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Abstract

In this master’s thesis, we study a Mean Field Game system in the whole space driven by a fractional
Laplacian ´p´∆qα{2 of order α P p1, 2q. We prove existence and uniqueness of classical solutions to
the Hamilton-Jacobi-Bellman and Fokker-Planck equations, and discuss how our results contribute
to the study of the coupled Mean Field Game system. Unlike previous work, we assume Hölder
continuous initial and source terms, and provide improved spatial regularity estimates for our
solutions. The proofs use a combination of fixed point arguments on a Duhamel map, fractional
heat kernel estimates, interpolation in Hölder spaces and comparison principles.

Sammendrag

I denne masteroppgaven studerer vi et Mean Field Game-system i hele rommet drevet av en
fraksjonell Laplace-operator ´p´∆qα{2 med orden α P p1, 2q. Vi beviser eksistens og entydighet
av klassiske løsninger til Hamilton-Jacobi-Bellman- og Fokker-Planck-ligningene, og diskuterer
hvordan resultatene v̊are bidrar til å studere det koblede Mean Field Game-systemet. Til for-
skjell fra tidligere arbeid antar vi Hölderkontinuerlig initial- og randdata, og presenterer forbedrede
romlige regularitetsestimater for løsningene v̊are. Bevisene benytter en kombinasjon av fikspunk-
targumenter p̊a Duhamelavbildninger, estimater for den fraksjonelle varmekjernen, interpolasjon i
Hölderrom og sammenligningsprinsipper.
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1 Introduction

Game theory is a branch of mathematics that aims to model strategic interaction between rational
agents. The field was first introduced by John von Neumann in 1928 [23], and has since seen
numerous advancements both mathematically and application-wise. A particularly noteworthy
contribution was made by John Nash who explored the concept of equilibria in non-cooperative
games in 1951 [19]. Several applications have since emerged within fields such as social sciences
and economics.

In classical game theory, each agent’s action depends on the behavior of all other agents. This
causes the number of interactions to grow rapidly as we increase the population, and computational
approaches become unviable. A natural idea that arises is to look at the agents from a statistical
point of view instead. Since each agent has negligible impact upon a large population system, we
choose to view the agents as a statistical distribution. This is the main idea behind Mean Field
Games (MFGs) which was introduced by Jean-Michel Lasry and Pierre-Louis in 2006 [17], and
almost simultaneously by Huang, Malhamé and Caines [11].

The MFG system consists of a Hamilton-Jacobi-Bellman (HJB) equation, essentially an optimal
control problem, coupled with a Fokker-Planck (FP) equation representing the distribution of
agents.

$

’

’

’

&

’

’

’

%

´Btv ´ ε∆v `H px,m,Dvq “ F pm ptq , xq in r0, T q ˆ Rd,

v pT, ¨q “ G pm pT q , ¨q in Rd,

Btm´ ε∆m` ∇ ¨ pDpH px,m,Dvqmq “ 0 in p0, T s ˆ Rd,

m p0, ¨q “ m0 in Rd.

(1)

Much of the early work studied variations of (1), with particular emphasis on existence and unique-
ness of classical solutions [1, 5, 17]. There has since been a variety of generalizations. Of particular
interest to us are the Mean Field Games with nonlocal fractional operators in the work by Olav
Ersland and Espen R. Jakobsen [8]. Instead of only working with the Laplace operator ∆, they
showed existence and uniqueness of classical solutions to a large class of fractional MFGs. Oper-
ators considered were of order α P p1, 2q, and initial and source terms were imposed with Ck

b and
W k,8-type assumptions in space.

The core of this thesis is to study MFGs with less regular initial and source terms. We consider a
special case of the nonlocal coupling system in [8] of the form

$

’

’

’

&

’

’

’

%

´Btv ` p´∆q
α
2 v `H pDvq “ F pm ptq , xq in r0, T q ˆ Rd,

v pT, ¨q “ G pm pT q , ¨q in Rd,

Btm` p´∆q
α
2 m` ∇ ¨ pDpH pDvqmq “ 0 in p0, T s ˆ Rd,

m p0, ¨q “ m0 in Rd,

(2)

where α P p1, 2q. The spatial regularity of the solution pv,mq will be closely related to the operator
and assumptions imposed on the source term. For the HJB equation, we expect v to be an order
of α more regular in space than F . Similarly, m is expected to be an order of pα´ 1q more regular
than the DpHpDvq-term. Since we are working with a fractional operator, however, we will not be
able to express the entire regularity through Ck

b -spaces. This is nicely highlighted in [8], where we
go from F pm, ¨q P C2

b pRdq to vpt, ¨q P C3
b pRdq, hence only gaining an order of 1 in terms of spatial

regularity in the HJB equation. In order to utilize the operator to its fullest, we therefore need
a new way of looking at spatial regularity. This motivates our main deviation from earlier work,
namely the introduction of Hölder spaces, which is a generalization of the Ck

b -spaces (see sections
2.1 and 2.8).

The main part of the text is dedicated to proving existence and uniqueness of classical solutions to
the HJB and FP equations. We view the equations seperately, and finish the thesis by discussing
how these results contribute to the study of the coupled MFG system in (2). Main results include

(i) Existence and uniqueness of classical solutions to the HJB equation, given spatial β-Hölder
continuity of initial and source terms where β P p0, 1q. The resulting solution is pα` β ´ εq-
Hölder continuous in space for any ε ą 0. We refer to Chapter 3.

1



(ii) Existence and uniqueness of very weak solutions to the FP equation, given ν-Hölder con-
tinuous initial data where ν P p0, 1q, and spatial µ-Hölder continuity of the drift term where
µ P p0, αq. The resulting solution is pα`µ´ ε´ 1q-Hölder continuous in space for any ε ą 0,
and classical whenever µ ą 1. We refer to Chapter 4.

Existence results are mainly tackled through fixed point arguments, using a combination of frac-
tional heat kernel estimates and interpolation in Hölder spaces. Uniqueness for the HJB equation
is shown through the comparison principle, whereas positivity and mass preservation properties
are used in the Fokker-Planck case. The proofs in the thesis will closely follow [8], but differ in
some key aspects which we will briefly review.

As we only assume Hölder continuity on the terminal data G pm pT q , ¨q in (2), Dv will not exist
at time t “ T . This requires us to impose a global Lipschitz condition on H pDvq, since we lose
control over its function argument close to the terminal time. When tackling uniqueness results
for the FP equation, we work with so-called very weak solutions, drawing inspiration from [13].
This is due to insufficiency of the corresponding proof in [8] when considering less regular initial
and source terms. Lastly, we comment on the choice of operator. Although we are only working

with the fractional Laplacian ´ p´∆q
α{2

, the majority of our assumptions hold for all operators
considered in [8] (see sections 2.5 and 2.6). Results in the thesis may therefore hold for these
operators as well, but this requires further exploration.

The HJB equation was originally treated in the present author’s project thesis [2] for the case
where α`β ě 2. In order to consider α`β ă 2 as well, we have heavily revised our approach and
present mostly new proofs in Chapter 3. Much of the preliminary material is also from the project
thesis, and we will specify where this is the case later in the text.

The structure of the thesis is as follows:

• Chapter 2 presents the preliminary material. This includes technical results in Hölder spaces,
fractional heat kernel estimates and well-known results from analysis and measure theory.

• Chapter 3 contains existence and uniqueness results for classical solutions to the Hamilton-
Jacobi-Bellman equation. We also present spatial Hölder regularity estimates for this solu-
tion.

• Chapter 4 treats similar results for very weak solutions to the Fokker-Planck equation. We
also prove positivity and L1-regularity of the solution, and study when it is classical.

• Chapter 5 discusses further work and how results in the thesis contribute to the study of the
coupled Mean Field Game system.

2



2 Preliminary Material

Before we begin with our main analysis, we give a review of preliminary material. This chapter is
mainly from the present author’s project thesis [2], and we will therefore omit most of the proofs.
Particular focus is placed upon new results, including the generalized Grönwall inequality (Lemma
2.11) and some of the technical results for Hölder seminorms in Section 2.4.

2.1 Spaces and norms

We begin by defining spaces and norms that will be referred to frequently throughout the text.

Definition 2.1 (The spaces Cs and Cs
b ). For s P N0, we denote by C

s
`

Rd
˘

the space of continuous
functions on Rd with s continuous derivatives. Furthermore, we define

Cs
b

`

Rd
˘

:“
␣

g P Cs
`

Rd
˘

: }g}CspRdq ă 8
(

, (3)

where the } ¨ }CspRdq-norm is defined as

}g}CspRdq :“ }g}L8pRdq `

s
ÿ

j“1

rgsCjpRdq
where rgsCjpRdq

:“ max
|k|“j

}Dkg}L8pRdq, (4)

and k is a multi-index, meaning that

Dkg :“
B|k|g

Bxk1
1 Bxk2

2 ...Bx
kd

d

where |k| “ k1 ` k2 ` ...` kd. (5)

The spaces above provide us with important information about the regularity of a function and its
derivatives. We are able to derive even finer regularity results by introducing the notion of Hölder
continuity, which is stronger than uniform continuity but weaker than Lipschitz.

Definition 2.2 (Hölder space and seminorm). For s P N0 and β P p0, 1q, we define the Hölder
space

Cs,β
`

Rd
˘

:“
!

g P Cs
b

`

Rd
˘

: }g}CspRdq ` rgsCs,βpRdq
ă 8

)

, (6)

where the Hölder seminorm is defined as

rgsCs,β

`

Rd
˘

“ max
|k|“s

“

Dkg
‰

C0,βpRdq
where rgsC0,βpRdq

“ sup
x,hPRd

h‰0

|gpx` hq ´ gpxq|

|h|
β

. (7)

We say that a function g is β-Hölder continuous if rgsC0,βpRdq
is finite. All Hölder spaces are Banach

spaces, as stated in Section 3.1 in [15]. Intuitively, the Hölder spaces work as a continuation of the
Cs

b -spaces, which is nicely highlighted through the following embedding theorem.

Theorem 2.3 (Embedding theorem for Hölder spaces). Let s P N0 and β, µ P p0, 1q such that
β ă µ. Then,

Cs,β
`

Rd
˘

Ă Cs,µ
`

Rd
˘

and Cs,β
`

Rd
˘

Ă Cs`1
b

`

Rd
˘

.

Proof. The result is proven in Theorem 2.3 in [2].

The embedding results above give us a key understanding of how Hölder spaces of different orders
relate to each other. We will investigate these relations further in Section 2.8 where we look at
interpolation inequalities for the Hölder seminorms. In order to simplify our calculations later in
the text, we introduce some remarks regarding notation.

Remark 2.4 (Notation). For simplicity, we will refer to spaces Cγ for a noninteger γ ą 0. By
this, we mean the space Csγ ,βγ where γ “ sγ ` βγ such that sγ P N0 and βγ P p0, 1q. Similarly,
we let r¨sCγpRdq

:“ r¨sCsγ,βγ pRdq
. When working with Hölder seminorms over Rd, we simplify our

notation by letting r¨sCs,β :“ r¨sCs,βpRdq
. Similarly, we let } ¨ }8 :“ } ¨ }L8pRdq. Furthermore, for

any s P N, we use the conventions }Ds ¨ }8 :“ r¨sCs and rDs¨sC0,β :“ r¨sCs,β .

3



2.2 The Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman equation (HJB) is a nonlinear PDE arising from optimal control
problems, and serves as the first of two equations in the Mean Field Game system (2). We will
throughout the text consider a specific version of this equation driven by a fractional Laplacian

´ p´∆q
α{2

. In addition, we assume that the Hamiltonian H only depends on the derivative of the
solution.

Definition 2.5 (The Hamilton-Jacobi-Bellman equation (HJB)). For some terminal time T ą 0
and α P p1, 2q, we consider the equation

B

Bt
v pt, xq ` p´∆q

α
2 v pt, xq `H pDv pt, xqq “ f pt, xq in p0, T s ˆ Rd, (8a)

v p0, xq “ v0 pxq in Rd. (8b)

We refer to f pt, xq as the source term. Working with this PDE is difficult for multiple reasons.
Since the Hamiltonian is general and only subject to regularity assumptions, its dependence on Dv

makes us unable to solve the equation explicitly. Furthermore, the fractional Laplacian ´ p´∆q
α{2

is a nonlocal operator and has no simple explicit definition in the real space. We discuss the
fractional Laplacian in detail in Section 2.5.

2.3 The Fokker-Planck equation

The second equation in the Mean Field Game system is the Fokker-Planck equation (FP), which
describes the time evolution of a probabilistic distribution.

Definition 2.6 (The Fokker-Planck equation (FP)). For some terminal time T ą 0 and α P p1, 2q,
we consider the equation

B

Bt
m pt, xq ` p´∆q

α
2 m pt, xq ` ∇ ¨ pb pt, xqm pt, xqq “ 0 in p0, T s ˆ Rd, (9a)

m p0, xq “ m0 pxq in Rd. (9b)

We refer to b pt, xq as the drift term. This PDE is easier to deal with than the HJB equation, due
to the abscence of the Hamiltonian term. There are, however, some additional considerations to be
taken. Since m pt, ¨q is generally viewed as a probabilistic distribution, we need to ensure positivity
and L1-regularity of possible solutions.

2.4 Some central results

In this section, we recall some well-known results from analysis and measure theory. A core
ingredient in our analysis is Banach’s fixed point theorem, which will be used when deriving
existence results for the HJB and FP equations in sections 3.1 and 4.1.

Theorem 2.7 (Banach’s fixed point theorem (Theorem 5.1 in [9])). Let pX, } ¨ }Xq denote a real
non-empty Banach space, and let ϕ : X Ñ X be a contraction mapping, that is, there exists L ă 1
such that for any u,w P X,

}ϕ puq ´ ϕ pwq }X ď L}u´ w}X .

Then, ϕ has a unique fixed point, meaning that D!v P X such that ϕ pvq “ v.

We proceed by introducing two well-known results for interchanging limits and integrals, namely
the Fubini-Tonelli theorem and Lebesgue’s dominated convergence theorem. Both results can be
found in [3], and will prove useful when showing existence of classical solutions to the HJB and
FP equations in sections 3.3 and 4.4.
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Theorem 2.8 (The Fubini-Tonelli theorem). Let X Ď Rd1 and Y Ď Rd2 for some d1, d2 P N. If
f is a measurable function, it follows that

ż

X

ˆ
ż

Y

|f px, yq| dy

˙

dx “

ż

Y

ˆ
ż

X

|f px, yq| dx

˙

dy “

ż

XˆY

|f px, yq| d px, yq .

Furthermore, if any of these integrals are finite, then

ż

X

ˆ
ż

Y

f px, yq dy

˙

dx “

ż

Y

ˆ
ż

X

f px, yq dx

˙

dy “

ż

XˆY

f px, yq d px, yq .

Theorem 2.9 (Lebesgue’s dominated convergence theorem). Let X Ď Rd1 Ñ R for some d1 P N
and let f : X Ñ R. Suppose that pfnq is a sequence of measurable functions on X that converges
pointwise to f almost everywhere, and that there exists g : X Ñ R such that |fn pxq| ď g pxq a.e.
for all n in the index set, and

ż

X

|g pxq| dx ă 8.

Then, it follows that

lim
nÑ8

ż

X

fn pxq dx “

ż

X

f pxq dx.

The next result provides us with a useful relation between Lipschitz continuity and differentiability.

Theorem 2.10 (Rademacher’s theorem (Theorem 2.2.4 in [22])). Let f : Rd Ñ R be a Lipschitz
continuous function. Then, f is totally differentiable at x0 for almost every x0 P Rd.

Lastly, we introduce a generalized version of the Grönwall inequality. The result is inspired by
Corollary 1 in [24], and will be used when deriving regularity results for the HJB equation in
Section 3.2. We present it slightly different from [24], and will therefore give a proof.

Lemma 2.11 (Generalized Grönwall inequality). Let a0, aT0 , c ě 0, γ, ζ ă 1 and T0 ą 0. Suppose
that u ptq is nonnegative and locally integrable on r0, T0s, and that for any t P r0, T0s,

u ptq ď a0t
´γ ` aT0

` c

ż t

0

pt´ sq
´ζ
u psq ds.

Then, there exist constants b0, bT0
ě 0 independent of t such that u ptq ď b0t

´γ ` bT0
for any

t P r0, T0s.

Proof. Notice that a0t
´γ ` aT0

is nonnegative and locally integrable on r0, T0s. By Corollary 1 in
[24], we then have that

u ptq ď a0t
´γ `aT0

`

ż t

0

˜

8
ÿ

n“1

pcΓ p1 ´ ζqq
n

Γ pn p1 ´ ζqq
pt´ sq

np1´ζq´1 `
a0s

´γ ` aT0

˘

¸

ds, 0 ď t ă T0. (10)

It suffices to show that the integral is finite and uniformly bounded in time for t P r0, T0s. Notice
that

pt´ sq
np1´ζq´1

“

´

pt´ sq
1´ζ

¯n´1

pt´ sq
´ζ

ď

´

T 1´ζ
0

¯n´1

pt´ sq
´ζ
, @n ě 1,

where the inequality holds since p1 ´ ζq pn´ 1q ě 0. The gamma function Γ pzq is positive whenever
0 ă z P R. This follows quite directly from its definition (see [14]). By 1´ ζ ą 0 and n p1 ´ ζq ą 0,
we then get that

8
ÿ

n“1

pcΓ p1 ´ ζqq
n

Γ pn p1 ´ ζqq
pt´ sq

np1´ζq´1
ď cΓ p1 ´ ζq pt´ sq

´ζ
8
ÿ

n“1

´

cΓ p1 ´ ζqT 1´ζ
0

¯n´1

Γ pn p1 ´ ζqq

“ cΓ p1 ´ ζq pt´ sq
´ζ
E1´ζ,1´ζ

´

cΓ p1 ´ ζqT 1´ζ
0

¯

ď cΓ p1 ´ ζq pt´ sq
´ζ
CE,T0

. (11)

5



Here, E1´ζ,1´ζ is the two-parametric Mittag-Leffler function, which is an entire function in C of
order 1{p1 ´ ζq (see [10], Section 4). It is therefore finite at any z P R, and we can bound it by
some CE,T0

ě 0 at the particular point where it is evaluated. Inserting (11) into (10) yields

u ptq ď a0t
´γ ` aT0

` CE,T0
cΓ p1 ´ ζq

ż t

0

pt´ sq
´ζ `

a0s
´γ ` aT0

˘

ds

“ a0t
´γ ` aT0

` CE,T0
cΓ p1 ´ ζq

ˆ

a0t
1´ζ´γ

ż 1

0

p1 ´ rq
´ζ
r´γds` aT0

t1´ζ

ż 1

0

p1 ´ rq
´ζ
ds

˙

,

where we have used the substitution r “ s{t. Since all exponents on r and 1 ´ r are greater than
´1, we have integrability. Hence, there exist constants C1, C2 ě 0 independent of t such that

u ptq ď a0t
´γ ` aT0

` C1t
1´ζ´γ ` C2t

1´ζ ď a0t
´γ ` aT0

` C1T
1´ζ
0 t´γ ` C2T

1´ζ
0 ,

where we have let t Ñ T0 since 1 ´ ζ ě 0. By letting b0 :“ a0 `C1T
1´ζ
0 and bT0 :“ aT0 `C2T

1´ζ
0 ,

the proof is complete.

2.5 The fractional Laplacian

We proceed by familiarizing ourselves with the fractional Laplacian, written ´ p´∆q
α{2

where
α P p1, 2q. Intuitively, this operator can be thought of as a generalization of the ordinary Laplacian
operator ∆, in the sense that it extends the notion of spatial derivatives to fractal powers. Unlike

the ordinary Laplacian, ´ p´∆q
α{2

is a nonlocal operator. This means that for any function f

and x P Rd, we cannot determine ´ p´∆q
α{2

f pxq solely by looking at some neighborhood of x.
Instead, we need to consider function values fpyq for all y P Rd, which makes it hard to define the
operator explicitly. A summary of some of the existing definitions can be found in [16], where the
complexity of defining the operator is nicely highlighted. We will define the fractional Laplacian
in two seperate ways, as a Fourier multiplier and as a singular integral. Both definitions are stated
and shown equivalent to each other in [16].

Definition 2.12 (The fractional Laplacian (Fourier definition)). For α P p1, 2q and a sufficiently

regular function f , we define the fractional Laplacian ´ p´∆q
α{2

as the operator satisfying the
following relation in Fourier space:

F
!

´ p´∆q
α
2 f

)

pξq “ ´ |ξ|
α F tfu pξq . (12)

The consistency with the Fourier transform of the ordinary Laplacian becomes evident by letting
α “ 2 above. We will use this definition when working with the fractional heat kernel in the next
section.

Definition 2.13 (The fractional Laplacian (Singular integral definition)). For α P p1, 2q, we define

the fractional Laplacian ´ p´∆q
α{2

applied to some function f on Rd by the singular integral

´ p´∆q
α
2 f pxq “ lim

rÑ0`

ż

RdzBrp0q

pf px` zq ´ f pxqq
cd,α

|z|
d`α

dz, (13)

where Br p0q :“
␣

x P Rd : |x| ă r
(

, and cd,α ą 0 is a constant only depending on d and α.

We can also write the singular integral in terms of second-order differences. This follows quite easily
by considering the radial symmetry of the domain RdzBr p0q, and is inspired by Definition 2.7 in
[16]. The second-order difference representation will only be used in combination with Definition
2.13 for specific subdomains of RdzBr p0q. We will therefore only formulate the equivalence in
domains on the form Br,R p0q “ BR p0q zBr p0q. It can, however, be extended to hold in the entire
RdzBr p0q.

Proposition 2.14. Let f be a function on Rd and let 0 ă r ă R ă 8. Then,
ż

Br,Rp0q

pf px` zq ´ f pxqq
cd,α

|z|
d`α

dz “
1

2

ż

Br,Rp0q

pf px` zq ´ 2f pxq ` f px´ zqq
cd,α

|z|
d`α

dz, (14)

where Br,R p0q “ BR p0q zBr p0q.
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Proof. The result is proven in Proposition 2.8 in [2].

As for the ordinary Laplacian and derivatives in general, the finiteness of ´ p´∆q
α{2

f pxq is highly

connected to the regularity of f . In order for ´ p´∆q
α{2

to be consistent with the ordinary

Laplacian, we expect ´ p´∆q
α{2

f to be finite whenever f P Cα
`

Rd
˘

. A slightly weaker result is
shown in [2], requiring that f is pα ` δq-Hölder continuous for some small δ ą 0. We present a

somewhat rewritten result, where we include an explicit bound for the L8-norm of ´ p´∆q
α{2

f .

Proposition 2.15. Let f P Cα`δ
`

Rd
˘

for α P p1, 2q and δ ą 0 where α ` δ ă 2. Then,

´ p´∆q
α
2 f P L8

`

Rd
˘

. Furthermore, there exist constants C1, C2 ě 0 such that

›

›´
`

´∆
α
2

˘

f
›

›

8
ď C1}f}8 ` C2 rf sCα`δ . (15)

Proof. The proof follows quite directly from the singular integral definition in (13). Note that

ˇ

ˇ´
`

´∆
α
2

˘

f pxq
ˇ

ˇ ď lim
rÑ0`

ż

RdzBrp0q

|f px` zq ´ f pxq|
cd,α

|z|
d`α

dz.

By the definition of Hölder spaces, f P Cα`δ
`

Rd
˘

implies f P Cb

`

Rd
˘

. Then, }f}8 and rf sCα`δ

are finite. By splitting the integral above into integrals over RdzB1 p0q and Br,1 p0q, and using
Proposition 2.14 on the integral over the latter domain, we get that

ˇ

ˇ´
`

´∆
α
2

˘

f pxq
ˇ

ˇ ď

ż

RdzB1p0q

|f px` zq ´ f pxq|
cd,α

|z|
d`α

dz

` lim
rÑ0`

1

2

ż

Br,1p0q

|f px` zq ´ 2f pxq ` f px´ zq|
cd,α

|z|
d`α

dz. (16)

Since f is continuous, and by the mean value theorem, there exists some ξx,z P px´ z, xq such that

f px` zq ´ 2f pxq ` f px´ zq “ |z| p∇zf pξx,z ` zq ´ ∇zf pξx,zqq ,

where ∇zf denotes the directional derivative of f along the z-direction. By α` δ ă 2, we get that

|f px` zq ´ 2f pxq ` f px´ zq|

|z|
d`α

ď
|∇zf pξx,z ` zq ´ ∇zf pξx,zq|

|z|
d`α´1

ď d
rDf sC0,α`δ´1

|z|
d´δ

“ d
rf sCα`δ

|z|
d´δ

.

We can now estimate (16) by

ˇ

ˇ´
`

´∆
α
2

˘

f pxq
ˇ

ˇ ď 2}f}8

ż

RdzB1p0q

cd,α

|z|
d`α

dz ` lim
rÑ0`

d

2
rf sCα`δ

ż

B1p0qzBrp0q

cd,α

|z|
d´δ

dz. (17)

Since we integrate in d dimensions, the second integral will not attain a singularity at z “ 0, and
will be finite in the limit r Ñ 0`. Furthermore, since α ą 0, the first integral is also finite. This
follows by

ż

RdzB1p0q

cd,α

|z|
d`α

dz “ Ad

ż 8

1

cd,α
ρd`α

ρd´1dρ “
Adcd,α
α

,

where Ad is the surface area of the d-dimensional unit sphere. We can then take the supremum
over x P Rd in (17) to deduce that there exist constants C1, C2 ě 0 such that (15) holds. It follows

directly that ´ p´∆q
α{2

f P L8
`

Rd
˘

.

We finish the section with a result on how the fractional Laplacian behaves in global maxima of
a function. The result will be used in Section 3.4, where we use comparison principles to show
uniqueness of solutions to the HJB equation.

Proposition 2.16 (The fractional Laplacian in a global maximum). Let α P p1, 2q and let f P

Cα`δ
`

Rd
˘

for some small δ ą 0. Suppose that x0 P Rd is a global maximum of f . Then,

´ p´∆q
α
2 f px0q ď 0.

