randomly set within their respective species range.
A species range is the range within which the population of a cell is randomly
set. For example, if the species range for the prey species is 0 to 70, each cell in
the prey population grid would be assigned a random number picked from the
continuous uniform distribution between 0 and 70.

After the BioEnvironment has been initialized, actions can be applied to it and
biological aspects can be simulated. This is done through the step function,
which follows the general RL framework shown in figure 2.6 in that it takes in
an action, simulates a time step in the wildlife environment, and ends up in a
new state. The step function can be broken down into the following substeps
executed in the given order:

1. Apply the action given as input

2. Simulate a time step in the tri-trophic system

3. Simulate species extinction

4. Simulate species dispersal

A more detailed description of each of these substeps is given in the following
subsections.

Actions

There are multiple approaches to preserving biodiversity in an ecosystem, and
some of these were presented in chapter 3. For example, in the CAPTAIN project,
the action set consisted of protecting protection units, which shielded the species
inside from external disturbance. This is a popular approach to wildlife conserva-
tion and is known as custodial management. The actions in BioEnvironment are
manipulative rather than custodial. These two terms were introduced in section
2.1. Put simply, manipulative management means that the species’ populations
are directly affected by the actions. More specifically, the action set consists of
directly adding or removing individuals of a specific species in a specified area.

Manipulative management makes the connection between the action and sub-
sequent state clear for the RL agent. It has also shown to be an effective way to
increase wildlife population, as discussed in section 3.2.3. Manipulative manage-
ment might also be more suitable for an RL agent, as it might perform multiple

52 CHAPTER 4. METHODOLOGY

actions over time without restriction. When dealing with custodial management,
however, an RL agent would normally be limited in the number of segments of
an area it could protect.

The action set in BioEnvironment consists of placing action units. An action unit
is a fixed-size square area that can be placed anywhere inside the grid for any
species. The action unit can either decrease or increase the species population
of cells it covers. If the action is to decrease the population, the population of
every cell covered by the action unit is set to zero. If the action is to increase
population, every cell covered by the action unit receives a single fixed increase
of individuals of that specific species. In this case, every cell inside the action
unit receives a population equal to the extinction threshold for that species times
an action multiplier. Extinction thresholds are presented in the subsection re-
garding species extinction. The action multiplier is a hyperparameter of the
simulation. The agent can only place one action unit at every time step and has
the option of not placing any action unit at all. Placing an action unit negatively
affects the rewards the agent gets, to resemble the real-life cost of removing or
adding new individuals to an ecosystem. The reward function of spatio-temporal
wildlife environment is discussed in further detail in section 4.2.3. Figure 4.4
shows a graphical representation of two action units being placed, one removing
population and the other adding population.

Figure 4.4: Graphical representation of a 3×3 action unit placed in the bottom-
right of two different 9 × 9 environments. In the environment on the left, the
action unit (red square) removes all individuals of that specific species from cells
covered by the action unit. On the right, the action unit (blue square) adds a
fixed number of individuals of a certain species to the cells it covers. Darker
cells in the grids represent a higher population. The action units can be placed
anywhere inside the grid, and can either remove or add individuals.

4.2. SPATIO-TEMPORAL WILDLIFE ENVIRONMENT 53

The number of places to place an action unit depends on the environment grid
size and action unit size, and is given by the following equation:

num action unit places = (grid size− action unit size+ 1)2 (4.1)

The action units placed can either increase or decrease the species population of
any of the three species in the ecosystem. The RL agent additionally has the
option of not placing an action unit. These possibilities result in the following
equation for the number of possible actions:

num actions = (num action unit places× 6) + 1 (4.2)

where num action unit places is given by equation 4.1.

Action units are inspired by the protection units in the CAPTAIN project (section
3.4.4). Protection units were, similar to action units, square areas of cells that
the RL agent could perform an action upon. Such an action set was shown to be
practical as it did not make the action space too large or too small.

Placing an action unit that removes individuals of a species is realistically possible
and practical action as shown by the STAR framework (section 3.2.2). In the
STAR framework, it was assumed that animals were removed through culling,
but, in practice, it is also possible to remove them from the given ecosystem and
to another one where they are more needed.

From a real-world perspective, placing an action unit that adds population could
be thought of as species reintroduction: Releasing individuals of a species who
have lived in captivity back into their ecosystem, also known as ex situ, or moving
wildlife populations between areas, also known as in situ. It is worth mentioning
that species reintroduction, especially ex situ, might negatively influence the
animal’s chances of surviving in the new area, as it has to adapt to it. As it is
difficult to predict or model this negative influence, it is not considered in this
thesis.

Research question 1 is posed with the intention of finding the action set that
allows the RL agent to perform best. The action set has two modifiable para-
meters: the size of the action unit, and the action multiplier. The action set can
be changed by altering the values these parameters inhibit. A select set of values
for these parameters were tested in experiments, and are given in table 4.1.

54 CHAPTER 4. METHODOLOGY

Tri-trophic System

To simulate a time step in this tri-trophic system, the equations presented in
section 2.2 are simulated for each cell in the grid. To simulate the ordinary
differential equations in a cell, the population of each species in that cell is used.
These are given by indexing that specific cell in their respective grids.

To reduce the complexity of the problem, the tri-trophic system is stabilized, thus
not displaying chaos. The equations simulated for each cell are reiterated below
for convenience:

dN1

dt
= rmax(1−

N1

K
)− aN1N2

b+N1
(4.3)

dN2

dt
=

aeN1N2

b+N1
− dN2 −

AN2N3

B +N2
(4.4)

dN3

dt
=

AEN2N3

B +N2
−DN3 −

sN2
3

γ
(4.5)

For each time step in the tri-trophic system, two time steps of the tri-trophic
equations are simulated. This was done to get a more dynamic simulation.

Species Extinction

To mimic extinction and avoid the atto-fox problem described at the end of
section 2.2, there are extinction thresholds for each species. If the population of
a species in a cell drops below its respective threshold, the population in that cell
is set to zero. These extinction thresholds are set implicitly and are based on the
carrying capacity for prey, and death rates for predators:

• Prey: 5% of K

• Mesopredator: d

• Apex predator: 2.5% of D

The parameters K, d, and D are modifiable parameters in the tri-trophic system.
These thresholds were set through small-scale testing with the intention of having
a lively ecosystem where species did not go extinct too often but had a small
probability of it.

4.2. SPATIO-TEMPORAL WILDLIFE ENVIRONMENT 55

Species Dispersal

A significant aspect of the spatio-temporal wildlife environment is species dis-
persal. As time goes by, species travel across space to find more food. To sim-
ulate biological dispersal a fixed percentage, named dispersal rate, of a species
population in a cell disperses to neighboring cells. An equal amount of individu-
als move to each neighbor. Neighbors are defined as adjacent cells that share an
edge. The environment does not allow for ”wrap-around”, meaning that species
are not able to move across grid edges to the opposite side of the grid. Dispersal
is simulated for all species in all cells at every time step. The dispersal rate is a
hyperparameter and can be different for each species. It does not change during
a run of the simulation. Figure 4.5 illustrates how dispersal works for different
cells.

Figure 4.5: Graphical representation of dispersal out of 2 cells in a 3× 3 envir-
onment. The dispersal rate is set to 10%, meaning that 10% of the population
in each cell disperses out to neighboring cells. Since there is no ”wrap-around”,
corner cells add 5% to both its neighbors, as shown by the red arrows. Cells that
are not on the edge of the environment, move 2.5% of their population to each of
their 4 neighbors, as shown by the blue arrows. Diagonal cells are not counted
as neighbors.

4.2.2 Renderer

The Renderer component provides a graphical representation of the state of the
wildlife simulation. This makes it easier to get an intuitive understanding of how
the system evolves over time. It is also useful for debugging. The component
shows a grid for each of the different species. The grids display the population

56 CHAPTER 4. METHODOLOGY

density in the different cells of the grids. There is also information about the
highest population in a single cell as well as the total species population in the
whole grid.

The species population density grids are displayed using the heatmap-function
in Seaborn, which is a library based on the Python library matplotlib. Figure
4.6 shows the graphical representation of the BioEnvironment produced by the
Renderer.

Figure 4.6: Graphical representation of a 20× 20 environment. Each species is
represented by its own heatmap and corresponding colorbar indicating the values
of different shades of green. The highest cell population and total grid population
are given above each heatmap. The blue square indicates a 3×3 action unit that
adds population.

4.2.3 BioGymWorld

The BioGymWorld component serves as the interface between the BioEnviron-
ment, Renderer, and the RL agent, and contains the logic for interaction between
these. The component inherits from the gymnasium.Env class in the Gym-
nasium library. Gymnasium is a Python library for creating RL environments
with a standardized API (Gymnasium 2023). It builds upon the OpenAI gym
library. By creating an RL environment with a standardized API, it becomes
compatible with third-party RL algorithm libraries such as SB3, which is used in
this thesis (more details in section 4.3).

When the RL agent has chosen an action to perform, it sends it to the BioGym-
World component. BioGymWorld passes the action on to the BioEnvironment
component, which applies the action and simulates a time step in the wildlife
environment. It then returns its current state to BioGymWorld, which passes it,
and a reward, on to the RL agent. The current state is also sent to the Renderer,
which renders a graphical representation of it. If BioEnvironment reaches a ter-

4.2. SPATIO-TEMPORAL WILDLIFE ENVIRONMENT 57

minal state or the episode ends, BioGymWorld signals this to the RL agent and
resets the BioEnvironment and Renderer.

BioGymWorld is also responsible for calculating the reward that the RL agent
receives at each time step. The reward function is described in detail in the
following subsection.

Reward Function

As the research goal of this thesis states, the goal of the RL agent is to keep
a diverse and stable ecosystem through spatio-temporal wildlife management.
With this in mind, critical threshold was defined as a simple metric of biodiversity
on which to base the reward function. A critical threshold is a species-specific
population threshold, meaning that each species has its own critical threshold.
If a species population is below its critical threshold it is considered to be in a
critical state, meaning that the risk of it becoming extinct is higher. Therefore,
it is desirable to have populations above their critical threshold. The reward
is based on whether or not any species populations are below their respective
critical threshold. The critical threshold for a species is defined by the following
equation:

crit threshi = extinct threshi × grid size2 × species threshi (4.6)

where crit threshi is the critical threshold for species i, extinct threshi is the
extinction threshold for species i, grid size is the size of the BioEnvironment grid
given as the number of rows/columns, and species threshi is a species-specific
threshold multiplier. All of these variables are hyperparameters of the wildlife
simulation, and the critical thresholds are therefore set implicitly by the system.
For example, let us say we have a BioEnvironment with a grid size of 9 where each
cell has a carrying capacity for prey (K) of 100 and a species-specific threshold
of 5 for prey. The extinction threshold would then be 5, leading to the critical
threshold for prey becoming 2025. In this example, if the total prey population
in the whole grid is less than 2025, it would be considered as being critically low.

The equation for critical threshold can be interpreted as each cell in the BioEnvir-
onment on average containing a population equal to extinct threshi×species threshi

for species i.

Figure 4.7 shows how species populations might vary to be above or below their
critical thresholds over time.

