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Preface

This thesis is the final work of my Master of Science in Marine Hydrodynamics in
Marine Technology (IMT) at the Norwegian University of Science and Technology
(NTNU) in Trondheim, Norway.

This thesis investigates the hydrodynamic interaction between two barges,
simulating catamaran-shaped floaters, in forced harmonic oscillatory flow. The
topic has relevance towards multi-modular floating solar islands, where the
hydrodynamic interaction between the pontoons due to waves, current, and wind is
expected. There is sparse knowledge of this topic, and the industrial and academic
relevance is a strong motivation. Solar energy has the potential to be an essential
part of the transition to green energy. Before the solar islands can be implemented
in commercial green energy farming, the significant environmental loads affecting
the structure must be accounted for.
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Abstract

There is an increasing demand for clean energy, and floating solar islands can be a
sufficient solution to contribute to this. In writing time, most floating solar
installations are situated in sheltered areas, such as near shorelines, dams, or lakes,
benefiting from relatively mild weather conditions. This allows for simpler
structures as it experiences lighter weather conditions. However, there is a growing
interest in deploying these floating structures in more exposed areas, necessitating
a comprehensive investigation into their hydrodynamic behavior.

The presented work, investigates the hydrodynamic forces between
catamaran-shaped floaters in harmonic oscillatory flow in three dimensions. Both
numerical and experimental analysis is conducted. Specifically, the investigation
explores the effect of two factors: the increased gap distance between the
catamaran models and the increased draft.

The numerical analysis is performed using the numerical solver WAMIT. Three
gap distance configurations and two height configurations are tested. The results
are converted to nondimensional values and presented across a range of Kaulegan-
Carpenter (KC) numbers. The numerical analysis is based on potential flow theory,
assuming ideal fluid.

The experiment is conducted in the Lader tank at the Center of Marine Technology
in Trondheim, Norway. This experiment investigates the hydrodynamic forces of
catamaran-shaped models in oscillating flow. Three gap distance configurations and
two height configurations are tested. The numerical and experimental findings are
then briefly compared to a summary of a previous experiment conducted in the
Autumn of 2022, which studied various square-shaped cylinder configurations under
oscillating flow conditions.

The numerical results are compared with the DNV standard ’DNV-RP-C205’ and
evaluated with respect to estimated sloshing modes. Lastly, highlights for scaling to
full-scale structures are discussed.

This master’s thesis aims to comprehensively and thoroughly investigate the
hydrodynamic interactions affecting catamaran-shaped floaters. The findings
contribute to a better understanding of the floating solar island dynamics.
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Sammendrag

Det er en økende etterspørsel etter grønn energi. Flytende soløyer kan være en
potensiell kilde til å bidra til dette. I skrivende tid, er de fleste flytende
soløykonstruksjonene plassert i beskyttede omr̊ader, eksempelvis nær kystlinjer,
demninger eller innsjøer. Disse lokasjonene kan nytte av relativt milde værforhold.
Dette tillater enklere strukturer, da de utsettes for mildere værforhold. Imidlertid
er det økende interesse for å implementere disse flytende strukturene i mer utsatte
omr̊ader, noe som krever en grundig undersøkelse av deres hydrodynamiske atferd.

Det presenterte arbeidet undersøker de hydrodynamiske kreftene mellom
katamaranformede flotasjonslegemer i harmonisk oscillerende strøm
tredimensjonalt. B̊ade numeriske og eksperimentelle analyser er utført. Spesielt er
fokuset p̊a effekten av to følgende faktorer: økt avstand mellom
katamaranmodellene og økt neddykking av katamaranen.

Den numeriske analysen utføres ved hjelp av det numeriske løsningsprogrammet
WAMIT. Tre konfigurasjoner av avstand mellom flotasjonslegemene for to
høydekonfigurasjoner testes. Resultatene konverteres til dimensjonsløse verdier og
presenteres over en rekke Kaulegan-Carpenter (KC)-numre. Den numeriske
analysen er basert p̊a potensialstrømteori og forutsetter ideell væske.

Eksperimentet er utført i Lader-tanken ved Senter for Marin Teknologi i
Trondheim, Norge. Dette eksperimentet undersøker de hydrodynamiske kreftene
p̊a katamaranformede modeller i oscillerende strøm. Tre konfigurasjoner av
avstand mellom flyterne med to høydekonfigurasjoner testes. De numeriske og
eksperimentelle resultatene blir deretter sammenlignet i korte trekk med en
oppsummering av et tidligere eksperiment gjennomført om høsten 2022, som
studerte ulike konfigurasjoner av kvadratiske sylindere under oscillerende
strømforhold.

De numeriske resultatene sammenlignes med DNV-standarden ”DNV-RP-C205” og
vurderes med hensyn til estimerte sloshing-moder. Til slutt diskuteres høydepunkter
for skalering til fullskalastrukturer.

Denne masteroppgaven har som m̊al å gi en grundig og omfattende undersøkelse
av de hydrodynamiske interaksjonene som p̊avirker katamaranformede
flotasjonslegemer. Funnene bidrar til en bedre forst̊aelse av dynamikken til
flytende soløyer.
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Nomenclature

β Ratio

ηa Amplitude of oscillation

KC Keulegan-Carpenter number

Re Reynolds number

µ Dynamic viscosity

ν Kinematic viscosity

ω Natural frequency/Harmonic frequency

ρ Fluid density

φ Velocity potential

ξ Body motions

ζa Wave amplitude

A Added mass force

aw Acceleration

B Damping force

B Width

b Gap distance

Bq Quadratic damping

CA Added mass coefficient

CB Damping coefficient

CD Drag coefficient

D Characteristic length

F Force

f Frequency [Hz]
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F ω Harmonic force

g Gravitational acceleration

H Height of draft

Iij Moment of inertia

k Stiffness

L Length

Lk ULEN-parameter

m Mass or meter

rij Radii of gyration

Sb Mean wetted surface area

Sf Spectral density

T Period

u Fluid velocity vector

Um Amplitude velocity

uw Velocity
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Chapter 1

Introduction

In this thesis, a study is conducted investigating the interaction and hydrodynamic
forces between the floating elements of a catamaran type of floating solar module.
The catamaran-shaped floaters are tested in forced oscillating flow. The
catamaran-shaped floaters are experimentally and numerically tested for three
cases, with two drafts per case. The Keulegan-Carpenter number KC number,
determines the hydrodynamic forces on the module in oscillating flow. The KC
number compares the inertia and drag term in oscillating flow and can be written
as

KC =
UmT

D
=

2πηa
D

(1.1)

where Um is the amplitude velocity, T is the period, D is the characteristic length
and ηa is the amplitude of the oscillation. The KC number is explained further in
Section 2.3.

This thesis presents one experiment and one numerical analysis are presented.
WAMIT version 7.4 is used for conducting the numerical analysis of added mass,
damping, and exciting forces in different degrees of freedom (DOF). The
experiment is conducted in the Lader Tank placed at the Centre of Marine
Technology in Trondheim, Norway.

In the autumn of 2022, co-students Petter Grudt Hals and Kristian Mikkelsen
conducted an experiment investigating three cases of square-shaped cylinders with
three heights in forced oscillatory flow. The experiment in 2022 is used as a source
of comparison. The experimental setup of both the experiment conducted in 2022
regarding square-shaped cylinders and the experiment conducted for this master
thesis is described in chapter 3.

1.1 Motivation

Along with the green shift, there is an increase in demand for renewable energy.
Floating solar panels are an increasingly popular and expanding concept in
renewable energy. For these structures, large areas are exposed to the free surface.
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Consequently, large areas are exposed to hydrodynamic forces. The geometry of
the floating elements is essential for how these forces affect the structure. This
thesis studies the hydrodynamic forces acting on small-volume pontoons shaped as
cylinders. These small-volume pontoons make the structure stable, and free
surface disturbances are minor. Consequently, the structure is dominated by
viscous effects due to flow separation. For the concept studies in this thesis, the
floating solar panels are connected by a hinge, making this concept a
multi-modular structure [1].

To make solar panels float, the structure needs some floating devices, usually
pontoons. The hydrodynamic forces on the structure vary with the floater shape
and configuration of the floater chosen floater. Moss Maritime has since 2016
worked on an offshore concept consisting of four circulate cylinders attached to
each panel [2]. Ocean sun is working on a concept that is based on attaching solar
panels to a thin, flexible membrane that floats near-shore sites or at reservoirs [3].
There are some hybrid concepts that combine everything from ocean energy
systems, wind, and hybrid floating solar [4]. All these have different floating
configurations and are subjected to various hydrodynamic forces.

Magnus Onsrud did his Master’s Thesis on the concept of Moss Maritime. His
master’s thesis contributes with valuable insights into the concept [2]. The concept
to be studied for this thesis is similar to the concept of Moss Maritime. The pontoon-
supported modules are connected by hinges, allowing them to move with the wave
elevation. There is high stress concentration in the hinges. This is studied in this
thesis, and should be studied separately. If the pontoons are small and slender, flow
separation is expected to dominate the wave-and current loads. Since the pontoons
are placed closely together for the concept studied in this thesis, it is expected that
interaction occurs between them, causing increased stress in the hinges. A sketch of
the three modules connected by hinges is presented in Figure 1.1.

Figure 1.1: A sketch of three solar island modules connected by hinges. Wake
shedding happens between two pontoons.

When placing two or more pontoons closely together, a set of problems related to
the distance-to-width ratio appears. The first problem is that the wake generated
between two bodies is different than for infinite fluid. The second problem is that the
wake hit and affects nearby bodies, affecting the load. It is essential to investigate
wake interaction, three-dimensional effects on the pontoons, and scaling factors for

2



structure-dominated viscous effects due to flow separation. With limited airgap,
there may be fatiguing forces, also caused by slamming.

The concept of floating solar islands is still under development, and limited research
is done on this topic, making for a broad hypothesis. The hypothesis made for
this study is that there are non-negligible forces on the pontoons of the solar island
modules.

1.2 Literature review

The hydrodynamic forces on circular cylinder bodies have been well studied and
documented. Circulate cylinders have been important in the oil industry and have
been studied thoroughly, but square-shaped cylinders and catamaran-shaped
models have not been studied as extensively. This has left an interest regarding
the interaction between square-shaped cylinders, and catamaran-shaped models, in
oscillatory flow.

In 1977, Zdravkovich wrote a review on the flow interference between two circular
cylinders in various arrangements [5]. In this review, Zdravkovich explains that in a
steady current, the behavior of two cylinders in close proximity to each other is more
complex than that of two cylinders far apart. His review can be divided into three
possibilities of arrangements of the two cylinders; Tandem arrangement, side-by-side
arrangement, and staggered arrangement.

Pannell, Griffiths, and Coals conducted tests force measurements on two ”circulate
wires” [6] in 1925. The distance between the centre of the wires varied from 1D
(diameter of separation), where the wires were in contact, to 6D. The combined
drag force was measured, and the experimental results are visualized in appendix
Section A.1. They found that the minimum drag on two wires when in contact,
was only 40% of the drag on one wire alone. The reasoning for this was assumed
to be due to an improved streamlining of the flow pattern. Another finding from
this experiment was that the combined drag force increased with increased distance
between the centre of the wires.

Biermann and Herrnstein conducted in 1934, further studies on forces on two
cylinders from a wind tunnel, with varying the spacing between the cylinders. In
this experiment, it was possible to measure the drag force on each cylinder
separately. This separate measuring system made it possible to introduce an
”interference drag coefficient” that was defined as ”[...] the between the drag
coefficient measured on one of the cylinders in tandem and the drag coefficient of
the single cylinder at the same Reynolds number.” [7]. By adding this interference
drag of both cylinders, they obtained the combined interference drag as shown in
Section A.2. This experiment found that the interference drag coefficient for
upstream cylinders decreased with the spacing ratio, until L/D was smaller than 3
D, where L is the length of the cylinder, and D is the diameter. When L/D
became larger than 3, the coefficient increased. For the downstream cylinder, the
coefficient increased until L/D = 2.5 and decreased slightly after.

3



In 1959, Hori used only three spacings for his experiments; 1.2D, 2.0D, and 3.0D,
where D is the diameter [8]. He measured the pressure disturbance around two
cylinders in a tandem arrangement. His findings from this pressure disturbance are
found in Section A.3. Hori found that for upstream cylinder affected the pressure
distribution at the rear part only. With the increased spacing of the downstream
cylinders, the base pressure was increased, and the upstream cylinder drag was
reduced.

In 1958, Garbis H. Keulegan and Lloyd H. Carpenter published a research paper
regarding the forces on a cylinder and plates in an oscillating fluid [9]. They
investigated the inertia and drag coefficients of the plates and cylinders. They
started with Stokes’ studies and suggested that there is a physical relation between
the flow patterns around the cylinders and plates, and the parameter UmT/D.
This relation was later known as the Keulegan-Carpenter number. The KC
number is explained in greater detail in Section 2.3. They found that the drag
coefficient Cd started with an unusually large value for low KC numbers up to 10,
then decreased rapidly, and then decreased gradually for increased KC numbers.
This plot is shown in the appendix, Figure A.4.

The forces that occur for sharp-edged cylinders in oscillatory flow at low KC numbers
are discussed in a research article written by Graham in 1980[10]. The conclusion of
that paper was presented at the International Symposium on Wave Induced Forces
on Structures at Bristol in 1978. Bearman also did a similar experiment to Graham
when he studied how the low KC numbers affected the forces on cylinders in viscous
oscillatory flow [11]. Bearman found that the resulting force had ”[...] components
both in phase with the fluid acceleration (inertia) and in phase with the velocity
(drag)”.

In 2001, B. Havel, H. Hangan, and R. Martinuzzi conducted a two- and three-
dimensional study regarding sharp-edged bluff bodies [12]. They investigated the
changes in aerodynamic loading and wake dynamics when altering the distance gap.
They found key differences in the wake dynamics due to the separated shear layer
from the first body to the latter body. Amongst their findings, was that (1) for
very small gaps, the shear layer separated at the first body, and ’overshoot’ the
downstream body. The second body is subjected to the low-pressure area behind
that forms downstream for the first body [13]. (2) For a slight increase in the gap,
the overshoot reaches the side of the second body and reattaches. (3) For further
increased gap, the second body is affected by the fully developed vortices. (4) When
increasing the gap sufficiently, the bodies no longer affect one another.

The hydrodynamic behavior of perforated plates was experimentally and numerically
investigated by Fredrik Mentzoni in 2019 [14]. He found that the damping force
dominated over the added mass force for higher KC numbers. The damping force
dominance increased with increasing perforation ratio as well.

