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Preface

This thesis is the culmination of my five-year Master of Science degree in Marine Hydro-
dynamics in Marine Technology at the Department of Marine Technology (IMT) at the
Norwegian University of Science and Technology (NTNU).

The thesis examines the hydrodynamic interaction between square and diamond-shaped
cylinders in close proximity to each other in a forced oscillatory flow. It is highly ap-
plicable to both industry and research to study these effects due to the existing studies
and literature on the topic being sparse. The studies being conducted for the thesis are
relevant to multiple types of floating modular structures but especially toward the multi-
modular floating solar island concept developed by Moss Maritime and Equinor. This is
due to the prevalence of hydrodynamic loads and wake interaction between the pontoons
supporting the modules when exposed to waves. The importance of these studies is to
produce data on the expected loads on the pontoons from the hydrodynamic interaction,
which is essential for the development and longevity of the concept. Offshore solar energy
has the potential to utilize great areas without interfering with nature and infrastructure
and is therefore a crucial part of the world’s transition to greener energy.

This thesis and its studies are continuations of the work of several previous master’s
students. Additionally, some of the studies are done in collaboration with other master’s
students. The reader should have prior knowledge of hydrodynamics and general fluid
mechanics, as well as signal processing and data post-processing.

Petter Grudt Hals, Trondheim, June 11th, 2023
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Abstract

The present work studies the hydrodynamic loads and wake interaction experienced by
two or more cylinders in close proximity to each other exposed to a forced harmonically
oscillating flow. This has been achieved primarily through two-dimensional numerical
simulations, but also through preliminary three-dimensional experimental tests using three
different cylinder sizes. The numerical and experimental analyses are based on a tandem
configuration of two cylinders, which has been expanded on by changing the spacing
between the cylinders, the cylinder shape, the number of cylinders, and the inflow angle
which corresponds to the direction of the oscillation motion.

One of the key motivations behind the thesis work is the impact it can have on the devel-
opment of structures related to green energy. Also, there is a limited amount of existing
literature on the topic and few studies on closely placed cylinders in an oscillating flow
have been carried out. A literature review has been performed on the existing literature,
and an extensive theory chapter has been created to give the reader as much knowledge
on the topic as possible.

The preliminary experimental tests were performed at Ladertanken at the Marine Tech-
nology Center at Tyholt in Trondheim. The tank is a relatively small wave flume and the
experiments were performed by attaching crafted cylinders to actuator plates fastened to
a rig in the middle of the tank. The cylinders were then oscillated up and down. A total
of seven test configurations were tested experimentally for a range of KC numbers. As
expected, there were large forces from the rig itself which introduced uncertainties to the
measured data that had to be filtered out in the post-processing stages through thorough
synchronization of the case data and the data from an empty rig test.

The numerical analyses in this thesis were all performed using the pvcFoam solver in
OpenFOAM. The first simulations recreated the preliminary experiments as a base of
comparison, but since the numerical tests were two-dimensional and the experiments were
three-dimensional the comparisons are not fully fledged. After the initial cases had been
modeled, two of the cases were modeled further with inflow angles ranging from θ = 0◦

to 90◦ with 5-degree increments. This was done to investigate how sensitive the hydro-
dynamic interaction was to the inflow angle. One case was further tested at an inflow angle
of θ = 90◦, first with slight horizontal offsets of one cylinder and then with a number of
different distances, or spacings, between the cylinders. When all of the numerical results
had been gathered, they were compared to both three-dimensional and two-dimensional
experimental results on the same cases to study if the effects were based on the dimensions
or if they were purely numerical. Finally, a sensitivity analysis with regard to the mesh
size, time step, and some case-specific parameters was performed.

These analyses showed a clear hydrodynamic dependence on the cylinder shape, KC num-
ber, inflow angle, and the spacing between the cylinders. They also show large nonlinear
contributions to the forces, especially from the 2ω harmonic force amplitude. The models
are able to capture these higher-order effects well in two dimensions and have a tend-
ency to overpredict them in comparison with three-dimensional results. The existing load
formulation from Morison’s equation is not able to fully account for all these nonlinear
components at the same time, and thus a key recommendation for further work on the topic
is to develop and implement a more complete load formulation. Additional experimental
and numerical tests should also be performed to further study the topic.
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Sammendrag

Denne oppgaven studerer de hydrodynamiske belastningene og kjølvannsinteraksjonen som
oppleves av to eller flere sylindre i umiddelbar nærhet av hverandre utsatt for en tvunget
harmonisk oscillerende strøm. Dette er først og fremst oppn̊add gjennom todimensjonale
numeriske simuleringer, men ogs̊a gjennom innledende tredimensjonale eksperimentelle
tester med tre forskjellige sylinderstørrelser. De numeriske og eksperimentelle analysene
er basert p̊a en tandemkonfigurasjon av to sylindre, som har blitt utvidet ved å endre
avstanden mellom sylindrene, sylinderformen, antall sylindre og innstrømningsvinkelen
som tilsvarer retningen til oscillasjonsbevegelsen.

En av hovedmotivasjonene bak oppgaven er p̊avirkningen den kan ha p̊a utviklingen av
strukturer knyttet til grønn energi. Det er ogs̊a en begrenset mengde eksisterende litteratur
om emnet, og f̊a studier p̊a tett plasserte sylindre i en oscillerende strøm er gjennomført.
Det er utført en litteraturstudie p̊a eksisterende litteratur, og det er laget et omfattende
teorikapittel for å gi leseren mest mulig kunnskap om temaet.

De innledende eksperimentelle testene ble utført i Ladertanken ved Marinteknologisenteret
p̊a Tyholt i Trondheim. Tanken er en relativt liten bølgesjakt og forsøkene ble utført
ved å feste spesiallagde sylindre til aktuatorplater festet til en rigg i midten av tanken.
Sylindrene ble s̊a oscillert opp og ned. Totalt syv testkonfigurasjoner ble testet eksper-
imentelt for en rekke KC-tall. Som forventet var det store krefter fra selve riggen som
introduserte usikkerheter til de m̊alte dataene som m̊atte filtreres ut i postprosesseringen
gjennom grundig synkronisering av testdata og data fra en tom riggtest.

De numeriske analysene i denne oppgaven ble alle utført ved hjelp av pvcFoam-løseren
i OpenFOAM. De første simuleringene gjenskapte de innledende eksperimentene som
et sammenligningsgrunnlag, men siden de numeriske testene var todimensjonale og ek-
sperimentene var tredimensjonale, er ikke sammenligningene fullstendige. Etter at de
første testkonfigurasjonene var modellert, ble to av konfigurasjonene modellert videre med
innstrømningsvinkler fra θ = 0◦ til 90◦ med 5-graders inkrementer. Dette ble gjort for å
undersøke hvor følsom den hydrodynamiske interaksjonen var for innstrømningsvinkelen.
En konfigurasjon ble videre testet ved en innstrømningsvinkel p̊a θ = 90◦, først med sm̊a
horisontale forskyvninger av en sylinder og deretter med en rekke forskjellige distanser,
eller avstander, mellom sylindrene. N̊ar alle de numeriske resultatene var samlet, ble de
sammenlignet med b̊ade tredimensjonale og todimensjonale eksperimentelle resultater p̊a
de samme konfigurasjonene for å studere om effektene var basert p̊a dimensjonene eller
om de var rent numeriske. Til slutt ble det utført en sensitivitetsanalyse med hensyn til
maske-størrelse, tidstrinn og noen konfigurasjons-spesifikke parametere.

Disse analysene viste en klar hydrodynamisk avhengighet av sylinderformen, KC-tall,
innstrømningsvinkel og avstanden mellom sylindrene. De viser ogs̊a store ikke-lineære
bidrag til kreftene, spesielt fra den harmoniske 2ω kraftamplituden. Modellene er i stand
til å fange disse høyere ordens effektene godt i to dimensjoner og har en tendens til å
overpredikere dem sammenlignet med tredimensjonale resultater. Den eksisterende last-
formuleringen fra Morisons ligning er ikke i stand til å redegjøre fullt ut for alle disse
ikke-lineære komponentene samtidig, og derfor er en sentral anbefaling for videre arbeid
med temaet å utvikle og implementere en mer komplett lastformulering. Ytterligere ek-
sperimentelle og numeriske tester bør ogs̊a utføres for å studere emnet videre.
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Chapter 1
Introduction

1.1 Background & motivation

By 2050 the world’s electricity demand will have doubled in size compared to what it is
today. Despite this, the use of coal as an energy source is expected to drop by almost
70%, the use of oil will drop by 45%, and natural gas usage will drop by about 10%. This
raises the question of how the world’s energy needs will be met when three of its largest
energy contributors are in rapid decline, and the answer lies in the use and development
of renewable energy resources. In 2022, DNV’s energy transition forecast has for the first
time ever found that by 2050 non-fossil energy will contribute to more than 50% of the
world’s primary energy sources. They have also found that solar photovoltaic (PV) energy
and wind energy will increase massively as shown in Figure 1.1 from [DNV 2022].

Figure 1.1: The world’s grid-connected electricity generation by power station type.

With the rise of solar PV power and wind energy in the global energy industry, there will
be a great increase in technology development both now and in the years to come. Many
new and exciting concepts will be introduced around the world, one of these concepts
being the multi-modular floating solar island that has been developed by Moss Maritime
and Equinor to gather PV energy in the Norwegian Sea. Since the installation will be
located offshore, it is of vital importance that it can withstand the large hydrodynamic
forces and environmental loads that will be prevalent. The concept has been tested both
experimentally and numerically for several years to improve its design toward better effi-
ciency, productivity, and longevity. The basis of the concept consists of modular platforms
housing the solar PV panels and being linked together in a grid by hinges. Each platform
will be kept afloat by four pontoon legs, one in each corner, while the whole grid is kept in

1



CHAPTER 1. INTRODUCTION

place by mooring lines. A CGI render of the concept is shown in Figure 1.2. Due to the
nature of the grid, it will tend to follow the wave elevation. Each platform will be able to
move on its own, but since they are all hinged together every motion of one platform will
be transferred to its neighbors. Moreover, the entire grid is also able to move with global
motions due to the stiffness of the hinges connecting the grid together.

Figure 1.2: A CGI render of the multi-modular floating solar island concept developed by
Moss Maritime and Equinor [SAIPEM 2020].

Each pontoon is a cylinder whose shape is one of the aspects being studied in this thesis.
They have a diameter, D = 2R, that is relatively small compared to the wavelength,
λ ≫ D, meaning that the cylinders can be assumed slender and that flow separation
will dominate the wave and current loads for each platform. However, at the junctions
between the modules, pontoons from different modules will be in close proximity to each
other resulting in wake interaction which will result in an alteration of the stress in the
hinges, which is already high, and other loads on the pontoons. Therefore, the forces
acting on the pontoons will be studied and compared to find the force difference caused
by hydrodynamic interaction. A sketch of the platforms is shown in Figure 1.3, where
pontoons A and B represent a junction where the forces must be studied.

Figure 1.3: Side-view of the modules of the floating solar island concept. A junction,
where hydrodynamic interaction must be studied, is represented by pontoons A and B.

The floating solar island concept has been studied previously by other master students.
[Onsrud 2019] studied the wake interaction between the pontoons and the wave-induced
vertical responses through model tests, while [Reiten 2022] looked into the hydrodynamic
forces and wake interaction between the pontoons both numerically and experimentally
while focusing on the two-dimensional effects. In addition to this several other students
are currently working on the concept resulting in collaboration and information sharing
between students studying different aspects of the floating solar island.

2



CHAPTER 1. INTRODUCTION

When the platform modules are floating and following the wave elevation, they will ex-
perience a horizontally oscillating flow due to the motion of the waves. The effects of a
steady flow on both a single cylinder body and several cylinder bodies have been studied
before, but few have been done for harmonically oscillating flows. A single pontoon in an
oscillating flow is not hard to study as one can assume infinite fluid and thus no wake in-
teraction, but when the other pontoons are added they will all experience hydrodynamic
loads and wake interaction from each other resulting in a much more complex system.
Most studies focus on circular cylinders, while in this thesis the geometries in question
are square and diamond-shaped cylinders. This thesis is a part of SFI BLUES which is a
research program studying floating structures [BLUES 2022].

1.2 Literature review

There are a lot of excellent resources when it comes to the research of wake interaction on
cylindrical bodies, solar PV power plants, hydrodynamic loads and flows around different
geometries, and marine hydrodynamics in general. Combined, these sources will provide
an excellent foundation for understanding the system in question and how to approach
and modify the studies to account for a harmonically oscillating flow.

In his review, [Zdravkovich 1977] studied the flow interference between two circular cylin-
ders in various arrangements. He asserts that of the infinite arrangements of two parallel
cylinders positioned in an incoming flow all but two configurations, cylinders in tandem
and cylinders side-by-side, are just staggered arrangements of each other. The tandem
arrangement, where the cylinders are positioned one behind the other in the direction of
the incoming flow, has been studied experimentally from the early days of aeronautical
engineering where the forces on tandem circular wires with different distances between
them were measured. [Pannell et al. 1915] found that when the two wires were touching
the combined drag force of the wires was 40% of that of a singular wire, due to an improve-
ment in the streamlining. They also found that when increasing the distance between the
wires with increments of one diameter at a time, the wires would have to be more than
six times the diameter apart to achieve a combined drag force equal to that of two wires,
and that is with a 20◦ angle of stagger. Moreover, the increments of the drag force would
decrease as more distance was added. The authors added another intermediate spacing of
3.5 times the diameter due to the very large increment between the spacing of three and
four diameters. The results can be found in Figure A.1 in Appendix A.

[Biermann and Herrnstein 1933] conducted further investigations into the effect of the
drag by extending the distance range between the wires to nine times the diameter. They
measured the drag force on each wire separately and introduced an interference drag
coefficient defined as the difference in the drag coefficients of one of the tandem wires and
a single wire at the same Reynolds number. The combined interference drag coefficient was
then found by adding the two interference coefficients of the two tandem wires. When they
graphed their results as functions of the longitudinal spacing ratio, L/D [−], they found that
the drag interference coefficient of the upstream cylinder was close to zero for all tested
Reynolds numbers. For the downstream cylinder, it was much larger in a negative sense.
Both curves corresponded with a ”kink” at approximately L/D = 3. To try and locate
the position of minimal interference, the bottom of the ”kink”, they introduced several
intermediate points between L/D = 2.5 and L/D = 4. Their results indicate a substantial
hydrodynamic interaction between the wires when they are close enough together. The
results can be found in Figure A.2 in Appendix A.

