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Abstract
Bloodstream Infection (BSI) is a serious medical condition where bacteria are present in
the blood, which often escalates to the severe and high-mortality condition, sepsis. Early
detection and treatment of BSIs are critical, but the diagnostic process is challenging due
to non-specific symptoms and time-consuming laboratory tests. Recent applications of
machine learning, specifically clustering algorithms, in healthcare have shown promising
capabilities in uncovering hidden patterns in large datasets. However, the application of
these algorithms faces limitations in dealing with the complex structure of medical data.
This research, conducted in collaboration with the Computational Sepsis Mining and
Modelling (CoSem) research group, aims to explore these limitations and the potential of
clustering algorithms in a clinical context, especially for identifying risk factors for BSI.

Following a Design Science Research approach, this study commenced with a thorough
literature-review to identify relevant features to describe a patient’s medical history and
to explore the use of clustering algorithms in a clinical context. An extensive analysis was
conducted on a complex dataset consisting of 35,694 patients with at least one suspicion
of BSI, resulting in a selection of 10 variables to describe each patient’s medical history
and condition.

Inspired by the exploration of two existing algorithms, a novel approach, Single and
Set values Clustering Algorithm (SASCA), was developed to e�ectively cluster medical
data. This algorithm revealed both expected and unexpected clinical relationships among
30 generated clusters. The findings suggest that the application of clustering methods,
particularly SASCA, is able to di�erentiate patients based on their medical history.
To maximize the clinical utility of clustering algorithms in similar contexts, the study
concludes that these should be used as preliminary tools for further analysis. This
approach underscores the necessity of a well-defined interdisciplinary collaboration.
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Sammendrag
Bakteriemi er en infeksjonstilstand der bakterier forekommer i blodet, og kan videre føre
til blodforgiftning, eller sepsis. Sepsis er en alvorlig sykdomstilstand med høy dødelighets-
rate. Tidlig påvisning og deteksjon av bakteriemi er avgjørende, men diagnostisering er
utfordrende på grunn av uspesifikke symptomer og tidkrevende laboratorietester. I den
siste tiden har bruk av maskinlæring, spesielt klyngingsalgoritmer, i helsevesenet vist
lovende evne til å avdekke skjulte sammenhenger i store datasett. Imidlertid ser man
begrensninger ved disse algoritmene når de skal håndtere den komplekse strukturen i
medisinske data. Denne oppgaven, som er utført i samarbeid med forskningsgruppen
Computational Sepsis Mining and Modelling (CoSem), har som mål å utforske disse
begrensningene og potensialet klyngingsalgoritmer har i en klinisk kontekst, spesielt med
tanke på avdekking av risikofaktorer for bakteriemi.

Forskningen følger en tilnærming av Design Science Research, og startet med en grundig
litteraturgjennomgang for å identifisere relevante variabler for å beskrive en pasients
medisinske historie og for å utforske klyngingsalgoritmer anvendt i en klinisk sammenheng.
En omfattende analyse ble utført på et komplekst datasett bestående av 35,694 pasienter
med minst én mistanke om bakteriemi. Analysen resulterte i et utvalg av 10 variabler for
å beskrive hver pasients medisinske historie og tilstand.

Inspirert av utforskningen av to eksisterende algoritmer ble en ny tilnærming, Single
and Set values Clustering Algorithm (SASCA), utviklet for e�ektivt å klynge medisinske
data. Denne algoritmen avdekket både forventede og uforventede kliniske sammenhenger
blant 30 genererte klynger. Funnene antyder at anvendelsen av klyngingsmetoder, spesielt
SASCA, er i stand til å di�erensiere pasienter basert på deres medisinske historie. For å
maksimere den kliniske nytteverdien av klyngingsalgoritmer i lignende sammenhenger,
konkluderer studien med at disse bør brukes som innledende verktøy for videre analyse.
Studiet understreker nødvendigheten av et godt definert tverrfaglig samarbeid.
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1. Introduction
This thesis explores the application of various clustering algorithms to medical data from
patients suspected of having a bloodstream infection. The goal of the clustering is to
uncover potential patterns in patient history that may correlate with the outcome of the
patient.

The upcoming chapter provides a broad overview of the key elements of the thesis. It
begins with the background and motivation in Section 1.1, laying the foundation for the
study’s direction. The thesis goal and research questions are then outlined in Section 1.2.
In Section 1.3, the chosen research method will be introduced, followed by an outline of
the thesis contributions in Section 1.4. Finally, Section 1.5 provides an overall summary
of the thesis structure.

1.1. Background and Motivation

Bloodstream Infection (BSI) is a serious medical condition that places a significant burden
on healthcare systems (Viscoli, 2016). Characterized by the presence of pathogenic
microorganisms in the bloodstream, BSI can often progress into sepsis, a condition with
severe health implications and high mortality rates. Early detection and treatment of
BSI is crucial to prevent this progression. However, diagnosing BSI is challenging due
to their non-specific symptoms and the need for time-consuming laboratory tests for
confirmation. Furthermore, the patterns indicating who might have an increased risk of
developing BSI remain unclear.

Over the past years, machine learning has shown promise in its ability to uncover hidden
patterns and insights from large volumes of data. It has the potential to revolutionize
diagnostics, treatment planning, and patient outcomes. Clustering algorithms, specifically,
have gained substantial attention in medical research due to their capacity to group
similar patients based on di�erent features. This enables a deeper understanding of
patient subgroups, which can inform personalized treatment strategies and improve
patient outcomes.

Computational Sepsis Mining and Modelling (CoSem) research group at NTNU Health
works with the combination of computer science and research of Sepsis (NTNU, a). CoSem
focuses on the extraction and analysis of complex health data to improve infectious disease
management, and contributes with further research and technology within the topic.
With this, the research group aims to establish a platform-agnostic, case-based decision
support system. The group is a part of the Gemini centers, a research cooperation
between NTNU, SINTEF, UiO, St.Olavs and NTNU Social Research.
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1. Introduction

This research is conducted as a collaboration with CoSem, and aims to further explore
how clustering algorithms can be applied to medical data of patients with suspicion
of BSI. Analyzing the medical history of these patients involves both single values,
like demographics and aggregated features, and set values, like set of prior diagnosis
codes. While clustering algorithms have shown value in healthcare, they face limitations
when dealing with medical data of varying structure. This gap represents a significant
limitation, given the importance of understanding a patient’s full medical trajectory in
analysing conditions like BSI. This thesis is therefore designed to explore and address
this gap.

1.2. Goals and Research Questions
Given the challenges identified in the previous section, the research goals and questions
have been formulated as follows:

Goal To explore the application of clustering algorithms for grouping patients suspected
of having a bloodstream infection, and to analyse how and which features of the
medical history relate to patient outcomes.

This goal involves exploring di�erent clustering algorithms, and see how they can be
applied to analyse the history of patients with suspected bloodstream infections. This
will be done by a thorough examination of di�erent clustering methodologies, their
application in a real-world healthcare context, and the subsequent analytical steps
necessary to interpret their results.

Furthermore, another part of this research involves understanding how various features
from a patient’s medical history might connect to patient outcomes. The aim is to analyse
these features, and seek patterns and correlations that can potentially be tied to the
patient outcomes.

Research question 1 What are the relevant features to be used to describe a patient’s
medical history in the context of clustering?

This question aims to identify the important characteristics or features in a patient’s
medical history that should be considered when clustering patients. These features could
include demographics, the previous diagnoses, number of hospital visits among others.
This question is crucial for determining the input to the clustering algorithm and will
involve a review of existing literature, a preliminary exploration and a feature selection
process.

Research question 2 How can the application of clustering help di�erentiate patients
with varying outcomes in suspected bloodstream infection cases, considering their
medical history?

This question seeks to investigate how the di�erent clustering algorithms can be applied
to separate patients into distinct groups based on their medical history. The underlying

2



1.3. Research Method

hypothesis is that patients with similar medical histories may exhibit similar outcomes
when they are suspected of having a bloodstream infection. This question will involve
applying the clustering algorithms to the provided data and analysing the resulting
patient clusters.

Research question 3 What is the clinical utility and potential of clustering methods in
revealing relationships between relevant features of a patient’s medical history and
patient outcomes in suspected bloodstream infection cases?

This question aims to explore the clinical utility and potential of the identified clustering
methods in discovering relationships between the relevant features from a patients medical
history and their outcomes in the context of suspected bloodstream infections. The
objective is to understand the practical application and value of these methods in a
clinical setting. This exploration will help reveal how the clusters and their features
might correlate with patient outcomes, providing insights in the underlying structure
of the data. This analysis will further investigate the influence of the selected features
on patient outcomes, thus enriching our understanding of the clinical significance and
potential of the application of a clustering algorithm in a clinical context.

1.3. Research Method
The research methodology followed in this study is rooted in a design science research
approach, which balances theoretical understanding with practical application (Pe�ers
et al., 2007; Hevner, 2007). Details of the methodology is given in Chapter 4, but this
section aims to give a summary of the applied methods.

The initial step of the research involves an in-depth literature review, focusing on both
the relevant features to describe a medical history, and examining the field of machine
learning employed in medical data contexts. This step allows to build a solid foundation
of existing knowledge and to identify the potential gaps this research can fill. Some parts
of this step was done as a part of the course TDT4501 - Specialization project, done in
preparation for this Master’s Thesis during the fall of 2022.

Parallel with this review, the provided dataset will be explored. This is to get familiar
with the content and connections within the data, and try to both get an idea of how
the medical history of a patient can be presented, and how this can be used as input to
a clustering algorithm. Following this will be the data selection and aggregation, data
preprocessing and exploratory data analysis. This analysis helps to gain insight into the
selected data, including identifying patterns.

The selected data will then be used as input for various algorithms with the goal of
clustering the patients. This stage will be an iterative process, where insights gained will
inform the development of a new clustering algorithm especially suitable for the purpose
of this study. This proposed algorithm is intended to improve upon existing methods by
e�ectively handling the unique structure of medical history data. Once developed, the
algorithm will be applied to the dataset according to the established experimental plan,
before the resulting clusters are validated by clinicians.

3



1. Introduction

The final step of the research process is the evaluation, involving both evaluation of the
algorithm’s performance by analysing the compactness of the clusters, and the clinical
analysis of the cluster result.

1.4. Contributions
As a part of this master’s thesis, the key contributions are as follows:

• Introducing a novel approach for clustering medical data, SASCA, emphasizing the
benefits of tailored approaches

• An evaluation of the potential of MASPC and DDSCA when applied to a complex
dataset with di�erent objectives

• Investigation of the clinical utility of clustering, establishing its potential as an
initial step for further analysis

• Exploration and identification of features for describing medical data

• Highlighting the importance of precise ICD coding

• Providing an in-depth exploration and description of the HUNT dataset

1.5. Thesis Structure
• Chapter 2 introduces the clinical theory necessary for domain knowledge, before

introducing some relevant theory of machine learning.

• Chapter 3 reviews existing literature and studies closely related to the research
topic, both how to describe a medical history with features and the application of
machine learning in a clinical context.

• Chapter 4 describes the research design and the methodology employed for the study.
It details the process from data understanding and selection to the application of
existing clustering algorithms and development of a new algorithm.

• Chapter 5 delves into the dataset used in this study, detailing the selection process,
preprocessing steps, and an exploratory analysis. Additionally, it outlines the
technological environment employed and any requisite approvals.

• Chapter 6 presents the details of the experiments and the results obtained from the
implementation of the clustering algorithms on the dataset. It provides an analysis
of the results, illustrating the patterns and trends identified.

• Chapter 7 evaluates the results of the study, including both the data selection,
experiments, results and the methodology.

4



1.5. Thesis Structure

• Chapter 8 discusses the results of the study in relation to the research questions
and goal, as well as discussing the limitations of the study.

• Chapter 9 summarizes and concludes the research, how the research answer the
research questions and the provided contributions. It ends with suggestions for
future work.

• Appendix A contains the PostgreSQL query to select the data utilized in this study.

• Appendix B provide the full code implementation of SASCA in Python, used to
form the clusters in the experiments.

5





2. Background Theory
In the exploration of medical data through machine learning, both clinical and computa-
tional knowledge are essential. Therefore, this chapter o�ers a comprehensive overview,
highlighting key concepts in both Clinical Theory (Section 2.1) and Machine Learning
(Section 2.2).

2.1. Clinical Theory

The following section aims to provide the necessary domain knowledge concerning
Bloodstream Infection (BSI) and the International Classification of Diseases (ICD). It is
worth noting that this section builds upon work carried out during the preparatory work
done in the specialization project.

2.1.1. Bloodstream Infections

A Bloodstream Infection (BSI) is a severe medical condition characterized by the presence
of bacteria in a patient’s bloodstream. Clinically, these infections are recognized when sys-
temic signs of infections are present together with a positive blood culture test (Timsit JF,
2020). Introducing details of the condition like detection method, consequences, treatment
and prevention is important domain knowledge when looking in to the experiment.

BSIs can be broadly categorized into primary or secondary infections (Centers for Dis-
ease Control and Prevention, 2022). Primary BSIs originate directly in the bloodstream,
often due to compromised skin integrity. These infections frequently result from medical
procedures, such as the insertion of venous catheters, and can be directly associated
with hospital settings and treatments provided therein. Such infections are commonly
referred to as healthcare-associated or nosocomial infections. In contrast, secondary BSIs
arise from infections originating elsewhere in the body and subsequently spreading to
the bloodstream. The source of these infections can range from the urinary tract to the
lungs.

Consequences

A systematic review by Goto and Al-Hasan (2013) estimated BSI-incidents and BSI-
deaths among patients, both all kinds of BSI and nosocomial BSI (Goto and Al-Hasan,
2013). In Europe, the estimated number of BSI episodes exceeded 1.2 million, with
around 15% ending in deaths. The number of nosocomial episodes was 240,000, with
a slightly higher death rate. Due to the study only focusing on numbers from North
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2. Background Theory

America and Europe, it is reasonable to compare the number of deaths from BSI to
the number of deaths related to human immunodeficiency virus (HIV), tuberculosis and
malaria, i.e. the world’s biggest infectious disease killers.

One of the reasons for the high mortality rate is the high risk of developing sepsis, which
is the body’s response to a BSI. Sepsis is a life-threatening condition, typically recognized
using either the traditional Systemic Inflammatory Response Syndrome (SIRS) criteria, or
the more recent Sequential Organ Failure Assessment (SOFA) and its quicker alternative,
the quick SOFA (qSOFA). While SIRS focuses on identifying systemic inflammatory
response, SOFA and qSOFA emphasize the assessment of organ dysfunction, providing a
more comprehensive measure of disease severity. In Norway, sepsis is the second leading
cause of death after cardiovascular diseases (Waagsbø, 2022).

In addition to severe consequences for the patient, BSIs also impose considerable
economic burdens on healthcare institutions. According to a study by Jarvis (1996), BSI
in the United States result in the patient staying one to three extra weeks, incurring
extra costs of around 3000-40000$ per patient (Jarvis, 1996). False-positive tests, in
comparison with true negatives, can increase costs by 50% (Bates et al., 1991).

Detection and Treatment

Blood cultures are used as a primary method for identifying bacteria in the bloodstream.
This is a technique that collects samples of blood from the patient, before the samples
are incubated under specific conditions to promote the growth of pathogens (Tønjum).
Positive results will be further analyzed to find the specific pathogen causing the infection.
This is an important step to finding the correct treatment, as the given antibiotics will
be tailored to the specific pathogen causing the infection.

Generally, bacterial pathogens are categorized as either gram-negative or gram-positive.
Laupland and Church (2014) identifies the gram-negative Escherichia coli (E.coli) as
the most prevalent bacterial cause of BSI, and the gram-positives Staphylococcus aureus
(S. aureus), and Streptococcus pneumoniae (S.pneumoniae) as the second and third,
respectively (Laupland and Church, 2014). The wait time for test results can vary, and
slow-growing microorganisms can be challenging to identify due to this delay (Peker
et al., 2018). Additionally, false-positive results can occur due to contamination during
sample collection or processing (Universitetssykhuset Nord-Norge).

Prevention

It has been asserted that BSI, particularly those related to catheters, are largely prevent-
able (Patil et al., 2011). A high correlation has been observed between the number of
attempts at catheter insertion and infection rate. Consequently, proper catheter insertion,
preferably by experienced medical professionals, can significantly reduce the incidence
of nosocomial infections. The duration of catheterization and the method of catheter
replacement also play essential roles in preventing infections (Garnacho-Montero et al.,
2008; Cook et al., 1997).
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In light of these considerations, the number of infections could be reduced with more
cautious procedures, particularly for patients with an increased risk.

2.1.2. International Classification of Diseases
The International Classification of Diseases (ICD) is an international standard diagnostic
tool, developed by the World Health Organization (World Health Organization). The
primary aim is to provide a comprehensive classification system for diseases, disorders,
injuries and other health conditions, which enables healthcare professionals to systematic-
ally record, report and analyze health data. This ensures consistency and comparability
of health information across di�erent hospitals, regions and countries. In addition to
being an important tool for analyses and evaluations, the codes also play a crucial role in
medical billing and reimbursement, as they facilitate the communication of diagnostic
information between healthcare providers and insurance companies.

In 2015 WHO published ICD-10, which now is the standard at the most hospitals,
including St. Olavs Hospital. However, the improved version ICD-11 was introduced in
2019, and implemented at some hospitals in January 2022 (World Health Organization).
This version introduce updated classification structure, inclusion of new diseases and
better support for electronic health records. As this research use data from before the
introduction of ICD-11, the tenth version will be in main focus. However, to ensure
future work, it is important to make the research adjustable for the newer version. It
is also worth mentioning that some researches also use the prior version, ICD-9. This
system consists of only digits, and it is not a straightforward one-to-one mapping from
the ninth version to the tenth, as will be further described in Chapter 4 and Chapter 6.

The ICD-10 codes consist of a letter followed by two or more digits. The codes are
hierarchical, with each sign in the code providing additional specificity about the diagnosis.
As a result of the specificity of the coding, the standard also provides information regarding
cause and consequences. An example of this structure can be shown in the di�erence
between ICD-10 code A03.0: Shigellosis due to Shigella dysenteriae and A03.1: Shigellosis
due to Shigella flexneri. Both of them represent the same diagnosis, but with di�erent
cause. The hierarchy can be represented as a tree, where the root note represent all ICD-
codes, and each level beneath represent a new level of specificity. A visual representation
of this structure is provided in Figure 2.1.

A limitation with the use of ICD-codes as a basis for research related to disease tracking
is the economical motivation of the coding. When clinicians do the coding, they do
it to ensure that the hospital gets enough funding for the procedures and treatment
related to the disease, and does not consider the research aspects. Additionally, with
the introduction of Helseplattformen, a new platform introduced at St.olavs in 2022 (St.
Olavs hospital), the reliability of the coding is decreasing. In a meeting with CoSem
(CoSem, 2023), the clinicians admitted that the number of diagnoses coded has decreased
with the release of the new platform. In addition to the fact that this naturally will
lead to problems with funding, it will also create problems for future research like this.
Categorization of diagnoses would present a significant challenge if the associated codes
are either inaccurate or absent from the dataset.
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Figure 2.1.: ICD hierarchy representation
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2.2. Machine Learning

Moving further to the machine learning theory, this section starts with delving into
the significant aspects of machine learning utilization in healthcare. Subsequently, the
di�erences between supervised and unsupervised learning are discussed, followed by
presentations of various distance measures and evaluation metrics. The first section is
based upon work done in the preparatory project.

2.2.1. Machine Learning in Healthcare

Healthcare is one of many domains benefiting from computer science in general and
lately machine learning specifically. A system of the combination of these two is known
as a Clinical Decision Support System (CDSS). This type of support could be done by
gathering, filtering, and visualizing clinical data. Support from machine learning could
help healthcare in taking decisions.

For my project, the CDSS will be the communication of the risk factors to the clinicians.
However, it is important that the findings will be a support, and will not replace the
reasoning done by the clinicians. To actually make use of the results from the machine
learning algorithm in the reasoning, it is important to understand the details behind the
result. This is known as eXplainable Artifical Intelligence (XAI) (Arrieta et al., 2020).

2.2.2. Supervised Versus Unsupervised Approaches

Machine learning algorithms are often categorized as either supervised or unsupervised.
Supervised learning is a type of machine learning that involves learning from labeled
data, where each input data point is associated with an output label or target value. The
goal of supervised learning is to create a model that can predict the output label for new
data points, based on the patterns and relationships it has learned from the training
data. One of the main usage tasks of supervised learning is classification, where the goal
is to categorize data points into distinct classes.

Unsupervised learning, on the other hand, is a type of machine learning that usually
deals with unlabeled data, meaning there are no known output labels or target values
associated with the input data points. The primary goal of unsupervised learning is to
discover hidden patterns, structures, or relationships within the data that may not be
as easy to find through normal analysis. This is often achieved through techniques like
clustering, where similar data points are grouped together.

Although supervised learning models can be highly accurate in predicting outcomes,
they can also be complex and challenging to interpret. For individuals without a computer
science background, such as clinicians, prediction models can seem like black boxes with
limited transparency. The reasoning behind the models’ decisions can be di�cult to
comprehend, making them less suitable for interpretation as a CDSS.

In this project, the primary aim is not to predict outcomes directly, but rather to
explore underlying patterns in the data. This makes clustering a more appropriate tool
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for the task, especially since it allows for discovering novel associations while still aligning
with the principles of XAI.