In 2019, Magnus Onsrud wrote his master’s thesis at NTNU, where he conducted an
experimental study on the wave-induced vertical response of a floating solar island
[2]. He studied a simplified model of the Moss Maritime concept, where his model
was a 1X9 module train of hinged solar panels. The model was scaled 1:20, and was
tested for wave periods varying from 2-13 seconds. Onsrud found that this model
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was sufficient for low-frequent sea states, but should be investigated further for other
sea states. A picture of his model can be found in Section A.5.

Henrik Reiten wrote his master’s thesis in 2022, investigating the 2-dimensional
hydrodynamic forces and wake interaction between two or more square-shaped
cylinders KC numbers ranging from 1-32 [15]. Reiten found that there was an
increased difference force as the KC number increased. The difference force showed
to be dominated by the second harmonics component. The difference force was
found to be sensitive to the distance between the cylinders in tandem and the
inflow angle.

1.3 Previous Work - Project Thesis

This master thesis is a continuation of the research conducted during the fall
semester of 2022, as documented in the project thesis. Consequently, certain
sections of the project thesis are reused in this master thesis. The main objective
of the project thesis was to create a solid theoretical background and an
introduction to the analysis of forces on square-shaped cylinders in oscillatory flow.

When writing the project thesis, the original plan was to conduct two experiments for
the master thesis. The first experiment planned was regarding the investigation of
catamarans in forced oscillatory flow, which was conducted. The second experiment
intended to investigate the hydrodynamic loads of a train of floating solar panels in
waves. However, due to constraints of laboratory resources, it became necessary to
discard the second experiment.

1.4 Scope of Work and Objectives

The primary objective of this thesis is to study the hydrodynamic interactions that
occur between two catamaran-shaped pontoons in harmonically oscillatory flow in
varying conditions. This is compared with the interaction between two and four
square-shaped cylinders operating under the same conditions. To define the scope
of work for this thesis, the following objectives have been outlined:

• Develop an understanding of the theory regarding catamarans and
square-shaped cylinders in harmonic oscillatory flow in different conditions
and arrangements.

• Conduct a numerical investigation focusing on the hydrodynamic forces
obtained for different configurations of catamaran-shaped pontoons in
oscillating flow. The numerical investigation contains a sensitivity analysis
and convergence study for both mesh refinement and wave refinement.

• Conduct an experimental study of the hydrodynamic forces on catamaran-
shaped pontoons in oscillatory flow. Various configurations are tested.
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• Compare the experimental and numerical results to validate the results.
These are compared to the numerical and experimental results for two and
four square-shaped cylinders obtained in previous work.

• Establish a strong basis for further studies on this topic.
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Chapter 2

Theory

The focus of this section is to present the terminology used in this thesis, already
existing theory, governing equations, and dimensionless quantities. These are
relevant for the discussion of the experimental and numerical results.

2.1 Terminology

In this section, the terminology used throughout this master’s thesis is introduced.
A group of floating solar panels that are connected, is referred to as a solar island.
There are currently two main categories of solar islands: membrane and multi-
modular. It should be noted that only multi-modular solar islands are the focus
of this thesis. Additionally, a group of islands is called a solar island farm. One
singular module of this solar island is called a solar panel or unit, while the floating
elements are referred to as pontoons. A visualization of this is found in Figure 2.1.
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Figure 2.1: A visualization of the segments of a solar island farm.

2.1.1 The multi-modular concept

Each unit of the solar island has the full-scale size of 2 meters and is arranged
in 10x10 units. The solar island itself is approximately 100x100 meters. Each
unit can carry several solar panels and its floater ranges from a shallow barge to
somewhat less shallow catamaran-shaped floater to either square- or round-shaped
cylinders. In this thesis, the main focus is directed to the catamaran-shaped floaters,
which contain a simple comparison to square-shaped cylinders. A visualization of
the square-shaped cylinder, catamaran, and barge-shaped floaters can be found in
Figure 2.2.

Figure 2.2: Floating solar units seen from beneath. From left to right: square-
shaped cylinders, catamaran, and barge type of floaters.

The solar panels are attached to the unit so that the panel lies flat and the wind
loads are minimized, yet still matter. The hydrodynamic loads on the unit only,
are investigated in this thesis. The effect of wind should be investigated in another
study. The distance between the floaters affects the hydrodynamic loads acting on
the solar island due to the wake effect.
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2.2 Governing equations

2.2.1 Navier-Stokes equation

Around 1850, Navier and Stokes formulated the Navier-Stokes equations. This
equation is also known as governing equations of fluid motions and momentum
equations. The equation describes the motion of a fluid’s behavior. The
Navier-Stokes equation is derived from Newton’s second law for a fluid element. In
Cartesian coordinates, the equation is as follows:

∂u

∂t
+∇u · u = −1

ρ
∇p+ g+ ν∇2u (2.1)

Here, ν = µ/ρ. As this equation is a vector equation and ∇ = [∂/∂x, ∂/∂y, ∂/∂z],

the Navier-Stokes equation is three equations. u is the fluid velocity vector, ρ is the
fluid density, ∇p is the pressure gradient and µ∇2u is the shear term [13].

As the fluid velocity vector u and the pressure is unknown, there are four unknown
and three equations, introducing the continuity equation for an incompressible fluid

∇ · u = 0 (2.2)

To efficiently solve these arguments, the problem must be simplified. This leads to
potential theory.

2.2.2 Bernoulli and Laplace

Bernoulli’s equation is derived from the Navier-Stokes equation by assuming
conservative forces, inviscid flow, no turbulence, incompressible fluid, and steady
flow.

∂φ

∂t
+

1

2
∇φ · ∇φ + gz +

1

ρ
p = C (2.3)

∇2φ = 0 (2.4)

2.3 Parameters and coefficients

In 1903 Arnold Sommerfeld named the Reynolds number after Osborne Reynolds,
since Osborne Reynolds used this in many of his experiments. The Reynolds number
is a dimensionless number describing the ratio of inertia forces to viscous forces [16].
By examining the Reynolds number one can say something about the separation
point of the flow, and the degree of turbulence. The Reynolds number is given as

Re =
UmD

ν
(2.5)
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where U is the velocity, D is the characteristic length and ν is the kinematic viscosity
of the fluid.

The Kaulegan-Carpenter number compares the inertia and drag term in oscillatory
flow [9]. It is named after Garbis H. Keulegan and Lloyd H. Carpenter. The
Kaulegan-Carpenter number is defined as

KC =
Um T

D
(2.6)

where Um is the amplitude velocity, T is the period, and D is the characteristic
length. This expression can be rewritten in regard to a harmonically oscillating
body

KC =
2π ηa
D

(2.7)

where ηa is the amplitude of the oscillation. If the body is subjected to waves,
the velocity can be considered as the amplitude of the water particle velocity. The
expression can be rewritten as

KC =
2π ζa
D

(2.8)

where ζa is the wave amplitude.

The ratio β of the Reynolds number and KC number can be found as [17]

β =
Re

KC
=

D2

ν T
(2.9)

The angular natural frequency of a system with stiffness k and mass m can be
expressed as the following

ω =

√
k

m
(2.10)

2.4 Hydrodynamic force

Hydrodynamic responses in regular waves can be divided into two sub-problems:
diffraction problem and radiation problem. For these two conditions, steady-state
condition is assumed. The diffraction problem is when there are incident regular
waves, and the structure is restrained from oscillating. The hydrodynamic loads in
this sub-problem are called wave excitation loads which are composed of Froude-
Kriloff and diffraction forces and moments. The second sub-problem is the radiation
problem, where the structure is forced to oscillate, generating excitation waves.
There are no incident waves, and the hydrodynamic loads are the added mass,
damping, and restoring terms. In harmonic motion, the hydrodynamic added mass
and damping loads can be written from Newton’s 2nd law as

F = −Akj η̈j −Bkj η̇j (2.11)

where η̈j and η̇j is acceleration and velocity in mode j = 1, 2, ..., 6.
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One can define the oscillation of the body as

η = ηacos(ωt) (2.12)

which yields

η̇ = −ωηa sin(ωt) (2.13)

η̈ = −ω2ηacos(ωt) (2.14)

One can separate the added mass and damping from the total measured
hydrodynamic forces by Fourier averaging [17]. This is done by multiplying
Equation 2.11 with the acceleration term and integrating over n periods∫

nT

F η̈dt = −
∫
nT

Aη̈η̈dt−
∫
nT

Bη̈η̇dt︸ ︷︷ ︸
=0

(2.15)

where T is the period and n is a selected oscillation period. The damping term
consists of both sine and cosine, yielding zero when integrated over the entire period.
It is now possible to solve for mass. The damping term can be found similarly, but
multiplying with velocity instead of acceleration. The added mass term yields zero,
and one can solve for added mass.

∫
nT

F η̇dt = −
∫
nT

Aη̇η̈dt︸ ︷︷ ︸
=0

−
∫
nT

Bη̇η̇dt (2.16)

2.4.1 Exciting forces of a submerged body

The excited forces of a submerged body are made up of the forces from Froude
Krylov and the diffraction forces and are given as

Fexc = FFK + FDiff (2.17)

Froude Krylov forces on a submerged body are found by integrating the
hydrodynamic pressure over the significant surface of the body.

FFK =

∫
S

p n⃗,

FFK =

∫
S

ρgζa e
kz sin(ωt− kx) n⃗,

(2.18)

where S is the area that normal vector n⃗ is oriented towards. ρ is the water density,
g is gravity, ζa is wave amplitude, k is the wave number, and z is the characteristic
height of the body. The sine part of the equation is the phase, where ω is the phase,
t a given time, and x is a given placement along the x-axis.
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2.4.2 Exciting forces of a submerged catamaran-shaped
body

Figure 2.3: Forces integrated over the sides of the catamaran.

The forces integrated over the sides of the catamaran are illustrated in Figure 2.3.
The Froude-Krylov force of a catamaran-shaped submerged body with significant
with B and height H, as shown in Figure 2.3, is calculated in Appendix B to be

FFK =
LρgζA

k
(1− ekH) 2 sin(ωt)

[
sin(kx3)− sin(kx3 + kB)

]
. (2.19)

The diffraction force on complex form of the same submerged body as Equation 2.19
is calculated in Appendix B to be

FDiff =
√

(ℜ)2 + (ℑ)2

FDiff =

√(
r cos(ϕexc)− FFK cos(ϕFFK

)
)2

+
(
r sin(ϕexc)− FFK sin(ϕFFK

)
)2

(2.20)

and

ϕ = arctan
(√ℜ

ℑ

)
ϕ = arctan

(√ r cos(ϕexc)− FFK cos(ϕFFK
)

r · sin(ϕexc)− FFK · sin(ϕFFK
)

) (2.21)

where

ℑ
(
ir sin(ϕe)− iFFK sin(ϕFFK

)
)
= r sin(ϕe)− FFK sin(ϕFFK

) (2.22)

2.4.3 Damping

Damping in a harmonically oscillating system containd linear and quadratic
damping. The linear and quadratic term are referred to as B

(1)
33 and B

(2)
33 ,

respectively. The damping term can be rewritten as

B33η̇3 = B
(1)
33 η̇3 +B

(1)
33 η̇3|η̇3| (2.23)
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2.4.4 The Morison equation

In potential flow theory, the viscous effect is neglected. One way to incorporate the
viscous effect and calculate the forces on a moving body, is by the Morison equation
[18]. Morison’s equation per unit length for a circulate bodies is given as

Fm(t) = ρ
D2π

4
CAaw(t) +

1

2
ρDCDuw(t)|uw(t)| (2.24)

where ρ is the density, D is the characteristic length, CA is the added mass coefficient,
CD is the drag coefficient and aw(t) and uw(t) is acceleration and velocity.

For a catamaran-shaped body, the Morison equation can be expressed as

Fm(t) = ρH LB CA aw(t) +
1

2
ρBCDuw(t)|uw(t)| (2.25)

The acceleration can be expressed as

KC =
Um T

B
=

ω ηA T

B
=

2π
T
ηA T

B
= 2π

ηA
B

⇒ ηA =
KC

2π
B

(2.26)

aw = ω2ηA =
(2π)2

T 2

KC

2π
B =

2π

T 2
KCB. (2.27)

2.4.5 Sloshing modes

Sloshing is a hydrodynamic phenomenon that occurs when a structure entraps liquid
with the free surface. The liquid moves back and forth between the walls with the
natural modes of the barge. This results in resonant excitation of the liquid with
natural frequencies. The sloshing can have a large influence on the dynamic stability.
In many cases, the excitation of the lowest natural frequency is expected to be most
significant [19]. When studying catamaran-shaped floaters placed relatively close
together, sloshing occurs between them.

In 2002, Molin formulated a simplified mathematical expression determining the
sloshing modes for gap resonance between two barges in three dimensions[20]. The
problem Molin describes assumes linearized potential flow theory, infinite water
depth, and length, and that the beam of the barges contains moonpools. It should
be noted that for the simplified formula to be reasonable, the barge breadth B
divided by the gap width b, B/b, should be larger than 2-3. The sloshing modes are
expected to be somewhat over-predict. This formula is expressed as

ω2
n0 ≃ gλn

1 + JDn0 tanh(λnh)

JDn0 + tanh(λnh)
(2.28)

where n is the mode and

JDn0 =
n

b l2

∫ b

0

dy

∫ b

0

dy′
∫ l

0

dx

∫ l

0

dx′ cos(λnx) cos(λnx
′)

(x− x′)2 + (y− y′)2
=

n

b l2
Inn00 (2.29)
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JDn0 can be reduced to

JDn0 =
2

nπ2r

[∫ 1

0

r2

u2
√
u2 + r2

[
1 + 2u+ (u− 1) cos(nπu)

− 3

nπ
sin(nπu)

]
du+

1

sin(θ0)
+ 1 + 2r ln

1 + cos θ0
1− cos θ0

] (2.30)

where r = b/l and tan θ0 = r−1 [21]

2.5 Nondimensionalization

For this thesis, some nondimensionalizations are used consistently. The added
mass coefficient CAij

, damping coefficient CBij
and force coefficient Xi is made

nondimensional as the following

CAij
=

Aij

ρ∇
CBij

=
Bij

ρ∇ω
Xi =

Fi

ρg∇
(2.31)

where Aij is the added mass, Bij is the damping, F is force, ρ is water density, ∇ is
the submerged volume, ω is frequency and g is the gravitational acceleration.