3



CHAPTER 1. INTRODUCTION

[Hori 1959] was the first to measure the pressure distributions around tandem circular
cylinders. He measured the pressure for three spacings: 1.2, 2, and 3 times the diameter.
The pressure distributions he found are shown in Figure A.3 in Appendix A. He found
that the pressure on the front of the upstream cylinder was not affected by the presence
of the downstream cylinder. Also, the base pressure coefficient increased with increasing
spacing, and the interference drag coefficient described by [Biermann and Herrnstein 1933]
decreases due to the base pressure only, which might explain the ”kink” in Figure A.2.
Furthermore, when he studied the pressure distribution around the downstream cylinder
he found that the negative pressure on the inner side was very low, almost equal to the
base pressure of the upstream cylinder indicating a stagnant flow between the cylinders.
Moreover, the base pressure coefficient on the outer side of the downstream cylinder was
even lower, meaning that the downstream cylinder experienced a negative drag force.

[Zdravkovich and Stanhope 1972] had previously measured the pressure distribution around
the downstream cylinder for higher Reynolds numbers. From their findings, shown in Fig-
ure A.4 in Appendix A, they proposed two types of pressure distributions around the
downstream cylinder:

(i) For small spacings (up to the kink) there are two symmetric peaks, presumably
corresponding to the reattachment points.

(ii) For greater spacings (beyond the kink) there is a single peak corresponding to the
stagnation point.

When investigating further they measured three velocity profiles in the area between the
two cylinders in addition to one velocity profile across the wake behind the downstream
cylinder. For a distance of less than 3.5 times the diameter the velocity profiles showed
a very small velocity between the cylinders, confirming the finding of an almost stagnant
flow, while the wake profile was significantly larger due to the streamlines from around the
cylinders. Beyond this distance, all four velocity profiles became more similar as there was
no longer any stagnation between the cylinders. This change between the flow patterns
is due to the change from pressure distribution (i) to (ii) and is expected to happen
gradually as the distance increases, however, from their experiments they found that it
happens instantaneously. The change also induces vortex shedding behind both cylinders,
while before the change it was only prevalent behind the downstream cylinder.

The side-by-side cylinder arrangement was also studied by [Biermann and Herrnstein
1933], and they presented their results through the interference drag coefficient shown in
Figure A.5 in Appendix A. What they found was that for smaller distances, L/D < 2, there
were quite strange changes in the interference drag. From these results, they proclaimed
that the type of flow, with regard to positive or negative interference drag, changes rapidly
as the distance decreases, and that it may even change while the distance is kept constant.
These proclamations were the first indications of the bistable nature of the two different
flow patterns at the tested distances.

[Zdravkovich 1977] uses these results to classify five different regions of flow regimes de-
pending on whether the drag force is greater or less than for a single cylinder, and whether
the lift force is positive, negative, or negligible. First, the upstream cylinder can be situ-
ated in three regions:

1. Reduced drag force and negligible lift force. Here, the distance between the cylinders
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is very small meaning that the flow separates at the upstream cylinder and passes
by the downstream cylinder.

2. Reduced drag force and a small repulsive lift force. Here, the distance is large
enough so that the flow reattaches on the downstream cylinder after separating on
the upstream cylinder. Vortex shedding from the downstream cylinder is induced.

3. Increased drag force and a repulsive lift force. This regime occurs when the flow
experiences non-periodic reattachment resulting in irregular loads and vortex shed-
ding.

Secondly, the downstream cylinder can, in addition to the first three regions, be situated
in two other regions:

4. Increased drag force and negligible lift force. This region is quite small and there is
no interference beyond it. For this regime to happen the distance must be just large
enough for the downstream cylinder to be hit by the recirculation of the wake from
the upstream cylinder, and the vortex shedding behind both cylinders is synchron-
ized.

5. Decreased drag force and a negative lift force. This region is dominant for the down-
stream cylinder and occurs when the distance is so large that the vortex shedding
behind the cylinders is no longer synchronized.

[Sarpkaya 2010] studied experimentally the correlation between the drag coefficient and
the KC number on cylinders in a sinusoidally oscillating flow, SOF , for different Reynolds
numbers. From his experiments, he found that there was a remarkable correlation between
the force coefficients, the Reynolds number, and the KC number. In the inertia-dominated
regime, KC < 5, he found that the extraction of the drag coefficient became difficult and
that this was especially the case for the experiments with the smallest cylinders. His data
for the drag coefficient and the inertia coefficient are shown in Figure A.6 and Figure A.7
in Appendix A, and it shows that for an increasing Reynolds number the drag coefficient
decreases to about 0.5 (depending on the KC number) and that it afterward gradually
rises to a constant, post-supercritical value. The inertia coefficient will however increase
with an increasing Reynolds number and gradually approach a constant value of 1.85.

These results were in opposition to the drag and inertia coefficients made by [Keulegan
and Carpenter 1958] through measurements on submerged horizontal cylinders and plates
placed in the node of a standing wave and applying theoretically derived values for the
velocities and accelerations. [Sarpkaya 2010] believes that their data for the drag coefficient
are not reliable for KC > 15 since the drag coefficient of a cylinder in SOF is not always
larger than for steady flow at the same Reynolds number. It will in fact be smaller for
a large range of Reynolds numbers where drag coefficients for KC > 15 dominate, which
according to Figure A.6 in Appendix A happens for a range of Reynolds numbers between
approximately 60 000 and 400 000.

[Kristiansen 2021] states in his report that the pontoons supporting the modules of the
multi-modular floating solar island are categorized as small-volume structures since the
horizontal dimension of the pontoons is much smaller than the dominant wavelengths at
the exposed locations. This means that λ ≫ D, and that the free-surface diffraction is
negligible according to potential flow theory. However, the typical wave heights are large
relative to the horizontal dimensions, resulting in the viscous effects due to flow separation
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being dominant. He asserts that the Morison equation with KC-dependent hydrodynamic
coefficients found for a single cylinder in infinite fluid may be attempted in an analysis
of the pontoons, but that due to the expected wake interaction, these coefficients will
be inaccurate or wrong. Also, the three-dimensional effects on the pontoons will matter,
especially for the pontoons with a low draft.

He then describes the importance of studying the wake interaction between two pontoons
as the downstream pontoon is in the wake of the upstream pontoon and may therefore
experience an oppositely directed horizontal force relative to the upstream pontoon. The
dimensions of the system are also addressed in this thesis. Because of practical limitations
with regard to installation and maintenance, he considers that each floating solar island
may be limited to a size of 10 x 10 modules, with each module being of the order 10m x
10m, implying that the island is in the order of 100m x 100m. Additionally, he states
that the diameter of each pontoon being in the range of 0.5 - 2m is a reasonable estimate
and that the resonance periods for the vertical motions of the modules are in the order of
2 - 3 s. This means that the vertical motions will be in the quasi-static frequency regime
and that the modules will follow the waves vertically.

The significance of flow separation can be evaluated based on the KC number, which he
shows can be quite high for these pontoons. For KC > 6 the potential flow assumption
is violated and linear potential flow theory is no longer a valid model of reality. This is
due to the flow separation which alters the flow and is therefore a dominant effect of the
hydrodynamic load. Due to the high KC numbers, one should also expect wake interaction
between the pontoons.

In their report [Dadmarzi et al. 2022] conducts a preliminary literature study on the mod-
eling of large modular floating structures, of which the multi-modular floating solar island
is an example. Their work is a part of SFI BLUES. On the concept of modular floating
PV structures, they state that these concepts are receiving increased attention because of
an increasing need for green energy, but that the literature on the hydrodynamic analysis
of the concepts is sparse. They go on to describe several concepts for modular floating
concepts, among them the concept by Moss Maritime and Equinor used in this thesis. Of
this concept, they state that the conventional Morison’s equation and strip theory may be
a good first solution for analyses, but that a number of other effects might be important
to include in an analysis such as the wave interaction and interference of the pontoons,
three-dimensional effects due to the finite length of the pontoons, and the interaction
between the free surface and the generated wake of each pontoon. Therefore, the report
expresses the importance of model testing and CFD analysis of the hydrodynamic loads
and viscous effects to highlight the important physical effects that occur for these types
of multi-modular systems.

1.3 Project work fall 2022

This thesis has been done as a continuation of the work done during the specialization
project performed in the fall of 2022 [Hals 2022]. The project was done as an introduction
to the main thesis, and parts of the project thesis, such as the literature review, have
been reused here. The specialization project focused mainly on building a substantial
theoretical foundation while also generating preliminary experimental data that will be
presented and discussed in this thesis and seen in comparison with new numerical results.
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1.4 Scope of work

The main objective of this thesis is to study the presence of hydrodynamic loads between
cylinders in close proximity to each other that are exposed to a forced harmonically oscil-
lating flow and understand how these loads are affected by case-specific parameters such
as cylinder shape, inflow angle, the distance between the cylinders, and several other para-
meters. These results will then be presented and analyzed to determine which parameters
should be subjected to further testing. The results that will be presented are primarily
gathered from numerical simulations created for the thesis, but some preliminary exper-
imental results and experimental results from previous theses are used to compare and
validate the numerical models.

As a way of achieving this, a set of objectives have been laid out to portray the scope of
work for the thesis:

• Create a solid foundation of understanding regarding the hydrodynamics involved
in the thesis through an extensive literature review and theory chapter.

• Use the preliminary data gathered from the experiments to investigate which con-
figurations and case-specific parameters could be interesting to further analyze, and
which parameters can be disregarded.

• Numerically simulate a number of case configurations and examine the hydrodynamic
loads acting on and between the cylinders.

• Perform sensitivity analyses regarding the mesh, time step, and other case-specific
parameters to validate results and create guidelines for further work.

• Investigate the usage of the model parameters used in the numerical models and find
out if other models should have been used or if some model parameters should have
been adjusted.

• Look into the harmonic force contributions of the forces experienced by the cylinders
and examine how existing load formulations are able to capture all of the effects.

• Compare numerical and experimental results to validate numerical simulations and
find model parameters that should be exchanged.

• Use the findings of the thesis to provide a basis for further investigations on the
subject of hydrodynamic loads between closely spaced cylinders in a forced oscillatory
flow.
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Chapter 2
Theory

This chapter will cover the general and relevant theories, governing equations, and assump-
tions that are currently used in the study of hydrodynamic loads and wake interactions,
and in the field of multi-modular floating solar islands. Parts of this chapter have been
gathered from the specialization project [Hals 2022].

2.1 Potential flow theory

Many numerical solvers such as OpenFOAM [OpenCFD 2004], with for instance the
potentialFoam solver, and WAMIT [Lee and Newman 1999] are based on potential flow
theory to solve hydrodynamic problems. It can describe the interaction between bodies
and waves based on several assumptions. The three most important ones are that the
fluid must be incompressible and inviscid and that the flow is irrotational. With these
assumptions, the boundary value problem, BV P , can be linearized in order to procure
the first-order solution for potential flow theory, which is the velocity potential, ϕ, and is
expressed by [Faltinsen 1993] for finite water depth as

ϕ(x, y, z, t) =
gζa
ω

cosh(k[z + h])

cosh(kh)
cos(ωt− kx), (2.1)

and for infinite water depth as

ϕ(x, y, z, t) =
gζa
ω

ekz cos(ωt− kx), (2.2)

where g is the gravitational constant, ζa is the wave amplitude, ω is the wave frequency,
k = 2π

λ is the wave number where λ is the wavelength, h is the water depth, t is the time,
x is the x-coordinate, and z is the z-coordinate. The transition from finite to infinite water
depth is defined by [Kristiansen et al. 2021] as when kh → ∞, but more commonly the
condition is seen as infinite, or deep when h

λ ≥ 0.5 since there is hardly any water particle
motion at that depth due to the rapid exponential decay of ϕ in Equation 2.2.

The velocity potential is useful for finding the response of the body exposed to linear
waves, and since the potential, pressure, and loads all oscillate with ω, the steady-state
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response of each frequency can be solved to find the response amplitude operators, RAOs,
for each rigid body mode. Additionally, the potential flow theory gives the linear dispersion
relation which provides the relation between ω and k and is equal to

ω2 = gk tanh(kh) and ω2 = gk (2.3)

for finite and infinite water depth respectively. The velocity potential is further used by
[Faltinsen 1993] to describe the fluid velocity vector u(x, y, z, t) = (u, v, ω) at a time t at
the point x = (x, y, z), meaning that

u = ∇ϕ ≡ i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z
. (2.4)

To account for the assumption that the fluid flow is irrotational, the vorticity vector

ω = ∇× u (2.5)

is set equal to zero everywhere in the fluid. The incompressibility assumption is met by
the fluid having zero divergence, meaning that

∇ · u = 0. (2.6)

From Equation 2.6 it follows that throughout the fluid ϕ must satisfy the Laplace equation

∇2ϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0. (2.7)

2.2 Navier-stokes equations

The Navier-Stokes equations were formulated by Navier and Stokes around 1850 and
consist of four equations in three dimensions; three for the dimensional axes, x, y, and
z, called the momentum equations, and one called the continuity equation. The Navier-
Stokes equations are also referred to as the governing equations for fluid motion and adhere
to the universal laws of conservation of mass, momentum, and energy. Conservation of
energy is the basis of heat transfer and is therefore not covered in this thesis. [Kristiansen
et al. 2021] states that the Navier-Stokes equations are based on the fluid being divided
into numerous small fluid elements, which move together in a fluid continuum, where each
element is given pressure, density, and viscosity properties that are used by the Navier-
Stokes equations.