Proof. The result is proven in Proposition 2.10 in [2].
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2.6 The fractional heat kernel

Since much of our analysis involves the fractional Laplacian, it seems useful to introduce its fun-
damental solution. This is called the fractional heat kernel, and we define it implicitly through an
initial value problem.

Definition 2.17 (The fractional heat kernel). The fractional heat kernel for the operator ´ p´∆q
α
2 ,

where α P p1, 2q, is the function K pt, xq solving the initial value problem

BtK pt, xq “ ´ p´∆q
α
2 K pt, xq , (18a)

Kp0, xq “ δp0q, (18b)

where δpxq is the Dirac measure.

Since the initial value problem above includes a fractional Laplacian, it is not possible to define

K pt, xq explicitly in real space. This is because we lack an explicit definition of ´ p´∆q
α{2

, as
discussed in the last section. We can, however, define the fractional heat kernel explicitly on the
Fourier side, by using the Fourier definition of the fractional Laplacian.

Lemma 2.18 (The Fourier transform of the fractional heat kernel). The Fourier transform pK pt, ξq

of the fractional heat kernel K pt, xq in (18) with respect to x is

K̂ pt, ξq “ e´t|ξ|
α

. (19)

Proof. By the definition of the Fourier transform, (18b) yields K̂ p0, ξq “ 1. Furthermore, by the
Fourier definition of the fractional Laplacian in (12), we have

F
!

´ p´∆q
α
2 K pt, xq

)

pξq “ ´ |ξ|
α
K̂ pt, ξq .

Since our Fourier transform is applied with respect to x, differentiation with respect to t remains
unchanged. Thus, we get the initial value problem

BtK̂ pt, ξq “ ´ |ξ|
α
K̂ pt, ξq , (20a)

K̂ p0, ξq “ 1, (20b)

which has the solution K̂ pt, ξq “ e´t|ξ|
α

.

Although we lack an explicit definition of the fractional heat kernel, properties and estimates of
this mathematical object have been extensively studied. A summary of some of the fundamental
results for the one-dimensional case can be found in Proposition 1 in [7]. Since we will be working
in multiple dimensions, however, we need to know whether these hold in the d-dimensional case as
well. Two such results are proven here.

Proposition 2.19. Let K pt, xq be the fractional heat kernel. Then, for any t ą 0 and x P Rd,

ż

Rd

K pt, xq dx “ 1.

Proof. By the inverse Fourier transform,

ż

Rd

K pt, xq eix¨ξdx “ e´t|ξ|
α

.

Letting ξ “ 0, the Proposition is proven.

Proposition 2.20. For any t, τ ą 0 and x P Rd, we have that

K pt` τ, xq “ K pτ, ¨q ˚K pt, ¨q pxq .
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Proof. By the Fourier transform of the fractional heat kernel in Lemma 2.18, and since multiplic-
ation in Fourier space translates to convolution in real space,

K pt` τ, xq “ F´1
!

e´pt`τq|ξ|
α
)

“ F´1
!

e´τ |ξ|
α

e´t|ξ|
α
)

“ K pτ, ¨q ˚K pt, ¨q pxq .

We proceed by stating two well-known results for the fractional heat kernel, namely a pointwise
bound (see [6]) and an L1-estimate (see [8]).

Proposition 2.21. Let K be the fractional heat kernel. There exists a constant cK ą 0 such that
for all t ą 0 and x P Rd,

K pt, xq ď cK min

#

t´
d
α ,

t

|x|
d`α

+

.

Proposition 2.22. Let K be the fractional heat kernel. For any t ą 0,

}K pt, ¨q }L1pRdq “ 1.

The next result is quite technical but provides us with a useful relation between space and time
regularity of convolutions with the heat kernel. Specifically, we will see that we can estimate
pK pτ, ¨q ˚ gq pxq ´g pxq only by the time τ and the spatial regularity of g. Note also that by letting
τ Ñ 0` in the Lemma that follows, we immediately get that pK pτ, ¨q ˚ gq pxq Ñ g pxq. This proves
useful when deriving time continuity of solutions to the HJB and FP equations in sections 3.1 and
4.1.

Lemma 2.23 (Corrected from Lemma 2.17 in [2]). Let K be the fractional heat kernel and let
g P Cγ

`

Rd
˘

for some 0 ă γ ď 1. Let Lg “ rgsC0,γ if γ ă 1 and Lg “ }Dg}8 if γ “ 1. For any
given time τ ą 0, we have that

|pK pτ, ¨q ˚ gq pxq ´ g pxq| ď AdcK

ˆ

2}g}8

α
τ

γ
2pd`γq `

Lg

d` γ
τ

γ
2α

˙

, (21)

where cK is the constant from Proposition 2.21 and Ad is the surface area of the d-dimensional
unit sphere.

Proof. The result was incorrectly proven in Lemma 2.17 in [2], and we will provide a revised proof.
By Proposition 2.19, we have that

g pxq “

ż

Rd

K pτ, x´ yq g pxq dy,

for any τ ą 0. Combining this with the definition of the convolution, the left hand side of (21) can
be rewritten as

|pK pτ, ¨q ˚ gq pxq ´ g pxq| “

ż

Rd

|K pτ, x´ yq pg pyq ´ g pxqq| dy. (22)

In order to derive an estimate for this expression, recall the pointwise inequality for the fractional
heat kernel in Proposition 2.21. For some ρ ą 0 yet to be determined, we divide our integral into
integrals over RdzBτρ pxq and Bτρ pxq. It follows that

|pK pτ, ¨q ˚ gq pxq ´ g pxq| ď cK

ż

RdzBτρ pxq

τ |g pyq ´ g pxq|

|x´ y|
d`α

dy ` cK

ż

Bτρ pxq

|g pyq ´ g pxq| τ´ d
α dy.

(23)
Since g P Cγ

`

Rd
˘

, }g}8 is finite and

|g pxq ´ g pyq| ď Lg |x´ y|
γ
.
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By (23), we then get that

|pK pτ, ¨q ˚ gq pxq ´ g pxq| ď 2cK}g}8

ż

RdzBτρ pxq

τ

|x´ y|
d`α

dy` cKLg

ż

Bτρ pxq

|x´ y|
γ
τ´ d

α dy. (24)

Substituting r “ |x´ y|, and letting Ad be the surface area of the d-dimensional unit sphere, we
get that

|pK pτ, ¨q ˚ gq pxq ´ g pxq| ď 2AdcK}g}8

ż 8

τρ

τ

rα`1
dr `AdcKLg

ż τρ

0

τ´ d
α rγ`d´1dr

“ 2AdcK}g}8

τ

α

1

τρα
`
AdcKLg

d` γ
τ´ d

α τρpd`γq.

By inserting ρ “ p2d` γq { p2α pd` γqq, it follows that

|pK pτ, ¨q ˚ gq pxq ´ g pxq| ď AdcK

ˆ

2}g}8

α
τ

γ
2pd`γq `

Lg

d` γ
τ

γ
2α

˙

,

and the proof is complete.

The remainder of this section is dedicated to deriving L1-estimates for derivatives of the heat
kernel. This will be a key ingredient when showing existence of solutions to the HJB and FP
equations. We begin by presenting a self-similarity result.

Lemma 2.24 (Self-similarity for the fractional heat kernel). Let K be the fractional heat kernel.
For any x P Rd, we have that

K pt, xq “ t´
d
αK

´

1, xt´
1
α

¯

. (25)

Furthermore, for any multi-index k,

DkK pt, xq “ t´
d`|k|

α DkK
´

1, xt´
1
α

¯

. (26)

Proof. The result is proven in Lemma 3.2 in [2].

By utilizing this result, we are able to derive pointwise and L1-estimates for the derivatives of the
heat kernel. The following results were incorrectly proven in [2], and revised proofs are attached
in Appendix A. The general approach is inspired by Proposition 1 in [7] where similar results are
shown for the one-dimensional case.

Lemma 2.25 (Pointwise estimate for DkK p1, uq). Let K be the fractional heat kernel and let
k be any multi-index such that |k| ě 1. Then, there exists a constant C ą 0 such that for any
u P Rdz t0u,

ˇ

ˇDkK p1, uq
ˇ

ˇ ď
C

|u|
|k|
.

Theorem 2.26 (L1-estimate for DkK pt, xq). Let K be the fractional heat kernel. There exists a
constant λ ą 0 such that for any t ą 0 and any multi-index k,

}DkKpt, ¨q}L1pRdq ď λt´
|k|

α .

2.7 The Duhamel principle

One of the most common methods of obtaining solutions to inhomogenous PDEs is Duhamel’s
principle. In general, this approach consists of finding a solution to the homogenous version of a
problem, and afterwards including the inhomogenities with an integral over time. In simpler PDEs,
the Duhamel formula may provide us with an explicit formula for solutions. Due to the complexity
of the HJB and FP equations, however, this seems challenging in our case. We therefore need a
more general way of looking at existence, motivating the introduction of Duhamel maps.
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Definition 2.27 (Duhamel map for the HJB equation). Given functions v0, f and H as in
Definition 2.5, we define the Duhamel map for the HJB equation by

ϕ pvq pt, xq “ K pt, ¨q ˚ v0 p¨q pxq ´

ż t

0

K pt´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qq pxq ds. (27)

Definition 2.28 (Duhamel map for the FP equation). Given functions m0 and b as in Definition
2.6, we define the Duhamel map for the FP equation by

ψ pmq pt, xq “ K pt, ¨q ˚m0 p¨q pxq ´

d
ÿ

i“1

ż t

0

Bxi
K pt´ s, ¨q ˚ pbi ps, ¨qm ps, ¨qqq pxq ds. (28)

These maps coincide with ordinary Duhamel formulas whenever ϕ pvq “ v and ψ pmq “ m. This
gives rise to the definition of mild solutions.

Definition 2.29 (Mild solution). We say that v is a mild solution to the HJB equation (8) if it is
a fixed point of ϕ. Similarly, m is a mild solution to the FP equation (9) if it is a fixed point of ψ.

We will see in sections 3.3 and 4.4 that mild solutions correspond to classical solutions when the
source and drift terms are sufficiently regular.

A key observation is that Duhamel maps work independently of the initial time, in the sense that
we for any t0 ą 0 achieve similar maps by substituting v0 and m0 with ϕ pvq pt0, ¨q and ψ pmq pt0, ¨q
respectively. The following result is heavily inspired by Lemma B.1 in [13] and is shown for ϕ pvq

in Lemma 2.19 in [2]. Here, we provide a result that holds for both ϕ pvq and ψ pmq by considering
a Duhamel map on a more general form.

Lemma 2.30. Given a terminal time T ą 0, let u0 P L8
`

Rd
˘

and denote by ω pt, xq the function

ω pt, xq “ K pt, ¨q ˚ u0 p¨q pxq ´

ż t

0

K pt´ s, ¨q ˚ g ps, ¨q pxq ds, @ pt, xq P p0, T s ˆ Rd, (29)

where g is a function defined on p0, T s ˆRd. Let t0, τ ą 0 where t0 ` τ ď T and assume that there
exists a constant C ą 0 such that

ż t0

0

|K pt0 ´ s, ¨q ˚ g ps, ¨q pxq| ds ď C. (30)

Then, the following holds:

ω pt0 ` τ, xq “ K pτ, ¨q ˚ ω pt0, ¨q pxq ´

ż t0`τ

t0

K pt0 ` τ ´ s, ¨q ˚ g ps, ¨q pxq ds. (31)

Proof. By dividing the integral in (31) into integrals over p0, t0q and pt0, t0 ` τq, as well as using
Proposition 2.20, we have

ω pt0 ` τ, xq “ pK pτ, ¨q ˚K pt0, ¨q ˚ u0 p¨qq pxq

´

ż t0

0

pK pτ, ¨q ˚K pt0 ´ s, ¨q ˚ g ps, ¨qq pxq ds

´

ż t0`τ

t0

K pt0 ` τ ´ s, ¨q ˚ g ps, ¨q pxq ds. (32)

In order to complete the proof, we need to take K pτ, ¨q outside the second integral. We begin by
writing out the convolution.

ż t0

0

pK pτ, ¨q ˚K pt0 ´ s, ¨q ˚ g ps, ¨qq pxq ds

“

ż t0

0

ż

Rd

K pτ, x´ yq pK pt0 ´ s, ¨q ˚ g ps, ¨q pyqq dyds. (33)
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The inner and outer integrals can be interchanged by the Fubini-Tonelli theorem (Theorem 2.8) if
the integrand is absolutely integrable over p0, t0q ˆ Rd. We have that

ż

Rd

ż t0

0

|K pτ, x´ yq pK pt0 ´ s, ¨q ˚ g ps, ¨q pyqq| dsdy

ď

ż

Rd

|K pτ, x´ yq|

ż t0

0

|K pt0 ´ s, ¨q ˚ g ps, ¨q pyq| dsdy.

The inner integral is finite by the assumption in (30), and it follows that

ż

Rd

|K pτ, x´ yq|

ż t0

0

|pK pt0 ´ s, ¨q ˚ gu ps, ¨qq pyq| dsdy

ď

ż

Rd

C |K pτ, x´ yq| dy “ C}K pτ, ¨q }L1pRdq “ C,

where the last equality holds by Proposition 2.22. Hence, the integrand in (33) is absolutely
integrable, and we can use the Fubini-Tonelli theorem to deduce that

ż t0

0

pK pτ, ¨q ˚K pt0 ´ s, ¨q ˚ g ps, ¨qq pxq ds

“

ż

Rd

K pτ, x´ yq

ż t0

0

K pt0 ´ s, ¨q ˚ g ps, ¨q pyq dsdy

“ K pτ, ¨q ˚

ˆ
ż t0

0

K pt0 ´ s, ¨q ˚ g ps, ¨q ds

˙

pxq .

Combining this with (32), we complete the proof by

ω pt0 ` τ, xq “ K pτ, ¨q ˚

ˆ

K pt0, ¨q ˚ u0 p¨q ´

ż t0

0

K pt0 ´ s, ¨q ˚ g ps, ¨q ds

˙

pxq

´

ż t0`τ

t0

K pt0 ` τ ´ s, ¨q ˚ g ps, ¨q pxq ds

“ K pτ, ¨q ˚ ω pt0, ¨q pxq ´

ż t0`τ

t0

K pt0 ` τ ´ s, ¨q ˚ g ps, ¨q pxq ds.

By letting ω “ ϕ pvq and u0 “ v0, (29) is identical to the Duhamel map for the HJB equation
(27). A similar result holds for the FP equation by introducing ψ pmq and m0 in the lemma. Note
that by subtracting ω pt0, xq from both sides in (31) and using Lemma 2.23, we are able to bound
ω pt0 ` τ, xq ´ ω pt0, xq only by the time difference τ and the spatial reguarity of ω pt0, ¨q. This
relation between space and time regularity will be used when deriving time continuity of solutions
to the HJB and FP equations in sections 3.1 and 4.1.

2.8 Technical results in Hölder spaces

Much of our analysis involves estimating Hölder seminorms. In particular, we need estimates for
convolutions, interpolations and generalized versions of the product and chain rules in differenti-
ation. This section presents a brief review, and will frequently refer to [2] where most of the results
are proven.

A particularly important result for estimating convolutions is Young’s convolution inequality, which
can be found in Theorem 3.9.4 in [3].

Theorem 2.31 (Young’s convolution inequality). Let f P Lp
`

Rd
˘

, g P Lq
`

Rd
˘

, and let
1 ď p, q, r ď 8 such that

1

p
`

1

q
“

1

r
` 1.
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It follows that f ˚ g P Lr
`

Rd
˘

and that

}f ˚ g}LrpRdq ď }f}LppRdq}g}LqpRdq.

This inequality will be used extensively for the case where p “ 1 and r, q “ 8 in sections 3.1 and
4.1. We also need a similar result for Hölder seminorms, which follows quite directly.

Proposition 2.32 (Convolution inequality for Hölder seminorms). Let s P N0 and β P p0, 1q. For
functions f P W s,1

`

Rd
˘

and g P C0,β
`

Rd
˘

, we have that

rf ˚ gsCs,β ď }Dsf}L1pRdq rgsC0,β .

Proof. The result is proven in Proposition 2.22 in [2].

Relations between Hölder seminorms and ordinary derivatives of functions will be important in
the upcoming analysis. By drawing inspiration from [15], specifically chapters 3.2 and 3.3, we can
derive interpolation inequalities that provide us with such relations.

Theorem 2.33 (Hölder interpolation between 0 and µ). Given a function g P C0,µ
`

Rd
˘

where
β, µ P p0, 1q such that β ă µ, there exists a constant Cβ,µ ą 0 only dependent on β and µ such that
the following inequality holds:

rgsC0,β ď Cβ,µ}g}
µ´β
µ

8 rgs
β
µ

C0,µ .

Proof. The result is proven in Theorem 4.1 in [2].

Theorem 2.34 (Hölder interpolation between 0 and 1). Given a function g P C1
b

`

Rd
˘

where
β P p0, 1q, there exists a constant Cβ,1 ą 0 only dependent on β such that the following inequality
holds:

rgsC0,β ď Cβ,1}g}1´β
8 }Dg}β8.

Proof. The result is proven in Theorem 4.2 in [2].

We will frequently need to estimate terms on the form rK ˚ f sC0,µ where f P C0,β
`

Rd
˘

and K
is the fractional heat kernel. Since we only have estimates for the derivatives of K (see Theorem
2.26), we need to put an integer order of regularity on the heat kernel. This motivates our last
interpolation inequality, where we interpolate between β and 1`β. The resulting terms can then be
estimated as rK ˚ f sC0,β ď }K}1 rf sC0,β and rDK ˚ f sC0,β ď }DK}1 rf sC0,β by Young’s inequality,
hence utilizing the entire regularity of f .

Theorem 2.35 (Hölder interpolation between β and 1 ` β). Given β, µ P p0, 1q and a function
g P C1`β

`

Rd
˘

, there exists a constant CI ą 0 only depending on β and µ such that the following
statements hold:

(a) rgsC0,µ ď CI rgs
1`β´µ
C0,β rDgs

µ´β
C0,β , if µ ą β,

(b) rDgsC0,µ ď CI rgs
β´µ
C0,β rDgs

1`µ´β
C0,β , if µ ă β,

(c) }Dg}L8 ď CI rgs
β
C0,β rDgs

1´β
C0,β .

Proof. The result follows directly from Exercise 3.3.7 in [15].

We proceed by presenting generalized versions of the chain and product rules in differentiation.
Particular focus is placed upon the latter, which is not proven in [2].
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Lemma 2.36 (Generalized chain rule for Hölder seminorms). Given a function f P C0,β
`

Rd
˘

such
that f : Rd Ñ Rd, and a globally Lipschitz function g : Rd Ñ R, consider the composite function
g pf p¨qq. We have that

rg pf p¨qqsC0,βpRdq
ď Lg rf sC0,βpRdq

,

where Lg ą 0 is the Lipschitz constant, meaning that

|g py2q ´ g py1q| ď Lg |y2 ´ y1| , @y1, y2 P Rd.

Proof. The result is proven in Lemma 4.4 in [2].

Lemma 2.37 (Generalized product rule for Hölder seminorms). Let β P p0, 1q and let f, g P

C0,β
`

Rd
˘

. Then, the following inequality holds:

rfgsC0,βpRdq
ď }f}L8pRdq rgsC0,βpRdq

` rf sC0,βpRdq
}g}L8pRdq. (34)

Proof. By writing out the definition of the Hölder seminorm,

rfgsC0,βpRdq
“ sup

x,hPRd

h‰0

|f px` hq g px` hq ´ f pxq g pxq|

|h|
β

ď sup
x,hPRd

h‰0

|f px` hq pg px` hq ´ g pxqq| ` |pf px` hq ´ f pxqq g pxq|

|h|
β

ď sup
x,hPRd

h‰0

|f px` hq|
|g px` hq ´ g pxq|

|h|
β

` |g pxq|
|f px` hq ´ f pxq|

|h|
β

ď }f}L8pRdq rgsC0,βpRdq
` rf sC0,βpRdq

}g}L8pRdq. (35)

A similar estimate can be derived for when the product of functions is convolved with a third
function. This is a quite specific result, but proves useful when deriving Hölder regularity in
Theorem 3.3 (c).

Proposition 2.38. Let β P p0, 1q and let f, g P C0,β
`

Rd
˘

. Furthermore, let p P L1
`

Rd
˘

. The
following inequality holds:

rp ˚ pfgqsC0,βpRdq
ď }f}L8pRdq rp ˚ gsC0,βpRdq

` }g}L8pRdq rp ˚ f sC0,βpRdq
.

Proof. By writing out the convolution, we get that

rp ˚ pfgqsC0,βpRdq
ď sup

x,hPRd

h‰0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rd

p pyq pf px` h´ yq g px` h´ yq ´ f px´ yq g px´ yqq

|h|
β

dy

ˇ

ˇ

ˇ

ˇ

ˇ

.

A calculation similar to (35) yields

rp ˚ pfgqsC0,βpRdq
ď }f}L8pRdq sup

x,hPRd

h‰0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rd

p pyq pg px` h´ yq ´ g px´ yqq

|h|
β

dy

ˇ

ˇ

ˇ

ˇ

ˇ

` }g}L8pRdq sup
x,hPRd

h‰0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rd

p pyq pf px` h´ yq ´ f px´ yqq

|h|
β

dy

ˇ

ˇ

ˇ

ˇ

ˇ

“ }f}L8pRdq rp ˚ gsC0,βpRdq
` }g}L8pRdq rp ˚ f sC0,βpRdq

.

We finish the section with Hölder’s inequality, which can be found in Theorem 2.11.1 in [3].

Lemma 2.39 (Hölder’s inequality). Let 1 ď p, q ď 8 where 1{p ` 1{q “ 1. Assume that f P

Lp
`

Rd
˘

and g P Lq
`

Rd
˘

. Then, fg P L1
`

Rd
˘

and

}fg}L1pRdq ď }f}LppRdq}g}LqpRdq.
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2.9 The comparison principle

In order to investigate uniqueness results for the HJB equation, we need to show that any two
solutions are equal at each point in the given domain. By drawing inspiration from the maximum
principle, we can reduce the problem to a finite number of points, which seems desirable.

Maximum principles and their applications have been studied extensively, and previous work can
be found in for instance [9] and [18]. To motivate its application for uniqueness, we introduce the
principle in its most simple form.

Lemma 2.40 (The maximum principle). Given a terminal time T ą 0, let Ω “ r0, T s ˆ Rd and
let u : Ω Ñ Rd be a sufficiently regular function. Let L be any linear spatial operator such that
Lu pt0, x0q ď 0 whenever pt0, x0q is a global maximum of u.

If Bu{Bt pt, xq ´ Lu pt, xq ď 0 in Ωz
`

t0u ˆ Rd
˘

and u ă 0 on t0u ˆ Rd, it follows that u ă 0 in the
entire Ω.

This lemma is inspired by Lemma 2.1 in [18] where a proof using a contradiction by considering a
global maximum can be found.

Maximum principles allow us to bound a function in a domain only by restrictions on its initial
data and an inequality involving the terms in the PDE. Its application to uniqueness becomes
clear when we let u be the difference between two possible solutions of a PDE. Since the initial
data is the same for both solutions, we should be able to use the maximum principle to bound
the difference between the two solutions in the whole domain, which can be optimized to show
uniqueness. This generalization of the maximum principle is called the comparison principle. In
order to introduce this, we need to define the notion of sub- and supersolutions.

Definition 2.41 (Sub- and supersolution). Let Ω and T be defined as in Lemma 2.40 and consider
a general PDE on the form

#

Btu pt, xq ´ Lu pt, xq “ F pt, xq , in Ω,

u p0, xq “ g pxq , in t0u ˆ Rd.
(36)

The function u´ is called a subsolution to (36) if it is sufficiently regular and satisfies

#

Btu
´ pt, xq ´ Lu pt, xq ď F pt, xq , in Ω,

u´ p0, xq ď g pxq , in t0u ˆ Rd.

Similarly, u` is a supersolution to (36) if it is sufficiently regular and satisfies

#

Btu
` pt, xq ´ Lu pt, xq ě F pt, xq , in Ω,

u` p0, xq ě g pxq , in t0u ˆ Rd.

By using sub- and supersolutions and a similar argument as in the proof for Lemma 2.40, we can
show that u´ pt, xq ď u` pt, xq holds in the entire Ω. Proving this is quite technical, and will be
different for each PDE. We therefore omit the proof for now, and prove it specifically for the HJB
equation in Section 3.4. The relation between the inequality u´ pt, xq ď u` pt, xq and uniqueness
is then evident by the following result.

Lemma 2.42 (Uniqueness by the comparison principle). Let Ω and T be defined as in Lemma
2.40 and assume that (36) has a solution u : Ω Ñ R. If u´ pt, xq ď u` pt, xq holds in the entire Ω
for any pair of sub- and supersolutions pu´, u`q, the solution u to (36) is unique.

Proof. The result is proven in Lemma 2.25 in [2].
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2.10 A penalization method

Since the comparison principle requires the existence of a global maximum, we run into complica-
tions when looking at unbounded domains, even for bounded functions. Let u P L8

`

r0, T s ˆ Rd
˘

be a function bounded by some constant C ą 0, and let u pxq Ñ C asymptotically as |x| Ñ 8. Since
u has no maxima, the comparison principle cannot be used directly. By utilizing the boundedness
of the function, however, we can make a modified function that attains a maximum by penalizing
the function outside some compact set in Rd.

Lemma 2.43 (Existence of a smooth penalty function). Let R,K ą 0. There exists a function
Φ P C8

`

Rd
˘

such that

Φ pxq “

#

0, |x| ď R,

K, |x| ě 2R,

where Φ is monotone increasing with respect to |x| in R ă |x| ă 2R.

Proof. The result follows from Corollary 2.3 in [20] and is proven in Lemma 2.26 in [2].

Lemma 2.44 (Global maximum by penalization). Consider Ω :“ r0, T s ˆ Rd. Let u P L8 pΩq

be bounded by some constant C ą 0. Furthermore, assume that u has no global maxima. Let
φR P C8

`

Rd
˘

be the function from Lemma 2.43 where we let K “ 2C ` δ such that

φR pxq “

#

0, |x| ď R,

2C ` δ, |x| ě 2R,

for some δ ą 0. Then, ũ pt, xq :“ u pt, xq ´ φR pxq has a global maximum in r0, T s ˆ tx : |x| ď 2Ru

for any R ą 0.