The first part of Morison equation, from Equation 2.24 can be re-written as

F = ρHLB CA aw(t) = ρHLB2CA KC
2π

T 2
. (2.32)

The first part of the Morison equation converted to the nondimensionalization used
for force in Equation 2.31 can be expressed as

F

ρg HLB
=

ρHLB2CAKC 2π
T 2

ρg HLB
=

B CAKC2π

g T 2
. (2.33)
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Chapter 3

Experiment

The experimental setup and execution of the experiment conducted in this
master’s thesis are presented in this chapter. A summary of the experimental
setup and execution of the experiment of 2022 regarding square-shaped cylinders,
is also provided. The Ladertanken (en: Lader tank) is used for both the
investigation of forced oscillation of square-shaped cylinders, as documented in the
project thesis, and for forced oscillation of catamarans in this master’s thesis. The
scale used for these experiments is 1:10, where the full-scale length of one
catamaran-shaped pontoon is 2 m, resulting in a model length of 0.2 m.

3.1 The Lader tank - Lab facilities

The Lader tank is placed at the Center of Marine Technology in Trondheim, and
is used for the experiments of forced oscillation. The tank got its name from P̊al
Lader, who initiated the installation of the tank in 1996. Since then, the tank has
been used for research purposes by SINTEF, as well as experiments conducted by
MSc and Ph.D. students.

The tank is 13.5 m long, has a width of 0.6 m, and the water level is adjustable.
The water level is set to 1.0m for the experiments conducted in the Lader tank
regarding forced oscillations. Due to leakage, it is important to monitor the tank
and refill it when necessary. The tank is filled with fresh waterand the temperature
is monitored throughout the experiment. A change of temperature of 2°C results
in an uncertainty of 0.36kg/m3 in water density, which makes the changes in water
density negligible.

The tank walls are made from Plexiglass, an alternative to glass. This makes it
possible to observe the model within the tank. A wave flap is installed at one end
of the tank, making deep water waves accessible. The wave flaps are not for the
experiments of forced oscillation in this master’s thesis. A rig on top of the tank is
attached to a rail system reaching the entire tank, making it possible to adjust the
rig. The rig and an actuator make it possible to move the model up and down as
well. Two plates are attached to the rig and are connected to two force-measuring
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sensors. Models can be attached to the plates. The test rig is explained in greater
detail in Section 3.3.1. A sketch of the Lader tank and the setup used, is presented
in Figure 3.1.

Figure 3.1: A sketch of the setup and tank characteristics of the Lader Tank shown
from side-view and bird-view, respectively.

3.2 Previous work - square-shaped cylinders

In the fall of 2022, as documented in the project thesis, the experiment with square-
shaped cylinders was conducted in the Lader tank. A summary of the experimental
setup and testing procedure, as well as a summary of the findings, is presented in
this section.

3.2.1 Model description

The experiment of square-shaped cylinders was held in the fall of 2022, in the
Lader tank testing square-shaped cylinders. The cylinders represent the draft of a
floating solar panel with four square-shaped cylindrical-shaped floaters. Three
different heights, simulating three drafts of the cylinders, were tested with seven
different placement configurations. This master’s thesis only elaborates on the
configurations regarding two and four cylinders, as shown in Figure 3.2. The
length and width of the cylinders are the same for each case, but the height varies.
The dimensions for the sets of cylinders are found in Table 3.1. The three different
placement configurations simulate the distance between neighbor cylinders. The
different case configurations can be found in Figure 3.2.
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Configuration no. Referred to as Length [cm] Width [cm] Height [cm]
Case 1 small, L/H = 1 5 5 5
Case 2 medium, L/H = 1/2 5 5 10
Case 3 large, L/H = 1/3 5 5 15

Table 3.1: Dimensions of the square-shaped cylinders investigated in the project
thesis.

Figure 3.2: The different cases investigated for all three sized square-shaped
cylinders.

3.2.2 Test program - Cylinders

The test program is based on testing the different cases of spacing for all three sizes.
All cases are tested for increasing KC number, increasing by 0.5 KC. The periods of
the tests are 1s and 1.5s, and KC numbers 7, 14, and 21 are repeated 4-5 times.

The rig runs without models attached first, to account for the effect of the rig alone.
By doing this, the forces measured on the rig alone can be subtracted from forces
measured when the models are attached, isolating the model forces. The frequency
of measurements is 200Hz. The different KC numbers tested are listed in Table 3.2.

17



KC ηa,square−shaped [cm] ηa,diamond [cm] KC ηa,square−shaped [cm] ηa,diamond [cm]
1 0.8 1.1 10.5 8.4 11.8
1.5 1.2 1.7 12.5 9.9 14.1
2 1.6 2.3 13 10.3 14.6
2.5 2.0 2.8 13.5 10.7 15.2
3 2.4 3.4 14 11.1 15.8

3.5 2.8 3.9 14.5 11.5 16.3
4 3.2 4.5 15 11.9 16.9
4.5 3.6 5.1 15.5 12.3 17.4
5 4.0 5.6 16 12.7 18.0
5.5 4.4 6.2 16.5 13.1 18.6
6 4.8 6.8 17 13.5 19.1
6.5 5.2 7.3 17.5 13.9 19.7
7 5.6 7.9 18 14.3 20.3
7.5 6.0 8.4 18.5 14.7 20.8
8 6.4 9.0 19 15.1 21.4
8.5 6.8 9.6 19.5 15.5 21.9
9 7.2 10.1 20 15.9 22.5
9.5 7.6 10.7 20.5 16.3 23.1
10 8.0 11.3 21 16.7 23.6
11 8.8 12.4 21.5 17.1 24.2
11.5 9.2 12.9 22 17.5 24.8
12 9.5 13.5

Table 3.2: KC numbers tested for square-shaped cylinders in forced oscillations.

3.2.3 Summary of the findings

The experiment with the square-shaped cylinders was successful. Co-student
Kristian Mikkelsen focused his master’s thesis on the wake interaction of these
cases, focusing on staggered arrangement [22]. As the presented master’s thesis
focus on tandem arrangement, the main findings for tandem arrangement are
summarized in the outline below:

• There was generally smaller hydrodynamic interaction between the
square-shaped cylinders when increasing the distance. It was found that the
hydrodynamic interaction decreased when the hydrodynamic forces
increased. The hydrodynamic forces increased with increased KC number.

• The draft height of the cylinders had no large effect on the results. There was
some scattering of the small drafted cylinders for small KC numbers.

• The large drafted models had to discard F 4ω and F 5ω, due to the
eigenfrequency of the rig with the models attached.

• The results of case 3 could be used with the small drafted cylinders only.
This was due to the weight that the four models added. The eigenfrequency
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dominated the measurements for the medium and large drafted model for case
3, resulting in discarded them.

3.3 Experimental setup

3.3.1 The test rig

The actuator is placed in the middle of the tank, and the rig is wedged to avoid
unnecessary motions that may affect the results. The custom-built rig is attached
to the actuator, making it possible to move in the vertical direction. The actuator is
programmed to oscillate with different amplitudes and velocities, making it possible
to test for several KC numbers during the experiment. The rig and actuator are
shown from front-view, side-view, and back-view in Figure 3.3.

(a) Front-view of the rig
and actuator.

(b) Side-view of the rig and
actuator.

(c) Back-view of the rig
and actuator.

Figure 3.3: Front-view, side-view, and back-view of the rig and actuator,
respectively.

The rig is attached to two plates with two force transducers that measure the
separate forces of their respective plates. The outer plate has a width of 40 cm,
providing a 10 cm space on each side towards the glass wall of the tank. High
pressure occurs due to the oscillations occurs between the glass wall and plates of
the rig, preventing the plates and glass wall from colliding. The plates have a
variety of holes, making it possible to vary the placement of the models. After
attaching the model, every excess hole is filled with yellow putty to obtain a
smooth surface, avoiding hydrodynamic disturbance. One model is attached to
both sides of the plate to maintain symmetry, as shown in Figure 3.4.
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(a) Test rig for case 1 with the small-
draft catamaran model with H/b
= 1.5/7.5.

(b) Test rig for case 1 with the large-
draft catamaran model with H/b =
3/7.5.

Figure 3.4: The test rig with the small- and large-draft catamarans attached with
gap distance as of case 1. The small- and large-draft catamarans is specified as H/b
= 1.5/7.5 and H/b = 3/7.5 respectively.

3.3.2 Model description - Catamarans

The experiment investigating the catamarans is conducted by attaching two sets
of catamarans to the rig, one set at the fixed position at the bottom of the outer
plate, and one set at the placement of the case to be invested. Three cases are
tested for two height variations, si the total of runs becomes six. The catamaran
model has a length L of 20 cm and a width B of 7.5 cm. The two catamaran heights
that are tested, are 1.5 cm and 3 cm. The catamaran with a height of 1.5 cm is
named a small-draft catamaran with H/L = 1.5/20. The tallest catamaran is named
large-draft catamaran and has H/L = 3/20.

The catamaran models are attached so that the long side is parallel to the Y-direction
of the tank. The two sets of catamarans have the same length and width, but
different heights simulating two different drafts. The spacing between the catamaran
sets simulates the distance between to neighboring pontoons, either attached to the
same solar panel or neighboring solar panels. A visualization of the catamaran model
with dimensions is be found in Figure 3.5. The plate with the placement of the three
cases is found in Figure 3.6. In Figure 3.7, one can see a picture of the large-drafted
models attached with gap distance according to case 3, H/b = 3/11.25.
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Figure 3.5: Dimensions of the small- and large-draft catamaran model.

Figure 3.6: The holes that is used for the attachment of catamarans in case 1, case
2 and case 3.

Figure 3.7: Large-drafted models attached with gap distance according to case 3,
H/b = 3/11.25.
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3.3.3 Test program - Catamarans

This experiment follows mostly the same procedure as the experiment performed
in the project thesis with square-shaped cylinders. After analyzing the data in the
project thesis, it was concluded that there was no significant difference between the
results of half period and half KC numbers when compared to whole. So for this
experiment, only whole periods and KC numbers are tested. The rig can move up to
20cm from its center, which allows testing of KC numbers from 1 to 16. The tested
KC numbers and the respective amplitude are shown in Table 3.4.

The actuator ramps up with four oscillations, oscillate 30 times at the given KC
number, then ramps down with four oscillations. The small- and large-draft
catamaran models are tested for three cases of placement. The distance between
the models in each case is specified in Table 3.3 and visualized in Figure 3.6.

The rig runs without models attached first, as for the square-shaped cylinders. This
makes it possible to isolate the forces of the models. The frequency of measurements
is 200Hz as well.

Case: Case 1 Case 2 Case 3
Distance b between the models: 7.5cm 11.25cm 15cm

Table 3.3: Case 1, case 2, and case 3 and their respective gap distance between the
models.

KC ηa [cm] KC ηa [cm]
1 1.2 9 10.7
2 2.4 10 11.9
3 3.6 11 13.1
4 4.8 12 14.3
5 6.0 13 15.5
6 7.2 14 16.7
7 8.4 15 17.9
8 9.5 16 19.1

Table 3.4: KC numbers, and the associated vertical amplitude, tested for the
catamaran-shaped models in forced oscillations.

3.4 Instrumentation and Calibration

The instrumentation is a key part of conducting a successful experiment and
obtaining reliable results. The instrumentation must be calibrated and tested to
ensure correct measurements. An explanation of the instrument used in this
experiment, and the procedure for using them is presented in this chapter.
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3.4.1 Calibration of sensors

The sensors used for this experiment were calibrated by Robert and Terje, who
are responsible for the lab equipment. The force sensors and position was zeroed
between each run, and are checked to be zero at the start of each run. A manual
test was executed to ensure that the access system is functioning correctly. This
was done by applying some force by hand to the outer and inner plate in X-, Y- and
Z-directions, and checking that the logging system corresponds.

3.4.2 Hammer test

When examining the data from the experiments, it is expected to dominate responses
at certain frequencies, such as at the natural frequencies of the rig. By performing
a Hammer test, it is possible to establish an overview of which frequencies the
eigenfrequencies are expected to dominate. A hammer test is conducted by striking
the model and its surroundings with a hammer in X-, Y-, and Z-direction. At the
inner and outer plate it is not possible to strike the model in the Z-direction due to
the water blocking the movement.

After the hammer has struck, the object vibrates at different frequencies. It is
essential to note that electrical noise usually dominates at around 50Hz [23]. In this
thesis, everything higher than 40Hz is filtered and discarded. The hammer test in
this thesis is performed by striking the tank, stronghold, rig, and inner and outer
plate.

Two pairs of sensors measure the forces on the setup, one on the outer plate and
one on the inner plate. These are expected to respond differently to the hammer
striking, due to the different sizes of the plates, and consequently weight. Since the
outer plate is larger, it is expected to have an eigenfrequency at a lower frequency
than the inner plate. The hammer test results are presented in Section 5.1.

3.5 Sources of Error

There are several sources of error when performing an experiment. These may
originate from human errors or instrumentation. In this chapter, some possible
sources of error are presented and discussed.

The instrumentation used in the lab varies in age and degree of wear. Some of the
sensors may drift during the experiment, leaving it to post-processing to correct. The
lab personnel ensured that the sensors used in this experiment should be sufficient,
but some offset may be present.

When installing the rig, the plate is fastened with screws on the top of the rig. There
is no support to this plate other than the screws and two supporter beams along
the plate. This allows the plate to move the plate in Y-direction. The outer plate is
quite easy to displace in the Y-direction, so the inner and outer plates are touching.
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This creates physical noise when tracking, but is easily identified as spiking curves
when tracking. This is a source of inconsistency during the experiment, though the
worst effect of this error is avoided by careful monitoring.

One error that may be significant, is that the hammer test was performed after the
experiments were conducted, and the rig was disassembled. Consequently, the rig
had to be reassembled after the experiments in order to perform the hammer test.
It could be argued that there is therefore some inconsistency in the experiment and
hammer test.

The Lader tank is situated one level under a large cavitation tunnel. When this
cavitation tunnel operates, vibration and noise travel through the building. When
the tunnel is at its maximum speed, there are strong vibrations in the Lader tank.
Experiments in the Lader tank were on hold when the tunnel ran at max speed,
avoiding the largest impact. It should be noted that there may be some inconsistent
vibrations due to this, though these are hard to identify.
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Chapter 4

Numerical analysis

The numerical analysis of this thesis is done with WAMIT as the numerical solver
[24]. The low-drafted catamarans are simulated with three gap distance
configurations and two draft configurations. A description of the numerical
software WAMIT and the approach of how to use the numerical solver is discussed
in this section.