2.2.1 The momentum equations

The conservation of momentum is the basis of the three momentum equations through
Newton’s second law of motion
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ΣF = ma ⇒ Fp + Fτ + Fg = ∆m
Du

Dt
, (2.8)

where a and u = [u, v, w] are the acceleration and velocity of the fluid, while Fp, Fτ , and
Fg are the pressure, shear, and gravity forces acting on the fluid element. The gravity
force acts through the center of gravity of the elements, while the pressure and shear forces
are external forces acting on the element boundaries. The pressure forces act normally
on the boundaries, while the shear forces act tangentially. When the pressure forces are
integrated along the boundaries, a pressure gradient appears due to opposite forces on
opposite boundaries. This also applies to the shear forces. The substantial derivative of
the fluid velocity in Equation 2.8 can be expanded to

Du

Dt
=

∂u

∂t
+ u ·∇u (2.9)

and the element mass can be expressed as

∆m = ρ∆u. (2.10)

Using the gradients found in the above paragraph together with Equations 2.8, 2.9, and
2.10, the momentum equations become

∂u

∂t
+ u ·∇u = −1

ρ
∇p+ g + ν∇2u, (2.11)

where the kinematic viscosity, ν, is equal to the dynamic viscosity, µ, divided by the
density, ρ.

2.2.2 The continuity equation

The fluid velocity in Equation 2.11 has three unknown variables, and the pressure is also
unknown. This leads to the need for a fourth equation; the continuity equation, which is
based on the conservation of mass and states that

∇u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.12)

meaning that the mass that goes into a fluid element must also go out keeping the mass
in the element constant. This is only valid for a fluid assumed to be incompressible, which
is the case for potential flow theory as shown in Equation 2.6.

2.2.3 Simplifying the Navier-Stokes equations

In many cases, the Navier-Stokes equations can be heavily simplified by eliminating terms.
An example of this is the case of a sinusoidally oscillating fluid flow where the flow oscillates
along the x-axis, with no fluid flow along the other axes [Kristiansen 2023]. This will occur
when a moored body, such as a floating solar island module, is floating in regular waves.
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In this case, the continuity equation becomes

∇u =
∂u

∂x
+

�
�
���
0

∂v

∂y
+

�
�
�7
0

∂w

∂z
=

∂u

∂x
= 0. (2.13)

Now, using the assumption of inviscid fluid from potential theory together with Equa-
tion 2.13, the momentum equations can be simplified. If this case only the momentum
equation in the x-direction is needed, meaning that the gravity term disappears, and the
pressure gradient is only calculated in the x-direction. The momentum equation then
becomes

∂u

∂t
+ u ·∇u =

∂u

∂t
+ u

�
�
��
0

∂u

∂x
+

�
�
��7
0

v
∂u

∂y
+

�
�
��
0

w
∂u

∂z
= −1

ρ

∂p

∂x
+ ν���*

0
∇2u

⇒ ∂u

∂t
= −1

ρ

∂p

∂x
⇒ ∂p

∂x
= −ρ

∂u

∂t
, (2.14)

which then can be used to define the pressure boundary conditions of the fluid domain of
the case. If this example case domain has a length C in the x-direction, the pressure at
each end of the domain will, due to anti-symmetry, be equal and opposite, meaning that

p

(
−C

2

)
= −p

(
C

2

)
. (2.15)

To find the pressure difference one can then integrate the pressure gradient found in
Equation 2.14 over the length of the domain, and by using Equation 2.15 the pressure at
the end boundaries of the domain becomes

p

(
C

2

)
− p

(
−C

2

)
=

C/2∫
−C/2

∂p

∂x
dx = −ρ

C/2∫
−C/2

∂u

∂t
dx = −ρC

∂u

∂t

⇒ p

(
C

2

)
= p

(
−C

2

)
= −1

2
ρC

∂u

∂t
. (2.16)

2.3 Boundary value problem

When a body is placed in a fluid flow, such as for instance a floating solar island in current
and waves, there must exist a boundary condition on the body that hinders any fluid from
passing through the body surface. The boundary value problem is used by many numerical
solvers to simulate the flow around bodies and the free surface conditions, and while it is
not used directly in the numerical simulations in this thesis it is still important to be aware
of it due to the free surface interaction that will most probably occur in the preliminary
experiments. The boundary condition is defined as
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∂ϕ

∂n
= 0, (2.17)

where n is the normal of the body surface where the positive normal direction is defined
as into the fluid. This boundary condition can also be used to express the impermeability
of the seabed by using the z-normal for z = −h, where h is the depth of the fluid.
Equation 2.17 can be generalized if the body has a velocity U to

∂ϕ

∂n
= U · n. (2.18)

2.3.1 Kinematic boundary condition

The substantial derivative of a function F (x, y, z, t) expresses the rate of change with time
for the function of a fluid particle moving through space and is defined in the same way
as Equation 2.9 as

DF

Dt
=

∂F

∂t
+ u ·∇F. (2.19)

The function F for a free surface z = ζ(x, y, t) can be established as

F (x, y, z, t) = z − ζ(x, y, t) = 0. (2.20)

[Faltinsen 1993] assumes that a fluid particle on the free surface will stay on the free surface,
meaning that the Equation 2.19 is equal to zero. Combining this with Equation 2.4 the
kinematic boundary condition on the free surface is found as

∂

∂t
(z − ζ(x, y, t)) +∇ϕ ·∇(z − ζ(x, y, t)) = 0, (2.21)

which can be expressed as

∂ζ

∂t
+

∂ϕ

∂x

∂ζ

∂x
+

∂ϕ

∂y

∂ζ

∂y
− ∂ϕ

∂z
= 0 on z = ζ(x, y, t). (2.22)

2.3.2 Dynamic free surface condition

In addition to the kinematic boundary condition, there is also a need for a dynamic free
surface condition. This boundary condition is defined by the water pressure, p, being
equal to the ambient pressure, p0, on the free surface. The water pressure is defined by
Bernoulli’s equation when the z-axis is assumed vertical and positive upwards as

p+ ρgz + ρ
∂ϕ

∂t
+

ρ

2
u · u = C, (2.23)

where the arbitrary function of time C is a constant as its time dependence is captured by
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ϕ. When C is chosen as p0/ρ, Equation 2.23 can be expressed as the dynamic free surface
condition

gζ +
∂ϕ

∂t
+

1

2

[(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
]
= 0. (2.24)

2.3.3 Linearizing and combining the boundary conditions

Both the conditions shown in Equations 2.22 and 2.24 are non-linear, and thus the location
of the free surface is unknown prior to the equations being solved. By linearizing the
equations the problem can be simplified, and is known as linear wave theory, or Airy wave
theory [Faltinsen 1993]. If the wave amplitude is small relative to the wavelengths and
body dimensions, linear theory can be applied which means that the velocity potential is
proportional to the wave amplitude. The free surface conditions can then be transferred
from the free surface to the mean free surface where z = 0 by Taylor expansions. The
final linearized terms are then equal to

∂ζ

∂t
=

∂ϕ

∂z
on z = 0 (2.25)

gζ +
∂ϕ

∂t
= 0 on z = 0 (2.26)

for the kinematic and dynamic conditions respectively. The linearized conditions can now
be united into the combined free surface condition

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= 0 on z = 0, (2.27)

which for a harmonically oscillating velocity potential with frequency ω becomes

−ω2ϕ+ g
∂ϕ

∂z
= 0 on z = 0. (2.28)

2.4 The equations of motions

To adequately describe the rigid body motions of a floating structure in a steady state
SOF , the equations of motions are needed. They are defined by [Faltinsen 1993] as

6∑
k=1

= [(Mjk +Ajk) η̈k +Bjkη̇k + Cjkηk] = Fje
−iωt, j = 1, ..., 6 (2.29)

where Mjk represents the components of the mass matrix of the structure, Ajk is the
added mass coefficients, Bjk is the damping coefficients, Cjk is the restoring coefficients,
and Fj represents the excitation forces. Here, ηk, is defined as
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ηk = Re
{
ηkae

iωt
}
, (2.30)

where ηka is the oscillation amplitude in the k-th degree of freedom. The motion of any
point on the body can be written as

s = η1i+ η2j + η3k + ω × r, (2.31)

where
ω = η4i+ η5j + η6k, r = xi+ yj + zk (2.32)

This means that the motion of any point can be rewritten using Equation 2.31 and 2.32
into

s = (η1 + zη5 − yη6)i+ (η2 − zη4 + xη6)j + (η3 + yη4 − xη5)k (2.33)

2.5 Wave-body interaction

The wave-body interaction problem in hydrodynamics of a moored floating body is de-
scribed by [Greco 2019] as consisting of two sub-problems called the radiation problem and
the diffraction problem. This problem can be directly related to floating solar islands and
is applicable both for experimental tests as performed by [Onsrud 2019], and numerical
simulations exposing the body to waves instead of a forced oscillatory flow, and can thus
be used in further numerical investigations.

2.5.1 Radiation problem

The radiation problem is defined as the body being forced to oscillate in its six degrees of
freedom in the fluid without incident waves

ηj(t) = ηja cos(ωt) = Re
{
ηjae

iωt
}
, (2.34)

with j corresponding to each of the six degrees of freedom, η being the oscillation motion
of the body, ηa being the motion amplitude, and ω being the oscillation frequency. The
oscillations cause waves to be radiated away from the body with velocity potentials

ϕR(x, y, z, t) = Re


6∑

j=1

η̇jϕj

 , (2.35)

where η̇j is the velocity for mode j. ϕj is the potential per unit velocity, and is unknown,
meaning it must satisfy the body-boundary condition

∂ϕj

∂n
= nj (2.36)
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for all points on the wetted body surface, meaning that the fluid must move with the
body along its wetted surface. Additionally, the disturbance on the fluid from the body
must die down as the depth decreases, i.e. z → −∞, and far from the body the radiation
condition is needed to ensure physical waves. Due to the oscillation of the body, it will be
exposed to hydrodynamic loads consisting of added mass, damping, and restoring terms.
The added mass and damping terms are connected to the dynamic pressure that is caused
by the body’s motions, and it can be shown that

Frad,k(t) = −
∫

S0B

ρ
∂ϕR

∂t
nkdS =

6∑
j=1

{−Akj η̈j −Bkj η̇j} for k = 1...6, (2.37)

where S0B is the wetted surface of the body, and the added mass and damping coefficients
are

Akj(ω) = Re

ρ

∫
S0B

ϕjnkdS

 and Bkj(ω) = −ωIm

ρ

∫
S0B

ϕjnkdS

 . (2.38)

The restoring term is connected to the hydrostatic pressure and is caused by the changes in
the buoyancy of the body on account of the rigid body motions. The generalized restoring
loads can be shown to be

Fhydr,k(t) = −
6∑

j=1

Ckjηj for k = 1...6. (2.39)

The restoring coefficient, Ckj can then be found by estimating the variations of buoyancy.

2.5.2 Diffraction problem

The second sub-problem of wave-body interaction, the diffraction or excitation problem,
is solved by keeping the body still in the fluid and exposing it to incident waves. The
spatial velocity potential will then be the sum of the potentials for the incident waves, ϕ0,
and the diffracted waves, ϕD,

ϕ(x, y, z, t) = ϕ0(x, y, z, t) + ϕD(x, y, z, t). (2.40)

The potential follows the impermeability condition

∂ϕ

∂n
=

∂ϕ0 + ϕD

∂n
= 0 (2.41)

for all points on the wetted surface of the body, which splits the problem into two potential
problems. The first potential problem regards the incident wave potential and states that
the flow due to the incident waves will penetrate the body as if it was not there, which
causes hydrodynamic loads acting on the body called Froude-Kriloff forces [Faltinsen 1993].
To counter the penetrating flow and restore the impermeability of the body, the presence
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of the body will cause a flow, which again generates diffraction waves. This impermeability
condition comes from Equation 2.41 and diffracted flow is the equal and opposite of the
incident flow

∂ϕD

∂n
= −∂ϕ0

∂n
. (2.42)

From potential theory, the excitation force is found by integrating the pressure over the
wetted surface of the body

Fexc,k(t) =

∫
S0B

pnkdS where p = −ρ
∂ϕ

∂t
− ρgz. (2.43)

When Equations 2.40 and 2.43 are combined, it can be shown that

Fexc,k(t) = −
∫

S0B

ρ
∂ϕ0

∂t
nkdS −

∫
S0B

ρ
∂ϕD

∂t
nkdS = Re


∫

S0B

−iωeiωtρ(ϕ0 + ϕD)nkdS

 .

(2.44)

Moreover, it can be shown that

Fexc,k = ζaRe
{
eiωtXk(ωβ)

}
for k = 1...6, (2.45)

where the complex variable Xk(ω, β) is the transfer function for Fexc,k where ω is the wave
frequency and β is the direction. It can give the load amplitude per wave amplitude

|Xk(ω, β)| =
|Fexc,k|

ζa
(2.46)

as well as the phase, α of the excitation loads.

2.5.3 Haskind relation

Together the radiation and diffraction problems can be conjoined through the Haskind
relation [Greco 2019]

∫
S0B

ϕD
∂ϕk

∂n
dS =

∫
S0B

ϕk
∂ϕD

∂n
dS where

∂ϕk

∂n
= nk and

∂ϕD

∂n
= −∂ϕ0

∂n
. (2.47)

The Haskind relation can then be used together with Equation 2.44 to form

Fexc,k(t) = Re


∫

S0B

−iωeiωtρ(ϕ0
∂ϕk

∂n
− ϕk

∂ϕ0

∂n
)dS

 , (2.48)
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which is a useful formula for cases where the diffraction velocity potentials are difficult to
acquire.

2.6 Morison’s equation

Morison’s equation is a semi-empirical method of calculating the in-line wave loads on cyl-
indrical members of offshore structures where viscous forces are important. The equation
consists of two parts; an inertia force that is in phase with the acceleration of the flow and
a drag force that is proportional to the square of the instantaneous fluid velocity. For a
differential strip section of length dz on a rigid vertical cylinder, it is defined by [Morison
et al. 1950] as

dF =

[
ρ
π

4
D2CM

∂u

∂t
+

1

2
ρCDD|u|u

]
dz, (2.49)

where ρ is the density of the water, D is the diameter of the cylinder, CM is the mass
coefficient, CD is the drag coefficient, and u and ∂u

∂t are the undisturbed fluid velocity and
acceleration at the mid-point of the strip. Morison’s equation can also be used to describe
the forces on a moving body as

Fm(t) = ρ
π

4
D2CAu̇(t) +

1

2
ρCDD|u(t)|u(t), (2.50)

where u(t) and u̇(t) are the velocity and acceleration of the body and CA = CM − CF is
the added mass coefficient, where CF is the Froude-Kriloff coefficient which more often
than not is set equal to one. Here, Fm is the total Morison forces found by integrating
Equation 2.49 over the wet area of the cylinder.