Proof. The result is proven in Lemma 2.27 in [2].

16



3 The Hamilton-Jacobi-Bellman Equation

The first equation in the Mean Field Game system (2) is the Hamilton-Jacobi-Bellman equation
(HJB), which we briefly introduced in Section 2.2. In this chapter, we show existence and unique-
ness of classical solutions to this equation, as well as providing spatial Hölder regularity estimates.
The chapter is based on [2], where similar results were shown for the case where α ` β ě 2. In
order to also consider α`β ă 2, the text is heavily revised and we will comment on the differences.

We consider the HJB equation of the form
#

Btv pt, xq ` p´∆q
α
2 v pt, xq `H pDv pt, xqq “ f pt, xq , pt, xq P p0, T s ˆ Rd,

v p0, xq “ v0 pxq , x P Rd,
(37)

where α P p1, 2q. The initial data v0 is assumed to be β-Hölder continuous where β P p0, 1q.
We impose the same spatial regularity on the source term f , as well as continuity in time, hence
f P Cb

`

r0, T s ;C0,β
`

Rd
˘˘

. For the Hamiltonian, we assume H P C1
`

Rd
˘

and that it is globally
Lipschitz.

Our results are summarized in Theorem 3.8, where we conclude with the existence of a unique
classical solution v P Cb

`

r0, T s ˆ Rd
˘

, where v pt, ¨q is pα ` β ´ εq-Hölder continuous in space for
any t P p0, T s and ε ą 0. This is slightly less than the optimal regularity, as it should be possible to
show that v pt, ¨q is pα ` βq-Hölder continuous. The additional regularity we gain when going from
source term to solution is highly connected to the order of our operator. Hence, since f pt, ¨q is
β-Hölder continuous, we expect v pt, ¨q P Cα`β

`

Rd
˘

for any t P p0, T s. We will later see that letting
ε “ 0 causes singularity issues in our regularity estimates. Showing pα ` βq-Hölder continuity is
therefore outside the scope of this thesis, and will likely involve scaling properties and more delicate
bounds for the fractional heat kernel.

Another key observation in the upcoming results is the blowup on derivatives and Hölder seminorms
of v as t Ñ 0. As an example, in order to bound the first order derivative uniformly in time, we will

need to multiply it by t
1´β
α . This is because our initial data is only β-Hölder continuous, meaning

that Dv0 does not exist.

Due to the complexity of the HJB equation, it seems challenging to find explicit solutions. This is
especially caused by the Hamiltonian term H pDvq and its dependence on v. Since H is considered
a general function, only subject to regularity assumptions, it may introduce nonlinearities to the
system. These are often hard to tackle using ordinary solution methods, and we need a new
approach for studying existence.

Recall the Duhamel map ϕ pvq for the HJB equation in (27). As stated in Definition 2.29, any
fixed point of ϕ is a mild solution to (37). This motivates our existence approach, where we use
Banach’s fixed point theorem (Theorem 2.7) to show that there exists v pt, xq such that ϕ pvq “ v.
Although this is a promising approach, it has its limitations. In order to use Banach’s fixed point
theorem, we need to ensure that ϕ is a contraction mapping in some Banach space X. We will
later see that this restricts our existence proof to some short time interval r0, T0s. This is discussed
in detail in Section 3.1, where we show short time existence of mild solutions to the HJB equation.
The section will also entail continuity and boundedness results for the first spatial derivative Dv.
We follow the general approach in [2], but in order to consider cases where α ` β ă 2, the fixed
point argument is revised and does not address Hölder regularity.

Spatial regularity estimates for mild solutions are instead studied in the subsequent section. These
results play a vital role when showing that our solution is classical in Section 3.3, since this requires

´ p´∆q
α{2

v to be well-defined. By Proposition 2.15, we then need pα ` δq-Hölder continuity in
space for some δ ą 0. We will specifically show that v pt, ¨q is pα ` β ´ εq-Hölder continuous in
space for any t P p0, T0s and ε ą 0, as well as commenting on why our approach is insufficient for
the case where ε “ 0. In addition, we show that the β-Hölder seminorm of v pt, ¨q is uniformly
bounded in time, and prove existence of D2v whenever α ` β ě 2.

Section 3.3 addresses whether our mild solution is classical and is mostly based on [2]. This also
applies to Section 3.4, where we show that classical solutions to (37) are unique. Section 3.5 proves
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the existence of a unique classical solution in the entire r0, T s. Here, we use a patching argument
by combining unique short time solutions on overlapping time intervals. Finally, we finish the
chapter with a uniform continuity result for v and its derivatives in Section 3.6.

3.1 Short time existence results

We begin with proving short time existence of a mild solution in Theorem 3.1. By combining
Banach’s fixed point theorem (Theorem 2.7) with the Duhamel map ϕ pvq in (27), we show that

there exists a fixed point ϕ pvq “ v where v P Cb

`

r0, T0s ˆ Rd
˘

and t
1´β
α Dv P Cb

`

p0, T0s ˆ Rd
˘

for
some T0 P p0, T q. By Definition 2.29, this is a mild solution to the HJB equation (37). The time
blowup on Dv as t Ñ 0 appears since v0 is only β-Hölder continuous, implying that Dv0 does not
exist.

Unlike [2], we will not include the second derivative D2v or Hölder regularity estimates in our
fixed point argument. This is done in order to avoid differentiating the Hamiltonian, which would
complicate the contraction argument for ϕ drastically.

The proof uses a combination of Young’s inequality (Theorem 2.31), L1-estimates for the fractional
heat kernel (Theorem 2.26) and interpolation results from Section 2.8. Time continuity of the
Duhamel map is shown by using its relation to spatial regularity through the fractional heat kernel
(see Lemma 2.23).

Theorem 3.1 (Short time existence of mild solutions). Let α P p1, 2q , β P p0, 1q and sup-
pose that v0 P C0,β

`

Rd
˘

. Let λ be the constant defined in Theorem 2.26, and assume that

f P Cb

`

r0, T s ;C0,β
`

Rd
˘˘

. Furthermore, suppose H P C1
`

Rd
˘

is globally Lipschitz with Lipschitz
constant LH “ }BpH}8 ě 0. Given a terminal time T ą 0, there exists T0 P p0, T q only depending
on α, β, λ and LH such that there exists a unique mild solution v P Cb

`

r0, T0s ˆ Rd
˘

to the HJB

equation (37) where t
1´β
α Dv P Cb

`

p0, T0s ˆ Rd
˘

.

Proof. Let X be the Banach space

X “

!

v : v, t
1´β
α Dv P Cb

`

p0, T0s ˆ Rd
˘

)

, (38)

and define the corresponding norm by ~v~X :“ suptPp0,T0s }v pt, ¨q }X where

}v pt, ¨q }X “ }v pt, ¨q }L8pRdq ` }t
1´β
α Dv pt, ¨q }L8pRdq. (39)

We note that the norm } ¨}X depends on t, but we skip it in the notation for the sake of readability.
Recall the definition of the Duhamel map ϕ pvq in (27).

ϕ pvq pt, xq “ pK pt, ¨q ˚ v0 p¨qq pxq ´

ż t

0

pK pt´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qqq pxq ds. (40)

We want to use Banach’s fixed point theorem to show the existence of a fixed point ϕ pvq “ v.

This requires ϕ : X Ñ X, meaning that ϕ pvq , t
1´β
α Dϕ pvq P Cb

`

p0, T0s ˆ Rd
˘

for any v P X.
In order to show these regularity requirements for ϕ, we need L8-bounds on H and f . By f P

Cb

`

r0, T s ;C0,β
`

Rd
˘˘

, there exists Cf ą 0 such that

sup
tPr0,T s

}f pt, ¨q }8 ď Cf . (41)

Since H is not necessarily bounded, we need to use its global Lipschitz condition to arrive at an
L8-bound. Denote the Lipschitz constant by LH ě 0 such that

|H pp2q ´H pp1q| ď LH |p2 ´ p1| , @p1, p2 P Rd.

By letting H p0q :“ H0, it follows that

}H pDv pt, ¨qq }8 ď }H pDv pt, ¨qq ´H p0q }8 `H0

ď LH}Dv pt, ¨q }8 `H0 “ LHt
´

1´β
α }t

1´β
α Dv pt, ¨q }8 `H0. (42)
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Notice that }t
1´β
α Dv pt, ¨q }8 is bounded uniformly in p0, T0s by the definition of X.

We proceed by estimating }ϕ pvq pt, ¨q }X , looking at the two parts of the norm in (39) individually.
Convolution and interpolation inequalities from Section 2.8 will be used quite extensively, as well
as the L1-estimates for the heat kernel in Theorem 2.26. The constants λ and CI come from
Theorem 2.26 and 2.35. Note that since both parts of } ¨ }X include a supremum, we can move the
integral outside the norms and seminorms in the inequalities below.

We begin by estimating }ϕ pvq pt, ¨q }8. Recall that }K pt, ¨q }8 “ 1 from Proposition 2.22. By the
triangle inequality, Young’s convolution inequality in Theorem 2.31, (41) and (42),

}ϕ pvq pt, ¨q }8 ď }K pt, ¨q ˚ v0}8 `

ż t

0

}K pt´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qq }8ds

ď }K pt, ¨q }1}v0}8 `

ż t

0

}K pt´ s, ¨q }1 p}H pDv ps, ¨qq }8 ` }f ps, ¨q }8q ds

ď }v0}8 `

ż t

0

´

LHs
´

1´β
α }s

1´β
α Dv ps, ¨q }8 `H0 ` Cf

¯

ds

ď }v0}8 ` LH
α

α ` β ´ 1
t
α`β´1

α sup
sPp0,tq

}s
1´β
α Dv ps, ¨q }8 ` t pH0 ` Cf q

ď }v0}8 ` LH
α

α ` β ´ 1
T

α`β´1
α

0 sup
sPp0,T0s

}s
1´β
α Dv ps, ¨q }8 ` T0 pH0 ` Cf q , (43)

where the last inequality holds by the positivity of LH , H0, Cf and the exponent pα ` β ´ 1q {α.
Since the upper bound in (43) is independent of t, it follows that }ϕ pvq pt, ¨q }8 is uniformly bounded
in p0, T0s by the definition of X and since v0 P C0,β

`

Rd
˘

.

We proceed by estimating }t
1´β
α Dϕ pvq pt, ¨q }8. Notice first that

}t
1´β
α Dϕ pvq pt, ¨q }8 ď t

1´β
α }DK pt, ¨q ˚v0}8 ` t

1´β
α

ż t

0

}DK pt´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qq }8ds.

(44)
The first term in (44) is estimated by using the interpolation inequality from Theorem 2.35 (c) on
K pt, ¨q˚v0, heat kernel estimates from Theorem 2.26 and the convolution inequality in Proposition
2.32. We get that

t
1´β
α }DK pt, ¨q ˚ v0}8 ď CIt

1´β
α rK pt, ¨q ˚ v0s

β
C0,β rDK pt, ¨q ˚ v0s

1´β
C0,β

ď CIt
1´β
α rv0sC0,β }K pt, ¨q }

β
1 }DK pt, ¨q }

1´β
1 ď CIλ

1´βt
1´β
α t´

1´β
α rv0sC0,β “ CIλ

1´β rv0sC0,β ,
(45)

which is bounded since v0 P C0,β
`

Rd
˘

. For the second term in (44), we differentiate the heat
kernel in the integral, and use bounds for f and H from (41) and (42).

t
1´β
α

ż t

0

}DK pt´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qq }8ds

ď t
1´β
α

ż t

0

}DK pt´ s, ¨q }1 p}H pDv ps, ¨qq }8 ` }f ps, ¨q }8q ds

ď t
1´β
α

ż t

0

λ pt´ sq
´ 1

α

´

LHs
´

1´β
α }s

1´β
α Dv ps, ¨q }8 `H0 ` Cf

¯

ds

ď λLH sup
sPp0,T0s

}s
1´β
α Dv ps, ¨q }8T0

α´1
α

ż 1

0

p1 ´ rq
´ 1

α r´
1´β
α dr ` λpH0 ` Cf qT0

α´β
α

ż 1

0

p1 ´ rq
´ 1

α dr.

(46)

We can let t Ñ T0 in the last inequality above by LH , H0, Cf ě 0 and since the exponents pα ´ 1q {α
and pα ´ βq {α are positive. Furthermore, integrability is ensured since all exponents on r and 1´r
are strictly greater than ´1. We conclude with boundedness in the last line by the definition of X.
Having shown boundedness of both terms in (44), with upper bounds independent of t, it follows

that }t
1´β
α Dϕ pvq pt, ¨q }8 is uniformly bounded in p0, T0s.
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We proceed with showing continuity in space, namely that ϕ pvq pt, ¨q , t
1´β
α Dϕ pvq pt, ¨q P Cb

`

Rd
˘

for each t P p0, T0s. Notice that since t is fixed, we do not need to consider blowup in time. For
every t0 P p0, T0s, we then have that }Dϕ pvq pt0, ¨q }8 is bounded, and it follows that ϕ pvq pt0, ¨q is
Lipschitz continuous in space.

For Dϕ pvq pt0, ¨q, we use an interpolation as in Theorem 2.34 combined with heat kernel estimates
from Theorem 2.26. Then, for any t0 P p0, T0s,

rDϕ pvq pt0, ¨qsC0,β ď λt0
´ 1

α rv0sC0,β ` λCβ,1

ż t0

0

pt0 ´ sq
´

1`β
α p}H pDv ps, ¨qq }8 ` }f ps, ¨q }8q ds

ď λt0
´ 1

α rv0sC0,β ` λCβ,1

ż t0

0

pt0 ´ sq
´

1`β
α

´

LHs
´

1´β
α }s

1´β
α Dv ps, ¨q }8 `H0 ` Cf

¯

ds, (47)

where we used (41) and (42) to bound the L8-norms of f and H. Integrability above is ensured

by the uniform boundedness of }s
1´β
α Dv ps, ¨q }8 in time, and since the exponents on t0 ´ s and

s are greater than ´1. It follows that Dϕ pvq pt0, ¨q is β-Hölder continuous in space, implying

t
1´β
α Dϕ pvq pt, ¨q P Cb

`

Rd
˘

for any t P p0, T0s.

Next, we show that ϕ pvq and t
1´β
α Dϕ pvq are continuous in time. Whenever t ă T0, it suffices to

show that ϕ pvq pt0 ` τ, xq ´ϕ pvq pt0, xq and Dϕ pvq pt0 ` τ, xq ´Dϕ pvq pt0, xq go to zero as τ Ñ 0`

for any pt0, xq P p0, T0q ˆ Rd.

Letting ω :“ ϕ pvq, g :“ H pDvq ´f and u0 :“ v0 in Lemma 2.30, and subtracting ϕ pvq pt0, xq from
both sides in (31) yields

ϕ pvq pt0 ` τ, xq ´ ϕ pvq pt0, xq “ pK pτ, ¨q ˚ ϕ pvq pt0, ¨qq pxq ´ ϕ pvq pt0, xq

´

ż t0`τ

t0

pK pt0 ` τ ´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qqq pxq ds. (48)

The latter term is estimated as in (43), such that

ˇ

ˇ

ˇ

ˇ

ż t0`τ

t0

pK pt0 ` τ ´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qqq pxq ds

ˇ

ˇ

ˇ

ˇ

ď LH
α

α ` β ´ 1
sup

sPp0,T0s

}s
1´β
α Dv ps, ¨q }8

ˇ

ˇ

ˇ

ˇ

pt0 ` τq
α`β´1

α ´ t
α`β´1

α
0

ˇ

ˇ

ˇ

ˇ

` τ pH0 ` Cf q . (49)

Notice that 0 ă
α`β´1

α ď 1. Then, 0 ă pt0 ` τq
α`β´1

α ´ t
α`β´1

α
0 ď τ

α`β´1
α , and by the uniform

boundedness of }s
1´β
α Dv ps, ¨q }8 in time, the right hand side of (49) goes to zero as τ Ñ 0`.

It remains to derive an estimate for the first term in (48). Letting g :“ ϕ pvq pt0, ¨q and γ “ 1 in
Lemma 2.23, we get that

| pK pτ, ¨q ˚ ϕ pvq pt0, ¨qq pxq ´ϕ pvq pt0, xq |

ď AdcK

ˆ

2}ϕ pvq pt0, ¨q }8

α
τ

1
2pd`1q `

}Dϕ pvq pt0, ¨q }8

d` 1
τ

1
2α

˙

. (50)

Since both }ϕ pvq pt0, ¨q }8 and }Dϕ pvq pt0, ¨q }8 are finite for t0 P p0, T0s, the right hand side goes
to zero as τ Ñ 0`. By combining (49) and (50), we get from (48) that

lim
τÑ0`

|ϕ pvq pt0 ` τ, xq ´ ϕ pvq pt0, xq| ď lim
τÑ0`

|pK pτ, ¨q ˚ ϕ pvq pt0, ¨qq pxq ´ ϕ pvq pt0, xq|

` lim
τÑ0`

ˇ

ˇ

ˇ

ˇ

ż t0`τ

t0

pK pt0 ` τ ´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qqq pxq ds

ˇ

ˇ

ˇ

ˇ

“ 0.

It follows that ϕ pvq pt0, ¨q is continuous in time for any t0 P p0, T0q. In order to show continuity
in the entire p0, T0s, we need to let t0 “ T0 above. This would imply t0 ` τ ą T0, which is
outside our scope in terms of regularity assumptions. By instead repeating the argument with
ϕ pvq pT0, xq ´ ϕ pvq pT0 ´ τ, xq in (48), we circumvent this problem. The proof is very similar, and
we conclude that ϕ pvq P Cb

`

p0, T0s ˆ Rd
˘

.
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The approach for deriving time continuity of Dϕ pvq is similar. By differentiating (31), subtracting
Dϕ pvq pt0, xq from both sides and taking the absolute value, we get that

|Dϕ pvq pt0 ` τ, xq ´Dϕ pvq pt0, xq| ď |pK pτ, ¨q ˚Dϕ pvq pt0, ¨qq pxq ´Dϕ pvq pt0, xq|

`

ˇ

ˇ

ˇ

ˇ

ż t0`τ

t0

pDK pt0 ` τ ´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qqq pxq ds

ˇ

ˇ

ˇ

ˇ

ď |pK pτ, ¨q ˚Dϕ pvq pt0, ¨qq pxq ´Dϕ pvq pt0, xq|

` C1 sup
sPp0,T0s

}s
1´β
α Dv ps, ¨q }8

ˇ

ˇ

ˇ

ˇ

pt0 ` τq
α`β´2

α ´ t
α`β´2

α
0

ˇ

ˇ

ˇ

ˇ

` C2

ˇ

ˇ

ˇ
pt0 ` τq

α´1
α ´ t

α´1
α

0

ˇ

ˇ

ˇ
, (51)

for some C1, C2 ě 0 independent of t0 and τ . In the last line, we estimated similarly to (46). The
third term goes to zero as τ Ñ 0` by 0 ă α´1

α ă 1 and an argument like in (49). If α`β ě 2, this

argument holds also for the second term in (51). In the case where 1 ă α`β ă 2, let k “ ´
α`β´2

α .
Then, k P p0, 1q and we get that

ˇ

ˇ

ˇ

ˇ

pt0 ` τq
α`β´2

α ´ t
α`β´2

α
0

ˇ

ˇ

ˇ

ˇ

“
1

tk0
´

1

pt0 ` τq
k

ď
pt0 ` τq

k
´ tk0

tk0 pt0 ` τq
k
. (52)

The numerator goes to zero as τ Ñ 0` by k P p0, 1q and an argument like in (49). It follows that
the second term in (51) goes to zero.

For the first term, we use that Dϕ pvq is β-Hölder continuous in space. By letting g :“ Dϕ pvq pt0, ¨q
and γ “ β in Lemma 2.23, we get that

|K pτ, ¨q ˚Dϕ pvq pt0, ¨q pxq ´Dϕ pvq pt0, xq |

ď AdcK

ˆ

2}Dϕ pvq pt0, ¨q }8

α
τ

β
2pd`βq `

rDϕ pvq pt0, ¨qsC0,β

d` β
τ

β
2α

˙

, (53)

which goes to zero as τ Ñ 0`. Since all terms in (51) go to zero as τ Ñ 0`, we conclude that

lim
τÑ0`

|Dϕ pvq pt0 ` τ, xq ´Dϕ pvq pt0, xq| “ 0.

This holds for all t0 P p0, T0q. For t0 “ T0, the argument is repeated with Dϕ pvq pT0, xq ´

Dϕ pvq pT0 ´ τ, xq in (51). We then get time continuity of Dϕ pvq in the entire p0, T0s, and since

t
1´β
α is continuous in time, we have t

1´β
α Dϕ pvq P Cb

`

p0, T0s ˆ Rd
˘

. Combining this with ϕ pvq P

Cb

`

p0, T0s ˆ Rd
˘

, we get that ϕ : X Ñ X.

In order to use Banach’s fixed point theorem (Theorem 2.7), it remains to show that ϕ is a
contraction mapping. This means that there must exist L ą 0 such that ~ϕ puq ´ ϕ pwq ~X ď

L~u´ w~X for any u,w P X. Notice that

}ϕ puq pt, ¨q ´ ϕ pwq pt, ¨q }X ď

ż t

0

}K pt´ s, ¨q ˚ pH pDu ps, ¨qq ´H pDw ps, ¨qqq }Xds. (54)

We proceed with looking at the two parts of } ¨ }X seperately, similar to what we did earlier in the

proof. Recall that by the definition of ~ ¨ ~X , }Du ps, ¨q ´ Dw ps, ¨q }8 ď s´
1´β
α ~u ´ w~X . Using

that H is globally Lipschitz, there then exists a constant c0 ą 0 only depending on α, β, λ and
LH such that

}ϕ puq pt, ¨q ´ ϕ pwq pt, ¨q }8 ď

ż t

0

}K pt´ s, ¨q }1LH}Du ps, ¨q ´Dw ps, ¨q }8ds

ď

ż t

0

λs´
1´β
α LH~u´ w~Xds ď λLHt

α`β´1
α ~u´ w~X . (55)

Similarly, by differentiating K in the convolution, there exists c1 ą 0 depending on the same
constants such that

}t
1´β
α pDϕ puq pt, ¨q ´Dϕ pwq pt, ¨qq }8 ď t

1´β
α

ż t

0

}DK pt´ s, ¨q }1LH}Du ps, ¨q ´Dw ps, ¨q }8ds

ď t
1´β
α

ż t

0

λ pt´ sq
´ 1

α s´
1´β
α LH~u´ w~Xds ď c1t

α´1
α ~u´ w~X . (56)
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By combining these estimates, and noticing that both pα ` β ´ 1q {α and pα ´ 1q {α are positive
exponents, we can take the supremum over p0, T0s and deduce that

~ϕ puq ´ ϕ pwq ~X ď

ˆ

c0T
α`β´1

α
0 ` c1T

α´1
α

0

˙

~u´ w~X .

By choosing T0 sufficiently small, there exists L ă 1 such that ~ϕ puq ´ ϕ pwq ~X ď L~u ´ w~X .
Then, ϕ is a contraction mapping. Furthermore, since c0 and c1 only depend on α, β, λ and LH ,
it follows that T0 depends solely on these constants as well.

Since ϕ : X Ñ X and ϕ is a contraction mapping, it follows from Banach’s fixed point theorem
(Theorem 2.7) that there exists a unique v P X such that ϕ pvq “ v. This is a mild solution to
the HJB equation in (37) by Definition 2.29. Finally, since v p0, ¨q “ v0 P Cb

`

Rd
˘

, we get that

v P Cb

`

r0, T0s ˆ Rd
˘

and the proof is complete.

3.2 Regularity estimates

In the last section, we showed that given certain regularity assumptions on v0, f and H, there

exists a short time mild solution v P Cb

`

r0, T0s ˆ Rd
˘

to the HJB equation where t
1´β
α Dv P

Cb

`

p0, T0s ˆ Rd
˘

. We will now derive additional spatial regularity results for this solution. By
using the generalized Grönwall inequality (Lemma 2.11), we show that v pt, ¨q is pα ` β ´ εq-Hölder
continuous in space for all t P p0, T0s and ε ą 0. Since v0 is only β-Hölder continuous, however, this

estimate will blow up as t Ñ 0. We will therefore consider the function t
α´ε
α v pt, ¨q instead, such

that its Hölder seminorm can be bounded uniformly in time. Spatial Hölder regularity without
time blowup is also considered, as we show uniform boundedness in time for rv pt, ¨qsC0,β as well.
These results are presented in Theorem 3.3.

Our approach will be insufficient for proving pα ` βq-Hölder continuity in space. This is due to
singularity issues in the upcoming analysis. Notice specifically that the first integral in (69) blows
up if ε “ 0.

Since α P p1, 2q and β P p0, 1q, we will encounter cases where α ` β ą 2. This implies existence
of D2v, which we will investigate in Lemma 3.2. Continuity of the second derivative is proven
together with the Hölder regularity results in Theorem 3.3. We begin with proving existence of
D2v whenever α ` β ą 2, using a combination of Rademacher’s theorem (Theorem 2.10) and the
generalized Grönwall inequality (Lemma 2.11).

Lemma 3.2. Let α P p1, 2q, β P p0, 1q and assume that α ` β ą 2. Let assumptions on f and H
be as in Theorem 3.1, and let v be the corresponding mild solution obtained in the theorem. Then,

D2v pt, xq exists everywhere in p0, T0s ˆ Rd. In addition, t
2´β
α D2v P L8

`

p0, T0s ˆ Rd
˘

.

Proof. We begin with showing that D2v pt, ¨q exists almost everywhere in space for any fixed
t P p0, T0s. By Rademacher’s theorem (Theorem 2.10), it suffices to show that Dv pt, ¨q is Lipschitz
continuous in Rd, which we will prove using the generalized Grönwall inequality in Lemma 2.11.

