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Abstract

This master’s thesis investigates guidance laws for fixed-wing Unmanned Aerial
Vehicles (UAVs). The research has importance for applications such as aerial sur-
veys, remote sensing, and environmental monitoring, where UAVs often encounter
large environmental forces. The main focus is the Line-of-sight (LOS) guidance
law, applied to UAVs using the coordinated-turn relation.

Different variations of the coordinated-turn-inspired guidance law are tested in
simulations with strong winds, turbulence, and gust. The guidance law was de-
rived by considering non-zero Angle of Attack (AOA) and sideslip (SSA) to exam-
ine the underlying assumptions of the coordinated turn relationship, which were
shown to be valid in most cases. The robustness of the guidance law was eval-
uated by adding bias to the AOA, SSA, pitch, and heading angle estimates. The
simulation results indicated that incorporating additional estimates and aerody-
namics into the guidance system did not significantly improve performance, as
the estimates were mostly small and had little impact. Conversely, there was a po-
tential risk of degrading performance due to inaccurate estimates. Nonetheless,
the aircraft demonstrated the ability to follow the desired path with some bias.

A mathematical analysis is performed to explore the integral LOS inspired by co-
ordinated turn. The analysis revealed uniform global asymptotic stability (UGAS)
and uniform local exponential stability (ULES) properties, resulting in global κ-
exponential stability. These techniques were further tested in simulations along-
side other integral LOS variations. The results demonstrated that while they ef-
fectively eliminated steady-state errors, they also led to increased overshoot. The
selection of the integral gain was considered crucial, particularly when the growth
of the integral state was not appropriately scaled.

Ultimately, a comparison was made between the coordinated-turn-inspired LOS
guidance laws and the popular state-of-the-art L1 guidance law. The performance
of these approaches was found to be quite similar, with only slightly more over-
shoot observed in certain situations for the L1 guidance law. However, the L1
guidance law was deemed a more robust choice as it relies on fewer estimates.
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Sammendrag

Denne masteroppgaven undersøker styrelover for fastvingede ubemannede luft-
fartøy (UAVer). Forskningen har betydning for bruksområder som flyfotografering,
fjernmåling og miljøovervåking, hvor UAVer ofte møter store ytre påvirkninger.
Hovedfokuset er synslinjestyreloven (LOS), anvendt på UAVer ved bruk av den
koordinerte svingrelasjonen.

Forskjellige varianter av styreloven inspirert av koordinert sving blir testet gjen-
nom simuleringer med kraftig vind, turbulens og vindkast. Styreloven ble utledet
med ikke-null angrepsvinkel (AOA) og sideslipvinkel (SSA) for å undersøke de un-
derliggende antakelsene i den koordinerte svingrelasjonen, som viste seg å være
gyldig i de fleste tilfeller. Robustheten til styreloven ble vurdert basert på avvik i
AOA, SSA, helning og heading. Simuleringsresultatene indikerte at inkludering av
flere estimater og aerodynamikk i styresystemet ikke forbedret ytelsen vesentlig,
siden estimatene var for det meste små og påvirket ikke ytelsen nevneverdig. Tvert
imot var det en potensiell risiko for forringelse av ytelsen på grunn av unøyaktige
estimater. Likevel viste flyet evnen til å følge den ønskede banen med noe avvik.

En matematisk analyse ble utført for å utforske integrale synslinjemetoder in-
spirert av koordinerte svinger. Analysen avslørte uniform global asymptotisk sta-
bilitet (UGAS) og uniform lokal eksponensiell stabilitet (ULES), noe som res-
ulterer i global κ-eksponentiell stabilitet. Disse teknikkene ble videre testet gjen-
nom simuleringer sammen med andre integrale synslinjevarianter. Resultatene
viste at de effektivt eliminerte steady-state-feil, men førte også til økt oversky-
telse. Valget av integrale forsterkningen ble ansett som avgjørende, spesielt når
veksten i integraltilstanden ikke var skalert.

Til slutt ble det foretatt en sammenligning mellom styreloven inspirert av koordinerte
svinger og den populære L1 styreloven. Ytelsen til disse styrelovene viste seg å
være ganske lik, med bare noe mer overskytelse observert i visse situasjoner for
L1-styreloven. Imidlertid ble L1 ansett som et mer robust valg, da den er avhengig
av færre estimater.
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Abbrevations

UAV Unmanned aerial vehicle

LOS Line of sight

SITL Software in the loop

AHRS Attitude and heading reference system

TECS Total energy control system

EKF Extended Kalman Filter

GNSS Global navigation satellite systems

AGL Above ground level

FPA Flight Path Angle

AOA Angle of attack

SSA Sideslip angle

WP Waypoint

LFC Lyapunov function candidate

UGAS Uniformly globally asymptotically stable

ULES Uniformly locally exponentially stable

USGES Uniformly semiglobal exponentially stable
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) have gained widespread attention in recent
years due to their potential for various applications, such as search and rescue,
surveillance, and monitoring. Norway has vast, remote areas that contain eco-
nomically critical marine resources like fishery, petroleum, and in the near future,
offshore wind. Monitoring in these areas can be dangerous, time-consuming, or
unfeasible for human pilots. UAVs can automate these tasks and other interesting
applications like delivering packages [3]. Furthermore, UAVs offer several advant-
ages over traditional human-crewed aircraft, including lower costs and increased
flexibility without risk to human pilots.

However, UAVs face several challenges that make their operations more complex,
particularly in conditions with large environmental forces. The Norwegian Sea
and coastline are known for severe and unpredictable weather. The impact of at-
mospheric disturbances on UAVs can cause deviations in their flight path, leading
to accidents or mission failures. This challenge makes it essential to develop guid-
ance systems that effectively steer UAVs in these environments and ensure their
safe and successful operation.

Guidance determines the appropriate control inputs to guide a UAV along a de-
sired trajectory. This thesis deals with the lateral path-following problem, where
a path is pursued without temporal constraints. A substantial amount of research
has been done on LOS guidance for marine vehicles [4],[5],[6]. It is a popular
and simple guidance scheme for marine vehicles, imitating a steersman at the
helm, but originating from the missile community [7]. It has been adopted for
fixed-wing UAVs in [2]. Fixed-wing UAVs do not follow LOS heading/course ref-
erences directly; fixed-wing aircraft turn by rolling. The commands must therefore
be translated to roll using aerodynamics. This requires more state estimation and
assumptions. The validity of these assumptions is interesting to take a closer look
at. The robustness of the guidance law is also an important aspect. How biased can
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Chapter 1: Introduction 2

the estimates in the guidance law be before the states are not worth estimating?
This is especially interesting for the heading angle, which is usually measured by
a magnetometer - known to be unreliable.

For combating constant or slowly varying disturbances, adding integral action to
the LOS guidance law can be helpful. This had been done effectively for marine
vessels [8] [9], but not to the same extent for UAVs. An alternative is adaptive
LOS explored in [10]. For more time-varying disturbances, for which integral or
adaptive LOS fall short, extended-state observer LOS is better suited [11]. It is
implemented in [12] and [13]. A more popular guidance scheme for UAVs is L1
guidance, introduced in [14] and further developed in [15] and [16]. It is the
guidance method used in Ardupilot and PX4, which are popular autopilot software
libraries.

The purpose of this master thesis is to investigate further guidance for fixed-wing
UAVs that can operate effectively under large environmental forces, particularly
atmospheric disturbances. The contributions are: Further evaluating the effective-
ness of coordinated-turn LOS guidance building on [2] and [1] in SITL simulations
with complexity beyond [2] by variations in flight path angle, bias in estimates,
and other atmospheric disturbances like gusts and turbulence. The simulation res-
ults are used to comment on the robustness of the guidance law. Furthermore, the
validity of the coordinated turn assumptions is inspected by comparing different
variants of coordinated turn LOS, most importantly assuming AOA and SSA to be
zero. In this respect, another addition is deriving the coordinated turn LOS with
non-zero AOA and SSA. Moreover, integral action will be added to coordinated-
turn LOS building on [8]. The new contribution is adopting cross-track error in-
tegral LOS to fixed-wing UAVs by coordinated turn and a stability proof for global
k-exponential stability for a simpler, more general version of the guidance law.
Integral coordinated-turn LOS is compared to cross-track error integral LOS in
simulations, inspired by the same guidance principle introduced in [8]. Ultimately
the performance of the coordinated-turn LOS guidance law will be compared to
the L1 guidance scheme. This has been done extensively in [2], but in this thesis,
the comparison is done with and without integral action to evaluate how integral
coordinated-turn LOS compares to the obvious alternative integral L1 guidance.