2.7 Hydrodynamic parameters

[Reynolds 1883] found from his experiments that an important ratio in fluid mechanics is
the ratio between the inertial forces and the viscous forces. The ratio was later dubbed
the Reynolds number and is defined as

Re =
UD

ν
, (2.51)

where U is the mean inflow velocity, D is the characteristic length of the body, and ν
is the kinematic viscosity coefficient of the fluid. The Reynolds number, along with the
relative surface roughness are crucial in locating unknown flow separation points.

[Keulegan and Carpenter 1958] found that the coefficients on bodies in oscillating flow
were functions of a ratio of the oscillation velocity amplitude, U , oscillation period, T ,
and characteristic length, D. The ratio became known as the Keulegan-Carpenter, KC,
number and is defined as

KC =
UT

D
(2.52)
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If the body is oscillating harmonically [Molin 2023] shows that the ratio can be rewritten
as

KC = 2π
A

D
, (2.53)

where A = ηa is the motion amplitude of the oscillation. This is true because the velocity,
U , can also be described as the amplitude of a water particle when the body is subjected
to waves. Due to this fact, it can also be rewritten based on the wave amplitude, ζa, as

KC =
2πζa
D

. (2.54)

2.8 Hydrodynamic forces & coefficients

When analyzing a structure in incident regular sinusoidal waves of small wave steepness,
the hydrodynamic problem can be solved in two parts; the diffraction problem and the
radiation problem, as described in Section 2.5. For the latter case, the hydrodynamic force
becomes a sum of an inertial term and a damping term and can be expressed as

F = −Aη̈ −Bη̇, (2.55)

where A and B are the added mass and damping forces, while η̈ and η̇ are the acceleration
and velocity of the body. They are derived from the oscillation motion of the body which
can be defined as

η = ηa cos(ωt), (2.56)

which ultimately results in

η̇ = −ηaω sin(ωt) and η̈ = −ηaω
2 cos(ωt). (2.57)

Now, using Fourier averaging, A can be found. This method is done by multiplying each
side of Equation 2.55 by the acceleration and integrating all terms over n periods, where
n is an integer. This results in

∫
nT

F η̈dt = −
∫
nT

Aη̈η̈dt−
�

�����*
0∫

nT
Bη̇η̈dt , (2.58)

where the last term is 0 because the acceleration, which is a cosine expression, is multiplied
by the velocity, which is a sine expression, and integrated over n whole periods, resulting in
orthogonality over the interval. The same process is done to find B, but now Equation 2.55
is multiplied by the velocity before being integrated, resulting in the added mass term
becoming zero. Now, A and B can be found as
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A = −
∫
nT F η̈dt∫
nT η̈η̈dt

and B = −
∫
nT F η̇dt∫
nT η̇η̇dt

. (2.59)

Finally, the non-dimensional force can be expressed as

F

ω2ηaA0
=

A

A0
cos(ωt) +

B

A0
sin(ωt) =

√(
A

A0

)2

+

(
B

A0

)2

sin(ωt+ θ), (2.60)

where θ is the phase difference between the force and the velocity, and A0 is the reference
added mass. The force amplitude can be expressed as

Fa

ω2ηaA0
=

√(
A

A0

)2

+

(
B

A0

)2

=
√
C2
A + C2

B, (2.61)

where CA and CB are the normalized added mass and damping coefficients. The reference
added masses for a circular cylinder and a square cylinder are defined by [Pettersen 2007]
as

A0 = ρ
π

4
D2L and AS

0 = 1.51ρ
π

4
D2L, (2.62)

where ρ is the fluid density, D is the characteristic length, and L is the length into the
plane. From here, the normalized added mass and damping coefficients can be found as

CA =
A

A0
and CB =

B

ωA0
, (2.63)

where A0 is the circular reference added mass even though the cylinders are square-shaped.
This is done so that the coefficients can easily be related back to the coefficients of a circular
cylinder, which is used as a base case in most areas of hydrodynamics. The ratio between
the added mass and damping coefficients can give an indication of the contribution of each
coefficient relative to the other. The ratio is defined as

CB

CA
=

B
ωA0

A
A0

=
B

ωA
, (2.64)

where a value greater than one indicates a greater damping contribution than added mass
contribution, and vice versa. Furthermore, the amount of contribution each coefficient has
on the force amplitude can be found as

CA√
C2
A + C2

B

=
B
ωA√

1 +
(

B
ωA

)2 (2.65)

for the damping, and likewise for the added mass. By relating the drag term fromMorison’s
equation in Equation 2.50 with the damping term in Equation 2.55, the drag coefficient
can be found as a function of the damping. However, the damping of a harmonically
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oscillating system is not only linear, but it has contributions from both linear and non-
linear sources. A quadratic damping term can be added to the linear damping term to
account for the largest contributor to the non-linearity. [Kristiansen et al. 2021] states
that this is done by equivalent linearization, and the damping term in Equation 2.55 now
becomes

B(eqv.)η̇ = B(1)η̇ +B(2)η̇|η̇|, (2.66)

where B(1) is the linear damping and B(2) is the quadratic damping. Now, after discussions
with [Kristiansen 2023] the linearized drag term in Equation 2.50 is

F lin
D =

1

2
ρCDDLηaω

8

3π
u =

2

3π2
ρCDD

2LωKCu, (2.67)

where the velocity u is the equivalent of the velocity η̇. Finally, the drag coefficient can
be found by equalling the linear damping term and the linearized drag term and solving
for CD. The expression becomes

CD =
Bη̇

2
3π2 ρD2LωKCu

=
ωρπ

4D
2LCB η̇

2
3π2 ρD2LωKCu

=
3π3

8KC
CB, (2.68)

where the drag coefficient is only dependent on the KC number and the damping coeffi-
cient.

2.9 Velocity & acceleration amplitudes based on the KC
number

By rewriting Equation 2.53 with regards to the motion amplitude and inserting it into
Equation 2.57 with the fact that ω = 2π/T , new expressions for the velocity and acceleration
can be found, and are defined as

η̇ = −
(
KCD

2π

)(
2π

T

)
sin(ωt) = −KCD

T
sin(ωt) (2.69)

η̈ = −
(
KCD

2π

)(
2π

T

)2

cos(ωt) = −2πKCD

T 2
cos(ωt). (2.70)

This leads to the velocity and acceleration amplitudes being defined as

η̇a =
KCD

T
and η̈a =

2πKCD

T 2
(2.71)

From these expressions, specific KC numbers can be applied to a system with known values
for T and D by applying specific velocity or acceleration amplitudes. Since the amplitudes
are proportional to the KC number, higher amplitudes result in a higher KC number.
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2.10 The Courant–Friedrichs–Lewy number

In a numerical solver, the Courant–Friedrichs–Lewy (CFL) number [Courant et al. 1928],
sometimes referred to as simply the Courant number, is a dimensionless constant dictating
the maximum allowed time step so that there is no information loss in the system. If a
particle can travel more than the length of a cell in the mesh during each time step there
will be cells that do not output any information about the flow. This flaw in the solver is
negated by the CFL number, which is expressed by [Roache 1998] as

CFL = u
∆t

∆x
, (2.72)

where u is the flow velocity, ∆t is the time step, and ∆x is the length of the cell in the
flow direction. By limiting the CFL number to always be less than one, the maximum
allowed time step which does not allow the information to travel further than one cell
length can be found by rearranging Equation 2.72. This is done automatically in many
numerical solvers where the CFL number is checked for each cell in the meshed domain,
and the time step can even be non-uniform over the domain to maximize the efficiency of
the solver.
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Chapter 3
Forced motion studies of 3D experiments

The main part of the experimental tests was performed in September 2022 in collaboration
with master student Kristian Mikkelsen [Mikkelsen 2023], and parts of this chapter are
gathered from the specialization project [Hals 2022]. The experimental tests presented in
this chapter were performed at Ladertanken, or the Lader tank, at the Marine Techno-
logy Center at Tyholt in Trondheim. The tests were conducted prior to any numerical
simulations to gain an extensive amount of data to form a basis for what results were to
be expected from later studies and simulations. Based on the works of previous master’s
students [Reiten 2022] and [Onsrud 2019] it is clear that experimental data is important
for validation and verification of numerical data, and that performing experiments gener-
ates experience and understanding regarding both the test cases and the hydrodynamic
phenomena affecting them.

3.1 Experimental setup

Ladertanken is a relatively small wave flume and is mainly used by students doing research
for their Master’s thesis or Ph.D., or by lecturers during classes. It has a total length of
13.5m, a breadth of 0.60m, and an adjustable water depth, which during these tests
was kept constant at 1m to ensure stability in the test results. A sketch of the tank
characteristics is shown in Figure 3.1. The tank can be used for several different types
of experiments and can support many types of sensors and machinery. The equipment
used in this case is an actuator that can accelerate the test setup vertically to simulate
the structure in an oscillating flow. The real oscillating flow is horizontal so this vertical
setup may induce small sources of error due to the gravity forces, but since there is no free
fluid surface directly interacting with the cylinders these forces are not induced and the
errors become negligible. To measure the output data from the test rig the data program
Catman Easy from HBM was used [HBM 2022]. The program records the time series of
a specified number of channels, each either connected to a sensor or calculating results
based on another channel.
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Figure 3.1: A simple sketch depicting the experimental test setup at Ladertanken, and
some of the dimensions of the tank.

The numbered labels in Figure 3.1 indicate the following equipment that is attached to
the test rig:

1. The cylinder model that is tested in each specific case, where three cylinder pairs
with different lengths were used.

2. The actuator plates that the cylinders are attached to, one inner plate attached to
the top cylinder(s) and an outer plate attached to the bottom cylinder(s).

3. The actuator that moves the test setup vertically exposing the cylinders to a forced
oscillatory motion.

4. The rigid frame connecting the plate to the actuator.

5. The actuator rig that holds the actuator in place and holds most of the sensor
equipment.

6. Cables carrying the information to and from the vertical actuator and its sensors.

The test rig is located at the midpoint of the tank to simulate infinite fluid and to ensure
the least amount of effect from the ends of the tank. There are also parabolic beaches
installed at each end of the tank to dampen the radiated waves. The vertical actuator can
operate at a range of ± 20 cm. The base plate that the cylinders are attached to consists of
two parts; an inner and an outer plate each connected to an array of sensors measuring the
forces and acceleration of their particular plate, meaning that the plates are independent.
This can be seen in Figure 3.2a where gaps are shown between the plates on both sides
as well as between the cylinders to get independent measurements. The inner and outer
plates are however not fully rigid which may lead to movements causing measuring errors.
This will later be studied numerically in Section 4.1.3.
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(a) The actuator plate where the gaps
between the inner and outer plate are shown.
Here, Case 4 with L/D = 2 is installed.

(b) A side-view of Case 2 with L/D = 1 in-
stalled on the actuator plate prior to a run,
with the configuration shown in Figure 3.3.

Figure 3.2: Cases 4 and 2 installed on the actuator plate where the gaps between the inner
and outer plate and the case configurations of the installed cases are shown.

There are several sensors attached to the test rig. On top of the actuator, a position
sensor is attached that can continuously measure the position of the frame and thus the
actuator plate. This data is mainly used for post-processing calibration since it is the
data with the least amount of interference, meaning that it can be used to synchronize
the data sets of the cases with the data from a test with an empty rig, which is done
to remove forces induced by the actuator plates. Inside the actuator frame, there are
two types of sensors; accelerometers and force transducers, one for each of the plates.
The accelerometers measure the acceleration of each plate which is needed during post-
processing to account for the force contributions of the mass of the cylinders. The force
transducers measure the forces in the x-, y- and z-directions of each plate. The force
output of these transducers can be used to study the interaction between the cylinders. In
addition to these sensors, there were also two wave probes located in front and behind the
test rig to measure the waves created by the actuator, but the data from these probes were
not used in this project as the cylinders had no direct interaction with the free surface of
the fluid.

All of the sensors were calibrated prior to the experiments, and due to the relatively short
total test duration, it was not deemed necessary to re-calibrate the sensors during the
testing period. This may have led to measuring errors in the sensors, but they were most
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likely negligible. The first sensor to be calibrated was the position sensor. It was laid
flat on a table and the cord was extended in intervals of 10 cm while recording the sensor
output. This was done to find the calibration factor which shows how much measuring
error there is in the sensor with regards to known data, which in this case was the known
increments on the table. The calibration factor is found by curve fitting the plot points
from Catman Easy in Excel and then implementing it into Catman Easy to ensure correct
measurement data. Similarly, the force transducers were calibrated by applying known
forces in the x-, y-, and z-directions, capturing the calibration factors, and implementing
them in Catman Easy. The accelerometers are calibrated somewhat differently as the only
known acceleration that is easy to apply is the acceleration of gravity. They are calibrated
by turning them to positions where the outputs are only based on the acceleration of
gravity, measuring the output, finding the calibration factor, and implementing it into
Catman Easy. The wave probes were calibrated by incrementally lowering them into the
water and recording the output, similar to the calibration of the position sensor.

In addition to these calibrations a hammer test, or decay test, should be performed to
identify the eigenfrequencies of the components in the test rig, and thus find the frequency
ranges where noise pollution on the signals due to vibration can be expected. The hammer
test was not performed before the experiments during the specialization project but was
later performed by master student Kristian Mikkelsen when he conducted new experiments
for his Master’s thesis. The results from this hammer test were that some higher-order
frequencies could be polluted by noise, but that it did not affect the frequencies used in
this thesis.