2.2.3. Distance Measurements

The selection of an appropriate distance measure plays a crucial role in the performance
of a clustering algorithm. Such measures quantify the dissimilarity between data points,
which the algorithm uses to group the points into similar clusters. This section introduces
a few distance measures, each chose for its specific relevance to the requirements of the
study’s data and method.

Euclidean Distance

Euclidean distance is a widely used metric for measuring the distance between two vectors,
or points, in the Euclidean space. This space refers to a n-dimensional space where
each point is given by coordinates, one for each dimension. Given two points in the
Euclidean space, p with coordinates (p1, p2, ..., pn) and q with coordinates (q1, q2, ..., qn),
the euclidean distance is calculated as the square root of the sum of the squared di�erences
between their corresponding coordinates. This is summarized in Equation (2.1).

The minimum possible Euclidean distance between two points is 0, which occurs when
the two points are identical. However, the maximum possible distance is not bounded, as
it depends on the largest possible di�erence between the coordinates of any two points
the dataset. To interpret with this, it is common to normalize the data before calculating
the distance. When the data is normalized before calculation, the result is within a range
of 0 and 1.

deuc(p, q) =
Ò

(p1 ≠ q1)2 + (p2 ≠ q2)2 + ... + (pn ≠ qn)2 (2.1)

Weighted Edit Distance

To understand the concept of weighted edit distance, it is essential to first understand the
basics of edit distance. This measurement, which is also known as Levenshtein distance,
is used for comparing similarities between two sequences. This is done by calculating
the minimum number of transformation needed to change sequence one, s1, to become
sequence two, s2. The transformations can be a deletion with a cost of 1, an insertion
with a cost of 1 or a substitution with a cost of 1. An example where this measurement
is appropriate is when comparing two strings, and each letter substitution is counted as
equal cost.

However, in some scenarios, the di�erent substitutions are not uniform. When compar-
ing strings and taking the likelihood for a spelling mistake into account, it is obvious
that substituting a with e should have lower cost than substituting a with p, as there
is much more likely to mix up the two vowels. Weighted edit distance, or weighted
Levenshtein distance, facilitates this likelihood by allowing for custom costs, i.e weights,
for each operation. This makes the distance measurement more flexible and facilitates
adjustments for each specific context. With varying costs, the measurement enables more
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accurate comparisons between the sequences. The formula for computing the distance
between the sequences si and sj , denoted dW E , is given by Equation (2.2). The tail
represent the sequence without the first element.

dW E(si, sj) =

Y
__________]

__________[

|si|, if |sj |= 0
|sj |, if |si|= 0
dW E(tail(si), tail(sj)), if si[1] = sj [1]

min

Y
__]

__[

dW E(tail(si), sj) + 1,

dW E(si, tail(sj)) + 1,

dW E(tail(si), tail(sj)) + sub(si[1], sj [1]),
otherwise

(2.2)

Jiang-Conrath Distance

The Jiang-Conrath (JC) distance is a semantic similarity measure that evaluates the
degree of relatedness between concepts by examining their information content and their
positions in a hierarchical structure. The Information Content (IC) of a node is a measure
of the provided specificity of the node, and favors concepts that are less general. Hence,
a higher IC means that the code gives more specific information. IC can be calculated
by di�erent formulas for di�erent use cases, and Sánchez et al. purpose a new method
for ontology-based IC (Sánchez et al., 2011). Their calculation of the IC for a node a is
given by the equation Equation (2.3), where |leaves| describes the number of descendants
from the current node that are also leaves in the tree, |ancestors| describes the number
of ancestors for the current node, and L is the total number of leaves in the tree.

IC(a) = ≠log2

A |leaves(a)|
|ancestors(a)|+1 + 1

L + 1

B

(2.3)

The Jiang-Conrath distance uses the given IC equation to calculate the distance
between two concepts, determined by the di�erence between their individual IC and
the IC of their least common ancestor (LCA), i.e the most specific concept that is an
ancestor of both concepts. The calculation of the JC distance between two nodes a and
b is done by using Equation (2.4).

dJC(a, b) = IC(a) + IC(b) ≠ 2 ◊ IC(LCA(a, b)) (2.4)

2.2.4. Evaluation Metrics

An important part when using clustering algorithms for analysis is to evaluate the
provided clusters. This evaluation is often separated in to compactness within the
clusters and separation between the clusters, often referred to as the cohesion and
separation. The two values can be measured with the two metrics Within-Cluster Sum
of Squares (WCSS) and Between-Cluster Sum of Squares (BCSS), respectively. There
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are several ways of calculating WCSS and BCSS, but to reduce complexity, this research
employs a center-based approach.

WCSS is, as the name suggests, a measure for evaluating the compactness of the
resulting clusters. In this context, compactness refers to how close the data points within
the cluster are grouped. The goal is to minimize the measure, as a lower WCSS value
indicates a higher degree of compactness. This means that the algorithm has captured
similar data points in the same group. The score is calculated by summing the squared
distances between the data point and the centroid of its respective cluster. A lower value
indicates a more compact cluster.

The BCSS value, on the other hand, capture the separation between the clusters.
Separation refers to the distance between the di�erent clusters, with larger distances
indicating better separation. The BCSS is calculated by summing up the squared
distances between each cluster center and the overall data center, multiplied by the
number of records in each respective cluster. This measure evaluates the spread of the
centers, with larger values indicating greater separation between clusters.

Both WCSS and BCSS are essential in evaluating the quality of clustering results.
The two metrics should be considered when choosing the optimal values in a clustering
approach. A good choice should minimize the WCSS while maximizing the BCSS, thus
achieving a balance between compact and well-separated clusters. The Calinski-Harabasz
(CH) Index is a popular metric for this exact purpose (CaliÒski and Harabasz, 1974).

The CH index gives a comprehensive measure of the performance of the algorithm,
and can be a helpful tool when determining the optimal values for the clustering with
the given algorithm and dataset. It is also a good metric when comparing di�erent
algorithms on the same dataset, to find the one making the most dense clusters. The
index is calculated by the formula given in Equation (2.5), where nk is the number of
records in cluster k, ck is the center of cluster k, c is the center of all data, n is all records
and K is total number of clusters.

CH = traceB

traceW
◊ (n ≠ K)

(K ≠ 1) =
qK

k=1 nk||ck ≠ c||2
qK

k=1
qnk

i=1||xi ≠ ck||2
◊ (n ≠ K)

(K ≠ 1) (2.5)
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3. Related Work
This chapter aims to explore and review existing research related to this study. Given
the dual focus of this research — exploring the features that describe a patient’s medical
history, and investigating the application of clustering algorithms on this medical data

— this literature review is likewise twofold. The first section of the chapter, Section 3.1,
details the research related to describing a patient’s medical history, with an extra focus
on how various elements of the history can relate to bloodstream infections. It also explore
a potential gap in how to describe a patient’s medical history. Subsequently, Section 3.2
elaborates on how previous studies have employed machine learning algorithms in the
healthcare sector.

3.1. Describing Medical History and Risk Factors

This section seeks to delve into prior research that has examined the relationships between
medical history and patient outcome, particularly concerning BSI. For the literature
review, a modified version of the process proposed by Kofod-Petersen was adopted
(Kofod-Petersen, 2012). The complexity of the process was intentionally toned down to
align with the scope and context of this study.

Google Scholar was utilized as the primary search domain, the following search terms
were used to ensure relevance of the returned articles:

(Medical history OR Risk factors OR Electronic health records) AND
(Patient outcomes OR Bloodstream infections OR Bacteremia)

These terms were chosen to cover both studies representing the medical history of a
patient, and risk factors associated with BSI. A selection of the resulting papers’ titles
and abstracts were quickly reviewed to gauge their relevance to the research topic, and
the references in relevant papers were also examined. Papers that appeared to be in
alignment with the study’s aims were selected for a more in-depth review.

3.1.1. Features Describing Medical History

Schmidt et al. (2012) conducted a study to examine trends in the first-time hospitalisation
for acute myocardial infarction (Schmidt et al., 2012). They analysed the trends for
each sex and age over a 25-year period, using all diagnoses given to the patient within 5
years prior to the myocardial infection. Their findings suggested that age, sex and prior
diagnoses are relevant features in describing a patient’s medical history.
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Sancho-Mestre et al. (2016) also found the same features relevant to describe the
history, in their study that estimated the comorbidities related to diabetes, with results
indicating that elderly patients and women su�er more than younger people and men
(Sancho-Mestre et al., 2016).

Wu et al. (2010) included variables related to the the most recent visit as a variable, as
well as the duration of the gap between two interesting episodes (Wu et al., 2010). They
show that aggregated variables like this can contribute in describing a medical history to
be used in a machine learning research.

Some studies use mortality prediction models, like the Acute Physiology and Chronic
Health Evaluation (APACHE), Mortality Probability Models (MPM), and Simplified
Acute Physiology Score (SAPS) (Zimmerman et al., 2006; Higgins et al., 2005; Le Gall
et al., 1993). These models utilise a combination of physiological variables, patient
demographics, and specific disease factors to predict the risk of patient mortality. They
include aspects of a patient’s medical history such as prior chronic diagnoses and length
of stay prior to admission.

3.1.2. Risk Factors of BSI
Several studies have attempted to identify and evaluate risk factors associated with
the development of BSIs and their potential impacts on patient outcomes, particularly
mortality.

A study by Pittet et al. (1997) discovered that older age, extended current hospital stay,
being male, and diagnoses of cancer or diseases of the digestive system were associated
with higher mortality in patients with BSIs (Pittet et al., 1997). Another investigation
by Laupland et al. (2008) highlighted risk factors for Staphylococcus aureus BSIs, which
included a range of comorbidities such as hemodialysis, HIV, and cancer (Laupland
et al., 2008b). In terms of Escherichia coli BSIs, the same authors identified that either
very young or older patients, and females aged 1-59 had an increased risk, as well as
patients with comorbidities such as dialysis, organ transplant and cancer (Laupland et al.,
2008a). These findings suggest that both demographic and medical condition variables
can influence the risk of developing BSIs and the associated mortality rate.

Some studies have also examined risk factors associated with a patient’s history other
than their diagnosis. Baek et al. (2021) employed a binary representation of admission
within three months prior to BSI, and prior use of antimicrobials and medical devices
within the same three months, to characterize this history (Baek et al., 2021). They
found that patients admitted to the hospital, especially to a long-term care hospital,
within three months prior, had an increased risk of community-onset extended-spectrum
—-lactamase-producing Escherichia coli (CO ESBL-EC) BSI.

Fram et al. (2015) used features like di�erent demographic values, comorbidities,
and previous treatment, along with prior and current insertion of venous catheters and
number of previous hospitalizations (Fram et al., 2015). This study also concluded that
recent hospitalization increased the risk of developing BSI.

In summary, several studies have employed features such as age, sex and previous
diagnosis to describe a patient’s characteristics. However, when investigating the history
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for outcomes related to BSI, features like prior hospitalization and time since last stay
are more relevant. Despite these insights, it remains challenging to find studies using
using attributes like counts of General Medicine Unit (GMU) and Intensive Care Unit
(ICU) admissions, and the total length of stay prior to the suspected BSI episode. This
indicates a gap in the current literature and map point to potential avenues for future
research.

3.2. Applications of Machine Learning Algorithms in
Healthcare

Clustering algorithms have been widely used in various healthcare contexts, from pre-
dicting patient outcomes to diagnosing diseases and determining treatment. To identify
relevant research in this field, the same modified literature review approach as for the
risk factors was used. The following search terms were applied using Google Scholar:

(Clustering algorithms OR Machine learning OR Artifical intelligence)
AND (Healthcare OR Medical history OR Bloodstream infections)

Despite the primary focus on clustering algorithms, these search terms also intentionally
capture the studies using prediction models. As the number of studies specifically related
to BSI is limited, more general approaches were also included. The results from the
search as well as their references were again briefly reviewed, before going in-depth of
the ones that appeared to be more relevant.

3.2.1. Machine Learning and Bloodstream Infections

Zaobi et al. (2021) conducted a cohort study using electronic medical records of patients
already infected in Tel-Aviv (Zoabi et al., 2021). The study employed an inclusive model
with over 600 features and a compact model using 45 features, both of which utilized a
gradient-boosting machine model built with decision tree base-learners. The two models
produced area under the receiver-operating characteristics curve (AUROC) of 0.82 and
0.81, respectively. Low albumin levels, high red cell distribution width and high creatinine
influenced the outcome the most.

Pai et. al (2021) used five di�erent algorithms to identify the best performing early
prediction model based on patients’ basic characteristics, vital signs, laboratory data,
and clinical information (Pai et al., 2021). The study concluded that XGBoost had
the highest sensitivity, while Random Forest had the highest specificity. The features
indicating an increased risk of BSI included high prothrombin time, lower platelet count
and lower albumin.

No studies were found that used medical history as input to clustering algorithms for
analyzing risk factors of BSI, which shows a gap in the existing literature that this study
will cover.
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3.2.2. Clustering Algorithms Using Medical History

Given that this study aims to utilize clustering algorithms for grouping patients, the
relevant findings deserve particular attention. Although our goal is specifically related
to BSIs, algorithms that use similar dataset, containing both single and set values, are
highly relevant for an in-depth review.

MASPC

Zhong et al. (2020) introduced the Maximal-frequent All-confident pattern Selection
(MASPC) method as a strategy for clustering patient data containing both single and
set values (Zhong et al., 2020). The goal of the algorithm is to discover frequent and
correlated diagnosis codes, dividing the process into two parts: MAS and PC. The MAS
algorithm finds the maximal-frequent all-confident itemsets within the set of diagnosis
codes for each patient. The algorithm uses FPMAX to find the Maximum-Frequent
Itemsets (MFI) (Grahne and Zhu, 2003). Frequent itemsets include itemsets that occur
at least a minimum support (minSup) times, and maximum means that there are no
larger itemsets with the same items (i.e superitemset) that are also frequent. The authors
utilized an allConf threshold to find the correlated MFI’s, named Maximum-Frequent
All-confident Itemsets (MFA). The allConf threshold describes the minimum probability
of all items in the itemset appearing in a patient’s diagnosis set if one of the items is
present. The algorithm only retains MFAs that do not share diagnosis codes with other
MFAs, or share diagnosis codes with other sets, but with a minimum overlap (minOv) of
records that contain both sets.

After choosing the MFA’s for the set value in the dataset, the PC algorithm makes
a binary representation of the dataset with each accepted MFA as a column together
with the single values. This dataset is used as input for an agglomerative average-linkage
hierarchical clustering, which constructs the final clusters (Bar-Joseph et al., 2001).
The records without diagnosis from any of the accepted MFA’s from MAS will remain
unclustered.

DDSCA

Following the introduction of MASPC, Zhong et al. (2021) developed a new algorithm,
Demographics and Diagnosis Sequences Clustering Algorithm (DDSCA), which takes
into account the order of diagnosis codes, making it more suitable for datasets with
a history of diagnosis codes (Zhong et al., 2021). DDSCA forms clusters based on
the pairwise distance in demographic values and the pairwise weighted edit distance
between sequences of diagnosis codes. To measure the distance between demographics, the
algorithm constructs an RS-tree, a hierarchical representation of the relationship between
records, using agglomerative average-linkage hierarchical clustering (Bar-Joseph et al.,
2001). The algorithm uses a Weighted Edit Distance to measure the distance required to
transform one sequence into another. DDSCA combines these two measurements into
the dJCE measure, as shown in Equation (3.1), where wdem and wdiag are the weights for
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the demographics and diagnosis, respectively, and dJC and dW E are the Jiang-Conrath
distance for demographics and weighted edit distance for diagnosis, respectively.

dJCE(ri, rj) =
Ò

wdem · dJC(rdem
i , r

dem
j ) + wdiag · dW E(rseq

i , r
seq
j ) (3.1)

The cluster construction process minimizes the maximum intercluster distance (Gonza-
lez, 1985). This phase identifies the k centers iteratively, starting with a randomly chosen
point from the dataset. Each subsequent center i (0 < i < k) is identified as the data
point with the maximum distance to its nearest center. When all k centers are identified,
clusters are formed by assigning each data point to its nearest center.
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4. Methodology
The methodology used in this research aligns with the principles of the Design Science
Research (DSR) approach (Hevner, 2007). This approach is particularly well-suited for
iterative problem-solving processes, reflecting the research process employed here. Initial
explorations and preliminary experiments laid the foundation for the development of a new
algorithm, SASCA. The implementation of the process is described in Section 4.1, before
explaining the specific steps taken during the process, emphasizing the iterative, trial and
error process. Section 4.2 describes the initial understanding of the data, followed by
Section 4.3 that details the preliminary experiments conducted. The chapter concludes
with a description of the novel approach, SASCA, in Section 4.4.

4.1. Overview of Process and Research Plan
Before delving into the details of each step conducted as a part of the approach, it
is crucial to understand the foundation of the process. The research, as outlined in
Section 1.2, aims to explore various clustering algorithms to group patients suspected
of having BSIs. This exploratory nature of the research requires an iterative approach,
which is well-aligned with the DSR framework.

Given that the methodology is based on a cycle of experimentation and refinement, it
is challenging to propose a step-by-step plan. Instead, the process happens more fluidly,
as illustrated in Figure 4.1. The initial step relies on defining the problem, which is
based on the domain knowledge acquired. As a part of this research, the results of this
first step is elaborated in Chapter 2. Once this foundation is set, the research progresses
into the heart of the DSR study, expressed as the design cycle by Hevner et. al (2007)
(Hevner, 2007).

During this stage, the data will be explored to understand the potential it has.
Simultaneously.a thorough review of related work is carried out to identify promising
methods that could be adopted to this specific problem. The results of this step is
explained in Chapter 3. Each of the potential methods will be adjusted to fit the specific
dataset and problem context. Following the implementation, an evaluation is conducted.
Dependent on the results of each iteration, this evaluation could involve both clinical
and computational aspects, and the results determine whether to conclude the study
or to apply the gained insights for repeating the process with a di�erent algorithm. To
address the feasibility of clustering in a clinical context, the final clusters will also be
evaluated in a clinical context by professionals from the CoSem group. All of these steps
are detailed in Chapter 6.

The subsequent sections of this chapter will detail the initial understanding of the
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Figure 4.1.: Experimental process
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4.2. Initial Data Understanding and Preparation

Name Content description No. of rows No. of features

aninopphold Details of each ICU stay 295,480 11

dimresh Department hierarchy 2,348 46

doculive Description of documents written 11,763,721 14

nimesaktivitet Details of each GMU stay 3,147,336 49

nsml Laboratory tests and results 1,976,174 13

pasient Demographics for each patient 35,695 3

trfl Microbiological tests and results 2,812,961 15

Table 4.1.: Overview of all tables in the provided dataset

data before explaining the specific algorithms implemented within the design cycle. It is
important to note that the steps have been created progressively as the research unfolded,
and the sections are written in retrospective. This is done as the foundation from each
step is used to form the following.

4.2. Initial Data Understanding and Preparation
The initial phase of the research involved gaining familiarity with the complex dataset
provided, and was an essential part. Since the dataset was provided without any
descriptive information, it was hard to understand the relationships between each feature
and the information they were intended to reflect. Hence, this exploration phase required
significant time and e�ort.

To facilitate the process, we utilized Python, specifically libraries such as Pandas,
Matplotlib, and Seaborn. These tools enabled us to apply descriptive statistics and data
visualization to gain an overview of the data structure and content. The objective of
the exploration was to understand the individual characteristics of each table, identify
interconnections, map the features, and understand how the provided tables could be
utilized to describe each patient’s history. The findings from this exploration, including
a general description of the content, the number of rows, and the number of features of
each table, are summarized in Table 4.1.

Through this exploration, we discerned that all tables, except dimresh, were connected
by the ppid key. This dimresh table, which provides information about the hierarchical
representation of departments, was concluded irrelevant for the purpose of this research
and was consequently ignored in subsequent exploration. Similarly, doculive, which only
provided information about the documents written and not the actual content, and hence
no essential patient history information, was also excluded. The microbiological tests
and results given in trfl could potentially provide information about a patient’s history,
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but to limit dimensionality and complexity, this table was also excluded. However, it
may prove to be a useful resource for future research.

Following this, the exploration focused on identifying columns that best described
the patients’ history. The tables aninopphold and nimesaktivitet, representing the
individual stays at the ICU and GMU, respectively, were obvious starting points. To
avoid repetition, the details of the process of selecting features will be revisited and
expanded upon in Chapter 5.

After finalizing the features, a resulting dataset was derived from joining and aggregating
columns of aninopphold, nimesaktivitet, nsml and pasient. This dataset aimed to
numerically represent the historical context of each patient prior to their latest blood
culture, and the outcome of the latest episode with suspected BSI.

4.3. Preliminary Experiments with Existing Methods

Having understood and prepared the provided data, another important part of this
research was the preliminary experiments done with existing clustering algorithms. As
a part of this, both MASPC and DDSCA as introduced in Chapter 3, were explored
and partially implemented. However, during the implementation, it became evident that
both methods had limitations in the context of our research. This section will outline
an overall description of the initial e�orts with the mentioned algorithms, while details
of the implementation can be found in Chapter 6. The challenges encountered for each
algorithm will be addressed, together with the insights that subsequently directed us
towards the development of our novel approach, SASCA.

4.3.1. MASPC

MASPC is proved to be both e�ective and provides valuable results when looking at how
diagnosis are correlated. Since the algorithm consider both the demographics values and
diagnosis codes, it is well suited for this research.