4.1 WAMIT

WAMIT is a numerical solver that solves the boundary value problem for the
interaction of structures and surface waves in finite- and infinite-water depth [24].
WAMIT provides a variety of different output files. An overview of these is found
in Figure 4.1.

Figure 4.1: The output options provided by WAMIT [25].

WAMIT is based upon some assumptions that should be noted. The software
assumes potential flow theory, consequently, viscous effects of fluids are not
considered. WAMIT assumes that the wave amplitude is small compared to the
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wave length. The flow is assumed ideal and time-harmonic, and the free-surface
conditions are linearized.

WAMIT consists of two sub-programs; ’POTEN’, which calculates velocity
potentials, and ’FORCE’, which calculates the desired hydrodynamic parameters.
WAMIT uses the input files listed in Table 4.1 and produces the output files
specified in Figure 4.1 on the format specified in Figure 4.3. Whether the bodies
are located at the free surface, submerged or mounted on the sea bottom, must be
specified. One must also specify if the bodies are freely floating, restrained or in a
fixed position. To calculate the radiation and diffraction velocity potentials on the
wetted surface are obtained by using Green’s theorem with the free-surface
source-potential as the Green function [24]. A flowchart of WAMIT and its
sub-programs with their associated input and output files is visualized in
Figure 4.2.

Figure 4.2: Flowchart of WAMIT showing the subprograms POTEN and FORCE
with their associated input and output files [25].
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4.2 Theory

4.2.1 The boundary-value problem in WAMIT

WAMIT assumes potential flow, so the flow velocity can be defined by the gradient
of the velocity potential Φ satisfying the Laplace equation in the fluid domain

∇2Φ = 0.

Due to harmonic time dependence, it is allowed to define the complex velocity
potential φ as

Φ = Re(φeiωt),

where Re is the real part, ω is the frequency of the incident wave and t is time. The
linearized free-surface condition is

φz −Kφ = 0 on z = 0,

where K = ω2 / g is the infinite-depth wave number and g is the gravitational
acceleration. The velocity potential of the incident wave in WAMIT, is defined as

φ0 =
igA

ω

cosh[k(z +H)]

cosh kH
e−ikx cosβ−iky sinβ,

where β is the angle between the direction of the propagating incident wave and the
positive X-axis and k is the real root of the dispersion relation

ω2

g
= k tanh kH.

The linearization of the boundary-value problem makes it possible to divide the
velocity potential φ into radiation and diffraction as

φ = φR + φD,

φR = iω
6∑

j=1

ξjφj,

φD = φ0 + φS.

Here, ξj is the complex amplitude of the body motions in the six degree of
freedom, φj is the corresponding unit-amplitude radiation potentials. φs is the
velocity potential of the scattered disturbance of the incident wave [25].

4.2.2 Added mass and damping coefficients

The non-dimensional added mass and damping coefficients provided by WAMIT are
found in Equation 4.1.
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Aij −
i

ω
Bij = ρ

∫∫
SB

niφjdS

Āij =
Aij

ρLk
B̄ij =

Bij

ρLkω

(4.1)

where Sb is the mean wetted surface area and Lk is the ULEN -parameter, which is
set to 1 meter in this thesis, and

k = 3 for i, j = 1, 2, 3

k = 4 for i = 1, 2, 3, j = 4, 5, 6 or i = 4, 5, 6, j = 1, 2, 3

k = 5 for i, j = 4, 5, 6.

4.2.3 Exciting forces

The exciting forces from the Haskind relations is given as

Xi = −iωρ

∫∫
Sb

(
niφ0 − φi

∂φ0

∂n

)
dS. (4.2)

Exciting forces from direct integration of hydrodynamic pressure is given as

Xi = −iωρ

∫∫
Sb

niφDdS

X̃i =
Xi

ρgALm

(4.3)

where m = 2 for i = 1,2,3 and m = 4,5,6. It is possible to calculate the Froude-
Krylov and scattering components of the exciting forces in WAMIT directly by using
IOPTN(2)=2 and IOPTN(3) = 2 in the ’.frc’ -file.

4.2.4 Body motion and free surface elevation

The non-dimensional body motions and free surface elevation are given by

ξ̄i =
ξi

A/Ln
η̄ =

η

ξjLn
= KLφ̄j (4.4)

where K = ω2/g, φ is the total velocity potential, n = 0 for i, j = 1,2,3 and n = 1
for i, j = 4,5,6.

4.3 Input and output files

A description of the different input files follows.
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’fnames.wam’ The file specifying the input filenames that WAMIT reads
(POTEN reads).

.pot The Potential Control File.
’.frc’ The Force Control File. This specifies the non-geometric

inputs for WAMIT.
’CONFIG.WAM- This file is necessary for finding the path and reading files

WAMIT uses. This is only needed for WAMIT 7.
’.gdf’ The Geometric Data File that defines the coordinates of

the panel vertices, so the mesh of the configuration.
’userid.wam’ The license file.

Table 4.1: Input files for WAMIT [25].

Figure 4.3: Format of the output ’.frc’ files [25].

The output files are ’.frc’ -files with the form shown in Figure 4.3. All outputs from
WAMIT are dimensionless, and are given in Crestian coordinates.

4.3.1 Mesh and the ’.gdf’ input file

The Geometric Data File describes the geometry of the structure that is analyzed.
The dimensions are in meters and the centre is at the free surface with the negative
Z-axis oriented down. Due to symmetry, one can mirror the structure in terms of the
X- and Y-axis. This means that if there is symmetry about the X- and Y-axis, one
needs to generate a mesh for one quarter of the cube only. Consequently, one quarter
of the total mesh is sufficient for the geometries in this thesis. To obtain a sufficient
WAMIT analysis, the input structure in the ’.gdf ’ -file should have a refinement of
a minimum of 10 sub-panels per main panel. A mesh refinement study presenting a
sufficient mesh refinement is conducted in Section 4.4. The section that is mirrored
in WAMIT is illustrated in Figure 4.4.
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(a) The model mirrored about the X- and
Y-axis.

(b) Visualisation of one quarter of the
structure before mirroring.

Figure 4.4: A visualization of the model with case 1 gap distance 7.5 cm between
the floaters. The section marked red, is the quarter that is mirrored about the X-
and Y-axis. The right figure is a visualization of the finest ’.gdf ’ -file used, which is
refinement ’G22’, consequently 9 panels per cm.

4.3.2 Mass matrix and the ’.frc’ input file

The Force Control File specifies the options one would like to simulate, and are
shown in (Figure 4.1). The ’.frc’ -file specifies the value of density ρ, vertical centre of
gravity, the mass-, hydrostatic damping- and hydrostatic stiffness matrix, and lastly
the coordinates one would like to estimate either velocity flow or hydrodynamic
pressure. In the damping- and stiffness matrix, additional damping and stiffness
from mooring can be added. If the body is freely floating, instead of moored, these
should be set to zero. The inertia matrix is defined as

M =


m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0
0 −mzg myg I11 I12 I13

mzg 0 −mxg I21 I22 I23
−myg mxg 0 I31 I32 I33

 . (4.5)

where the moment of inertia Iij are defined in terms of the radii of gyration rij,

Iij = ρ∇rij|rij|. (4.6)

The radii of gyration are calculated from rij =
√

Iij
Aij

, where I is the moment of area,

and A is the cross-section area. The second moment of area for the small cylinder
and the correlated radii can be calculated as
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Ixx =

∫ y/2

−y/2

∫ z

0

y2 + z2dzdy =
1

12
y3z +

1

3
yz3

Iyy =

∫ x/2

−x/2

∫ z

0

x2 + z2dzdx =
1

12
x3z +

1

3
xz3

Izz =

∫ y/2

−y/2

∫ x/2

−x/2

x2 + y2dxdy =
1

12
(x3y + xy3)

(4.7)

rxx =

√
Ixx
Axx

=

√
1

12
y2 +

1

3
z2

ryy =

√
Iyy
Ayy

=

√
1

12
x2 +

1

3
z2

rzz =

√
Izz
Azz

=

√
1

12
(y2 + x2)

(4.8)

The inertia matrix changes with different configurations.

Consider the large catamaran-shaped floater with a body mass equal to the
submerged mass m = ρ∇. The length, width, and height equals 0.2m, 0.075m, and
0.03m, and origo in the middle of the square at the free surface,
(x, y, z = 0) = (0.10, 0.0375, 0). The centre of gravity for this simple floater with
H/L = 0.15, is at (xg, yg, zg) = (0, 0, -H/2). As the inertia matrix is defined by the
coordinates to the centre of gravity, xg and yg can be set to zero. Due to summitry
I12, I13, I21, I23, I31, I32 becomes zero. The mass matrix is now much simpler.

M =


m 0 0 0 mzg 0
0 m 0 −mzg 0 0
0 0 m 0 0 0
0 −mzg 0 I11 0 0

mzg 0 0 0 I22 0
0 0 0 0 0 I33

 . (4.9)

When implementing the values for body mass, coordinates, and radii of gyration,
the inertia matrix for the large-draft model with H/L = 0.15, becomes

M =


0.45 0 0 0 −0.00675 0
0 0.45 0 0.00675 0 0
0 0 0.45 0 0 0
0 0.00675 0 3.5e− 4 0 0

−0.00675 0 0 0 16.4e− 4 0
0 0 0 0 0 43.1e− 4

 . (4.10)

4.4 Refinement study

A grid and wave refinement study of the largest module is conducted. The purpose
of these tests are to ensure that the input values are sufficient to produce converged
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output values. The methodology, along with the final refinement values, is presented
in the following section.

4.4.1 Mesh refinement

Here, the refinement of the grid is defined by the number of panels per cm. The
roughest grid is 1 panel per cm and the finest is 9 grids per cm. Table 4.2 specifies
the grid refinements that are tested and their refinement along their respective axis.
A visual representation of the mesh with the coarsest and finest grid can be found
in Figure 4.5. An overview of the visualization of all resolutions for the large-draft
model before mirroring can be found in Appendix C. The added mass coefficient in
surge CA11 of the large-draft model with the coarse grid is plotted for wave period
0-3 seconds, and is found in Figure 4.6.

Name Refinement
x-direction y-direction z-direction

G2 2 3 1
G4 4 5 2
G8 8 10 3
G15 15 20 6
G22 22 30 9

Table 4.2: Grid refinements in X-, Y- and Z-direction before mirroring that was
tested for convergence study.

(a) Mesh G2 (b) Mesh G22

Figure 4.5: A visual representation of the most coarse and refined mesh tested for
the convergence study. These are visualized before mirroring.
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(a) The added mass coefficient CA11 plotted for period
T ≤ 3 seconds.

(b) CA11 plotted for long-
crested waves and close to
convergence.

Figure 4.6: The added mass coefficient for surge motion CA11 plotted for period T for
the large-draft model with gap distance as case 1, H/b = 3/7.5. The sensitivity study
is conducted using the coarse grid refinement of 1 panel per cm. The added mass
coefficient in surge, CA11, is plotted period T ≤ 3 seconds and close to convergence.

From Figure 4.6, it is seen that the added mass coefficient in surge starts to converge
with the finest grid. The difference is small when increasing grids per cm before
mirroring from 6 to 9. It is also shown that using nine grids per cm is sufficient for
the smallest gap distance between the floaters. This means that it is sufficient to use
nine grids per cm before mirroring, and grid size G22 is used for further analysis.

4.4.2 Wave refinement

The wave period increment used to this point, is 1/10 second. This period increment
results in some harsh measurements for wave period less than 1 second. This thesis
focuses on long waves, so wave periods above 2 seconds in model scale, are of focus.
Although periods above 2 seconds is of main focus, wave periods under 1 second
are key to identify sloshing modes that are studied in Section 4.5.1. This means
that it is important to have good resolution when validating the numerical results
with sloshing modes. The wave period increment is increased from 1/10 second to
1/40 second for period less than 1 second, while the period step for periods of 1-3
seconds remains 1/10 second. The added mass coefficient CA11 is plotted for periods
0-3 seconds, comparing the coarse and fine period increment, which is shown in
Figure 4.7.
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(a) The added mass coefficient CA11

plotted for period T ≤ 3 seconds
(b) The added mass coefficient CA11 plotted for
period T ≤ 0.4 seconds

Figure 4.7: Sensitivity study of wave period refinement of the large-draft models.
Added mass coefficient in surge CA11 plotted CA11 plotted for period T ≤ 3 seconds,
and period T ≤ 0.4 seconds The gap distance b between the floaters is 7.5cm, H/b
= 3/7.5.

4.5 Verification of numerical results

To verify the accuracy and reliability of the numerical and experimental results, a
comparison with relevant theory are presented. The numerical findings are compared
to expected results based on theoretical sloshing modes. The numerical finds are
compared to the added mass in surge for long-crested waves according to DNV
recommended practice, DNV-RP-C205.

4.5.1 Sloshing modes

The hydrodynamic data obtained from analysis in WAMIT is expected to show
resonance peaks at the sloshing modes. It is complicated to calculate the exact
sloshing modes for the case of a three-dimensional catamaran model with a relatively
small gap distance between the two bodies.

Bernard Molin provided the sloshing modes for two three-dimensional barges with
a certain gap distance. The sloshing modes for these barges are calculated from
the simplified equation explained in Section 2.4.5. According to Molin, should the
reasonable characteristic length B to gap distance b ratio be within B/b = [2− 3].
The catamaran width B is 0.075 cm and the gap distance b varies between 0.075cm
and 0.15 cm. The width-to-gap distance ratio for the catamarans becomes B/b =
[1 − 0.5]. The width-to-gap distance ratio is outside the range of what Molin’s
simplified equation qualifies as reasonable. This contributes to the offset in the
correlation of the sloshing modes and their respective resonance peaks.
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To visualize the sloshing periods, dimensionless added mass in surge is presented
for large catamarans with the three gap distance configurations. Additionally, a
comparison is made with the added mass in surge for two catamaran-shaped bodies
that are sufficiently distant from each other, not affecting one another.

Figure 4.8: Added mass coefficient CA11 is plotted for T < 0.5 seconds. The
catamaran-shaped models are investigated with four gap distance configuration es.
The crosses mark is the sloshing periods calculated from Molin [21].

Figure 4.8 shows the added mass coefficient CA11 for the large-draft models, and are
plotted for period T < 0.5 seconds. Molin’s estimation of the sloshing modes are
also plotted. CA11 are plotted for three gap distance configurations, in addition to
the infinite gap distance that is denoted ’inf b’.