Note that v pt, xq is a fixed point of the Duhamel map in (27) since it is a mild solution of the
HJB equation. By translating in space, subtracting and differentiating, we deduce that for pt, xq P

p0, T0s ˆ Rd and h P Rdz t0u,

Dv pt, x` hq ´Dv pt, xq “ pDK pt, ¨q ˚ v0q px` hq ´ pDK pt, ¨q ˚ v0q pxq

´D

ż t

0

pK pt´ s, ¨q ˚ f ps, ¨qq px` hq ´ pK pt´ s, ¨q ˚ f ps, ¨qq pxq ds

´D

ż t

0

K pt´ s, ¨q ˚ pH pDv ps, ¨ ` hqq ´H pDv ps, ¨qqq pxq ds. (57)

Recall that for any function g pxq with a bounded derivative g1 pxq, we have that

|g px` hq ´ g pxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż x`h

x

g1 pyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď |h| }g1}8. (58)
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This lets us bound the spatial differences in (57). For the first term, we use the fact that

}D pDK pt, ¨q ˚ v0q }8 ď λCIt
´

2´β
α rv0sC0,β by Young’s inequality and an interpolation like in The-

orem 2.35 (c). It follows that D pDK pt, ¨q ˚ v0q pxq is bounded in Rd for any fixed t P p0, T0s.
Boundedness of D pDK pt´ s, ¨q ˚ f ps, ¨qq pxq can be derived similarly, resulting in the bound

}D pDK pt´ s, ¨q ˚ f ps, ¨qq }8 ď λCI pt´ sq
´

2´β
α C̃f , where we let C̃f :“ supsPp0,T0s rf ps, ¨qsC0,β .

This holds for any fixed t P p0, T0s and s P p0, tq.

Dividing (57) by h, taking the L8-norm over Rd and using the relation in (58) yields

›

›

›

›

Dv pt, x` hq ´Dv pt, xq

|h|

›

›

›

›

8

ď }D pDK pt, ¨q ˚ v0q }8 `

ż t

0

}D pDK pt´ s, ¨q ˚ f ps, ¨qq }8ds

`

ż t

0

}DK pt´ sq }1

›

›

›

›

H pDvps, ¨ ` hqq ´H pDvps, ¨qq

|h|

›

›

›

›

8

ds

ď λCI

´

t´
2´β
α rv0sC0,β ` C̃f

ż t

0

pt´ sq
´

2´β
α ds

¯

` λLH

ż t

0

pt´ sq
´ 1

α

›

›

›

›

Dvps, ¨ ` hq ´Dvps, ¨q

|h|

›

›

›

›

8

ds,

(59)

where we used interpolation and heat kernel estimates, the } ¨ }8-bounds calculated above and the
fact that H is globally Lipschitz. The first integral in (59) is bounded and will reach its supremum
at t “ T0. This follows by integrating and noticing that ´

2´β
α ą ´1. Then, there exist constants

a0, aT0 ě 0 independent of t and h such that

›

›

›

›

Dv pt, ¨ ` hq ´Dv pt, ¨q

|h|

›

›

›

›

8

ď a0t
´

2´β
α ` aT0

` λLH

ż t

0

pt´ sq
´ 1

α

›

›

›

›

Dv ps, ¨ ` hq ´Dv ps, ¨q

|h|

›

›

›

›

8

ds.

(60)
We will now use the generalized Grönwall inequality in Lemma 2.11 to show boundedness of the
left hand side in (60) for any t P p0, T0s. The resulting upper bound will be independent of h, thus
immediately implying that Dv pt, ¨q is Lipschitz continuous. Here are the details.

Let γ “ p2 ´ βq {α and ζ “ 1{α. Notice that γ, ζ ă 1. Furthermore, let c “ λLH ě 0 and define
uh ptq as the left hand side in (60). By the triangle inequality, we get that

0 ď uh ptq :“

›

›

›

›

Dv pt, ¨ ` hq ´Dv pt, ¨q

|h|

›

›

›

›

8

ď
2

|h|
t´

1´β
α }t

1´β
α Dv pt, ¨q }8. (61)

Recall from Theorem 3.1 that t
1´β
α Dv is bounded over the entire p0, T0sˆRd. By fixing h P Rdz t0u,

it follows that uh ptq is integrable over p0, T0s. We can then use the generalized Grönwall inequality
to deduce that for any t P p0, T0s, there exist constants b0, bT0

ě 0 independent of t and h such
that

›

›

›

›

Dv pt, ¨ ` hq ´Dv pt, ¨q

|h|

›

›

›

›

8

ď b0t
´

2´β
α ` bT0 . (62)

By noticing that this holds for any fixed h P Rdz t0u, we conclude that Dv pt, ¨q is Lipschitz
continuous in space for any fixed t P p0, T0s. By Rademacher’s theorem (Theorem 2.10), this
implies that D2v pt, ¨q exists almost everywhere in Rd.

In order to show existence everywhere, we use the a.e. existence together with the Duhamel
formula. We begin by expressing D2v as a limit. Dividing (57) by h and letting h Ñ 0 yields

lim
hÑ0

Dv pt, x` hq ´Dv pt, xq

h
“ lim

hÑ0

pDK pt, ¨q ˚ v0q px` hq ´ pDK pt, ¨q ˚ v0q pxq

h

´ lim
hÑ0

ż t

0

DK pt´ s, ¨q ˚ pH pDv ps, ¨ ` hqq ´H pDv ps, ¨qqq pxq

h
ds

´ lim
hÑ0

ż t

0

pDK pt´ s, ¨q ˚ f ps, ¨qq px` hq ´ pDK pt´ s, ¨q ˚ f ps, ¨qq pxq

h
ds. (63)

By the definition of the derivative, D2v exists everywhere if all limits on the right hand side of
(63) exist for any pt, xq P p0, T0s ˆ Rd. The first limit exists by v0 P Cb

`

Rd
˘

and the L1-estimate
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for D2K in Theorem 2.26. For the second term, we fix pt, xq P p0, T0s ˆ Rd and define

Λh ps, yq “ DK pt´ s, x´ yq
H pDv ps, y ` hqq ´H pDv ps, yqq

h
, (64)

such that

lim
hÑ0

ż t

0

DK pt´ s, ¨q ˚ pH pDv ps, ¨ ` hqq ´H pDv ps, ¨qqq pxq

h
ds “ lim

hÑ0

ż t

0

ż

Rd

Λh ps, yq dy. (65)

Recall that almost everywhere behavior is sufficient for using dominated convergence (see Theorem
2.9). Hence, by utilizing thatD2v exists almost everywhere, we can iteratively move the limit inside
the integrals. We begin by showing that limhÑ0

ş

Rd Λh ps, yq dy exists for any fixed s P p0, tq and is
equal to

ş

Rd limhÑ0 Λh ps, yq dy.

Since H P C1
`

Rd
˘

, we have that for every y P Rd such that D2 ps, yq exists,

lim
hÑ0

H pDv ps, y ` hqq ´H pDv ps, yqq

h
“ ByH pDv ps, yqq “ D2v ps, yq BpH pDv ps, yqq . (66)

It follows that limhÑ0 Λh ps, yq exists almost everywhere in space for every s P p0, tq. In order to
use dominated convergence, it remains to find a dominating function which is integrable over Rd.
Notice that for any y P Rd and h P Rdz t0u,

|Λh ps, yq| ď LH |DK pt´ s, x´ yq| sup
h‰0

›

›

›

›

Dv ps, y ` hq ´Dv ps, yq

|h|

›

›

›

›

8

. (67)

The right hand side dominates Λh and is integrable over Rd by (62) and DK pt´ s, ¨q P L1
`

Rd
˘

. It
follows by dominated convergence that limhÑ0

ş

Rd Λh ps, yq dy “
ş

Rd limhÑ0 Λh ps, yq dy exists for
any s P p0, tq.

It remains to show that the limit in (65) can be moved inside the time integral. Since we already
know that limhÑ0

ş

Rd Λh ps, yq dy exists, we only need to find a function which is integrable over
p0, tq and dominates

ş

Rd Λh ps, yq dy. By (67) together with (62) and heat kernel estimates, we get
that

ż

Rd

|Λh ps, yq| dy ď LHλ pt´ sq
´ 1

α

´

a0s
´

2´β
α ` aT0 ` bT0

¯

.

The right hand side dominates
ş

Rd |Λh ps, yq| dy and is integrable over p0, tq since the exponents on
pt´ sq and s are greater than ´1. It follows by dominated convergence that

lim
hÑ0

ż t

0

ż

Rd

Λh ps, yq dyds “

ż t

0

lim
hÑ0

ż

Rd

Λh ps, yq dyds “

ż t

0

ż

Rd

lim
hÑ0

Λh ps, yq dyds,

implying that the second limit in (63) exists.

We use a similar approach for the third limit. In order to move the limit inside the integral, recall

from (59) that }D pDK pt´ s, ¨q ˚ f ps, ¨qq }8 ď λCI pt´ sq
´

2´β
α C̃f , which is integrable over p0, tq.

By using (58), this is a dominating function to the last integrand in (63). In addition, the limit of
this integrand as h Ñ 0 exists since D pDK pt´ s, ¨q ˚ f ps, ¨qq exists for all s P p0, tq. By dominated
convergence, it then follows that the third limit in (63) exists. Finally, since all limits on the right
hand side of (63) exist, D2v pt, xq exists everywhere in p0, T0s ˆ Rd.

It only remains to show that t
2´β
α D2v P L8

`

p0, T0s ˆ Rd
˘

. By (62), we have that

t
2´β
α }D2v pt, ¨q }8 ď t

2´β
α

´

b0t
´

2´β
α ` bT0

¯

ď b0 ` T
2´β
α

0 .

Since the right hand side is finite and independent of t, we deduce that t
2´β
α D2v is bounded

uniformly in p0, T0s ˆ Rd, and the proof is complete.

We proceed with showing spatial Hölder regularity for v pt, xq. As explained earlier in the section,
we need to consider cases where α ` β ď 2 and α ` β ą 2 seperately due to the appearance of
the second derivative. We will prove pα ` β ´ εq-Hölder continuity of v pt, ¨q with time blowup, as
well as β-Hölder continuity without time blowup. When α ` β ą 2, we will in addition show that

t
2´β
α D2v P Cb

`

p0, T0s ˆ Rd
˘

, as we did for v and t
1´β
α Dv in Theorem 3.1.

24



Theorem 3.3 (Spatial regularity estimates for mild solutions). Let α P p1, 2q, β P p0, 1q and ε ą 0,
and let assumptions on v0, f and H be as in Theorem 3.1. Furthermore, let v P Cb

`

r0, T0s ˆ Rd
˘

be the solution obtained in Theorem 3.1. Then, there exist constants C1, C2 ą 0 such that

(a) rv pt, ¨qsC0,β ď C1, @t P r0, T0s ,

(b) If α ` β ď 2, then
”

t
α´ε
α Dv

ı

C0,α`β´ε´1
ď C2, @t P p0, T0s ,

(c) If α ` β ą 2, then
”

t
α´ε
α D2v

ı

C0,α`β´ε´2
ď C2, @t P p0, T0s ,

(d) If α ` β ą 2, then t
2´β
α D2v P Cb

`

p0, T0s ˆ Rd
˘

.

Proof of Theorem 3.3 (a). By Theorem 3.1, we know that v is a mild solution to the HJB equation,
and that it is a fixed point of the Duhamel map for t P p0, T0s. By a similar calculation as in (47),
working with one less derivative, we get that

rv pt, ¨qsC0,β ď rv0sC0,β ` λβCβ,1

ż t

0

pt´ sq
´

β
α

´

LHs
´

1´β
α }s

1´β
α Dv ps, ¨q }8 `H0 ` Cf

¯

ds. (68)

We know from Theorem 3.1 that }s
1´β
α Dv ps, ¨q }8 is uniformly bounded in p0, T0s. By an integra-

tion similar to (46), there exist constants C, C̃ ě 0 such that

rv pt, ¨qsC0,β ď rv0sC0,β ` sup
sPp0,T0s

}s
1´β
α Dv ps, ¨q }8Ct

α´1
α ` C̃t

α´β
α

ď rv0sC0,β ` sup
sPp0,T0s

}s
1´β
α Dv ps, ¨q }8CT

α´1
α

0 ` C̃T
α´β
α

0 “: C1.

The last inequality holds since the exponents on t are positive. It follows that there exists
C1 ą 0 independent of t such that rv pt, ¨qsC0,β ď C1 for any t P p0, T0s. Finally, by noting
that rv p0, ¨qsC0,β “ rv0sC0,β ď C1, this holds in the entire r0, T0s.

Proof of Theorem 3.3 (b). Let η :“ α ` β ´ ε ´ 1. We want to use the generalized Grönwall

inequality (Lemma 2.11) to show that there exists C2 ě 0 such that rt
α´ε
α Dv pt, ¨qsC0,η ď C2 for

every t P p0, T0s. The most intuitive approach would be to let u ptq :“ rDv pt, ¨qsC0,η in Lemma
2.11 and use the Duhamel formula to conclude. This requires rDv ps, ¨qsC0,η to be integrable in
p0, T0s, however, which is not yet known. In order to circumvent this issue, we will instead consider
Hölder quotients with fixed h P Rdz t0u. This is similar to our approach in Lemma 3.2. For any
fixed h P Rdz t0u, we have that

›

›

›

›

Dv pt, ¨ ` hq ´Dv pt, ¨q

|h|
η

›

›

›

›

8

ď rDK pt, ¨q ˚ v0sC0,η `

ż t

0

rDK pt´ s, ¨q ˚ f ps, ¨qsC0,η ds

`

ż t

0

}DK pt´ sq }1

›

›

›

›

H pDv ps, ¨ ` hqq ´H pDv ps, ¨qq

|h|
η

›

›

›

›

8

ds,

where we have taken the supremum over h P Rdz t0u in the first two terms on the right hand side.
In addition, we used Young’s convolution inequality in the last integral. By using the interpolation
inequality in Theorem 2.35 (a) on the first two terms, heat kernel estimates from Theorem 2.26
and the fact that H is globally Lipschitz, we get that

›

›

›

›

Dv pt, ¨ ` hq ´Dv pt, ¨q

|h|
η

›

›

›

›

8

ď λCIt
´

α´ε
α rv0sC0,β ` λCI

ż t

0

pt´ sq
´

α´ε
α rf ps, ¨qsC0,β ds

` λLH

ż t

0

pt´ sq
´ 1

α

›

›

›

›

Dv ps, ¨ ` hq ´Dv ps, ¨q

|h|
η

›

›

›

›

8

ds. (69)

The second term on the right hand side is integrable and reaches its supremum when t “ T0. Then,
there exist constants a0, aT0

ě 0 such that
›

›

›

›

Dv pt, ¨ ` hq ´Dv pt, ¨q

|h|
η

›

›

›

›

8

ď a0t
´

α´ε
α ` aT0

` λLH

ż t

0

pt´ sq
´ 1

α

›

›

›

›

Dv ps, ¨ ` hq ´Dv ps, ¨q

|h|
η

›

›

›

›

8

ds.

(70)
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We can now use the generalized Grönwall inequality in Lemma 2.11. Let γ “ pα ´ εq {α and
ζ “ 1{α and notice that γ, ζ ă 1. Furthermore, let c “ λLH ě 0 and define uhptq as the left hand
side in (70). We estimate uh similarly to (61) and get that

0 ď uhptq :“

›

›

›

›

Dv pt, ¨ ` hq ´Dv pt, ¨q

|h|
η

›

›

›

›

8

ď
2

|h|
η t

´
1´β
α }t

1´β
α Dv pt, ¨q }8. (71)

Since this upper bound is integrable in p0, T0s for any fixed h P Rdz t0u, it follows that uh is
integrable in p0, T0s as well. Hence, by the generalized Grönwall inequality, there exists b0, bT0 ě 0
independent of t an h such that

›

›

›

›

Dv pt, ¨ ` hq ´Dv pt, ¨q

|h|
η

›

›

›

›

8

ď b0t
´

α´ε
α ` bT0 .

Finally, by taking the supremum over h P Rdz t0u and multiplying by t
α´ε
α , we get that

t
α´ε
α rDv pt, ¨qsC0,η ď b0 ` bT0t

α´ε
α ď b0 ` bT0T

α´ε
α

0 “: C2.

Hence, there exists C2 ě 0 independent of t P p0, T0s such that rt
α´ε
α Dv pt, ¨qsC0,η ď C2, and the

proof is complete.

Proof of Theorem 3.3 (c). Let η :“ α ` β ´ ε ´ 2. We want to show that rt
α´ε
α D2vsC0,η ď C2.

By Theorem 3.1, we know that v P Cb

`

r0, T0s ˆ Rd
˘

and t
1´β
α Dv P Cb

`

p0, T0s ˆ Rd
˘

. In addition,

D2v exists and t
2´β
α D2v P L8

`

p0, T0s ˆ Rd
˘

by Lemma 3.2.

We want to fix h P Rdz t0u and use the generalized Grönwall inequality (Lemma 2.11). By calcu-
lations similar to the previous proof, there exist constants a0, aT0

ě 0 such that

›

›

›

›

D2v pt, ¨ ` hq ´D2v pt, ¨q

|h|
η

›

›

›

›

8

ď a0t
´

α´ε
α ` aT0

`

ż t

0

›

›

›

›

DK pt´ s, ¨q ˚ pBxH pDv ps, ¨ ` hqq ´ BxH pDv ps, ¨qqq

|h|
η

›

›

›

›

8

ds. (72)

The main differences in (72) from the previous proof are that we use Theorem 2.35 (b) instead of
(a) for the interpolation, and that we put one derivative on H in the convolution. Define uh as the
left hand side in (72), and notice that

0 ď uh ptq :“

›

›

›

›

D2v pt, ¨ ` hq ´D2v pt, ¨q

|h|
η

›

›

›

›

8

ď
2

|h|
η t

´
2´β
α }t

2´β
α D2v pt, ¨q }8. (73)

Since t
2´β
α D2v P L8

`

p0, T0s ˆ Rd
˘

by Lemma 3.2, it follows that uh is integrable in p0, T0s. In
order to use the Grönwall inequality, we need to isolate uh psq in the integrand in (72), and arrive at
an expression similar to (70). In the previous proof, we simply used the global Lipschitz condition
of H. This is not possible in (70), however, since we now are dealing with the derivative of H. This
complicates our argument, as we need to use the chain rule to estimate this term. Omitting the
function arguments, we have that DK ˚ BxH pDvq “ DK ˚D2vBpH pDvq. Hence, the integrand in
(72) essentially becomes a Hölder seminorm of a function convolved with a product of functions.
We can estimate this term by using an analogoue of Proposition 2.38 for Hölder quotients (i.e.
without the supremum over h). One can easily see that the Proposition holds for fixed h P Rdz t0u

by removing the suprema over h in the proof. It follows that

›

›

›

›

DK pt´ s, ¨q ˚ pBxH pDv ps, ¨ ` hqq ´ BxH pDv ps, ¨qqq

|h|
η

›

›

›

›

8

ď }D2v ps, ¨q }8 rDK pt´ s, ¨q ˚ BpH pDv ps, ¨qqsC0,η

` }BpH pDv ps, ¨qq }8

›

›

›

›

›

DK pt´ s, ¨q ˚
`

D2v ps, ¨ ` hq ´D2v ps, ¨q
˘

|h|
η

›

›

›

›

›

8

. (74)
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In the first term, we want to put as much regularity on DK as possible. Since H is globally
Lipschitz, we can bound BpH pDvq by the Lipschitz constant LH . Furthermore, by our interpolation
result in Theorem 2.34, Young’s inequality and heat kernel estimates from Theorem 2.26, we get
that

rDK pt´ s, ¨q ˚ BpH pDv ps, ¨qqsC0,η ď Cη,1}DK pt´ s, ¨q }
1´η
1 }D2K pt´ s, ¨q }

η
1}BpH pDv ps, ¨qq }8

ď Cη,1λ pt´ sq
´

1`η
α LH “ Cη,1λ pt´ sq

´
α`β´ε´1

α LH .

By recalling that t
2´β
α D2v pt, ¨q P L8

`

p0, T0s ˆ Rd
˘

, we have }D2v pt, ¨q }8 ď C 1t´
2´β
α in p0, T0s for

some C 1 ě 0. It follows that

}D2v ps, ¨q }8 rDK pt´ s, ¨q ˚ BpH pDv ps, ¨qqsC0,η ď Cη,1LHC
1λ pt´ sq

´
α`β´ε´1

α s´
2´β
α , (75)

which is integrable over p0, tq since β ă 1 and α` β ą 2. In order to use Grönwall, we need uh psq
to appear in the last term in (74). We get that

}BpH pDv ps, ¨qq }8

›

›

›

›

›

DK pt´ s, ¨q ˚
`

D2v ps, ¨ ` hq ´D2v ps, ¨q
˘

|h|
η

›

›

›

›

›

8

ď LH}DK pt´ s, ¨q }1

›

›

›

›

D2v ps, ¨ ` hq ´D2v ps, ¨q

|h|
η

›

›

›

›

8

ď λLH pt´ sq
´ 1

α uh psq . (76)

By inserting (75) and (76) into (74) and recalling (72), it follows that

uh ptq ď a0t
´

α´ε
α ` aT0 `

ż t

0

Cη,1LHC
1λ pt´ sq

´
α`β´ε´1

α s´
2´β
α ds` λLH

ż t

0

pt´ sq
´ 1

α uh psq ds

ď a0t
´

α´ε
α ` aT0 ` a1t

´
1´ε
α ` λLH

ż t

0

pt´ sq
´ 1

α uh psq ds

ď

´

a0 ` a1T
α´1
α

0

¯

t´
α´ε
α ` aT0 ` λLH

ż t

0

pt´ sq
´ 1

α uh psq ds,

for some a1 ě 0. In the last inequality, we used that t´
1´ε
α ď T

α´1
α

0 t´
α´ε
α since α´1

α ą 0.

We can now use the generalized Grönwall inequality in Lemma 2.11. Let γ “ pα ´ εq {α and
ζ “ 1{α and notice that γ, ζ ă 1. We already know that uh is integrable from (71). It follows by
the Grönwall inequality that there exist constants b0, bT0

ě 0 independent of t and h such that

uh ptq ď b0t
´

α´ε
α ` bT0

.

Finally, by letting h Ñ 0 and multiplying with t
α´ε
α , we get that

”

t
α´ε
α D2v pt, ¨q

ı

C0,η
ď b0 ` bT0

t
α´ε
α ď b0 ` bT0

T
α´ε
α

0 “: C2.

Hence, there exists C2 ě 0 independent of t P p0, T0s such that rt
α´ε
α D2v pt, ¨qsC0,η ď C2, and the

proof is complete.

Proof of Theorem 3.3 (d). This is very similar to the proof of t
1´β
α Dϕ pvq P Cb

`

p0, T0s ˆ Rd
˘

in

Theorem 3.1, and we will be brief. From Theorem 3.3 (c), we know that t
α´ε
α D2v pt, ¨q is η-Hölder

continuous in space, where η “ α` β ´ ε´ 2. By fixing t P p0, T0s, we can ignore the time blowup

and get that t
2´β
α D2v pt, ¨q P Cb

`

Rd
˘

. Recall that v pt, xq is a fixed point of the Duhamel map
in (27), and assume first that t0 ă T0. By differentiating (31) twice, subtracting D2v pt0, xq and
taking the absolute value, we get that

ˇ

ˇD2v pt0 ` τ, xq ´D2v pt0, xq
ˇ

ˇ ď
ˇ

ˇ

`

K pτ, ¨q ˚D2v pt0, ¨q
˘

pxq ´D2v pt0, xq
ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż t0`τ

t0

`

D2K pt0 ` τ ´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qq
˘

pxq ds

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

`

K pτ, ¨q ˚D2v pt0, ¨q
˘

pxq ´D2v pt0, xq
ˇ

ˇ

` C1 sup
sPp0,T0s

}s
2´β
α D2v ps, ¨q }8

ˇ

ˇ

ˇ

ˇ

pt0 ` τq
α`β´3

α ´ t
α`β´3

α
0

ˇ

ˇ

ˇ

ˇ

` C2

ˇ

ˇ

ˇ

ˇ

pt0 ` τq
α`β´2

α ´ t
α`β´2

α
0

ˇ

ˇ

ˇ

ˇ

, (77)
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for constants C1, C2 ě 0. In the last inequality, we used a calculation similar to (59) and that

t
2´β
α D2v P L8

`

p0, T0s ˆ Rd
˘

by Lemma 3.2. By noticing that 0 ă
α`β´2

α ă 1, we get that

0 ă pt0 ` τq
α`β´2

α ´ t
α`β´2

α
0 ď τ

α`β´2
α . The last term in (77) then goes to zero as τ Ñ 0`. For

the second term, we argue as in (52) since ´1 ă
α`β´3

α ă 0. Finally, we use Lemma 2.23 with
g :“ D2v pt0, xq and γ “ η to deduce that

|K pτ, ¨q ˚D2v pt0, ¨q pxq ´D2v pt0, xq |

ď AdcK

˜

2}D2v pt0, ¨q }8

α
τ

η
2pd`ηq `

“

D2v pt0, ¨q
‰

C0,η

d` η
τ

η
2α

¸

. (78)

All terms on the right hand side of (77) then go to zero as τ Ñ 0`, and it follows that D2v pt0, xq

is continuous in time for any t0 P p0, T0q. For t0 “ T0, we repeat the argument with D2v pT0, xq ´

D2v pT0 ´ τ, xq in (77) and argue as in Theorem 3.1. Finally, since t
2´β
α is continuous, it follows

that t
2´β
α D2v P Cb

`

p0, T0s ˆ Rd
˘

, and the proof is complete.

3.3 Existence of a classical short time solution

In this section, we show that the mild solution v pt, xq obtained in Theorem 3.1 is classical. The
proof is fairly technical and uses a combination of Fubini-Tonelli and dominated convergence
arguments (see Theorem 2.8 and 2.9). We will use that v pt, ¨q P Cα`β´ε

`

Rd
˘

for any fixed
t P p0, T0s as we need at least pα ` δq-Hölder continuity in space for some δ ą 0 to ensure that

´ p´∆q
α{2

v pt, xq is well-defined (see Proposition 2.15). This follows from our regularity estimates
in Theorem 3.3.

Theorem 3.4 (Existence of a classical solution). Let assumptions on v0, f and H be as in Theorem
3.1, and let v be the mild solution obtained in the theorem. Then, v is a classical solution to the
HJB equation (37) in p0, T0s ˆ Rd.