Chapter 2

Theory

This chapter summarizes the relevant theoretical background necessary for the
later chapters. Section 2.1 and Section 2.2 is, with a few exceptions, taken from
[1] as the definitions and relations for aerodynamics and guidance are the same.
A notable exception is Section 2.1.2, introducing the coordinated turn relation,
which is heavily inspired by Chapter 7 in [2]. Section 2.3 is a summary of integral
LOS guidance literature. Section 2.4 explores coordinated-turn-inspired LOS. The
derivation in Section 2.4 is inspired by Chapter 10 in [2], while Section 2.4.2
is a new contribution containing mathematical analysis and a stability proof for
integral coordinated-turn-inspired LOS building on [8].

2.1 Aerodynamics

2.1.1 Fixed-wing aircraft dynamics

The following subchapter summarizes necessary fixed-wing aircraft dynamics de-
scribed in [17].

Consider the coordinate frames below for expressing position, orientation, and
other important quantities.

1. The North-East-Down (NED) coordinate frame is an inertial, earth-fixed co-
ordinate system denoted by {n}. Its origin is at a defined home location; the
x-axis is pointed north, the y-axis east, and the z-axis down.

2. The body frame denoted by {b}. The origin is centered in the vehicle, and
the axes follow the FRD convention: the x-axis pointing forward, the y-axis
right, and the z-axis down by the right-hand rule.

3. The ground velocity frame {v}, which is a NED frame centered in the aircraft
with the x-axis aligned with the ground velocity vector Vg . This is achieved
by rotating NED by the course angle χ around the z-axis and FPA γ around

3
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the y-axis.
4. The wind frame {w} whose origin is also centered in the vehicle, where

the x-axis is aligned with the air velocity vector, the y-axis is rotated by air
relative bank angle µa, and z is determined by the right-hand rule.

5. The path-tangential coordinate frame {p}, where the origin is located in pn
k

and the axes are rotated an angle χp relative to {n} around the z-axis such
that the x-axis is pointed toward pn

k+1

Aircraft with GNSS can measure position pn
nb ∈ R

3 and linear velocity vn
nb ∈ R

3 in
the NED frame. It is useful to express them in the body frame by

vb
nb = Rb

n(φ,θ ,ψ)vn
nb =





u
v
w



 (2.1)

where Rb
n(φ,θ ,ψ) is the rotation matrix from {n} to {b}, which can be defined by

the Euler angles roll, pitch, and yaw. The yaw angle ψ is also called heading.

The derivatives of the Euler angles can be expressed by the body-frame angular
rates, p, q, and r as





φ̇

θ̇

ψ̇



=





1 sinφ tanθ cosφ tanθ
0 cosφ − sinφ
0 sinφ secθ cosφ secθ









p
q
r



 (2.2)

The linear velocity in the body frame is often denoted as ground velocity Vg , while
the ground speed Vg = ||Vg ||=

p
u2 + v2 +w2. The angle between the horizontal

component of the ground velocity and the x-axis of {n} is named course denoted
χ. The angle between the ground velocity vector and it’s horizontal components is
called the flight path angle, γ. Together they describe the ground velocity vector’s
direction in relation to the inertial frame {n}. The aircraft’s velocity in relation to
the surrounding air is named the airspeed vector Va. It is related to the ground
speed vector by the wind speed Vw by

Va = Vg −Vw (2.3)

Equation (2.3) is often referred to as the "wind triangle" and is displayed in Fig-
ure 2.1 and Figure 2.2. In the same manner as the ground velocity vector, the
airspeed vector is related to the inertial frame by the air-relative course angle
χa and the air-relative flight path angle γa. The difference between course and
heading is called the crab angle χc
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χc = χ −ψ (2.4)

The crab angle is non-zero during turns and/or in the presence of a disturbance
like the wind. The heading angle can be estimated using measurements from mag-
netometers and digital compasses. In practice, obtaining an accurate estimate can
be difficult because the sensors are sensitive to electromagnetic interference from
electric motors, servos, and wiring. Careful sensor placement can reduce this, but
some bias should be expected. The course angle can be estimated using GNSS ve-
locity measurements’ north and east components. With knowledge of the ground
speed vector’s horizontal component Vd , one can find an expression for the flight
path angle.

χ = atan(
Vn

Ve
), γ= atan(−

Vd

Vg
) (2.5)

Typically, the uncertainty of the GNSS measurements is lower than that of the
magnetometer measurements. However, the uncertainty of the course estimate
will increase as the ground speed decreases. This is reasonable as ground speed is
not defined for a stationary craft. The heading angle, on the other hand, is always
defined.

Angle of attack α and sideslip angle β are defined as

α= atan(
wr

ur
)

β = atan(
vr

Va
)

(2.6)

2.1.2 Coordinated turn

It is beneficial for fixed-wing aircraft to "carve" turns instead of skidding or using
the rudder. This is achieved during the coordinated turn flight condition. This
subsection will derive the coordinated turn equation with the same approach as
chapter 7 in [2]with the exception of assuming α= β = 0. The reason behind this
is to be able to test the validity of the assumption. Furthermore, the assumption
can always be reintroduced later to arrive at the same result as [2].

The following assumptions are made in the coordinated turn relation:

A1 The lift force works along the negative z-component of the wind frame that
cancels out the force of gravity in the inertial frame. The dynamics of the
lift force are neglected.
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Figure 2.1: Wind triangle in the horizontal plane, inspired by Figure 2.10 in [17]
assuming horizontal airspeed such that χa =ψ+ β

Figure 2.2: Wind triangle in the vertical plane, inspired by Figure 2.12 in [17]
assuming wings-level-flight such that γa = θ −α
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A2 The drag force holds no significance when compared to the lift force and is
therefore not considered.

A3 All linear velocity is tangential to the arc, such that the centripetal acceler-
ation can be expressed by a = vω.

A4 The air-relative course angle can be approximated by χa =ψ+ β
A5 The air-relative flight path angle γa, can be approximated by γa = θ −α

Note that the approximations A4 and A5 ([18], eq 2.2-38,39), come from other
assumptions that are not necessarily true. A4 assumes wings-level flight, and A5
requires horizontal airspeed.

As α = β = 0 is a common assumption, that will be a focus of this thesis, it will
from here on be referred to as Assumption 6 (A6).

With Assumptions A1-A5, the following force balance can be set up in the hori-
zontal projection of the ground velocity frame, denoted {t} where the lift force
counterbalances the centripetal acceleration and the gravitational force.

Ft
l = Rtw





0
0
− fL



= ma⃗ =





0
mvω
mg









0
mVg cos(γ)χ̇

mg



 (2.7)

where the rotation matrix is given by

Rtw = Rz(χ −χa)Ry(−γa)Rx(−µa) (2.8)

The coordinated turn relation can be extracted from the force balance by the di-
vision of the y-component by the z-component of Equation (2.7).

cos(β −χ +ψ) sin(µa) + sin(α− θ ) sin(β −χ +ψ) cos(µa)
cos(µa) cos(α− θ )

=
Vg cos(γ)χ̇

g
(2.9)

An expression for the time derivative of the course angle can be found by solving
for χ̇

χ̇ =
g cos(β −χ +ψ)

Vg cos(γ) cos(α− θ )
(tan(µa) + sin(α− θ ) tan(β −χ +ψ)) (2.10)

Equation (2.9) can also be used to express the bank angle µa. It is desirable to
translate it to the roll angle which can be used as a reference signal in an attitude
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controller. From [2] bank and roll have the following relation when the wind is
not considered:

µa = acos(
sin(α) sin(θ ) + cos(α) cos(φ) cos(θ )

cos(α− θ )
) (2.11)

solving for φ results in

φ = acos(
cos(µa) cos(α− θ )− sin(α) sin(θ )

cos(α) cos(θ )
) (2.12)