It is shown in Figure 4.8 that Molin’s simplifies equation for sloshing modes indicates
where the peaks should be, and seems to correlate with some resonance peaks as
it over-predict. As discussed in Section 2.4.5, the lowest frequency is predicted to
be at the largest resonance peak. As the lowest sloshing frequency is the largest
sloshing period, it is expected to find the largest excitation peak at the crosses
around T = 0.5s. It is evident that there is some offset to this method for the case
in this thesis, but it is sufficient to validate that the expected sloshing occurs for
periods lower than 0.5s in model scale.

4.5.2 Added mass DNV

DET NORSKE VERITAS (DNV) is an independent foundation that undertakes
classification, certification and other verification of offshore and onshore industries
worldwide [26]. DNV has published their nondimensional added mass coefficients
for different bodies in Appendix D of the paper ”DNV-RP-C205: Environmental
Conditions and Environmental Loads” [26]. This compares the nondimensional
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added mass coefficients for long-crested waves obtained from analysis in WAMIT.
The three-dimensional added mass coefficient from DNV is expected to be a
slightly higher estimate compared to the result from WAMIT, as it is somewhat
more accurate in its estimation.

In Appendix D, the analytical added mass coefficient is calculated. In this
elaboration, the analytical added mass coefficient for two-dimensional is
calculated. When converting to a three-dimensional added mass coefficient, a
reduction is expected. It is expected that the correction would result in an
over-predicted estimate.

A comparison of the analytical added mass of two-dimensional and the converged
result from the WAMIT analysis is found in Table 4.3.

CA11 [H/b = 1.5/7.5] CA11 [H/b = 3/7.5]
Two-dimensional 0.717 [-] 1.269 [-]
Three-dimensional 0.559 0.793

WAMIT 0.49 0.8

Table 4.3: Comparison of numerical added mass coefficient form WAMIT and
analytical added mass coefficient calculated estimated from appendix D in DNV-
RP-C205 [26].
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Chapter 5

Post-Processing

The focus of this chapter is to present the choices made when post-processing data
obtained from both the numerical and experimental analysis. The hammer test
aims to establish the eigenfrequencies of the rig. A selection of the hammer strikes
is presented in this section, while all can be found in Appendix J.

5.1 Hammer test

The data from an experiment may be overshadowed at frequencies that are
dominated by vibrations. These vibrations may be due to eigenfrequencies or
oscillations due to the strike of the hammer, the last one is especially noticeable
for the stuck in X-direction on the plate. It is important to obtain an
understanding of the frequencies that are expected to experience these vibrations
that may overshadow data from the experiment.

The natural frequency of the oscillation experienced after striking the experimental
setup with the hammer, is propositional with mass Equation 2.10. This leads to the
assumption that the distance between the models does not significantly affect the
results, consequently, distance configurations was not tested when performing the
hammer test. The distance between the models was set to one floater width distance,
1b = 0.075m for the hammer test. Furthermore, it is interesting to establish how
increasing the thickness of the models, and the weight of the models, affect the
response of the hammer test. The spectral density is expected to move towards
lower frequencies with increasing mass.

The results of the hammer test are presented as a spectrum analysis. As explained
in Section 3.4.2, everything above 40Hz is filtered, consequently, the dominating
electrical noise expected at 50Hz is filtered. This thesis presents experimental results
for forces in the Z-direction and frequencies 1-5Hz. Consequently, it is interesting to
establish the eigenfrequencies of the experimental setup and note peaks of interest
within 1-40Hz with a focus on the Z-direction.

The outer plate is expected to oscillate with a lower frequency than the inner plate
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due to its larger mass, as explained in Section 3.4.2. Since the outer plate oscillated
at lower frequencies, it is used for the primary analysis of the hammer test. One
exception to analyzing only the outer plate, is when striking the outer plate with
the hammer. The outer plate oscillates due to the hammer striking, and the inner
plate is analyzed to avoid the oscillations due to the strike. It should be noted that
the magnitude of the peaks varies with the force applied to the hammer struck.

5.1.1 Comparing outer and inner plate

(a) Outer plate (b) Inner plate

Figure 5.1: The spectra analysis of the force measured on outer and inner plate
without models, when striking the outer plate in Y-direction.

Figure 5.1 shows the spectra analysis of the force measured on outer and inner plates
when striking the outer plate in the Y-direction. By comparing these two figures,
one can establish the eigenfrequencies of the two plates. The comparison is without
the models.

In Figure 5.1, dominant peaks at 6Hz and 11Hz can be seen. The larger mass of
the outer plate causes the eigenfrequency of the plate to occur at a lower frequency
than for the inner plate. From this point, only the Z-forces are presented.

5.1.2 Empty plate

To establish how the rig behaves by itself, a hammer test is performed on a rig
with the plate attached without the models, focusing on the outer plate. Some
trends can be noticed throughout the hammer test for the empty plate. Significant
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peaks in FZ at 7Hz and 24Hz are found to be common throughout the test. A peak
was sometimes visible at 2-3Hz when striking the hammer in X-and Y-direction.
When striking the plates, a peak at 11-12Hz was visible as well. Figure 5.2 shows
the spectral analysis of the hammer test of the empty rig, when striking the rig in
Y- and Z-direction, and the outer and inner plate when striking the outer plate in
Y-direction.

(a) Striking the rig in Y-direction (b) Striking the rig in Z-direction

(c) Spectral analysis of the forces at the
outer plate when striking the outer
plate in Y-direction.

(d) Spectral analysis of the forces at the
inner plate when striking the outer plate in
Y-direction.

Figure 5.2: Spectral analysis of the forces in Z-direction when striking the
experimental setup without models in Y- and Z-direction.

5.1.3 Small- and large-draft models

When analyzing the responses of the hammer test with the small- and large-draft
models attached, one can see from Figure 5.3 that the response tendencies are
similar to the empty plate. The main difference is that the responses shift towards
lower frequencies when increasing the weight. This is identified by noticing that
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the significant peaks are at 7Hz and 24Hz for the empty plate, then at about 5.5Hz
and 23Hz for the small-draft models, and then finally at 4.7Hz and 22Hz for the
large-draft models. Figure 5.3 shows the spectral analysis of the hammer test of
the rig with small- and large-draft models attached. The hammer struck the rig in
the Z-direction, and the outer plate when striking the outer plate in the
Y-direction.

(a) Spectral analysis of the forces
when striking the rig with small-
draft models in Z-direction

(b) Spectral analysis of the forces when
striking the rig with large-draft models in
Z-direction

(c) Spectral analysis of the forces
measured at the outer plate, when
striking the outer plate in Y-direction.
With small-draft models

(d) Spectral analysis of the forces measured
at the outer plate, when striking the outer
plate in Y-direction. With large-draft
models

Figure 5.3: Spectral analysis of the forces in Z-direction when striking the
experimental setup with small- and large-draft models in Y- and Z-direction.
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Chapter 6

Result and discussion

In this section, the results from the numerical analysis and the experiment are
presented, along with a comparison. These are presented case by case to identify
changes experienced when increasing the distance between the floaters and the
change with increased draft.

As specified earlier, gap distance b has the value of one width B = 0.075 m. This
means that 1b = 0.075 m, 1.5b = 11.25 m and 2b = 0.15 m.

6.1 Numerical analysis - WAMIT

The main focus of the numerical analysis is to study the added mass coefficient CA,
and the exciting forces, in addition to the damping coefficient CB, for short-crested
waves. The exciting forces are presented as the total excitation, Froude-Krylov
forces, and scattering forces. All analysis is run with the finest grid, ”G22”, which
has nine panels per centimeter. The period increment of the analysis is 1/40 second
for period 0-1 second, and 1/10 second for period 1-3 seconds.
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6.1.1 Added mass coefficient

6.1.1.1 Small-draft models

(a) The added mass coefficient CA11 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA11 plotted for long crested
waves and close to convergence.

Figure 6.1: The added mass coefficient in surge CA11 for the small-draft models
analysed in WAMIT. CA11 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.

Figure 6.1 shows the added mass coefficient CA11 for the small-draft models, and
are plotted for period T < 3 seconds. CA11 are plotted for three gap distance
configurations, in addition to the infinite gap distance that is denoted ’inf b’.

The small-draft models in surge motion experience sloshing for period T < 0.5
seconds. CA11 converges at period of 3 seconds. The distance 1b results in the
smallest value, while infinite distance results in the largest. With the increasing
distance, CA11 goes towards infinite distance. There is about 5% increase from
distance 1b to distance 2b, and 2% increase from 1.5b to 2b. This bears a resemblance
to the findings of B. Havel, H. Hangang, and R. Martinuzzi [12].

The sloshing peaks at period T < 0.5 seconds, decreases with increasing distance.
The floaters that are infinitely far away from each other are a reference. It can be
observed that the infinite distance only has one peak in the CA11 at around 0.55
second period.
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6.1.1.2 Large-draft models

(a) The added mass coefficient CA11 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA11 plotted for long crested
waves and close to convergence.

Figure 6.2: The added mass coefficient in surge CA11 for the large-draft models
analysed in WAMIT. CA11 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.

Figure 6.2 shows the CA11 for the large-draft models with four distance
configurations, including infinite distance. The same tendencies are shown in this
plot as for Figure 6.1, though the values are higher.

The sloshing peaks experienced below 0.5 second, and decreases with increasing
distance. The largest decrease is between 1.5b and 2b. The increase in CA11 is
around 10% when comparing 1b to 2b, and 3% when comparing 1.5b to 2b.

43



6.1.2 Damping coefficients

6.1.2.1 small-draft models

(a) The damping coefficient CB11 plotted for period
T ≤ 3 seconds.

(b) The damping coefficient CB11

plotted for period T ≤ 0.6 seconds.

Figure 6.3: The damping coefficient in surge CB11 for the small-draft models
analysed in WAMIT. CB11 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.

Figure 6.3 shows the damping coefficient CB11 for the small-draft models, and are
plotted for period T < 3 seconds. CB11 are plotted for three gap distance
configurations, in addition to the infinite gap distance that is denoted ”inf b”.

The damping for the small-draft models, as shown in Figure 6.3, converges quickly.
The system damping coefficient is fully damped at 0.7 second period. The sloshing
modes are evident for periods up to 0.4 second. The sloshing peaks decrease for
increasing distance after 0.3 second periods. The sloshing peaks for distance 2b
spikes for periods under 0.3 second. The maximum damping peak is found to be for
distance 1b for period 2.9 seconds, and has the value of CB11 = 7.1.
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6.1.2.2 Large-draft models

(a) The damping coefficient CB11 plotted for
period T ≤ 3 seconds.

(b) The damping coefficient CB11

plotted for period T ≤ 0.6 seconds.

Figure 6.4: The damping coefficient in surge CB11 for the large-draft models analysed
in WAMIT. CB11 is plotted with three gap distance configurations, in addition to
the infinite gap distance that is denoted ’inf b’.

Figure 6.4 shows the damping coefficient CB11 for the large-draft models, and are
plotted for period T < 3 seconds. CB11 are plotted for three gap distance
configurations, in addition to the infinite gap distance that is denoted ”inf b”.

The sloshing modes are evident for periods up to 0.5 seconds. These sloshing peaks
increase slightly for the increasing distance between the floater up to 0.30 seconds
periods. After 0.3 second periods, the sloshing peaks decrease for increasing distance.
The maximum damping coefficient is for distance 1D and period 0.3 second, and is
found to be CB11 = 14.1.

6.1.3 Exciting forces

Total excitation forces can be divided into Froude-Krylov forces and the scattering,
as explained in Section 2.4. In this section, surge motion for case 1 with small- and
large-draft models are presented and analyzed presented. Case 2 and case 3 can be
found in Appendix G.
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6.1.3.1 Case 1 - small-draft models

(a) Total excitation force coefficient, Froude-Krylov force
coefficient and the scattering force coefficient plotted.

(b) The corresponding phase.

Figure 6.5: Total excitation force coefficient, Froude-Krylov force coefficient, and
the scattering force coefficient plotted with the corresponding phase for period T ≤
3 seconds. The case presented is for case 1 gap distance with small-draft models,
H/b = 1.5/7.5.
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(a) Total excitation force coefficient, Froude-Krylov force
coefficient, and the scattering force coefficient plotted.

(b) The corresponding phase.

Figure 6.6: Total excitation force coefficient, Froude-Krylov force coefficient, and
the scattering force coefficient plotted with the corresponding phase for period T ≤
3 seconds. The case presented is case 1 with large-draft models, H/b = 3/7.5.

Figure 6.5 and Figure 6.6 shows the total excitation force coefficient, Froude-Krylov
force coefficient, and the scattering force coefficients, with the corresponding phase,
for the small- and large-draft models respectively. These are plotted for period T <
3 seconds.

The same trends are seen for both the small- and large-draft models in Figure 6.5
and Figure 6.6. The main difference is found in the magnitude. The peak at the
period of 0.4 second increases from 20 to 34, which is a 70% increase. Note that his
peak may be due to sloshing modes. The peak at the period of 0.6 seconds increases
from 8.5 to 10, a 17.6% increase. As there are no spikes at this peak, it seems to
be more reliable. The phase seems to mostly oscillate within the interval [−π

2
, π
2
],

but still spikes at times. These spikes may be due to some convergence error when
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conducting the numerical analysis in WAMIT.

6.2 Experimental results

This section presents and compares the experimental results to the numerical
results. The results are limited to presenting surge for increasing KC numbers, as
the experiment only tested hydrodynamic loads in surge. For small KC numbers,
such as KC ≤ 4, the added mass is expected to be relatively unaffected by the
vortex shedding. While the KC numbers increase, it is likely that added mass,
damping, and force component F ω increases as well. As the KC number increases,
the experimental values of the hydrodynamic forces are expected to increase faster
than the numerical estimation. This may be due to the difference in real and
perfect fluid used for experimental and numerical investigation, respectfully. This
is investigated in the following section.

The forces are measured at the outer and inner plate and made nondimensional, as
explained in Section 2.5. The added mass and drag coefficients, CA and CB, are
presented for the outer and inner plates and the sum of the outer and inner plates.
When analysing the force, F ω

I and F ω
O , along with the sum F ω

S , are the primary
focus. The sum F ω

S of the outer and inner plate, is accurate to compare with the
numerical analysis.

Figure 6.7 shows the force components F ω for cases 1 and 3 for the small- and
large-draft models, and are plotted for KC ≤ 16. To get an understanding of the
magnitude of the forces that are to be analyzed in this section, cases 1 and 3 are
presented for the small- and large-draft models in Figure 6.7. The largest force is
measured at case 3 with the small- and large-draft models.