58 CHAPTER 4. METHODOLOGY

Figure 4.7: Species populations over time in one episode, with the total pop-
ulation in the environment on the y-axis and time step on the x-axis. Critical
thresholds are represented as dashed red lines. The agent receives a negative
reward if one or more species population is below its critical threshold.

If one or more species have a population below their critical threshold, -1 is added
to the total reward. If no species is considered to be in a critical state, 1 is added
to the total reward. If a species becomes completely extinct, meaning that its
total population in the whole grid is 0, the episode is terminated and a reward
of -1000 is given to the agent.

The final reward function also takes into account the practical cost of removing
or adding new individuals of a species to the ecosystem. To imitate this cost,
placing an action unit negatively influences the total reward. If the action unit
adds population, add pop cost is added to the total reward. This term is defined
by the following equation:

add pop cost = −action unit size2 × action multiplier

200
(4.7)

where action unit size is the size of the action unit in terms of the number

4.2. SPATIO-TEMPORAL WILDLIFE ENVIRONMENT 59

of rows/columns, and action multiplier is the hyperparameter influencing the
number of individuals added to each cell in the area covered by the action unit.
add pop cost decreases as the size of the action unit grows and as the action
multiplier grows, indicating the higher cost of adding more individuals.

If the action unit removes individuals, remove pop cost is added to the total
reward:

remove pop costi = −action unit size2 ×multiplieri
200

(4.8)

where multiplieri is given as:

multiplieri =
remove pop

action unit size2×extinct threshi

where remove pop is the number of individuals of species i removed. This cost
function accounts for the size of the action unit, and the number of individuals
removed relative to that species’ extinction threshold. The more individuals that
need to be removed, the higher the cost, and the less the total reward. Both cost
functions are multiplied with 1

200 to scale them to, in most cases, be larger than
-1. This was done to signal that the cost of one or more species being in a critical
state, is higher than the practical cost of adding/removing population in most
cases. This is because a species in a critical state might potentially go extinct,
which would be deemed disastrous.

By combining the reward determined by the critical threshold with the cost func-
tions presented, the final reward function becomes:

reward =

−1000 if num species extinct() > 0

−1 + cost if num species critical() > 0

1 + cost, otherwise

(4.9)

where the cost function is defined as:

cost =

add pop cost if action unit add()

remove pop costi if action unit remove()

0, otherwise

(4.10)

60 CHAPTER 4. METHODOLOGY

num species extinct() and num species critical() are functions of the simula-
tions returning the number of extinct species and the number of species in a crit-
ical state, respectively. action unit add() and action unit remove() are functions
returning True if the action unit added population or if it removed population,
respectively. If no action unit is placed, no cost is added to the total reward.

Biodiversity Metrics

There are different ways to measure the biodiversity of an ecosystem. The Bio-
GymWorld component tracks two such metrics: species abundance and Shannon
index.

Species abundance generally refers to the number of individuals of a species in
the ecosystem. In this thesis, it was deemed preferable to represent this metric
as one number, as it makes it easier to monitor across time. Therefore, species
abundance is defined as the average abundance over all three species. Since
different species vary greatly in population sizes, they are each scaled towards
their respective critical threshold, resulting in a metric defined in this thesis as
criticalness. The criticalness of a species is defined as the total species population
divided by the species’ critical threshold. If this value is less than 1, the species
is in a critical state. The species abundance is the average criticalness taken over
all three species.

While species abundance gives information about the population sizes in the
ecosystem, it does not give any information about the balance of population sizes
across species. For example, given a species abundance, it is not possible to
know if the three species have relatively equal criticalness (abundance relative to
critical threshold), or if there is a big imbalance between criticalness resulting in
the same average.

The term species evenness is used for describing how close the different species
populations are in size compared to each other. One common biodiversity metric
that accounts for species evenness is the Shannon index 1 (Spellerberg and Fedor,
2003). The Shannon index is given by the following equation:

H = −
S∑

i=1

pi ln(pi) (4.11)

1The Shannon index is also known as Shannon entropy as it was first put forward by Claude
Shannon as a measurement of entropy in information theory (Shannon, 1948).

4.2. SPATIO-TEMPORAL WILDLIFE ENVIRONMENT 61

where H is the species diversity, S represents the number of different species in
the ecosystem, and pi is the fraction that the population size of species i makes of
the whole ecosystem population. The higher H is, the closer the population sizes
of the different species are to each other, and the more diverse the ecosystem is.
If one or more species are extinct, H is zero.

While the reward the RL agent receives is used as a proxy indicator for how
diverse and stable the ecosystem is, the biodiversity metrics are direct meas-
urements of the biodiversity in the ecosystem. They are therefore useful for
determining the true performance of the RL agent on the task of spatio-temporal
wildlife management.

Observations

In addition to a reward, BioGymWorld also sends the state of the RL environment
to the RL agent, as part of the observations. The state of the RL environment
consists of the state of the BioEnvironment, the criticalness for each species, and
the criticalness trend for each species.

The state of the BioEnvironment is simply the population grids of each species.
These give the raw information about the BioEnvironment at a given time step.
It is beneficial for neural networks to have small value inputs, usually, this is
done by normalizing the input values. However, initial tests found that scaling
the population sizes in all cells toward the critical threshold of the given species
gave better learning. Since there are three species in the ecosystem, the state of
the BioEnvironment can be represented by 3× grid size2 numerical values.

While it is possible to define the state of the RL environment simply as the state
of the BioEnvironment, it can be beneficial to extract some additional features of
the state and send them to the RL agent to make it easier for the neural network
function approximators to learn the relation between actions, states, and rewards.
Some small-scale testing indicated species criticalness and criticalness trends to
be good features of the BioEnvironment state. This seems intuitive as the reward
that the RL agent receives is directly dependent on whether or not all species
are above their critical threshold (criticalness is above 1). The criticalness of a
species is defined in the previous subsection.

The criticalness trend for each species is also sent to the agent. It is defined
as the change of criticalness from the previous time step and is thus defined
as the difference between the current time step criticalness and the previous
time step criticalness. The intention behind this feature was to give the RL
agent some temporal information about how the BioEnviroment state develops.

62 CHAPTER 4. METHODOLOGY

The criticalness and criticalness trend of each species is sent as part of the RL
environment state, meaning that six additional numerical values are sent to the
agent.

4.2.4 Environment Parameters

The spatio-temporal environment can be modified through numerous paramet-
ers, which allows for a high variety of simulation behaviors. Therefore, it was
necessary to spend some time running through different system configurations
to find reasonable parameters. Reasonable parameters refer to parameters that
lead to a stable environment where species don’t go extinct too often, but there
still remains a small probability of it. This is obviously not a clearly defined re-
quirement as there are multiple ways of interpreting what ”too often” or ”small
probability” is. However, the parameter values presented in table 4.1 were found
to create a dynamic and challenging environment for the RL agent.

Table 4.1: Spatio-temporal environment parameters.

Parameter Description Value

grid size
Width and height of the BioEnviron-
ment grid, given as the number of cells.

9× 9

action unit size
Width and height of the BioEnviron-
ment action unit, given as the number
of cells.

2 × 2 / 3 × 3 /
4× 4

action multiplier

Constant multiplied with extinction
threshold to decide the number of indi-
viduals added to each cell when taking
an action to add population.

5 / 10 / 15

max steps Max steps in an episode 100

species thresh

Species-specific threshold multiplier af-
fecting the species’ critical threshold.
Given on the format [Prey, Mesopred-
ator, Apex predator]

[5, 5.5, 5]

migration rate
The rate of migration out from a cell,
for each species. Given on the format
[Prey, Mesopredator, Apex predator]

[0.05, 0.05, 0.05]

species ranges

The range in which a species’ popula-
tion is initialized in a cell. Given on
the format [Prey, Mesopredator, Apex
predator]

[[0, 18], [0, 6], [0,
0.07]]

4.2. SPATIO-TEMPORAL WILDLIFE ENVIRONMENT 63

The tri-trophic system parameter values used in all experiments are presented
in table 4.2. These were based on parameter values presented in Fryxell (2014,
p. 168) of a wolf-moose-plant ecosystem. Extinction thresholds and critical
thresholds are set implicitly based on these parameters, as described earlier in
this section.

Table 4.2: Tri-trophic system parameter values used in experiments.

Parameter Description Value

rmax Maximum reproduction per prey 3.33
K Carrying capacity of prey in a cell 70

a
Rate of prey consumption by a mesopred-
ator

2

b
The number at which the mesopredator
consumption of the prey is half of its max-
imum

40

e
Conversion of prey consumption to meso-
predator offspring

2.1

d
Decrease in the mesopredator population
due to natural reasons such as death

0.7

A
Rate of mesopredator consumption by a
apex predator

12.3

B
The number at which the apex predator
consumption of the mesopredator is half of
its maximum

0.47

E
Conversion of mesopredator consumption
to apex predator offspring

0.1

D
Decrease in the apex predator population
due to natural reasons such as death

0.45

s
Maximum rate of apex predators per cap-
ita

0.4

γ Maximum apex predator density 0.1

To answer research question 1, which aims to find the best action set in terms of
performance, a set of values for the action unit size parameter and a set of values
for the action multiplier parameter was decided upon. These are presented in
table 4.1. These sets of candidate values were found through small-scale testing
of the environment. For action units larger than 4× 4, the impact of each action
seemed to be too significant and the environment quickly became imbalanced,
which often lead to one or more species becoming extinct. On the other hand,

64 CHAPTER 4. METHODOLOGY

if the action unit is the size of one cell, the impact of each action seems to be
too small to make any meaningful difference. The same observations applied to
action multiplier, where the values between 5 and 15 seemed to give the agent
a reasonable amount of impact with each action. Three potential values were
selected for each parameter to be tested, as it seemed reasonable to achieve
valuable results with this number of values within the time frame of this thesis.

4.3 RL Algorithms

An RL agent is trained by following an RL algorithm. The aim of the RL al-
gorithm is to learn a good value function or policy function which takes actions
that maximizes the reward the agent receives. Research question 2 in this thesis
was posed to explore which of the following DRL algorithms perform best when it
comes to that task: DQN, A2C, or PPO. All of the algorithms have implementa-
tions in the Stable Baselines3 (SB3) library (Raffin et al., 2021). SB3 is a library
of common, deep RL algorithm implementations in Python. The algorithms are
implemented in the machine learning framework PyTorch.

There are several advantages of using an RL library, such as SB3, over imple-
menting the algorithms from scratch. Using SB3 ensures stable RL algorithm
implementations of high quality, as it is developed and maintained by a large
group of RL researchers. Implementing the algorithms from scratch would, in
addition to being time-consuming, be prone to flaws and bugs. Using SB3, one
can be more confident that performance differences between RL algorithms are
due to underlying theoretical differences, and less because of differences in im-
plementation.

The SB3 implementations of DQN, A2C, and PPO were tested on the spatio-
temporal wildlife environment. Specific implementation details are presented in
the following subsections.

4.3.1 DQN

The SB3 implementation of DQN is based on the updated algorithm, which
utilized a target network. This algorithm was proposed by Mnih et al. (2015)
and is described in section 3.4.1. An overview of the architecture is shown in
figure 3.4.

The default SB3 hyperparameters for DQN were used, and are given in table 4.3.