By assuming β = γ = α− θ = 0, which implies µa = φ, Equation (2.10) can be
simplified to

χ̇ =
g
Vg

tanφ cos(χ −ψ), (2.13)

2.1.3 Trim conditions

An aircraft is said to be in trim conditions when it is traveling at a constant speed
V ∗g , climbing at a constant flight path angle γ∗, and is in a constant orbit of radius
R∗. It is considered an equilibrium for the aircraft. If the wind is treated as an
unknown disturbance and assumed zero, the heading rate in trim conditions can
be expressed as [17]

ψ̇∗ =
V ∗g
R∗

cosγ∗ (2.14)

For an aircraft in trim conditions flying at a constant altitude (γ = 0), combin-
ing Equation (2.13) and Equation (2.14) gives a relation between the centripetal
acceleration of the orbit and the roll angle by

a =
V 2

g

R
= atan(φ)g (2.15)

2.2 Guidance

2.2.1 LOS

Line-of-sight (LOS) guidance can be used to follow a straight line connecting
two consecutive waypoints, WPk and WPk+1 by computing a course reference
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for the autopilot. By the definition in [19], the along-path and cross-track errors
are defined in {p} by

�

xe
ye

�

= Rn
p(χp)

⊺
�

x − xk
y − yk

�

(2.16)

where (x , y) and (xk, yk) are the vehicle position and the previous waypoint
defined in {n}. The rotation matrix defining the rotation from {p} to {n} is defined
by

Rn
p(χp) =

�

cos (χp) − sin (χp)
sin (χp) cos (χp)

�

(2.17)

where χd is the path-tangential angle

χp = atan2(yk+1 − yk, xk+1 − xk) (2.18)

The objective is to minimize the cross-track error ye [4] such that

lim
t→∞

ye(t) = 0. (2.19)

From Equation (2.17) and Equation (2.18) the cross-track error can be expressed
as

ye = −(x − xk) sin(χp) + (y − yk) cos(χp) (2.20)

The LOS guidance law steers the aircraft along a LOS vector drawn from the craft
towards a point on the desired path, defined by a look-ahead distance ∆ from
where the aircraft was supposed to be on the path. The principle is illustrated in
Figure 2.3.

The LOS guidance law gives the desired course by [9]

χd = atan(
−ye

∆
) +χp (2.21)

It is desirable to express look-ahead distance dependent on ground speed and
look-ahead time to give similar performance in the presence of head and tail wind.
This can be achieved by:

∆=∆t Vg (2.22)
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Figure 2.3: LOS principle, inspired by Figure 1 in [4]

where ∆t is a design parameter.

As stated in Section 2.1.1, it is desirable for fixed-wing UAVs to "carve" turns in
the coordinated flight condition. To achieve this the controller needs a roll com-
mand from the guidance system. The course reference from Equation (2.21) can
be transformed into a roll reference by the coordinated turn equation. However,
the derivative of the desired course is needed. It is given by time differentiation
of Equation (2.21)

χ̇d = −
∆

∆2 + y2
e

ẏe + χ̇p (2.23)

For a series of waypoints connected by straight line segments, the derivative of
the path-tangential angle is zero except for when the waypoint changes.

Time differentiation of ye gives

ẏe = Vg sin(χ −χp). (2.24)

If perfect course angle tracking is assumed (χ = χd), Equation (2.21) renders the
equilibrium ye = 0 of Equation (2.24) USGES [20]. USGES is a form of stability
slightly weaker than global exponential stability but with nice robustness proper-
ties. However, it is stronger than global κ-exponential stability as defined in [21].
Global κ-exponential stability is equivalent to the combination of UGAS and ULES
[22].
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2.2.2 L1

L1 guidance generates a lateral acceleration command based on the angle between
the vehicle’s velocity vector and a vector from the vehicle to a reference point on
the trajectory [14]. The reference point is chosen a constant L1 distance ahead
of the vehicle. The principle is illustrated in Figure 2.4. The lateral command is
given by

acmd = 2
V 2

g

L1
sinη (2.25)

As stated in [15], the acceleration command will be equal to the centripetal accel-
eration needed to follow a circle passing through both the vehicle and the refer-
ence point at a constant speed with the vehicle velocity vector as a tangent. This

can be seen from Equation (2.25) with acmd =
V 2

g
R and R= L1

2sinη .

For a fixed-wing attitude controller, the acceleration reference needs to be con-
verted into a roll command by assuming trim conditions with Equation (2.15)
giving

φcmd = atan
acmd

g
(2.26)

To find η, one can split the angle into η1 and η2 as shown in Figure 2.4 [16]. By
inspection

η1 = asin(
ye

L1
), η2 = atan(

Vye

Vxe
) (2.27)

where Vye and Vxe is the projected groundspeed cross-track and along-track the
path. As with lookahead distance, L1 distance can also be expressed dependent
on Vg .

L1 = Vg T (2.28)

where T is the L1 ratio.
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Figure 2.4: L1 principle, inspired by Figure 3 in [15]. Note that η is chosen lar-
ger than necessary for showing Vg as a tangent to the aircraft’s arc in favor of
displaying the difference of η1 and η2

.

2.3 Integral guidance

2.3.1 Integral LOS

In addition to being simple and intuitive, LOS guidance is vulnerable to envir-
onmental disturbances, like the wind. It can not be overcome by adding integral
effect in the angle controller because the problem originates in the reference sig-
nal from the guidance system. The integral effect must therefore be added to the
guidance law to ensure path convergence. Several variants exist.

Control law comparison

An intuitive but naive way to add integral effect to LOS guidance is to view Equa-
tion (2.21) as a saturated proportional control law and expand it with an integral
term as proposed in [23]. It then takes the form of a PI-controller whose output
is mapped to (−π2 +χp, π2 +χp)

χd = atan(−Kp ye(t)− Ki

∫ t

0

ye(τ)dτ) +χp (2.29)

where Kp =
1
∆ . The same principle is used with proportional navigation for bal-

listic missiles in [24]. A drawback of this solution is that the integral term can
grow very large when the vehicle is far away from the desired path.

One way to counter this is to substitute temporal integration with spatial integra-
tion as done in [25]. For straight-line path following:
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χd = atan(−Kp ye(t)− Ki

∫ l

0

ye(l)dl) +χp (2.30)

where l is the progress along the desired path. This reduces the risk of overshoot
and anti-windup by not blowing up the integral state when the velocity vector does
not have a component along the desired path. [25] expands this beyond straight
lines to include arcs as well. Note that l is a time-dependent function of the dy-
namics of the vehicle, making it possible to express the integral in Equation (2.30)
as

∫ l

0

ye(l)dl =

∫ t

0

ye(τ)
dl
dτ

dτ (2.31)

where dl
d t is the vehicle’s velocity projected unto the desired path.

[23] also suggests adding a damping term to the "PI" controller structure to reduce
overshoot.

Another alternative is to add an integral state dependent on cross-track error, first
introduced in [8]. The guidance law can be stated as

ψd = atan(
−(ye +σyint)

∆
) +χp −χc

ẏint =
∆ye

(ye +σyint)2 +∆2

(2.32)

where the integral gain σ is a design parameter. A nice property of this guidance
law is that the rate of integration ẏint → 0 as ye → ∞, lowering the risk of
integrator-windup as the rate of integration slows down for large cross-track er-
rors. Note that the guidance law gives a heading reference. No side-slip estimate
is included in the guidance law because the integral term will account for it when
the vehicle is on the desired path.

It is extended to three dimensions for AUVS in [26] and used on snake robots in
[27]. It has also been used to automatically control sailboats by using the integral
LOS law in three different control modes depending on sailing "modes" [28].

The same idea can be used for giving a course reference signal, as done in [9].
Here the integral state is made dependent on speed U where the derivative of the
integral state is given as
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ẏint =
U ye

p

(ye +σyint)2 +∆2
(2.33)

Note that the square root in the denominator will remove the anti-wind-up effect
intended by Equation (2.32)

Other versions of integral LOS

A modified integral LOS guidance law is proposed in [29] where the derivative of
the integral state is also dependent on the cross-track error rate.