From Figure 6.7, one can see that the measurements are scattered at KC < 5 for
the small-draft models. An investigation studying whether or not the boundary
layer causes the scatter follows. At page 236 of Sea loads on ships and offshore
structures by O.M. Faltinsen, there is an expression to estimate the boundary layer
thickness [18]. The point of consideration is U0(x)e

−(ω/(2ν))1/2y = 0.01U0(x). This
corresponds to (ω/(2ν))1/2y = 4.6. With ν = 10−6m2s−1 and T = 1 second, the
thickness becomes

y =
4.6√

ω
2ν

=
4.6√

2π
2·10−6

= 2.6mm. (6.1)

The boundary layer thickness becomes 2.6 mm. The smallest models of 1.5 cm is
well outside the boundary thickness. The scatter may be due to noise. Due to the
sensitivity of the small-draft models, all measurements for KC < 5 are discarded.
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(a) Case 1 small, H/b = 1.5/7.5 (b) Case 1 large, H/b = 3/7.5

(c) Case 3 small, H/b = 1.5/15 (d) Case 3 large, H/b = 3/15

Figure 6.7: the force components F ω for cases 1 and 3 for the small- and large-draft
models, and are plotted for KC ≤ 16.

6.2.1 Added mass and drag coefficients

In this section, the added mass coefficients CA and drag coefficients CD from the
experiment are discussed, and compared with the numerical added mass coefficient
CA11 . CA11 for the small-draft are plotted for KC ≥ 5 in Figure 6.8, while plotted
for KC ≤ 16 in Appendix I
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6.2.1.1 Small-draft models

(a) Case 1 with small-draft models, H/b = 1.5/7.5

(b) Case 2 with small-draft models, H/b = 1.5/11.25

(c) Case 3 with small-draft models, H/b = 1.5/15

Figure 6.8: The added mass CA and drag coefficient CD of the small-draft models
attached to the outer and inner plate, measuring CA,O and CA,I plate. The sum
CA,S compared to CA11 from WAMIT.

50



6.2.1.2 Large-draft models

(a) Case 1 with large-draft models, H/b = 3/7.5

(b) Case 2 with large-draft models, H/b = 3/11.25

(c) Case 3 with large-draft models, H/b = 3/15

Figure 6.9: The added mass CA and drag coefficient CD of the small-draft models
attached to the outer and inner plate, measuring CA,O and CA,I . The sum CA,S is
compared to CA11 from WAMIT.
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Figure 6.8 and Figure 6.9 show the added mass CA and drag coefficient CD of the
small- and large-draft models, respectively, and are plotted for KC ≤ 16. The models
are attached to the outer and inner plates measuring CA,O and CA,I . The sum CA,S

is compared to CA11 from WAMIT.

In Figure 6.8, all values for KC < 5 are removed due to noise at low KC numbers for
small-draft models. The added mass coefficient CA,S should converge towards the
numerical estimated value CA11 for KC = 0, which it seems to do. The measured
drag coefficient should go to zero for KC = 0, as there is no drag when there is no
velocity. From Figure 6.8, it can be observed that a fitted line of CD,S seems to
approach zero for KC = 0.

By comparing the hydrodynamic forces of the small-draft models on the outer and
inner plate, one can notice that CA,O and CA,I differ more for case 3 than for cases
1 and 2. CA,O and CA,I is quite similar at KC = 16 for case 1, while they differ in
cases 2 and 3. This indicates that the difference of CA,O and CA,I increases with
increased KC number. In Figure 6.8, it can be observed that for KC = 16, CA,S and
CD,S are about 0.8 and 0.78 respectively for case 1. Both CA,S and CD,S increases
to about 0.82 for case 2 and 0.83 for case 3.

Figure 6.9 shows that the experimental added mass coefficient CA converges slowly
towards the numerical value for CA at KC = 0. The draft coefficient CD is
consistently lower than CA at a given KC number. CD converges to 0 when KC =
0, which is to be expected as there is no drag when there is no velocity. All cases
have a small spike in CD at KC = 2, which seems to be caused by noise. The
difference between CA,S and CD,S is more distinct for the large-draft models, than
for the small. This may be because the small-draft models are more sensitive to
noise than the large ones. The damping increases more for the large-draft models
with increasing KC number than for the small-draft models.

At KC = 16, it is shown that CA,S and CD,S are about 1.1 and 0.91, respectively, for
case 1. Both CA,S and CD,S increase to about 1.14 and 0.99 for case 2, and to 1.18
and 1.15 for case 3, respectively. The increase in value when increasing distance is
more noticeable for the large-draft models. The increase in hydrodynamic forces is
to be expected, as discussed in Section 1.2.

If one were to conduct this experiment for KC numbers above 16, one could expect
to see some different trends than for KC leq 16. As discussed in Section 1.2, Garbis
H. Keulegan and Lloyd H. Carpenter found that the drag coefficient Cd increased
to an unusually high value at low KC numbers up to 10, and then rapidly decreased
before gradually decreasing with increasing KC number. Considering this finding, it
may also be so for the catamaran-shaped floaters. Based on Keulegan and Carpenter
one should see that the trend was the same for catamarans, if higher KC numbers
were tested. As this thesis was limited to a maximum KC of 16, one could suspect
that the drag coefficient has not yet reached its peak. This would be interesting to
investigate in a separate study.
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6.2.2 Higher ω-forces

6.2.2.1 Small-draft models

(a) Case 1 with small-draft models, H/b = 1.5/7.5

(b) Case 2 with small-draft models, H/b = 1.5/11.25

(c) Case 3 with small-draft models, H/b = 1.5/15

Figure 6.10: The force components of the outer and inner module summed is
presented. As a comparison, the numerical value from WAMIT is plotted, where
CA is converted to the linearization for KC numbers in this thesis. This is cases 1,
2, and 3 with the small-draft models.
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6.2.2.2 Large-draft models

(a) Case 1 with large-draft models, H/b = 3/7.5

(b) Case 2 with large-draft models, H/b = 3/11.25

(c) Case 3 with large-draft models, H/b = 3/15

Figure 6.11: The force components of the outer and inner module summed is
presented. As a comparison, the numerical value from WAMIT is plotted, where
CA is converted to the linearization for KC numbers in this thesis. This is cases 1,
2, and 3 with the large-draft models.
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Figure 6.10 and Figure 6.11 shows the force components F ω
S of the small- and

large-draft models, respectively. These are plotted for KC ≤ 16. The added mass
coefficient CA11 from numerical analysis in WAMIT is made dimensionless as
described in Equation 2.31.

In Figure 6.10, one can see spikes for KC < 5. The same trend is observed in
the analysis of the summed added mass coefficient from the experiment compared
in Figure 6.8. These spikes may be due to noise, and should be ignored. When
ignoring measurement for the F 1ω

S for KC < 5, one can see that the force goes
toward zero for KC = 0. This is to be expected, as there is no hydrodynamic force
if there is no velocity.

From the Hammer test in Section 5.1, it was found that the eigenfrequency for the
large-draft models included 4-5Hz. This results in the discard of the non-dimensional
force of 4ω and 5ω, causing F 4ω

S and F 5ω
S to be discarded when analyzing the large-

draft models. From Figure 6.11 one can see that the F 1ω
S is dominant for the

large-draft models, as for the small-draft models in Figure 6.10.

The maximum F 1ω
S is at KC = 16. For the small-draft model, the maximum value

is 0.8, 0.85 and 0.86 for cases 1, case 2, and case 3. This is an increase in F 1ω
S with

about 9% from case 1 to case 3. The maximum value of F 1ω
S with large-draft models

are 1.0, 1.07 and 1.13 for case 1, case 2, and case 3. This is an increase of 7% from
case 1 to case 2, and 13% from case 1 to case 3.

Figure 6.10 and Figure 6.11 shows that F 1ω correlates with the numerical value,
and diverges at KC ≥ 4. This is expected, as the model is more affected by the
vortex shedding for higher KC numbers. Through the numerical and experimental
investigation, there is a trend of the hydrodynamic forces increasing with the
increased gap distance. This may be due to the change in wake dynamics when
changing the gap distance, as discussed Section 1.2 [12].

P.G. Hals did his thesis on the square- and diamond-shaped cylinders in oscillatory
fluid flow. In his thesis, he investigated, amongst other topics, how the
hydrodynamic forces were affected by different gap distances between the models.
He found that the hydrodynamic forces increased with increased gap distance, and
that the damping dominated the added mass for higher KC values, supporting this
finding [27]. As for the experiment studying the square-shaped cylinders, as
summarized in Section 3.2.3, there are some correlations in the found trends. As
for P. G. Hals [27] and K. Mikkelsen [22], it is found that the hydrodynamic forces
increase with increased KC number, where the KC numbers range from 1-16 for
the catamarans and 1-21 for the square-shaped cylinders. In all cases, the
hydrodynamic forces were found to increase with increased gap distance. While
the increased draft of the square-shaped cylinders was found to have little effect,
the draft increase affected the magnitudes of the hydrodynamic forces for the
catamaran shaped-models.
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6.3 Additional notes

In this section, additional notes that highlight important considerations when up-
scaling are presented.

6.3.1 Full scale

The model is not significantly affected by vortex shedding at small KC numbers,
if affected at all. The vortex shedding dominates for large KC numbers, and the
added mass and damping increase.

Whether or not the Reynolds number is within the turbulent flow regime can be
used to check how accurate the experimental results are for the full-scale structure in
turbulent flow. The flow is turbulent if the Reynolds number is within order O(104).
The crossover between laminar and turbulent flow exhibits a gradual transition
between the phases, rather than strict demarcations. This leaves some Reynolds
numbers to be in-between the phases. One should also note that the separation
point of the vortices is fixed at the sharp edges of a box.

The Reynolds number of the models can be calculated by using the relation in
Equation 2.5

Re =
UmaxB

ν
=

ωAB

ν
=

KCωB

2π

B

ν
=

KCB2

2π νT
. (6.2)

Using ν = 10−6, T = 1 s, B = 0.075m and KC = 1, 4 10 and 16, gives us model
scale value

Re =
1 · 0.0752

2π · 10−6 · 1
= 89.5,

Re =
4 · 0.0752

2π · 10−6 · 1
= 358

Re =
10 · 0.0752

2π · 10−6 · 1
= 895,

Re =
16 · 0.0752

2π · 10−6 · 1
= 1432.

(6.3)

Scaling to the full-scale structure by using scaling factor λ = 10. The full-scale
Reynolds numbers are found as

Re = 89.5 · 101.5 = 0.28 · 104,
Re = 358 · 101.5 = 1.1 · 104,
Re = 895 · 101.5 = 2.8 · 104,
Re = 1432 · 101.5 = 4.5 · 104.

(6.4)

For KC numbers ≤ 4, the Reynolds number is too low for the free shear layers due to
separated flow, to be characterized as fully turbulent characteristics. However, the
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viscous effects are negligible in this KC range, and hold limited practical interest.
KC numbers < 10 correspond to Reynolds numbers on the order of 104, indicating
well-developed turbulent free shear layers. Consequently, results obtained for these
KC numbers are likely representative of full-scale conditions.

In the KC number range between 4 and 10, the Reynolds numbers do not reach
sufficiently high values to make the same assertion, but these KC numbers may still
be relevant for practical applications. It would be interesting to conduct a separate
study to investigate larger models.

This analysis of the Reynolds number indicates that KC≥ 4 is a good indication that
the experimental results are somewhat accurate for the full-scale model. The full-
scale structure KC ≤ 3 is within the border area between the laminar and turbulent
flow. It seems that the experimental values for ≤ 3 are not as valid for the full-scale
structure, and one could use the numerical estimated values instead.
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Chapter 7

Conclusion and further work

The numerical and experimental studies presented focus on investigating
hydrodynamic loads affecting catamaran-shaped floaters. In this section, key
findings and conclusions are drawn from the study.

7.1 Conclusions

The comprehensive numerical and experimental conducted in this study provided
strong results showing the hydrodynamic interaction between the
catamaran-shaped floaters. Specifically, the investigation explored the effect of two
factors: the increased gap distance between the catamaran models and the
increased draft.

The numerical estimated added mass coefficients CA for long-crested waves, analyzed
in WAMIT, were found to be satisfying when compared to the standards of DNV-
RP-C205. In the analysis of the hydrodynamic forces acting on the catamaran
models, the short-crested waves showed indications of being affected by sloshing.

Furthermore, an interesting finding was that the added mass coefficients CA

converged towards the numerical estimated value in surge as the KC number
approached KC = 0. At this point, when KC = 0, the drag coefficient CD was
found to approach zero. These findings supported the validity and accuracy of
both the experiment and numerical investigation.

Another noteworthy discovery was that the hydrodynamic forces CA, CB, CD,
Fexc, and F ω increased with increasing KC number within the range KC = [0, 16].
This was found to be due to models experiencing the effect of vortex shedding for
increasing KC numbers. Additionally, it was observed that higher harmonic
components were relatively small compared to F 1ω

S . The hydrodynamic forces in
surge increased with increasing gap distance in the range b = [7.5, 11.25, 15], as
investigated in case 1, case 2, and case 3. This was to be expected since the wake
dynamics changed with varying gap distances between bodies.

For higher KC numbers, it was found that the experimental hydrodynamic forces
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increased at a faster rate than the numerical values. This difference could be
expected due to the physical differences in real fluid and perfect fluid used in the
experimental and numerical investigation, respectively.

7.2 Further work

While working on the master’s thesis, several intriguing subjects seem promising for
further investigation. In this section, some interesting avenues are outlined. These
can help expand the understanding of the hydrodynamic loads of catamarans:

• Redo this study with larger models. By increasing the model by a factor
of two, the Reynolds number increases by a factor of 3. This would result
in well-turbulent free shear layers for KC in the range of 1 to 16. While it
would require a slightly larger rig and basin, it would provide an advantage by
reducing experimental uncertainties. One problem with increasing the plates
and models, is that the mass increases, and the eigenfrequency moves towards
lower frequencies. One solution to this is to reduce the weight. This could be
accomplished to some extent by crafting the models of a different material.

• It would be enlightening to conduct a numerical and experimental study
regarding higher KC numbers, using CFD as well. Increasing the range of
KC numbers, can be done by increasing the size of the rig and basin.

• To build upon the scope of this master, it would be interesting to conduct a
CFD study of the cases studied in this thesis.

• Conduct a numerical and experimental investigation regarding
catamaran-shaped floaters in a staggered arrangement. It would be
interesting to compare the catamarans in a staggered arrangement to the
findings of Zdravkovich [5] and co-student Kristian Mikkelsen [22].