4.3. RL ALGORITHMS 65

Table 4.3: DQN hyperparameters used in experiments.

Hyperparameter Description Value

learning rate Learning rate for Q-network 0.0001
buffer size Replay memory size 1 000 000

learning starts
Number of steps where the agent
collects experiences before starting
learning

50 000

batch size
Minibatch size for each gradient up-
date

32

gamma The discount factor (γ) 0.99

train freq
Q-network update frequency (num-
ber of steps)

4

gradient steps
Number of gradient steps performed
on a minibatch

1

target update interval
Number of steps between each tar-
get network update

10 000

exploration fraction
Fraction of the training period
where the exploration rate decreases

0.1

exploration initial eps Initial probability of random action 1.0
exploration final eps Final probability of random action 0.05

This DQN implementation has two phases, and the hyperparameter learning starts
in table 4.3 defines the transition between these two. The first phase of train-
ing this DQN algorithm consists solely of collecting experiences in the replay
memory, and it does not update its Q-network. This phase is important as a
larger number of experiences in the replay memory lowers the risk of samples in
a minibatch having a temporal correlation. Once the replay memory has gained
a fairly large number of experiences (exact number given by learning starts), it
begins to learn by sampling minibatches of experiences from the replay memory
and updating the Q-network and target network.

The SB3 default Q-network was used in experiments. It was a fully connected
deep neural network with two hidden layers. Each layer consisted of 64 nodes
and used the ReLU activation function. The target network was identical to the
Q-network.

66 CHAPTER 4. METHODOLOGY

4.3.2 A2C

The A2C algorithm described in section 3.4.2 proposed having multiple instances
of the RL environment in a vectorized environment. In SB3 this is made pos-
sible by ”wrapping” your custom environment in the SubprocVecEnv wrapper.
SubprocVecEnv creates an environment consisting of multiple instances of that
environment. Each instance of the environment runs on its own process on the
computer, allowing for multiple instances to run simultaneously. After wrapping
the BioGymWorld class in the SubprocVecEnv wrapper, it was wrapped in the
VecMonitor wrapper (also available in SB3). VecMonitor monitors and saves
useful information about the vectorized environment when training, such as the
average episode reward.

As the experiments were run on an 8-core CPU (Apple M1), the vectorized en-
vironment was set to contain eight environment instances. This way each en-
vironment instance, which is initialized as its own process, can run on its own
core.

For the A2C implementation used in this thesis, default SB3 hyperparameters
were used. Some of the relevant hyperparameters are presented in table 4.4.

Table 4.4: A2C hyperparameters used in experiments.

Hyperparameter Description Value

learning rate
Learning rate for the shared actor and
critic network

0.0007

n steps
Number of steps each environment runs
for each update

5

gamma The discount factor (γ) 0.99

As described in section 3.4.2, the actor and critic share all layers of a single neural
network except for the output layer. The SB3 default neural network was used,
which consists of 2 fully connected hidden layers with 64 nodes each. The tanh
activation function was used.

4.3.3 PPO

The SB3 implementation of PPO is similar to the A2C implementation, with the
main difference being the ”clipped” surrogate loss function described in section
3.4.3. The PPO algorithm is also set to contain eight environment instances

4.4. EXPERIMENTAL PLAN 67

that run in parallel. The default SB3 hyperparameters were used in experiments.
Relevant hyperparameters are described in table 4.5.

Table 4.5: PPO hyperparameters used in experiments.

Hyperparameter Description Value

learning rate
Learning rate for the shared actor and
critic network

0.0003

n steps
Number of steps each environment runs
for each update

2048

batch size Minibatch size for training the network 64

n epochs
Number of epochs for optimizing sur-
rogate loss

10

gamma The discount factor (γ) 0.99
clip range The clipping parameter (ϵ) 0.2

normalize advantage
Whether or not to normalize the ad-
vantage

True

vf coef Value function coefficient (c1) 0.5
ent coef Entropy coefficient (c2) 0

Notice that the entropy coefficient is set to zero, meaning that the entropy term
in equation 3.11 disappears.

The neural network shared between the actor and the critic is identical to the
one used in the A2C implementation (details in the preceding subsection).

4.4 Experimental Plan

To answer the two research questions posed in this thesis, an experimental plan
was made and followed.

Research question 1 focuses on finding the action set that enables the best per-
formance. To determine this, the best combination of values for the action unit
size and action multiplier parameters needs to be found. There are three poten-
tial values for each of these parameters. These are presented in table 4.1, and the
justification for their selection is in subsection 4.2.4. To evaluate the performance
of a specific action set, one could look at how well the different DRL algorithms
are able to perform with it. The performance of an algorithm can be evaluated
by looking at the average episode reward they receive.

68 CHAPTER 4. METHODOLOGY

Environment stochasticity and the inherent randomness in learning can greatly
affect the performance of DRL algorithms (Henderson et al., 2019). Therefore,
it can be beneficial to train and evaluate an algorithm multiple times with the
same action set i.e. have multiple runs to reduce the effect of this stochasticity
on the average rewards and be able to draw more robust conclusions. To this
end, each algorithm was run 20 times with each specific action set.

Each DRL algorithm was trained for approximately 200 000 RL environment
steps as initial testing suggested that this was enough data for most of the al-
gorithms to converge with regard to the average episode reward they achieve2.

It would be possible to test all possible combinations of values for the two para-
meters affecting the action set. However, since there are 9 possible combinations,
each being tested 20 times on all three DRL algorithms, this would result in 540
runs. Given the hardware available for training the algorithms, this was deemed
a too time-consuming and resource-intensive approach. It was therefore decided
to do this in an alternative, more systematic manner which would reduce the
total number of runs: The DRL algorithms were first trained and evaluated on
action sets with varying action unit sizes, but a fixed action multiplier. Based
on these results, one could get an indication of what the best action unit size is.
The DRL algorithms were then trained and evaluated on action sets with the best
action unit size but with varying action multipliers. Based on the performance of
the algorithms, one could determine the best action multiplier. The best action
unit size and action multiplier would make up the best action set, thus answering
research question 1.

To answer research question 2, one would have to look at the performance of
the different DRL algorithms. However, in addition to comparing the algorithms
with regard to the average episode rewards, they were also compared to each
other with regard to additional biodiversity metrics.

The parameters used for the algorithms and the wildlife environment simulation
in the experiments are presented in the preceding sections.

2While both DQN and A2C train for exactly 200 000 time steps, PPO was trained for 212
992 time steps. The reason behind this is that the n steps hyperparameter is set to 2048 in the
PPO implementation. As the PPO is run with 8 parallel environment instances in this thesis,
it essentially collects batches of 2048 × 8 = 16384 steps. PPO trains for 212 992 steps as it is
the first multiple of 16 384 over 200 000.

4.5. SUMMARY 69

4.5 Summary

In summary, this chapter has described how a system consisting of an RL en-
vironment and DRL algorithms was constructed, along with the experimental
plan designed to generate results to answer the research questions of this thesis.
An overview of the system was given in section 4.1. The system consists of an
RL environment referred to as the spatio-temporal wildlife environment and the
DRL algorithms tested on it. The wildlife environment was built from scratch
and a detailed description of its components was given in section 4.2. The DRL
algorithms were provided by the RL library Stable Baselines3, and implementa-
tion details regarding these are presented in section 4.3. Finally, section 4.4 lays
out the experiments performed on this system to yield the results presented in
the subsequent chapter.

70 CHAPTER 4. METHODOLOGY

Chapter 5

Results and Discussion

This chapter presents the results obtained to answer the research questions of
this thesis and thoroughly discusses them. Section 5.1 show the results obtained
by testing the different DRL algorithms with different action sets. These results
are then discussed in more detail in section 5.2. Section 5.3 serves as a summary
of the main results and the central discussion points in this chapter.

5.1 Results

The results presented in this subsection were obtained by following the experi-
mental plan presented in section 4.4. The initial experiments focused on finding
the best action unit size. This was done with a fixed action multiplier value of
10x, which is one of the candidate action multiplier values, but also the mean
(and median) of all candidate values. Each algorithm was trained 20 times for
approximately 200 000 time steps in the RL environment on each action unit
size. The mean of the 20 runs as well as the 95% confidence interval was then
calculated and plotted.

71

72 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.1: The performance of the DQN algorithm during training with dif-
ferent action unit sizes and with action multiplier set to 10x. The y-axis shows
the average episode reward. The x-axis displays the number of RL environment
time steps the algorithm has trained for. The algorithm was trained 20 times for
200 000 time steps in the RL environment for each action unit size. The mean
of these 20 runs was then plotted, with the shading representing the related 95%
confidence interval.

Figure 5.1 shows the results of training the DQN algorithm with a 10x action
multiplier and varying action unit sizes. The results show that the runs where
the algorithm is trained on 2×2 and 3×3 action unit sizes obtain approximately
the same average episode reward of -18 at the end of training. However, when the
algorithm is trained on 3× 3 action unit size it has a larger confidence interval,
indicating more variability between its runs. When the algorithm is trained on
a 4 × 4 action unit size it performs worse than the aforementioned two, with it
achieving an average reward of -64 at the end of its training runs.

The results show that the DQN algorithm does not improve its average episode
reward for the first 50 000 steps. This is because the hyperparameter learn-
ing starts was set to 50 000 for the implementation used, as presented in table
4.3. As described in subsection 4.3.1, this means that the algorithm only collects
experiences to its replay memory in this phase, hence why the performance does

5.1. RESULTS 73

not change notably. In the second phase, after 50 000 time steps, the algorithm
begins to learn by sampling minibatches of experiences from the replay memory
and updating its Q-network and target network. As the results show, learn-
ing significantly improves performance, indicating that the Q-network becomes
better at estimating Q-values for this RL environment.

Figure 5.2: The performance of the A2C algorithm (running 8 parallel environ-
ments) during training with different action unit sizes and with action multiplier
set to 10x. The y-axis shows the average episode reward. The x-axis displays
the number of RL environment time steps the algorithm has trained for. The
algorithm was trained 20 times for 200 000 time steps in the RL environment
for each action unit size. The mean of these 20 runs was then plotted, with the
shading representing the related 95% confidence interval.

Figure 5.2 displays the results of training the A2C algorithm with a 10x action
multiplier and varying action unit sizes. The algorithm was trained with 8 differ-
ent environment instances running in parallel at the same time. The algorithm
trained with 2 × 2 action unit size performs the best with an average episode
reward of -11 at the end of its training runs. The second-best performance is
achieved by the algorithm trained with the 3×3 action unit size, with an average
reward of -43 at the end of training. The algorithm trained with 4×4 action unit
size performs the worst. It converges early to an average reward of -88.

74 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.3: The performance of the PPO algorithm (running 8 parallel environ-
ments) during training with different action unit sizes and with action multiplier
set to 10x. The y-axis shows the average episode reward. The x-axis displays
the number of RL environment time steps the algorithm has trained for. The
algorithm was trained 20 times for 212 992 time steps in the RL environment
for each action unit size. The mean of these 20 runs was then plotted, with the
shading representing the related 95% confidence interval.