3.2 Test cases

There are two main objectives of the tests, one being to achieve a basis for the force
responses that will later be validated and verified with the help of numerical tests, and
the other being to identify and investigate potentially new hydrodynamic phenomena. In
Figure 3.3 the seven cases that were tested experimentally are shown. Some of these cases
were also later tested numerically as described in Section 4.1.1. The cases consist of a
combination of square- and diamond-shaped cylinders in configurations of either two or
four cylinders with varying distances. Cases 1 - 3 correspond with cases 11 - 13 with regard
to the number of cylinders, but they have different geometries. Additionally, the distances
between the midpoints of the cylinders are kept the same from cases 1 - 3 to 11 - 13, but
the distances between the cylinders themselves are shorter for cases 11 - 13. This will in
addition to the geometry lead to different flows in the cases. Case 4 is a stand-alone case
with two square-shaped cylinders being exposed to an angled inflow of 45 degrees, and is
the same as rotating Case 1 by 45 degrees. Due to the chosen geometry of the cylinders,
there was only a need for one set of cylinders as they could be used for all cases.

25



CHAPTER 3. FORCED MOTION STUDIES OF 3D EXPERIMENTS

Figure 3.3: The seven cases that were tested using the experimental setup at Ladertanken
during the specialization project.

Similar tests have been run by previous master students. Those tests were done to study
for instance two-dimensional effects as done by [Reiten 2022]. The tests in this thesis are
done to study the three-dimensional effects, and as such, it is of interest to test different
length-to-diameter ratios, L/D. Three ratios were chosen and tested for each test. The
ratios are shown in Figure 3.4. Each cylinder consists of two identical pieces fastened on
each side of the actuator plates with a rod through both pieces securing them to the plates
and a guidance pin ensuring correct orientation. The L/D ratios are only based on one
piece since each case will be mirrored around the plates. Due to the different ratios, the
cylinder masses are different as shown in Table 3.1.

Figure 3.4: The three different length-to-diameter ratios used in the experimental tests.
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Table 3.1: The mass of each cylinder size including the mass of the bolt and the putty used
to cover the gaps around the bolt to ensure smooth surfaces. The masses are measured
in air and have a ±10 g margin of error. For easier identification, the cylinder sizes were
nick-named ”Small”, ”Medium”, and ”Large”.

Name L/D [−] m [kg]

Small 1 0.69

Medium 2 1.39

Large 3 2.08

3.3 Test procedure

Each of the seven test cases from Figure 3.3 was run for a range of KC numbers from 1
to 21.5 with an increment of ∆KC = 0.5. The formulation of the KC number is shown
in Equation 2.53 in Section 2.7. To achieve a steady state for the measured data each
step of each run had an oscillation duration of 30 oscillation periods with four oscillation
periods of ramping before and after the oscillations. Additionally, a 30-second pause was
added between the runs to ensure that there was no disturbance in the water from the
previous measurement when a new one began. Each KC increment step was tested for
two oscillation periods of 1 s, and 1.5 s to ensure a wider spectrum of results.

Using the maximum actuator motion amplitude of ηa = 0.2m and the diameter of the
cylinders which is D = 0.05m the maximum KC number is found to be KC = 25. How-
ever, to account for inaccuracies in the actuator the maximum KC number was chosen
to be KC = 21.5 giving the actuator a motion amplitude of 0.17m. This ensures a large
enough margin of error so that the actuator will not be accidentally strained and damaged
during the tests. Later, when reviewing the position data of the actuator, the maximum
motion amplitude of the actuator was found to be over 0.19m meaning that it would have
surpassed its threshold had a higher KC number been used. This could also mean that
the actual KC numbers were larger, which could lead to some discrepancies later on, but
this was deemed negligible at the time.

By using the range of KC numbers and two oscillation periods for the case configurations,
it resulted in a total of 84 oscillation steps for each case. Accounting for the downtime
the total duration for each test was around 6 500 s. For all 22 test runs, one empty rig
to account for unwanted measurements from the actuator plate itself, and three different
cylinder sizes for each of the seven cases, this accounted for a total of 143 000 seconds or
40 hours of runtime.

The reconfiguration process between each case was quite cumbersome as it required the
water level to be lowered by roughly 0.5m to access the cylinders. Each cylinder was
fastened tightly with a bolt and the bolt ends on each side were covered with putty to
smooth the edges and get the correct end effect measurements. The emptying and re-filling
of the tank took about 20 minutes, and the reconfiguration could take anywhere between
5 and 15 minutes to achieve due to the different configurations. In total, roughly 10 hours
were used for the reconfiguration in between runs.
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3.4 Post-processing

After the data had been obtained they were first post-processed in Matlab to extract some
preliminary results, and later on in Python. An existing code for reading the binary data
files was used for the output before it was further processed. The read function gathers
all the channels from the binary files, and the channels useful for the thesis were stored.
These channels were the time, position, acceleration, and forces acting on the top and
bottom cylinders. These channels are first gathered for the empty rig case and used in the
other cases to account for the effects of the actuator plate itself.

Since there is no way to accurately start the actuator at an exact time after the recording
of the channels has begun, the first post-processing step is to synchronize the data from
each case with the empty rig so that its contributions can be correctly accounted for. This
is done by a process called the L2-norm [Shkoller 2009] where two signals are synchron-
ized together by holding the first signal, f1, in place and moving the other signal, f2, n
increments in each direction along the shared axis. For each increment, the area between
the signal curves is measured by the expression

L2 =

[∫ t

0
(f1 − f2)

2

]1/2

, (3.1)

which is the second stage of the more general expression for the Lp-norm

Lp =

[∫ t

0
(f1 − f2)

p

]1/p

where L∞ = max(f1, f2) (3.2)

Now, the f2 signal is phase-shifted by the amount required to reach the location with the
least area between the signals, which is where the peaks of the signals line up. The signals
before and after this process are shown in Figure 3.5.

Figure 3.5: Two example signals before and after the L2-norm synchronization.

When the signal for the active case is synchronized with the empty rig signal, the force
contributions from the rig can be subtracted from the forces for the case to get the force
output from just the cylinders. In addition to this, the mass forces from the cylinders
must be added to the forces in the z-direction to only keep the hydrodynamic forces. The
acceleration has the opposite sign of the force, and therefore the mass forces must be added
to the total force to remove their contributions. This process is done for the in-line forces
that are present in the same direction as the oscillation motion, which is the z-direction,
of the top cylinder as follows
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Fz,top = Fz,top,measured − Fz,top,emptyRig +m · ameasured, (3.3)

where Fz,top,measured is the data from the case, Fz,top,emptyRig is the data from the empty
rig case, and ameasured is the measured acceleration for the case. It is then repeated for
the forces in the z-direction for the bottom cylinder. The mass, m, depends on both the
cylinder size, as shown in Table 3.1, and on the number of cylinders.

After this has been done for all the necessary parameters, new parameters can be made
based on them. The difference in the force on the top and bottom cylinders is interesting
to study. It is defined for the z-direction as

∆Fz = Fz,top − Fz,bottom, (3.4)

and gives an indication of the forces acting between the cylinders. If ∆Fz > 0 there is an
attractive force acting between them since the bottom cylinder is less affected by the flow
and has force contributions pushing it towards the top cylinder, and likewise if ∆Fz < 0
the force is repulsive since the bottom cylinder is pushed away from the top cylinder.
Similarly, the total force, Fz,Total, is found by adding together the contributions and is a
useful indicator of the amount of force acting on the system as a whole.

The force data can now be plotted as functions of time to visualize the results. However,
they must be filtered to remove noise pollution to get readable results. This is done
by using the bandpass filter bpass2.m provided by Prof. Trygve Kristiansen. This is a
function that takes a piece of the data series, one steady state run, as an input, as well as
the time step and the cutoff frequencies, and outputs a clean time series. The low cutoff
frequency has in this case been set to 0.8/T and the high cutoff frequency to 10/T where T
is the period of oscillation for the given run. The time step, dt, is set equal to 1/Fs, where
Fs = 200Hz is the sampling frequency used by the Catman Easy program. The cutoff
frequencies were chosen based on input from Prof. Trygve Kristiansen.

In Figure 3.6 a comparison between the measured and filtered data for the force in the
z-direction for the top cylinder is shown. The force difference between the two cylinders is
also shown. This figure shows that the readability of the data increases drastically when
it is filtered.

Figure 3.6: The measured force in the z-direction vs. the filtered force in the z-direction
for the top cylinder. A filtered ∆Fz is also shown.

29



CHAPTER 3. FORCED MOTION STUDIES OF 3D EXPERIMENTS

After the data is filtered, everything can be plotted to visualize the results. In Figure 3.6
the data is shown with values measured directly from Catman Easy, but at later stages,
the results will be non-dimensionalized on account of the geometry of the cylinders to be
able to easily compare them to other studies. Additional plots can also be created to give a
better understanding of the system. For instance, the higher-order harmonic contributions
of the force data can be extracted and plotted as functions of the KC number to show
which frequency amplitudes dominate the cases. This is done by Fourier transforming the
data and extracting the frequency and amplitude values. This is later shown in chapter 5.

Figure 3.7: A view of Ladertanken showing the wave flume, the test rig, and much of the
equipment used for the experiments.
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Chapter 4
Numerical studies of 2D CFD simulations

[Roache 1998] states that computational fluid dynamics (CFD) is its own branch within
fluid dynamics in between the theoretical and experimental branches, containing aspects
of both branches and supplementing them. He further discusses that CFD can be con-
sidered closer to the experimental branch than a pure theoretical branch since it relies
heavily on heuristic reasoning, physical intuition, experience, and trial-and-error proced-
ures, along with rigorous mathematical analysis of simpler, linearized, and more or less
related problems to the problem of interest. He then compares CFD simulations to phys-
ical experiments in that an analyst will ”turn on” the equations and see what happens,
much in the same way that a physical experimenter does with their devices, and that actual
discovery of physical phenomena is possible using only numerical experiments, but that
experimental validation is necessary. If a numerical model is created and validated through
experimental results, it can be expanded and used for similar systems and methods with
expected outcomes with high validity. CFD also has advantages through complete control
over the fluid properties, enormous flexibility in the choices of fluid parameters, arbitrary
selections of boundary layer properties that would be impossible in physical experiments,
and the possibility of running true two-dimensional cases, something that cannot be fully
replicated in a lab environment.

4.1 Numerical model configurations

In this section, all the cases that were modeled numerically for this thesis are presented, as
well as the reasoning behind choosing these specific cases. The first step of the modeling
process is to create the three-dimensional files called .stl-files of the geometries of each
case that were to be inserted in OpenFOAM. These .stl-files were made in Python
using a script with the stl library [Atkins 2015]. When the script had been run with the
characteristic parameters for each case, the geometries were exported as three-dimensional
objects that could be imported into OpenFOAM.

4.1.1 Modeling the experimental cases

The first cases that were interesting to model numerically were the same cases that had
been tested experimentally during the specialization project, presented in Figure 3.3, both
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to possibly validate the experimental results and to get more familiar with OpenFOAM
through known cases. Case 4 was the only case not modeled during this phase as it would
be modeled at a later stage. The script used for creating these geometries, as well as the
base geometries of later cases can be found in Appendix F. After importing the .stl-files
into OpenFOAM, each of the cylinders in the cases were defined and labeled so that the
forces of each of them could be extracted. In Figure 4.1 the geometries for the models
of the experimental cases are shown after being imported into OpenFOAM and meshed,
which will later be described in Section 4.2.1.

(a) The geometries of Case 1 with two square-
shaped cylinders.

(b) The geometries of Case 11 with two
diamond-shaped cylinders.

(c) The geometries of Case 2 with two square-
shaped cylinders.

(d) The geometries of Case 12 with two
diamond-shaped cylinders.
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(e) The geometries of Case 3 with four square-
shaped cylinders.

(f) The geometries of Case 13 with four
diamond-shaped cylinders.

Figure 4.1: The geometries in the numerical models of the experimental cases described
in Section 3.2 after being imported and meshed in OpenFOAM.

In the experiments these numerical models are based on, each case was run for a range
of KC numbers from 1 to 21.5 with an increment of 0.5, where each run oscillated for
30 seconds. To be as consistent with the experiments as possible the numerical models
were run for the same KC number range, but it was only deemed necessary that each run
would oscillate for 20 seconds. Additionally, each experimental case was tested for two
oscillation periods of 1 and 1.5 seconds, while the numerical models only use a period of
1 second. These differences from the experimental cases were measures taken to limit the
needed computational time and power, while still maintaining the quality of the data.

4.1.2 Varying the inflow angle

After the experimental cases had been modeled numerically, it was interesting to look at
the effect of changing the inflow angle. This had also been tested experimentally to a
small degree in Case 4, which is the same as Case 1 with an inflow angle of θ = 45◦. At
this point, it was decided to not pursue the diamond-shaped cylinders and focus only on
the square-shaped ones. Also, Case 3 was not pursued further so that the focus could be
on the differences between cases 1 and 2, as in the spacing between the cylinders. Thus,
it was only deemed necessary to use cases 1 and 2 for the varying inflow angle study. The
cases had been modeled such that the oscillation occurred in the z-direction, meaning that
from the perspective of a neutral axis along the x-axis, cases 1 and 2 were in a 90-degree
configuration. Importantly, the x-axis in the numerical models corresponds to the y-axis
in the physical model, while the z-axis remains the same. The configuration in cases 1
and 2 is referred to as the tandem configuration by [Zdravkovich 1977]. He also uses the
term staggered configuration for the case when two cylinders are side-by-side, which would
mean a 0-degree configuration for these cases. Therefore it was decided to model cases 1
and 2 from a staggered configuration to a tandem configuration varying the inflow angle
by 5 degrees for each case iteration. This resulted in 19 runs for each case. All cases were
performed at KC = 16 with a duration of 20 seconds and an oscillation period of 1 second.
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A selection of geometries for Case 1 is shown in Figure 4.2.

(a) Case 1 with an inflow angle of θ = 0◦. (b) Case 1 with an inflow angle of θ = 25◦.

(c) Case 1 with an inflow angle of θ = 45◦, same
as Case 4 from Figure 3.3.

(d) Case 1 with an inflow angle of θ = 65◦.

Figure 4.2: The geometries in Case 1 with a varying inflow angle after being imported
and meshed in OpenFOAM, with added lines indicating the inflow angle. The oscillation
occurs along the inflow axis.