• Conduct a model experiment investigating the motion of a floating solar
island in waves for tandem flow and staggered arrangements. This could be
done by investigating the solar panels connected as a train formation or a
2x4 formation. Studying the hydrodynamic forces, excitation forces, and
phenomena such as sloshing would be interesting.
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Appendix A

Literature review

A.1 Pannell, Griffiths and Coales circular wire

experiment

Figure A.1: The results from Pannell, Griffiths and Coales’s experiment regarding
combined drag for two wires. The distance between the wires increased from starting
point where the wires was in contact. The starting Reynolds number was 9.72 · 103
[6].
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A.2 Biermann and Herrnstein wind tunnel

experiment

Figure A.2: The results from Biermann and Herrnestein’s experiment regarding drag
interference of two cylinders in an wind tunnel combined drag for two wires [7].
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A.3 Hori’s experiment on the pressure

disturbance around two cylinders

Figure A.3: The results from Hori’s experiment result from drag interference of two
cylinders in an wind tunnel in polar coordinates [8].
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A.4 Garbis H. Keulegan and Lloyd H.

Carpenter’s figure for drag coefficient form

their experimental and numerical study of

forces on cylinders and plated in an

oscillating fluid

Figure A.4: The variation of drag coefficient of cylinders investigated by Garbis H.
Keulegan and Lloyd H. Carpenter in 1958 [9].
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A.5 Onsrud’s Master thesis model

Figure A.5: The model used in Onsrud’s Master Thesis. This was an simplified
model of the Moss Maritime concept [2], and the scale was 1:20.
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A.6 Fredrik Mentzoni’s added mass and

damping coefficients form his

paper:numerical modeling of perforated

plates in oscillating flow

(a) The added mass coefficients form CFD simulations presented over
five periods.

(b) The damping coefficients form CFD simulations presented over five
periods.

Figure A.6: The added mass coefficient A/A0 and damping coefficient B/(ωA0) from
CFD simulations for five periods [14].
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Appendix B

The calculation of exciting forces
of a submerged body

B.1 Foude Krylov force

Figure B.1: Forces integrated over the sides of an catamaran pair.

We start by analysing a submerged catamaran floater pair, as shown in Figure B.1.
The distance is equal from catamarans to origo, for both catamarans. The total
distance between the floaters are B. x1 = −x4 and x2 = −x3 The force acting on
the side of the model can be calculated as

F =

∫
S

ρA n⃗dS.

The sum of forces of one catamaran model is

F =
4∑

i=1

Fi n⃗ = F1 − F2 + F3 − F4

The dynamic pressure is specified in WAMIT [25] as

PD = ρg ζa e
kz cos(ωt− kx).
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Integrating over height, from waterline to submergence -H for Fi

Fi =

∫ 0

−H

LρgζA ekz cos(ωt− kxi)dxdz = LρgζA cos(ωt− kxi)

∫ 0

−H

ekzdz

Fi =
LρgζA

k
(1− ekH) cos(ωt− kxi)

Fi = F0 cos(ωt− kxi)

The sum of forces of one catamaran model can now be expressed as

FFK = F0 cos(ωt− kx1)− F0 cos(ωt− kx2) + F0 cos(ωt− kx3)− F0 cos(ωt− kx4)

We move the F0 term to the left hand side, and set X1 = −X3 and x2=−x4. We
now have

Fi

FFK

= cos(ωt+ kx4)− cos(ωt+ kx3) + cos(ωt− kx3)− cos(ωt− kx4)

Fi

FFK

= cos(ωt− kx3)− cos(ωt+ kx3) + cos(ωt+ kx4)− cos(ωt− kx4)

Using

2 cosA cosB = cos(A+B) + cos(A−B)

2 sinA sinB = cos(A−B)− cos(A+B)

We can now express FFK/F0 as

Fi

FFK

= 2 sin(ωt) sin(kx3)− 2 sin(ωt) sin(kx3)

Using the relation x4 = x3 + B, and we get

Fi

FFK

= 2 sin(ωt)
[
sin(kx3)− sin(kx3 + kB)

]

B.2 Diffraction force

The diffraction force can be found form the relation

Fexc = FFK + Fdiff

Fdiff = Fexc − FFK

The total excitation Fexc is on complex form, so we need to convert this to complex
form. Using rule z = r cosΦ + ir sinΦ

Fdiff = r eiφ − FFK eiφFFK

Fdiff = r cosφexc + ir sinφexc − FFK cosφexc − iFFK sinφFK

Fdiff =
√
(ℜ)2 + (ℑ)2

Fdiff =

√(
r cos(ϕexc)− FFK cos(ϕFFK

)
)2

+
(
r sin(ϕexc)− FFK sin(ϕFFK

)
)2
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and

ϕ = arctan
(√ℜ

ℑ

)
ϕ = arctan

(√ r cos(ϕexc)− FFK cos(ϕFFK
)

r · sin(ϕexc)− FFK · sin(ϕFFK
)

)

where
ℑ
(
ir sin(ϕe)− iFFK sin(ϕFFK

)
)
= r sin(ϕe)− FFK sin(ϕFFK

)
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Appendix C

A visualization of grids used in
WAMIT

C.1 Grid refinement G2, large-draft model

Figure C.1: A visualization of the WAMIT grid input before mirroring about the x-
and y-axis. Course grid, 1 panel per cm. Large-draft model with length x breadth
x height = 20cm x 7.5cm x 3cm after mirroring
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C.2 Grid refinement G4, large-draft model

Figure C.2: A visualization of the WAMIT grid input before mirroring about the x-
and y-axis. Course grid, 2 panel per cm. Large-draft model with length x breadth
x height = 20cm x 7.5cm x 3cm after mirroring

C.3 Grid refinement G8, large-draft model

Figure C.3: A visualization of the WAMIT grid input before mirroring about the x-
and y-axis. Course grid, 3 panel per cm. Large-draft model with length x breadth
x height = 20cm x 7.5cm x 3cm after mirroring
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C.4 Grid refinement G15, large-draft model

Figure C.4: A visualization of the WAMIT grid input before mirroring about the x-
and y-axis. Course grid, 6 panel per cm. Large-draft model with length x breadth
x height = 20cm x 7.5cm x 3cm after mirroring

C.5 Grid refinement G22, large-draft model

Figure C.5: A visualization of the WAMIT grid input before mirroring about the x-
and y-axis. Course grid, 9 panel per cm. Large-draft model with length x breadth
x height = 20cm x 7.5cm x 3cm after mirroring
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Appendix D

Using DNV-RP-C205 to
calculating added mass coefficient

Estimating the analytical added mass coefficient, CA,DNV , for two-dimensional
bodies by using DNV-RP-C205 appendix D for rectangle plates, which is shown in
Figure D.1. Applying strip theory to one of the floaters makes it possible to use
this approach. The strip of the floater that is used, is shown in Figure D.2. After
estimating the CA,2D, one can estimate the CA,3D by correcting for the
3-dimensional effects. This correction can be done by using DNV-RP-C205
appendix D for right circular cylinder.

Figure D.1: Table of analytical added mass coefficient for two-dimensional plate
found in DNV-RP-C205 appendix D [26]
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(a) One floater and the strip (b) The strip that acts
as the plate

Figure D.2: One floater and the strip used for estimating DNV-RP-C205’s analytical
added mass coefficient

D.1 Calculation procedure

The procedure for calculating the analytical added CA,DNV , starts by mirroring
the draft H about the free surface. The total mirrored draft is 2H. The short,
mirrored side of the plate is divided by the long side, resulting in the relation shown
in Equation D.1. The relation produces a value that is interpolated and used to
obtain CA,DNV . Next is to correct for the normalization used by DNV, and apply a
normalization that is consistent: ρπab.

Small

2a

2b
=

2 · 0.015
0.075

= 0.4. (D.1)

Interpolating

CA,DNV = 1.98 +
1.70− 1.98

0.5− 0.2
(0.4− 0.2) = 1.793. (D.2)

Converting to our way of normalization

FDNV = CA,DNV · ρπa2 = CA,DNV · ρπ(a · b)a
b
= (CA,DNV

a

b
) · (ρπa · b)

CA,2D = CA,DNV · a
b
= 1.793 · 0.4 = 0.717

(D.3)

Large

2a

2b
=

2 · 0.03
0.075

= 0.8. (D.4)
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Interpolating

CA,DNV = 1.70 +
1.51− 1.70

1− 0.5
(0.8− 0.5) = 1.586. (D.5)

Converting to our way of normalization

FDNV = CA,DNV · ρπa2 = CA,DNV · ρπ(a · b)a
b
= (CA,DNV

a

b
) · (ρπa · b)

CA,2D = CA,DNV · a
b
= 1.586 · 0.8 = 1.269

(D.6)

D.2 Correcting for 3-dimensional effects

Small

CA,DNV,3D =
b

2a
=

0.075

2 · 0.015
= 2.5 ⇒ Ca = 0.78 (D.7)

Correcting for 3D-effects

CA,3D = CA,2D · CA,DNV,3D = 0.717 · 0.78 = 0.559 (D.8)

Large

CA,DNV,3D =
b

2a
=

0.075

2 · 0.03
= 1.25 (D.9)

Interpolating

CA,DNV = 0.78 +
0.62− 0.78

1.2− 2.5
(1.25− 2.5) = 0.626. (D.10)

Correcting for 3D-effects

CA,3D = CA,2D · CA,DNV,3D = 1.269 · 0.626 = 0.794 (D.11)

D.3 Summary

From the experiments it is expected that the estimation of the added mass coefficient
should be somewhat larger than the values obtained from WAMIT. The added
mass coefficients form WAMIT are found to be around 0.45-0.5 for the small-draft
model and 0.7-0.8 for the large-draft model. The DNV estimation is somewhat
over-predicting in general, so this verifies the numerical estimations to some extent.
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Appendix E

Added mass coefficients in 6
Degrees Of Freedom (DOF)

E.1 Small-draft models

E.1.1 The added mass coefficients in surge, CA11

(a) The added mass coefficient CA11 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA11 plotted for long crested
waves and close to convergence.

Figure E.1: The added mass coefficient in surge CA11 for the small-draft models
analysed in WAMIT. CA11 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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E.1.2 The added mass coefficient in sway, CA22

(a) The added mass coefficient CA22 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA22 plotted for long crested
waves and close to convergence.

Figure E.2: The added mass coefficient in sway CA22 for the small-draft models
analysed in WAMIT. CA22 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.

E.1.3 The added mass coefficient in heave, CA33

(a) The added mass coefficient CA33 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA33 plotted for long crested
waves and close to convergence.

Figure E.3: The added mass coefficient in heave CA33 for the small-draft models
analysed in WAMIT. CA33 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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E.1.4 The added mass coefficient in roll, CA44

(a) The added mass coefficient CA44 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA44 plotted for long crested
waves and close to convergence.

Figure E.4: The added mass coefficient in roll CA44 for the small-draft models
analysed in WAMIT. CA44 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.

E.1.5 The added mass coefficient in pitch, CA55

(a) The added mass coefficient CA55 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA55 plotted for long crested
waves and close to convergence.

Figure E.5: The added mass coefficient in pitch CA55 for the small-draft models
analysed in WAMIT. CA55 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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E.1.6 The added mass coefficient in yaw, CA66

(a) The added mass coefficient CA66 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA66 plotted for long crested
waves and close to convergence.

Figure E.6: The added mass coefficient in yaw CA66 for the small-draft models
analysed in WAMIT. CA66 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.

E.2 Large-draft models

E.2.1 The added mass coefficients in surge, CA11

(a) The added mass coefficient CA11 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA11 plotted for long crested
waves and close to convergence.

Figure E.7: The added mass coefficient in surge CA11 for the large-draft models
analysed in WAMIT. CA11 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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E.2.2 The added mass coefficient in sway, CA22

(a) The added mass coefficient CA22 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA22 plotted for long crested
waves and close to convergence.

Figure E.8: The added mass coefficient in sway CA22 for the large-draft models
analysed in WAMIT. CA22 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.

E.2.3 The added mass coefficient in heave, CA33

(a) The added mass coefficient CA33 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA33 plotted for long crested
waves and close to convergence.

Figure E.9: The added mass coefficient in heave CA33 for the large-draft models
analysed in WAMIT. CA33 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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E.2.4 The added mass coefficient in roll, CA44

(a) The added mass coefficient CA44 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA44 plotted for long crested
waves and close to convergence.

Figure E.10: The added mass coefficient in roll CA44 for the large-draft models
analysed in WAMIT. CA44 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.

E.2.5 The added mass coefficient in pitch, CA55

(a) The added mass coefficient CA55 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA55 plotted for long crested
waves and close to convergence.

Figure E.11: The added mass coefficient in pitch CA55 for the large-draft models
analysed in WAMIT. CA55 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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E.2.6 The added mass coefficient in yaw, CA66

(a) The added mass coefficient CA66 plotted for period
T ≤ 3 seconds.

(b) The added mass coefficient
CA66 plotted for long crested
waves and close to convergence.

Figure E.12: The added mass coefficient in yaw CA66 for the large-draft models
analysed in WAMIT. CA66 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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Appendix F

Damping coefficients in 6 Degrees
Of Freedom (DOF)

F.1 Small-draft models

F.1.1 The damping coefficients in surge, CB11

(a) The damping coefficient CB11 plotted for period
T ≤ 3 seconds.

(b) The damping coefficient CB11

plotted for long crested waves and
close to convergence.

Figure F.1: The damping coefficient in surge CB11 for the small-draft models
analysed in WAMIT. CB11 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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F.1.2 The damping coefficient in sway, CB22

(a) The damping coefficient CB22 plotted for
period T ≤ 3 seconds.

(b) The damping coefficient CB22

plotted for long crested waves and close
to convergence.

Figure F.2: The damping coefficient in sway CB22 for the small-draft models analysed
in WAMIT. CB22 is plotted with three gap distance configurations, in addition to
the infinite gap distance that is denoted ’inf b’.

F.1.3 The damping coefficient in heave, CB33

(a) The damping coefficient CB33 plotted for period
T ≤ 3 seconds.

(b) The damping coefficient CB33

plotted for long crested waves and
close to convergence.

Figure F.3: The damping coefficient in heave CB33 for the small-draft models
analysed in WAMIT. CB33 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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F.1.4 The damping coefficient in roll, CB44

(a) The damping coefficient CB44 plotted for period
T ≤ 3 seconds.

(b) The damping coefficient CB44

plotted for long crested waves and
close to convergence.

Figure F.4: The damping coefficient in roll CB44 for the small-draft models analysed
in WAMIT. CB44 is plotted with three gap distance configurations, in addition to
the infinite gap distance that is denoted ’inf b’.