The results of training the PPO algorithm on a 10x action multiplier and different
action unit sizes are shown in figure 5.3. The algorithm trained with the 2 × 2
action unit size yields the best performance. It receives an average episode reward
of -60 at the end of training. The algorithm trained with the 3 × 3 action unit
size is second-best and receives an average episode reward of -86 after training.
Similar to the other two DRL algorithms tested with a 10x action multiplier,
training with a 4 × 4 action unit size results in the worst performance for the
PPO algorithm. After 212 992 training steps, it earns an average episode reward
of -180, thus not becoming any better than when it started training.

While training with 4 × 4 action unit size showed variability between runs, the
2× 2 and 3× 3 action unit sizes showed virtually no variability, as shown by the
results.

5.1. RESULTS 75

The results of running the different DRL algorithms with an action multiplier
of 10x and with varying action unit sizes show that the 2 × 2 action unit size
performs either best, as observed with A2C and PPO, or on par with the best,
as in the case of DQN. These findings indicate that the 2 × 2 action unit size
might be best for all DRL algorithms trained on the spatio-temporal wildlife
environment. Therefore, it was decided to use this action unit size to find the
best action multiplier.

Figure 5.4: The performance of the DQN algorithm during training with dif-
ferent action multipliers and with action unit size set to 2× 2. The y-axis shows
the average episode reward. The x-axis displays the number of RL environment
time steps the algorithm has trained for. The algorithm was trained 20 times
for 200 000 time steps in the RL environment for each action multiplier value.
The mean of these 20 runs was then plotted, with the shading representing the
related 95% confidence interval.

Figure 5.4 shows the results of training the DQN algorithm with 2×2 action unit
size and varying action multipliers. Both the algorithm trained with a 5x action
multiplier and the one trained with a 10x action multiplier earns an average
episode reward of -18. The DQN algorithm trained with a 15x action multiplier
performs the worst, with an average episode reward of -24 after training.

76 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.5: The performance of the A2C algorithm (running 8 parallel environ-
ments) during training with different action multipliers and with action unit size
set to 2 × 2. The y-axis shows the average episode reward. The x-axis displays
the number of RL environment time steps the algorithm has trained for. The
algorithm was trained 20 times for 200 000 time steps in the RL environment for
each action multiplier value. The mean of these 20 runs was then plotted, with
the shading representing the related 95% confidence interval.

The performance of the A2C algorithm with a 2×2 action unit size and different
action multipliers is shown in figure 5.5. Contrary to the results achieved with
DQN, the A2C algorithm trained with a 15x action multiplier performs best,
receiving an average episode reward of -5. The algorithm trained with 10x is
the second-best after training. It earns an average episode reward of -11. The
algorithm trained with an action multiplier of 5x receives an average episode
reward of -17 and thus becomes the worst-performing one.

5.1. RESULTS 77

Figure 5.6: The performance of the PPO algorithm (running 8 parallel environ-
ments) during training with different action multipliers and with action unit size
set to 2 × 2. The y-axis shows the average episode reward. The x-axis displays
the number of RL environment time steps the algorithm has trained for. The
algorithm was trained 20 times for 212 992 time steps in the RL environment for
each action multiplier value. The mean of these 20 runs was then plotted, with
the shading representing the related 95% confidence interval.

Figure 5.6 displays the results of training the PPO algorithm with 2 × 2 action
unit size and varying action multipliers. The algorithm trained with a 5x action
multiplier achieves an average episode reward of -51 after 212 992 time steps,
making it the best-performing one. Its performance is followed by the algorithm
trained with a 10x action multiplier, which earns an average episode reward of
-60 at the end of training. Similarly to DQN, but contrary to A2C, the PPO
algorithm trained with a 15x action multiplier performs the worst. It yields an
average episode reward of -67.

The results of training the different DRL algorithms with a 2× 2 action unit size
show that there is no single action multiplier that is best for all algorithms. While
the DQN algorithm seems to perform best with smaller action multipliers, A2C
achieves better results the larger the action multiplier is. Similarly to DQN, PPO
seems to perform better with a smaller action multiplier. However, in contrast to

78 CHAPTER 5. RESULTS AND DISCUSSION

the two other algorithms, the PPO results show steady but rapid improvement
throughout the whole training. This strongly indicates that the algorithm has
not reached its best performance and that it would significantly improve had it
been trained for longer.

To investigate this further, one could compare performance over RL environment
steps with performance over wall clock time. To do this it was decided to use
the action set consisting of a 2 × 2 action unit size and a 10x action multiplier.
The 2 × 2 action unit size seems to be the best action unit size based on the
initial experiments. The latter experiments indicate that there is no clear best
action multiplier across the different DRL algorithms. However, the 10x action
multiplier is the only one to show average performance or even best performance
in the case of DQN, across all algorithms tested with a 2× 2 action unit size. It
was therefore decided to use it as part of the action set in these experiments.

Figure 5.7: The performance of DQN, A2C and PPO during training with
2 × 2 action unit size and action multiplier set to 10x. The y-axis shows the
average episode reward. The x-axis displays the number of RL environment time
steps the algorithm has trained for. The algorithms were trained 20 times for
approximately 200 000 time steps in the RL environment. The mean of these 20
runs was then plotted, with the shading representing the related 95% confidence
interval.

5.1. RESULTS 79

Figure 5.7 display the results of training the different DRL algorithms with 2× 2
action unit size and 10x action multiplier. The results show that the A2C and
DQN algorithms rapidly improve the first 60 000 steps before slowly converging
to an average episode reward between -10 and -20. The performance of the PPO
algorithm in this figure seems stable but slow, with it ultimately ending training
with an average episode reward of -60.

Figure 5.8: The performance of DQN, A2C and PPO during training with 2×2
action unit size and action multiplier set to 10x. The y-axis shows the average
episode reward. The x-axis displays the wall clock time the algorithm has trained
for. The algorithms were trained 20 times for approximately 200 000 time steps
in the RL environment. The mean of these 20 runs was then plotted, with the
shading representing the related 95% confidence interval.

Figure 5.8 shows an alternate way of displaying the results in figure 5.7. In
this figure, the x-axis displays the training time instead of the number of RL
environment steps trained over. Training time in this case refers to the wall clock
time, meaning the real-life time that has passed during training. Since both
A2C and PPO run multiple environments in parallel, they take RL environment
steps at a much faster rate than DQN. This is reflected in this figure, where
both A2C and PPO take roughly 10 minutes to train over approximately 200 000
environment steps, while DQN uses 37 minutes. In other words, training A2C

80 CHAPTER 5. RESULTS AND DISCUSSION

and PPO is approximately 3.7 times faster than DQN with regard to training
time1.

Figure 5.9: The performance of DQN, A2C and PPO during training with 2×2
action unit size and action multiplier set to 10x. The y-axis shows the average
episode reward. The x-axis displays the wall clock time the algorithm has trained
for. The algorithms were trained 20 times for approximately 37 minutes (200 000
time steps for DQN, 800 000 time steps for A2C, and 802 816 time steps for
PPO) in the RL environment. The mean of these 20 runs was then plotted, with
the shading representing the related 95% confidence interval.

Given that A2C and PPO are training considerably faster than DQN with regard
to wall clock time, it would be interesting to view how well they perform if they
train for the same amount of time as DQN. Figure 5.9 shows the performance of
the DRL algorithms when they are trained for approximately the same amount
of wall clock time. As A2C and PPO are roughly 3.7 times faster than DQN,
they were trained for 4 times more RL environment steps than DQN. The results
indicate that the performance of A2C does not improve notably after 10 minutes

1As both A2C and PPO run 8 parallel environment instances it is natural to assume that
training would be 8 times faster than with DQN. However, each environment instance is its
own operating system process, and overhead introduced by process communication makes the
practical speed-up smaller.

5.1. RESULTS 81

(200 000 time steps). The 95% confidence interval (shaded area) displays its
relatively high instability in performance. The DQN algorithm also reaches its
peak performance after around 10 minutes (70 000 time steps), however, after a
dip in performance, its average episode reward increases slowly until the end of
training. The PPO algorithm displays a slow, stable, and consistent increase in
average episode reward throughout the training duration. Toward the end of the
training, the difference in performance between the DRL algorithms is relatively
small.

Even though the different DRL algorithms perform relatively similarly after a set
amount of time, they employ considerably different policies. This is reflected in
table 5.1, which shows the percentage of different types of actions taken by the
algorithms.

Table 5.1: Percentage of the different types of action units placed for the DRL
algorithms trained with a 2× 2 action unit size and a 10x action multiplier over
approximately 37 minutes in the RL environment. The percentages are calculated
by running 50 episodes of the best run for each algorithm.

DRL algorithm
% adding pop-
ulation

% removing
population

% no action
unit placed

DQN 8.16 91.84 0
A2C 0 100 0
PPO 90.14 9.86 0

The table shows that the DQN algorithm trains the RL agent to mainly place
action units that remove species population, while PPO trains the agent to pre-
dominantly place action units adding population. Training the RL agent with
the A2C algorithm makes it follow a simple policy: always remove species popu-
lation. Figures A.1, A.2 and A.3 in appendix A offer more detailed examples of
the policies, showing sequences of actions taken by the agent when trained with
the different DRL algorithms.

82 CHAPTER 5. RESULTS AND DISCUSSION

Table 5.2: Average species abundance and Shannon index and their standard
deviation for the DRL algorithms trained with a 2× 2 action unit size and a 10x
action multiplier over approximately 37 minutes in the RL environment. The
average and standard deviation are calculated by running 50 episodes of the best
run for each algorithm.

DRL algorithm Species abundance Shannon index

DQN 1.321 ± 0.018 0.513 ± 0.005
A2C 1.314 ± 0.022 0.506 ± 0.007
PPO 1.341 ± 0.014 0.529 ± 0.005

Table 5.2 shows how the different DRL algorithms score on the biodiversity met-
rics described in section 4.2.3. PPO scores highest on both species abundance
and Shannon index, with DQN scoring second highest on both. A2C scores the
lowest and has the highest standard deviation for both metrics. This aligns with
the simple policy of A2C of only removing populations of a specific species in the
same place.

5.2 Discussion

The previous section presented the results of training the DRL algorithms with
different action sets and for varying duration. The results displayed how all the
DRL algorithms performed best with the 2× 2 action unit size but had different
best action multipliers given this action unit size. The results also displayed the
difference in algorithm performance during training over a fixed number of RL
environment steps, compared to a fixed amount of wall clock time. This section
takes a deeper look at the results and some of the underlying patterns found,
while also discussing their potential causal factors.

5.2.1 Finding the Best Action Set

As explained in the experimental plan for this thesis (section 4.4), a systematic
way of collecting results was followed to find the best action set. This significantly
reduced the number of runs needed to collect results. However, this also meant
that not all combinations of action unit sizes and action multipliers were tested.
One can therefore not conclude with certainty that the best action set has been
found for each DRL algorithm. The results do however indicate that all the

5.2. DISCUSSION 83

algorithms perform best with the smallest action unit size, 2× 2. There could be
multiple reasons for this. The most obvious reason is that smaller action unit sizes
add fewer individuals, thus having less cost per action. Because of the structure
of the reward function, less cost means less negative reward added to the total
reward the RL agent receives. This effect on the reward is apparent in results
comparing performance with different action units, where at the start of training,
the algorithms training with smaller action unit sizes, begin training with a higher
average episode reward. This effect also applies to action multipliers, as a lower
action multiplier corresponds to fewer individuals of a species being added to
the environment. However, less cost also means fewer individuals added to the
ecosystem. Therefore the performance of an algorithm cannot solely be attributed
to the amount of cost associated with its action set. This is demonstrated by
figures 5.1, 5.4, and 5.5, which display algorithms trained with a higher cost
action set performing as good or better than algorithms trained with the action
set with the lowest cost. This implies that the action set clearly affects the ability
of the algorithm to perform well in the RL environment, beyond its costs. If an
action set is efficiently used, it might make up for the higher cost compared to
the lowest-cost action set. If it did not, the action set with the lowest cost would
always yield the highest average episode reward.