4.1.3 Horizontal misalignment of the cylinders

As described in Section 3.1 the cylinders in the experimental cases were attached to an
inner and an outer actuator plate which were not fastened to each other so that the
forces on each plate could be measured independently. This did however lead to some
independent movement as well, especially in the y-direction of the tank. These movements
could lead to the cylinders not being exactly in line with each other, which could cause

34



CHAPTER 4. NUMERICAL STUDIES OF 2D CFD SIMULATIONS

some unwanted noise that polluted the results. It was therefore a good idea to also model
this numerically to see if the imperfection in alignment had an undesirable effect on the
numerical results.

Three new cases were created from the base of Case 2 with an increasing horizontal
misalignment. Only Case 2 was used for these new cases as it was deemed unnecessary to
use both cases and that Case 2 could possibly have more fluctuations as the cylinders are
further apart than in Case 1. Each of these three new cases was also exposed to a varying
inflow angle in the same way as in Section 4.1.2 so that the data could be compared to
that of Case 2 with zero imperfections. The horizontal misalignments of the cylinders
were chosen to be 3, 5, and 10 percent of the width of one cylinder, meaning a relative
misalignment of 1.5, 2.5, and 5 mm since the width of one cylinder is 5 cm. In the same
way as the previous cases, these cases were also run for 20 seconds at KC = 16 with an
oscillation period of 1 second.

A similar study has previously been performed by [Reiten 2022]. His study used Case 1 in
its normal 90-degree configuration for an increasing range of KC numbers. He also used
three cases with misalignments of 0, 2, and 5 cell sizes which in his case is closely equal to
0, 4, and 10 mm, but due to a stretching of the cells close to the geometries, it is hard to
exactly determine the actual misalignment. The results of his study indicate that for the
larger KC numbers the misalignments have some effect. To get a wider base understanding
of the misalignment effect it was decided that for this thesis the study should be dependent
on the inflow angle and not the KC number.

The geometries and meshing for these cases were done in the same way as for previously
described cases, and below in Figure 4.3 the geometries for each of the misalignments are
shown for an inflow angle of θ = 90◦.

(a) Case 2 with a horizontal
misalignment of 1.5 mm.

(b) Case 2 with a horizontal
misalignment of 2.5 mm.

(c) Case 2 with a horizontal
misalignment of 5 mm.

Figure 4.3: The geometries in Case 2 with an increasing horizontal misalignment after
being imported and meshed in OpenFOAM. The red line is added to indicate the mis-
alignment.
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4.1.4 The effect of the spacing between the cylinders

Since cases 1 and 2 have been modeled and tested in many configurations it was compelling
to perform a study into the main difference between the cases which is the spacing between
the two cylinders. If the width of one cylinder is defined as D = 5 cm, and the distance
between the cylinders is denoted as s, the ratio s/D will equal the number of cylinders that
could fit between the cylinders in the cases. This means that the s/D ratio for cases 1 and
2 equals exactly 1 and 2. A total of 17 cases were created with a s/D ratio ranging from
0.2 to 5. From 0.2 to 2.2 the spacing increased by 0.2 for each case, and after 2.2 the cases
had ratios of 2.5, 3, 3.5, 4, 4.5, and 5.

The smaller ratio increases for the lower ratios were done to have a better data resolution
since it is somewhere in these ranges that [Zdravkovich 1977] found the flow regimes of the
cylinders to change. This also meant that another interesting part of this study in addition
to the study of the non-linear hydrodynamic effects, was the study of the change in the
coefficients of the cylinders which would indicate flow regime changes. These coefficients
can be exported directly from OpenFOAM as explained in Section 4.2.2.

These cases were also run for 20 seconds each with an oscillation period of 1 second and
with KC = 16. All numerical models except the experimental models have used this
value for its KC number. This was intentionally done so that the data could easily be
compared across cases if needed. This value was chosen because it is not so small that
there is not much happening around the geometries, there will be fluctuations at this level
of oscillation, and at the same time, it is not so large that the flow is at risk of entering a
quasi-steady state.

(a) Tandem cylinders
with s/D = 0.2.

(b) Tandem cylinders
with s/D = 1.4.

(c) Tandem cylinders
with s/D = 3.

(d) Tandem cylinders
with s/D = 5.

Figure 4.4: The geometries of two tandem cylinders with an increasing s/D ratio after
being imported and meshed in OpenFOAM.
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4.2 OpenFOAM

In this thesis, all numerical cases have been created, tested, and executed using Open-
FOAM version 6 on a Ubuntu 18.04 system [Canonical 2018] with the solver pvcFoam

developed by [Senthuran Ravinthrakumar 2023], which makes it possible to operate with
an oscillating flow. The cases have mostly been tested using an 8-core laptop, and run in
parallel on an 80-core computer nicknamed Schlichting after the German fluid dynamics
engineer Hermann Schlichting.

4.2.1 Case creation and meshing

To successfully run a numerical model in OpenFOAM, the case domain and geometry
must first be created and meshed. This is done using a series of commands in a step-by-
step process that activates a multitude of dictionaries in a nested folder structure within
the case. Firstly, the case domain is created using the command blockMesh, where the
size of the domain and the boundary characteristics are determined by its corresponding
dictionary. Secondly, the case geometry must be imported into the domain which is
done by the command surfaceFeatures. The case geometry is created prior to the case
creation where each geometry in the case is defined by a three-dimensional file. These files
are created using a Python script that exports them directly into the case folder.

After defining the case domain and geometry, the case must be meshed. Traditionally,
and as done in the specialization project before this thesis, it is done manually by utilizing
the program gmsh [Geuzaine and Remacle 2009]. However, for these cases, the meshing
is done automatically using the command snappyHexMesh which is a part of the pvcFoam
solver, as well as other similar solvers. The dictionary used by this command subdivides
the domain into regions in a stacked box configuration, where the mesh becomes finer as
one gets closer to the case geometry with transitioning cells around each box as seen in
Figure 4.5. This meshing technique allows the details of the flow around the geometry to
be excellently captured, while the less interesting parts of the domain can be more coarsely
meshed to save computational time. Even though the fluid flow details in the outermost
boxes are not interesting for the cases, it is still vital to keep the domain at a certain size
to minimize the data pollution from the boundaries.

Figure 4.5: The meshing strategy on Case 1 on the full domain. The details around the
geometries are visible in Figure 4.1a.
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After the meshing is completed it is extruded into three dimensions by applying a depth
to the domain. This will allow for the fluid to flow through the domain and is a necessary
step even for two-dimensional cases. This new dimension will however not be meshed, and
OpenFOAM will then treat it as two-dimensional. The extrusion is done by the command
extrudeMesh, which is the final command in the case creation process. There are more
commands used for saving the mesh and creating patches, but these will not be discussed
in this thesis.

4.2.2 Running the cases

After the cases have been created and meshed, they are ready to run. This is done by
initiating the OpenFOAM solver command, in this case, pvcFoam, which initiates the run.
The solver is operated by the controlDict dictionary which specifies parameters such
as duration, time step, and maximum allowed CFL number as presented in Section 2.10.
Functions can also be established in the controlDict dictionary to calculate for instance
the drag and lift coefficients on a body in the flow domain throughout the time-domain
analysis. The solver also needs initial values for parameters such as velocity and pressure
to initialize the simulation. This is done in the 0-folder which represents the initial time
step where the time is equal to zero. In the dictionary initializing the velocity, a constant
velocity can be applied to the domain for cases that have a uniform flow, but since the
cases in this thesis are exposed to a forced oscillatory flow, the velocity is initialized as
zero in all directions. To achieve an oscillatory flow in the pvcFoam solver a dictionary
called movingCoordinateSystemProperties is used. In this dictionary, the acceleration
amplitude is defined which determines which KC number is applied to the case, as shown
in Section 2.9. Additionally, the type of oscillation is defined, as well as its period, phase,
and ramp-up segment. Examples of this dictionary and the controlDict dictionary can
be found in Appendix B.

After a case is finished running the calculated values at each time step from the functions
specified in the controlDict are stored in output files which can be extracted and used
for post-processing. The parameters initialized in the 0-folder can be viewed using a
visualization program called ParaView [Kitware 2002]. Paraview is also useful for viewing
and inspecting the mesh prior to the run, such as in Figure 4.5. In this thesis, all numerical
post-processing has been done using Python scripts.

4.2.3 Previous numerical studies in OpenFOAM

During the specialization project in the fall of 2022 [Hals 2022], some numerical studies
were modeled in OpenFOAM to achieve an understanding of the program and to get into
the meshing techniques. The modeled cases were the same as the ones tested experiment-
ally, and they were only modeled for 10-second runs in a uniform flow. The pvcFoam solver
was not yet available, so the standard icoFoam solver was used. These models were not
useful with regards to the results and in the validation of the experiments, but rather as a
way of learning about the functionality of OpenFOAM in preparation for the work done
in this thesis. In Figure 4.6 the velocity streamlines for cases 11 and 12 are shown. The
results gathered from these models are not further presented as they are irrelevant to the
purpose of the thesis.
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(a) The velocity streamlines surrounding the
bodies in Case 11 in a uniform flow after 10
seconds.

(b) The velocity streamlines surrounding the
bodies in Case 12 in a uniform flow after 10
seconds.

Figure 4.6: The velocity streamlines in cases 11 & 12 in a uniform flow after 10 seconds.

4.2.4 Turbulence model in OpenFOAM

The turbulence model used in OpenFOAM for this thesis is the Reynolds Averaged Sim-
ulation (RAS) model with input parameters from the k-ε model. This turbulence model
was used in the example that came with the pvcFoam solver, and it was therefore chosen
for these numerical models as well. In [OpenCFD 2020] it is stated that a property of the
k-ε model is that it uses a two transport-equation linear-eddy-viscosity turbulence closure
model with a turbulent kinetic energy, k, and a turbulent kinetic energy dissipation rate,
ε. The turbulent kinetic energy equation is defined as

∂

∂t
+∇· (αρuk)−∇2(αρDkk) = αρG−

(
2

3
αρ∇ · uk

)
−
(
αρ

ε

k
k
)
+Sk+SfvOptions, (4.1)

and the turbulent kinetic energy dissipation rate equation is defined as

∂
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k
−
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3
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−
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ε

k
ε
)
+ Sε + SfvOptions. (4.2)

An additional equation that is used in this model is the turbulent viscosity equation which
is defined as

νt = Cµ
k2

ε
. (4.3)

The parameters of Equations 4.1, 4.2, and 4.3, their definitions, and their default values,
if they exist, are shown in Table 4.1.
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Table 4.1: The parameters from the turbulence equations, their descriptions, and their
default values used in OpenFOAM if they are defined.

Parameter Description Default Value

α [−] Phase fraction of the given phase -

ρ [kgm−3] Density of the fluid -

G [m2s−3] Turbulent kinetic energy production rate -

Dε [−] Effective diffusivity for ε -

Cµ [−] Model coefficient for the turbulent viscosity 0.09

C1 [s] Model coefficient 1.44

C2 [−] Model coefficient 1.92

C3 [−] Compression term coefficient -

C3,RDT [−] Rapid-distortion theory compression term coefficient 0.0

Sε Internal source term for ε -

Sk Internal source term for k -

SfvOptions Source terms introduced by the fvOptions dictionary for k & ε -

σk [−] Data fitting model constant for k 1.0

σε [−] Data fitting model constant for ε 1.3

The downside of using this turbulence model for the numerical models in this thesis is
that OpenFOAM uses the default values. These values are mainly valid for a uniform
flow, while the values for an oscillating flow are unknown. The effect this has on the
models is uncertain and could lead to discrepancies with experimental results. Another
possible model that could have been used is the Large Eddy Simulation (LES) model, but it
is however optimized in OpenFOAM for three-dimensional cases and is not appropriate for
reduced-dimension cases [OpenCFD 2016]. Despite the uncertainties, the RAS turbulence
model with the k-ε model parameters is still one of the best options that can be used
without extensive research and data fitting for these specific cases, and it is quite safe to
assume that the results will still be valid, even if they are somewhat tainted by numerical
uncertainties.
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Chapter 5
Results and discussions

In this chapter, the results that have been obtained from the experimental and numerical
tests will be presented and discussed. The results are presented in chronological order after
when they were gathered. The preliminary experimental results were obtained during the
specialization project, and parts of this chapter are gathered directly from the project
report. Some newer results developed by master student Kristian Mikkelsen [Mikkelsen
2023] will be used as a comparison with similar numerical results in Section 5.3, as his
experiments were done more efficiently and with a larger focus on removing error sources
such as the noise pollution from the lab-environment into the frequencies of the cases. The
preliminary results will be directly compared to the numerical results in Section 5.2.1. The
numerical results are all from this thesis and will be presented as stand-alone results, while
some will be compared with experimental results. A sensitivity analysis has also been
performed and will be presented in this chapter, along with some summarizing comments
on the thesis results.

It is important to note that in this chapter, the in-line force that is present in the same
direction as the oscillation motion, the z-direction in both the experiments and CFD, is
referred to as the drag force even though it consists of both a pressure force and a viscous
force. This has been done because the only cross-flow force that is present, which is in
the y-direction for the experiments and the x-direction for the CFD, is the lift force. This
works out as an easier comparison and a way of avoiding misconceptions when comparing
the in-line and cross-flow forces.

5.1 Experimental results of 3D cylinders

This section contains the preliminary results gathered from the experimental tests runs
during the specialization project, and parts of the section are gathered directly from the
project report. All figures in this section are created using a Matlab script that was
developed in collaboration with master student Kristian Mikkelsen. Additional experi-
mental tests were as mentioned performed by him, but the results from his tests will not
be introduced in this section.

The preliminary results are from the cases discussed in Section 3.2, and are focusing on
three KC numbers from each test. These three numbers were chosen to be 8, 16, and 21.5
to give a large spread of results, while also avoiding using the lowest KC numbers for which
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the results were somewhat indistinct due to the small oscillations. The selected oscillation
period of the presented tests was chosen to be T = 1 second rather than T = 1.5 seconds, as
the smaller period allowed for a greater force output which increases the readability of the
data and because all numerical tests and later experimental tests only used a one-second
oscillation.