The proof is similar to Lemma 5 in [12] where equivalence between the time derivative and the
fractional Laplacian of the integral in the Duhamel map is shown. Notice, however, that this
Lemma assumes spatial C2-regularity on the source term. Since we only have f pt, ¨q P C0,β

`

Rd
˘

,
we cannot use the result directly. We will therefore provide a proof in the case of a β-Hölder
continuous source term below. The proof is mostly self contained, and will only assume the
following result, which is easily derived from Proposition 1 in [12].

Proposition 3.5 (Proposition 1 in [12]). Let K pt, xq be the fractional heat kernel and let w P

Cb

`

Rd
˘

. Then, for any t ą 0 and any x P Rd, we have that

B

Bt
ppK pt, ¨q ˚ wq pxqq “ ´ p´∆q

α
2 ppK pt, ¨q ˚ wq pxqq .

Proof of Theorem 3.4 (Corrected from [2]). The result was incorrectly proven in [2], and we give
a revised proof. By Theorem 3.1, v is a fixed point of the Duhamel map in (27), meaning that

v pt, xq “ pK pt, ¨q ˚ v0q pxq ´

ż t

0

pK pt´ s, ¨q ˚ pH pDv ps, ¨qq ´ f ps, ¨qqq pxq ds. (79)

Since v0 P C0,β
`

Rd
˘

and K pt, ¨q P C8
b

`

Rd
˘

, it follows that K pt, ¨q ˚ v0 P C8
b

`

Rd
˘

, and by

Proposition 2.15 that ´ p´∆q
α
2 pK pt, ¨q ˚ v0q is bounded. Furthermore, since v0 P C0,β

`

Rd
˘

implies

v0 P Cb

`

Rd
˘

, we can use Proposition 3.5 to derive that

´ p´∆q
α
2 pK pt, ¨q ˚ v0q pxq “

B

Bt
pK pt, ¨q ˚ v0q pxq . (80)

For simplicity, let g ps, xq :“ H pDv ps, xqq ´ f ps, xq. We can show that

}g ps, ¨q }8 ď Cg0 ` C̃g0s
´

1´β
α and rg ps, ¨qsC0,β ď Cgβ ` C̃gβs

´ 1
α , (81)
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for constants Cg0 , C̃g0 , Cgβ , C̃gβ ě 0. The L8-estimate follows directly from (42) and uniform

boundedness of f . For the Hölder estimate, we use that f ps, ¨q P C0,β
`

Rd
˘

, H is globally Lipschitz,
and interpolate rDv ps, ¨qsC0,β between }Dv ps, ¨q }8 and rv ps, ¨qsCα`β´ε using Theorem 2.33. The
s´1{α-factor in (81) appears from the time blowup on these terms in Theorem 3.1 and 3.3.

By (79) and (80), it only remains to show that

´ p´∆q
α
2

ˆ
ż t

0

pK pt´ s, ¨q ˚ g ps, ¨qq pxq ds

˙

“
B

Bt

ˆ
ż t

0

pK pt´ s, ¨q ˚ g ps, ¨qq pxq ds

˙

´g pt, xq , (82)

for v to be a classical solution to the HJB equation. Let σ pt, s, xq :“ pK pt´ s, ¨q ˚ g ps, ¨qq pxq.
By Young’s inequality and }K pt´ s, ¨q }1 “ 1, we have that }σ pt, s, ¨q }8 ď }g ps, ¨q }8 which is
integrable on 0 ă s ă t by (81). Furthermore, using heat kernel estimates from Theorem 2.26 and
an interpolation as in Theorem 2.35, we get that

rσ pt, s, ¨qsCα`β´ε ď CIλ pt´ sq
´

α´ε
α rg ps, ¨qsC0,β , (83)

which is integrable on 0 ă s ă t by (81). It follows that
ż t

0

}σ pt, s, ¨q }8ds ă 8 and

ż t

0

rσ pt, s, ¨qsCα`β´ε ds ă 8. (84)

By the singular integral definition of K in (13) and the linearity of the integral, we have that

´ p´∆q
α
2

ˆ
ż t

0

σ pt, s, xq ds

˙

“ lim
rÑ0`

ż

RdzBrp0q

ż t

0

cd,α

|z|
d`α

pσ pt, s, x` zq ´ σ pt, s, xqq dsdz. (85)

The limit exists if the left hand side is finite, which follows from Proposition 2.15 since (84) implies

that
şt

0
σ pt, s, ¨q ds P Cα`β´ε

`

Rd
˘

.

In order to show (82), we need to move the fractional Laplacian inside the integral. This corres-
ponds to interchanging the integrals and limit in (85), which requires us to use the Fubini-Tonelli
theorem, as well as Lebesgue’s dominated convergence theorem. These are stated in Theorem 2.8
and Theorem 2.9 respectively. We can interchange the integrals in (85) by Fubini-Tonelli if the
integrand is absolutely integrable over

`

RdzBr p0q
˘

ˆ p0, tq for any fixed r ą 0. Notice that
ˇ

ˇ

ˇ

ˇ

ˇ

cd,α

|z|
d`α

pσ pt, s, x` zq ´ σ pt, s, xqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2cd,α

|z|
d`α

}σ pt, s, ¨q }8. (86)

The factor |z|
´pd`αq ensures integrability in RdzBr p0q since we integrate in d dimensions and

α ą 1. Furthermore, the resulting function is integrable over p0, tq by (84). We can now use the
Fubini-Tonelli theorem to deduce that

´ p´∆q
α
2

ˆ
ż t

0

σ pt, s, xq ds

˙

“ lim
rÑ0`

ż t

0

ż

RdzBr

cd,α

|z|
d`α

pσ pt, s, x` zq ´ σ pt, s, xqq dzds. (87)

In order to interchange the limit and the outer integral in (87), we need to use dominated conver-
gence. Let Gr pt, s, xq be the inner integral above such that

´ p´∆q
α
2

ˆ
ż t

0

σ pt, s, xq ds

˙

“ lim
rÑ0`

ż t

0

Gr pt, s, xq ds,

and let G˚ pt, s, xq “ ´ p´∆q
α
2 σ pt, s, xq. Notice that Gr pt, s, xq converges pointwise to G˚ pt, s, xq

as r Ñ 0` for any s P p0, tq by the singular integral definition of ´ p´∆q
α{2

. In order to use
dominated convergence, we need to find a function which is absolutely integrable over p0, tq, and
that dominates Gr pt, s, xq for any r ą 0. Notice that

|Gr pt, s, xq| ď

ż

RdzBrp0q

cd,α

|z|
d`α

|σ pt, s, x` zq ´ σ pt, s, xq| dz

ď rσ pt, s, ¨qsCα`β´ε

ż

B1p0qzBrp0q

cd,α

|z|
d´β`ε

dz ` }σ pt, s, ¨q }8

ż

RdzB1p0q

cd,α

|z|
d`α

dz

ď rσ pt, s, ¨qsCα`β´ε

ż

B1p0q

cd,α

|z|
d´β`ε

dz ` C2}σ pt, s, ¨q }8

ď C1 rσ pt, s, ¨qsCα`β´ε ` C2}σ pt, s, ¨q }8, (88)
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for constants C1, C2 ą 0, since the integrands above are integrable in their respective domains.
The resulting bound is a dominating function and is absolutely integrable over p0, tq by (84). Then,
by Lebesgue’s dominated convergence theorem it follows that

´ p´∆q
α
2

ˆ
ż t

0

σ pt, s, xq ds

˙

“ lim
rÑ0`

ż t

0

Gr pt, s, xq ds

“

ż t

0

G˚ pt, s, xq ds “

ż t

0

´ p´∆q
α
2 σ pt, s, xq pxq ds.

Having moved the fractional Laplacian inside the integral, we can once more use Proposition 3.5
to show that

´ p´∆q
α
2

ˆ
ż t

0

σ pt, s, xq ds

˙

“

ż t

0

´ p´∆q
α
2 σ pt, s, xq ds “

ż t

0

B

Bt
σ pt, s, xq ds. (89)

The last equality holds by Proposition 3.5 since σ pt, s, xq :“ pK pt´ s, ¨q ˚ g ps, ¨qq pxq, and g ps, ¨q P

Cb

`

Rd
˘

for any fixed s P p0, tq.

By (82) and (89), it only remains to show that

ż t

0

B

Bt
σ pt, s, xq ds “

B

Bt

ˆ
ż t

0

σ pt, s, xq ds

˙

´ g pt, xq . (90)

We will once more use dominated convergence to complete the proof. By writing the derivative in
the left hand side as a difference, we have that

ż t

0

B

Bt
σ pt, s, xq ds “

ż t

0

lim
τÑ0`

σ pt` τ, s, xq ´ σ pt, s, xq

τ
ds. (91)

Define Λτ pt, s, xq “ pσ pt` τ, s, xq ´ σ pt, s, xqq {τ and let Λ˚ pt, s, xq be its limit as τ Ñ 0, which
coincides with Btσ pt, s, xq. Then, Λτ converges pointwise to Λ˚ for any s P p0, tq. By g ps, ¨q P

Cb

`

Rd
˘

, the definition of σ and since K is continuous and differentiable in time, it follows that
σ pt, s, xq is continuous and differentiable with respect to t. We can then use the mean value
theorem to deduce that for any fixed t P p0, T0q and s P p0, tq, there exists ηs,t pτq P p0, τq such that

|Λτ pt, s, xq| “
1

τ
|σ pt` τ, s, xq ´ σ pt, s, xq| “

ˇ

ˇ

ˇ

ˇ

B

Bt
σ pt` ηs,t pτq , s, xq

ˇ

ˇ

ˇ

ˇ

.

By σ pt` ηs,t pτq , s, xq “ K pt` ηs,t pτq ´ s, ¨q ˚ g ps, ¨q pxq and g ps, ¨q P Cb

`

Rd
˘

, it follows from
Proposition 3.5 that

|Λτ pt, s, xq| “

ˇ

ˇ

ˇ

ˇ

B

Bt
σ pt` ηs,t pτq , s, xq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
´ p´∆q

α
2 σ pt` ηs,t pτq , s, xq

ˇ

ˇ

ˇ
. (92)

Furthermore, by a calculation similar to (88), we have

|Λτ pt, s, xq| ď C1 rσ pt` ηs,t pτq , s, ¨qsCα`β´ε ` C2}σ pt` ηs,t pτq , s, ¨q }8, (93)

for constants C1, C2 ą 0. We estimate as in (83), and get that

|Λτ pt, s, xq| ď C1CIλ pt` ηs,t pτq ´ sq
´

α´ε
α rg ps, ¨qsC0,β ` C2}g ps, ¨q }8

ď C1CIλ pt´ sq
´

α´ε
α rg ps, ¨qsC0,β ` C2}g ps, ¨q }8. (94)

In the last inequality, we used that ηs,t pτq ě 0 and that ´α´ε
α is negative. Observe that the right

hand side in (94) dominates Λτ pt, s, xq for any τ ě 0, and is absolutely integrable on 0 ă s ă t.
We can then use dominated convergence in (91) to deduce that

ż t

0

B

Bt
σ pt, s, xq ds “ lim

τÑ0`

ż t

0

σ pt` τ, s, xq ´ σ pt, s, xq

τ
ds

“ lim
τÑ0`

1

τ

ˆ
ż t`τ

0

σ pt` τ, s, xq ds´

ż t

0

σ pt, s, xq ds

˙

´ lim
τÑ0`

1

τ

ż t`τ

t

σ pt` τ, s, xq ds

“
B

Bt

ˆ
ż t

0

σ pt, s, xq ds

˙

´

ż 1

0

lim
τÑ0`

σ pt` τ, t` rτ, xq dr, (95)
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where we have used the substitution s “ t ` rτ . The limit is moved inside the integral in the
last equality by dominated convergence. The corresponding dominating function was derived by
letting τ ă τ0 for some τ0 ă T0 ´ t such that for any r P p0, 1q,

|σ pt` τ, t` rτ, xq| ď }K pt` τ ´ pt` rτq , ¨q }L1pRdq}g pt` rτ, ¨q }L8pRdq

ď }g}L8ppt,t`τqˆRdq ď }g}L8ppt,t`τ0qˆRdq. (96)

Integrability of the dominating function was ensured by using the L8-estimate for g in (81), which
holds in the entire pt, t` τ0q ˆ Rd since t` τ0 ă T0.

By writing out the definition of σ in the last integral in (95), we get that

ż t

0

B

Bt
σ pt, s, xq ds “

B

Bt

ˆ
ż t

0

σ pt, s, xq ds

˙

´

ż 1

0

lim
τÑ0`

K pp1 ´ rq τ, ¨q ˚ g pt` rτ, ¨q pxqdr

“
B

Bt

ˆ
ż t

0

σ pt, s, xq ds

˙

´

ż 1

0

lim
τÑ0`

g pt` rτ, xq dr

´

ż 1

0

lim
τÑ0`

K pp1 ´ rq τ, ¨q ˚ g pt` rτ, ¨q pxq ´ g pt` rτ, ¨q pxqdr.

The integrand in the last integral goes to zero as τ Ñ 0` by Lemma 2.23 since
g pt` rτ, ¨q P C0,β

`

Rd
˘

for any r P p0, 1q and τ ă τ0. Finally, we deduce that

ż t

0

B

Bt
σ pt, s, xq ds “

B

Bt

ˆ
ż t

0

σ pt, s, xq ds

˙

´

ż 1

0

lim
τÑ0`

g pt` rτ, xq dr

“
B

Bt

ˆ
ż t

0

σ pt, s, xq ds

˙

´ g pt, xq , (97)

where the last equality holds since g p¨, xq is continuous in pt, t` τq for any x P Rd and τ ă τ0.
This time continuity follows from the fact that H is globally Lipschitz, and since f and Dv are
continuous in time. By combining (80), (89) and (97), it follows that v pt, xq is a classical solution
to the HJB equation in p0, T0q ˆ Rd.

For t “ T0, we write the difference in (91) as pσ pT0, s, xq ´ σ pT0 ´ τ, s, xqq {τ and repeat the

argument. The main difference in the proof is in (94), where we get pt´ ηs,t pτq ´ sq´
α´ε
α instead.

By letting τ ă τ0, we can bound it by pt´ τ0 ´ sq
´

α´ε
α which is independent of τ , thus reaching

a dominating function. The other calculations are similar, and we conclude that our solution is
classical at t “ T0. It follows that v is classical solution to the HJB equation (37) in the entire
p0, T0s ˆ Rd.

3.4 Uniqueness results

In Section 3.1, we proved the existence of a unique mild solution to the HJB equation (37).
Although this solution was shown to be classical in Theorem 3.4, it does not necessarily mean that
it is unique among the classical solutions. We will therefore need to investigate uniqueness in a
seperate argument by using the comparison principle. This was briefly introduced in Section 2.9.

Inspired by the theory on sub- and supersolutions in Section 2.9, we say that v´, v` are sub- and
supersolutions to the HJB equation respectively if they satisfy the relations

#

Btv
´ pt, xq ` p´∆q

α
2 v´ pt, xq `H pDv´ pt, xqq ď f pt, xq

Btv
` pt, xq ` p´∆q

α
2 v` pt, xq `H pDv` pt, xqq ě f pt, xq

in p0, T0s ˆ Rd, (98)

and if v´ p0, xq ď v0 pxq ď v` p0, xq in Rd.

The classical solution v from Theorem 3.4 is both a subsolution and a supersolution since the
inequalities above are non-strict. The existence of functions v´ and v` is therefore evident.
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It suffices to show that the inequalities in (98) imply v´ ď v` in the whole r0, T0s ˆ Rd, as
uniqueness then follows by an argument similar to Lemma 2.42. Notice, however, that since our
domain is unbounded in the spatial dimensions, existence of a global maximum is not guaranteed.
As the comparison principle depends on the existence of global maxima, we will need to modify
our functions through penalization to prove uniqueness. Such a method was introduced in Section
2.10.

Lemma 3.6 (Comparison principle for the HJB equation). Suppose v´ and v` are sub- and
supersolutions to the HJB equation defined in (98), and suppose that v´, v` P Cb

`

r0, T0s ˆ Rd
˘

.
Given functions v0, f and H as in Theorem 3.1, it follows that v´ ď v` in r0, T0s ˆ Rd.

Proof. Define the function vd :” v´ ´ v` as the difference between the sub- and supersolution. It
suffices to show that vd ď 0 in p0, T0s ˆ Rd to prove the Lemma. By (98), we have that

B

Bt
vd pt, xq ` p´∆q

α
2 vd pt, xq `

`

H
`

Dv´ pt, xq
˘

´H
`

Dv` pt, xq
˘˘

ď 0, in p0, T0s ˆ Rd, (99a)

vd p0, xq ď 0, in Rd. (99b)

Hence, vd pt, xq ď 0 is already satisfied whenever t “ 0. To prove that this inequality holds in
the entire domain, it suffices to show that any supremum of vd is attained at t “ 0. We begin by
assuming that vd has a global maximum in r0, T0s ˆ Rd. As this may not be true, we will need to
inspect the case where only a supremum is attained as well.

Let pt0, x0q be a global maximum of vd such that t0 P r0, T0s and x0 P Rd. We want to show that
t0 “ 0 must hold. Assume by contradiction that there exists some global maximum pt0, x0q where
t0 P p0, T0s. The spatial first-order-derivatives are clearly zero at this point. The Hamiltonian term
in (99a) will then cancel due to the Lipschitz continuity of H since

ˇ

ˇH
`

Dv´ pt0, x0q
˘

´H
`

Dv` pt0, x0q
˘
ˇ

ˇ ď LH

ˇ

ˇDv´ pt0, x0q ´Dv` pt0, x0q
ˇ

ˇ “ LH |Dvd pt0, x0q| “ 0,

where LH ą 0 is the Lipschitz constant. Furthermore, Btvd pt0, x0q ě 0 must hold, since t0 P p0, T0s

implies a zero time derivative and t0 “ T0 implies a positive time derivative in order for it to be a

global maximum. Combining these observations with (99a), it follows that p´∆q
α{2

vd pt0, x0q ď 0

must hold. However, by Proposition 2.16, we know that p´∆q
α{2

vd pt0, x0q ě 0 whenever pt0, x0q is
a global maximum. This nearly leads to a contradiction, but since both inequalities are non-strict,
it is not entirely enough. In order to arrive at a contradiction, we will instead consider a modified
difference function with time penalization.

Let ṽd pt, xq “ v´ pt, xq ´ v` pt, xq ´ qt for some q ą 0. Since we assume that vd has a global
maximum in p0, T0s ˆRd, it follows that ṽd has a global maximum in p0, T0s ˆRd as well. Consider

now pt0, x0q to be a maximum point of ṽd. This implies p´∆q
α
2 vd pt0, x0q ď ´q ă 0 by (99a),

which contradicts p´∆q
α
2 vd pt0, x0q “ p´∆q

α
2 ṽd pt0, x0q ě 0. It follows that there cannot exist

any global maxima pt0, x0q of ṽd for t0 ą 0 in p0, T0s ˆ Rd. Since ṽd has a global maximum by
assumption, the only possibility left is that the maximum is attained at some point p0, x0q along
t “ 0. It follows that

vd pt, xq “ ṽd pt, xq ` qt ď ṽd p0, x0q ` qt “ vd p0, x0q ` qt ď qt. (100)

Since this holds for all t P r0, T0s and x P Rd, we can choose q arbitrarily small and deduce that
vd pt, xq ď 0.

Suppose now that vd has no global maxima. Since v´, v` P Cb

`

r0, T0s ˆ Rd
˘

by assumption,
our sub- and supersolutions are uniformly bounded. This allows us to draw inspiration from the
penalization method introduced in Lemma 2.44 to arrive at a function with a global maximum.

Let C “ }v´}L8pr0,T0sˆRdq ` }v`}L8pr0,T0sˆRdq. Define the penalization function φ1 pxq P C8
b

`

Rd
˘

by

φ1 pxq “

#

0, |x| ď 1,

2C ` δ, |x| ě 2,
(101)
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for some δ ą 0, and let the function be monotone increasing in 1 ă |x| ă 2. The existence of
such a function follows from Lemma 2.43. Since ϕ1 P C8

b

`

Rd
˘

, its derivatives are bounded. Let
}Dφ1}8 ď K1 and }D2φ1}8 ď K2 for constants K1,K2 ą 0, and let φR pxq :“ φ1 px{Rq.

We can now define our penalized difference function. Let ṽd pt, xq “ v´ pt, xq´v` pt, xq´qt´φR pxq

for some small q ą 0 and R ą 0. By the boundedness of v´ pt, xq ´ v` pt, xq ´ qt and the definition
of φR pxq, it follows by Lemma 2.44 that ṽd has a global maximum in r0, T0s ˆ tx : |x| ď 2Ru.
Let pt0, x0q be a global maximum of ṽd, and assume by contradiction that t0 ą 0. By (99a) and
observations of the time and first-order spatial derivatives of ṽd in the global maximum point, we
get that

p´∆q
α
2 vd pt0, x0q ď

ˇ

ˇH
`

Dv´ pt0, x0q
˘

´H
`

Dv` pt0, x0q
˘
ˇ

ˇ ´ q

ă LH |Dṽd pt0, x0q ´DφR px0q| ´ q “ LH |DφR px0q| ´ q, (102)

where we once more used that H is globally Lipschitz. Since pt0, x0q is a global maximum, we also
have by Proposition 2.16 that

p´∆q
α
2 ṽd pt0, x0q ě 0 ùñ p´∆q

α
2 vd pt0, x0q ě p´∆q

α
2 φR px0q . (103)

Arriving at a contradiction by (102) and (103) seems harder than in the case where a global
maximum was assumed. In order to conclude the proof with a similar argument as before, we

somehow need to let |DφR px0q| and
ˇ

ˇ

ˇ
p´∆q

α
2 φR px0q

ˇ

ˇ

ˇ
go towards zero.

Notice that since }Dφ1}8 ď K1 implies }DφR}8 ď K1{R, it follows that }DφR}8 Ñ 0 as R Ñ 8,
implying |DφR px0q| Ñ 0. For the fractional Lapacian, recall its singular integral definition in
Definition 2.13 and Proposition 2.14. We get that

´ p´∆q
α
2 φR px0q “ cd,α

ż

RdzB1p0q

φR px0 ` zq ´ φR px0q

|z|
d`α

dz

`
cd,α
2

lim
rÑ0`

ż

B1p0qzBrp0q

φR px0 ` zq ´ 2φR px0q ` φR px0 ´ zq

|z|
d`α

dz. (104)

When evaluating the integrals above as R Ñ 8, it is easier to work with the derivative of φR pxq

than the function itself, since the derivative will converge to zero as shown above. Notice that
similarly to the first derivative, we have that }D2φR}8 ď K2{R2 such that

ˇ

ˇD2φR px0q
ˇ

ˇ Ñ 0 as
R Ñ 8. By a similar argument as in Proposition 2.15, we deduce that

ˇ

ˇ

ˇ
p´∆q

α
2 φR px0q

ˇ

ˇ

ˇ
ď cd,α}DφR}8

ż

RdzB1p0q

1

|z|
d`α´1

dz `
cd,α
2

}D2φR}8

ż

B1p0q

1

|z|
d`α´2

dz

ď cd,α
K1

R

ż

RdzB1p0q

1

|z|
d`α´1

dz `
cd,α
2

K2

R2

ż

B1p0q

1

|z|
d`α´2

dz.

Since both integrals in the last expression are finite, it follows that
ˇ

ˇ

ˇ
p´∆q

α{2
ϕR px0q

ˇ

ˇ

ˇ
goes to zero

when R Ñ 8. Furthermore, since this holds for all x P Rd, we get that limRÑ8 }
`

´∆
α
2

˘

φR}8 “ 0.

By now letting R Ñ 8 in (102), we deduce that p´∆q
α
2 vd pt0, x0q ď ´q. However, from (103), we

get that p´∆q
α
2 vd pt0, x0q ě 0 which is a contradiction since q ą 0.

It follows that there cannot exist any global maximum pt0, x0q of ṽd for t0 ą 0. Since the existence
of a global maximum is assumed, it follows that ṽd must have a global maximum p0, x0q for some
x0 P Rd. Remembering that the contradiction is only fullfilled as R Ñ 8, we get by similar
calculations as in (100) that for any x P Rd and any t P r0, T0s,

vd pt, xq “ lim
RÑ8

ṽd pt, xq ` qt` φR pxq ď lim
RÑ8

ṽd p0, x0q ` qt` φR pxq

“ lim
RÑ8

vd p0, x0q ´ φR px0q ` qt` φR pxq ď lim
RÑ8

φR pxq ´ φR px0q ` qt.

Notice that φR pxq ´ φR px0q “ |x´ x0|DφR pξq for some ξ P px0, xq. Since }DϕR}8 Ñ 0` as
R Ñ 8, we get that limRÑ8 pφR pxq ´ φR px0qq “ 0. Finally, since q ą 0 can be chosen arbitrarily
small, we get that vd pt, xq ď 0.
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Since vd pt, xq ď 0 in r0, T0s ˆ Rd both in the case where a global maximum exists, and when we
only have a supremum, it holds in general. We get that v´ pt, xq ď v` pt, xq in r0, T0s ˆ Rd, and
the proof is complete.

By combining this lemma with an argument similar to Lemma 2.42, uniqueness follows directly.

Theorem 3.7. Let α P p1, 2q, β P p0, 1q and ε ą 0. Furthermore, let v0, f , H and T0 be as
in Theorem 3.1. Then, there exists a unique classical solution v P Cb

`

p0, T0s ˆ Rd
˘

to the HJB
equation (37) which satisfies the regularity results in Theorem 3.1 and 3.3.

Proof. By Theorem 3.1, 3.3 and 3.4, there exists a classical solution v to the HJB equation that sat-
isfies the regularity assumptions. Since any solution also is a sub- and supersolution, the existence
of sub/supersolutions v´, v` P Cb

`

r0, T0s ˆ Rd
˘

is evident. By Lemma 3.6, it follows that v´ ď v`

in the entire r0, T0sˆRd. Uniqueness of our solution v then follows directly by an argument similar
to Lemma 2.42.