While the 2 × 2 action unit size seems to be best for all algorithms, there is
no clear best action multiplier for this action unit size. DQN achieved the best
performance with 5x and 10x action multipliers, while A2C got the highest av-
erage episode reward with an action multiplier of 15x. PPO yielded its highest
average episode reward when trained with an action multiplier of 5x. However,
as figure 5.6 displays, the algorithm has clearly not reached its best performance
after 200 000 time steps. The final results might have been different, had PPO
been trained for longer.

One explanation for why the algorithms have different best action sets is that
they employ different policies, as seen in table 5.1. For example, when the RL
agent is trained with A2C it always chooses to remove species population. Since
the action multiplier does not affect the cost of removing species population, it
essentially does not affect the RL agent trained with A2C. However, this contra-
dicts the results shown in figure 5.5, where the agent trained with a higher action
multiplier performs better. One hypothesis for this is that the agent trained with
a higher action multiplier is more prone to learn a policy of just removing species
population. This could be because it relates actions adding population to a larger
negative return than an agent trained with a smaller action multiplier, because
of the increased cost, thus being less likely to choose them. This hypothesis is
built on the assumption that a policy of just removing species populations yields
a higher reward than a policy of both adding and removing populations.

84 CHAPTER 5. RESULTS AND DISCUSSION

For DQN and PPO, which train the RL agent to both remove and add population,
a lower action multiplier makes the agent perform better. Just like action unit
size, this is probably due to less cost, but also because it allows the agent to
operate more efficiently in the environment.

As discussed above, smaller action unit sizes and smaller action multipliers gen-
erally seem to make the RL agent operate more efficiently when trained with
the different DRL algorithms. One reason for this might be that higher action
unit sizes and action multipliers might add too many individuals at the same
place and at the same time than what would be natural for the ecosystem. It
might be better to add fewer individuals, but multiple times and spread across
time and space to not create changes that are too drastic for the ecosystem. The
optimal amount of individuals to add with each action naturally depends on,
among other factors of the wildlife simulation, the temporal difference between
consecutive states in the RL environment. For example, if the RL environment
simulates years in the tri-trophic system between consecutive states the action
set might need to increase or decrease more individuals with each action than if it
had simulated months. To further highlight the influence of temporal difference
on the optimal action set one could flip the problem and see it in relation to the
common RL problem of choosing a reasonable frame skip. Frame skip is a hyper-
parameter determining the frequency at which the RL agent can take action. In
this thesis, the equivalent would be the temporal difference between consecutive
states in the spatio-temporal environment. Frame-skip has been shown to be an
important hyperparameter for the performance of the RL agent in other prob-
lems (Braylan et al., 2015). This further strengthens the notion that the temporal
difference between consecutive states and the optimal action set is connected.

5.2.2 Comparing DRL Algorithm Performance

There are multiple ways to compare the performance of DRL algorithms on this
problem. One way would be to compare them with their respective best action
set, the one they have achieved the highest reward with. However, deciding
upon the best action set for an algorithm is not always straightforward. As the
results for DQN show in figures 5.1 and 5.4, an algorithm might achieve similar
performance with more than one action set. It might also be the case that
the action set with which an algorithm performs best might change as training
progresses. Figure 5.5 displays such a case. Therefore, to compare on equal
ground, it was decided to look at algorithm performance when they were trained
with the same action set. It was decided to use the action set consisting of a
2 × 2 action unit size and a 10x action multiplier. The reason for this was that

5.2. DISCUSSION 85

all DRL algorithms had been shown to perform best with a 2× 2 action unit size
and at least average with a 10x action multiplier.

The results in figure 5.7 show how the DRL algorithms perform with the chosen
action set being trained over a similar amount of environment time steps. The
relatively quick increase in average episode reward for A2C and DQN stands
out compared to the slow learning of PPO. The seemingly quick learning of
A2C stands out even more when looking at figure 5.8, which show algorithm
performance during training over wall clock time rather than environment time
steps. In fact, the A2C algorithm achieves a higher average episode reward in
10 minutes than DQN and PPO are able to achieve in roughly 40 minutes, as
shown by figure 5.9. There might be numerous reasons behind the remarkable
performance of A2C. One important factor could be that learning a good policy in
the spatio-temporal wildlife environment is simpler than learning a good state-
value function. In such cases, policy-gradient methods, such as A2C, usually
outperform RL methods which only learn a value function, such as DQN. The
underlying reason why a good policy is easier to learn in the wildlife environment
might have to do with its structure. The RL environment in this thesis is a grid
representing a spatial environment. Related work has shown actor-critic methods
to outperform DQN in grid environments (section 3.4.2).

The notion of a good policy being easier to learn than a good value function gets
further strengthened by the fact that the policy A2C learns is very simple. As
table 5.1 shows, A2C only places action units removing species population. In
fact, the algorithm trains the agent to always remove species population in the
same area, as is demonstrated by the action sequence in figure A.2. The overall
strategy seems to be to remove mesopredators from a specific ecosystem area,
essentially conserving the prey there. The prey can then grow and migrate to
neighboring cells in the ecosystem, where they can be consumed by the meso-
predator, which in turn are consumed by the apex predators. The related work
presented in section 3.2.3 concluded with a similar strategy performing best. In
their case, the reduction of the predator species led to short-term stability in the
ecosystem. This strategy, although simple, seems to be effective. However, this
approach also shows a relatively large variability in performance as shown by the
unstable mean and large 95% confidence interval of A2C in figure 5.9. These
results suggest that the simple strategy of A2C might not work as well for all the
different states of the RL environment.

Although the DQN algorithm does not achieve a higher average episode reward
than A2C, it slowly reduces the performance gap as it trains over more envir-
onment steps. This suggests that learning a good value function might not be
considerably more complicated than learning a good policy. The results in fig-

86 CHAPTER 5. RESULTS AND DISCUSSION

ure 5.7 also highlight the relatively high sample efficiency of DQN. As DQN is
an off-policy RL method, it collects samples through its behavior policy. As
the behavior policy remains unchanged during training, samples collected from
it can be stored in the replay memory and reused to update the target policy.
On-policy methods, such as A2C and PPO, update their policy during training
and therefore need to collect new samples according to this updated policy con-
tinuously. Reuse of samples is therefore not possible. This sample inefficiency is
reflected by the learning curve of PPO in figure 5.9. PPO requires training over
roughly four times the number of environment steps DQN requires to achieve
similar performance. However, since A2C and PPO train by collecting samples
from environment instances running in parallel, they are also training over envir-
onment steps considerably faster than DQN. Overall, A2C and PPO compensate
for their sample inefficiency by collecting samples at a much higher rate.

While A2C and DQN show rapid improvements in their performance, PPO dis-
plays slow and steady learning across the training period. However, it is remark-
ably stable as its 95% confidence interval is significantly smaller than the other
two algorithms. The stability and consistency in PPO runs can be attributed to
its clipped ”surrogate” objective function. As described in section 3.4.3, the PPO
clipped objective function ensures that the new policy of the agent is close to its
old. This is the reason for the relatively slow increase in average episode reward
during training, compared to A2C. However, this also makes the performance
increase during training much more stable than A2C. While A2C and PPO are
similar in many ways, it is interesting to see that they learn two very different
policies. As seen in table 5.1, A2C only removes population, while PPO mostly
adds population. One hypothesis for this is that A2C quickly adopts the simple
and seemingly effective strategy of only removing populations, while PPO takes
a more cautious approach, that might lead to a better policy. Because the object-
ive function of PPO restricts large updates to its policy, it is less prone to adopt
actions it explores and seems good but lead to a suboptimal policy. In other
words, PPO might find an equally as good or better policy than A2C in the long
run. This hypothesis is supported by the fact that even though the policy of PPO
is very different from A2C, the performance difference becomes less throughout
training, as shown in figure 5.9. The figure also shows that while A2C stagnates
early, PPO continues to improve until the end of training, indicating that it might
be able to perform as well or even better than A2C given enough training time.

While PPO does not have the highest average episode reward at the end of train-
ing, it does score the highest on both species abundance and Shannon index as
seen in table 5.2. It also has the lowest standard deviation on these metrics,
meaning that its policy is more robust than that of DQN and A2C. This reveals
that while the reward function is designed to keep species abundances from get-

5.3. SUMMARY 87

ting critically low, it does not necessarily reward higher biodiversity. The findings
also imply that the policy of PPO might be better than the policies of A2C and
DQN with regard to biodiversity even though it receives a lower reward. This is
probably because of the relatively high cost of adding species population.

Overall, the performance of the different DRL algorithms can be seen in relation
to the No Free Lunch (NFL) theorem. The NFL theorem was introduced by
Wolpert (1996) and it states that there is no single machine learning algorithm
that performs best in all circumstances. In other words, different algorithms are
suited to different tasks as they make different assumptions about the problem
space. For example, policy gradient algorithms try to learn a good policy and
are based on the assumption that it is easier to learn than a good value function.
The results show that different assumptions lead to a trade-off between the speed
of performance improvement during training and training stability. A2C has a
rapid increase in reward from the beginning but shows high variability. PPO, on
the other hand, assumes that the environment is complex, and does not want to
quickly adopt a policy that might be suboptimal. Therefore, learning is slow but
very stable. DQN falls in between A2C and PPO when it comes to both training
time and stability.

It is important to note that hyperparameters can have a huge influence on the
performance of a DRL algorithm. Especially hyperparameters such as learning
rate and epsilon (probability of random action) can influence learning and ex-
ploration. Hyperparameter tuning is, therefore, a significant part of training a
DRL algorithm on an RL task. However, since hyperparameter search is a com-
putationally complex and resource-intensive process, it was out of the scope of
this thesis.

5.3 Summary

This chapter has presented the results of the experiments conducted in this thesis
and a discussion around these. The results presented in section 5.1 were yielded
by training the DRL algorithms DQN, A2C, and PPO on the RL environment
with different action sets. The results indicated that a 2× 2 action unit size gave
the best performance for all algorithms. While there did not seem to be any clear
best action multiplier, an action multiplier of 10x seemed to at least yield average
performance for all DRL algorithms. Based on these results, further experiments
were conducted with an action set consisting of a 2×2 action unit size and a 10x
action multiplier. Results from these were presented in two ways: with regard
to environment steps trained on and with regard to wall clock training time.

88 CHAPTER 5. RESULTS AND DISCUSSION

While DQN showed a higher sample efficiency, A2C and PPO compensated by
being much faster to train over environment steps. This was expected as A2C
and PPO ran multiple environment instances in parallel. While A2C quickly
improved performance, it had a high variability between training runs. PPO, on
the other hand, had a slow but very stable increase in performance. DQN fell in
between A2C and PPO in both performance increase and stability. The results
also revealed the vast difference in action policy between the algorithms, and also
their performance according to biodiversity metrics.