A similar version is proposed in [30] where a heading reference is computed by

φd = χp − β − arctan(kp1 ye)− yint

ẏint =
kp2 ye
Æ

1+ (kp2 ye)2
(1−

λ

Q
ẏe), λ=

¨

−1, ẏe < 0

1, ẏe ≥ 0

(2.34)

where the constants kp1,2 and Q are design parameters.

2.3.2 L1 integral effect in Ardupilot

Ardupilot employs the L1 guidance method [15] with integral effect. An integral
state is added to η1 = arcsin( ye

L1
) and computed in discrete time as

ηint i
= ηint i−1

+ση1d t (2.35)

where σ is the integral gain and d t is the time since the last iteration. Integral
wind-up is avoided by not growing the integral state when η1 > 5 rad and con-
straining the integral state to [−0.1,0.1].

2.4 Coordinated-turn-inspired LOS

This section derives coordinated-turn-inspired LOS and adds integral action to the
control law.

2.4.1 Derivation with non-zero AOA and SSB

As LOS guidance law in Equation (2.21) guarantees ye→ 0 under perfect course
tracking, [20], the next step is finding a controller tracking desired course. This
section will follow the procedure in Chapter 10 of [2], which is replicated in [1],
without Assumption A6.
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One can ensure that χ → χd by inspecting the LFC V = 1
2 χ̃

2 dependent on the
error variable χ̃ = χd −χ. The time derivative of V is

V̇ = χ̃ ˙̃χ = χ̃(χ̇d − χ̇) (2.36)

where χ̇ is given by Equation (2.10), χd by Equation (2.21), χ̇d by Equation (2.23)
and ẏe by Equation (2.24). Inserting Equation (2.10) gives

V̇ = χ̃(χ̇d −
g cos(β −χ +ψ)

Vg cos(γ) cos(α− θ )
(tan(µa) + sin(α− θ ) tan(β −χ +ψ))) (2.37)

Observe that the course error dynamics are nonautonomous. Assuming perfectly
tracked bank angle such that µa = µa,d and choosing

µa,d = atan(
Vg cos(γ) cos(α− θ )

g cos(β −χ +ψ)
( f (χ̃)+ χ̇d)− sin(α−θ ) tan(β−χ+ψ)) (2.38)

[2]

where f (χ̃) is an odd function, renders the equilibrium χ̃ = 0 UGAS by satisfying
Theorem 4.9 in [31] as V̇ is upper bounded by V̇ = −W (χ̃) < 0 with positive
definite W (χ̃) = f (χ̃)χ̃ > 0. Note that choosing f (χ̃) as an odd polynomial with
positive coefficients will render the equilibrium UGES by Theorem 4.10 in [31] as
V̇ = −W (χ̃)< ||χ̃||a for a positive constant a.

The desired bank angle can simply be translated to the desired roll by Equa-
tion (2.12) for the attitude controller.

With Assumption A6, α= β = 0, it can be seen from Equation (2.12) that φ = µa,
resulting in the coordinated turn LOS law from [2] by

φd = atan(
Vg cos(γ) cos(θ )

g cos(χ −ψ)
( f (χ̃) + χ̇d)− sin(θ ) tan(χ −ψ)) (2.39)

The interconnected system compromised of Equation (2.21) and Equation (2.39)
has been shown to render the cross-track error, and the course error dynamics
USGES in [2].
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2.4.2 Coordinated-turn-inspired LOS with integral effect

Integral effect can be added to guidance in several ways, as explored in Sec-
tion 2.3. In this section some of the aforementioned methods will be applied to
coordinated-turn LOS described in Equation (2.39). Note that the main assump-
tion in the derivation of the course controller in Section 2.4.1 is χ̃ → 0 =⇒ ye→
0. Therefore the same approach can be used with other LOS guidance laws as long
as they render the cross-track error dynamics asymptotically stable.

Cross-track error integral effect

In this section integral effect will be added to LOS guidance law in Equation (2.21)
through the integral state defined in Equation (2.32) from [8]. Inspired by the
proof in the same paper, it will be shown to guarantee the control objective in
Equation (2.19).

Substituting the time integral in Equation (2.29) with an integral state gives

χd = atan(−Kp ye − Ki yint) +χp (2.40)

Imitating LOS, the gains are chosen to be Kp = 1/∆ and Ki = σ/∆, where ∆ is
the lookahead distance and σ is integral gain.

By adding the definition of the integral state from Equation (2.32) to Equation (2.40)
the guidance law is found to be

χd = atan(−Kp ye − Ki yint) +χp

ẏint =
∆ye

∆2 + (ye +σyint)2
(2.41)

The cross-track error dynamics is found by inserting χ = χd − χ̃ into Equa-
tion (2.24)

ẏe = Vg sin(χd − χ̃ −χp) = −Vg sin(atan(
1
∆

ye +
σ

∆
yint) + χ̃) (2.42)

Exploting sin(u+ v) = sin(u) cos(v) + cos(u) sin(v)

ẏe = −Vg sin(atan(
1
∆

ye +
σ

∆
yint)) cos(χ̃)− Vg cos(atan(

1
∆

ye +
σ

∆
yint)) sin(χ̃)

(2.43)

Using sin(arctan(x)) = x/
p

1+ x2 and cos(arctan(x)) = 1/
p

1+ x2 results in
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ẏe = −Vg
∆ye +σ∆yint

∆2 + (ye +σyint)2
cos(χ̃)− Vg

∆2

∆2 + (ye +σyint)2
sin(χ̃) (2.44)

= −Vg
(∆ye +σ∆yint) cos(χ̃) +∆2 sin(χ̃)

∆2 + (ye +σyint)2
(2.45)

Adding the definition of the integral state makes the full error dynamics

ẏe = −Vg
(∆ye +σ∆yint) cos(χ̃) +∆2 sin(χ̃)

∆2 + (ye +σyint)2

ẏint =
∆ye

∆2 + (ye +σyint)2

(2.46)

It is trivial to verify that the equilibrium of the system is ye = 0, yint = −
∆
σ tan(χ̃) =

y eq
int . Note that y eq

int is not defined for χ̃ = π
2 +πk rad, where k ∈ Z. Therefore sta-

bility can only be investigated inside the ball B1{χ̃ <
π
2 rad}, which necessitates

the following assumptions:

A7 The magnitude of the course error χ̃ is less than π/2rad
A8 The time derivative of y eq

int is zero

It can be observed that Vg , and by extension ∆, are time-varying. This makes the
system in Equation (2.46) nonautonomous.

Theorem 1. Under Assumptions A7-A8, the integral LOS guidance law in Equa-
tion (2.41) applied to cross-track error dynamics in Equation (2.46) renders the
equilibrium point ( ẏe, ẏ eq

int) = (0,0) globally κ-exponentially stable assuming look-
ahead distance, ground speed and integral gain satisfy the conditions:
0<∆≤∆max , 0< Vg,min ≤ Vg ≤ Vg,max and 0< σ ≤ Vg,min

Proof. Consider the transformed system

z1 = yint − y eq
int

z2 = ye +σz1
(2.47)

with time derivatives
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ż1 =
∆(z2 −σz1)

∆2 + (z2 +σy eq
int)

2

ż2 = −Vg
∆(z2 +σy eq

int) cos(χ̃) +∆2 sin(χ̃)

∆2 + (z2 +σy eq
int)

2
+σ

∆(z2 −σz1)
∆2 + (z2 +σy eq

int)
2

(2.48)

The stability properties are inspected with the positive definite and radially un-
bounded LFC V (z1, z2) = (1/2)σ2z2

1 + (1/2)z
2
2 whose time derivative is given by

V̇ (z1, z2) =
∆σ2z1(z2 −σz1)− Vg∆z2(z2 +σy eq

int) cos(χ̃)− Vgz2∆
2 sin(χ̃) +σz2∆(z2 −σz1)

∆2 + (z2 +σy eq
int)

2

(2.49)

=∆
−σ3z2

1 − (Vg −σ)z2
2 − Vgz2(σy eq

int cos(χ̃) +∆ sin(χ̃))

∆2 + (z2 +σy eq
int)

2
(2.50)

inserting y eq
int gives

V̇ (z1, z2) =∆
−σ3z2

1 − (Vg −σ)z2
2

∆2 + (z2 +σy eq
int)

2
(2.51)

For simlicity we define z̄1 =
|z1|

q

∆2+(z2+σy eq
int )

2
and z̄2 =

|z2|
q

∆2+(z2+σy eq
int )

2

V̇ is then bounded by

V̇ (z1, z2)≤ −(∆σ3|z̄1|2 +∆(Vg −σ)|z̄2|2) = −W (z̄1, z̄2) (2.52)

W (z̄1, z̄2) is positive definite under the conditions of the theorem 0 <∆ ≤∆max ,
0< Vg,min ≤ Vg ≤ Vg,max and 0< σ ≤ Vg,min. They are reasonable as∆ and σ are
design variables and Vg is a controllable state. By Theorem 4.9 in [31] the system
in Equation (2.47) is UGAS.