3.5 Long time existence

We proceed by proving existence of a unique classical solution in p0, T s for any terminal time T ą 0.
This is done through a patching argument where we derive short time solutions in overlapping time
intervals. By utilizing the uniqueness result from Theorem 3.7, we can then conclude that these
short time solutions are part of the same solution.

Theorem 3.8 (Long time existence). Let α P p1, 2q, β P p0, 1q, ε ą 0 and T ą 0. Given functions
v0, f and H as in Theorem 3.1, there exists a unique classical solution v P Cb

`

p0, T s ˆ Rd
˘

.
Furthermore, v satisfies the regularity results in Theorem 3.1 and 3.3 in the entire p0, T s ˆ Rd.

Proof. By Theorem 3.1, 3.3, 3.4 and 3.7, there exists a unique classical solution v in p0, T0s ˆ Rd

which satisfies the regularity assumptions. Recall from Theorem 3.1 that T0 only depends on α,
β, λ and LH . Since these are time independent constants, T0 will not depend on the initial time.
Thus, by translating our short time existence proof in time, we achieve solutions on intervals of
equal length.

By v0 P C0,β
`

Rd
˘

and Theorem 3.1, there exists a unique classical solution v on the time interval

p0, T0s. Let v1 pxq :“ v pT0{2, xq. By Theorem 3.3, we know that v1 P C0,β
`

Rd
˘

. Using v1 as initial
data in Theorem 3.1 gives us existence of a solution on the time interval pT0{2, 3T0{2s. Notice that
the length of the time interval is T0 here as well, since T0 is independent on the initial time. Since
our solutions are unique and overlapping on pT0{2, T0s, they have to be part of the same solution.
It follows that there exists a unique classical solution on p0, 3T0{2s.

Now, let N P N be the largest integer such that NT0{2 ă T . By iteratively showing existence of
solutions on time intervals p0, T0s , pT0{2, 3T0{2s , pT0, 2T0s , . . . , ppN ´ 2qT0{2, NT0{2s and arguing
as above, there exists a solution v P Cb

`

p0, NT0{2s ˆ Rd
˘

. For the last iteration, we need to
make sure that we do not exceed the terminal time T ą 0. This is because our source term
f pt, xq is only defined on the time interval r0, T s. Let therefore T1 :“ T ´ pN ´ 1qT0{2 and
vN pxq :“ v pNT0{2, xq. By using vN as initial data in Theorem 3.1, there exists a solution on the
time interval ppN ´ 1qT0{2, T s. The fact that T1 ă T0 is not problematic, as it still provides us
with a contraction map in Theorem 3.1. We conclude that there exists a unique classical solution
v P Cb

`

p0, T s ˆ Rd
˘

. The regularity results in Theorem 3.1 and 3.3 are satisfied in p0, T s by the
same patching argument.

3.6 Uniform continuity

In the last section of the chapter, we study uniform continuity of the solution v and its derivatives.
This is an important step towards proving existence of classical solutions to the MFG system, as
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we will discuss in Chapter 5. In order to avoid time blowup, we will only work locally in time and
consider domains of the form rt1, t2s ˆ Rd for any 0 ă t1 ă t2 ď T .

Theorem 3.9 (Uniform continuity). Let α P p1, 2q, β P p0, 1q, ε ą 0 and T ą 0. Furthermore, let
assumptions on v0, f and H be as in Theorem 3.1, and assume in addition that f p¨, xq is uniformly
continuous in r0, T s for any x P Rd. Let v P Cb

`

p0, T s ˆ Rd
˘

be the corresponding classical solution
from Theorem 3.8 and choose t1, t2 such that 0 ă t1 ă t2 ď T . Then, there exists a modulus of
continuity ω such that for any pt, xq , ps, yq P rt1, t2s ˆ Rd, the following statements hold:

If α ` β ď 2:

|vpt, xq ´ vps, yq| ` |Dv pt, xq ´Dv ps, yq|

` |Btv pt, xq ´ Btv ps, yq| ` | p´∆q
α
2 v pt, xq ´ p´∆q

α
2 v ps, yq | ď ω p|t´ s| , |x´ y|q . (105)

If α ` β ą 2:

|vpt, xq ´ vps, yq| ` |Dv pt, xq ´Dv ps, yq| `
ˇ

ˇD2v pt, xq ´D2v ps, yq
ˇ

ˇ

` |Btv pt, xq ´ Btv ps, yq| ` | p´∆q
α
2 v pt, xq ´ p´∆q

α
2 v ps, yq | ď ω p|t´ s| , |x´ y|q . (106)

Furthermore, ω only depends on v through uniform bounds on v and Dv as well as rvsCα`β´εpRdq
.

If α ` β ą 2, ω also depends on uniform bounds on D2v.

Proof. We will only prove the case where α` β ą 2. For α` β ď 2, the proof is exactly the same
but without the estimates for D2v.

Since the time interval rt1, t2s is strictly away from zero, we can ignore any time blowup at t “ 0.
By Theorem 3.1, 3.3 and 3.8, we then have that v,Dv,D2v P Cb

`

rt0, t1s ˆ Rd
˘

. Furthermore,
rv pt, ¨qsCα`β´ε is bounded uniformly in rt1, t2s. Then, there exists a constant C ě 0 such that for
any t P rt1, t2s and x, y P Rd,

|vpt, xq ´ vpt, yq| ` |Dv pt, xq ´Dv pt, yq|

`
ˇ

ˇD2v pt, xq ´D2v pt, yq
ˇ

ˇ ď C
´

|x´ y| ` |x´ y|
α`β´ε´1

` |x´ y|
α`β´ε´2

¯

. (107)

For the time regularity, we use an analogous approach to the time continuity proofs in Theorem
3.1 and 3.3. By calculations similar to (48), (49) and (50), there exist constants c1, c2, c3, c4 ě 0
independent of v such that for any x P Rd, t0 P rt1, t2q and τ P p0, t1 ´ t0s,

|v pt0 ` τ, xq ´ v pt0, xq| ď c1}v}8τ
1

2pd`1q ` c2}Dv}8τ
1
2α ` pc3}Dv}8 ` c4q τ, (108)

where we let } ¨ }8 denote the L8-norm over rt1, t2s ˆ Rd. The exponents on τ are different than
the ones in Theorem 3.1 due to the abscence of time blowup on Dv.

Similarly, by (51) and (53) we get that

|Dv pt0 ` τ, xq ´Dv pt0, xq| ď c1}Dv}8τ
β

2pd`βq ` c2 rDvsC0,β τ
β
2α ` pc3}Dv}8 ` c4q τ, (109)

for different constants also independent of v. The second derivative is estimated similarly to (77)
and (78) such that

ˇ

ˇD2v pt0 ` τ, xq ´D2v pt0, xq
ˇ

ˇ ď c1}Dv}8τ
η

2pd`ηq ` c2 rDvsC0,η τ
η
2α ` c3}Dv}8τ

η
2α ` c4τ

α´1
α , (110)

where η “ α` β ´ ε´ 2. By (107)-(110), there exists a modulus of continuity ω̃ such that for any
pt, xq , ps, yq P rt1, t2s ˆ Rd,

|v pt, xq ´ v ps, yq| ` |Dv pt, xq ´Dv ps, yq| `
ˇ

ˇD2v pt, xq ´D2v ps, yq
ˇ

ˇ ď ω̃ p|t´ s| , |x´ y|q . (111)

We proceed with estimating space and time regularity of p´∆q
α{2

v. Let t, s P rt1, t2s and h P Rd

and notice that v pt, ¨ ` hq ´ v pt, ¨q P Cα`β´ε
`

Rd
˘

. We can then use Proposition 2.15 to deduce
that

ˇ

ˇ

ˇ
p´∆q

α
2 v pt, x` hq ´ p´∆q

α
2 v ps, xq

ˇ

ˇ

ˇ
ď

›

›

›
´ p´∆q

α
2 pv pt, ¨ ` hq ´ v pt, ¨qq

›

›

›

L8pRdq

ď C1}v pt, ¨ ` hq ´ v ps, ¨q }L8pRdq ` C2 rDv pt, ¨ ` hq ´Dv ps, ¨qsC0,α`δ´1pRdq
, (112)
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for constants C1, C2 ě 0, where δ is chosen such that 0 ă δ ă β ´ ε and α ` δ ă 2. By Theorem
2.33, we can estimate the Hölder seminorm by

pC2}Dv pt, ¨ ` hq ´Dv ps, ¨q }
1´ζ
L8pRdq

rv pt, ¨ ` hq ´ v ps, ¨qs
ζ
Cα`β´εpRdq

, (113)

where ζ :“ α`δ´1
α`β´ε´1 and pC2 ě 0. Since (111) holds for all x, y P Rd, we can bound the L8-norm

in (113) by the modulus ω̃. We let y “ x` h and deduce that

ˇ

ˇ

ˇ
p´∆q

α
2 v pt, xq ´ p´∆q

α
2 v ps, yq

ˇ

ˇ

ˇ
ď C1ω̃ p|t´ s| , |x´ y|q

` pC2 prv pt, ¨ ` hqsCα`β´ε ` rv ps, ¨qsCα`β´εq
ζ
ω̃1´ζ p|t´ s| , |x´ y|q . (114)

Finally, we derive estimates for Btv. Recall that v is a classical solution to the HJB equation (37)
in p0, T s ˆ Rd. For any pt, xq , ps, yq P rt1, t2s ˆ Rd, it follows that

|Btv pt, xq ´ Btv ps, yq|

ď

ˇ

ˇ

ˇ
p´∆q

α
2 v pt, xq ´ p´∆q

α
2 v ps, yq

ˇ

ˇ

ˇ
` |H pDv pt, xqq ´H pDv ps, yqq| ` |f pt, xq ´ f ps, yq|

ď |f pt, xq ´ f ps, yq| ` pC1 ` LHq ω̃ p|t´ s| , |x´ y|q

` pC2 prv pt, ¨ ` hqsCα`β´ε ` rv ps, ¨qsCα`β´εq
ζ
ω̃1´ζ p|t´ s| , |x´ y|q , (115)

where we used (111), (114) and that H is globally Lipschitz. Furthermore, since f is β-Hölder
continuous in space and uniformly continuous in time, there exists a modulus of continuity ωf such
that

|f pt, xq ´ f ps, yq| ď ωf p|t´ s| , |x´ y|q , @ pt, xq P rt1, t2s ˆ Rd. (116)

By combining (111), (114), (115) and (116), there exists a modulus of continuity ω such that
(106) holds. Furthermore, ω will only depend on v through uniform bounds on v, Dv, D2v and
rvsCα`β´ε .
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4 The Fokker-Planck Equation

This chapter studies the Fokker-Planck equation (FP), which was briefly introduced in Section 2.3.
We consider the system

#

Btm pt, xq ` p´∆q
α
2 m pt, xq ` ∇ ¨ pb pt, xqm pt, xqq “ 0, pt, xq P p0, T s ˆ Rd,

m p0, xq “ m0 pxq , x P Rd,
(117)

where α P p1, 2q. Since the FP equation generally studies probabilistic distributions, we assume
that 0 ď m0 P L1

`

Rd
˘

and }m0}L1pRdq “ 1. In addition, we let m0 P C0,ν
`

Rd
˘

for some ν P p0, 1q.
In order to motivate our regularity assumptions for the drift term b pt, xq, we need to take a brief
look at the Mean Field Game system (2).

In (2), the HJB equation moves backwards in time. This means that any time blowup occuring at

t “ 0 in Chapter 3 now occurs at the terminal time. In other words, we have that pT ´ tq
1´β
α Dv P

Cb

`

r0, T q ˆ Rd
˘

instead of t
1´β
α Dv P Cb

`

p0, T s ˆ Rd
˘

and so forth. Looking at the MFG system,
we observe that b pt, xq :“ DpH pDv pt, xqq. The time blowup on Dv at t “ T will therefore transfer
to the FP equation through b, complicating our existence proof drastically.

We circumvent this issue by working with a terminal time Tε ă T instead. Notice that for any

t P r0, Tεs, we have pT ´ tq
1´β
α ď pT ´ Tεq

1´β
α ă 8, and it follows that Dv P Cb

`

r0, Tεs ˆ Rd
˘

.
Similar observations hold also for the second derivative and the Hölder seminorms considered in
Theorem 3.3. For simplicity, we denote the terminal time by T for the remainder of this chapter,
and revisit the issue when discussing the coupled MFG system in Chapter 5.

In order to impose sufficient regularity on b, we will here assume that H P C3
`

Rd
˘

, where H, BpH
and B2

pH are globally Lipschitz with corresponding Lipschitz constants LH , L
1
H , L

2
H ě 0. It follows

that

|b pt, x` hq ´ b pt, xq| ď L1
H |Dv pt, x` hq ´Dv pt, xq| , @x P Rd, h P Rdz t0u . (118)

Furthermore, if D2v exists, we can use the chain rule to deduce that

|Dbpt, x` hq ´Dbpt, xq| ď
ˇ

ˇD2v pt, x` hqD2
pH pDv pt, x` hqq ´D2v pt, xqD2

pH pDv pt, xqq
ˇ

ˇ

ď }D2v pt, ¨q }8

ˇ

ˇD2
pH pDv pt, x` hqq ´D2

pH pDv pt, xqq
ˇ

ˇ

` }D2
pH pDv pt, ¨qq }8

ˇ

ˇD2v pt, x` hq ´D2v pt, xq
ˇ

ˇ

ď L1
H}D2v pt, ¨q }8 |Dv pt, x` hq ´Dv pt, xq| ` L2

H

ˇ

ˇD2v pt, x` hq ´D2v pt, xq
ˇ

ˇ . (119)

Assume now that v pt, ¨q is pµ` 1q-Hölder continuous in space for every t P r0, T s where µ P p0, 2q.

Dividing (118) by |h|
µ
if µ ď 1, or (119) by |h|

µ´1
if µ ą 1, we deduce by taking the supremum

over h that b pt, ¨q is µ-Hölder continuous in space for every t P r0, T s. Furthermore, by instead
considering a time difference b pt` τ, xq ´ b pt, xq in (118) and letting τ Ñ 0`, we deduce that b is
continuous in time. This follows from Dv P Cb

`

r0, T s ˆ Rd
˘

. A similar argument holds for Db in

(119) when µ ą 1 and uses D2v P Cb

`

r0, T s ˆ Rd
˘

.

This leads us to the assumption we will impose, namely that b P Cb

`

r0, T s ;Cµ
`

Rd
˘˘

. In addition,

if µ ą 1, we assume Db P Cb

`

r0, T s ;Cµ´1
`

Rd
˘˘

. By recalling that v pt, ¨q is pα ` β ´ εq-Hölder
continuous in space for every t P p0, T s (see Theorem 3.3), we get that µ “ α`β´ ε´1. It follows
that µ P p0, αq since α P p1, 2q and β P p0, 1q.

The outline for this chapter is quite similar to Chapter 3. We begin with showing short time
existence of a unique mild solution in Section 4.1. Regularity estimates are for the most part
proven simultaneously, in contrast to the HJB case where we considered existence ofD2v and Hölder
regularity in seperate arguments (see Section 3.2). Since the FP equation describes probabilistic
distributions, we need to show that m ě 0 almost everywhere and that m pt, ¨q P L1

`

Rd
˘

with
}m pt, ¨q }L1pRdq “ 1 for every t P r0, T s. This is dealt with in Section 4.2 where we show positivity
and mass preservation of so-called very weak solutions. By utilizing these properties, uniqueness
follows immediately. Section 4.3 provides a long time existence result for very weak solutions by
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an identical patching argument as in Theorem 3.8. In Section 4.4, we prove that our unique very
weak solution is classical whenever µ ą 1. Finally, we finish the chapter with a uniform continuity
result for m and its derivatives in Section 4.5.

4.1 Short time existence and regularity estimates

We begin with proving short time existence of a unique mild solution m P Cb

`

r0, T0s ˆ Rd
˘

where

m pt, ¨q P L1
`

Rd
˘

for every t P p0, T0s. The approach is quite similar to Theorem 3.1, but differs
in some key aspects. In contrast to the HJB equation, we will not address existence of the second
derivative in a seperate result. As discussed in Chapter 3, D2v was treated seperately due to
difficulties when differentiating H in the contraction argument. Since the Hamiltonian is not
present in the FP equation, however, we will not encounter this problem when includingD2m in the
fixed point argument. Unlike the HJB equation, we may not have existence of the first derivative.
This requires us to consider three different cases in Theorem 4.1, depending on the existence of
Dm and D2m. Other differences from Theorem 3.1 include that we require m pt, ¨q P L1

`

Rd
˘

for
every t P r0, T s, and that we show pα ` µ´ ε´ 1q-Hölder continuity of m pt, ¨q in space. This is
analogous to the pα ` β ´ εq-Hölder continuity of v pt, ¨q in Theorem 3.3.

Theorem 4.1 (Short time existence of mild solutions). Let α P p1, 2q, µ P p0, αq, ν P p0, 1q, ε ą 0
and suppose thatm0 P C0,ν

`

Rd
˘

XL1
`

Rd
˘

where }m0}1 “ 1. Define η :“ α`µ´ε´1 and let λ be the

constant from Theorem 2.26. Given a terminal time T ą 0, suppose that b P Cb

`

r0, T s ;Cµ
`

Rd
˘˘

.

If µ ą 1, assume also that Db P Cb

`

r0, T s ;Cµ´1
`

Rd
˘˘

. Then, there exists T0 P p0, T q only
depending on α, µ, ν, λ, interpolation constants from Section 2.8 and uniform bounds on b such
that the following statements hold:

(a) If η ă 1, there exists a unique mild solution m P Cb

`

r0, T0s ˆ Rd
˘

to the FP equation (117)

where m pt, ¨q P L1
`

Rd
˘

for every t P r0, T0s. Furthermore, if ν ă η, we have uniform bounded-

ness of t
η´ν
α rm pt, ¨qsC0,η in p0, T0s. If ν ě η, this holds for rm pt, ¨qsC0,η instead.

(b) If 1 ă η ă 2, there exists a unique mild solution m P Cb

`

r0, T0s ˆ Rd
˘

to the FP equation (117)

where m pt, ¨q P L1
`

Rd
˘

for every t P r0, T0s, and t
1´ν
α Dm P Cb

`

p0, T0s ˆ Rd
˘

. Furthermore,

t
η´ν
α rDm pt, ¨qsC0,η´1 is bounded uniformly in p0, T0s.

(c) If η ą 2, there exists a unique mild solution m P Cb

`

r0, T0s ˆ Rd
˘

to the FP equation (117)

where m pt, ¨q P L1
`

Rd
˘

for every t P r0, T0s, and t
1´ν
α Dm, t

2´ν
α D2m P Cb

`

p0, T0s ˆ Rd
˘

.

Furthermore, t
η´ν
α

“

D2m pt, ¨q
‰

C0,η´2 is bounded uniformly in p0, T0s.

The proofs are similar to each other and the short time existence proof in Theorem 3.1. We will
therefore only provide a complete proof for (c), and comment on the differences in (a) and (b).

Proof of Theorem 4.1 (c). Define the Banach space X by

X “

!

m : m, t
1´ν
α Dm, t

2´ν
α D2m P Cb

`

p0, T0s ˆ Rd
˘

,m P B
`

p0, T0s ;L1
`

Rd
˘˘

and ~m~X ă 8

)

,

(120)
where ~m~X “ suptPp0,T0s }m pt, ¨q }X and

}m pt, ¨q }X “ }m pt, ¨q }1 ` }m pt, ¨q }8

` t
1´ν
α }Dm pt, ¨q }8 ` t

2´ν
α }D2m pt, ¨q }8 ` t

η´ν
α

“

D2m pt, ¨q
‰

C0,η´2 . (121)

We note that the norm } ¨}X depends on t, but we skip it in the notation for the sake of readability.
Recall the definition of the Duhamel map ψ pmq in Definition 2.28.

ψ pmq pt, xq “ K pt, ¨q ˚m0 p¨q pxq ´

d
ÿ

i“1

ż t

0

Bxi
K pt´ s, ¨q ˚ pbi ps, ¨qm ps, ¨qq pxq ds. (122)
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Similarly to Theorem 3.1, we need to show that ψ : X Ñ X in order to use Banach’s fixed
point theorem. We begin by showing that ~ψ pmq ~X is bounded whenever m P X, implying

that ψ pmq pt, ¨q , t
1´ν
α Dψ pmq pt, ¨q , t

2´ν
α D2ψ pmq pt, ¨q P Cb

`

Rd
˘

and ψ pmq pt, ¨q P L1
`

Rd
˘

for any
t P p0, T0s. Our approach consists of using interpolation inequalities and heat kernel estimates on
the Duhamel map, similar to Theorem 3.1. We will, however, need some new results when working
with the product bim. Specifically, we require estimates for the L1-norm and Hölder seminorms
of a product of functions. The latter is presented in Lemma 2.37 and the L1-estimate is a special
case of Hölder’s inequality (Lemma 2.39).

We estimate each part of }ψ pmq pt, ¨q }X seperately, starting with the L1-norm. By Young’s in-
equality, heat kernel estimates and Hölder’s inequality with p “ 1 and q “ 8, we then get that

}ψ pmq pt, ¨q }1 ď }K pt, ¨q }1}m0}1 `

d
ÿ

i“1

ż t

0

}Bxi
K pt´ s, ¨q }1}bi ps, ¨qm ps, ¨q }1ds

ď 1 ¨ 1 ` dλ

ˆ
ż t

0

pt´ sq
´ 1

α }b ps, ¨q }8}m ps, ¨q }1ds

˙

ď 1 ` dλ
α

α ´ 1
t
α´1
α sup

sPp0,tq

}b ps, ¨q }8}m ps, ¨q }1

ď 1 ` dλ
α

α ´ 1
T

α´1
α

0 sup
sPp0,T0s

}b ps, ¨q }8}m ps, ¨q }1, (123)

where the last inequality holds since pα ´ 1q {α is positive. It follows that ψ pmq pt, ¨q P L1
`

Rd
˘

for
any t P p0, T0s since m P X and b is bounded. By a similar calculation, we get that

}ψ pmq pt, ¨q }8 ď }K pt, ¨q }1}m0}8 `

d
ÿ

i“1

ż t

0

}Bxi
K pt´ s, ¨q }1}bi ps, ¨q }8}m ps, ¨q }8ds

ď }m0}8 ` dλ
α

α ´ 1
T

α´1
α

0 sup
sPp0,T0s

}b ps, ¨q }8}m ps, ¨q }8, (124)

and it follows that ψ pmq pt, ¨q is bounded in p0, T0s ˆ Rd.

When estimating }t
1´ν
α Dψ pmq pt, ¨q }8, we need to differentiate the convolutions. This requires

additional regularity on bim, since we lose integrability if we differentiate K twice in the integral.
By α P p1, 2q and η ą 2, we have µ ą 1. This means that Db is bounded since b pt, ¨q P Cµ

`

Rd
˘

.

Furthermore, t
1´ν
α Dm is bounded since m P X. We can then put the derivative on bim in the

integral. For the initial data term, we interpolate as in (45) and get that

}t
1´ν
α Dψ pmq pt, ¨q }8 ď CIλ

1´ν rm0sC0,ν ` t
1´ν
α

d
ÿ

i“1

ż t

0

}BxiK pt´ s, ¨q }1}D pbi ps, ¨qm ps, ¨qq }8ds

ď CIλ
1´ν rm0sC0,ν ` dλt

1´ν
α

ż t

0

pt´ sq
´ 1

α

´

s´
1´ν
α }b}8}s

1´ν
α Dm}8 ` }Db}8}m}8

¯

ds,

where we have taken the supremum over i P t1, . . . , du and s P p0, T0s in the } ¨ }8-terms. The
L8-norms are bounded and independent of t and s. Since the exponents on t´ s and s are greater
than ´1, we have integrability and it follows that

}t
1´ν
α Dψ pmq pt, ¨q }8 ď CIλ

1´ν rm0sC0,ν ` c1t
α´1
α }b}8}s

1´ν
α Dm}8 ` c2t

α´ν
α }Db}8}m}8, (125)

for some c1, c2 ě 0. The supremum over t is attained at t “ T0, and we get that t
1´ν
α Dψ pmq is

uniformly bounded in p0, T0s ˆ Rd.

For }t
2´ν
α D2ψ pmq pt, ¨q }8, we need to use interpolation in the integral as well. By using Theorem

2.35 (c) as well as Young’s inequality on the integrand, we get that

}t
2´ν
α D2ψ pmq pt, ¨q }8 ď CIλ rm0sC0,ν

` t
2´ν
α CI

d
ÿ

i“1

ż t

0

}Bxi
K pt´ s, ¨q }

µ´1
1 }DBxi

K pt´ s, ¨q }
2´µ
1 rD pbi ps, ¨qm ps, ¨qqsC0,µ´1 ds. (126)
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The initial data term was estimated similarly to what we did for t
1´ν
α Dψ pmq, and is bounded

independently of t. It remains to estimate the second term in (126). By taking the supremum over
i P t1, . . . , du and using the product rule on D pbimq, we get that

}t
2´ν
α D2ψ pmq pt, ¨q }8 ď CIλ rm0sC0,ν

` t
2´ν
α CIdλ

ż t

0

pt´ sq
´

3´µ
α prm ps, ¨qDb ps, ¨qsC0,µ´1 ` rb ps, ¨qDm ps, ¨qsC0,µ´1q ds. (127)

Notice that ´ p3 ´ µq {α ą ´1. We can now use Lemma 2.37 on the Hölder seminorms in (127).
Omitting ps, ¨q for simplicity, we have that

rmDbsC0,µ´1 ` rbDmsC0,µ´1 ď }m}8 rDbsC0,µ´1 ` rmsC0,µ´1 }Db}8

` }b}8 rDmsC0,µ´1 ` rbsC0,µ´1 }Dm}8.