The discussion in section 5.2 implied that there might be a connection between
the best action set and the temporal difference between states in the RL en-
vironment. The performance of the DRL algorithms was also discussed. A2C
performed remarkably well in a short amount of time, with the main hypothesis
for this being that a good policy in this RL environment is easier to learn than a
good value function. However, a good Q-function might not be much harder to
learn, as the performance of DQN was relatively close. PPO, while not achieving
the highest reward, performed best on the biodiversity metrics. It also showed
promise as it closed the performance gap with the other algorithms as training
time increased. This, in addition to its slow but stable learning, can most likely be
attributed to its clipped objective function. In summary, the discussion seemed
to reveal a trade-off between the speed of performance improvement and training
stability, indicating that there is no single algorithm that is best on all aspects
of performance, training speed, and stability.

Chapter 6

Conclusion

This chapter presents and discusses the main implications of the work done and
the results achieved in this thesis, both in a narrow sense, regarding the research
questions, and the broad picture regarding contributions to the field. Section 6.1
gives an overview of the entire thesis. Section 6.2 reviews the goal statement
and aims to answer the research questions posed in this thesis. In section 6.3 the
contributions of this thesis to the fields of wildlife management and reinforcement
learning are presented. Section 6.4 briefly discusses the ethical implications of
the RL system built in this thesis. Finally, section 6.5 presents suggestions for
future work.

6.1 Overview

The background and motivation for this thesis were presented in chapter 1. A
research goal and two research questions were also formulated in this chapter.

Chapter 2 introduced key concepts in wildlife management and reinforcement
learning, which were necessary to understand the related work and methodology
of this thesis. The first section of this chapter defined wildlife management and
relevant actions in the field. Section 2.2 started by introducing a simple, but pop-
ular model for a predator-prey ecosystem. This was based on the Lotka-Volterra
equations. Throughout this section, the model was developed and extended to
become more realistic and thus more complex. The final model simulates a
tri-trophic predator-prey ecosystem. This model is the basis for the RL envir-

89

90 CHAPTER 6. CONCLUSION

onment in this thesis. The last section of chapter 2 serves as an introduction to
reinforcement learning. Different approaches in this field, such as Q-learning and
Actor-Critic, are presented. These approaches serve as the underlying theory for
the DRL algorithms tested and compared in this thesis.

Chapter 3 presents related work both in the field of wildlife management and in
the field of reinforcement learning. The first section describes how a structured
literature review was carried out to find the related work. Traditional, non-AI
approaches to wildlife management are presented in section 3.2. While these
approaches serve as a good basis for modeling the RL environment in this thesis,
their limitations are also discussed. The subsequent sections present work done
in the field of reinforcement learning. This includes the application of RL to
wildlife management and grid environments, but also a detailed description of
the DRL algorithms tested in this thesis.

Chapter 4 describes the methodology for creating an RL environment and test-
ing RL algorithms on it to answer the research questions of this thesis. This
chapter presents an overview of the RL system built, as well as a detailed view
of its different components. An in-depth explanation of how the RL environ-
ment, also referred to as the spatio-temporal wildlife environment, functions, is
given. Implementation details regarding the DRL algorithms tested on this RL
environment are also presented. Finally, an experimental plan is laid out, which
outlines how the DRL algorithms are going to be tested on the RL environment
to generate results that can answer the research questions.

The results of the experiments are presented in chapter 5. This includes com-
parisons of DRL algorithms with different action sets and also different DRL
algorithms with the same action set. Interesting results regarding policy and
biodiversity performance are also presented. This chapter also includes a more
technical discussion of the results, with regard to the research questions. While
a 2× 2 action unit size enabled all DRL algorithms to perform their best, there
were no clear best action multipliers. Overall, an action set of 2× 2 action unit
size and a 10x action multiplier seemed to perform well. The discussion also
pointed to a trade-off between DRL algorithm performance over training time,
and training stability.

6.2. GOAL EVALUATION 91

6.2 Goal Evaluation

As stated in section 1.2, the goal of this thesis was to explore the use of DRL
algorithms on the task of spatio-temporal wildlife management. To do this, two
research goals were posed. These will now be answered and discussed. For
convenience, the research questions will be repeated in this section.

Research Question 1

What action set yields the best performance on the task of spatio-
temporal wildlife management, when accounting for the costs that it
entails?

In this thesis, the reward the RL agent received from the RL environment was
used as a measure of its performance on the task of spatio-temporal wildlife
management. The reward function also accounts for practical, real-life costs of
executing different actions. The action set consists of two parameters, an action
unit size, and an action multiplier. Based on initial testing of the RL environment,
three candidate values for each of the parameters were chosen to be compared.
The candidate values for action unit size were 2×2, 3×3, and 4×4. For the action
multiplier, the candidate values were 5x, 10x, and 15x. The results show that all
DRL algorithms receive the highest average episode reward with an action unit
size of 2 × 2, compared to 3 × 3 and 4 × 4. However, for the action multiplier,
there was no value that enabled the best performance for all DRL algorithms.
The ”best” action set is therefore dependent on which DRL algorithm is trained
with it. This seems logical, especially considering that the RL agent employs
different approaches to the task depending on which DRL algorithm it is trained
with.

While there is no single best action multiplier, the 10x value stands out as con-
sistently performing on average or better for all DRL algorithms. The action set
consisting of a 2× 2 action unit size and a 10x action multiplier, therefore, seems
like a sensible choice.

It is important to highlight that not all combinations of candidate values for
action unit size and action multiplier were tested, as it would be too resource-
intensive and time-consuming. Therefore, one cannot with complete certainty
determine that there are no better action sets.

It is also worth noting that the results collected in this thesis come from a partic-
ular tri-trophic predator-prey simulation with a specific set of parameters. Hence,

92 CHAPTER 6. CONCLUSION

they are only valid for this specific situation. Wildlife management is very com-
plex and can include fewer or more species, different species, or even different
types of relationships between animals to name a few important factors. No two
ecosystems are the same. While traditional RL environments, such as Atari 2600
games, have a defined action set, wildlife management does not. It is therefore
worth investing time into finding, if not the best, a good action set for each
situation.

In reality, one single action set is most likely not ideal for all different states of a
wildlife environment. Ideally, the RL agent would be able to place different types
of action units for different situations. However, this would considerably increase
the complexity of the action space.

Research Question 2

Which DRL algorithm yields the best performance on the task of
spatio-temporal wildlife management: Deep Q-Network (DQN), Ad-
vantage Actor-Critic (A2C), or Proximal Policy Optimization (PPO)?
What are the trade-offs between these?

Research question 2 was posed to compare and evaluate the performance of three
popular DRL algorithms: DQN, A2C, and PPO. As different algorithms have
different approaches to learning to navigate RL environments, an essential part
of this question was to find out what trade-offs they had.

Since all algorithms performed reasonably well with the action set consisting of
a 2 × 2 action unit size and a 10x action multiplier, their performances were
compared when trained with this action set. The results revealed a trade-off
between performance improvement over training time and training stability. A2C
quickly, both in terms of environment steps and wall-clock time, improved its
average episode reward. However, it seems unstable and shows great variability
between its runs. PPO on the other hand slowly improved over time but was
very stable. DQN seems to fall between A2C and PPO in both performance over
training time and training stability.

It is worth noting that DQN is significantly more sample-efficient than A2C and
PPO, and it runs sequentially, meaning that it only runs on one core. There-
fore, given the hardware available for training, DQN might be a sensible choice.
However, most modern computers have multiple CPU cores and therefore have
the ability to run multiple RL environment instances in parallel during training.
A2C and PPO make use of this ability and are therefore much faster than DQN
when it comes to training over environment steps with regard to wall-clock time.

6.3. CONTRIBUTIONS 93

Given the same wall-clock training time, A2C still performs the best, but the
performance gap is considerably smaller, as figure 5.9 shows. PPO seems to
catch up to the other algorithms in terms of average episode reward, while also
offering remarkable stability, much thanks to its clipped objective function. In
contrast to A2C, it shows a dynamic strategy for the task of wildlife management
and also scores the highest on the biodiversity metrics. One could therefore argue
that, while there is a performance over training time and stability trade-off in the
initial stages of training, PPO shows the most promise as training time increases.

6.3 Contributions

This thesis contributes to the fields of wildlife management and reinforcement
learning in several ways. To my knowledge, RL has not been applied to the task
of spatio-temporal manipulative wildlife management. For RL this seems to be
a novel problem domain, and for manipulative wildlife management, RL appears
to be a new solution technique. The work closest related to this thesis is the
CAPTAIN project presented in section 3.4.4, which deals with conservation, a
form of custodial wildlife management.

This thesis contributes to the mentioned fields by being the first attempt at apply-
ing DRL to the task of manipulative wildlife management. The thesis investigates
the best action set for the RL agent and compares the performances of three pop-
ular DRL algorithms: DQN, A2C, and PPO on this task. The thesis also offers
a technical discussion of the results obtained and a review of the strength and
weaknesses of each algorithm in the context of this task.

Another contribution of this thesis comes in the form of a byproduct. To investig-
ate the research questions posed in this thesis a spatio-temporal wildlife environ-
ment was created as the RL environment of this thesis. To my knowledge, this is
the first RL spatio-temporal manipulative wildlife environment made. The envir-
onment was built using the Python library Gymnasium and follows its standard
interface. Thus, it is very simple to train different algorithms from RL librar-
ies compatible with Gymnasium on the RL environment created in this thesis.
Researchers who would want to do further work in the fields of spatio-temporal
manipulative wildlife management and reinforcement learning would not need
to create their own RL environment if their RL algorithms are compatible with
Gymnasium. The RL environment created in this thesis is publicly available at
https://github.com/AnmolS99/BioGym/.

https://github.com/AnmolS99/BioGym/

94 CHAPTER 6. CONCLUSION

In the broader picture, this thesis highlights the potential of DRL algorithms
to maintain biodiversity. All DRL algorithms, for nearly all action sets tested
in this thesis, were able to improve their performance in the RL environment.
This indicates that the RL agent learns something valuable when trained with
the algorithms and that the species populations were more frequently above their
critical threshold. Thus, this thesis has shown that DRL has the potential to be
a valuable tool in the efforts to halt the ongoing biodiversity crisis and keep more
sustainable ecosystems.

6.4 Ethical considerations

While the RL agents trained in this thesis are far from being ready for real-life
use, it is worth briefly reflecting upon the ethical concerns that would exist if such
a system was to ever be used in practice. RL, and a lot of AI techniques, are
often referred to as ”black boxes”, as the internal process behind their decisions
can be very complicated for a human to comprehend. For this thesis, it can be
difficult to understand exactly why the RL agent trained with a DRL algorithm
decides to take the actions it takes. The policy of an RL agent depends on factors
such as reward function and learning algorithm, and understanding why an RL
agent employs a certain policy can be very difficult. The lack of transparency
in this process results in a lack of trust in the system. Explainable AI (XAI)
has therefore become a larger focus in recent times and is highly relevant for
the system built in this thesis as it could be used to affect real ecosystems with
living animals. Taking suboptimal actions can have irreversible consequences
for biodiversity. It is also worth noting that the RL agent does not consider
important factors such as anthropogenic disturbance and animal welfare when
taking actions. It is therefore important to remember that while RL can be a
valuable tool, real-life decisions in this domain should be taken in accordance
with experts in the field.