Unfortunately, during the experimental tests for the medium and large cylinders in Case
2, an unknown source corrupted the data making it unreadable in the case of the large
cylinders, and implausible for the medium cylinders. Since the data for the small cylinders
survived, there can be some focus on the spacing between the cylinders in this section, but
the main significance of the experimental tests will be the differences between the square
and diamond-shaped cylinders.

5.1.1 Case 1, square cylinders

This section contains some of the results from Case 1 with a focus on the tests which
utilized the length-to-diameter ratio L/D = 1 since the smallest cylinders had the largest
disparity between the two cylinders making the readability of the figures increase. The
end effects, which are phenomena that occur in these three-dimensional tests since the
fluid flow can also flow around the ends of the cylinders, could also be more prominent
for this cylinder length. The rest of the sections focusing on the preliminary results also
use the same ratio for comparison’s sake. The remaining figures for Case 1 are presented
in Appendix C.1 and C.2.

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 1 in Case 1.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 1 in Case 1.

(c) The forces acting on the system for KC =
21.5 for L/D = 1 in Case 1.

(d) A comparison of the total force for KC = 8,
16, and 21.5 for cylinders with L/D = 1 in Case
1.

Figure 5.1: The forces acting on the system with L/D = 1 in Case 1, as well as a comparison
of the total forces.

Figure 5.1 makes it clear that for the whole range of KC numbers, one cylinder experi-
ences a larger force at the peaks, and that which cylinder experiences more force switches
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between the top and bottom cylinder based on if the rig is moving in a positive or negative
z-direction. This is also evident from the ∆FD curve having half the oscillation period
of the other curves. Moreover, the ∆FD curve seems to become more intense as the KC
number increases. This implies that the interaction between the cylinders increases with
an increasing KC number. Also, from Figure 5.1d it is evident that the force amplitudes
increase with an increasing KC number, and it seems as if the increase is almost linear
since a doubling of the KC number from 8 to 16 doubles the total force amplitude. How-
ever, the increase in the total force amplitude from KC = 16 to KC = 21.5 is around 45%
while a linear increase would be 34.4%, meaning that at least for higher KC numbers the
total force amplitudes will not increase linearly.

Another observation is that for a higher KC numbers the downstream cylinder i.e., the
bottom cylinder when the rig is moving up and vice versa, will have a broader force curve
than the upstream cylinder. The reason for this may be a greater influence from higher-
order frequencies due to a more prominent wake interaction between the cylinders, and
also possibly due to the end effects. To further analyze this, the force curves will undergo a
Fourier transformation to identify the frequencies and frequency amplitudes of the signal.
This has been done for all KC numbers in all cases, but only the analysis for KC = 21.5 for
Case 1 with L/D = 1 will be shown and discussed due to the process being similar for all
cases. The force curve for the top cylinder for KC = 21.5 and its Fourier transformation
are shown in Figure 5.2.

(a) The filtered force curve for the top cylinder
in the z-direction for one entire steady state run.

(b) The Fourier transformation of the force time-
series in Figure 5.2a

Figure 5.2: The force curve and Fourier transformation for the top cylinder for Case 1
with L/D = 1 at KC = 21.5.

After the Fourier analysis is completed, the frequencies and frequency amplitudes are
stored for further use. A study comparing the effect of the frequency amplitudes of all KC
numbers for the first four frequencies, 1ω, 2ω, 3ω, and 4ω, and the mean force difference,
∆FD, has been done for all cases. The study has only been done for FD,top and ∆FD to be
compared with the observations from Figure 5.1. The study was deemed unnecessary for
FD,bottom as it was too similar to the study for FD,top, and for FD,Total due to it not showing
signs of higher-order contributions due to cancellations between the cylinder forces when
they are added together. In Figure 5.3 the study for L/D = 1 for Case 1 is shown for
FD,top and for ∆FD. The frequency amplitude has been non-dimensionalized to increase
the comparability of the study.
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(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 1 with
L
D = 1.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 1 with
L
D = 1.

Figure 5.3: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 1 with L

D = 1.

Figure 5.3a shows that for the top cylinder it is the 1ω force amplitude that dominates the
drag force. It is as good as linear for all KC numbers, and the other frequencies contribute
almost nothing until about KC = 10. Even after that, the higher-order frequencies only
account for roughly 10% of the 1ω force contribution each. Of the other frequencies, 2ω
and 3ω develop the most for higher KC numbers. ∆FD becomes larger for an increasing
KC number and has about twice the contribution as 2ω. The linearity of the 1ω force com-
ponent can be traced back to Figure 5.1, where the shapes of the curves closely resemble
sinusoidal waves, which themselves are linear. This means that for the forces on each
cylinder, the higher-order frequencies have little effect, and the forces are almost linear.

The results from Figure 5.3b show a very different aspect of the force contributions when
looking at the force difference between the top and bottom cylinder. Here, it is the 2ω force
amplitude that dominates after approximately KC = 8 and develops almost exponentially
following ∆FD. This shows that the mean force difference is almost entirely made up of
the 2ω force amplitude. There is not much happening with the force contributions for the
lower KC values, which might be due to the same reasons why [Sarpkaya 2010] found it
difficult to extract the drag coefficient at these KC numbers, and also due to that fact
that the lower range of KC numbers has a lower actuator velocity meaning that the force
amplitudes are in general smaller. In addition to this, the 4ω force amplitude develops
almost identically to the 1ω force amplitude, with the exception of the highest KC numbers.
This shows that both the 2ω and 4ω force amplitudes have very large contributions to the
force difference when comparing them to the 1ω and 3ω force amplitudes, which is due to
the cancellation of the amplitudes from subtracting the force of the bottom cylinder from
the top cylinder.

An interesting observation is that the drag force term from Morison’s equation in Equa-
tion 2.50 only predicts the 1ω and 3ω force amplitudes, and all other odd-numbered
frequency components, from its Fourier series, meaning that large parts of the harmonic
force amplitudes are not predicted by Morison’s equation alone both when dealing with
a single cylinder and when studying the force difference of two cylinders. [Sævik 2015]
shows the Fourier series of the drag term in Morison’s equation as

F (t) = F0

[
8

3π
sinωt− 8

15π
sin 3ωt− 8

105π
sin 5ωt+ ..........

]
, (5.1)

where it can be noted that the linear term is the same term used in the linearization of the
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drag term in Equation 2.67. He then explains that the even frequency components will be
present in the case of current in combination with waves, but for cases such as the ones
in this thesis, a current is not relevant and a better load model than Morison’s equation
should be developed and utilized.

The results presented in this section are fairly similar to the ones presented by [Reiten
2022], at least with regard to the 2ω domination for ∆FD and the development of ∆FD.
The main difference from his results is a much larger contribution from 1ω for ∆FD, which
in his case was almost zero for all KC numbers, but is significantly higher in Figure 5.3b.
He also argues that the minimal contribution from 1ω comes from the cancellation effects in
the calculation of ∆FD, but these effects may not be as prevalent here due to inaccuracies
in the synchronization and phase-shifting, or due to three-dimensional effects that were
not included in his two-dimensional experimental investigations.

5.1.2 Case 2, square cylinders

This section presents the preliminary results for Case 2 with L
D = 1, and as previously

mentioned, the tests for Case 2 were not entirely successful, and the data for L
D = 2 and

L
D = 3 are unusable. Therefore, there are no figures for Case 2 in the appendix, everything
is presented here in Figures 5.4 and 5.5. Also, the results for Case 2 that are presented
here are most likely incorrect, and should only be seen in comparison with other cases,
such as from [Mikkelsen 2023].

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 1 in Case 2.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 1 in Case 2.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 1 in Case 2.

(d) A comparison of the total force for KC = 8,
16, and 21.5 for L/D = 1 in Case 2.

Figure 5.4: The forces acting on the system with L/D = 1 in Case 2, as well as a comparison
of the total forces.

The first element to note is that for all three KC numbers Case 2 experiences much larger
drag forces than Case 1 with a factor of roughly 60%. The only change between the
test setups is the spacing between the top and bottom cylinder, and it must thus be the
spacing that induces the increase. This is explained by the theories of [Zdravkovich 1977]
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in that for this spacing the two cylinders are in different flow regimes and the wakes of the
upstream cylinder directly hits the downstream cylinder increasing the forces on it, while
for the spacing in Case 1, they are in the same flow regime and the downstream cylinder
is much less affected.

Another element worth noting is that the bottom cylinder consistently experiences a larger
force amplitude than the top cylinder. This is not a real hydrodynamic phenomenon as it
doesn’t occur for any other case or cylinder size, but rather a large source of error caused
by disturbances in the lab environment. It is possible that the same error source that
corrupted the larger cylinders also affected the smallest cylinders but to a lesser extent.
The results presented in this section should therefore not be fully trusted.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 2 with
L
D = 1.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 2 with
L
D = 1.

Figure 5.5: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 2 with L

D = 1.

Figure 5.5 shows many of the same results for Case 2 as Case 1, that the 1ω force amplitude
increases linearly with the KC number and dominates the drag force for the top cylinder,
and that the 2ω force amplitude follows the mean force difference closely and dominates
the experienced force difference between the cylinders. One of the results that are different
in Case 2 than in Case 1 is that the 2ω force amplitude and mean force difference are close
to linear, and not exponential. Again, this can be due to the change in spacing between
the cylinders. For later analyses, the linearity in the 2ω force amplitude disappears, either
meaning that the connection of the spacing and cylinder shape in Case 2 creates the
linearity, or that it is another byproduct of the error source. Either way, the amplitudes
increase by between 50% and 70% from Case 1 to Case 2 which corresponds well with
the general force increase of about 60%.

5.1.3 Case 3, square cylinders

In this section, the results from Case 3 with L
D = 1 are presented and discussed. The

results for the rest of the Case 3 tests are presented in Appendix C.1 and C.2.

As expected, in Figure 5.6 the force magnitudes are quite close to the force magnitudes
in Figure 5.1 for Case 1, since it is in many ways the same case, but with twice as many
cylinders. To get an estimate of the forces for the top and bottom cylinders when there
are four cylinders, the measured forces of the inner and outer actuator plates were divided
by two, and the mass forces were multiplied by two.
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(a) The forces acting on the system for KC = 8
for cylinders with L/D = 1 in Case 3.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 1 in Case 3.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 1 in Case 3.

(d) A comparison of the total force for KC = 8,
16, and 21.5 for L/D = 1 in Case 3.

Figure 5.6: The forces acting on the system with L/D = 1 in Case 3, as well as a comparison
of the total forces.

The resulting force magnitudes are lower than for Case 1, which intuitively may seem odd
since the flow is more complex as it is forced to move faster past the insides of the cylinders
than on the outsides, but this will create a pressure gradient on the cylinders and disperse
some of the forces in the y-direction of the tank. Additionally, some of the fluid that is
forced past the insides will be pushed out between the top and bottom cylinders. In total
this means that the experienced drag forces on the top and bottom row of cylinders are
lower for each cylinder than if they were in the Case 1 configuration.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 3 with
L
D = 1.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 3 with
L
D = 1.

Figure 5.7: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 3 with L

D = 1.

The findings from Figure 5.6 continue through to Figure 5.7a where the magnitude of the
harmonic force amplitudes are a bit lower than for Case 1, but the same linearity and
dominance of the 1ω force amplitude is present. Counterintuitively though, the findings
do not translate well to Figure 5.7b where the 2ω force amplitude is about 13% larger than
for Case 1. This is probably because of the complexity of the flow due to the increase in the
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number of cylinders making the forces more influenced by higher-order force amplitudes.

As a final remark on this case, finding the forces on the cylinders by dividing the total
forces from the actuator plates in two may not be without uncertainties. Some false data
can be procured from this method if the test setup is not fully symmetrical, which can
happen for physical experiments, and since the setup is not actually in infinite fluid the
effects of both the free surface and walls may affect the system by causing the fluid to not
affect each of the top and bottom cylinders equally. But, since there was no other way of
testing four cylinders in the lab, this method provides the most accurate representation
of the forces.

5.1.4 Case 4, square cylinders

This section focuses on the preliminary results of Case 4, which is the same as Case 1 with
an inflow angle of θ = 45◦, with L

D = 1. Additional figures for Case 4 with L
D = 2 and

L
D = 3 can be found in Appendix C.1 and C.2.

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 1 in Case 4.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 1 in Case 4.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 1 in Case 4.

(d) A comparison of the total force for KC = 8,
16, and 21.5 for L/D = 1 in Case 4.

Figure 5.8: The forces acting on the system with L/D = 1 in Case 4, as well as a comparison
of the total forces.

The forces from Case 4 are shown in Figure 5.8. An interesting remark when comparing
these results with Figure 5.1 is that the figure for KC = 8 is almost identical for the two
cases with the same force amplitudes and the same behavior of the ∆FD curve. This trend
does however not continue on to the higher KC numbers as Case 4 experiences an increase
of about 25% for KC = 16 and KC = 21.5. The reason for this property change is most
likely that for KC = 8 the flow is calm enough that cylinders still remain in basically the
same flow regime, while for the higher KC numbers the wake from the upstream cylinder
will be intense enough to affect the downstream cylinder, even though they remain in the
same regime.
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(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 4 with
L
D = 1.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 4 with
L
D = 1.

Figure 5.9: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 4 with L

D = 1.

Figure 5.9a has many of the same properties as the harmonic force amplitudes for FD,top

for Case 1, but the 1ω force amplitude is much less linear in this case as it grows linearly
up until about KC = 10, and grows much faster after that. This confirms the difference
in force amplitudes seen in Figure 5.8 as the values for 1ω are the same for the low KC
numbers and different for the higher ones. If it had grown linearly with the same rate as
before KC = 10, it would be very close to the 1ω force amplitude from Case 1.

The behavior of the harmonic force amplitudes for the force difference is however very
different in Case 4 than in Case 1. It is much more dominated by the 1ω amplitude for
the lower KC numbers, and the 2ω amplitude is a lot more chaotic for the higher values
in this case. It does still follow the mean force difference, but only after about KC = 12.
Additionally, the 4ω amplitude is a lot more prominent than in Case 1, and even the 3ω
amplitude behaves differently.