To implement MASPC algorithm, the inital step was to transform our data into a format
suitable for the algorithm, which expected binary values. This included discretizing the
numerical values to transform continuous features into categorical ones, before applying
one-hot encoding to achieve the binary representation. As the dataset used in the original
algorithm consists of ICD-9 codes, some adjustments in the implementation of Apriori
and FPMAX needed to be done in order to handle the alphanumeric ICD-10 codes in
our dataset.

During the implementation, we encountered a series of challenges. The wide range of
values for numerical features presented a hurdle in deciding how to discretize the data
without loosing valuable information. Moreover, setting the minimum support (minSup)
and minimum confidence (minAc) parameters proved to be a challenging task. We needed
to strike a balance where we would discover enough frequent itemsets without decreasing
the minSup and minAc values too much, which could lead to false associations.

However, the most significant limitation emerged when we realized that the MASPC
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algorithm could not adequately handle our research question. This was due to the fact
that BSI was not specifically coded in the dataset, and as a result, the algorithm was
finding sets of codes that did not include or consider BSI. This critical limitation led us
to discard the MASPC algorithm for this particular application. As a lesson from this,
we learned that we need to consider single diagnosis codes in the history, and not sets of
codes.

4.3.2. DDSCA

The next approach in our exploratory process was to apply the DDSCA algorithm, as it
aimed to discover similarities in patient history, taking both demographics and diagnosis
codes into account, with an emphasis on the order of the codes.

The implementation of DDSCA involved implementing the provided source code with
necessary modifications to fit our dataset. To prepare the single values for hierarchical
clustering, it was again necessary to discretize all numerical features. Another necessary
change was the recreation of the ICD hierarchy to fit ICD-10 codes, as the original paper
only included a textual representation of the hierarchy of ICD-9 codes. We also developed
additional code to represent the hierarchy of demographic values fitted to our dataset.

Like for MASPC, the decision to discretize the features may result in the loss of critical
information. Another challenge with the implementation was the task of recreating the
ICD hierarchy for ICD-10. This ended up being a partly manual approach, since no
pre-existing textual representation could be found. Additionally, the seemingly arbitrary
hierarchy of demographic values in the original code also proved to be a challenge. Our
solution involved deriving the hierarchy from a dendrogram, which necessitated additional
coding to discover the edges.

Despite these e�orts, the main limitation that led us to discard DDSCA was its
computational ine�ciency when applied to our dataset. The increased complexity
arising from the large number of records and features in our data rendered the distance
computations between record excessively time-consuming. This realization led us to the
conclusion that we needed a more e�cient and scalable approach for our research context.

4.4. SASCA: A Novel Approach to Medical Data Clustering

Taking the advantages of the two aforementioned algorithms and adjusting it for our
dataset and research, Single and Set values Clustering Algorithm (SASCA) was made.
The algorithm is heavily inspired by DDSCA, but without considering the order of the
diagnosis and using euclidean distance for the single values. This way, the use case for
history dataset with both single and set values are preserved, but the complexity is
decreased. In contrast to MASPC it still consider similarity between two sets of diagnosis
codes with some of the same codes, even though the set of codes does not include a
maximum frequent itemset.

DDSCA focus on the demographic values with categorical values as single values, and
agglomerative average-linkage hierarchical clustering is hence a suitable measurement to
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calculate similarity. In contrast, the dataset in this research only includes demographics as
birth year and sex. Additionally to the fact of lacking attributes, the goal of this research
made it more meaningful to look at other attributes, aggregated from the history. Unlike
categorical values, aggregated numerical values represent continuous measurements that
can be directly compared using arithmetic operations. Therefore, Euclidean distance is
chosen as an appropriate measurement to calculate the distance between the normalized
single values of the data points.

The similarity between set values in SASCA use the natural hierarchical tree structure
of the ICD-codes. The distance between a set of codes si of length n to a another set
of codes sj with length m is calculated by finding the closest code in sj for each code
in si, using Jiang-Conrath distance. The measure is normalized by dividing by n. To
find the symmetric distance between the two sets of codes, the operation is done in the
reversed direction as well. In the end the result is normalized again by dividing by 2, to
ensure that the distance does not exceed 1. The range of this measurement lies between
0 and 1. A value of 0 indicates that the two lists are identical, meaning that for each
code in si there exists a code in sj with zero JC-distance and vica versa. On the other
hand, a value of 1 indicates that there is no similarity between the codes in si and sj .
The calculation is summarized in Equation 4.1, where ci is ICD-code at index i in si and
cj is the code at index j in sj

dJCS(si, sj) = 1
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To adjust the importance of single and set values, each of the distance measures are
weighted with wsingle and wset, respectively. To make sure that the clustering also weights
the end outcome of the patient, this feature is extracted from the dataset and handled
by its own. Since this is a 1-dimensional point, the distance is found only by taking the
absolute value of the subtraction between the two points, and normalized by dividing
by the maximum possible value of outcome. The final distance measure for each pair of
records ri and rj is given by Equation 4.2.
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(4.2)
This measure is used to find the new centers iteratively using k-centers. The algorithm

is given in Algorithm 1, and the steps will now be described. An arbitrarily selected
record from the dataset is chosen as the first center, and hence the first cluster (line 1-3).
Until all k centers are found, each iteration find the new center as the record that has the
closest center furthest away (line 4-7). When all centers are found, each of the remaining
records are assigned to the cluster that has the closest center to the given record (line
8-10). The algorithm return the set of clusters, U .
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Algorithm 1 SASCA (D, wsingle, wset, woutcome, k)
Input: dataset D, weights wsingle, wset, woutcome, the number of clusters k

Output: a set of clusters U

1: c Ω arbitrary record from D
2: C Ω c

3: U Ω {c}
4: for i = 2 to k do
5: Select a record c from D such that c /œ C and mincÕœC dSASCA(c, c

Õ) is maximized
6: U Ω U fi {c}
7: C Ω C fi c

8: for r œ D do
9: if r /œ C then

10: Assign r to the cluster in U whose center c has minimum dSASCA(r, c)
return U
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5. Data
In this chapter, the dataset used for the study will be presented. Starting with an overview
of the dataset’s characteristics in Section 5.1, followed by the data selection process
in Section 5.2, and the preprocessing steps in Section 5.3. Preliminary investigations
and pattern recognitions are explored in Section 5.4. The chapter then presents the
computational environments used in Section 5.5 and finish o� with the necessary ethical
considerations and approvals in Section 5.6.

5.1. Description of the Data
The dataset utilized in this study originates from St. Olavs Hospital in Trondheim and
is part of the HUNT Research Centre (NTNU, b). It contains demographic details and
associated hospital visit characteristics for 35,695 patients, of whom 35,694 had at least
one episode with suspicion of Bloodstream Infection (BSI). Further in this research, a
single distinct hospital stay will be referred to as an episode, and an episode where the
patient is suspected of having a BSI will be denoted as a suspected episode.

The period for these suspected episodes extends from January 1, 2013, to March 7,
2020. Together the suspected episodes, the dataset also includes all other episodes for
these patients occurring from April 20, 1999, to May 31, 2020.

As briefly introduced in Chapter 4, each of these episodes includes which laboratory
tests (trfl) and microbiology tests (nsml) that were taken within the same time frame
as for the episode, if any‚ and the corresponding results. With the table nimesaktivitet,
it also includes more detailed information about the stay, like department, duration,
ICD-codes and the degree of urgency. For a clearer understanding, it is recommended
that the reader reviews Table 4.1. As previously noted in the corresponding section,
Section 4.2, the provided data was separated in to seven di�erent tables, but only four of
them were used in this research. These four tables with a short description and relevant
columns are given in Table 5.1.

In addition to the data provided from HUNT and St.Olavs, public data from E-helse
is also used as a basis for the ICD-hierarchy. This was collected from Direktoratet for
e-helse medisinske kodeverk.

While the data used in the research provides valuable insights, there are several
limitations that should be considered. Firstly, the dataset only contains history for
the patients at St. Olavs, and does not take into account that the patient may have
visited other hospitals in between. In addition, data from only one place might not be
representative of the broader population. Another limitation is that the dataset only
includes patients where there have been ordered at least one blood culture, i.e patients

29



5. Data

Tablename Description Relevant features

pasient Demographics for
each patient

ppid - id of patient,
fødtår - year of birth,
kjønn - sex

nimesaktivitet Each stay at the
GMU

ppid - id of patient,
episodeid- id of episode,
inndatotid - start datetime,
utdatotid - end datetime,
pdxkoder - primary ICD-codes

aninoppgold Each stay at the
ICU

ppid - id of patient,
aninoppholdstart - start datetime,
aninoppholdslutt - end datetime

nsml Laboratory tests

ppid - id of patient,
date_req - date of the test,
matr_desc - name of test,
micr_prt_name - pathogen or NaN

Table 5.1.: Description of each table used for the data selection

with already suspected BSI. This may a�ect the result as we do not get a general case.
It is also worth mentioning the level of details and type of data. It is hard to make a
general structure for each episode, because each episode is di�erent and include di�erent
data points. On the other side, the data lack detailed information about the stay, like
journal notes and detailed demographics for the patients. Furthermore, It is important to
address that the data is manually coded, which introduces the possibility of human error.
This includes both subjective judgements and miscoding due to the platform. Lastly, as
also mentioned in Section 2.1.2, the billing purpose of the ICD coding makes the codes
less reliable.

5.2. Data Selection

In the data selection process, DBeaver and PostgreSQL were employed to e�ciently and
directly extract and manipulate the relevant data from the database (DBeaver Corp and
contributors, 2023). Having direct access to the database o�ers several advantages. First,
by querying the database directly, data extraction can be tailored to the specific needs
of the clustering analysis, reducing the need for extensive preprocessing. The ability
to manipulate the data directly at the source ensures that only relevant information is
extracted. Second, direct database access allows for the e�cient aggregation of features
using PostgreSQL. This enables the rapid computation of summary statistics, and derived
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variables directly within the database, saving both time and computational resources.
The goal of the data selection was to summarise the history of each patient while

simultaneously reducing the dimensionality of the data. In this process, we made a series
of decisions to e�ectively encapsulate the patients’ histories. Firstly, the history was
decided to be prior to the last blood culture taken. This means that for patients with
more than one episodes with suspicion of BSI, only the last counted for the analysis.
The choice of the features selected was based on the findings in the literature review
presented in Section 3.1 and with the goal of maximizing available data.

Note that in the data selection, an episode is defined as a distinct stay at the hospital.
This stay is either a stay at the GMU which may or may not have any associated ICU
stays, or an individual ICU stay in cases where it is not associated with any GMU stay.

The first feature chosen was the number of episodes prior. This was chosen as it is an
indicator of the frequency of distinct episodes, providing insights into the patterns of
activity leading up to the last suspected episode. This number however does not account
for the length of each visit, which may vary significantly. Hence, the total duration was
chosen as another feature. This can provide insights into the severity or complexity of
the patient’s condition, as longer stays may be associated with more intensive or complex
treatments. As mentioned in Chapter 2, a longer stay is also associated with a adverse
patient outcome, so this feature could provide useful information when analysing with
respect to prior research.

To also provide information regarding the level of intensity, the number of ICU stays
as well as total ICU duration were also included. The choice of both count and duration
can be defended by the same arguments as for the GMU episodes. With a suspicion that
the outcome of a BSI can be related to the last hospital visit, the total duration within
the last episode and the total duration since the last episode were included. Another
important choice of feature was regarding the ICD codes. The provided dataset include
both the primary and the secondary ICD diagnosis code, but to reduce the dimensionality
for this research, only the primary codes were selected and collected as a list for each
patient.

As the research aims to analyse risk factors in the patients history with respect to the
outcome of a suspected BSI, it is also crucial to find features describing the time after
the suspected episode. In addition to the result of the blood culture, the data selection
also includes finding total duration in the post 60 days after the suspected episode. This
way also the overall condition of the patient the following 60 days is taken into account.
To provide demographics of each patient, the birthyear and sex were also included.

In order to extract the necessary features, a series of aggregations were performed.
Specifically, select queries were used to identify rows of interest, and these were sub-
sequently joined to gather the desired features. This process culminated in a fairly
complex PostgreSQL query, the full details of which can be found in Appendix A.

The extracted features, along with the criteria for their selection, are detailed below.
Please note that the term episodes here refers to the joined tables nimesaktivitet and
aninopphold unless explicitly stated otherwise.

• no_episodes_prior: The count of distinct hashids from the episodes with a start
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date before the date of the last blood culture.

• total_duration_prior: The sum of durations of all episodes with a start date
before the date of the last blood culture.

• total_icu_count: The count of distinct records from aninopphold with a start
date prior to the date of the last blood culture.

• total_icu_duration: The sum of durations from episodes in aninopphold that
has a start date before the date of the last blood culture.

• dur_since_last_ep: The subtraction of the end date of the last episode prior
and the last suspected episode from the date of the last suspected episode. The last
episode prior to the last suspected episode is found as the episode with maximum
date from the episodes where the start date of the episode is before the date of the
last blood culture taken.

• duration_last_ep: The duration of the last episode that occurred prior to the
last suspected episode.

• icd_codes: The list of all primary ICD-codes. This is derived from merging the
primary ICD codes of each episode that has a start date before the date of the last
blood culture.

• micr_prt_name: The pathogen found in the blood culture, or null if no pathogen
is found. This is derived from merging the micr_prt_name of each blood culture
record that shares the date of the last suspected episode and the ppid of the given
patient.

• total_duration_post_60d: The sum of the duration of each episode with an
end date after the date of the last blood culture and start date before the date of
the last blood culture plus 60 days.

• sex: The sex of the patient, derived directly from the pasient table for the
corresponding ppid.

• birthyear: The year of birth for the patient, also directly extracted from the
pasient table for the corresponding ppid.

5.3. Data Preprocessing
The direct access to the database facilitated careful selection of relevant data, thereby
reducing the need for extensive preprocessing. Initially, demographic data from 35,695
patients were available. However, one patient lacked any ordered blood culture and was
thus excluded in the selection. The final dataset comprised the medical histories of 35,694
patients.
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The handling of null values, e.g. patients with no prior history before the last suspected
episode, happened already in the selection. Hence, the preprocessing phase could focus on
preparing the existing columns for the clustering algorithm. This involved the following
steps:

1. Splitting diagnosis codes. The selected data contained composite values for
diagnosis codes within a single column. To facilitate analysis, we split these values
to achieve a list of individual codes. This transformation made it easier to handle
and analyze the diagnosis codes in our later stages of the research.

2. Calculating age. As the data provided the year of birth and the date of the last
suspected episode, the age could be calculated by subtracting the years from each
other.

3. Discretizing post hospital stay. We classified post-hospital stay into two
categories: short and long. This binary representation was a prior step for making
the outcome categories, as described in the next step.

4. Creating outcome categories We created four distinct categories for the outcome
variable. This was achieved by considering two factors: the length of the post-
hospital stay (short or long) and the result of the blood culture (negative or positive).
The result of the blood culture was found by the column representing the pathogen
found, micr_prt_name, where the presence of a pathogen proved a positive blood
culture.

5. Normalize numerical values. Finally, we normalized the numerical features
to ensure fair and accurate comparisons. Normalization transforms the numerical
values to a common scale between 0 and 1, and eliminates any biases due to di�ering
units and value ranges.

5.4. Exploratory Data Analysis
To better understand the dataset, the exploration part is crucial. This part will help
gaining a deeper understanding of the data, and identify potential patterns and relation-
ships. We will start by looking into statistics and characteristics of the selected data in
general, before we will compare the data in the four outcomes.

5.4.1. Overview of the Selected Data

After the selection, we have the history and outcome of 35,694 patients with suspected
BSI. History now refers to the attributes explained above, i.e. the number of episodes,
total duration, the number of ICU stays, total ICU duration, duration of last episode,
duration since last episode and all primary diagnosis codes given for the patient prior to
the last suspected episode. The average and maximum values for each of the features are
summarized in Table 5.2.
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Feature Average value Maximum value

Number of episodes 25 1553

Total duration 31d 1430d
Number of ICU stays 1 121

Total ICU duration 2d 349d
Duration last episode 38h 129d

Duration since last episode 153d 3542d (>9y)

Table 5.2.: Average and maximum value for each historical feature selected

(a) Distribution of sex (b) Distribution of age

Figure 5.1.: Distribution of sex and age in the general cohort

The distribution of sex in the general cohort is quite even, with a slight predominance of
male patients, while the age distribution of the dataset is skewed towards older individuals.
The largest proportion of participants are aged 70-79, with 19,64% of all patients. The
patients with the youngest age when an episode happened were not even 1 year, while
the oldest was 105 years old. Visualization of the distribution of the sex and the age can
be shown in Figure 5.1a and Figure 5.1b, respectively.

Within the episodes, the diagnosis with the most occurrences is ICD Z491, signifying
Extracorporeal dialysis. The high frequency of this code can be attributed to the routine
nature of dialysis procedures for patients with kidney failure, where a blood culture is
automatically collected. Consequently, each dialysis procedure is counted as a suspected
episode in our definition, regardless of an actual BSI suspicion. Considering that dialysis
procedures are commonly performed three times a week, it is understandable why this
diagnosis contributes prominently to the overall distribution.

The distribution of the top 20 diagnoses within the selected data is shown in Figure 5.2.
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Figure 5.2.: Distribution of top 20 diagnoses in the general cohort

Due to the overrepresentation of Z491, a separate figure, Figure 5.3, presents the distribu-
tion of other diagnoses. This alternative visualization facilitates a better understanding
of the frequency and diversity of conditions across the patient population.

5.4.2. Plots of Outcomes

When examining the results from the last suspected episodes’ blood culture, we found
that 3012 patients tested positive, indicating a BSI. This represent 8,44% of the total
episodes. However, this study does not only consider the number of patients with a
positive result, but also accounts for their subsequent hospital stay duration. Hence, the
analysis will focus more on the patients’ outcome, divided into groups based on the blood
culture results and the total hospital stay duration within 60 days after the suspected
episode. The grouping resulted in four categories:

• NS: Patients with Negative blood culture and Short hospital stay

• NL: Patients with Negative blood culture and Long hospital stay

• PS: Patients with Positive blood culture and Short hospital stay
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Figure 5.3.: Distribution of top 20 diagnoses in the general cohort, without Z491 - Ex-
tracorporeal dialysis
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Figure 5.4.: Distribution of outcomes in the general cohort

• PL: Patients with Positive blood culture and Long hospital stay

Figure 5.4 shows the distribution of these di�erent outcomes.
As expected, the NS group - including patients with a negative blood culture and

short subsequent hospital stay - contains the majority of the patients. The patients with
positive outcomes are distributed between the two groups, PS and PL, with a noticable
inclination towards those with a shorter hospital stay. This indicates that a positive
blood culture not necessarily indicates an extended hospital stay. Further investigation
is required to uncover more granular patient group details and better comprehend these
patterns.

To achieve his, features from the medical history will be explored within each group,
which should provide valuable insights. Figure 5.5 shows scatter plots of all outcomes
against di�erent aggregated attributes, while Figure 5.6 and Figure 5.7 show the age and
sex distributions within each group, respectively.

Evaluating these scatter plots reveals some interesting findings. Before delving into
the details of the plot, it is crucial to remember the uneven patient frequencies across
the di�erent groups. With the largest patient proportion resulting in a negative blood
culture, it is expected that these groups contribute the most outliers and have records on
a larger scale.

The two first plots hint a trend of higher numbers of episodes and total duration in
patients that did not have a BSI. However, considering the PL group’s smaller size, the
two plots reveal a relationship between a greater number of episodes and total duration
and a long positive outcome. Nonetheless, this finding cannot be used as an indicator
because both the NS and NL groups also demonstrate higher number for these attributes.
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(a) Distribution of number of
episodes for each outcome

(b) Distribution of total dura-
tion prior for each outcome

(c) Distribution of total ICU
count for each outcome

(d) Distribution of total ICU
duration for each outcome

(e) Distribution of duration last
episode for each outcome

(f) Distribution of duration since
last episode for each outcome

Figure 5.5.: Distribution of di�erent attributes for each outcome
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Figure 5.6.: Distribution of age for each outcome

Figure 5.7.: Distribution of sex for each outcome
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The distribution of total ICU count also seems related to a longer positive stay, but
also longer negative stay. This finding is emphasized when looking at the total ICU
duration, where a longer prior ICU duration indicates a longer following hospital stay.
The plot of duration in the last episode reveals somewhat the same findings, where a
long last episode could be related to a longer subsequent hospital stay.

All the mentioned plots show more general relations between the attributes and the
length of following hospitalization, and not findings related to the outcome of the blood
culture. This could however be found in the last plot, showing the duration since last
episode. In this relation, we can see that the group with negative blood culture and short
hospital stay have a higher density on the upper scale. This means that patients with a
long break since last episode tend to end with negative blood culture and short hospital
stay following the test, and a short gap indicates a higher risk of infection with following
long stay.

The distribution of sex did not yield any notable findings, as all groups exhibited a
larger male patient proportion. However, the age distribution deserves closer attention.
The NS group presents a more evenly distributed age density, with a notable peak in the
twenties that exceeds the other groups. This group also shows a lower density of elderly
patients. The age density in the PS group skews right, suggesting that older patients
may have an increased risk of a positive blood culture, but a shorter subsequent hospital
stay. The NL and PL group plots appear remarkably similar, hinting that age may be
more closely associated with the duration of the subsequent stay than with the blood
culture results.