6.5 Future Work

As this thesis explores the relatively novel domain of wildlife management and
DRL, there are many interesting directions future work can take. There are also
some potential improvements to the system built in this thesis.

A rather simple yet resource-intensive improvement to the system built in this
thesis would be to perform hyperparameter tuning. As discussed at the end

6.5. FUTURE WORK 95

of section 5.2.2, hyperparameters have a significant effect on the performance
of DRL algorithms. Given the hardware used for this thesis, it was deemed
a too time-consuming exercise. However, if sufficient resources are available,
hyperparameter tuning could improve the performances of the DRL algorithms
trained in this thesis. There are multiple software frameworks for tuning DRL
algorithm hyperparameters. RL Baselines3 Zoo is a training framework that uses
SB3, the RL library used in this thesis. This framework uses Optuna to optimize
hyperparameters (Akiba et al., 2019).

The RL environment built in this thesis could also benefit from an alternative ap-
proach to the representation of its state space. The state of the spatio-temporal
wildlife simulation is composed of three grids, which are built up of cells. Natur-
ally, an alternative representation would be to treat the grids as images, where
the cells serve as pixels. This would not change the dynamics of the RL envir-
onment but opens up the possibility for Convolutional Neural Networks (CNNs)
to be used to process the RL environment state in DRL algorithms. CNNs are
widely used for image classification as they are efficient at extracting useful fea-
tures from images. This could be useful for the state of the wildlife environment,
especially with regard to the spatial distribution of species populations. For the
small grid sizes used in this thesis, ANNs seem to be sufficient, however, for larger
grids, CNNs might be a more suitable choice. It should be noted that the original
DQN algorithm, presented by Mnih et al. (2013) to play Atari 2600 games, used
CNNs and achieved great performance. This is also an approach that could be
applied to the CAPTAIN project described in section 3.4.4, as it has a similar
state representation as the one in this thesis.

When it comes to the RL environment, further research should be undertaken
to explore and model various wildlife environments. The RL environment in this
thesis models a complex, but idealistic version of a wildlife ecosystem. Ecosys-
tems in real-life are significantly more complex and are influenced by a large
number of factors such as climate, disease, habitat, and anthropogenic disturb-
ance, to name a few. The study of the applicability of DRL algorithms to perform
wildlife management in different, and more realistic ecosystems is therefore an
important step in determining its potential and practical value in real-life wildlife
management.

Further research might also explore the performance of other RL algorithms on
the task of spatio-temporal manipulative wildlife management. The CAPTAIN
project utilized evolutionary strategies (ES), as described in section 3.4.4. ES
presents a different approach to learning than the DRL algorithms tested in this
thesis. While DQN, A2C, and PPO update their neural networks by exploring
states and computing gradients, ES perturbs the neural network weights, also

96 CHAPTER 6. CONCLUSION

called policy, multiple times and measures each policy’s performance through
a fitness function. The neural network weights are then updated based on the
fitness of the policies. As ES have a fundamentally different approach than tra-
ditional RL algorithms, they have their strength and weaknesses. ES avoid the
computational cost of backpropagation and the risk of exploding/vanishing gradi-
ents, however, they seem to be less effective when there is a high correlation
between action and reward (Salimans et al., 2017). Its successful application on
a similar problem domain in the CAPTAIN project makes the application of ES
on the spatio-temporal wildlife simulation worth investigating in the future.

This thesis has investigated the use of DRL algorithms for wildlife management.
The results have shown that the RL agent is able to learn and navigate the
spatio-temporal wildlife environment more efficiently as it is being trained with
DRL algorithms. Thus, this thesis has laid down a solid groundwork for further
research and work in the fields of wildlife management and reinforcement learning.

Bibliography

Akiba, Takuya et al. (July 2019). ‘Optuna: A Next-generation Hyperparameter
Optimization Framework’. en. In: Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining. Anchorage
AK USA: ACM, pp. 2623–2631. isbn: 978-1-4503-6201-6. doi: 10 . 1145 /
3292500.3330701. url: https://dl.acm.org/doi/10.1145/3292500.
3330701 (visited on 6th June 2023).

Altamimi, Abdulelah et al. (2022). ‘Large-Scale Wildfire Mitigation Through
Deep Reinforcement Learning’. In: Frontiers in Forests and Global Change
5. issn: 2624-893X. url: https://www.frontiersin.org/articles/10.
3389/ffgc.2022.734330 (visited on 13th Dec. 2022).

Bhupendra, Pauli Virtanen (2017). Matplotlib: lotka volterra tutorial — SciPy
Cookbook documentation. url: https://scipy-cookbook.readthedocs.io/
items/LoktaVolterraTutorial.html (visited on 3rd Nov. 2022).

Braylan, Alex et al. (2015). ‘Frame Skip Is a Powerful Parameter for Learning to
Play Atari’. en. In.

Britannica (2022). carrying capacity — biology — Britannica. en. url: https:
//www.britannica.com/science/carrying-capacity (visited on 3rd Nov.
2022).

Fritz, Kyle (Aug. 2022). ‘5 Ways AI is Helping Wildlife Conservation’. en-US. In:
AI Time Journal - Artificial Intelligence, Automation, Work and Business.
Section: Healthcare. url: https://www.aitimejournal.com/how-ai-is-
helping-wildlife-conservation (visited on 27th Oct. 2022).

Fryxell, John M. (2014). Wildlife ecology, conservation, and management. eng.
3rd ed. Chichester: Wiley Blackwell. isbn: 978-1-118-29107-8.

Fryxell, John M. et al. (2020). ‘Anthropogenic Disturbance and Population Vi-
ability of Woodland Caribou in Ontario’. en. In: The Journal of Wildlife Man-
agement 84.4. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jwmg.21829,
pp. 636–650. issn: 1937-2817. doi: 10 . 1002 / jwmg . 21829. url: https :

97

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://dl.acm.org/doi/10.1145/3292500.3330701
https://dl.acm.org/doi/10.1145/3292500.3330701
https://www.frontiersin.org/articles/10.3389/ffgc.2022.734330
https://www.frontiersin.org/articles/10.3389/ffgc.2022.734330
https://scipy-cookbook.readthedocs.io/items/LoktaVolterraTutorial.html
https://scipy-cookbook.readthedocs.io/items/LoktaVolterraTutorial.html
https://www.britannica.com/science/carrying-capacity
https://www.britannica.com/science/carrying-capacity
https://www.aitimejournal.com/how-ai-is-helping-wildlife-conservation
https://www.aitimejournal.com/how-ai-is-helping-wildlife-conservation
https://doi.org/10.1002/jwmg.21829
https://onlinelibrary.wiley.com/doi/abs/10.1002/jwmg.21829
https://onlinelibrary.wiley.com/doi/abs/10.1002/jwmg.21829

98 BIBLIOGRAPHY

//onlinelibrary.wiley.com/doi/abs/10.1002/jwmg.21829 (visited
on 11th Nov. 2022).

Gymnasium (June 2023). original-date: 2022-09-08T01:58:05Z. url: https://
github.com/Farama-Foundation/Gymnasium (visited on 9th June 2023).

Hastings, Alan and Thomas Powell (1991). ‘Chaos in a Three-Species Food Chain’.
In: Ecology 72.3. Publisher: Ecological Society of America, pp. 896–903. issn:
0012-9658. doi: 10.2307/1940591. url: https://www.jstor.org/stable/
1940591 (visited on 6th Nov. 2022).

Hauge, Jens Gabriel (Mar. 2020). enzymkinetikk. no. url: http://snl.no/
enzymkinetikk (visited on 19th Jan. 2023).

Henderson, Peter et al. (Jan. 2019). Deep Reinforcement Learning that Matters.
arXiv:1709.06560 [cs, stat]. url: http://arxiv.org/abs/1709.06560 (vis-
ited on 8th May 2023).

Holling, C. S. (1959). ‘The Components of Predation as Revealed by a Study of
Small-Mammal Predation of the European Pine Sawfly’. In: The Canadian
Entomologist 91.5, pp. 293–320. doi: 10.4039/Ent91293-5.

Hornik, Kurt, Maxwell Stinchcombe and Halbert White (Jan. 1989). ‘Multilayer
feedforward networks are universal approximators’. en. In: Neural Networks
2.5, pp. 359–366. issn: 0893-6080. doi: 10.1016/0893-6080(89)90020-8.
url: https://www.sciencedirect.com/science/article/pii/0893608089900208
(visited on 1st Dec. 2022).

Lapeyrolerie, Marcus et al. (June 2021). Deep Reinforcement Learning for Con-
servation Decisions. arXiv:2106.08272 [cs, q-bio]. url: http://arxiv.org/
abs/2106.08272 (visited on 6th Dec. 2022).

Lobry, Claude and Tewfik Sari (Nov. 2015). ‘Migrations in the Rosenzweig-
MacArthur model and the ”atto-fox” problem’. en. In: Revue Africaine de
la Recherche en Informatique et Mathématiques Appliquées Volume 20 - 2015
- Special... P. 1990. issn: 1638-5713. doi: 10.46298/arima.1990. url: http:
//arima.inria.fr/020/pdf/vol.20.pp.95-125.pdf (visited on 8th Dec.
2022).

Lotka, Alfred James (1925). Elements of Physical Biology. en. Google-Books-ID:
lsPQAAAAMAAJ. Williams & Wilkins. isbn: 978-0-598-81268-1.

McMahon, Clive R. et al. (2010). ‘Spatially explicit spreadsheet modelling for op-
timising the efficiency of reducing invasive animal density’. en. In: Methods in
Ecology and Evolution 1.1. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2041-
210X.2009.00002.x, pp. 53–68. issn: 2041-210X. doi: 10 . 1111 / j . 2041 -

210X.2009.00002.x. url: https://onlinelibrary.wiley.com/doi/
abs/10.1111/j.2041-210X.2009.00002.x (visited on 14th Nov. 2022).

Mengak, Michael T. (2008).Wildlife Management. url: https://sites.google.
com/site/forestryencyclopedia/Home/Wildlife%20Management (visited
on 26th Oct. 2022).

https://onlinelibrary.wiley.com/doi/abs/10.1002/jwmg.21829
https://onlinelibrary.wiley.com/doi/abs/10.1002/jwmg.21829
https://github.com/Farama-Foundation/Gymnasium
https://github.com/Farama-Foundation/Gymnasium
https://doi.org/10.2307/1940591
https://www.jstor.org/stable/1940591
https://www.jstor.org/stable/1940591
http://snl.no/enzymkinetikk
http://snl.no/enzymkinetikk
http://arxiv.org/abs/1709.06560
https://doi.org/10.4039/Ent91293-5
https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
http://arxiv.org/abs/2106.08272
http://arxiv.org/abs/2106.08272
https://doi.org/10.46298/arima.1990
http://arima.inria.fr/020/pdf/vol.20.pp.95-125.pdf
http://arima.inria.fr/020/pdf/vol.20.pp.95-125.pdf
https://doi.org/10.1111/j.2041-210X.2009.00002.x
https://doi.org/10.1111/j.2041-210X.2009.00002.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2041-210X.2009.00002.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2041-210X.2009.00002.x
https://sites.google.com/site/forestryencyclopedia/Home/Wildlife%20Management
https://sites.google.com/site/forestryencyclopedia/Home/Wildlife%20Management

BIBLIOGRAPHY 99

Mnih, Volodymyr et al. (Dec. 2013). Playing Atari with Deep Reinforcement
Learning. arXiv:1312.5602 [cs]. url: http://arxiv.org/abs/1312.5602
(visited on 23rd Mar. 2023).