F.1.5 The damping coefficient in pitch, CB55

(a) The damping coefficient CB55 plotted for period
T ≤ 3 seconds.

(b) The damping coefficient CB55

plotted for long crested waves and
close to convergence.

Figure F.5: The damping coefficient in pitch CB55 for the small-draft models
analysed in WAMIT. CB55 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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F.1.6 The damping coefficient in yaw, CB66

(a) The damping coefficient CB66 plotted for
period T ≤ 3 seconds.

(b) The damping coefficient CB66

plotted for long crested waves and close
to convergence.

Figure F.6: The damping coefficient in yaw CB66 for the small-draft models analysed
in WAMIT. CB66 is plotted with three gap distance configurations, in addition to
the infinite gap distance that is denoted ’inf b’.

F.2 Large-draft models

F.2.1 The damping coefficients in surge, CB11

(a) The damping coefficient CB11 plotted for
period T ≤ 3 seconds.

(b) The damping coefficient CB11

plotted for long crested waves and close
to convergence.

Figure F.7: The damping coefficient in surge CB11 for the large-draft models
analysed in WAMIT. CB11 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.

88



F.2.2 The damping coefficient in sway, CB22

(a) The damping coefficient CB22 plotted for
period T ≤ 3 seconds.

(b) The damping coefficient CB22 plotted for
long crested waves and close to convergence.

Figure F.8: The damping coefficient in sway CB22 for the large-draft models analysed
in WAMIT. CB22 is plotted with three gap distance configurations, in addition to
the infinite gap distance that is denoted ’inf b’.

F.2.3 The damping coefficient in heave, CB33

(a) The damping coefficient CB33 plotted for
period T ≤ 3 seconds.

(b) The damping coefficient CB33 plotted
for long crested waves and close to
convergence.

Figure F.9: The damping coefficient in heave CB33 for the large-draft models
analysed in WAMIT. CB33 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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F.2.4 The damping coefficient in roll, CB44

(a) The damping coefficient CB44 plotted for
period T ≤ 3 seconds.

(b) The damping coefficient CB44 plotted
for long crested waves and close to
convergence.

Figure F.10: The damping coefficient in roll CB44 for the large-draft models analysed
in WAMIT. CB44 is plotted with three gap distance configurations, in addition to
the infinite gap distance that is denoted ’inf b’.

F.2.5 The damping coefficient in pitch, CB55

(a) The damping coefficient CB55 plotted for
period T ≤ 3 seconds.

(b) The damping coefficient CB55

plotted for long crested waves and close
to convergence.

Figure F.11: The damping coefficient in pitch CB55 for the large-draft models
analysed in WAMIT. CB55 is plotted with three gap distance configurations, in
addition to the infinite gap distance that is denoted ’inf b’.
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F.2.6 The damping coefficient in yaw, CB66

(a) The damping coefficient CB66 plotted for
period T ≤ 3 seconds.

(b) The damping coefficient CB66

plotted for long crested waves and close
to convergence.

Figure F.12: The damping coefficient in yaw CB66 for the large-draft models analysed
in WAMIT. CB66 is plotted with three gap distance configurations, in addition to
the infinite gap distance that is denoted ’inf b’.
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Appendix G

Exciting forces

G.1 Small-draft models
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G.1.1 Case 1

(a) Total excitation force coefficient, Froude-Krylov force
coefficient and the scattering force coefficient plotted.

(b) The corresponding phase.

Figure G.1: Total excitation force coefficient, Froude-Krylov force coefficient and
the scattering force coefficient plotted with the corresponding phase for period T ≤
3 seconds. The case presented is for case 1 gap distance with small-draft models,
H/b = 1.5/7.5.
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G.1.2 Case 2

(a) Total excitation force coefficient, Froude-Krylov force
coefficient and the scattering force coefficient plotted.

(b) The corresponding phase.

Figure G.2: Total excitation force coefficient, Froude-Krylov force coefficient and
the scattering force coefficient plotted with the corresponding phase for period T ≤
3 seconds. The case presented is for case 2 gap distance with small-draft models,
H/b = 1.5/11.25.
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G.1.3 Case 3

(a) Total excitation force coefficient, Froude-Krylov force
coefficient and the scattering force coefficient plotted.

(b) The corresponding phase.

Figure G.3: Total excitation force coefficient, Froude-Krylov force coefficient and
the scattering force coefficient plotted with the corresponding phase for period T ≤
3 seconds. The case presented is for case 3 gap distance with small-draft models,
H/b = 1.5/15.

95



G.2 Large-draft models

G.2.1 Case 1

(a) Total excitation force coefficient, Froude-Krylov force
coefficient and the scattering force coefficient plotted.

(b) The corresponding phase.

Figure G.4: Total excitation force coefficient, Froude-Krylov force coefficient and
the scattering force coefficient plotted with the corresponding phase for period T ≤
3 seconds. The case presented is for case 1 gap distance with large-draft models,
H/b = 3/7.5.
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G.2.2 Case 2

(a) Total excitation force coefficient, Froude-Krylov force
coefficient and the scattering force coefficient plotted.

(b) The corresponding phase.

Figure G.5: Total excitation force coefficient, Froude-Krylov force coefficient and
the scattering force coefficient plotted with the corresponding phase for period T ≤
3 seconds. The case presented is for case 2 gap distance with large-draft models,
H/b = 3/11.25.
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G.2.3 Case 3

(a) Total excitation force coefficient, Froude-Krylov force
coefficient and the scattering force coefficient plotted.

(b) The corresponding phase.

Figure G.6: Total excitation force coefficient, Froude-Krylov force coefficient and
the scattering force coefficient plotted with the corresponding phase for period T ≤
3 seconds. The case presented is for case 3 gap distance with large-draft models,
H/b = 3/15.
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Appendix H

Force component, Fωs with unit
Newton [N]

H.1 Case 1, small-draft models

Figure H.1: The force components F ω for case 1 for the small-draft models and are
plotted for KC ≤ 16. Case 1 small, H/b = 1.5/7.5.
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H.2 Case 1, large-draft models

Figure H.2: The force components F ω for case 1 for the large-draft models and are
plotted for KC ≤ 16. Case 1 large, H/b = 3/7.5.

H.3 Case 2, small-draft models

Figure H.3: The force components F ω for case 2 for the small-draft models and are
plotted for KC ≤ 16. Case 2 small, H/b = 1.5/11.25.
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H.4 Case 2, large-draft models

Figure H.4: The force components F ω for case 2 for the large-draft models and are
plotted for KC ≤ 16. Case 2 large, H/b = 3/11.25.

H.5 Case 3, small-draft models

Figure H.5: The force components F ω for case 3 for the small-draft models and are
plotted for KC ≤ 16. Case 3 small, H/b = 1.5/15.
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H.6 Case 3, large-draft models

Figure H.6: The force components F ω for case 3 for the large-draft models and are
plotted for KC ≤ 16. Case 3 large, H/b = 3/15.
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Appendix I

The added mass component CA
and the drag coefficient CD
measured with small-draft models,
plotted for KC = [1, 16]

I.1 Case 1

Figure I.1: Case 1 with small-draft models, H/b = 1.5/7.5 The added mass CA and
drag coefficient CD of the small-draft models attached to the outer and inner plate,
measuring CA,O and CA,I plate. The sum CA,S compared to CA11 from WAMIT.
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I.2 Case 2

Figure I.2: Case 2 with small-draft models, H/b = 1.5/11.5 The added mass CA and
drag coefficient CD of the small-draft models attached to the outer and inner plate,
measuring CA,O and CA,I plate. The sum CA,S compared to CA11 from WAMIT.

I.3 Case 3

Figure I.3: Case 3 with small-draft models, H/b = 1.5/15 The added mass CA and
drag coefficient CD of the small-draft models attached to the outer and inner plate,
measuring CA,O and CA,I plate. The sum CA,S compared to CA11 from WAMIT.
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Appendix J

Frequency spectra of the Hammer
test

J.1 Plates without models

J.1.1 Striking the tank in Y-direction

Figure J.1: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the tank in Y-direction.
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J.1.2 Striking the tank in Z-direction

Figure J.2: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the tank in Z-direction.

J.1.3 Striking the stronghold in X-direction

Figure J.3: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the stronghold in X-direction.
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J.1.4 Striking the stronghold in Y-direction

Figure J.4: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the stronghold in Y-direction.

J.1.5 Striking the stronghold in Z-direction

Figure J.5: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the stronghold in Z-direction.
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J.1.6 Striking the rig in X-direction

Figure J.6: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the rig in X-direction.

J.1.7 Striking the rig in Y-direction

Figure J.7: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the rig in Y-direction.
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J.1.8 Striking the rig in Z-direction

Figure J.8: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the rig in Z-direction.

J.1.9 Striking the inner plate in X-direction, measuring at
outer plate

Figure J.9: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the inner plate in X-direction.
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J.1.10 Striking the inner plate in X-direction, measuring at
inner plate

Figure J.10: Spectral analysis of the forces in Z-direction of the inner plate without
models, when striking the inner plate in X-direction.

J.1.11 Striking the inner plate in Y-direction, measuring at
outer plate

Figure J.11: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the inner plate in Y-direction.
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J.1.12 Striking the inner plate in Y-direction, measuring at
inner plate

Figure J.12: Spectral analysis of the forces in Z-direction of the inner plate without
models, when striking the inner plate in Y-direction.

J.1.13 Striking the outer plate in X-direction, measuring at
outer plate

Figure J.13: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the outer plate in X-direction.
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J.1.14 Striking the outer plate in X-direction, measuring at
inner plate

Figure J.14: Spectral analysis of the forces in Z-direction of the inner plate without
models, when striking the outer plate in X-direction.

J.1.15 Striking the outer plate in Y-direction, measuring at
outer plate

Figure J.15: Spectral analysis of the forces in Z-direction of the outer plate without
models, when striking the outer plate in Y-direction.
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J.1.16 Striking the outer plate in Y-direction, measuring at
inner plate

Figure J.16: Spectral analysis of the forces in Z-direction of the inner plate without
models, when striking the outer plate in Y-direction.
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J.2 Plates with small-draft models

J.2.1 Striking the tank in Y-direction

Figure J.17: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the tank in Y-direction.

J.2.2 Striking the tank in Z-direction

Figure J.18: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the tank in Z-direction.

114



J.2.3 Striking the stronghold in X-direction

Figure J.19: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the stronghold in X-direction.

J.2.4 Striking the stronghold in Y-direction

Figure J.20: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the stronghold in Y-direction.
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J.2.5 Striking the stronghold in Z-direction

Figure J.21: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the stronghold in Z-direction.

J.2.6 Striking the rig in X-direction

Figure J.22: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the rig in X-direction.
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J.2.7 Striking the rig in Y-direction

Figure J.23: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the rig in Y-direction.

J.2.8 Striking the rig in Z-direction

Figure J.24: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the rig in Z-direction.
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J.2.9 Striking the inner plate in X-direction, measuring at
outer plate

Figure J.25: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the inner plate in X-direction.

J.2.10 Striking the inner plate in X-direction, measuring at
inner plate

Figure J.26: Spectral analysis of the forces in Z-direction of the inner plate with
small-draft models, when striking the inner plate in X-direction.
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J.2.11 Striking the inner plate in Y-direction, measuring at
outer plate

Figure J.27: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the inner plate in Y-direction.

J.2.12 Striking the inner plate in Y-direction, measuring at
inner plate

Figure J.28: Spectral analysis of the forces in Z-direction of the inner plate with
small-draft models, when striking the inner plate in Y-direction.
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J.2.13 Striking the outer plate in X-direction, measuring at
outer plate

Figure J.29: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the outer plate in X-direction.

J.2.14 Striking the outer plate in X-direction, measuring at
inner plate

Figure J.30: Spectral analysis of the forces in Z-direction of the inner plate with
small-draft models, when striking the outer plate in X-direction.
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J.2.15 Striking the outer plate in Y-direction, measuring at
outer plate

Figure J.31: Spectral analysis of the forces in Z-direction of the outer plate with
small-draft models, when striking the outer plate in Y-direction.

J.2.16 Striking the outer plate in Y-direction, measuring at
inner plate

Figure J.32: Spectral analysis of the forces in Z-direction of the inner plate with
small-draft models, when striking the outer plate in Y-direction.
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J.3 Plates with large-draft models

J.3.1 Striking the tank in Y-direction

Figure J.33: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the tank in Y-direction.

J.3.2 Striking the tank in Z-direction

Figure J.34: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the tank in Z-direction.
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J.3.3 Striking the stronghold in X-direction

Figure J.35: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the stronghold in X-direction.

J.3.4 Striking the stronghold in Y-direction

Figure J.36: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the stronghold in Y-direction.
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J.3.5 Striking the stronghold in Z-direction

Figure J.37: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the stronghold in Z-direction.

J.3.6 Striking the rig in X-direction

Figure J.38: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the rig in X-direction.
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J.3.7 Striking the rig in Y-direction

Figure J.39: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the rig in Y-direction.

J.3.8 Striking the rig in Z-direction

Figure J.40: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the rig in Z-direction.
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J.3.9 Striking the inner plate in X-direction, measuring at
outer plate

Figure J.41: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the inner plate in X-direction.

J.3.10 Striking the inner plate in X-direction, measuring at
inner plate

Figure J.42: Spectral analysis of the forces in Z-direction of the inner plate with
large-draft models, when striking the inner plate in X-direction.
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J.3.11 Striking the inner plate in Y-direction, measuring at
outer plate

Figure J.43: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the inner plate in Y-direction.

J.3.12 Striking the inner plate in Y-direction, measuring at
inner plate

Figure J.44: Spectral analysis of the forces in Z-direction of the inner plate with
large-draft models, when striking the inner plate in Y-direction.
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J.3.13 Striking the outer plate in X-direction, measuring at
outer plate

Figure J.45: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the outer plate in X-direction.

J.3.14 Striking the outer plate in X-direction, measuring at
inner plate

Figure J.46: Spectral analysis of the forces in Z-direction of the inner plate with
large-draft models, when striking the outer plate in X-direction.
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J.3.15 Striking the outer plate in Y-direction, measuring at
outer plate

Figure J.47: Spectral analysis of the forces in Z-direction of the outer plate with
large-draft models, when striking the outer plate in Y-direction.

J.3.16 Striking the outer plate in Y-direction, measuring at
inner plate

Figure J.48: Spectral analysis of the forces in Z-direction of the inner plate with
large-draft models, when striking the outer plate in Y-direction.
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