Furthermore, notice that W (z̄1, z̄2)≤ λ̄1|z̄1|2 + λ̄2|z̄2|2 for constants λ̄1, λ̄2 > 0.

In any ball Br{|z2| ≤ r}, r > 0 choosing the constant k3 > λi = λ̄i/(∆2 + (r +
σy eq

int)
2) will bound V̇ by

V̇ (z1, z2)≤ −k|z|2 (2.53)
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rendering Equation (2.47) ULES in any ball Br by Thorem 4.10 in [31]. Finding
the constants k1, k2 bounding the LFC by k1|z|2 ≤ V (z) ≤ k2|z|2 for the theorem
is trivial.

The combination of UGAS and ULES gives the transformed system global κ-exponential
stability [22]. It follows that the original system in Equation (2.46) is globally κ-
exponentially stable as well. This concludes the proof.

Course integral effect

An alternative to integral effect on cross-track error is integral effect on course
angle error. It can be incorporated in the f (χ̃) term in Equation (2.39).

Remember from Section 2.4.1 that f (χ̃) needs to be an odd function. Knowing
the sum of two odd functions is odd, f (χ̃) can be expressed as

f (χ̃) = podd(χ̃) +σ

∫ t

0

podd(χ̃) d t (2.54)

Here podd(χ̃) is an odd polynomial with positive coefficients, maintaining the
UGES property from Section 2.4.1. It is straightforward to verify that this is an
odd function

f (−χ̃) = podd(−χ̃)+σ
∫ t

0

podd(−χ̃) d t = −podd(χ̃)−σ
∫ t

0

podd(χ̃) d t = − f (χ̃)

(2.55)

The integral can be realized in a digital controller with the forward Euler method
because it will be a sum of odd functions maintaining the oddness. Another solu-
tion is defining an integral state, which can grow as in Section 2.4.2 or just "na-
ively" by multiplying the course error with the integral gain.

Instead of modifying f (χ̃), the integral term can be added outside the atan()
function in Equation (2.39):

φd = atan(
Vg cos(γ) cos(θ )

g cos(χ −ψ)
( f (χ̃) + χ̇d)− sin(θ ) tan(χ −ψ)) +σ

∫ t

0

podd(χ̃)

(2.56)
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Method

This chapter describes the simulation setup and which guidance laws have been
tested.

3.1 Simulation setup

The simulations are done with JSBSim v1.1.12 [32]. It is highly configurable and
allows complex aerodynamic modeling as gust and turbulence. JSBSim permits
advanced aerodynamics granting more credibility to the simulations. The Rascal
110 model is used as it is the standard model in JSBSim. The system includes
airspeed sensors, GNSS, and AHRS.

The Ardupilot Plane-4.3.2 [33] was chosen for autopilot software. It is approach-
able but also highly configurable and open source. Ardupilot’s EKF is used for state
estimation, first and foremost vehicle position, velocity, and angular orientation.
AOA and SSA are estimated using Equation (2.6), as done in [34]. Course angle
and flight path angle are found by Equation (2.5). When the bias is added to in-
vestigate robustness, it is added directly to the guidance system to demonstrate
the effect on the LOS guidance scheme. The Ardupilot TECS algorithm takes care
of height and speed control. The only change is adding a LOS guidance system,
substituting the L1 controller. Changes have also been made to the SITL files to
control atmospheric disturbances.

Atmospheric disturbances are added with JSBSim’s wind generator class, FG-
Winds [35]. The total amount of wind is a sum of three parts: A constant part,
a cosine gust, and turbulence. The steady part is defined in the NED {n} frame
and set to 15 m/s from the west for all simulations. The value of 15 m/s was
chosen as it is substantial but not detrimental to the flight model with a cruise
speed of about 27 m/s. It is also the value used in the simulations in Chapter
10 of [2]. For simulations including gust, the gust is divided into three periods

20
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when it is active. The start-up period of 2.5 seconds, where the gust builds up to
full magnitude from zero; the steady period of 5 seconds, where the gust stays at
full magnitude; and the end period of 2.5 seconds, where it winds down to zero
strength. The transient is modeled as a smooth cosine wave in the build-up and
end periods. The full magnitude is 10 m/s, and it the direction is the same as the
steady part in {n}. The gust starts every 15th seconds, and as the total duration
is 10 seconds, there are 5 seconds of downtime in each interval. The turbulence
is calculated from the Milspec model described in [36], using the Dryden spec-
trum from MIL-F-8785C [37]. The model takes two parameters: ’windspeed 20
feet AGL’ and ’severity’. From the reference table in [35], the parameters were set
to 50 ft/s and 4 to model "moderate" severity.

When comparing the performance of different guidance schemes, the wind is set
to be constant to remove the element of randomness introduced with gust and
turbulence. The comparisons are more fair that way. If gust and turbulence were
included, the simulations would have to be redone a large number of times.

Three different paths are used in simulations. They are different variants of the
same shape for simplicity. It is a circuit with a series of different angles so that the
guidance laws will be tested in different conditions. The following is a short de-
scription of the paths. A more detailed description can be found in Appendix A.1.
They are displayed in Chapter 4

• Path 1: a flat circuit at 100m AGL, serving as a benchmark.
• Path 2: an inclined version of Path 1, where the waypoints alternate between

100m and 400m AGL - forcing the UAV to ascend and descend such that
pitch angle θ and flight path angle γ will be non-zero.
• Path 3: a "stretched out" version of Path 2, where the distances are longer,

and the peaks are higher. It is used for showing the steady state behavior of
the guidance laws.

Waypoints are accepted when the aircraft enters a circle of acceptance of 50
meters.

3.2 Guidance laws

This section describes the guidance laws that are tested.

3.2.1 Coordinated turn LOS

The following variants of coordinated turn LOS, derived in Section 2.4.1 are
tested.

• LOS1: As presented in Gryte’s thesis [2]
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• LOS2: A simpler version of LOS1 where γ and θ is assumed 0
• LOS3: A more "advanced" version of LOS1 where AOA is not assumed zero
• LOS4: A more "advanced" version of LOS3 where neither AOA or SSA are

assumed zero

LOS1 gives a roll command by

φd = atan(
Vg cos(γ) cos(θ )

g cos(χ −ψ)
( f (χ̃) + χ̇d)− sin(θ ) tan(χ −ψ)) (3.1)

LOS2 gives a roll command by

φd = atan(
Vg

g cos(χ −ψ)
( f (χ̃) + χ̇d)) (3.2)

LOS3 gives a bank command by

µa,d = atan(
Vg cos(γ) cos(α− θ )

g cos(χ −ψ)
( f (χ̃) + χ̇d) + sin(α− θ ) tan(χ −ψ)) (3.3)

LOS4 gives a bank command by

µa,d = atan(
Vg cos(γ) cos(α− θ )

g cos(β −χ +ψ)
( f (χ̃) + χ̇d)− sin(α− θ ) tan(β −χ +ψ)) (3.4)

LOS3 and LOS4 translate the bank command to roll by Equation (2.12).

For all the guidance laws introduced above, the desired course χd is given by
Equation (2.21) and its time derivative by Equation (2.23).

f (χ̃) is given by f (χ̃) = K1χ̃ for simplicity.

3.2.2 Coordinated turn LOS with integral effect

The following guidance laws with integral effect are tested, introduced in Sec-
tion 2.4.2. Each method will be tested with and without scaling the growth of
the integral state, inspired by [8] to see its effect. The course-error integral LOS
guidance laws are new contributions.