Boundedness of }b}8, rbsC0,µ´1 , }Db}8 and rDbsC0,µ´1 follows from b ps, ¨q P Cµ
`

Rd
˘

. Furthermore,

since m P X, we know that }m}8 and }s
1´ν
α Dm}8 are bounded. For the Hölder seminorms on m

and Dm, we need to use interpolation. By Theorem 2.34, we have that

rmsC0,µ´1 ď Cµ´1,1}m}2´µ
8 }Dm}µ´1

8 ď Cµ´1,1s
´

p1´νqpµ´1q

α }m}2´µ
8 }s

1´ν
α Dm}µ´1

8 . (128)

Similarly,

rDmsC0,µ´1 ď Cµ´1,1}Dm}2´µ
8 }D2m}µ´1

8 ď Cµ´1,1s
´

µ´ν
α }s

1´ν
α Dm}2´µ

8 }s
2´ν
α Dm}µ´1

8 . (129)

By combining these estimates and taking the supremum over s P p0, T0s in the norms and seminorms,
there exist constants c1, c2, c3, c4 ě 0 independent of t and s such that

rmDbsC0,µ´1 ` rbDmsC0,µ´1 ď c1 ` c2s
´

p1´νqpµ´1q

α ` c3s
´

µ´ν
α ` c4s

´
1´ν
α . (130)

All exponents on s are greater than ´1, and by inserting (130) into (127), we have integrability.
By calculating the resulting integral, we get that

}t
2´ν
α D2ψ pmq pt, ¨q }8 ď CIλ rm0sC0,ν ` c̃1t

α`µ´ν´1
α ` c̃2t

α`νpµ´2q

α ` c̃3t
α´1
α ` c̃4t

α`µ´2
α , (131)

for constants c̃1, c̃2, c̃3, c̃4 ě 0. All exponents on t are positive, and we can let t Ñ T0. It follows

that t
2´ν
α D2ψ pmq is uniformly bounded in p0, T0s ˆ Rd.

We estimate rt
η´ν
α D2ψ pmq pt, ¨qsC0,η´2 by a similar calculation as in (126) and (127), using Theorem

2.35 (b) instead of (c) for the interpolations.
”

t
η´ν
α D2ψ pmq pt, ¨q

ı

C0,η´2
ď CIλ rm0sC0,ν

` CIdλt
η´ν
α

ż t

0

pt´ sq
´

η`1´µ
α prm ps, ¨qDb ps, ¨qsC0,µ´1 ` rb ps, ¨qDm ps, ¨qsC0,µ´1q ds. (132)

Combining this estimate with (130), we reach integrability and it follows that
”

t
η´ν
α D2ψ pmq pt, ¨q

ı

C0,η´2
ď CIλ rm0sC0,ν ` c1

1t
α`µ´ν´1

α ` c1
2t

α`νpµ´2q

α ` c1
3t

α´1
α ` c1

4t
α`µ´2

α ,

which is similar to (131). All exponents are positive, and by letting t Ñ T0, we get that

rt
η´ν
α D2ψ pmq pt, ¨qsC0,η´2 is uniformly bounded in p0, T0s. It follows that ~ψ pmq ~X ă 8.

We proceed with showing ψ pmq, t
1´ν
α Dψ pmq, t

2´ν
α D2ψ pmq P Cb

`

p0, T0s ˆ Rd
˘

. This is very sim-

ilar to Theorem 3.1. By fixing t P p0, T0s and noting that t
1´ν
α Dψ pmq pt, ¨q and t

2´ν
α D2ψ pmq pt, ¨q

are bounded in space, it follows that ψ pmq pt, ¨q and t
1´ν
α Dψ pmq pt, ¨q are Lipschitz continuous.

Furthermore, t
2´ν
α D2ψ pmq pt, ¨q is pη ´ 2q-Hölder continuous in space, as shown above.

Time continuity is proven as in Theorem 3.1. By Lemma 2.30, we have that

ψ pmq pt0 ` τ, xq ´ ψ pmq pt0, xq “ pK pτ, ¨q ˚ ψ pmq pt0, ¨qq pxq ´ ψ pmq pt0, xq

´

d
ÿ

i“1

ż t0`τ

t0

Bxi
K pt0 ` τ ´ s, ¨q ˚ pbi ps, ¨qm ps, ¨qq pxq ds.
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This is similar to (48). By Lemma 2.23 and arguments similar to the proof in Theorem 3.1, it follows

that ψ pmq P Cb

`

p0, T0s ˆ Rd
˘

. For t
1´ν
α Dψpmq, we argue as in (51) and use that t

1´ν
α Dψpmq is

Lipschitz continuous in space to conclude with Lemma 2.23. For t
2´ν
α D2ψpmq, we argue as in

(77), and use instead the spatial pη ´ 2q-Hölder continuity of t
2´ν
α D2ψpmq pt, ¨q. It follows that

ψpmq, t
1´ν
α Dψpmq, t

2´ν
α D2ψpmq P Cb

`

p0, T0s ˆ Rd
˘

, and we can conclude that ψ : X Ñ X.

It only remains to prove that ψ is a contraction map. Notice that

}ψ pm1q pt, ¨q ´ ψ pm2q pt, ¨q }X ď

d
ÿ

i“1

ż t

0

}Bxi
K pt´ s, ¨q ˚ pbi ps, ¨q pm1 ps, ¨q ´m2 ps, ¨qqq }X ,

for any m1,m2 P X. By letting m :“ m1 ´ m2 in calculations similar to (123)-(129) and (132),
and omitting pt, ¨q for simplicity, we get that

~ψ pm1q ´ ψ pm2q ~X ď C pT0q sup
tPp0,T0s

´

}m1 ´m2}1 ` }m1 ´m2}8 ` }t
1´ν
α D pm1 ´m2q }8

` }m1 ´m2}2´µ
8 }t

1´ν
α D pm1 ´m2q }µ´1

8 ` }t
1´ν
α D pm1 ´m2q }2´µ

8 }t
2´ν
α D2 pm1 ´m2q }µ´1

8

¯

ď 5C pT0q ~m1 ´m2~X . (133)

Notice that the last inequality holds since the exponents p2 ´ µq and pµ ´ 1q sum up to 1. Here,
C pT0q ě 0 is the maximum of the coefficients that appear when estimating the different parts
of ~ ¨ ~X . It depends solely on α, µ, ν, λ, T0, interpolation constants and uniform bounds on b.
Furthermore, C pT0q is strictly decreasing as T0 Ñ 0. Thus, by choosing T0 P p0, T q sufficiently
small, it follows from (133) that there exists L ă 1 such that ~ψ pm1q´ψ pm2q ~X ď L~m1´m2~X

for any m1,m2 P X. Then, ψ is a contraction map, and by Banach’s fixed point theorem there
exists a unique fixed point m P X such that ψ pmq “ m. This is a mild solution to the FP equation
(117). By also noting that m p0, ¨q “ m0 P C0,ν

`

Rd
˘

X L1
`

Rd
˘

, we get m P Cb

`

r0, T0s ˆ Rd
˘

and

m pt, ¨q P L1
`

Rd
˘

for every t P r0, T0s. Finally, since T0 has the same dependencies as C pT0q, the
requirements for T0 are satisfied.

Proof of Theorem 4.1 (a),(b). The proofs are essentially the same as in Theorem 4.1 (c), only with
fewer terms.

For Theorem 4.1 (a), we define the Banach space X as in (120), but without the regularity re-

quirements on t
2´ν
α D2m and t

1´ν
α Dm. If ν ă η, the corresponding norm is given by ~m~X “

suptPp0,T0s }m pt, ¨q }X where

}m pt, ¨q }X “ }m pt, ¨q }1 ` }m pt, ¨q }8 ` rt
η´ν
α m pt, ¨qsC0,η .

If ν ě η, we omit the time blowup in the Hölder seminorm. We show ψ pmq pt, ¨q P L1
`

Rd
˘

as in

Theorem 4.1 (c). For ψ pmq P Cb

`

p0, T0s ˆ Rd
˘

, we derive η-Hölder continuity of ψ pmq, similar
to (132). Time continuity follows by Lemma 2.23 and that rψ pmq pt, ¨qsC0,η is bounded. This is

similar to the time continuity proof for t
2´ν
α D2ψ pmq in Theorem 4.1 (c). Then, ψ : X Ñ X. The

contraction argument follows as in Theorem 4.1 (c), only with fewer terms. We conclude the proof
by Banach’s fixed point theorem.

The approach is similar for Theorem 4.1 (b). Define the Banach space X as in (120), but

without the regularity requirements on t
2´ν
α D2m. The corresponding norm is given by ~m~X “

suptPp0,T0s }m pt, ¨q}X where

}m pt, ¨q }X “ }m pt, ¨q }1 ` }m pt, ¨q }8 ` }t
1´ν
α Dm pt, ¨q }8 ` rt

η´ν
α Dm pt, ¨qsC0,η´1 .

We show ψ pmq pt, ¨q P L1
`

Rd
˘

as in Theorem 4.1 (c). Similar to (132), we show pη ´ 1q-Hölder

continuity of t
η´ν
α Dψ pmq and conclude the continuity arguments. It follows that ψ : X Ñ X.

By a contraction argument as in Theorem 4.1 (c) and Banach’s fixed point theorem, the proof is
complete.
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We finish the section with a spatial Hölder regularity estimate for m pt, ¨q without time blowup.
This is analogous to the β-Hölder continuity of v pt, ¨q in Theorem 3.3.

Lemma 4.2. Let α P p1, 2q, µ P p0, αq and ν P p0, 1q. Furthermore, let assumptions on m0 and
b be as in Theorem 4.1 and let m P Cb

`

r0, T0s ˆ Rd
˘

be the solution obtained in the theorem. If
ν ă α ` µ´ 1, there exists a constant C1 ą 0 such that rm pt, ¨qsC0,ν ď C1 for any t P p0, T0s.

Proof. By Theorem 4.1, m is a mild solution to the FP equation and a fixed point of the Duhamel
map in (28). Using heat kernel estimates from Theorem 2.26 and an interpolation as in Theorem
2.35, we get that

rm pt, ¨qsC0,ν ď rm0sC0,ν ` λCI

ż t

0

pt´ sq
´

ν`1´µ
α rb ps, ¨qm ps, ¨qsCµ ds.

Notice that by ν ă α ` µ ´ 1, and since ε ą 0 is chosen arbitrarily small in Theorem 3.1, the
exponent on pt´ sq is less negative than the one in (132). We can then argue similarly to (132),
and deduce that rm pt, ¨qsC0,ν ď C1 in p0, T0s ˆ Rd for some constant C1 ą 0. For t “ 0, we have
that rm p0, ¨qsC0,ν “ rm0sC0,ν ď C1, and the proof is complete.

4.2 Uniqueness results for very weak solutions

In this section, we study properties of so-called very weak solutions to the FP equation (see Lemma
4.3). This includes positivity and L1-regularity of solutions, as well as mass preservation. These
are essential properties of probabilistic distributions, and are thus expected for solutions to the FP
equation. The underlying purpose of this section, however, is to show uniqueness, which follows
quite directly from the properties mentioned above (see Theorem 4.7). Our approach is heavily
inspired by the work of Espen R. Jakobsen and Artur Rutkowski in [13].

We begin our analysis with a result stating that mild solutions are very weak solutions for a class
of sufficiently regular test functions. The following Lemma is a simplified version of Lemma C.1
in [13], and is rewritten in terms of notation. Notice, however, that we allow for a larger class of
test functions. Specifically, we assume ϕ P C

`

r0, T0s ;Cα`δ
`

Rd
˘˘

for some δ ą 0 instead of only

ϕ P C
`

r0, T0s ;C2
b

`

Rd
˘˘

. This is necessary in order for Proposition 4.5 to hold. Although C2
b is

required in [13], the proof only uses that ϕ pt, ¨q P Cα`δ
`

Rd
˘

. Hence, our Lemma follows directly
from this proof.

Lemma 4.3 (Inspired by Lemma C.1 in [13]). Let T0 ą 0, m0 P L1
`

Rd
˘

and b P L8
`

r0, T0s ˆ Rd
˘

and assume that m P B
`

r0, T0s ;L1
`

Rd
˘˘

is a mild solution to the FP equation (117). Fur-

thermore, let δ ą 0. Given any t P r0, T0s and any function ϕ P C
`

r0, T0s ;Cα`δ
`

Rd
˘˘

where

Btϕ P Cb

`

r0, T0s ˆ Rd
˘

, it follows that

ż

Rd

m pt, xqϕ pt, xq dx “

ż

Rd

m0pxqϕ p0, xq dx

`

ż t

0

ż

Rd

m ps, xq

´

Btϕ´ p´∆q
α
2 ϕ´ bDϕ

¯

ps, xq dxds. (134)

We say thatm pt, xq is a very weak solution to the FP equation if it solves (134) for all test functions
described in the Lemma.

Proof. The proof is given for ϕ P C
`

r0, T0s ;C2
b

`

Rd
˘˘

in [13]. The spatial regularity of ϕ is however

only used to ensure that L˚ϕ ps, xq is well defined, where L˚ is the operator, in our case ´ p´∆q
α{2

.

By Proposition 2.15, we have that ´ p´∆q
α{2

ϕ ps, xq is well defined if ϕ ps, ¨q P Cα`δ
`

Rd
˘

for any
δ ą 0. Thus, the proof in [13] is valid even for pα ` δq-Hölder continuous test functions.

By applying different test functions ϕ pt, xq to Lemma 4.3, we are able to derive mass preservation
and positivity. We begin with the following Proposition.

42



Proposition 4.4. Let assumptions on m0, b and m be as in Lemma 4.3. It follows that for any
t P r0, T0s,

ż

Rd

m pt, xq dx “

ż

Rd

m0pxqdx. (135)

Proof. We define a penalty function somewhat similarly to what we did for the comparison principle
proof in Lemma 3.6. In contrast to this proof, however, we now let ϕR be nonzero inside some
compact instead of outside. Define ϕR P C8

b

`

Rd
˘

by ϕR pxq :“ ϕ1 px{Rq where

ϕ1 pxq “

#

1, |x| ď 1,

0, |x| ě 2.

By letting ϕ “ ϕR in Lemma 4.3, we deduce that
ż

Rd

m pt, xqϕR pt, xq dx “

ż

Rd

m0 pxqϕR p0, xq dx

`

ż t

0

ż

Rd

m ps, xq

´

BtϕR ´ p´∆q
α
2 ϕR ´ bDϕR

¯

ps, xq dxds. (136)

Since there is no time dependence in ϕR, we have BtϕR pxq “ 0 for all x P Rd and R ą 0.

Furthermore, limRÑ8 bDϕR pxq “ limRÑ8 p´∆q
α{2

ϕR pxq “ 0 by a similar proof as in Lemma
3.6, where we use that b is bounded, and that ϕR “ C p1 ´ φRq for some C ą 0 where φR is the
penalty function from Lemma 3.6. In addition, limRÑ8 ϕR pxq “ 1 for any x P Rd.

Notice that all integrands in (136) are absolutely integrable in their respective domains since
m0,m ps, ¨q P L1

`

Rd
˘

for any s P p0, T0s, and all terms with ϕR are bounded uniformly in Rd.
Taking the limit as R Ñ 8, we can move the limits inside the integrals by dominated convergence.
It follows that for any t P r0, T0s,

ż

Rd

m pt, xq dx “

ż

Rd

m0 pxq dx, (137)

and the proof is complete.

We will now show that m ě 0 almost everywhere. This seems harder, since we only want to use
the very weak formulation which considers integrals over the entire Rd. In order to conclude with
positivity, we therefore have to show positivity of

ş

Rd m pt, xqϕ pt, xq dx for all sufficiently regular
positive functions ϕ. We also want the last integral in (134) to be zero, thus requiring ϕ to be a
classical solution of a specific PDE. We present our requirements for ϕ in the following Proposition,
inspired heavily by Lemma 3.3 in [13]. Our result is however slightly different since we need to
consider b pt, ¨q P Cµ

`

Rd
˘

for any µ P p0, αq.

Proposition 4.5 (Inspired by Lemma 3.3 in [13]). Assume that b P Cb

`

r0, T0s ;Cµ
`

Rd
˘˘

for some

µ P p0, αq and let δ P p0, 1q with δ ă µ. Furthermore, let t0 P r0, T0s and 0 ď ϕt0 P Cα`δ
`

Rd
˘

.

Then, there exists a unique classical solution ϕ P C
`

r0, t0s ;Cα`δ
`

Rd
˘˘

to the following problem:

Btϕ pt, xq ´ p´∆q
α
2 ϕ pt, xq ´ b pt, xqDϕ pt, xq “ 0, pt, xq P r0, t0q ˆ Rd,

ϕ pt0, xq “ ϕt0 pxq , x P Rd. (138)

Furthermore, ϕ p0, xq ě 0 for any x P Rd.

Proof. Notice that the PDE moves backwards in time. By defining z pt, xq :“ ϕ pt0 ´ t, xq, we are
able to formulate our problem in a more well-known setting.

Btz pt, xq ` p´∆q
α
2 z pt, xq ` b pt, xqDz pt, xq “ 0, pt, xq P p0, t0s ˆ Rd,

z p0, xq “ ϕt0 pxq , x P Rd. (139)

The change of signs in (139) follows when shifting from backwards to forwards in time. Since
this is an equivalent problem, it suffices to show that there exists a unique classical solution
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z P C
`

r0, t0s ;Cα`δ
`

Rd
˘˘

where z pt0, xq ě 0. We begin by proving short time existence with a
similar approach as in Theorem 4.1. Let t1 P p0, t0q and define the Banach space

X “
␣

z : z,Dz P Cb

`

p0, t1s ˆ Rd
˘

,~z~X ă 8
(

, (140)

where we let ~z~X :“ suptPp0,t1s }z pt, ¨q }X with

}z pt, ¨q }X “ }z pt, ¨q }L8pRdq ` }Dz pt, ¨q }L8pRdq ` rDz pt, ¨qsC0,α`δ´1pRdq
. (141)

The Duhamel map for (139) is of the form

S pzq “ K ptq ˚ ϕt0 pxq ´

ż t

0

K pt´ s, ¨q ˚ pb ps, ¨qDz ps, ¨qq pxq ds. (142)

In order to use Banach’s fixed point theorem, we need to show that S : X Ñ X. We begin with
showing boundedness of ~S pzq ~X whenever z P X. Since our Duhamel map is very similar to the
Duhamel map for the FP equation in (28), we will only show boundedness of rDS pzq pt, ¨qsC0,α`δ´1 .
For the other terms in (141), we refer to Theorem 4.1.

By heat kernel estimates from Theorem 2.26, Lemma 2.37 and an interpolation as in Theorem 2.35
(a) in the integral, we deduce that for any t P p0, t1s,

rDS pzq pt, ¨qsC0,α`δ´1 ď }K pt, ¨q }1 rϕt0sC0,α`δ´1 ` CIλ

ż t

0

pt´ sq
´

α´ε
α rb ps, ¨qDz ps, ¨qsC0,δ`ε ds

ď rϕt0sC0,α`δ´1 ` CIλ
α

ε
t

ε
α
1 p}b}8 rDzsC0,δ`ε ` rbsC0,δ`ε }Dz}8q , (143)

where we let 0 ă ε ă δ and ε ă µ ´ δ. Furthermore, we have let t Ñ t1 since its exponent is
positive. All terms on the right hand side are bounded independently of t, and we conclude that
~S pzq ~X ă 8. This immediately implies that z pt, ¨q is Lipschitz continuous, and that Dz pt, ¨q is
pα ` δ ´ 1q-Hölder continuous in space.

Time continuity of z and Dz follows by a simpler version of the proof in Theorem 4.1. The main
difference is that we do not have time blowup on Dz. By using Lemma 2.23 with γ “ 1 and
γ “ α` δ ´ 1 for z and Dz respectively, we get that z,Dz P Cb

`

p0, t1s ˆ Rd
˘

. Hence, S : X Ñ X.

By a similar proof as in Theorem 4.1, we know that S is a contraction map when choosing t1
sufficiently small. In addition, we see that t1 depends solely on α, δ, ε, λ, interpolation constants
and uniform bounds on b. This is similar to the dependencies for T0 in Theorem 4.1. By Banach’s
fixed point theorem, there exists z P X such that S pzq “ z.

We proceed with showing that our solution is classical. Notice that our Duhamel map in (142)
becomes similar to the one in Theorem 3.4 by letting g ps, ¨q :“ b ps, ¨qDz ps, ¨q. The β-Hölder
continuity of v0 and g ps, ¨q in Theorem 3.4 is analogous to the pδ ` εq-Hölder continuity of ϕt0 and
g ps, ¨q, and allows us to arrive at an pα ` δq-Hölder continuous classical solution. By noticing that
δ ` ε ă µ, it follows that

g ps, ¨q P Cµ
`

Rd
˘

Ă Cδ`ε
`

Rd
˘

and ϕ0 P Cα`δ
`

Rd
˘

Ă Cδ`ε
`

Rd
˘

.

Thus, by a similar argument as in Theorem 3.4, we can conclude that the fixed point z P

Cb

`

p0, t1s ;Cα`δ
`

Rd
˘˘

indeed is a classical solution to (139). For a more detailed proof of a
similar fashion, we refer to the classical solution proof for the FP equation in Section 4.3.

Uniqueness of z pt, xq follows from the comparison principle. This is very similar to what we did in
Lemma 3.6 for the HJB equation and we omit the proof. Finally, we deduce that z ě 0 by noticing
that the zero function is a subsolution to (139).

Lastly, we use a patching argument similar to Theorem 3.8. We get that t1 is independent of
the initial time when translating the short time existence proof above. Thus, by letting N P N
be the largest integer such that Nt1{2 ď t0, we can iteratively find unique classical solutions on
time intervals p0, t1s, pt1{2, 3t1{2s, . . ., ppN ´ 2q t1{2, Nt1{2s and ppN ´ 1q t1{2, t0s. Since these
solutions are unique and overlapping in pt1{2, t1s , pt1, 3t1{2s , . . . ppN ´ 1q t1{2, Nt1{2s respectively,
we conclude that there exists a unique classical solution z pt, xq in the entire p0, t0s ˆ Rd. We refer
to Theorem 3.8 for a more comprehensive proof.
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Lemma 4.6 (Positivity of very weak solutions). Let assumptions on m0 and m be as in Lemma 4.3,
and assume that m0 ě 0. For µ P p0, αq, let b P Cb

`

r0, T0s ;Cµ
`

Rd
˘˘

. It follows that m pt, ¨q ě 0
almost everywhere in Rd for all t P r0, T0s.

Proof. Let t0 P p0, T0s be fixed, and consider the very weak formulation in (134) with t “ t0. For
some δ P p0, 1q with δ ă µ, let ϕt0 P Cα`δ

`

Rd
˘

be nonnegative and let ϕ pt, ¨q be the corresponding
solution from Lemma 4.5. By (134), we then get that

ż

Rd

m pt0, xqϕt0 pxq dx “

ż

Rd

m0 pxqϕ p0, xq dx ě 0, (144)

where the inequality holds since both m0 and ϕ p0, ¨q are nonnegative functions. By letting ϕt0
approximate unity at each x P Rd, it follows that m pt0, xq ě 0 almost everywhere in Rd for all
t0 P p0, T0s. Finally, since m p0, ¨q “ m0 ě 0 almost everywhere, the result holds in the entire
r0, T0s P Rd.

By combining Proposition 4.4 and Lemma 4.6, we can quite easily prove uniqueness of very weak
solutions. We summarize our results in the following theorem.

Theorem 4.7. For µ P p0, αq, let b P Cb

`

r0, T0s ;Cµ
`

Rd
˘˘

and 0 ď m0 P L1
`

Rd
˘

with }m0}1 “ 1.

Suppose that m P B
`

r0, T0s ;L1
`

Rd
˘˘

is a very weak solution to the FP equation (117), meaning
that it satisfies (134) for test functions described in Lemma 4.3. Then, m is a unique very weak
solution where m ě 0 almost everywhere and }m pt, ¨q }L1pRdq “ 1 for every t P r0, T0s.

Proof. By Lemma 4.6, we know that m pt, ¨q ě 0 almost everywhere in Rd for every t P r0, T0s.
Combining this property with Proposition 4.4, it follows that

}m pt, ¨q }L1pRdq “

ż

Rd

m pt, xq dx “

ż

Rd

m0 pxq dx “ }m0}L1pRdq “ 1, (145)

for any t P r0, T0s. We proceed with proving that m is unique. Assume by contradiction that m1

and m2 are distinct very weak solutions to the FP equation. It follows that md :“ m1 ´ m2 is a
very weak solution with m0 ” 0. Since the mass preservation property in (145) holds for all very
weak solutions, it follows that

ż

Rd

|md pt, xq| dx “ 0,

for any t P r0, T0s. The integrand is nonnegative and the equation is therefore only satisfied if
md pt, xq “ 0 for almost every x P Rd and every t P r0, T0s. This implies m1 pt, ¨q “ m2 pt, ¨q almost
everywhere in Rd, which is a contradiction. It follows that any very weak solution m to the FP
equation (117) is unique.

We finish the section by combining our results in a Corollary.

Corollary 4.8. Let α P p1, 2q , µ P p0, αq , ν P p0, 1q and suppose that 0 ď m0 P C0,ν
`

Rd
˘

XL1
`

Rd
˘

with }m0}1 “ 1. Furthermore, let λ be the constant from Theorem 2.26. For a terminal time T ą 0,
suppose that b P Cb

`

r0, T s ;Cµ
`

Rd
˘˘

. If µ ą 1, assume also that Db P Cb

`

r0, T s ;Cµ´1
`

Rd
˘˘

.

Then, there exists a unique very weak solution m P Cb

`

r0, T0s ˆ Rd
˘

where T0 P p0, T q is given by
α, µ, ν, λ, interpolation constants from Section 2.8 and uniform bounds on b. Furthermore, m ě 0
almost everywhere, and for any t P r0, T0s, m pt, ¨q P L1

`

Rd
˘

with }m pt, ¨q }1 “ 1. The regularity
results from Theorem 4.1 and Lemma 4.2 are also satisfied in p0, T0s ˆ Rd.

Proof. The existence and regularity results for m follows from Theorem 4.1 and Lemma 4.2. Fur-
thermore, m is unique and satisfies the positivity and L1-regularity requirements by Theorem
4.7.
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4.3 Long time existence

We proceed with showing existence of a unique very weak solution in the entire p0, T s for any
terminal time T ą 0. This is done similarly to Theorem 3.8 and uses a patching argument.