Moving further to analysing the historic diagnosis in each group, Figure 5.8 shows the
top 20 most frequent ICD codes across the four outcome groups. Considering the marked
overrepresentation of Z491, a characteristic that persists even when examining separate
outcomes, this particular diagnosis code is again excluded from the plots.

The plot of the ICD codes for each group is only intended to be used as a distribution
overview and not number of occurrences, as the x-axis is significantly di�erent between the
groups. When excluding the Z491, the specific diagnose being most frequent varies across
groups, but all of them are a part of the same level "C00-C97: Malignant Neoplasms"
indicating cancer. An interesting finding includes the position of C349, Malignant
neoplasm of unspecified part of bronchus or lung, being at position 2 and 1 for the
negative groups and 8 and 13 for the positive groups. This could indicate a relation
between C349 and a somewhat decreased risk of BSI. The diagnose code C900, Multiple
myeloma, appears high in all plots except for the NS group, where it is not present at
all in the top 20. The presence of this diagnose, which is a type of bone marrow cancer,
appears to indicate either a positive blood culture or an extended following hospital stay,
or both. Another interesting finding is the appearance of C259, Malignant neoplasm of
pancreas, unspecified, which is significantly higher in the plot for PL group compared
to all the other groups. This could indicate a higher risk of BSI and a long subsequent
hospital stay when diagnosed with pancreatic cancer.

Both PL and NL have exclusively cancer diagnosis on top 5, while the top 5 for PS
also includes F200, Paranoid schizophrenia. The top 5 for NS group di�ers with having
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(a) Distribution of top 20 diagnoses for NS
outcome

(b) Distribution of top 20 diagnoses for NL
outcome

(c) Distribution of top 20 diagnoses for PS
outcome

(d) Distribution of top 20 diagnoses for PL
outcome

Figure 5.8.: Distribution of top 20 diagnoses for each outcome, without Z491
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Z043, Encounter for examination and observation following other accident and Z478,
Encounter for other orthopedic aftercare.

These findings show a trend that a blood culture is often ordered for patients with
cancer in general, but there is no clear relation to a specific diagnose code and a positive
blood culture, except for the already stated C259.

Moving further in the analysis, it is interesting to look at the specific pathogens for
each positive group. The distribution of the top pathogens for each positive outcome is
shown in Figure 5.9. An aggregated version that separates each pathogen to its belonging
type, gram negative or gram positive, is shown in Figure 5.10

These findings partly support the theory introduced in Section 2.1.1, where E.coli and
S. Aureus were identified as the most and second most prevalent pathogen, respectively.
The position of S. Pneumoniae in our dataset however di�ers from the theory. Looking
at the general category of the pathogen, there is a noticeable increased amount of gram
positive bacteria compared to the gram negatives for the PL group. The gram-positive
S.aureus can contribute to this bias, which is the only pathogen with significantly more
occurrences in the PL group. A finding of this pathogen could hence indicate an increased
risk of a prolonged hospital stay as a consequence of BSI.

In summary, key findings drawn from the outcome plots include a noticeable correlation
between prolonged prior hospitalization - either at the GMU or ICU - and a subsequent
extended hospital stay. When it comes to age, the most striking connection seems to be
between younger patients and a short negative outcome. Patients with a cancer diagnose
are frequently suspected of BSI, but there is only a significant correlation between the
risk and pancreatic cancer. Furthermore, a positive blood culture with a growth of S.
aureus might serve as a potential indicator of a longer hospital stay.

5.4.3. Comparing Numerical Characteristics

The visual representations in the previous section are valuable as they provide an intuitive
way to understand and compare the di�erent groups, highlight trends and quickly identify
outliers. However, the nature of these plots sometimes prevents the precision required
to identify specific values or discern subtle di�erences between groups. Therefore, the
following section aims to delve into an examination of the numerical characteristics of
each group. By using both of these analysis methods - visual and numerical - a more
comprehensive and accurate exploration of the patient results is ensured. The exploration
of the numerical characteristics is summarized in Table 5.3.

The characteristics emphasize all the findings from the plot. The mean age is youngest
for the NS group, and oldest for patients in the PS group. The amount of males does not
reveal much interesting, except being a bit smaller for the NS group. The number and
duration of both GMU and ICU episodes confirm the earlier findings, with a prolonged
prior stay resulting in a prolonged post stay, and the mean duration since last episode
confirms that a shorter gap results in a prolonged stay.
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Figure 5.9.: Distribution of top pathogens in the groups with positive BC
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Figure 5.10.: Distribution of type of pathogens in the groups with positive BC

All NS NL PS PL

Number of patients 35,694 22,794 9,888 1,943 1,069

Mean age 58 56 60 67 63

Amount male 52,5% 50,4% 56,5% 55,0% 55,8%

Mean no. of episodes 25 22 32 24 34

Mean total duration 31d 19h 22d 1h 52d 15h 27d 13h 55d 1h

Mean no. of ICU stays 1.43 1.08 2.19 1.24 2.38

Mean total ICU duration 2d 0h 0d 22h 4d 9h 1d 2h 4d 23h

Mean duration last episode 1d 15h 1d 8h 2d 5h 1d 19h 2d 9h

Mean duration since last episode 153d 182d 87d 185d 85d

Table 5.3.: Numerical characteristics across outcomes

44



5.5. Environments

5.5. Environments

The primary data environment employed in this research is HUNT Cloud, a cloud-based
service that provided a dedicated lab for this study (HUNT Cloud). The laboratories
within HUNT Cloud are digital environments with allocated cloud resources for storage,
computation and data transfer. The utilization of this lab allowed for conducting the
research process in a secure environment, facilitating the management of sensitive data
in compliance with privacy and security regulations.

DBeaver, a comprehensive and widely used database management tool (DBeaver Corp
and contributors, 2023), was utilized for the data selection process. DBeaver o�ers a
user-friendly interface supporting a range of databases, including Postgres, which served
as the database system in this study. It was was connected to the remote machine on the
HUNT Cloud via a Secure Shell (SSH) connection, facilitating secure interaction with
the remote database as if it was locally hosted, thereby enabling secure query execution
and data retrieval.

Furthermore, access to the HUNT Workbench was granted through HUNT. This web-
based workbench o�ers a range of tools including Jupyter Notebook, Python and Conda.
Visual Studio Code (VS Code), a powerful code editor supporting various programming
languages (Visual Studio Code, 2023), was also employed. The integration of VS Code
with the workbench facilitated a more e�cient and familiar coding environment. The
VS Code extension Remote - SSH was leveraged to establish a secure connection with
the remote machine. This simplified the process of working with the data in a familiar
environment while maintaining the secure connection.

In addition to the software tools and resources, the research environment was further
enhanced by the inclusion of a NVIDIA Tesla P100 GPU machine. GPUs are capable of
handling complex calculations in parallel, resulting in significantly faster performance for
computationally intensive tasks.

5.6. Agreements and Approval

Prior to the commencement of any medical or health related research in Norway, it is
required to obtain a pre-approval from the Regional committees for medical and health
research ethics (REK) (National Research Ethics Committees, 2019). This approval
process ensures that all research is conducted in line with relevant laws, regulations and
guidelines. The project that this research is a part of, with Lise Tuset Gustad as the
project leader, was reviewed and approved by REK with the case number 2018/1201.

Furthermore, before getting access to the data, the HUNT Cloud User Agreement
and a Non-Disclosure Agreement (NDA) needed to be signed. The HUNT Cloud User
Agreement aims to clarify expectations and responsibilities regarding data handling,
software usage and security management. The NDA ensures that sensitive and confidential
information remains protected and undisclosed to unauthorized individuals. The legal
basis of the agreement include The Health Research Act (Helseforskningsloven) §7 , The
Universities and Colleges Act (Universitets- og høyskoleloven) §4-6, Act on Healthcare
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Personell (Lov om helsepersonell) §21, The Health Register Act (Helseregisterloven) §17,
The Public Administration Act (Forvaltningsloven) §13 and The Penal Code (Stra�eloven)
§209 and §210.
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This chapter delves into the detailed execution and results of the experimental part of the
study, building upon the data selection and preprocessing as outlined in Chapter 5. It
begins with an elaboration of the preliminary experiments in Section 6.1, which describes
the implementations and limitations of MASPC and DDSCA. It is important to remember
that these descriptions are given in retrospect, and is elaborated in a compact way because
of the early realisation that the experiment were not suitable for the specific context. The
insights gained from these preliminary experiments are further used in the next experiment,
detailed in Section 6.2

6.1. Preliminary Experiments
6.1.1. Experimental Plan
The preliminary experimental plan serves as an initial step towards our main goal. It
seeks to assess the feasibility and relevance of existing methods in addressing our research
questions, providing valuable insights into the suitability of these methods for our unique
dataset. The steps are prepared in order to follow a structured approach towards the
goal, and are as follows:

1. Implement MASPC on the selected data. In order to test the MASPC
algorithm, the first step is to implement the algorithm to fit our dataset.

2. Identify limitations and challenges with MASPC. Throughout the imple-
mentation of the algorithm, any significant limitations and challenges encountered
will be identified. This identification is a part of the evaluation step in the DSR
approach.

3. Implement DDSCA on the selected data. After implementing and discarding
MASPC, the next step is implementing the DDSCA algorithm.

4. Identify limitations and challenges with DDSCA. As for the MASPC,
limitations and challenges encountered during the implementation of DDSCA will
be identified, as a part of the evaluation of the experiment.

5. Address the insights gained. After the two experiments, an overall evaluation
will be conducted. The experiences and insights gained will be used to guide
the design and implementation of the SASCA algorithm, and includes potential
modifications, improvements or aspects to be cautious about.

47



6. Experiments and Results

6.1.2. Implement MASPC on the Selected Data
The implementation of the initial preliminary experiment, MASPC, was done utilizing
Python. Considering MASPC’s requirement for a binary data representation, we refrained
from normalizing values during preprocessing. Instead, numerical columns were discretized
before applying one-hot encoding via pandas’ get_dummies.

Next, the MAS phase code, which included MFA mining and pattern selection via
Apriori and FPMAX, was refactored from the original Java subprocess within Python
to exclusively use Python’s mlxtend package (Raschka, 2018). This modification was
necessary given the alphanumeric characteristics of ICD-10 codes, di�ering from the
numeric structure of ICD-9 codes.

Following these adjustments, the algorithm was ready to run on our data set.

6.1.3. Identify Limitations and Challenges with MASPC
After solving the initial challenges faced when adjusting and implementing MASPC, and
the code was ready for our dataset, we realised that the algorithm could not fulfill our
research questions. Since the basis of the clustering relies on sets of diagnosis codes in the
history, the algorithm is not able to find history where one specific diagnose can imply
an increased risk of BSI. This approach would have been more suitable if the goal was to
discover all kinds of relationships in the history of diagnosis codes or if the diagnose to be
analyzed actually was coded in the history, which is not the case for BSI in our dataset.

6.1.4. Implement DDSCA on the Selected Data
Proceeding to the implementation of DDSCA, this phase also required some adjustments.
The first stage involved recreating the textual representation of the ICD-hierarchy tailored
for ICD-10 codes, as the original source code was built for ICD-9. This process was far
from straightforward, requiring a semi-manual approach involving content copied from
e-Helse’s platform for finding codes (Direktoratet for e-helse medisinske kodeverk). This
content was subsequently subjected to computational processing using Python. The
objective was to generate a text file where each line represents the hierarchical path from
an individual ICD-code to the root node A00-Z99.

To provide an insight into the structure and content of the created file, a sample
excerpt is presented below.

A000 A00 A00-A09 A00-B99 A00-Z99
A001 A00 A00-A09 A00-B99 A00-Z99

This text file served as the basis for creating the hierarchy, represented as a direct tree
using networkx’s DiGraph (Hagberg et al., 2008). The final tree consisted of A00-Z99 as
a root node representing all codes, with all levels as internal nodes, and each distinct
ICD code represented as leaves. This structure represent the same as in Figure 2.1.
Subsequently, the distance matrix representing the distance between each pair of codes
was constructed as per the original code, but adjusted to our newly created tree.
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Having prepared the ground, we proceeded to construct the RS-Tree. Upon invest-
igating the original code, we discovered that the logic behind the edges applied in the
graph representation post-dendrogram construction was unclear. Seeing the chosen
edges as somewhat arbitrary, we decided to introduce additional code to transpose the
dendrogram’s connections to the graph representation, thereby preserving the same edges
between the vector of demographics values and the clusters.

With no further adjustments needed from the original source code, we were ready to
execute the code on our dataset.

6.1.5. Identify Limitations and Challenges with DDSCA

During the implementation and execution of DDSCA, several limitations and challenges
emerged. In the original dataset, the average number of ICD-codes per patient was
9.2121, with a maximum of 46. These numbers were significantly larger in our dataset,
with an average of 26 and a maximum of 1462 codes. Moreover, when using all desired
features describing the patients’ history, the number of single values increased markedly
from the original dataset to ours. These factors considerably escalated the complexity.
The complexity stemmed from the similarity measure, which entailed the complicated
Weighted Levenshtein for the diagnoses and the distance measure of the complex DiGraph
for all the di�erent values of demographics vectors. This resulted on not being able to
fully run the algorithm on our dataset, as it was way too time-consuming.

6.1.6. Address the Insights Gained

The execution and critical evaluation of these two preliminary experiments revealed
significant insights, shaping the direction of our subsequent research. Although MASPC
is proved to find correlated codes, the lack of BSI coding in our dataset made it unable
to address our research goals. This limitation underscored the need for a more tailored
algorithm that could leverage the existing dataset structure e�ectively and align with
our specific research goals.

The DDSCA experiment emphasized the importance of considering the computational
feasibility of the chosen algorithm. Despite the theoretical appeal of DDSCA, its prac-
tical implementation faced challenges due to the substantial time required for distance
computation given our large dataset. Our research does not necessitate considering the
order of diagnoses, thus preserving the conceptual value of this algorithm while further
developing its implementation to reduce complexity would be beneficial.

6.2. SASCA Experiment

6.2.1. Experimental Plan

As for the preliminary experiments, the experimental plan aims to provide a structured
approach towards achieving the goal of this research. The reader is advised to revisit the
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research goal and questions stated in Section 1.2. The experimental steps for the main
experiment are as follows:

1. Implement SASCA on the selected data. The first step is to implement
the newly developed clustering algorithm, SASCA, on the prepared dataset. This
involves executing the algorithm and validating that it is functioning as expected.

2. Parameter optimization and selecting the number of clusters. Following a
successful implementation of the algorithm, the second step focuses on tuning the
parameters of the SASCA and determine the optimal number of clusters, k.

3. Analyse the cluster results. Upon achieving optimal clustering, the third step is
to carry out an analysis of the cluster results. This analysis will aim to understand
the characteristics of each cluster in a clinical context, and identify meaningful
patterns within the patient histories.

4. Relate cluster results to patient outcomes. The next step is to relate the
characteristics of each cluster to the associated patient outcomes. This will involve
analyzing patterns within and between clusters, and correlating these with patient
outcomes in order to identify potential risk factors for BSI and for increased
following hospital stay.

5. Validate methodology and results with clinicians. The last step of the
experiment is to validate the methodology and clustering results with clinical
professionals. This involves presenting the methodology, the derived patterns,
potential risk factors and other significant findings to clinicians for review. This
validation is crucial, as it will address the relevance and feasibility of the clustering.

In the following sections of this chapter, each of these steps will be addressed in detail,
describing the experimental setup and the achieved results for each step.

6.2.2. Implement SASCA on the Selected Data
Experimental Setup

In order to calculate the distance between each ICD-code, as also required by SASCA,
the construction of the hierarchical representation was reused from the DDSCA imple-
mentation, detailed in the preceding section. This tree then served as the foundation for
creating a distance matrix for the normalized JC-distances between pairs of codes. Given
the computational complexity associated with calculating distances for all unique codes,
we reduced the number of codes from 1487 to the 200 most frequent ones. This decision
was informed by an analysis of the frequency distribution of the codes in the dataset. A
plot of this distribution indicated that the chosen 200 codes encapsulated a substantial
proportion of the data variability, covering 80% of the diagnoses in the history.

The subsequent step involved creating a separate normalized distance matrix for the
single values’ distances. This was accomplished by computing the Euclidean distance
between each vector representing each patient’s single values.
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With these distance matrices prepared, the next step was the implementation of the
k-centers algorithm. We initially set the weights wsingle = wset = 0.45 and woutcome = 0.1,
and the number of clusters k to 20, to establish a baseline for the clustering process. This
was chosen for the sake of implementation and does not necessarily represent an optimal
configuration. The process of optimizing these values is addressed in the next step. This
served as a starting point from which we could begin our iterative process of identifying
cluster centers. The first center was chosen randomly, and subsequent centers were
identified following the algorithm detailed in Algorithm 1. Finally, we formed clusters by
assigning each patient to the cluster that had the closest center. The complete Python
code for SASCA can be found in Appendix B.

Results

With this implementation, we were able to successfully generate clusters based on the
patient history. An analysis of these initial clusters was not conducted at this stage,
but the successful implementation signaled that we could move further to the parameter
optimization.

6.2.3. Parameter Optimization and Selecting the Number of Clusters

Experimental Setup

Once the initial implementation of SASCA was complete, the next phase of this study
involved optimization of the weights and the number of clusters, k. The initial plan
included using the CH index for optimizing both the number of clusters and weights.
However, preliminary results indicated that the CH index was not e�ective in determining
the optimal number of clusters. Consequently, we modified our approach to use the
Within-Cluster Sum of Squares (WCSS) for this purpose.

In order to find the optimal k, SASCA was run with varying sets of weights. Sub-
sequently, WCSS was computed for every tenth k up to k = 100 for each set of weights.
Then, the Elbow method, which identifies the point at which additional clusters do not
significantly improve the compactness, was employed to determine the optimal k. This
was deemed as the elbow of the plot, illustrating the trade-o� between the number of
clusters and the within-cluster dispersion. This plot of the WCSS for each set of weights
could also hint to the optimal value for the weights, even though the CH index would
provide more valuable findings.

Hence, after finding the optimal k, the next step was to optimize the weights assigned to
single, set, and outcome values. We systematically varied these weights while maintaining
a balance among them and ran SASCA multiple times with each set of weights. This
strategy allowed us to assess the impact of di�erent weight distributions on the clustering
results and to pinpoint the optimal weighting scheme.

To ensure unbiased results, given the random selection of the initial center, each weight
configuration was tested three times. For each set, we computed the mean CH index over
these three trials. The weight set yielding the highest mean CH index was selected as
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Figure 6.1.: Finding the optimal number of clusters by using the Elbow plot, with
wsingle = wset = 0.45, woutcome = 0.1

the optimal weights for our clustering algorithm.

Results

When initially using the CH index to find the optimal value for both clusters and weights,
it was observed that the CH index reached a peak at k=2 and then declined significantly
and stabilized at a low level. This peak at k=2 did not seem to be representative or
appropriate given the large dataset size exceeding 30,000 patients. Furthermore, the
subsequent stability of the CH index provided limited information about the optimal
number of clusters.

Changing the strategy and moving on to calculating the WCSS for each k, the plot
provided more valuable insights. For most of the set of weights, the elbow suggested an
optimal value of k = 30. The plot for weights wsingle = wset = 0.45, woutcome = 0.1 is
shown in Figure 6.1.

Another interesting finding in the elbow plot was the observed higher value of CH
index when the single values were assigned greater weight than the set values. This
suggested a lack of significant similarity between two sets of diagnosis codes. To further
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Weights Mean
CH index

Single Set Outcome

0.5 0.5 0.0 2479
0.45 0.45 0.1 2622
0.4 0.4 0.2 2675
0.4 0.5 0.1 2606
0.35 0.45 0.2 2631
0.3 0.5 0.2 2694
0.5 0.4 0.1 2790
0.45 0.35 0.2 2508
0.5 0.3 0.2 2648

Table 6.1.: Mean CH index for di�erent sets of weights when k = 30

examining the optimal values for the weights, the CH index was calculated for three
iterations with k = 30 for each set of weights. The mean value of the three iterations
for each set of weights are shown in Table 6.1, and suggest an optimal weighting of
wsingle = 0.5, wset = 0.4, woutcome = 0.1.

The further steps will utilize the clusters formed using these optimal weights and the
optimal value of k = 30.

6.2.4. Analyse the Cluster Results

Experimental Setup

After finding the optimal values of both the weights and the number of clusters, the next
step was to conduct an analysis of the cluster results formed with this optimization. This
involved a review of the characteristics of the clusters formed by the SASCA. For each
cluster, the demographics of the patients (i.e. age and sex) will be examined, as well
as the distribution of single values describing the history and the most common ICD
codes within each cluster. As the similarity between the set ICD codes is based on the
hierarchical nature of the codes, it is not expected to achieve clusters with a significant
amount of only one diagnose. Hence, it makes sense to investigate the codes further.
This is done by producing a heatmap of the ICD chapters represented in each of the
clusters. To also facilitate a visual overview of the numerical features, a heatmap for the
mean value of each feature in each cluster will be produced.
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Results

The optimization process revealed a total of 30 clusters, each varying in size. The smallest
cluster, cluster 30, consists of only 8 patients, while the biggest, cluster 1, consists of
8281 patients. Each of the clusters has at least one value that deviates significantly from
the average. In an attempt of explaining how each feature in each cluster di�ers from the
average, each value is given a label of either very low (VL), low (L), average (A), high
(H) or very high (VH). The value range corresponding to each label is given in Table 6.2.
These values are used as a basis for the overall summary, provided in Table 6.3. This
table outlines the key characteristics of each cluster, including the size of the cluster,
average age of patients, ratio male, scaled values of the numerical features, and the top
three most common ICD codes.