• ILOS1: LOS1 with integral effect on cross-track error developed in Sec-
tion 2.4.2
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• ILOS2: LOS1 with integral effect on cross-track error, but the growth of the
integral state is not scaled.
• CILOS1: Course-integral LOS, where the integral term is inside the atan()

term, but not scaled in any way
• CILOS2: Course-integral LOS, where the integral term is inside the atan()

term, but scaled in a ILOS1 inspired way
• CILOS3: Course-integral LOS, where the integral term is outside the atan()

term, but not scaled in any way
• CILOS4: Course-integral LOS, where the integral term is outside the atan()

term, but scaled in a ILOS1 inspired way

ILOS1 and ILOS2 roll commands by Equation (3.1). The difference is that desired
course and its time derivative are defined differently. For ILOS1 desired course is
given by Equation (2.41) and its time derivative is

χ̇d = −
∆

∆2 + (ye +σyint)2
( ẏe +σ ẏint) + χ̇p

ẏint =
∆ye

∆2 + (ye +σyint)2

(3.5)

ILOS2 uses the same desired course relation as ILOS1, but its time derivatives are

χ̇d = −
∆

∆2 + (ye +σyint)2
( ẏe +σ ẏint) + χ̇p

ẏint = ye

(3.6)

All the remaining guidance laws use the desired course χd from Section 3.2.1,
defined in Equation (2.21).

CILOS1 and CILOS2 uses Equation (3.1) for desired roll with another course error
function f (χ̃) = K1χ̃ +σχ̃int

Where for CILOS1

˙̃χint = σχ̃ (3.7)

and for CILOS2

˙̃χint =
∆χ̃

∆2 + (χ̃ +σχ̃int)2
(3.8)

For CILOS3 and CILOS4 f (χ̃) = K1χ̃ as Section 3.2.1, but the roll command is
different. The integral state is added outside of the atan-function.
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φd = atan(
Vg cos(γ) cos(θ )

g cos(χ −ψ)
( f (χ̃) + χ̇d)− sin(θ ) tan(χ −ψ)) + χ̃int (3.9)

where for CILOS3 the integral state is given by Equation (3.7) and for CILOS4 it
is stated in Equation (3.8)

3.2.3 L1

The Ardupilot implementation of the L1 controller introduced in Section 2.2.2
will be a reference point for the LOS guidance systems. It is implemented with
integral effect, the details described in Section 2.3.2. To test L1 without integral
effect, the integral gain, which will also be denoted σ, is set to zero for simplicity.

3.3 Tests

The following tests were carried out:

T1 Atmospheric disturbances. The tuning of LOS1 was validated by having
the aircraft follow Path 2 with atmospheric disturbances: gusts and turbu-
lence along with the steady wind.

T2 Including AOA and SSA in coordinated-turn-inspired LOS. The validity
of Assumption 6 and the effect of including more "aerodynamics" was in-
spected by comparing the performance of LOS1, LOS2, LOS3, and LOS4.
Path 1 and Path 2 were tested to see if there was a difference between level
and ascending/descending flight. The wind is kept steady to reduce ran-
domness.

T3 Robustness. The robustness of coordinated-turn-inspired LOS was invest-
igated by adding bias to AOA, SSA, heading, and pitch angle to understand
better the risks of including potentially biased estimates in the guidance
system. Bias in roll angle is not tested because it is not used in the guid-
ance system, but the attitude controller, whose robustness is not a focus of
this thesis. A level path was used when testing heading bias for simplicity.
For AoA/SSA and pitch angle bias, Path 2 was used as the estimates would
have a larger numerical value, and any bias would therefore influence the
guidance system more.

T4 Integral effect. The controllers in Section 3.2.2 were tested against each
other to investigate how they performed and find any noticeable differ-
ences in their performance. The integral gain was also tested for two values:
σ = 0.1 and σ = 1. Any value a magnitude less than 0.1 seemed in initial
testing to not have any evident influence, and any value a magnitude larger
would generate large oscillations and approach the upper bound found in
Section 2.4.2.
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T5 Comparison to L1 controller. LOS1 and ILOS1 were tested against L1 with
and without integral effect to compare what has been explored in this thesis
against the Ardupilot standard to give an idea of how LOS performs against
the obvious alternative.

The tests T2-T5 are done without turbulence and gusts to reduce randomness and
make the comparisons more reasonable. The LOS parameters are found from the
tuning guidelines developed from the linear analysis in Chapter 10 of [2]:
∆ =

Vg K1

ω2
0

, K1 = ω0(ζ ±
p

ζ2 − 1). Control damping and period are paramet-

ers in Ardupilot. For all tests NAVL1_PERIOD = NAVLOS_PERIOD = 17s and
NAVL1_DAMPING = NAVLOS_DAMPING = 1. The LOS and L1 period/damping
are equal to allow a fair comparison between the two guidance schemes. The
damping was set to 1 to ease the expression for K1 above, and the period is the
default value in Ardupilot [33]. The χ̇p is set to zero as the path consists of straight
line segments and is only non-zero the instant the subsequent waypoint changes.

The attitude and TECS controllers are left with default values.
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Results

This chapter displays the results from the simulations. The sections are ordered
in the same way as the list of tests in Section 3.3.

4.1 Atmospheric disturbances

To validate the tuning, the aircraft follows Path 2 using LOS1 while experiencing
gusts and turbulence in combination with steady wind. The result is displayed in
Figure 4.1 showing path following with relevant angles and Figure 4.2 depicting
cross-track error, altitude, and airspeed. The effect of the gust and turbulence
might be best seen in the latter, with the periodic oscillation in airspeed and the
altitude drops. The regular dips in altitude in Figure 4.2 could be signs of stall
from turbulence and gust.

The atmospheric effects make it difficult for the guidance system to drive the cross-
track error to zero, but the cross-track error has nice convergence in the transient.
Therefore it can be argued that the tuning of the guidance system is satisfactory.
Furthermore, the LOS guidance law is shown to track the desired path, supporting
the results of simulations and experiments in [2].

The performance of the roll and pitch angle controllers are seen in Figure 4.3
with steady wind, turbulence, and gust and in Figure 4.4 with only steady wind.
They are shown to track the desired angles well, except for some overshoot in the
roll controller when the step in reference is large. When the roll angle is large,
the pitch angle controller can struggle with following the desired reference. This
makes sense as the lift force will be reduced for large roll angles, making it difficult
to control pitch with the elevator.

The lower-level controllers will behave similarly as only the guidance system is
experimented with in the following sections. Therefore the most complete system

26
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Figure 4.1: Path following and angles from LOS1 simulations using Path 1 and
being subjected to atmospheric disturbances: steady wind, turbulence, and gust.
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tions using Path 2 and being subjected to atmospheric disturbances: steady wind,
turbulence, and gust.



Chapter 4: Results 29

100 120 140 160 180 200

Time [s]

−80

−60

−40

−20

0

20

40

60

80

A
n
g
le

[d
eg
]

Desired Roll

Roll

Desired Pitch

Pitch

(a) Between WP2 and WP3

300 325 350 375 400 425 450 475 500 525

Time [s]

−80

−60

−40

−20

0

20

40

60

80

A
n
g
le

[d
eg
]

Desired Roll

Roll

Desired Pitch

Pitch

(b) Between WP4 and WP8

Figure 4.3: Desired and simulated roll and pitch angles from LOS1 simulations
using Path 2 and being subjected to steady wind, turbulence, and gust
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Figure 4.4: Desired and simulated roll and pitch angles from LOS1 simulations
using Path 2 and being subjected to steady wind only
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information is shown in this section, while only information relevant to guidance
is shown later on.

4.2 Including AOA and SSA in coordinated-turn-inspired
LOS

Figure 4.5 and Figure 4.6 display path following and simulated states following
Path 1 with steady wind. The same information is plotted from simulations with
Path 2 and steady wind in Figure 4.7 and Figure 4.8.