Mnih, Volodymyr et al. (Feb. 2015). ‘Human-level control through deep rein-
forcement learning’. en. In: Nature 518.7540. Number: 7540 Publisher: Nature
Publishing Group, pp. 529–533. issn: 1476-4687. doi: 10.1038/nature14236.
url: https://www.nature.com/articles/nature14236 (visited on 28th Mar.
2023).

Mnih, Volodymyr et al. (June 2016). Asynchronous Methods for Deep Reinforce-
ment Learning. arXiv:1602.01783 [cs]. url: http://arxiv.org/abs/1602.
01783 (visited on 17th Apr. 2023).

Nagy-Reis, Mariana et al. (2020). ‘‘WildLift’: An Open-Source Tool to Guide
Decisions for Wildlife Conservation’. In: Frontiers in Ecology and Evolution
8. issn: 2296-701X. url: https://www.frontiersin.org/articles/10.
3389/fevo.2020.564508 (visited on 11th Nov. 2022).

Raffin, Antonin et al. (Nov. 2021). ‘Stable-Baselines3: Reliable Reinforcement
Learning Implementations’. en. In.

Riedmiller, Martin (2005). ‘Neural Fitted Q Iteration – First Experiences with
a Data Efficient Neural Reinforcement Learning Method’. en. In: Machine
Learning: ECML 2005. Ed. by David Hutchison et al. Vol. 3720. Series Title:
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, pp. 317–328. isbn: 978-3-540-29243-2 978-3-540-31692-3. doi: 10.1007/
11564096_32. url: http://link.springer.com/10.1007/11564096_32
(visited on 25th Mar. 2023).

Rosenzweig, M. L. and R. H. MacArthur (1963). ‘Graphical Representation and
Stability Conditions of Predator-Prey Interactions’. In: The American Natur-
alist 97.895, pp. 209–223. url: http://www.jstor.org/stable/2458702.

Russell, Stuart J. (2016). Artificial intelligence: a modern approach. eng. 3rd
ed.; Global ed. Prentice Hall series in artificial intelligence. Boston, Mass.:
Pearson. isbn: 978-1-292-15397-1.

Salimans, Tim et al. (Sept. 2017). Evolution Strategies as a Scalable Alternative
to Reinforcement Learning. arXiv:1703.03864 [cs, stat]. url: http://arxiv.
org/abs/1703.03864 (visited on 5th Dec. 2022).

Schulman, John et al. (Aug. 2017a). Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs]. url: http://arxiv.org/abs/1707.06347 (visited on
21st Apr. 2023).

Schulman, John et al. (Apr. 2017b). Trust Region Policy Optimization. arXiv:1502.05477
[cs]. url: http://arxiv.org/abs/1502.05477 (visited on 24th Apr. 2023).

Shannon, C E (1948). ‘A Mathematical Theory of Communication’. en. In.
Silvestro, Daniele et al. (May 2022). ‘Improving biodiversity protection through

artificial intelligence’. en. In: Nature Sustainability 5.5. Number: 5 Publisher:

http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://www.nature.com/articles/nature14236
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://www.frontiersin.org/articles/10.3389/fevo.2020.564508
https://www.frontiersin.org/articles/10.3389/fevo.2020.564508
https://doi.org/10.1007/11564096_32
https://doi.org/10.1007/11564096_32
http://link.springer.com/10.1007/11564096_32
http://www.jstor.org/stable/2458702
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1502.05477

100 BIBLIOGRAPHY

Nature Publishing Group, pp. 415–424. issn: 2398-9629. doi: 10 . 1038 /

s41893-022-00851-6. url: https://www.nature.com/articles/s41893-
022-00851-6 (visited on 1st Dec. 2022).

Singh, Anmol (Dec. 2022). Reinforcement Learning for Spatio-Temporal Wildlife
Management.

Spellerberg, Ian and Peter Fedor (May 2003). ‘A tribute to Claude Shannon
(1916–2001) and a plea for more rigorous use of species richness, species di-
versity and the ‘Shannon–Wiener’ Index’. In: Global Ecology & Biogeography
12, pp. 177–179. doi: 10.1046/j.1466-822X.2003.00015.x.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement learning: An
Introduction. eng. Adaptive computation and machine learning. The MIT
Press. isbn: 978-0-262-03924-6.

Tanner, James T. (1975). ‘The Stability and the Intrinsic Growth Rates of Prey
and Predator Populations’. In: Ecology 56.4. Publisher: Ecological Society of
America, pp. 855–867. issn: 0012-9658. doi: 10.2307/1936296. url: https:
//www.jstor.org/stable/1936296 (visited on 5th Nov. 2022).

Volterra, Vito (Apr. 1928). ‘Variations and Fluctuations of the Number of Indi-
viduals in Animal Species living together’. In: ICES Journal of Marine Sci-
ence 3.1, pp. 3–51. issn: 1054-3139. doi: 10.1093/icesjms/3.1.3. url:
https://doi.org/10.1093/icesjms/3.1.3 (visited on 28th Oct. 2022).

Wang, Leye et al. (May 2018). Cell Selection with Deep Reinforcement Learning
in Sparse Mobile Crowdsensing. arXiv:1804.07047 [cs]. url: http://arxiv.
org/abs/1804.07047 (visited on 24th Nov. 2022).

Wiggins, Natasha et al. (Aug. 2014). ‘Using Spatio-Temporal modelling as a
decision support tool for management of a native pest herbivore’. In: Applied
Ecology and Environmental Reseach 12. doi: 10.15666/aeer/1201_163178.

Wilson, Kerrie A. et al. (Mar. 2006). ‘Prioritizing global conservation efforts’.
en. In: Nature 440.7082. Number: 7082 Publisher: Nature Publishing Group,
pp. 337–340. issn: 1476-4687. doi: 10.1038/nature04366. url: https://
www.nature.com/articles/nature04366 (visited on 10th Nov. 2022).

Wolpert, David (Mar. 1996). ‘The Lack of A Priori Distinctions Between Learning
Algorithms’. In: Neural Computation 8. doi: 10.1162/neco.1996.8.7.1341.

Wu, Yuhuai et al. (Aug. 2017). OpenAI Baselines: ACKTR & A2C. en-US. url:
https://openai.com/research/openai-baselines-acktr-a2c (visited on
20th Apr. 2023).

WWF (2022a). Living Planet Report 2022 – Building a nature-positive society.
url: https://wwflpr.awsassets.panda.org/downloads/lpr_2022_full_
report.pdf (visited on 24th Oct. 2022).

— (2022b). Wildlife Conservation – Conserve threatened wildlife and wild places
to sustain life on Earth. url: https://www.worldwildlife.org/initiatives/
wildlife-conservation (visited on 26th Oct. 2022).

https://doi.org/10.1038/s41893-022-00851-6
https://doi.org/10.1038/s41893-022-00851-6
https://www.nature.com/articles/s41893-022-00851-6
https://www.nature.com/articles/s41893-022-00851-6
https://doi.org/10.1046/j.1466-822X.2003.00015.x
https://doi.org/10.2307/1936296
https://www.jstor.org/stable/1936296
https://www.jstor.org/stable/1936296
https://doi.org/10.1093/icesjms/3.1.3
https://doi.org/10.1093/icesjms/3.1.3
http://arxiv.org/abs/1804.07047
http://arxiv.org/abs/1804.07047
https://doi.org/10.15666/aeer/1201_163178
https://doi.org/10.1038/nature04366
https://www.nature.com/articles/nature04366
https://www.nature.com/articles/nature04366
https://doi.org/10.1162/neco.1996.8.7.1341
https://openai.com/research/openai-baselines-acktr-a2c
https://wwflpr.awsassets.panda.org/downloads/lpr_2022_full_report.pdf
https://wwflpr.awsassets.panda.org/downloads/lpr_2022_full_report.pdf
https://www.worldwildlife.org/initiatives/wildlife-conservation
https://www.worldwildlife.org/initiatives/wildlife-conservation

Appendix A

DRL Algorithm Policies

Figures A.1, A.2 and A.3 display the policy (actions taken) of an RL agent over
three consecutive time steps in a 9×9 spatio-temporal wildlife environment when
trained on the different DRL algorithms.

101

102 APPENDIX A. DRL ALGORITHM POLICIES

Figure A.1: A consecutive sequence of environment states and actions taken by
an RL agent trained with the DQN algorithm. The best of 20 training runs over
200 000 time steps were used. The action set consists of an action unit size of
2×2 and an action multiplier of 10x. Each row shows the population distribution
of the three species at a certain time. The red outline on the grid signals that
the total species population is below its critical threshold.

103

Figure A.2: A consecutive sequence of environment states and actions taken by
an RL agent trained with the A2C algorithm. The best of 20 training runs over
800 000 time steps were used. The action set consists of an action unit size of
2×2 and an action multiplier of 10x. Each row shows the population distribution
of the three species at a certain time. Red outline on grids signals that the total
species population is below its critical threshold.

104 APPENDIX A. DRL ALGORITHM POLICIES

Figure A.3: A consecutive sequence of environment states and actions taken by
an RL agent trained with the PPO algorithm. The best of 20 training runs over
802 816 time steps were used. The action set consists of an action unit size of
2×2 and an action multiplier of 10x. Each row shows the population distribution
of the three species at a certain time. Red outline on grids signals that the total
species population is below its critical threshold.

	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Goal and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory and Motivation
	Wildlife Management
	Simulating Biological Ecosystems
	Reinforcement Learning
	General RL System
	TD-learning
	Q-learning and SARSA
	Neural Networks as Function Approximators
	Actor-Critic

	Summary

	Related Work
	Structured Literature Review
	Traditional Approaches in Wildlife Management
	Stochastic Dynamic Programming
	Spatio-Temporal Animal Reduction (STAR)
	Population Viability Analysis (PVA)

	Reinforcement Learning in Wildlife Management
	Deep Reinforcement Learning for Conservation Decisions

	Reinforcement Learning in Grid Environments
	Deep Q-Network
	Actor-Critic
	PPO
	Evolutionary Strategies

	Summary

	Methodology
	System Overview
	Spatio-temporal Wildlife Environment
	BioEnvironment
	Renderer
	BioGymWorld
	Environment Parameters

	RL Algorithms
	DQN
	A2C
	PPO

	Experimental Plan
	Summary

	Results and Discussion
	Results
	Discussion
	Finding the Best Action Set
	Comparing DRL Algorithm Performance

	Summary

	Conclusion
	Overview
	Goal Evaluation
	Contributions
	Ethical considerations
	Future Work

	Bibliography
	DRL Algorithm Policies