Feature VL L A H VH

1- No. of episodes 0-10 10-20 20-30 30-40 40+

2- Total duration 0-12d 12-25d 25-35d 35-50d 50+

3- No. of ICU
stays 0-0.6 0.6-1.2 1.2-1.8 1.8-2.4 2.4+

4- Total ICU
duration 0-20h 20h-1d 15h 1d 15h-2d 10h 2d 10h-3d 3d+

5- Duration since
last episode 0-60d 60-120d 120-180d 180-210d 210d+

6- Duration last
episode 0-15h 15h-1d 5h 1d 5h-2d 1h 2d 1h-2d 15h 2d 15h+

Table 6.2.: Values for the numerical features for each label

No. Size Av. age Amount male Num. features ICD codes

1 2 3 4 5 6

1 8281 61.0 93.2% H H H H A A
1. Z491 (13%),
2. C61 (3%),
3. Z501 (2%)

2 1693 29.0 1.42% VL VL VL VL A VL
1. None (40%),
2. Z113 (2%),
3. Z640 (2%)
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3 1596 75.0 5.14% A H A A H VH
1. J449 (8%),
2. Z491 (5%),
3. J159 (4%)

4 418 69.0 100.0% H H H H VL VH
1. C189 (14%),
2. C61 (6%),
3. C20 (6%)

5 515 44.0 100.0% L A A VH VH L
1. C910 (5%),
2. R298 (5%),
3. R522 (5%)

6 374 66.0 100.0% VL L L A VH A
1. K805 (5%),
2. K802 (5%),
3. K800 (5%)

7 191 35.0 0.0% VH VH VH L VH L
1. F603 (19%),
2. Z032 (7%),
3. F431 (5%)

8 718 69.0 18.52% H A A A A A
1. H903 (12%),
2. H353 (11%),
3. H905 (5%)

9 277 75.0 3.25% A H A A A VH
1. L400 (17%),
2. L208 (5%),
3. Z478 (3%)

10 761 78.0 90.67% A A A H A H
1. H353 (8%),
2. H258 (5%),
3. H401 (3%)

11 167 46.0 94.61% A L A L VH VL
1. L400 (16%),
2. C910 (11%),
3. L309 (10%)

12 360 48.0 88.89% L A A VH VH A
1. Z478 (4%),
2. D610 (3%),
3. C61 (3%)

13 1043 65.0 0.86% A A A L A A
1. M058 (6%),
2. M161 (5%),
3. M171 (4%)
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14 758 66.0 19.39% VH VH VH H L H
1. Z491 (16%),
2. C509 (4%),
3. C539 (3%)

15 1903 22.0 3.99% L L L A H A
1. Z349 (10%),
2. Z358 (10%),
3. Z491 (5%)

16 636 63.0 95.44% H H A H A A
1. E109 (7%),
2. E119 (7%),
3. H360 (4%)

17 863 48.0 5.91% A L L VL VH A
1. Z491 (6%),
2. N10 (4%),
3. N185 (3%)

18 472 48.0 84.53% VH VH A A H A
1. F200 (30%),
2. F900 (4%),
3. Z032 (3%)

19 392 73.0 22.96% L L L L VH H
1. G35 (14%),
2. G20 (6%),
3. G301 (6%)

20 1440 64.0 6.67% A L L L VH A
1. Z491 (4%),
2. R298 (3%),
3. R42 (3%)

21 2311 65.0 12.42% VH H H L L A
1. C509 (14%),
2. C349 (6%),
3. C189 (4%)

22 956 77.0 2.2% L A A H A H
1. Z491 (5%),
2. I702 (4%),
3. I890 (3%)

23 2231 61.0 14.43% H A A A A A
1. Z491 (6%),
2. K509 (3%),
3. R104 (2%)

24 173 76.0 6.94% A H H H A H
1. D509 (4%),
2. D500 (2%),
3. M45 (2%)
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25 1350 74.0 97.19% A H H A A H
1. C61 (8%),
2. N40 (4%),
3. C679 (4%)

26 313 49.0 3.83% VH H H VH L A
1. E668 (13%),
2. Z491 (5%),
3. E109 (4%)

27 1077 60.0 95.91% A A A H A H
1. J449 (16%),
2. C349 (3%),
3. J459 (3%)

28 1060 64.0 95.28% A L L L H A
1. M45 (5%),
2. C61 (2%),
3. M161 (2%)

29 3357 45.0 83.8% VL VL VL VL L VL
1. None (44%),
2. B24 (2%),
3. Z113 (1%)

30 8 6.0 25.0% VL L H VH A VL
1. S065 (26%),
2. S062 (14%),
3. Z033 (14%)

Table 6.3.: General overview of all of the 30 clusters

This table is only meant to serve a general overview of how the clusters vary, and it is
a challenging task to find the most interesting clusters from this overview. These will
rather be analysed in terms of outcome in the next step.

Moving further in the examination of the clustering results, a heatmap for the ICD
chapter in each cluster was produced, as can be shown in Figure 6.2. Finally, the heatmap
of each of the demographics and numerical features can be shown in Figure 6.3. Note
that the two heatmaps need to be interpreted di�erently. The one for the ICD chapters
represent the proportion of patients with the occurrence of the given ICD chapter within
each of the clusters. A value of 1 represent that all patients in the cluster have at least
one code within the given ICD chapter. The heatmap for the numerical features represent
the normalized means within each feature, and the values for the same feature are related
to each other. Each column in this heatmap will have minimum one cell of 1 representing
the cluster with maximal mean value.
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Figure 6.2.: Heatmap for ICD chapters
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Figure 6.3.: Heatmap for mean values of each feature
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6.2.5. Relate Cluster Results to Patient Outcomes
Experimental Setup

In the fourth and last phase of the experimental plan, the aim was to link the patient
clustering results with their respective outcome. After the clusters have been defined and
characterized, each cluster was examined in terms of the associated outcomes, namely,
the result of the blood culture and the total duration of hospital visits within 60 days
post-suspected episode. This analysis was conducted in a similar way as before, where
the characteristics for each cluster were examined separately, as well as examining the
distribution of the di�erent outcome groups. Interesting findings from these clusters will
be further analyzed with the results from the last step, to relate the patient history to
the di�erent outcomes.

The results of this last phase provide insights into how the clusters di�ers in terms of
their blood culture result and subsequent hospital stay.

Results

The overall outcomes including both blood culture results and post hospital stay were
analyzed for each of the 30 clusters. A summary of the outcomes associated with each
cluster is presented in Table 6.4. This table shows the average total duration of the
subsequent hospital stay, the amount of positive blood cultures, and the distribution of
each outcome group.

Outcome distribution

Cluster
no.

Average post
duration

Amount
pos. BC NS NL PS PL

1 16.0d, 1.0h 5.17% 70.1% 24.73% 3.9% 1.27%

2 11.0d, 13.0h 10.63% 64.8% 24.57% 6.26% 4.37%

3 10.0d, 7.0h 3.32% 69.55% 27.13% 2.32% 1.0%

4 25.0d, 2.0h 36.12% 35.65% 28.23% 26.56% 9.57%

5 18.0d, 4.0h 16.89% 53.59% 29.51% 11.07% 5.83%

6 13.0d, 15.0h 20.32% 49.2% 30.48% 16.04% 4.28%

7 6.0d, 22.0h 2.09% 74.35% 23.56% 1.57% 0.52%

8 14.0d, 5.0h 5.57% 70.89% 23.54% 4.87% 0.7%

9 16.0d, 14.0h 15.52% 58.12% 26.35% 10.83% 4.69%

10 17.0d, 18.0h 20.37% 55.58% 24.05% 15.24% 5.12%
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11 8.0d, 12.0h 2.99% 74.25% 22.75% 2.4% 0.6%

12 22.0d, 2.0h 3.89% 74.17% 21.94% 3.06% 0.83%

13 14.0d, 5.0h 19.56% 55.8% 24.64% 12.37% 7.19%

14 14.0d, 5.0h 14.51% 57.78% 27.7% 10.03% 4.49%

15 15.0d, 13.0h 11.88% 73.62% 14.5% 7.62% 4.26%

16 14.0d, 4.0h 5.82% 67.61% 26.57% 3.93% 1.89%

17 6.0d, 23.0h 4.75% 69.99% 25.26% 3.01% 1.74%

18 16.0d, 1.0h 6.57% 67.16% 26.27% 4.66% 1.91%

19 11.0d, 0.0h 15.56% 59.44% 25.0% 10.2% 5.36%

20 8.0d, 21.0h 2.92% 68.54% 28.54% 2.01% 0.9%

21 13.0d, 19.0h 5.06% 63.31% 31.63% 3.46% 1.6%

22 18.0d, 6.0h 20.92% 48.74% 30.33% 12.97% 7.95%

23 11.0d, 8.0h 3.45% 67.64% 28.91% 2.38% 1.08%

24 14.0d, 17.0h 4.05% 62.43% 33.53% 2.31% 1.73%

25 14.0d, 10.0h 24.07% 52.22% 23.7% 17.26% 6.81%

26 16.0d, 3.0h 14.06% 64.54% 21.41% 8.63% 5.43%

27 10.0d, 14.0h 3.25% 69.64% 27.11% 2.14% 1.11%

28 11.0d, 5.0h 3.58% 67.26% 29.15% 2.36% 1.23%

29 10.0d, 2.0h 5.36% 70.21% 24.43% 3.57% 1.79%

30 12.0d, 13.0h 12.5% 62.5% 25.0% 0.0% 12.5%

Table 6.4.: Summary of outcome values for each of the 30 clusters

Looking at the overview, there are some clusters that stand out having a significant
high or low value for positive blood cultures. Among the clusters with a significant low
amount of positives, being less than or equal to 4%, are cluster no. 3, 7, 11, 12, 17, 20,
23, 24, 27, 28. These clusters will hereafter be referred to as the negative clusters. The
positive clusters, with amount of positives being greater than or equal to 19.5% include
4, 6, 10, 13, 22, 25. The negative and positive clusters with their values are summarized
and compared to the values in the whole dataset in Table 6.5 and Table 6.6, respectively.
Details of these clusters will also be presented. In these descriptions, there will be several
referrals to ICD chapter numbers. While each mention chapter will be accompanied by
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its relevant description, readers are advised to visit Appendix C for a comprehensive
mapping between the chapter number, the corresponding code range and the description.

Details of Negative Clusters

Cluster 3: Comprised primarily of older women, this group stands out for its longer
duration of last episode. All patients in this group have been diagnosed with a
diagnose in chapter 10, diseases of the respiratory system.

Cluster 7: Notable for its younger female demographic with very high rates of prior
medical history. Yet, these patients have shorter ICU stays, averaging 9,5h per ICU
stay compared to the overall average being more than 33h. The patients in the
cluster also have shorter durations of last episodes. Diagnoses included are mainly
from chapters 5 and 21, corresponding to mental, behavioral and neurodevelopmental
disorders and factors influencing health status and contact with health services,
respectively. The cluster has a notable 16% of patients being diagnosed with
borderline personality disorder (F603).

Cluster 11: Characterized by young men with an average number of prior episodes but
shorter durations, with an average of less than 6h per episode compared to the
average being almost 31h. These patients have had a long time since their last
episode, and their last episode was brief. All of the patients in the cluster has at
least one diagnose in chapter 12, covering Diseases of the skin and subcutaneous
tissue. The patients typically end with a shorter following hospital stay.

Cluster 12: Mainly men around the age of 48. The cluster is characterized by a low
number of prior episodes, but each episode’s duration is extended, averaging 48h.
This is true for ICU stays as well, where the average time per ICU stay is 50h. All
patients have at least one diagnosis within chapter 19, describing injury, poisoning
and certain other consequences of external causes. This cluster is particularly
interesting because of the extended subsequent hospital stay, averaging 22 days,
being the second longest of all clusters, and longest among the negatives.

Cluster 20: Mainly women with short prior stays in the GMU and ICU. These patients
have a long period since their last episode and typically conclude with a short
hospital stay. The patients have at least one diagnose in chapter 18, symptoms,
signs and abnormal clinical and laboratory findings, not elsewhere classified

Cluster 23: The most mixed cluster in terms of sex, but with a female majority. Patients
here have a higher number of GMU stays, but shorter duration per stay compared
to the overall average. All have a diagnose in chapter 11, diseases of the digestive
system.

Cluster 27: Mostly average men make up this cluster. They have slightly longer ICU
stays, shorter durations since their last episode, and longer durations of the last
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All Clusters
3 7 11 12 20 23 27 28

Size 35,694 1,596 191 167 360 1,440 2,231 1,077 1,060

Age 58 75 35 46 48 64 61 60 64

Amount
male 52.5% 5.14% 0% 94.61% 88.89% 6.67% 14.43% 95.91% 95.28%

No.
episodes 25 22 75 26 13 21 31 22 23

Total
duration 32d 39d 102d 18d 26d 21d 34d 33d 23d

No. ICU
stays 1.43 1.31 3.36 1.48 1.64 0.98 1.74 1.29 1.18

Total ICU
duration 2d 0h 2d 6h 1d 8h 1d1h 3d 10h 0d 23h 1d 16h 2d 13h 1d 8h

Duration since
last episode 153d 190d 216d 306d 209d 228d 148d 126d 206d

Duration last
episode 1d 15h 2d 21h 0d 17h 0d 13h 1d 18h 1d 7h 1d 18h 2d 4h 1d 9h

Duration post
60 days 14d 10d 7d 9d 22d 9d 11d 11d 11d

Amount pos.
BC 8.45% 3.32% 2.09% 2.99% 3.89% 2.92% 3.45% 3.25% 3.58%

Table 6.5.: Characteristics of the negative clusters
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episode. Diagnoses are all within chapter 10, which makes this group similar to
Cluster 3 except for the sex.

Cluster 28: Men with an average GMU history, fewer and a bit shorter ICU stays, and
a long period since the last episode. All patients have a diagnose in chapter 13;
diseases of the musculoskeletal system and connective tissue

Details of Positive Clusters

Cluster 4: This cluster only consists of men, with an average age of 69 years old. All
prior history values are higher than average, the gap since last episode is only 48d
old and the duration of the last episode is almost 2,4 times more than the average.
The absolute majority of the patients have been diagnosed with a diagnose in
chapter 2, neoplasms and 14% have a history of C189, indicating colon cancer. This
cluster is definitely the group with highest positive rate, exceeding 36%. It is also
the group with the longest hospitalization of the 60 days following the suspected
episode, with 25 days.

Cluster 6: Another cluster of older men, but with fewer prior episodes. This group is
notable for its significant average gap of 347 days since the last episode. All patients
have a diagnosis in chapter 11, diseases of the digestive system, with as much as
59% diagnosed with some form of cholelithiasis, i.e gallstones. Despite average total
duration post-blood culture, the number of positive results is more than double the
typical rate.

Cluster 10: Characterized by the oldest cluster of men, the medical history of this
group is mainly average. However, all patients share diagnoses within chapter 7,
indicating diseases of the eye and adnexa, and is the only cluster with this specific
characterisation. The patients have a slightly extended hospital stay, and a positive
rate of above 20%.

Cluster 13: The first positive cluster with a majority of women, and the women cluster
with the highest positive rate, being almost 30%. The patients’ history is largely
average, with somewhat low total ICU duration. All have diagnoses within chapter
13, i.e Diseases of the musculoskeletal system and connective tissue.

Cluster 22: This cluster, with an average age of 77, is the oldest women’s group. The
patients’ history is average, but there are high numbers for features related to the
last episode, both the duration since last episode and duration of last episode. The
most common ICD chapter is number 9, diseases of the circulatory system, where
all patients had at least one diagnose from this chapter.

Cluster 25: This last group is yet another a typical male cluster. The history is average,
and the group has slightly higher numbers for total duration, number of ICU stays,
and last episode duration. The most frequent ICD chapter is number 14, indicating
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All Clusters
4 6 10 13 22 25

Size 35,694 418 374 761 1,043 956 1,350

Age 58 69 66 78 65 77 74

Amount
male 52.5% 100% 100% 90.67% 0.86% 2.2% 97.19%

No.
episodes 25 34 8 26 27 19 26

Total
duration 32d 44d 23d 34d 26d 33d 37d

No. ICU
stays 1.43 2.04 1.04 1.4 1.39 1.38 1.82

Total ICU
duration 2d 0h 2d 11h 2d 0h 2d 13h 1d 13h 2d 20h 1d 18h

Duration since
last episode 153d 48d 347d 159d 156d 179d 142d

Duration last
episode 1d 15h 3d 21h 1d 23h 2d 1h 1d 7h 2d 6h 2d 7h

Duration post
60 days 14d 25d 14d 18d 14d 18d 14d

Amount pos.
BC 8.45% 36.12% 20.32% 20.37% 29.56% 20.92% 24.07%

Table 6.6.: Characteristics of the positive clusters
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diseases of the genitourinary system. Post-blood culture duration is average, while
the positive rate is at 24.07%.

6.2.6. Validate Methodology and Results With Clinicians

Experimental Setup

In order to validate the methods utilized and clinical results achieved, the findings were
presented at a meeting with the CoSem group. This presentation took place on the 5th
of June, with the audience comprising clinical professionals from St. Olavs Hospital
who are researching various aspects of sepsis and bloodstream infection. The aim of the
presentation was to share the results derived from our study, and initiate a dialogue
regarding these findings from a clinical perspective.

The presentation began by presenting the overall research goal, as stated in Section 1.2,
followed by a description of the dataset using descriptive statistics and distribution of
ICD codes. Subsequently, the specifics of the SASCA was presented, including the chosen
similarity measures, the optimal weights and number of clusters used.

After describing the data and laying out the methodology, the results were presented.
The focus of this part was to discuss specifics of the clusters categorized as either negative
or positive, as detailed in the previous section. Each of theses clusters were presented
with their mean age, amount of males, mean number of episodes, total duration, number
of ICU stays, total ICU duration, duration since last episode, duration of last episode,
duration of stay post 60 days and the amount of positive blood cultures. For the sake of
comparison, the same parameters for the entire dataset were included.

In addition to these numerical features, a heatmap to represent the ICD chapters
within each of the interesting clusters were also included. After this presentation, time
was set aside for discussion of the methods and results.

Results

The clinicians who were present had interesting inputs and points to discuss after the
presentation. Their feedback and discussions o�ered crucial insights, highlighting the
importance of earlier clinician involvement in the process. They provided intriguing
questions and suggestions that will be expanded upon in Chapter 8.

One point of interest was the decision to analyze only the last suspected episode.
Although this was done to maximize the historical data, a suggestion was made to
do a separate analysis and consider the first suspected episode, which might yield
additional insights. Other points raised included suggestions to base the history on
specific, interesting episodes. These interesting episodes include either only the number
of suspected episodes, or the number of episodes with an actual confirmed BSI.

Moving to the cluster results, the clinicians confirmed the higher average age of infected
patients. However, the male predominance in positive clusters was odd. This highlighted
the importance of also including the sizes of each cluster in the presentation, as the
women clusters could include more patients in total. When these numbers were found,
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and we sat that the finding of positive clusters with more men still existed, the clinicians
related this to the suspicion of men having a worse immune system in general.

Regarding the heatmap of the ICD chapters, the clinicians found that these helped
visualize the group separation, but the chapters themselves did not provide much in-
formation. The specific most frequent diagnose was presented for the clusters where this
frequency was significant, which was more interesting for the clinicians. This emphasize
the importance of clustering based on diagnoses, as SASCA does, instead of only the
chapter as other typically existing algorithm would have done.

The specific cluster that was discussed the most was the one with the largest amount
of positive patients, namely cluster 4. The cluster represent old men with an extended
and recent prior hospitalization, and a history of cancer. The fact that a history of
cancer indicate an increased risk was known for the clinicians, so this could explain the
high positive rate. The clinicians discussed the fact that cancer patients are at risk both
because of the surgeries done for these patients, and because of their worse immune
system, and that critical ill patients could easier get bacteria in the bloodstream.

However, cluster 4 also had some strange and unexpected findings. The first thing
pointed out was the amount of males, and that no other positive cluster represent the
same findings for women. There are no known increased risks related to male patients
with cancer compared to females, so it would be expected to find the same for a female
cluster. Another unexpected finding was the high frequency of colon cancer, as this
specific diagnose is not known to be more present for men. It would be more expected
to find diagnoses within C60-C63 range in this cluster, as they represent malignant
neoplasms of male genital organs.

The presence of colon cancer is odd in general, as this type is not associated with any
increased risks compared to other cancer diagnosis. The clinicians wondered if it could
be related to the surgery of removing the colon, which could be further investigated by
looking back on the procedures documented for these patients in the original dataset.
It was also discussed if colon cancer might have an increased risk of specific bacteria.
Hence, the pathogen found in the blood culture for these specific patients could also
be investigated by looking back to the original dataset. This suspicion also made a
suggestion of including the specific pathogen in the clustering, in stead of using a binary
representation of presence as done in this experiment.

The other clusters were not discussed in the same extent as cluster 4. Of the most
interesting other findings discussed was the fact that the women clusters did not include
any significant relations to diagnoses, and that the women cluster with highest positive
rate actually had pretty average history. Further details into this were not addressed.