The guidance laws perform very similarly for level flight. This could be because
the angles separating them are mostly small in Figure 4.5b. The numerically in-
significant angle of attack and sideslip angle estimates in Figure 4.5b support the
validity of A6. This is further backed by Figure 4.7b, AOA and SSA are small, and
the performance is largely the same with varying flight path angle in Figure 4.7a
and Figure 4.8. When it comes to the accuracy of the AOA and SSA estimates, the
usual cause of error is the stochastic characteristic of wind and other atmospheric
effects. This is not the case here, as the wind was steady for these simulations with
no gusts or turbulence. The other input to AOA and SSA estimation is the velocity
estimates in {n}, which are corrected by accurate GNSS measurements.

Including pitch and FPA does not seem to have much effect either. LOS2 performs
similarly to the other LOS variants in Figure 4.6 and Figure 4.8. When these angles
are small, the difference in performance is negligible. An interesting exception is
when the UAV is hit by crosswind while ascending or descending, which can be
seen in the steady-state cross-track error offset LOS1, LOS3, and LOS4 have in the
line segments WP4-WP5 and WP6-WP8 in Figure 4.8, but not in Figure 4.6. LOS2
does not have this offset.

A possible explanation is that Assumption A5 is not valid when the airspeed is
not horizontal, making the approximation of air-relative course angle χa =ψ+β
inaccurate. This makes sense intuitively; the airspeed will have a non-zero vertical
component while ascending or descending with horizontal wind. Furthermore, it
can be seen in Figure 4.7b that the difference between course and heading χ −ψ
is largest under crosswind - which checks out as the UAV has to face partly in the
direction of the wind to maintain its course. This means that the sin(θ ) tan(χ−ψ)
term for LOS1 in Equation (3.1), which contains the approximation of χa, will give
a noteworthy contribution assuming the pitch angle θ is not negligible. LOS2 does
not have this term in Equation (3.2) and is therefore not affected. However, it also
uses the approximation in Assumption A5 in the cosine factor in the denominator,
but so do all the other LOS variants, and it will not make a difference in the
comparison.

The inclusion of flight path angle and pitch estimates in LOS1 could also be sus-
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pected of causing the offset, but they don’t impact the performance the same way
in the line segments WP1-WP4 and WP5-WP6. They are also substantially lower
than the difference of course and heading in Figure 4.7b. If one doubted the valid-
ity of Assumption A4, Figure 4.8 would demonstrate that the roll angle is near zero
during the steady state offset. This supports the wings-level flight requirement for
Assumption A4 and does not give any reason to doubt the approximation of the
air-relative path angle γa = θ−α. LOS3 and LOS4 do also have the offset, showing
that lack of α or β is not the reason.

4.3 Robustness

Figure 4.9 shows how bias in AOA/SSA estimate affects performance by increasing
steady-state error. Note that a larger bias gives a worse performance, as expected.

Figure 4.10 and Figure 4.11 display the effect of pitch bias in LOS1 from simula-
tions with Path 2 and steady wind. Note that a larger bias gives a more steady-state
cross-track offset. Figure 4.12 and Figure 4.13 show the effect of heading bias ap-
plied to LOS1 following Path 1 with steady wind. Note that a larger bias gives
more cross-track error oscillations.

A possible explanation for pitch bias causing offset and heading bias causing over-
shoot can be found in the properties of the atan-function encapsulating the expres-
sion for the desired roll in Equation (3.1). Adding bias to the pitch estimate in the
cos(θ )-factor in the nominator will decrease the argument of the atan function,
which gives out less desired roll - visible in Figure 4.11. On the other hand, the
heading estimate in the cos(χ−ψ)-factor is in the denominator for the argument
of the atan-function. A bias in the cosine function will therefore decrease the value
of the denominator, causing the argument of the atan function and, consequently,
the outputted desired roll to be larger as displayed in Figure 4.13. This could
cause increasing oscillations of the cross-track error when the heading estimate
increases.

4.4 Integral effect

Figure 4.14 displays the error angles of LOS1 in both level and climbing flight. It
can be seen that the course error signal has both a higher overshoot and steady-
state error than the roll error. This means that integral action on error angles
would be better directed at reducing the course error over roll error. It should
also be noted that in the transient Assumptions A7-A8 are not valid. However,
they seem reasonable when approaching a steady state. The cross-track error is
approximately constant and small. It can also be seen that the pitch error is insig-
nificant.

Figure 4.15 and Figure 4.16 show all the different integral effect guidance laws
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Figure 4.5: Path 1 following and angles from simulations with constant 15 m/s
from the west.
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Figure 4.6: Crosstrack error, roll angle, and airspeed from simulations following
Path 1 between WP4 and WP8 with constant 15 m/s wind from the west.
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Figure 4.7: Path following and angles from simulations using Path 2 and constant
15 m/s from the west.
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Figure 4.8: Crosstrack error, roll angle, and airspeed simulations using Path 2
WP4 and WP8 and constant 15 m/s from the west.



Chapter 4: Results 37

250 275 300 325 350 375 400 425 450

−150

−100

−50

0

50

100
C
ro
ss
tr
a
ck

er
ro
r
[m

]

LOS3

LOS3 10◦α-bias
LOS3 30◦α-bias
LOS4 30◦α, β-bias

250 275 300 325 350 375 400 425 450

−80

−60

−40

−20

0

20

40

60

80

R
o
ll
a
n
g
le

[d
eg
]

LOS3

LOS3 10◦α-bias
LOS3 30◦α-bias
LOS4 30◦α, β-bias

250 275 300 325 350 375 400 425 450

Time [s]

26

28

30

32

34

36

38

A
ir
sp
ee
d
[m

/
s]

LOS3

LOS3 10◦α-bias
LOS3 30◦α-bias
LOS4 30◦α, β-bias

Figure 4.9: Crosstrack error, roll angle, and airspeed simulations between WP4
and WP8 using Path 2 and constant 15 m/s from the west. Bias added to AOA
and/or SSA estimate
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Figure 4.10: Path following from simulations using Path 2 and receiving constant
15 m/s from the west with varying pitch bias
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Figure 4.11: Crosstrack error, roll angle, and airspeed simulations between WP1
and WP2 using Path 2 and constant 15 m/s from the west with varying pitch bias
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Figure 4.12: Path following from simulations using Path 1 and constant 15 m/s
from the west with heading bias
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Figure 4.13: Crosstrack error, roll angle, and airspeed simulations between WP1
and WP2 using Path 1 and experiencing constant 15 m/s from the west with
heading bias
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Figure 4.15: Path following from simulations using Path 1 and constant 15 m/s
from the west. Integral gain σ = 0.1
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Figure 4.16: Crosstrack error, roll angle, and airspeed simulations using Path 1
and constant 15 m/s from the west. Integral gain σ = 0.1
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Figure 4.17: Path following and integral state from simulations using Path 1 and
constant 15 m/s from the west. Integral gain σ = 1
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Figure 4.18: Crosstrack error from simulations between WP4 and WP5 using Path
3 experiencing constant 15 m/s from the west with integral gain σ = 1.
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completing the course with integral gain σ = 0.1, being viable options. It can
be seen that ILOS, CILOS1, and CILOS3, which do not scale the integral state
in any way, have larger overshoot than their counterparts. This is expected as
the point of scaling the integral state in a [8]-inspired way is intended to reduce
overshoot. Figure 4.17 shows that these non-scaled integral state growth schemes
can become unstable for larger integral gain (σ = 1) as the integral state grows
large. However, choosing a too-high integral gain would also be detrimental to
ILOS1, as the stability proof in Section 2.4.2 sets a bound on σ. On the other
hand, the bound on the integral gain is higher for the [8]-inspired scaled integral
gain schemes. This can be seen in Figure 4.18, which shows that they remove the
steady-state error in simulations following Path 3 with σ = 1. Here the larger
integral gain gives more integral action. The course integral schemes have more
overshoot but drive as expected course error to zero. ILOS1 drives the cross-track
error to zero even though the course error is not zero. This is not important as
the cross-track error is the main parameter for evaluating the effectiveness of a
guidance system.