Theorem 4.9. Let α P p1, 2q , µ P p0, αq , ν P p0, 1q and suppose that 0 ď m0 P C0,ν
`

Rd
˘

XL1
`

Rd
˘

with }m0}1 “ 1. Given a terminal time T ą 0, suppose that b P Cb

`

r0, T s ;Cµ
`

Rd
˘˘

. If µ ą 1,

assume also that Db P Cb

`

r0, T s ;Cµ´1
`

Rd
˘˘

. Then, there exists a unique very weak solution

m P Cb

`

r0, T s ˆ Rd
˘

where m ě 0 almost everywhere, and for any t P r0, T s, m pt, ¨q P L1
`

Rd
˘

with }m pt, ¨q }L1pRdq “ 1. Furthermore, m satisfies the regularity results from Theorem 4.1 and

Lemma 4.2 in the entire p0, T s ˆ Rd.

Proof. By Theorem 4.1 and Corollary 4.8, there exists a unique very weak solution m pt, xq in
r0, T0s ˆ Rd for some T0 P p0, T q which satisfies the positivity and regularity requirements. It
then follows that m pT0{2, ¨q P C0,ν

`

Rd
˘

X L1
`

Rd
˘

with }m pT0{2, ¨q }1 “ 1, hence satisfying the
regularity requirements for the initial datam0. By the dependencies of T0 in Theorem 4.1, we know
that T0 is independent of the initial time in the short time existence proof. Thus, by an identical
patching argument as in Theorem 3.8, we get that there exists a unique very weak solution m in
the entire r0, T s ˆ Rd. The positivity and regularity results from Theorem 4.1, Lemma 4.2 and
Corollary 4.8 hold in p0, T s ˆ Rd by the same patching argument.

4.4 Existence of a unique classical solution when µ ą 1

In this section, we will investigate whether the unique very weak solution in Theorem 4.9 is classical.
For the HJB equation, we considered only classical solutions (see Theorem 3.4). This is however
not the case for the FP equation. In order to have a classical solution, we need ∇ ¨ pbmq to be
well-defined which requires bm to be differentiable in space. By the product rule for differentiation,
we then need Db to be well-defined. This is only the case when µ ą 1, since we are considering
b P Cb

`

r0, T s ;Cµ
`

Rd
˘˘

.

Notice also that any classical solution to the FP equation is a very weak solution. This follows
from integrating by parts in (134) and is similar to Lemma 6.3 in [8]. By the uniqueness result
for very weak solutions in Theorem 4.7, we then know that classical solutions are unique as well,
given that they exist.

Theorem 4.10 (Existence of a unique classical solution). Let α P p1, 2q, µ P p1, αq, ν P p0, 1q

and m0 P C0,ν
`

Rd
˘

X L1
`

Rd
˘

with }m0}1 “ 1. Given a terminal time T ą 0, suppose that

b P Cb

`

r0, T s ;Cµ
`

Rd
˘˘

and Db P Cb

`

r0, T s ;Cµ´1
`

Rd
˘˘

. Then, there exists a unique classical

solution m P Cb

`

r0, T s ˆ Rd
˘

to the FP equation. Furthermore, m ě 0 almost everywhere, and for

every t P r0, T s, m pt, ¨q P L1
`

Rd
˘

with }m pt, ¨q }1 “ 1. The regularity results from Theorem 4.1
and Lemma 4.2 are also satisfied in p0, T s ˆ Rd.

Proof. By Theorem 4.9, there exists a unique very weak solution m P Cb

`

r0, T s ˆ Rd
˘

which
satisfies the positivity and regularity requirements. It remains to show that the solution is classical.

The proof is very similar to Theorem 3.4, and we will therefore only comment on the differences.
Instead of working with β-Hölder continuous initial data, we now have m0 P C0,ν

`

Rd
˘

. This
does not alter the proof in any major way, since we assume ν P p0, 1q which is analogous to
β P p0, 1q. Instead of letting g ps, xq :“ H pDv ps, xqq ´ f ps, xq, we define functions gi ps, xq :“
Bxi

pbi ps, xqm ps, xqq for i P t1, . . . du. By the spatial regularity assumptions on b and m, we then
get that gi ps, ¨q P C0,µ´1

`

Rd
˘

for any s P p0, T s. Furthermore, we deduce that

}gi ps, ¨q }8 ď Cg0 ` C̃g0s
´

1´ν
α ,

rgi ps, ¨qsC0,µ´1 ď Cgµ ` C̃gµs
´

p1´νqpµ´1q

α ` C 1
gµs

´
1´ν
α ` C2

gµs
´

µ´ν
α , (146)

for constants Cg0 , C̃g0 , Cgµ , C̃gµ , C
1
gµ , C

2
gµ ě 0. The Hölder estimate is given by (130), and the

L8-estimate follows from the product rule, s
1´ν
α Dm P Cb

`

p0, T s ˆ Rd
˘

and that b and Db are
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uniformly bounded. The estimates in (146) are similar to the corresponding bounds in (81). Since
all exponents on s in (146) are greater than ´1, we ensure that for any t P p0, T s and ε ą 0,
}K pt´ s, ¨q ˚ gi ps, ¨q }8 and rK pt´ s, ¨q ˚ gi ps, ¨qsCα`µ´1´ε are integrable in p0, tq. This is similar
to (84), and will be sufficient to complete the proof since α ` µ ´ 1 ´ ε ą α. Finally, we require
gi pt, xq to be continuous in time for any pt, xq P p0, T s ˆ Rd (see (97)). This holds since m,Dm, b
and Db are continuous in time in this domain.

Based on the observations above, we are able to repeat the proof of Theorem 3.4 with gi ps, xq :“
Bxi

bi ps, xqm ps, xq. By Theorem 4.1, m is a mild solution and a fixed point of the Duhamel map
in (28). We get that

m pt, xq “ pK pt, ¨q ˚m0q pxq ´

d
ÿ

i“1

ż t

0

Bxi
K pt´ s, ¨q ˚ pbi ps, ¨qm ps, ¨qq pxq ds

“ pK pt, ¨q ˚m0q pxq ´

d
ÿ

i“1

ż t

0

K pt´ s, ¨q ˚ pBxi
pbi ps, ¨qm ps, ¨qqq pxq ds

“ pK pt, ¨q ˚m0q pxq ´

d
ÿ

i“1

ż t

0

K pt´ s, ¨q ˚ gi ps, ¨q pxq ds.

This is analogous to the Duhamel map considered in Theorem 3.4, except for the summation. Since
the arguments for the initial and integral terms in Theorem 3.4 are independent, however, we can
argue seperately for each integral in the sum. It follows that

Btm pt, xq ` p´∆q
α
2 m pt, xq `

d
ÿ

i“1

gi pt, xq “ 0 in p0, T s ˆ Rd,

m p0, xq “ m0 pxq in Rd. (147)

By the definition of gi, we have

d
ÿ

i“1

gi pt, xq “

d
ÿ

i“1

Bxi
pbi pt, xqm pt, xqq “ ∇ ¨ pb pt, xqm pt, xqq . (148)

Finally, by combining (147) and (148), m is a classical solution to the FP equation in p0, T s ˆ Rd.
By Theorem 4.7, we know that very weak solutions to the FP equation are unique. Since any
classical solution is a very weak solution, we conclude that our classical solution is unique.

4.5 Uniform continuity

We finish the chapter by showing uniform continuity of m and its derivatives in rt1, t2s ˆ Rd for
0 ă t1 ă t2 ď T . This is very similar to Theorem 3.9.

Theorem 4.11 (Uniform continuity). Let α P p1, 2q, µ P p1, αq, ν P p0, 1q, ε ą 0 and T ą 0.
Furthermore, let assumptions on m0 and b be as in Theorem 3.1, and assume in addition that
b p¨, xq and Db p¨, xq are uniformly continuous in r0, T s for any x P Rd. Let m be the corresponding
classical solution from Theorem 4.10 and choose t1, t2 such that 0 ă t1 ď t2 ď T . Then, there exists
a modulus of continuity ω such that for any pt, xq , ps, yq P rt1, t2s ˆ Rd, the following statements
hold:

If α ` µ ď 3:

|mpt, xq ´mps, yq| ` |Dm pt, xq ´Dm ps, yq|

` |Btm pt, xq ´ Btm ps, yq| ` | p´∆q
α
2 m pt, xq ´ p´∆q

α
2 m ps, yq | ď ω p|t´ s| , |x´ y|q . (149)

If α ` µ ą 3:

|mpt, xq ´mps, yq| ` |Dm pt, xq ´Dm ps, yq| `
ˇ

ˇD2m pt, xq ´D2m ps, yq
ˇ

ˇ

` |Btm pt, xq ´ Btm ps, yq| ` | p´∆q
α
2 m pt, xq ´ p´∆q

α
2 m ps, yq | ď ω p|t´ s| , |x´ y|q . (150)
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Furthermore, ω only depends on m through uniform bounds on m and Dm as well as rmsCα`µ´ε´1 .
If α ` µ ą 3, ω also depends on uniform bounds on D2m.

Proof. The proof is very similar to Theorem 3.9, and we will be brief. Only the case where α`µ ą 3
is considered. For α ` β ď 3, the proof is exactly the same, but without the estimates for D2m.

The time interval rt1, t2s is strictly away from zero, and we can ignore blowup at t “ 0. By
Theorem 4.1, 4.2 and 4.9, we then have that m,Dm,D2m P Cb

`

rt0, t1s ˆ Rd
˘

. Furthermore,
rm pt, ¨qsCα`µ´ε´1 is bounded uniformly in rt1, t2s. By a similar approach as in Theorem 3.9, there
exists ω̃ satisfying the dependence assumptions such that for any pt, xq , ps, yq P rt1, t2s ˆ Rd,

|m pt, xq ´m ps, yq| ` |Dm pt, xq ´Dm ps, yq| `
ˇ

ˇD2m pt, xq ´D2m ps, yq
ˇ

ˇ ď ω̃ p|t´ s| , |x´ y|q .
(151)

The regularity estimate for p´∆q
α{2

m is also similar to Theorem 3.9. For t, s P rt1, t2s and h P Rd,
we have m pt, ¨ ` hq ´m pt, ¨q P Cα`µ´ε´1

`

Rd
˘

. We use Proposition 2.15 to deduce that

ˇ

ˇ

ˇ
p´∆q

α
2 m pt, x` hq ´ p´∆q

α
2 m ps, xq

ˇ

ˇ

ˇ

ď C1}m pt, ¨ ` hq ´m ps, ¨q }L8pRdq ` C2 rm pt, ¨ ` hq ´m ps, ¨qsC0,α`δ´1pRdq
, (152)

for constants C1, C2 ě 0 where δ is chosen such that 0 ă δ`µ´ε´1 and α`δ ă 2. We interpolate
the Hölder seminorm between }Dm pt, ¨ ` hq´Dm ps, ¨q }8 and rm pt, ¨ ` hq ´m ps, ¨qsCα`µ´ε´1 and
use Theorem 2.33. By (151) and a calculation similar to (114), we get that

ˇ

ˇ

ˇ
p´∆q

α
2 m pt, xq ´ p´∆q

α
2 m ps, yq

ˇ

ˇ

ˇ
ď C1ω̃ p|t´ s| , |x´ y|q

` pC2

´

rm pt, ¨ ` hqsCα`µ´ε´1 ` rm ps, ¨qs
ζ
Cα`µ´ε´1

¯

ω̃1´ζ p|t´ s| , |x´ y|q , (153)

where ζ :“ α`δ´1
α`µ´ε´2 and pC2 ě 0.

For Btm, we recall that m is a classical solution to the FP equation (117) in p0, T s ˆ Rd. For any
pt, xq , ps, yq P rt1, t2s ˆ Rd, we then have

|Btm pt, xq ´ Btm ps, yq| ď

ˇ

ˇ

ˇ
p´∆q

α
2 m pt, xq ´ p´∆q

α
2 m ps, yq

ˇ

ˇ

ˇ

`

d
ÿ

i“1

p|m pt, xq Bxib pt, xq ´m ps, yq Bxib ps, yq| ` |b pt, xq Bxim pt, xq ´ b ps, yq Bxim ps, yq|q . (154)

Since b and Db are uniformly continuous in time, and Lipschitz and pµ´ 1q-Hölder continuous in
space respectively, there exists a modulus of continuity ωb such that

|b pt, xq ´ b ps, yq| `

d
ÿ

i“1

|Bxib pt, xq ´ Bxib ps, yq| ď ωb p|t´ s| , |x´ y|q , @ pt, xq P rt1, t2s ˆ Rd.

(155)
By (151) and (155), it then follows that for any i P t1, . . . , du,

|m pt, xq Bxi
b pt, xq ´m ps, yq Bxi

b ps, yq|

ď }m}8 |Bxi
b pt, xq ´ Bxi

b ps, yq| ` }Db}8 |m pt, xq ´m ps, yq|

ď }m}8ωb p|t´ s| , |x´ y|q ` }Db}8ω̃ p|t´ s| , |x´ y|q . (156)

Similarly, we get that

|b pt, xq Bxim pt, xq ´ b ps, yq Bxim ps, yq|

ď }b}8ω̃ p|t´ s| , |x´ y|q ` }Dm}8ωb p|t´ s| , |x´ y|q . (157)

By inserting (156) and (157) into (154), and by (151) and (153), there exists a modulus of continuity
ω such that (150) holds. Furthermore, ω will only depend on m through uniform bounds on m,
Dm, D2m and rmsCα`µ´ε´1 .
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5 Mean Field Games and Further Work

We finish the thesis with a brief discussion on how our results from Chapter 3 and 4 contribute to
the study of the Mean Field Game system of the form

$

’

’

’

&

’

’

’

%

´Btv ` p´∆q
α
2 v `H pDvq “ F pm ptq , xq in r0, T q ˆ Rd,

v pT, ¨q “ G pm pT q , ¨q in Rd,

Btm` p´∆q
α
2 m` ∇ ¨ pDpH pDvqmq “ 0 in p0, T s ˆ Rd,

m p0, ¨q “ m0 in Rd.

(158)

As mentioned in the introduction, our main deviation from earlier work is the imposition of spatial
Hölder regularity on the initial and source terms. In order to be consistent with the analysis earlier
in the thesis, we assume F pm ptq , ¨q and G pm pT q , ¨q to be β-Hölder continuous in space for some
β P p0, 1q. In addition, we let 0 ď m0 P C0,ν

`

Rd
˘

X L1
`

Rd
˘

with }m}L1pRdq “ 1.

A promising approach for showing existence of solutions to the MFG system in (158) is presented
in Theorem 3.2 in [8]. In order to relate this to our results in Chapter 3 and 4, we give a brief
review.

The proof uses a fixed point argument in C
`

r0, T s ;P
`

Rd
˘˘

, where P
`

Rd
˘

denotes the space of
Borel probability measures on Rd. The corresponding metric is dpµ1, µ2q “ supr0,T s d0pµ1ptq, µ2ptqq,
where d0 is the Kantorovich-Rubinstein distance defined by

d0pµ1, µ2q :“ sup
ϕPLip1,1pRdq

"
ż

Rd

ϕ pxq d pµ1 ´ µ2q pxq

*

,

where Lip1,1
`

Rd
˘

“ tϕ : ϕ is Lipschitz continuous and }ϕ}8, }Dϕ}8 ď 1u.

Unlike the fixed point arguments in our analysis, the existence proof for the MFG system is based on
Schauder’s fixed point theorem (see Theorem 11.1 in [9]). This is more complicated than Banach,
since it requires us to to show compactness of a subset in C

`

r0, T s ;P
`

Rd
˘˘

. These arguments are
often quite technical, and utilize a combination of Arzelà-Ascoli and Prokhorov’s theorem.

The general outline of the proof involves defining a map S pµq :“ m, where m is given by µ through
the following system of equations:

#

´Btv ` p´∆q
α
2 v `H pDvq “ F pµ ptq , xq in r0, T q ˆ Rd,

v pT, ¨q “ G pµ pT q , ¨q in Rd.
(159)

#

Btm` p´∆q
α
2 m` ∇ ¨ pDpH pDvqmq “ 0 in p0, T s ˆ Rd,

m p0, ¨q “ m0 in Rd.
(160)

The map is defined on some compact convex subset C Ă C
`

r0, T s ;P
`

Rd
˘˘

, and fixed points of
the map will be solutions to the MFG system in (158). Existence can therefore be proven by
Schauder’s fixed point theorem, provided that S is continuous and that S : C Ñ C.

Showing that S is a self map requires Spµq :“ m P Cpr0, T s;PpRdqq whenever µ P Cpr0, T s;PpRdqq.
This means that our solution m must be defined at the terminal time. Recall from the introduction
in Chapter 4 that we only showed existence of solutions to the FP equation in r0, TεsˆRd for some
Tε ă T . This was done in order to avoid the time blowup on b :“ DpHpDvq at t “ T , which stems
from the HJB equation.

In order to circumvent this problem, notice that }b}L8pr0,T sˆRdq “ }DpHpDvq}L8pr0,T sˆRdq ď LH

since H is globally Lipschitz, even at the terminal time. The blowup at t “ T is therefore only
problematic when working with derivatives or Hölder seminorms of b. By repeating the short time
existence proof in Theorem 4.1 with only b P L8

`

r0, T s ˆ Rd
˘

, we are then able to show that there
exists a solution at the terminal time. Since we assume less regularity on b, however, m will not be
regular enough to be a classical solution at t “ T . Therefore, it seems that we only have classical
solutions in p0, T q ˆ Rd for the FP equation in the MFG system.
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Our results from Chapter 3 and 4 are essential steps towards deriving existence of solutions to
the MFG system. Firstly, note that S is well-defined only if there exist solutions v to (159) and
m to (160) seperately. Furthermore, we will only have existence of a classical solution pv,mq if
v and m are classical solutions to the HJB and FP equations respectively. Finally, our uniform
continuity results in sections 3.6 and 4.5 prove useful when showing that pv,mq is classical. This is
evident by the proof of Theorem 3.2 in [8], and stems from a compactness argument that requires
equicontinuity of a family of functions.
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Appendix

A Proof of Lemma 2.25 and Theorem 2.26

Proof of Lemma 2.25 (Corrected from Lemma 3.3 in [2]). Let zDkK p1, ωq denote the Fourier trans-

form of DkK p1, uq, and recall that differentiating zDkK p1, ωq with respect to ωj on the Fourier
side corresponds to multiplying DkK p1, uq by iuj . We can then express the mth-order derivative

of zDkK p1, ωq with respect to ωj as

piujq
m
DkK p1, uq “

ż

Rd

eiu¨ω

˜

Bm

Bωm
j

zDkK p1, ωq

¸

dω.

By combining the absolute values of this expression for all j P t1, . . . , du, and using that |ab| “ |a|¨|b|
for all a, b P Cd, we get that

p|u1|
m

` . . .` |ud|
m

q
ˇ

ˇDkK p1, uq
ˇ

ˇ “

d
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rd

eiu¨ω

˜

Bm

Bωm
j

zDkK p1, ωq

¸

dω

ˇ

ˇ

ˇ

ˇ

ˇ

. (161)

Furthermore, the power mean inequality (see Theorem 1, Section 3.1 in [4]) states that

˜

|u1|
2

` . . .` |ud|
2

d

¸
1
2

ď

ˆ

|u1|
m

` . . .` |ud|
m

d

˙

1
m

.

Combining this with (161) yields

|u|
m ˇ

ˇDkK p1, uq
ˇ

ˇ ď d
m´2

2

d
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Rd

eiu¨ω

˜

Bm

Bωm
j

zDkK p1, ωq

¸

dω

ˇ

ˇ

ˇ

ˇ

ˇ

. (162)

In order to prove the Lemma, we need to bound the right hand side of (162) by a constant C ě 0

for m “ |k|. This is possible whenever zDkK p1, ¨q P W |k|,1
`

Rd
˘

. Since repeated differentiation of
zDkK p1, ωq results in an impractical number of terms as the differentiation progresses, we need to

look at the derivatives in a more general sense. We propose that any derivative DspzDkK p1, ωqq

can be written as

DspzDkK p1, ωqq “ e´|ω|
α

n
ÿ

j“1

´

cjω
aj,1

1 . . . ω
aj,d

d |ω|
bj
¯

, (163)

for constants n P N, aj,1, . . . , aj,d P N0, bj P R and cj P C. Since DspzDkK p1, ωqq in (163) has
exponential decay as |ω| Ñ 8, it will be absolutely integrable over Rd as long as it does not attain
a singularity at ω “ 0. This singularity can only occur if aj,1 ` aj,2 ` . . . ` aj,d ` bj ă 0 for some
j P t1, . . . , nu. We can easily see this by noting that ωj “ |ω|σj for some |σj | “ 1, and letting
|ω| Ñ 0. To investigate when this occurs, we define the function

κ psq “ min
jPt1,...nu

paj,1 ` aj,2 ` . . .` aj,d ` bjq ,

where the constants are given by the relation in (163) and s corresponds to the derivative order.

If κ psq ě 0 for all multi-indices |s| ď |k|, it follows that zDkK p1, ¨q P W |k|,1
`

Rd
˘

. We proceed

with showing that (163) indeed is a general form for the derivatives DspzDkK p1, ωqq, and that
κ ps` 1q ě κ psq ´ 1 by induction.

First, observe that zDkK p1, ωq is on the form given in (163). Assume now that (163) holds for
some multi-index s. We include the case where |s| “ 0 by letting D0 denote the identity operator.
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By differentiating with respect to ω1, we get that

B

Bω1
Ds

´

zDkK p1, ωq

¯

“
B

Bω1

˜

e´|ω|
α

n
ÿ

j“1

´

cjω
aj,1

1 ω
aj,2

2 . . . ω
aj,d

d |ω|
bj
¯

¸

“ e´|ω|
α

n
ÿ

j“1

´

´αcjω
aj,1`1
1 ω

aj,2

2 . . . ω
aj,d

d |ω|
bj`pα´2q

¯

` e´|ω|
α

n
ÿ

j“1

´

cjbjω
aj,1`1
1 ω

aj,2

2 . . . ω
aj,d

d |ω|
bj´2

¯

` e´|ω|
α

n
ÿ

j“1

´

cj paj,1 ´ 1qω
aj,1´1
1 ω

aj,2

2 . . . ω
aj,d

d |ω|
bj
¯

, (164)

with the second and third terms only present when bj ‰ 0 and aj,1 ě 1 respectively. The resulting
expression is on the form presented in (163). Since we get similar expressions when differentiating
with respect to any ωj , we see that (163) must hold for any multi-index s ` 1, and by induction
that (163) holds for all derivatives. The positivity requirement on aj,1, . . . aj,d holds since the term
with aj,1 ´ 1 in the exponent above vanishes in the case where aj,1 “ 0. Furthermore, recalling
that α ą 1, we can calculate the sum of the exponents in the different terms in (164).

min
jPt1,...,nu

aj,1 ` 1 ` paj,2 ` . . . aj,dq ` bj ` pα ´ 2q “ κ psq ` α ´ 1 ě κ psq .

min
jPt1,...,nu

aj,1 ` 1 ` paj,2 ` . . . aj,dq ` bj ´ 2 “ κ psq ´ 1.

min
jPt1,...,nu

aj,1 ´ 1 ` paj,2 ` . . . aj,dq ` bj “ κ psq ´ 1.

Taking the minimum over the terms above, we get that κ ps` 1q ě κ psq ´ 1. By observing that
κ p0q “ |k|, it follows that

κ p|k|q ě κ p0q ´ |k| ě 0. (165)

Thus, by the argumentation above, zDkK p1, ωq P W |k|,1
`

Rd
˘

. Finally, by (162), there exists a

constant C ě 0 such that
ˇ

ˇDkK p1, uq
ˇ

ˇ ď C{ |u|
|k| for any u P Rdz t0u.

Proof of Theorem 2.26 (Corrected from Theorem 3.1 in [2]). By the self-similarity result in Lemma
2.24,

›

›DkK pt, ¨q
›

›

L1pRdq
“ t´

d`|k|

α

ż

Rd

ˇ

ˇ

ˇ
DkK

´

1, xt´
1
α

¯
ˇ

ˇ

ˇ
dx “ t´

|k|

α

ż

Rd

ˇ

ˇDkK p1, uq
ˇ

ˇ du. (166)

Hence, it suffices to show that DkK p1, ¨q P L1
`

Rd
˘

to complete our proof. By the exponential

decay of zDkK p1, ωq, there exists a constant C0 ą 0 such that for any u P Rd,

ˇ

ˇDkK p1, uq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż

Rd

i|k|ωk1
1 . . . ωkd

d e´|ω|
α

eiu¨ωdω

ˇ

ˇ

ˇ

ˇ

ď

ż

Rd

ˇ

ˇ

ˇ
ωk1
1 . . . ωkd

d e´|ω|
α
ˇ

ˇ

ˇ
dω ď C0.

Combining this with our pointwise estimate in Lemma 2.25, we get that

}DkK p1, ¨q }L1pRdq “

ż

B1p0q

ˇ

ˇDkK p1, uq
ˇ

ˇ du`

ż

RdzB1p0q

ˇ

ˇDkK p1, uq
ˇ

ˇ du ď VdC0 `

ż

RdzB1p0q

C

|u|
|k|
du,

where Vd is the volume of the d-dimensional unit ball. The last integral is finite whenever |k| ě d`1,
and it follows that DkK p1, ¨q P L1

`

Rd
˘

for these multi-indices k.

When |k| ă d`1, we use the Gagliardo-Nirenberg inequality (see p.125 in [21]). For any 1 ď |k| ď d,
there then exists a constant C̃ ą 0 such that

}DkK p1, ¨q }L1pRdq ď C̃
`

}Dd`1K p1, ¨q }L1pRdq

˘

k
d`1

`

}K p1, ¨q }L1pRdq

˘p1´ k
d`1 q

. (167)

Since }K p1, ¨q }L1pRdq “ 1 by Proposition 2.22 and }Dd`1K p1, ¨q }L1pRdq is bounded by the argu-

mentation above, it follows by (167) that }DkK p1, ¨q }L1pRdq is bounded as well. Having shown

that DkK p1, ¨q P L1
`

Rd
˘

for any multi-index k, we deduce by (166) that there exists a constant
λ ą 0 such that

}DkKpt, ¨q}L1pRdq ď λt´
|k|

α ,

and the proof is complete.
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