The meeting was concluded by that most of the findings need to be further investigated
and researched to be made use of. The clusters provide as a good starting point for
looking into specific combinations of demographics, historical features and diagnoses.
The findings related to cancer and age are known, and the high amount of men could
emphasize the suspicion of them having a worse immune system.
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This chapter aims to evaluate the results presented in the previous section. This includes
an evaluation of the data selection in Section 7.1, before evaluating both the preliminary
experiments, in Section 7.2, and SASCA in Section 7.3. The section continues with an
evaluation of the clinical results in Section 7.4 and concludes with an evaluation of the
methodology in Section 7.5.

7.1. Data Selection

This section will evaluate the data selection process, highlighting its strengths and
limitations, and considering its impact on the study’s findings and interpretations.

The selection appears to be e�ective and describing, as only one patients was excluded
due to the absence of any ordered blood cultures and thus, not meeting the criteria of
the study being a patient with suspicion of a BSI. However, some adjustment could have
been done when selecting the episode where the blood culture was ordered. Currently,
this episode only forms part of the post-history, but it might be more appropriate to split
it at the blood culture date. This way, the part of the history before the blood culture
would have contributed to the prior history, while the second part contributes the post
history. This would allow a more precise representation of how the episode relate to the
history.

During the clinical validation conducted with clinicians from the CoSem group, the
clinicians discussed the decision to analyze only the last suspected episode. Initially this
choice was made to maximize the historical data; however, it was suggested that including
analysis of the first suspected episode could provide additional interesting insights.

Looking further on the features within the resulting clusters, the values varies signi-
ficantly, suggesting a robust descriptive approach. However, the relationships of these
features to the specific outcome of BSI remains a bit more unclear.

Despite e�orts to handle outliers through normalization, many numerical features
demonstrated a dense distribution around the means. This suggests that outliers may
not have been e�ectively addressed and could be a consideration for future data handling
approaches.

While the data selection process generally was e�ective, some modifications could
enhance the depth of analysis and accuracy of results in future research. This includes
adjusting the selection criteria for the suspected episode, both the cuto� for prior and
post history, and using the first rather than the last suspected episode. Additionally, it
would have been beneficial with a better outlier handling.
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7.2. Preliminary Experiments

The preliminary experiments carried out in the early stages of the study provided
valuable insights. Even though the experiments were not fully implemented, they proved
to discover potential challenges, limitations and requirements that informed SASCA’s
development. Significant issues addressed in these initial experiments were applicable to
the main experiments, while non-recurrent aspects o�ered guidance for future research
direction.

One key observation from these experiments was the challenge related to implementing
less-known algorithms. Such algorithms, in this case derived from research papers, tend
to have less documentation and less intuitive code choices compared to well-known
algorithms like k-means and k-prototype. For instance, the reasoning for selecting the
specific edges in the DDSCA appeared arbitrary, which led to complications during
implementation.

While the selected algorithms corresponded well with the complex data structure in
this study, adjusting the data to facilitate the implementation of a well-documented,
well-known algorithm could have been beneficial. This approach could have yielded
preliminary results to serve as a comparative measure for SASCA’s results. With the
current approach, the absence of such comparative results presents a less robust foundation
for SASCA’s evaluation.

7.3. SASCA

Evaluating SASCA compared to other methods presents a challenge due to the study’s
limited time frame and its iterative, experimental nature. However, it is important to
remember that the overall aim of the study is not to engineer the most e�cient or most
accurate clustering algorithm, but rather the concept of applying clustering algorithms
to reveal potential relationships between various features of medical history. Hence, the
evaluation of SASCA will focus on how an which features change across the di�erent
clusters.

As explained in step two of the main experiment, the elbow method suggested k = 30
for most of the weights, and the highest CH index was achieved for the values wsingle =
0.5, wset = 0.4 and woutcome = 0.1. The highest CH index was however found for k = 2,
but the large amount of patients make k = 30 a more suitable number. The utilization
of the combination of these two metrics, both WCSS and the CH index, strengthens the
resulted optimized values, as the elbow plot suggested k=30 for the weights and these
weights gave the highest CH index when k=30.

With the given data of 35,694 patients, it is expected that clustering with k = 30
should yield groups with a decent amount of patients in each. However, it is evident that
the clusters vary a lot in size, from n=8 in cluster 30, representing only 0,02% of the
patients, and n=8281 representing in cluster 1, representing 23%. This variation in size
will influence the CH Index and WCSS metrics, as a more nuanced cluster will yield a
lower WCSS.
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Despite the varying sizes, the algorithm captured significant characteristics in each
cluster. By evaluating how the clusters vary in values for each feature, the separation
and cohesion can be evaluated, as well as it will provide a clue for the feature importance.
Being the only categorical value with almost even distribution, the sex feature is well
di�erentiated across the clusters with several clusters consisting of only patients with the
same sex. Considering the age distribution skewed to older individuals, this feature is
also well distributed. The youngest group except for the small cluster no. 30, averaged
22 years, while the oldest averaged 78.

Using the scale defined for very low to very high values for the numerical features, we
can see that the algorithms finds more significant values for number of episodes prior
and duration since last episodes, with 9 clusters having either very high or very low
values for both of the features. The values for total duration di�ers the least, with only 5
clusters with a very high or very low value. Looking at these features for the clusters
with significant high number of positive outcomes (amount positive Ø 19.5%), two of the
six clusters had either very high or very low value for duration since last episode, one
had very low value for number of episodes, and one had very high value for duration last
episode. The negative clusters (amount positive Æ 4%) had a very high number of value
at least once for each of the features, while the duration since last episode was again the
features with the most significant values, where four of the clusters had a very high value.
This indicate that the algorithm quite well separate patients with di�erent histories.

Regarding the ICD codes, there are clear clusters with a significant amount of the
di�erent chapters. Each of the chapters except 21 have a frequency of more than 65%
in maximum two of the clusters, and each chapter except 15, 16, 17, 20 and 22 have at
least one cluster with 85% or more in frequency. This indicates a both a good separation
and a good cohesion.

Moving over to the last features, representing the outcome, the separation and cohesion
is not that evident. When only looking at the distribution of the outcome groups in each
cluster, it is clear that the largest portion of patients are categorized as NS in all clusters.
With the skewed distribution of outcomes in the selected dataset, this is expected. It is
easier to see the di�erence when looking at the two features separately, where the post
duration range from 6d and 22h to as much as 25d and 2h, and the amount of positive
range from 2.09% to 36.12%. Considering the overall average being 14d post stay and
8.45% positive rate, the range of the values indicate a somewhat good separation and
cohesion after all.

7.4. Clinical Results

The last part of the evaluation include the clinical results, where the findings will be
evaluated to both the related work and expert clinical knowledge through a discussion with
clinicians as a part of the CoSem group. The evaluation is again based on presentation
and discussion conducted 6th of June, where the results related to the clusters categorized
as negative or positive were presented to clinicians in the research group.

The clear di�erences in sex for each cluster is quite interesting, where the cluster with
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the biggest mix consist of 14.43% men. This separation is even clearer in the positive
clusters, where less than 10% women was included in the most mixed cluster. It is
important to remember that this variable is categorical, as the only categorical value in
the single values, which contributes a clearer di�erence when using euclidean distance.

Looking further in to the positive clusters, one obvious finding was the higher average
age in each cluster, in addition to including cluster 10 with the highest average age of all
clusters. Another interesting finding was the sex ratio, where four out of six clusters were
characterized by mainly being male. Also the number of patients within these cluster are
higher than the number of female patients, being 2903 out of 4902.

The key finding in the cluster was that older male patients with an extended prior
hospital stay and cancer diagnosis carry an increased risk of infection. This finding aligns
with both existing research and clinical knowledge. The overall finding of all positive
clusters showing a higher mean age further confirms known risk factors, and is consistent
with existing knowledge. These observations strengthen the credibility of the results and
confirms the methodological approach used in the study.

However, the other nuanced and more specific findings in the clusters do not align
particularly with the current understanding, and should be further investigated. The
male clusters with either colon cancer or cholelithiasis as the most frequent diagnose were
specifically odd, as the diagnoses are not more frequent in men than in women. Since
one specific diagnose rarely suggest an increased risk for only one sex, it would have
been expected to find this in a mixed cluster with respect to sex, or in a cluster for each
of the sexes, if the diagnose indicates an increased risk. This suggest that the number
of clusters are too low, not capturing the females with the same diagnose, or that the
finding is random.

As the clustering method was able to find the already known risk factors in some
clusters, the feasibility of the method is somewhat confirmed. However, some of the
key findings within the clusters are not supported by existing knowledge, which suggest
some random clustering. These findings should be further investigated to evaluate the
feasibility of the clustering.

7.5. Methodology

This section evaluates the implementation of the Design Science Research (DSR) meth-
odology in this study. Despite the iterative and exploratory nature of the study, which
made DSR a fitting choice, the tight timeline and extensive scope presented challenges.
Some preliminary literature review was conducted during the previous semester, however
the largest part of the research that proved to be relevant was done during this spring
semester. This main time frame of one semester constrained the number of completed
experimental cycles. The adaptation of DSR for this study allowed for experimentation
without requiring the completion of each cycle, which was particularly appropriate given
the limitations.

The work conducted in the fall semester occurred before accessing the data, resulting
in much of this early work becoming irrelevant once the scope was refined upon data
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access. This underlines the need for early data access, allowing for better familiarity with
the data and a clearer understanding of the research possibilities.

With the addressed time constraints, the attention allocated to each step of the research
approach — data familiarization, domain knowledge acquisition, literature review, and
method implementation and evaluation — was limited. The implementation phase often
felt wasted as considerable time was dedicated to experiments later deemed unsuitable
for the study’s objectives. Despite these challenges, the trials were at the heart of the
DSR approach, providing valuable lessons for the main experiment.

In conclusion, regardless of moments being overwhelmed, the adapted DSR approach
was suited for the research. Lessons learned from each design cycle was valuable,
contributing significantly to the final outcome.
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8. Discussion
The results from Chapter 6 will now be discussed in light of the research questions.
This chapter will discuss each of the research questions in Section 8.1, Section 8.2 and
Section 8.3, before concluding with the limitations in Section 8.4.

8.1. Research Question 1: Relevant Features
RQ1: What are the relevant features to be used to describe a patient’s medical

history in the context of clustering?

When implementing well-known clustering algorithms from established libraries, the
evaluation of feature importance is often included and a straightforward task. This
is however not the case when implementing an own made algorithm. The following
discussion of the relevant features will hence focus on how the features distinguish
between the clusters, as well as including aspects addressed by the clinicians in the
validation done during the presentation 5th of June. The relevance to the patient’s
outcome will not be addressed here, but rather discussed in a later section.

The number of episodes prior feature seems to be highly correlated to the total duration
prior, as each significant value of this feature is also always present for the number of
episodes, and the distance between the scaled value of the two features is at maximum
one. This indicates that there might not be necessary with both the number of episodes
prior and the total duration. The total duration is also the feature with the least number
of significant findings, indicating that the number of episodes should be su�cient and
the only feature describing the prior history of GMU stays.

Looking at the total duration since last episodes, there is no such obvious relation to
the other values. However, it could be observed a possible inverse relationship between
the duration since the last episode and the duration of the last episode. For every instance
where the duration since the last episode was categorized as very high, the duration of
the corresponding last episode was almost always average or lower. In contrast, whenever
the duration since the last episode was very low, the duration of the last episode tended
to be average or above. This is not as consistent as the prior correlation, with for instance
exceptions in cluster 3, 19 and 29. With this exceptions present, one should be careful
to assume that this relation is applicable, and it is expected that the features provide
di�erent aspects to the history.

The values for the ICU stays seem correlated, but not to the same extent as the
GMU stays. For instance cluster 7 shows that there could be significant di�erence in the
number of ICU stays, here being very high, and the total ICU duration, being low. The
features, especially the total number of ICU stays, seems to some extent relate to the
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GMU features. Cluster 30 is the only cluster where the di�erence in the scaled value of
number of GMU stays and ICU stays di�er significantly. Because of the small amount
of patient in cluster 30, being only 8, this exception is not representative for the entire
dataset. Hence, it is naturally to believe that the feature describing the number of ICU
stays is redundant together with the number of episodes in general.

The results from the validation with clinicians also provide valuable insights to the
chosen features. It was suggested to only count the episodes where there were a suspicion
of BSIs, or only the episodes with a confirmed infection. This is interesting for this
particularly case where the goal of the clustering was to investigate these kind of patients,
but is not necessarily interesting in the general case of describing medical history. This
might indicate that the research question is too general for this specific case, as further
discussed in Section 8.4.

During the same validation, the clinicians emphasized the clinical meaning of using
each particular ICD code and not only the ICD chapter. This indicate that the list of
ICD codes also should be included as a feature describing the history.

8.2. Research Question 2: Application of Clustering to
Di�erentiate Patients

RQ2: How can the application of clustering help di�erentiate patients with

varying outcomes in suspected bloodstream infection cases, considering their

medical history?

Initially, this discussion will cover aspects related to clustering medical data in general,
focusing on the results from the preliminary experiments. Following this, the specifics
and decisions related to the main experiment, SASCA, will be discussed. Finally, the
research question will be correlated to the specific results from the clustering of patients
suspected of having BSIs. In this discussion, only the results with significant findings for
either negative or positive outcomes, as presented in table Table 6.5 and Table 6.6, will
be addressed.

8.2.1. Application of Clustering Algorithms on Medical Data

A key factor when clustering medical history is the structure of patient histories. As each
patient’s history is unique in both content and length, with di�ering numbers of episodes
and diagnoses, finding a standard representation for all patients is di�cult. A specific set
of features need to be chosen for such a description. Even though the specific features
chosen in this study are discussed in the previous chapter, the challenges related to this,
in the context of clustering medical data, will be addressed here.

The large volume of information for each hospital visit can be overwhelming, making
it crucial to consider the curse of dimensionality when choosing the features to use
(Bellman, 1966). This curse emerges when an excess of features are chosen, resulting
in the algorithm struggling to find similar patients. Thus, summarizing each patient’s
history in a descriptive and compact way is essential.
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However, knowing what to describe in each specific context can be challenging, and it
is necessary to make assumptions even before the experiments begin. For instance, with
clinicians expressing a wish to count the number of suspected episodes retrospectively, it
is assumed that this number is related to the outcome of the suspected episode. This
holds true for all features chosen in this research as well, where the outcome is assumed
to be associated with the number and duration of stays, as well as details related to
recent visits.

Taking into account the diagnosis codes given to each patient, the dimensionality
increases even more. With over 1400 di�erent ICD codes in our dataset, it is clear that
each code cannot be represented as a feature. Zhong et al. discuss how existing clustering
algorithms struggle to cluster patient data where both single and set values are present
(Zhong et al., 2020, 2021). There is no distance measure that capture both parts of the
features, introducing the need of finding another approach.

One alternative could have been to convert each of the ICD codes into corresponding
ICD chapters, using a binary representation and k-prototype for clustering. However,
with each ICD chapter consisting of up to 204 di�erent codes, much valuable information
would be lost with this approach. It was emphasized during the results presentation to
clinicians on June 5th that ICD chapters themselves are not clinically interesting. This
reinforces that such an approach would not be applicable, and underscores the need
for a custom or specifically designed clustering algorithm for this kind of medical data
clustering.

Keeping all the diagnosis codes for each patient presents another challenge when
measuring the similarity between patients. In the DDSCA algorithm implemented in the
preliminary experiment, this similarity was measured through a weighted edit distance
to ensure the order was considered. However, with the number of di�erent diagnosis
codes for each patient in our dataset, the complexity became far too high compared to
the dataset used in the original paper (Zhong et al., 2021). When choosing the distance
measure, a balance must be struck between functionality and complexity.

After choosing the descriptive features, the resulting data typically consists of a mix of
categorical and numerical data, which poses a challenge when calculating the distance
between two patients. This is particularly evident when looking at the sex distribution in
the results of this research, which is far more distinct than other features. This specific
case will be further discussed in the succeeding sections.

To categorize all variables, the algorithms used in the preliminary experiments employ
discretization. However, this method omits the valuable information an outlier can
provide. In the context of clustering medical data, these outliers might be just as
important. Extreme cases of either very short history or very long history could provide
specific indicators of either outcome, and should be considered.

8.2.2. Implementation and Choices in SASCA

In moving to the specific decisions made during the implementation of SASCA, it is
crucial to discuss the foundations of the clustering algorithm, namely the distance metrics.
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The resulting clusters rely heavily on the measurement of similarity based on these
metrics, and their suitability is hence critical.

Starting with single-value features, the SASCA implementation uses Euclidean distance.
Although Euclidean distance is generally a good choice for numerical data, its application
becomes questionable with categorical features present such as sex. The constant distance
of 1 between di�erent sexes and 0 for the same sex will influence the overall distance
measure, as evidenced in the cluster analysis where patients of each sex are highly
distinguishable.

Addressing the issue of normalization and outliers, very high or very low values in the
single features result in most normalized values falling within a narrow range. While this
allows the identification of outliers, it may hide more subtle variations within the dataset.
The choice of normalization was made based on the dissatisfaction with discretizing done
in the preliminary experiments. In retrospect, it could have been interesting to test also
this approach with SASCA to examine its impact on the clustering result.

The challenge of defining a meaningful similarity measure for patients’ diagnostic
histories, expressed in ICD codes, was another significant aspect of this study. The chosen
approach leveraged the hierarchical nature of ICD codes to calculate pairwise similarities,
by identifying the code in the first list with the minimum distance to each code in the
second list. The process of developing and refining this measure was a substantial and
time-consuming part of the work. After completing the measure, it was realised that
this measure should have been subject of early discussions with clinicians to ensure its
clinical validity and relevance.

Towards the end of this study, a potentially promising alternative method for measuring
similarity between ICD codes was identified, which involved constructing a bipartite
graph of two ICD lists (Gottlieb et al., 2013). In this method, the edges represent the
similarity between each code, and the total distance is defined by the maximal matching.
Unfortunately, due to time constraints, this approach could not be implemented within
the scope of this study. However, its potential to o�er a more nuanced understanding of
the similarity between patients’ diagnostic histories requires further exploration in future
research.

The clusters in SASCA are formed based on the weighted combination of the mentioned
measures. With the weights, one can optimize and change the relative importance of the
di�erent features. In these cases it is important that each similarity measure return the
same distribution of values, which is ensured here where each distance return a value
between 0 and 1. This somewhat ensures an equal contribution, even though the nature
of the measures are di�erent.

With the chosen optimized weights, the set values were not as much weighted as
the single values. This could be due to the similarity measure of set values, and that
the chosen approach made many pairwise lists of codes similar in distance, making the
distance not as significant as for the single values. Even though this finding shows that
each patient often has a unique history of codes that is challenging to compare, it also
emphasize the need for a suitable distance measure to capture the relevant similarity.
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8.2.3. Di�erentiating Patients With SASCA

The last part of the discussion for research question 2 covers the specific resulting clusters
achieved when using SASCA. As the research question aims to distinguish patients with
di�erent outcomes, it is interesting to start by looking at the distribution of the four
groups defined in Chapter 5 in each of the clusters. The cluster with the largest proportion
of the NS group is cluster 7, which is defined as a significant negative cluster. For the
NL group, the highest amount is in cluster 24, also being among the ones categorized
as negative. Both the PS and the PL groups are most present in cluster 4, being the
one with by far highest amount of positive blood cultures. Considering the relative high
amount of clusters, it is unexpected that both PS and PL have the highest amount in
the same cluster. This could mean two things; either that the algorithm struggle to
distinguish these groups, or that there are no clear di�erence in the di�erent groups
regarding their histories. Either of the two indicate that the results in this research is
more interesting to examine with the attributes separate rather than the groups defined.

The further discussion will hence focus on the clusters with significant findings for
either negative or positive outcomes, as presented in Table 6.5 and Table 6.6. The two
groups of clusters will be referred to as the negative clusters and the positive clusters,
respectively, and a cluster belonging to the first group will be denoted as a negative
cluster, while a cluster belonging to the second group will be denoted as a positive cluster.

At the first glance, there is a clear di�erence across the di�erent groups in the mean age.
All of the positive clusters have a higher mean age than in the entire dataset, indicating
that elder patients have a higher risk of infection. This finding is also confirmed by both
the literature and the clinicians.

However, it is important to note the high mean age of cluster 3, categorized as negative.
Looking into the specifics of the historical features, this cluster seems very similar to
the positive cluster 22. Even though the values in each of the clusters di�er to a certain
extent, it is not significant enough to di�erentiate two patients. Adding the ICD codes
in the analysis make a somewhat clearer di�erence, but it is not enough to make a
conclusion. All patients in cluster 3 have been diagnosed with a code in chapter 10, while
all patients in cluster 22 has a diagnose in chapter 9. It is however important to note that
36% of the patients in cluster 3 also has a diagnose within the same chapter as cluster 22,
making the di�erence small. This indicate that there is not a significant finding related
to the two clusters, and one should be careful making assumptions related to the risk of
these patients.

All of the remaining negative clusters have a lower age than all of the positive clusters.
Remembering that the data selection chose the last suspected episode make this finding
not surprising, and it would have been interesting to see the di�erences if the selection
rather chose the first episode. The further discussion will focus on the other features
contributing to each cluster, but it is important to keep the age di�erence in mind. The
discussion will be based on the positive clusters, and see how they di�erentiate from the
negative.