4.5 Comparison to L1 controller

Figure 4.19 shows path following of ILOS1/LOS1 and L1 with and without integ-
ral effect. In Figure 4.20, the L1 controllers have higher overshoot than the LOS
controllers in the turn after WP1, while the guidance laws with integral effect also
have higher overshoot than their counterparts without it. In Figure 4.21, it can be
seen that the performance of the L1 and LOS guidance laws are more similar, in
addition to integral effect removing steady-state error for both LOS and L1. ILOS
has σ = 1.
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Figure 4.19: Path following path 1 with steady wind
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Figure 4.20: Crosstrack error, roll angle, and airspeed of between WP2 and WP3
using path 1 with steady wind



Chapter 4: Results 50

325 330 335 340 345 350 355 360

−40

−20

0

20

40

60

80
C
ro
ss
tr
a
ck

er
ro
r
[m

]
LOS1

ILOS1

L1 σ = 0

L1 σ = 0.1

325 330 335 340 345 350 355 360

−60

−40

−20

0

20

40

60

R
o
ll
a
n
g
le

[d
eg
]

LOS1

ILOS1

L1 σ = 0

L1 σ = 0.1

325 330 335 340 345 350 355 360

Time [s]

28

30

32

34

36

A
ir
sp
ee
d
[m

/
s]

LOS1

ILOS1

L1 σ = 0

L1 σ = 0.1

Figure 4.21: Crosstrack error, roll angle, and airspeed of between WP6 and WP7
using path 1 with steady wind
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Discussion

There seems to be nothing gained from including AOA and SSA in the guidance
system. The performance of LOS1, LOS2, and LOS3 is nearly identical for both
climbing and level flight for good AOA and SSA estimates. When the estimates
are biased, the performance worsens. Furthermore, they are known to be hard
to estimate in the real world because the wind is stochastic. As the results from
Section 4.2 support the validity of Assumption A6, it can therefore be argued that
one can do without including potentially biased or noisy AOA and SSA estimates
in the coordinated-turn LOS guidance law.

The same argument can be made for including the pitch and flight path angles in
coordinated-turn LOS. LOS1 does not seem to hold any advantage over LOS2 in
terms of performance. Furthermore, in Section 4.3 it was seen that biased pitch
angle estimates can give steady-state offset. One can therefore again argue that
including these estimates, instead of assuming them to be zero, risks worsening
performance without much to gain. A possible objection would be that a more
dynamic flight model following a steeper path could have better use of the estim-
ates. This could also be the case for LOS3 and LOS4 with AOA and SSA estimates.
However, a more dynamic path following could put the coordinated turn assump-
tions at risk, likely Assumptions A4-A6, and might make coordinated-turn LOS
less applicable for that situation.

Unfortunately, including the heading angle can not be avoided for LOS guidance
as that is also known to be hard to estimate with magnetometers for small UAVs.
The results in Section 4.3 showed that heading bias gave progressively more cross-
track error oscillations. However, even with considerable bias in measurements,
the coordinated-turn-inspired LOS guidance laws follow the path to some degree.
This could be explained by the USGES property of the interconnected system of
Equation (2.21) and Equation (2.39) shown in [2]. As stated in Section 2.2.1,
USGES give strong robustness properties [20]. Note that the heading bias is usu-
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ally not constant but will drift over time. Here it is kept constant to allow for more
control over the variables of the simulation.

If biased measurements cause steady-state cross-track error, as for pitch bias, it
could be removed with integral action. The various integral LOS guidance schemes
in Section 4.4 showed that integral effect gave path convergence but more over-
shoot. Having the integral state grow on either cross-track or course error seemed
like valid solutions. ILOS1 had less overshoot than CILOS2 and CILOS4, as the
scaling factor was developed for cross-track error in [8]. However, applying the
scaling factor reduced the cross-track error overshoot contribution from the integ-
ral state for all integral LOS variants, demonstrating the scaling factor’s utility.

The L1 guidance law had a little more overshoot than coordinated-turn LOS in
some situations, but in terms of robustness, it is clear that L1 has a decisive ad-
vantage over coordinated-turn LOS. It depends on fewer estimates: no heading,
course, pitch, FPA, SSA, or SSB. Only position and velocity which are less prone
to error with a good GNSS.



Chapter 6

Conclusion

Guidance for fixed-wing UAVs has been investigated in simulations with different
variants of coordinated-turn-inspired LOS. The guidance law was derived with
non-zero AOA and SSB to examine the assumptions behind the coordinated turn
relation. The robustness of the coordinated-turn-inspired LOS was studied with
biased AOA, SSB, pitch, and heading angle estimates. The simulation results sug-
gested that there was not much to gain in terms of performance by including
more estimates and aerodynamics in the guidance system. On the other hand,
there was a risk of worsening it with faulty estimates. However, the aircraft was
still able to follow the path with some bias, likely due to the robustness properties
of the coordinated-turn-LOS guidance law.

A mathematical analysis of coordinated-turn-inspired integral LOS was done where
UGAS and ULES were shown, resulting in global κ-exponential stability. Addition-
ally, it was tested in simulations along with other integral LOS variants. They were
demonstrated to remove the steady-state error but increase overshoot. The selec-
tion of the integral gain was deemed important, especially if the growth of the
integral state was not scaled.

In the end, the coordinated-turn-inspired LOS guidance laws were compared to
the L1 guidance law. The performance was shown to be quite similar, except for
a little more overshoot in certain situations for the L1 guidance law. However, it
is a more robust choice, as it depends on far fewer estimates.

Future work would include testing with a more dynamic flight model, where more
aerodynamics in the guidance law could play a larger role, possibly with atmo-
spheric disturbances. New integral effect schemes could also be tested, perhaps
with a damping term to the LOS law. With atmospheric disturbances, extended-
state observer LOS could be an interesting approach.
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Appendix A

Additional Material

A.1 Path description

This section contains detailed descriptions of the paths used in the simulations.
They are defined as a series of waypoints in an Ardupilot mission, described as
usual in a .txt file [38].
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A.1.1 Path 1

QGC WPL 110
0 1 0 16 0 0 0 0 -35.3629380 149.1650850 650.000000 1
1 0 3 22 15.00000000 0.00000000 0.00000000 0.00000000 -35.35983300 149.16470300
41.030000 1
2 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35976990 149.16145210
100.000000 1
3 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.36002370 149.14719340
100.000000 1
4 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.36245600 149.16214940
100.000000 1
5 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.36245600 149.14457560
100.000000 1
6 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35657620 149.14406060
100.000000 1
7 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35643620 149.15760040
100.000000 1
8 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.34887580 149.15794370
100.000000 1
9 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35927200 149.16375700
100.000000 1
10 0 3 177 2.00000000 -1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.000000 1
11 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35927200 149.16375700
100.000000 1
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A.1.2 Path 2

QGC WPL 110
0 1 0 16 0 0 0 0 -35.3629380 149.1650850 650.000000 1
1 0 3 22 15.00000000 0.00000000 0.00000000 0.00000000 -35.35983300 149.16470300
41.030000 1
2 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35976990 149.16145210
100.000000 1
3 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35967370 149.14708610
400.000000 1
4 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.36245600 149.16214940
100.000000 1
5 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.36245600 149.14457560
400.000000 1
6 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35657620 149.14406060
100.000000 1
7 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35643620 149.15760040
200.000000 1
8 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.34887580 149.15794370
400.000000 1
9 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35927200 149.16375700
100.000000 1
10 0 3 177 2.00000000 -1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.000000 1
11 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35927200 149.16375700
100.000000 1
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A.1.3 Path 3

QGC WPL 110
0 1 0 16 0 0 0 0 -35.3629380 149.1650850 650.000000 1
1 0 3 22 15.00000000 0.00000000 0.00000000 0.00000000 -35.35983300 149.16470300
41.030000 1
2 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35976990 149.16145210
100.000000 1
3 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35967370 149.14708610
400.000000 1
4 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.36245600 149.16214940
100.000000 1
5 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.36245600 149.14457560
400.000000 1
6 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.33175720 149.14498330
100.000000 1
7 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35643620 149.15760040
200.000000 1
8 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.33105690 149.15845870
400.000000 1
9 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35927200 149.16375700
100.000000 1
10 0 3 177 2.00000000 -1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.000000 1
11 0 3 16 0.00000000 0.00000000 0.00000000 0.00000000 -35.35927200 149.16375700
100.000000 1
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