Examining the features of the positive cluster 4, there is no clear similar negative
cluster. This cluster is significant in many ways, being the positive cluster with the most
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prior hospitalization, shortest gap since last episode and the longest post duration with
highest positive rate. Looking at the ICD codes, cluster 21 is quite similar with the
presence of chapter 2 indicating cancer. Regarding the sex rate it is naturally to believe
that cluster 21 is the women with the same kind of history as the men in cluster 4. This
similar cluster has a positive rate of only 5.06%, which alone could suggest that women
with cancer has a lower risk of being infected with BSI than men with cancer. Even
though Pittet et al. suggest that male patients with cancer have an increased risk, the
existing knowledge does not include such obvious di�erences between the sexes (Pittet
et al., 1997).

However, looking further into the heatmap, there are quite a few clusters with an
increased amount of patients diagnosed with a code in chapter 2. This make it natural
to suspect that the other women with a cancer diagnose and positive blood culture are
distributed into di�erent groups, which indicates that the clustering is not fulfilling the
goal of the research.

Moving to cluster number 6, one could in one way relate it to cluster number 12. These
are the two clusters with the lowest number of prior hospitalization for each of the two
cluster groups. Including the ICD codes however, make the di�erence clearer. Codes
from chapter 11, being the 100% in cluster 6, is only present for 15% of the patients in
cluster 12. All patients in cluster 12 are diagnosed with a code in chapter 19, which is
only present in 6% of the patients in cluster 6. This indicate a clear di�erence between
the two groups, making the algorithm suitable for di�erentiating some groups.

The positive cluster 10 is quite similar regarding the historical features to the negative
cluster 27, and the other positive cluster 22. The last mentioned has a lower number of
prior episodes, but the other features are quite similar. All of them have average values
for the other features except for total ICU duration and total duration of last episode,
being high in all three. 100% of the patients in cluster 10 have a diagnose in chapter
7, 40% in chapter 9 and 27% in chapter 10. These values for cluster 22 are 14%, 100%
and 12% respectively, while being 6%, 5% and 100% for cluster 27. The negative cluster
stand out with the small amount of patients with a diagnose from chapter 7 and 9, which
indicate a separation between the positive and negative clusters.

So far in the discussion, the ability for the algorithm to di�erentiate the groups have
been proved to vary. This is also true for the two remaining positive clusters. There is
no other negative cluster to be categorized as similar to cluster 13, indicating a good
di�erentiating, while cluster 25 could again be related to the negative cluster 3. Examining
the heatmap of the ICD codes for the two cluster 25 and 3, the most significant chapter is
di�erent across the two. However, both clusters have quite a high rate of several present
chapters. Hence, the di�erentiating might not be as good for these clusters.

By examining these positive clusters and their similar patients group, the ability of
SASCA to di�erentiate patient with di�erent groups have been tested. Some of the
positive patient groups are clearly di�erent than all of the negative groups, including
cluster 4 and 13 with no significant similar history as the other negatives. The clusters 6,
10, 22 and 25 on the other hand, could be related to some of the negative clusters regarding
their numerical features. Most of them are di�erent regarding the ICD diagnoses, but
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it is important to remember that the ICD chapters themselves do not provide enough
information. It would be interesting to spend more time examining the actual history of
the patients in each of the groups by investigating the original dataset, but this would
take a significant amount of time. Due to the limited time frame in this project, this is
not achievable.

8.3. Research Question 3: Clinical Utility and Potential

RQ3: What is the clinical utility and potential of clustering methods in

revealing relationships between relevant features of a patient’s medical history

and patient outcomes in suspected bloodstream infection cases?

In addressing this specific question, the potential relationships revealed in the specific
case will firstly be explored, before proceeding to discuss the clinical utility of such
features and findings.

The most significant finding identified was the cluster with 36% positive rate. This
cluster was largely populated by older men who had a history of at least one cancer
diagnosis, with colon cancer being the most prevalent. Other features characterizing this
cluster include a higher rate of prior history, an unusual long duration of the last episode,
and a very short interval since the last episode.

Another notable correlation is the prevalence of diagnoses related to gallstones in
cluster 6, where 59% of patients had one variant of this diagnosis. This cluster primarily
consisted of men with a low count of prior history and a considerable gap since their last
episode. Approximately 20% of these patients ended up with a positive blood culture,
more than double the average rate.

Most patients diagnosed within chapter 7 were grouped into cluster 10, exhibiting a
positive rate of 20.37%, again more than double the average. Mark that this means that
almost all patients with a diagnose from this chapter is in this particular cluster, and
not separated across two or more di�erent. A prior diagnosis within this chapter could,
therefore, potentially indicate a higher risk.

Interestingly, no significant findings related to women emerged, as the histories for
these clusters were average and the notable ICD chapters were common across other
groups as well. This might suggest that women have a lower risk of infection.

During the analysis, it is important to remember that there will always be patients
with the same diagnosis who have been placed in a di�erent cluster. Even if the number
of patients with diagnoses within a specific chapter is not significant, there will be
exceptions. This applies to other features as well, and thus, clustering should not be
viewed as conclusive.

Hence, despite the promising findings, these results should not be considered standalone
risk factors in a clinical context. The clinical validation process highlighted several findings
considered odd. However, these resultant clusters can be used as a basis for further
analysis. With access to the original data, patients grouped in each cluster can be further
investigated. For instance, while one cluster may include a significant number of a specific
diagnosis and an overall increased positive rate, it does not necessarily imply that the
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positive patients are those with that specific diagnosis. Consequently, findings like these
can serve as starting points for further analysis and must be validated by examining the
actual patients in the original dataset.

Even with the further analysis, it is important to remember that the usage of such
findings should be as a guidance and a support, and not as a conclusion for treatment or
replacing clinicians reasoning. Patients associated with a low risk should not be excluded
from consideration for a blood culture. Instead, those associated with an increased
risk could be subject to extra precautions, especially concerning catheter insertions, as
discussed in Section 2.1.

The utility of clustering can be further enhanced when clinicians are involved in
designing the selection criteria. During the results presentation to the CoSem group,
it was suggested that the history of episodes with either a confirmed or suspected BSI
should be considered, and rather consider the first and not last suspected episode for each
patient. To maximize the utility of the results, both the implementation and validation
should be conducted in close collaboration with clinicians.

A significant factor making these clustering methods suitable in a clinical context is
their transparency. As detailed in Section 2.2, providing explicit reasoning for the results
generated by clustering increases their explainability, unlike models that predict a label
without providing further reasoning.

8.4. Limitations

Given the complexity of the data and the task, coupled with the limited time frame
during which most of the work was conducted primarily within one semester, there are
several notable limitations that need to be addressed. This section aims to elucidate
these limitations.

The limitations related to the data in general, including its complexity and reliability,
have been previously elaborated in Chapter 5 and will not be repeated in detail in this
section. The complexity of the data necessitated a considerable amount of time for
familiarization, consequently constraining the time available for the implementation and
for conducting experiments. Additionally, the major parts of the research was conducted
during one semester, since the work done during the preparatory project was later deemed
to be irrelevant. This limit the feasibility of such a complex task and the iterative way of
conducting a research. As other algorithms were not fully implemented and tested, the
results from SASCA could not be compared.

One of the major limitations was the lack of consultation with clinicians during the
decision-making process, which later proved to have had a profound impact on data
selection. This underlines the crucial importance of interdisciplinary collaboration.

Regarding the overall research goal and questions, there are also considerable limitations.
The first research question, which broadly addresses a general description of a patient’s
medical history, may be too expansive for the scope of this study. A more specific focus
on features directly related to the context to be researched, BSIs in this specific case,
might have been beneficial. Additionally, the exploratory nature of the research does not
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necessarily provide concrete answers, but rather raises further questions. The potential
relationships found could be due to random connections, providing answers to questions
we did not have. A more hypothesis-driven research approach could have potentially led
to more definitive conclusions.

One last limitation to address is also related to the exploratory nature of the research,
as well as the limited time. Even though the study provide several interesting aspects,
neither the introduced novel algorithm nor the produced clusters have been fully evaluated.
In order to make use of any of these, they need to be further investigated, as elaborated
upon in Section 9.3.
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9. Conclusion and Future Work
This chapter aims to conclude the work done in this research. Section 9.1 summarizes
the overall goal, research method and results, before concluding how the findings answer
the research questions and goal. These findings provide several contributions in the field,
which will be addressed in Section 9.2. The last section, Section 9.3 will further propose
future work that builds upon the findings from this project.

9.1. Conclusion
The main aim of this study has been to explore the application of clustering algorithms
for grouping patients suspected of having a bloodstream infection, as conveyed in the
research goal defined in Section 1.2. The other part of the goal includes finding how and
which features of the medical history relate to patient outcomes. The research seeks to
answer the goal by applying a Design Science Research approach for an iterative and
exploratory nature.

The selection of features to describe the history was mainly based on results from
a literature review, conducted as an adopted approach of the approach proposed by
Kofod-Petersen (Kofod-Petersen, 2012). The features cover values for prior history at
the GMU, including number of prior hospitalizations and duration of these episodes, as
well as the number of stays and duration related to the GMU stays. They also include
values related to the most recent stay, both the duration of the last episode and the
duration since this episode happened. Lastly, the history is further described by the list
of primary ICD codes given during each episode.

Further in this research, these features were used, together with a feature describing the
outcome, as input when exploring di�erent clustering algorithms. The exploration started
with yet another literature review, ending with two relevant methods applied in the
preliminary experiments, namely MASPC and DDSCA (Zhong et al., 2020, 2021). During
the implementation of both algorithms, limitations and challenges were faced. These
insights guided the development of a novel approach for clustering medical data, SASCA.
This algorithm was made as an adoption of DDSCA, with an alternative approach for
calculating the distances between each pair of patients.

The optimized implementation of SASCA resulted in 30 di�erent clusters, 8 of which
where categorized as negative and 6 as positive. These clusters revealed some relationships
already known by the clinicians in the CoSem group, and some findings that were
considered significantly odd. This emphasize the need for additionally analysis and the
fact that clustering medical data can not be used as a tool alone, but as a starting point
for investigation of the patients considered similar.
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The findings in the research answer all of the associated questions, however to varying
extents. Regarding the first question, it is concluded that features describing the medical
history of a patient to be used in a clustering context largely depend on the goal of the
clustering. For the specific context in this research it was suggested to only count episodes
with suspected or confirmed BSI, which may not apply to another context. However the
features that ended up being utilized in this research serve as good basis. Looking at the
resulting cluster, it can be concluded that the number of episodes at the GMU and the
total ICU duration should be su�cient to describe the overall history, and the attributes
for the more recent stays should consist to describe the more recent condition. The list
of prior primary ICD codes contribute with the actual diagnosis and should be included
in its entirety. The clinical evaluation shows that only the ICD chapters would not be
su�cient, as they do not provide valuable information in a clinical context.

When it comes to the second research question, this study shows that the application of
clustering methods, particularly the novel approach SASCA, can be used to di�erentiate
patients. Looking at both the demographics, numerical features and ICD codes we can
see clear di�erences in each group’s history. However, with the current weights utilized in
the optimal clustering with SASCA, the outcome in the terms of the four groups defined
in Chapter 5 are not particularly di�erentiated in the clusters. On the other hand there
are clear di�erences in both the number of patients with a confirmed BSI and the total
duration during the 60 days following the suspicion, indicating that clustering can be
applied to di�erentiate patients with varying outcomes.

The last research question aims to investigate the clinical utility and potential of the
resulting clusters. This study prove that the clustering in a clinical context has potential,
but should mainly be used as a starting point for further analysis. The clustering with
SASCA formed groups that revealed both expected and unexpected results. Especially
the findings that do not confirm existing knowledge should be further investigated, as the
findings either could be revolutionary in a clinical context or only happened by chance.
To maximize the clinical utility of clustering methods in a context like this it is crucial
with a well-defined interdisciplinary collaboration.

9.2. Contributions

The contributions of this research involve several aspects of the utilization of machine
learning, specifically clustering algorithms, within healthcare. First and foremost, this
research introduces a novel approach to cluster medical data. With inspiration from
the existing DDSCA approach, SASCA cluster medical data with both single and set
values in an e�cient way. This new algorithm suggests that tailored approaches could
be beneficial in the field of patient data clustering. Additionally, the research further
evaluates the potential of the two algorithms MASPC and DDSCA on a complex dataset
with di�erent objectives than the ones the algorithms were designed for.

Another significant area of exploration is the evaluation of the clinical utility of
clustering. The findings suggests that clustering serves well as an initial step for further
analysis. The results underscores the need for a well-defined interdisciplinary collaboration
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to maximize the potential benefits of these techniques.
Through an in-depth literature review, subsequent feature analysis, and discussion

with clinicians, this research also identifies a set of features that are e�ective in describing
medical data for the purpose of patient clustering. In particular, it provides features
to be used in the context of analyzing BSIs. Highlighting the importance of using ICD
codes rather than just the chapters for clinical analysis, this study emphasizes the role
of precise ICD coding. The motivation for correct coding should extend beyond billing
purposes to include research considerations.

9.3. Future Work
As this research is one of the first exploring the application of clustering methods on
clinical health data in Norway, several potentials for future work have been discovered.
This section aims to present some of these, and includes exploring potential in the features
describing the medical history, the potential of SASCA and other adjustments that can
contribute further in the field of clustering medical data.

9.3.1. Explore and Compare Other Algorithms

Due to the limited time for this research, only three potential algorithms were explored,
where two of them only ended up being partly implemented and hence did not produce
any results. This make the basis for comparing the results from SASCA weak, including
both the computational and clinical aspects of the results. It would have been interesting
to see how SASCA performed compared to DDSCA with a portion of the dataset, as the
complexity of DDSCA was too high when using the complete data. Another approach
could have been to add BSI as a diagnose for each patient with a positive blood culture,
and use MASPC to cluster these patients and find related diagnoses.

The algorithms explored in this research was however limited by the literature review
conducted, and could be influenced by the subjective judgements of papers concluded as
relevant. There could be several other algorithms out there worth trying, which further
could serve as a comparison basis for SASCA.

9.3.2. Evaluate SASCA and Feature Importance

To further evaluate the performance and reliability of SASCA, the algorithm should be
executed iteratively. These iterations should include both the same dataset with the same
features, the same dataset with varying features and varying dataset. This approach
will not only contribute to the evaluation of the algorithm in general, but also further
investigate the importance of the di�erent features.

9.3.3. Explore Di�erent Distance Measures

By using SASCA as a basis one could do several interesting changes to see how it a�ect
the results. One change that could be particularly interesting is the way the pairwise
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distance between the lists of ICD codes are computed. As mentioned in the discussion
of research question 2 in Section 8.2, one potential method discovered was the one
introduced by (Gottlieb et al., 2013). This involves using a bipartite graph for the two
lists, where the edges represent the similarity between each code and the total distance
is defined by the maximal matching. Other methods for distance should also be explored
and consulted with clinicians.

9.3.4. Explore the Potential of the Dataset
The complexity of the dataset covering the demographics and visits of 35,694 patients
introduce many potentials for alternative feature selection. One first potential change,
introduced by the clinicians in the CoSem group, is to rather count the history prior to
the first episode and not the last. Another suggestion that appeared during the same
meeting was to only count the suspected or confirmed episodes. As these changes could
be interesting for this particular context, several other attributes could also be explored
for a general context. For a more general approach, the column hastegradkode (English:
urgency code) in the table nimesaktivitet could be utilized. Additionally, the procedure
codes could provide valuable information not captured by the diagnosis codes, and can
be handled in the same way as the diagnosis codes in the developed algorithm. These
codes can be found in ncsp and ncmp columns, still as a part of nimesaktivitet. Lastly,
one could use more of the test results from nsml and trfl to describe the prior history.

9.3.5. Explore the Revealed Relationships
A last suggestion for further research include investigating the relationships revealed in
the clustering. By diving into the original dataset, preferably utilizing a database tool like
DBeaver (DBeaver Corp and contributors, 2023), one could look at the specific details
of the patients grouped together. Does the provided data actually include more men
patients with a diagnose of cancer ending with a positive blood culture, or is the women
patients with cancer just distributed in the di�erent cluster? The same question can be
applied to each of the significant findings elaborated on in Section 8.3. By investigating
these further, one could either confirm or reject the potential findings in the resulting
clustering.
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A. PostgreSQL Query for Data
Selection

1 select
2 prior_episodes .ppid ,
3 prior_episodes . no_episodes_prior ,
4 prior_episodes . total_duration_prior ,
5 prior_episodes . total_icu_count ,
6 prior_episodes . total_icu_duration ,
7 coalesce ( last_episodes . dur_since_last_ep ,0) as dur_since_last_ep ,
8 coalesce ( last_episodes . duration_last_ep ,0) as duration_last_ep ,
9 prior_episodes .icd_codes ,

10 prior_episodes .last_bc ,
11 replace (trim( prior_episodes . micr_prt_name ), ’,’, ’ ’) as

micr_prt_name ,
12 post_episodes . total_duration_post60d ,
13 p.fødtår as birthyear ,
14 p.kjønn as sex
15 from
16 (
17 select
18 distinct blood_cultures .ppid ,
19 count( distinct episodes . hashid ) as no_episodes_prior ,
20 coalesce (sum( episodes . total_duration ) ,0) as total_duration_prior ,
21 coalesce ( string_agg ( episodes .icd_codes , ’;’), ’’) as icd_codes ,
22 coalesce (sum( episodes . icu_count ) ,0) as total_icu_count ,
23 coalesce (sum( episodes . total_icu_duration ) ,0) as total_icu_duration ,
24 max( blood_cultures . last_bc ) as last_bc ,
25 coalesce ( string_agg ( distinct blood_cultures . micr_prt_name , ’;’), ’’

) as micr_prt_name
26 from
27 (
28 select
29 coalesce (n.hashid , ’ICU_ ’||a. aninoppholdstart ) as hashid ,
30 coalesce (max(n.ppid), max(a.ppid)) as ppid ,
31 coalesce (max(n. inndatotid ), max(a. aninoppholdstart )) as

inndatotid ,
32 coalesce ( extract (epoch
33 from
34 max(n. duration )), 0) as total_duration ,
35 string_agg ( distinct n.pdxkoder , ’;’) as icd_codes ,
36 sum( distinct a. duration ) as total_icu_duration ,
37 count( distinct a. duration ) as icu_count
38 from
39 aninopphold a
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40 full join nimesaktivitet n on
41 a.ppid = n.ppid
42 and a. aninoppholdstart >= n. inndatotid
43 and a. aninoppholdstart <= n. utdatotid
44 group by
45 coalesce (n.hashid , ’ICU_ ’||a. aninoppholdstart )
46 )
47 episodes
48 right join (
49 select
50 distinct nsml.ppid ,
51 max( date_req ) as last_bc ,
52 string_agg ( distinct trim( micr_prt_name ), ’;’) as micr_prt_name
53 from
54 nsml
55 right join
56 (
57 select
58 ppid ,
59 max( date_req ) as last_bc
60 from
61 nsml
62 where
63 matr_desc like ’%Blod%’
64 group by
65 ppid
66 ) n2 on
67 nsml.ppid = n2.ppid
68 and nsml. date_req = n2. last_bc
69 where
70 matr_desc like ’%Blod%’
71 group by
72 nsml.ppid
73 )
74 blood_cultures on
75 episodes .ppid = blood_cultures .ppid
76 and episodes . inndatotid <= blood_cultures . last_bc
77 group by
78 blood_cultures .ppid
79 order by
80 blood_cultures .ppid
81 ) prior_episodes
82 join (
83 select
84 distinct blood_cultures .ppid ,
85 coalesce (sum( episodes . total_duration ) ,0) as total_duration_post60d
86 from
87 (
88 select
89 coalesce (n.hashid , ’ICU_ ’||a. aninoppholdstart ) as hashid ,
90 coalesce (max(n.ppid), max(a.ppid)) as ppid ,
91 coalesce (max(n. inndatotid ), max(a. aninoppholdstart )) as

inndatotid ,
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92 coalesce (max(n. utdatotid ), max(a. aninoppholdslutt )) as utdatotid ,
93 coalesce ( extract (epoch
94 from
95 max(n. duration )), 0) as total_duration
96 from
97 aninopphold a
98 full join nimesaktivitet n on
99 a.ppid = n.ppid

100 and a. aninoppholdstart >= n. inndatotid
101 and a. aninoppholdstart <= n. utdatotid
102 group by
103 coalesce (n.hashid , ’ICU_ ’||a. aninoppholdstart )
104 )
105 episodes
106 right join (
107 select
108 distinct nsml.ppid ,
109 max( date_req ) as last_bc ,
110 string_agg ( distinct trim( micr_prt_name ), ’;’) as micr_prt_name
111 from
112 nsml
113 right join
114 (
115 select
116 ppid ,
117 max( date_req ) as last_bc
118 from
119 nsml
120 where
121 matr_desc like ’%Blod%’
122 group by
123 ppid
124 ) n2 on
125 nsml.ppid = n2.ppid
126 and nsml. date_req = n2. last_bc
127 where
128 matr_desc like ’%Blod%’
129 group by
130 nsml.ppid)
131 blood_cultures on
132 episodes .ppid = blood_cultures .ppid
133 and episodes . utdatotid > last_bc
134 and episodes . inndatotid <= last_bc + interval ’60 days ’
135 group by
136 blood_cultures .ppid
137 order by
138 blood_cultures .ppid
139 ) post_episodes on
140 prior_episodes .ppid = post_episodes .ppid
141 left join (
142 select
143 e.ppid ,
144 coalesce (max(e. duration ) ,0) as duration_last_ep ,
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145 coalesce ( extract (epoch
146 from
147 max( last_bc - last_episode_out_date )) ,0) as dur_since_last_ep
148 from
149 (
150 select
151 coalesce (n.ppid , a2.ppid) as ppid ,
152 coalesce (max( utdatotid ), max(a2. aninoppholdslutt )) as

last_episode_out_date ,
153 max( last_bc ) as last_bc
154 from
155 nimesaktivitet n full join aninopphold a2 on n.ppid = a2.ppid
156 join (
157 select
158 distinct nsml.ppid ,
159 max( date_req ) as last_bc ,
160 string_agg ( distinct trim( micr_prt_name ), ’;’) as micr_prt_name
161 from
162 nsml
163 right join
164 (
165 select
166 ppid ,
167 max( date_req ) as last_bc
168 from
169 nsml
170 where
171 matr_desc like ’%Blod%’
172 group by
173 ppid
174 ) n2 on
175 nsml.ppid = n2.ppid
176 and nsml. date_req = n2. last_bc
177 where
178 matr_desc like ’%Blod%’
179 group by
180 nsml.ppid
181 ) bc1 on
182 n.ppid = bc1.ppid
183 and n. utdatotid < bc1. last_bc
184 group by
185 coalesce (n.ppid , a2.ppid)
186 ) last_episode
187 join ( select coalesce (n.ppid , a3.ppid) as ppid , coalesce (utdatotid ,

a3. aninoppholdslutt ) as utdatotid , coalesce ( extract (epoch from n.
duration ), a3. duration ) as duration from

188 nimesaktivitet n full join aninopphold a3 on n.ppid = a3.ppid) e
189 on
190 last_episode .ppid = e.ppid
191 and last_episode . last_episode_out_date = e. utdatotid
192 group by
193 e.ppid
194 ) last_episodes on
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195 prior_episodes .ppid = last_episodes .ppid
196 join pasient p on
197 prior_episodes .ppid = p.ppid
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B. SASCA Implementation in
Python

This appendix include the code implementing SASCA in Python, utilized to find the
clusters discussed in this research. Note that the code is heavily inspired by the code for
DDSCA given by (Zhong et al., 2021). The changes from the original corresponds to the
changes in the algorithm, including the distance measurements for both single and set
values.

1 import numpy as np
2 import pandas as pd
3 import networkx as nx
4 import pickle as pkl
5 from sklearn . preprocessing import StandardScaler
6 from sklearn . preprocessing import MinMaxScaler
7 from matplotlib import pyplot as plt
8 from scipy. spatial import distance
9 import copy

10 import random
11 import math
12
13 from collections import Counter
14 import h5py
15
16
17 def create_ICD_tree ():
18 """ Create the networkx graph representation of the ICD -10 hierarchy .

"""
19 with open(’../ data/ icd10hier .txt ’, ’r’) as f:
20 config = f.read (). splitlines ()
21 icd_tree = []
22 for ele in config :
23 line = ele.split(’ ’)
24 icd_tree . append (line)
25 cutted_icd_tree = []
26 for i in icd_tree :
27 cutted_icd_tree . append (i[1:])
28 icd_tree_inform = sorted ([ list(item) for item in set(
29 tuple(row) for row in cutted_icd_tree )], key= lambda x: (x[0]))
30 icd_DiGraph = nx. DiGraph ()
31 for i in icd_tree_inform :
32 icd_DiGraph . add_edges_from ([(i[3], i[2]) , (i[2], i[1]) , (i[1], i

[0]) ])
33
34 return icd_DiGraph
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35
36
37 def get_all_unique_icds_most_frequent ( icd_codes_list , top_n =200):
38 """
39 Return all unique icd code found in the icd_codes_list that is

included in the top_n frequent codes
40
41 Args:
42 icd_codes_list ( nested array): A nested list representing the

list of icd codes given to each patient
43 top_n (int , optional ): The number of frequent icd codes to

include . Defaults to 200.
44
45 Returns :
46 top_n_codes : The top n most frequent codes
47 """
48 tree = create_ICD_tree ()
49 flattened_list = [code [:3]
50 for icd_codes in icd_codes_list for code in

icd_codes if code [:3] in tree]
51 code_counts = Counter ( flattened_list )
52 sorted_codes = sorted ( code_counts .items (),
53 key= lambda x: x[1], reverse =True)
54 top_n_codes = [code for code , count in sorted_codes [: top_n ]]
55
56 return top_n_codes
57
58
59 def information_content (node , tree):
60 """ Calculate the information content for a given node in the given

tree
61
62 Args:
63 node ( networkx node): The current node to calculate th

information content for
64 tree ( networkx graph ): Networkx graph representing the icd

structure
65
66 Returns :
67 float: the calculated information content for the node
68 """
69 all_leaves = [node for node in tree.nodes () if tree. out_degree (node)

== 0]
70 L = len( all_leaves )
71 leaves = len ([ node for node in nx. descendants (
72 tree , node) if node in all_leaves ])
73 ancestors = len(nx. ancestors (tree , node))
74 t = ( leaves /( ancestors + 1)) + 1
75 n = L + 1
76 return -math.log(t/n)
77
78
79 def jiang_conrath (node1 , node2 , tree):
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80 """ Calulate the jiang conrath distance between two nodes from the
tree

81
82 Args:
83 node1 ( networkx node): The first node to calculate distance

between
84 node2 ( networkx node): The second node to calculate distance

between
85 tree ( networkx graph ): Networkx graph representing the icd

structure
86
87 Returns :
88 float: The jiang conrath distance between the two nodes given the

tree
89 """
90 lca = list(nx. algorithms . tree_all_pairs_lowest_common_ancestor (
91 tree , root=’A00 -Z99 ’, pairs =[( node1 , node2)])) [0][1]
92 return information_content (node1 , tree) + information_content (node2 ,

tree) - 2* information_content (lca , tree)
93
94
95 def create_icd_jc_distance_matrix ( all_unique_icds_in_tree , tree):
96 """ Create the distance matrix representing the jiang conrath distance

between each frequent icd code in the tree
97
98 Args:
99 all_unique_icds_in_tree (array ): Representing all the frequent

icd codes that are present in the tree
100 tree ( networkx graph ): Networkx graph representing the icd

structure
101
102 Returns :
103 numpy. ndarray : Representing the distance matrix for each ICD

code
104 """
105 distance_matrix = np.zeros(
106 [len( all_unique_icds_in_tree ), len( all_unique_icds_in_tree )])
107 max_distance = jiang_conrath (’A00 ’, ’U04 ’, tree)
108 l = len( all_unique_icds_in_tree )
109 for i in range(l):
110 code1 = all_unique_icds_in_tree [i]
111 for j in range(i, l):
112 code2 = all_unique_icds_in_tree [j]
113 norm_distance = jiang_conrath (code1 , code2 , tree) /

max_distance
114 distance_matrix [i][j] = distance_matrix [j][i] = norm_distance
115 return distance_matrix
116
117
118 def find_distance (icd_list1 , icd_list2 , icd_distance_matrix ,

all_unique_icds ):
119 """ Calculate the distance between two lists of icd codes , based on

the given distance matrix and all unique frequent icd codes
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120
121 Args:
122 icd_list1 ( array): List of diagnose codes for the first patient
123 icd_list2 ( array): List of diagnose codes for the second patient
124 icd_distance_matrix ( numpy. ndarray ): Distance matrix for each ICD

code
125 all_unique_icds (array): All unique frequent icd codes in the

tree
126
127 Returns :
128 float: The distance between the two lists , a valiue between 0 and

1
129 """
130 icd_list1 = [code [:3]
131 for code in icd_list1 if code [:3] in all_unique_icds ]
132 icd_list2 = [code [:3]
133 for code in icd_list2 if code [:3] in all_unique_icds ]
134 if (len( icd_list1 ) == 0 and len( icd_list2 ) == 0):
135 distance = 0
136 elif len( icd_list1 ) == 0 or len( icd_list2 ) == 0:
137 distance = 1
138 else:
139 dis1 = sum(min( icd_distance_matrix [ all_unique_icds .index(
140 code1 [:3]) ][ all_unique_icds .index(code2 [:3])] for code2 in

icd_list2 ) for code1 in icd_list1 )
141 dis2 = sum(min( icd_distance_matrix [ all_unique_icds .index(
142 code1 [:3]) ][ all_unique_icds .index(code2 [:3])] for code1 in

icd_list1 ) for code2 in icd_list2 )
143 distance = 0.5 * (( dis1/len( icd_list1 )) + (dis2/len( icd_list2 )))
144 return distance
145
146
147 def get_outcome (row):
148 """ Group the patient row to the corresponding outcome
149
150 Args:
151 row ( pandas row): Row representing the values for a patient
152
153 Returns :
154 int: A number between 0-3 represetning the outcome
155 """
156 if pd.isna(row[’micr_prt_name ’]):
157 if row[’total_duration_post60d ’] == 0:
158 return 0 # No BC and short stay
159 return 1 # No bc but long stay
160 if row[’total_duration_post60d ’] == 0:
161 return 2 # BC and short stay
162 return 3 # BC and long stay
163
164
165 def make_patient_history_df ():
166 """ Make the dataframe for the history of a patient from the csv -

tables
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167
168 Returns :
169 pandas . DataFrame : Dataframe represetning the history of each

patient in the csv
170 """
171 patient_history = pd. read_csv (’../ data/ patient_history .csv ’)
172 patient_history [’last_bc ’] = pd. to_datetime ( patient_history [’last_bc ’

])
173 patient_history [’age ’] = patient_history . apply(
174 lambda row: row[’last_bc ’]. year - row[’birthyear ’], axis =1)
175 patient_history [’sex ’] = patient_history [’sex ’]. replace (
176 {’Mann ’: 0, ’Kvinne ’: 1})
177 patient_history = patient_history .drop ([ ’birthyear ’, ’last_bc ’], axis

=1)
178 patient_history [’icd_codes ’] = patient_history [’icd_codes ’]. fillna (""

)
179 patient_history [’icd_codes ’] = patient_history [’icd_codes ’]. apply(
180 lambda x: x.split(’;’))
181
182 patient_history = patient_history .drop( patient_history .tail (1).index)
183
184 return patient_history
185
186
187 def preprocess_patient_history ( patient_history , standardize =True ,

normalize =False):
188 """ Preprocess the given dataframe
189
190 Args:
191 history ( pandas . DataFrame ): Describing the history of each

patient
192 Returns :
193 pandas . DataFrame : The preprocessed dataframe
194 """
195
196 patient_history [’total_duration_post60d ’] = StandardScaler (
197 ). fit_transform ( patient_history [[’total_duration_post60d ’]])
198 bins = sorted (
199 [0] + list( patient_history [’total_duration_post60d ’]. quantile ([0,

1.0]). values ))
200 patient_history [’total_duration_post60d ’] = pd.cut(
201 round( patient_history [’total_duration_post60d ’], 3), bins=bins ,

labels =[0, 1])
202
203 patient_history [’outcome ’] = patient_history . apply(
204 lambda x: get_outcome (x), axis =1)
205 patient_history .drop(
206 [’total_duration_post60d ’, ’micr_prt_name ’], axis =1, inplace =True

)
207
208 num_cols = [’no_episodes_prior ’, ’total_duration_prior ’, ’

total_icu_count ’,
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209 ’total_icu_duration ’, ’dur_since_last_ep ’, ’
duration_last_ep ’, ’age ’]

210 patient_history [ num_cols ] = MinMaxScaler (
211 ). fit_transform ( patient_history [ num_cols ])
212 return patient_history
213
214
215 def create_single_distance_matrix ( single_vals_wo_outcome ):
216 """ Create the distance matrix representing the distance between each

patient ’ single values , saved as a hdf54 file
217
218 Args:
219 single_vals_wo_outcome (numpy. ndarray ): Nested list representing

the single values for each patient
220 """
221 n = len( single_vals_wo_outcome )
222 batch_size = 10000
223 num_batches = (n+batch_size -1) // batch_size
224
225 min_val = float("inf")
226 max_val = float("-inf")
227
228 with h5py.File(’single_distance_matrix .hdf5 ’, "w") as hdf5_file :
229 single_distance_matrix = hdf5_file . create_dataset (
230 " single_distance_matrix ", (n, n), dtype=np. float64 )
231
232 for i in range( num_batches ):
233 start_i = i * batch_size
234 end_i = min ((i+1) * batch_size , n)
235
236 for j in range(i, num_batches ):
237 start_j = j* batch_size
238 end_j = min ((j+1)*batch_size , n)
239
240 batch_distances = distance .cdist(
241 single_vals_wo_outcome [ start_i :end_i],

single_vals_wo_outcome [ start_j :end_j], metric =’euclidean ’)
242
243 min_val = min(min_val , np.min( batch_distances ))
244 max_val = max(max_val , np.max( batch_distances ))
245
246 if i == j:
247 single_distance_matrix [ start_i :end_i ,
248 start_j :end_j] =

batch_distances
249 else:
250 single_distance_matrix [ start_i :end_i ,
251 start_j :end_j] =

batch_distances
252 single_distance_matrix [ start_j :end_j ,
253 start_i :end_i] =

batch_distances .T
254 for i in range( num_batches ):
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255 start_i = i * batch_size
256 end_i = min ((i + 1) * batch_size , n)
257
258 for j in range(i, num_batches ):
259 start_j = j * batch_size
260 end_j = min ((j + 1) * batch_size , n)
261
262 # Normalize the current batch
263 single_distance_matrix [ start_i :end_i , start_j :end_j] = (
264 single_distance_matrix [ start_i :end_i , start_j :end_j]

- min_val ) / ( max_val - min_val )
265
266 if i != j:
267 # Normalize the symmetric batch
268 single_distance_matrix [ start_j :end_j , start_i :end_i]

= (
269 single_distance_matrix [ start_j :end_j , start_i :

end_i] - min_val ) / ( max_val - min_val )
270
271
272 def p_product_distance ( selected_center ):
273 """ Calculate the distance between each patient and the selected

center . The distance is given by the d_jc for single and d
274
275 Args:
276 selected_center (int): The index of the current selected center
277
278 Returns :
279 array: The total distance vector representing the d_SASCA

distance between each patient and the current seleted center
280 """ """ """
281 with h5py.File(" single_distance_matrix_normalized .hdf5", "r") as

hdf5_file :
282 single_distance_matrix = hdf5_file [" single_distance_matrix "]
283 single_vector = [ single_distance_matrix [i]
284 [ selected_center ] for i in range(n)]
285 icd_code_vector = [ find_distance ( icd_codes_list [i], icd_codes_list [

selected_center ],
286 icd_distance_matrix , all_unique_icds

) for i in range(n)]
287 outcome_vector = [abs( single_val_to_np [i][ -1] -
288 single_val_to_np [ selected_center ][ -1]) /3 for i

in range(n)]
289 p_product_vector = ( w_single * (np.array( single_vector ) ** 2) + w_set

* (
290 np.array( icd_code_vector )**2) + w_outcome * (np.array(

outcome_vector )**2)) ** 0.5
291 return list( p_product_vector )
292
293
294 def retFarthestPoint ( all_centers , points_index , distance_matrix ):
295 """ Find the next center that is furthest away from the already

selected centers
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296
297 Args:
298 all_centers (array ): List of all already selected centers
299 points_index ( array): All remaining patient indices
300 distance_matrix (numpy. ndarray ): Current distances between each

of the already selected centers and the patients .
301
302 Returns :
303 int: index of the point farthest away from all centers
304 """
305 distance_rows = copy. deepcopy (np.array( distance_matrix ))
306 min_values = np.amin( distance_rows , axis =0)
307 indexes = np. concatenate (np. argwhere ( min_values == np.max( min_values )

)).ravel(
308 ). tolist ()
309 indexes_filtered = [x for x in indexes if x not in all_centers ]
310 index = random . choice ( indexes_filtered )
311 return index
312
313
314 def get_cluster (centers , distance_matrix , n):
315 """ Assign each record to a clusted based on the selected centers and

the distance matrix with the distance between each center and the
patients .

316 Each patient is assigned to the cluster with the closest center .
317
318 Args:
319 centers (array ): List of all selected centers
320 distance_matrix (numpy. ndarray ): Distance matrix representing

distance between the centers and the patients
321 n (int): The number of patients
322
323 Returns :
324 numpy. ndarray : A nested list representing the clusters , where the

ints in the first list represent the record ids assigned to the first
cluster

325 """
326 index_cluster = np. argmin (np.array( distance_matrix ), axis =0)
327 wcss = [0] * len( centers )
328 bcss = [0] * len( centers )
329 all_clusters = [[] for i in centers ]
330 k = len( centers )
331 average_distances = np.mean( distance_matrix , axis =0)
332 global_center_index = np. argmin ( average_distances )
333
334 for patient_i , cluster_i in enumerate ( index_cluster ):
335 all_clusters [ cluster_i ]. append ( patient_i )
336 wcss[ cluster_i ] += ( distance_matrix [ cluster_i ][ patient_i ]**2)
337
338 global_center_distances = [( distance_matrix [i]
339 [ global_center_index ]**2) for i in range (

len( centers ))]
340 for i, cluster in enumerate ( all_clusters ):
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341 n_k = len( cluster )
342 bcss[i] = global_center_distances [i] * n_k
343 ch = (sum(bcss)/sum(wcss)) * ((n-k)/(k -1))
344 return all_clusters , ch , sum(wcss)
345
346
347 if __name__ == ’__main__ ’:
348 """ SASCA """
349 tree = create_ICD_tree ()
350 patient_history = make_patient_history_df ()
351 patient_history = preprocess_patient_history ( patient_history )
352
353 single_val_cols = [
354 col for col in patient_history . columns if col not in [’ppid ’, ’

icd_codes ’]]
355 single_val_to_np = patient_history [ single_val_cols ]. to_numpy ()
356 icd_codes_list = patient_history [’icd_codes ’]. to_numpy ()
357
358 all_unique_icds , p = get_all_unique_icds_most_frequent (
359 icd_codes_list , top_n =200)
360 # icd_jc_distance_matrix = create_icd_jc_distance_matrix (

all_unique_icds , tree)
361 with open(’temp/ icd_jc_distance_matrix_top_200 .pkl ’, ’rb’) as fp:
362 icd_distance_matrix = pkl.load(fp)
363
364 n = len( single_val_to_np )
365 w_single = 0.5
366 w_set = 0.4
367 w_outcome = 0.1
368
369 points_index = list(range (n))
370 random . shuffle ( points_index )
371 start = points_index .pop ()
372
373 first_distance = p_product_distance (start)
374 min_k = 2
375 total_k = 30
376 k_values = range (2, total_k +1)
377 centers = [start]
378 # Start SASCA
379 # Taking first random center
380 # Point removed so we don ’t loop between the two farthest points
381 distance_matrix = [ first_distance ]
382 for k in k_values :
383 print(" Finding a new center (no. {}) and calculating the distance

matrix for this center ". format (k))
384 # Finding which point is furthest from all already chosen centers

, the distance from this point to the closest center , and the index of
it.

385 farthest_point = retFarthestPoint (
386 centers , points_index , distance_matrix )
387 # Find next center as the point furthest away
388 centers . append ( farthest_point )
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389 points_index . remove ( farthest_point )
390 distance_matrix . append ( p_product_distance ( centers [ -1]))
391 clusters , ch , wcss = get_cluster (centers , distance_matrix , n)

Listing B.1: SASCA implementation in Python
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C. ICD Mapping
C.1. ICD Chapter Mapping to Description

Chapter
number

Range of
ICD codes Description

Chapter 1 A00-B99 Certain infectious and parasitic diseases

Chapter 2 C00-D49 Neoplasms

Chapter 3 D50-D89
Diseases of the blood and blood-forming
organs and certain disorders involving
the immune mechanism

Chapter 4 E00-E90 Endocrine, nutritional and metabolic diseases

Chapter 5 F00-F99 Mental, Behavioral and Neurodevelopmental disorders

Chapter 6 G00-G99 Diseases of the nervous system

Chapter 7 H00-H59 Diseases of the eye and adnexa

Chapter 8 H60-H95 Diseases of the ear and mastoid process

Chapter 9 I00-I99 Diseases of the circulatory system

Chapter 10 J00-J99 Diseases of the respiratory system

Chapter 11 K00-K93 Diseases of the digestive system

Chapter 12 L00-L99 Diseases of the skin and subcutaneous tissue

Chapter 13 M00-M99 Diseases of the musculoskeletal system
and connective tissue

Chapter 14 N00-N99 Diseases of the genitourinary system

Chapter 15 O00-O99 Pregnancy, childbirth and the puerperium

Chapter 16 P00-P96 Certain conditions originating in the perinatal period
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Chapter 17 Q00-Q99 Congenital malformations, deformations
and chromosomal abnormalities

Chapter 18 R00-R99 Symptoms, signs and abnormal clinical
and laboratory findings, not elsewhere classified

Chapter 19 S00-T98 Injury, poisoning and certain other
consequences of external causes

Chapter 20 V0n-Y98 External causes of morbidity

Chapter 21 Z00-Z99 Factors influencing health status and
contact with health services

Chapter 22 U00-U85 Codes for special purposes

Table C.1.: List of mappings from ICD chapters to their code range and description
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