All of the differences between Case 4 and Case 1 are consequences of the inflow angle
as it is the only factor that has been altered. This causes the flow to be much more
turbulent and chaotic which causes the experienced forces to be much more influenced by
higher-order frequencies. To get the full picture of how the force amplitudes are affected
by the inflow angle a much wider study with many more inflow angles should be carried
out. This was done during the spring of 2023 by master student Kristian Mikkelsen, but
by varying the inflow angle of Case 2 instead of Case 1 since the spacing in Case 1 made
the rotated tests difficult to execute in practice. His findings will not be discussed here
but rather used as a comparison later on. The comparison, as well as the effects found in
this section, will be discussed numerically in Section 5.2.2.

5.1.5 Cases 11, 12, and 13, diamond cylinders

As previously stated, cases 11, 12, and 13 are direct copies of cases 1, 2, and 3, but
with diamond-shaped cylinders instead of square-shaped cylinders, and all the diamond
cases will therefore be presented together in this section. Since the effects of changing
the spacing and number of cylinders already have been discussed for cases 1, 2, and 3,
the main focus of this chapter will be how the diamond cylinder shape affects the cases,
and how the results behave compared to the results from the square cases. To avoid any
repetitiveness in the discussions only the cases using L

D = 1 at KC = 16 will be discussed
in this section. The remaining figures for cases 11, 12, and 13 can be found in Appendix
C.1 and C.2.
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(a) The forces acting on the system for KC = 16
for cylinders with L/D = 1 in Case 11.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 1 in Case 12.

(c) The forces acting on the system for KC = 16
for cylinders with L/D = 1 in Case 13.

(d) A comparison of the total force for KC = 16
for L/D = 1 in cases 11, 12, and 13.

Figure 5.10: The forces acting on the system in cases 11, 12, and 13 with L/D = 1 and
KC = 16, as well as a comparison of the total forces.

In Figure 5.10 the forces in cases 11, 12, and 13 for L
D = 1 at KC = 16, as well as a

comparison plot of the total force of the cases, are shown. The first thing to note is that
the total forces in Figure 5.10d seem to behave quite differently than for the square cases.
Here, Case 12 which has the largest spacing between the cylinders has the lowest total
force, while the opposite is true for Case 2, and Case 13, which has four cylinders has the
largest total force, while Case 3 had the lowest. Case 11 and Case 1 seem to correspond
well with each other, with Case 11 having around 13% higher total force. These behavioral
differences can be caused by two factors; the cylinder shape or false data caused by noise
pollution in the lab environment. The latter factor is the less likely one, but should still
be considered when viewing the results.

When comparing the force curves for cases 1 and 11 in Figures 5.1b and 5.10a it can be
seen that the ∆FD curve has a much larger amplitude relative to FD,top for Case 11 than
for Case 1, indicating that there may be more prominent effects from the higher-order
harmonic force amplitudes for the diamond shaped cylinders. This is also apparent from
the widening of the force curves of the downstream cylinder, which means that they are
further from a linear sinusoidal wave function than in Case 1.

The comparison of cases 2 and 12 is difficult as much of the data from Case 2 is unusable,
but for L

D = 1 at KC = 16 in Figures 5.4b and 5.10b it is clear that Case 12 experiences
lower force amplitudes than Case 2 resulting in a much lower total force. Also, Case 12
has a more regular hydrodynamic relation between the cylinders where it is the upstream
cylinder that experiences the highest forces, instead of the false hydrodynamic phenomena
in Case 2 where the bottom cylinder always experienced the highest force amplitudes
regardless of whether it was upstream or downstream. Unfortunately, this further implies
that all of Case 2 may be corrupted, not just for L

D = 2 and L
D = 3, and that further

analyses into the effects of spacing on the hydrodynamic relation between the cylinders
should be conducted, which for this thesis have been done numerically as later presented
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in Section 5.2.4.

The difference in the force amplitude behavior from Case 3 to Case 13 is very interesting
to study. Firstly, the magnitudes of the forces are much higher in Case 13 than in Case
3, even though both cases are practically the same except for the cylinder shape. A
probable reason for this is that the diamond-shaped cylinders allow for more of the flow
to be forced past both the insides and outsides of the cylinders than the square-shaped
ones meaning that less of the flow passes over the ends of the cylinders and more fluid
can directly interact with the sides of the cylinders causing a larger experienced drag
force. Secondly, while Case 3 had a pretty uniform ∆FD curve, the curve for Case 13
is much more harmonically affected by the higher-order frequency amplitudes. This can
also induce larger drag forces since the amplitudes of the nonlinear terms of the forces
increase, which in turn increases their influence on the force amplitudes. This means that
while Case 1 and Case 3 had semi-similar force contributions, Case 11 and Case 13 have
vastly different ones, which again is caused by the differences in the cylinder shape where
the diamond-shaped cylinders allow more of the flow to pass through the system.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 11 with
L
D = 1.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 11 with
L
D = 1.

Figure 5.11: The harmonic force amplitudes for FD,top and ∆FD and the mean force
difference for Case 11 with L

D = 1.

Figure 5.11a shows that the 1ω harmonic force amplitude evolves linearly as a function
of the KC number in the same way as for Case 1 in Figure 5.3a, and that the amplitude
values correspond well with the values for the experienced forces. There is however a
much larger presence of the higher-order amplitudes for FD,top for Case 13 than for Case
3, which again implies that the diamond-shaped cases have more nonlinearity in their
experienced forces than Case 3. The values for both the 2ω force amplitude and the mean
force difference for FD,top are about twice as high for Case 13 as for Case 3, but the 3ω
and 4ω force amplitudes have around the same values in both cases. This is further shown
in Figure 5.11b where the 2ω force amplitude for Case 13 follows the mean force difference
almost exponentially, but with twice as high values as for Case 3. Case 13 does actually
show less influence by the 4ω force amplitude on the ∆FD force than in Case 3, but the
values are too small to be certain of the cause of the 4ω amplitude in the first place. It
could be heavily influenced by noise pollution from the surrounding environment of the
test setup.
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(a) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 12 with
L
D = 1.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 13 with
L
D = 1.

Figure 5.12: The harmonic force amplitudes for ∆FD and the mean force difference for
cases 12 and 13 with L

D = 1.

The harmonic force amplitudes of FD,top for cases 12 and 13 behave very similarly to Case
11 and are therefore only shown in Appendix C.2. The harmonic force amplitudes of ∆FD

shown in Figure 5.12 do however behave in a very different manner for cases 12 and 13
than for cases 2 and 3, and must be discussed. The harmonic force amplitudes for Case 12
seem very chaotic and at times incoherent. It is heavily influenced by its 1ω amplitude,
which is not the case for any of the other cases, and it even surpasses the 2ω amplitude at
the highest KC numbers. One of the reasons for this 1ω dominance may be that the force
difference is very linear. This does not mean that Case 12 has much less nonlinearity, but
it may imply that the cancellation effects from subtracting the bottom cylinder force from
the top cylinder are much more prominent in this case. This will also explain the very
low values for both the 2ω force amplitude and the mean force difference as they are both
around only 40% as high as the corresponding values for Case 2, while the 1ω amplitudes
have roughly the same values in cases 2 and 12.

The harmonic force amplitudes for the ∆FD force for Case 13 shown in Figure 5.12b
behave almost similarly as in Case 3, but all of the values are larger. The 2ω, 3ω, and
4ω force amplitudes are about twice as large for Case 13 as for Case 3, which corresponds
well with the results of the total forces in the two cases. The main difference between the
cases is the 1ω force amplitude which is four times larger for Case 13 than for Case 3. This
does reflect some of the findings from Case 12 with the force difference being more linear,
and that the cancellation effects may be more eminent for diamond-shaped cylinders than
for square-shaped cylinders.

The results found for cases 11, 12, and 13 substantiate what will be the main takeaway from
the experimental cases; the differences between the square-shaped and diamond-shaped
cylinders are crucial when designing structures that will be subjugated to a harmonically
oscillating flow. Even though more tests should be performed to further analyze the effects
of the cylinder shape, these preliminary results show that the diamond-shaped cylinders
experience more nonlinearity, and may in general experience higher forces which will make
them the less desirable choice for designing floating structures.

52



CHAPTER 5. RESULTS AND DISCUSSIONS

5.2 Numerical results of 2D cylinders

All results from the numerical models will be presented and discussed in this section in the
same order as they were introduced in Section 4.1.1. As previously mentioned, the results
are all gathered from simulations run in OpenFOAM using the pvcFoam solver based
on an example from [Senthuran Ravinthrakumar 2023], and post-processed in Python
using self-made scripts. All of the numerical analyses were done for two-dimensional cases
to minimize the necessary computing time and power. All of the cases were run for a
harmonically oscillating flow with a period of T = 1 second, as this period was found to
give more readable results than T = 1.5 seconds.

5.2.1 Modeling the experimental cases

The results from the numerical models of the physical experiments will be presented in
this section. The model simulations for the experimental cases were based on the same
case configurations as the physical experimental cases shown in Figure 3.3, and discussed
in Section 5.1, with the exception of Case 4 as this case would be incorporated into the
study with a varying inflow angle shown in Section 5.2.2. Here, the cases were configured
as two-dimensional and tested for a range of KC numbers from 1 to 21 with a step size of
∆KC = 0.5, which is the same range as for the physical cases. The numerical results will
also be discussed in the same way as the experimental cases, focusing on KC = 8, 16, and
21.5, and presenting a comparison of the total forces of the three KC numbers, in addition
to the harmonic force component figures for the top cylinder forces and force difference
between the cylinders.

Even though the cases were tested in two dimensions, they needed to be defined in three
dimensions so that the fluid flow could pass through the system in OpenFOAM, before
being spliced through the middle reducing the dimensions of the cases. The length-to-
diameter ratio was chosen to be L

D = 2 meaning that L = 0.1m was used in the non-
dimensionalizing of the cases, but other than that the length into the plane would not
matter.

(a) The forces acting on the numerically simu-
lated system for KC = 8 in Case 1.

(b) The forces acting on the numerically simu-
lated system for KC = 16 in Case 1.
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(c) The forces acting on the numerically simu-
lated system for KC = 21.5 in Case 1.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in Case 1.

Figure 5.13: The numerical force amplitudes and a comparison of the total forces acting
on the system in Case 1.

The first simulation that was tested was the numerical model for Case 1, and its results
are shown in Figure 5.13. In the same way as the results from the experimental Case 1,
the upstream cylinder clearly experiences more drag force than the downstream cylinder,
with the force difference becoming clearer as the KC number increases, and with the ∆FD

curve having half the oscillation period of the other force curves. This does imply that the
hydrodynamic interaction between the cylinders increases for higher KC numbers, which
is also the case for the experimental tests. The broadening of the force amplitude curve of
the downstream cylinder for higher KC numbers is also present in the numerical results.
This indicates that also the numerical simulations are influenced by higher-order harmonic
force amplitudes.

The numerical force amplitudes are quite consistent with the experimental ones, even
though they operate in a different number of dimensions. This could be a coincidental
result, but it can also mean that the most important parameters that influence the force
amplitudes are not dependent on the third dimension, or that OpenFOAM manages to
capture these effects and relay them into two dimensions. Since the magnitudes of the
force amplitudes for Case 1 are similar for both the experimental and numerical analyses,
the total force amplitude comparison in Figure 5.13d shows roughly the same relations
between the three curves, and that the total force amplitude experienced by the system
increases almost linearly with the KC number.

A remark on the shapes of the force amplitude curves is that the numerical curves seem
less linear and more affected by higher-order harmonic force amplitudes as they are less
rounded towards the peaks and look more uneven than the experimental curves. This,
in addition to the broadening of the downstream force amplitude curve and the behavior
of the ∆FD curve, means that the numerical analyses may overpredict the influence of
nonlinear force terms, at least with regard to three-dimensional cases.
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(a) The numerical harmonic force amplitudes for
FD,top and the mean force difference in Case 1.

(b) The numerical harmonic force amplitudes for
∆FD and the mean force difference in Case 1.

Figure 5.14: The numerical harmonic force amplitudes for FD,top and ∆FD and the mean
force difference in Case 1.

The harmonic force amplitudes in Figure 5.14 show that the higher-order harmonic force
amplitudes are in fact much more prominent for the numerical case than in the experi-
mental one. The harmonic force amplitudes of the top cylinder shows that the 1ω force
amplitude has about 75% as high values as the experimental case meaning that the in-
fluence of the linear force amplitude is not quite the same numerically as experimentally
for Case 1. It also shows that the 2ω amplitude is a bit more prominent numerically. The
harmonic force amplitudes for the force difference do however show that the 2ω amplitude
is around 40% higher numerically, and with lower contributions from the other harmonic
amplitudes. This does mean that in total the numerical model estimates that the 2ω force
amplitude for the force difference will be equal to about 47% of the 1ω force amplitude for
the top cylinder, while for the experimental test, it is equal to only about 23% of the 1ω
force amplitude. In addition to this, it would seem that the mean force difference, FD, is
numerically estimated to be about the same as for the experimental case. But, while the
2ω force amplitude for ∆FD closely follows the mean force difference for the experimental
case, it overshoots it numerically by about 40% for the highest KC values. This further
backs up the theory that the numerical model overestimated the nonlinear influence of the
force amplitudes in the system.

Moving on to the next case which is the numerical model of Case 2, the first thing to notice
for the force amplitudes presented in Figure 5.15 is the exceptionally small force difference,
especially for KC = 8. This is a good example of how Case 2 positions the cylinders in
different flow regimes as discussed by [Zdravkovich 1977], since for the lowest KC numbers
it is almost as if they are single cylinders in infinite fluid, and they experience almost no
hydrodynamic interaction with each other. This was not the case for the experimental test,
but again the credibility of that specific test is not to be fully trusted. Some information
about the flow may be lost numerically since the cases are two-dimensional, and there may
be more hydrodynamic interaction than what is simulated.
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(a) The forces acting on the numerically simu-
lated system for KC = 8 in Case 2.

(b) The forces acting on the numerically simu-
lated system for KC = 16 in Case 2.

(c) The forces acting on the numerically simu-
lated system for KC = 21.5 in Case 2.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in Case 2.

Figure 5.15: The numerical force amplitudes and a comparison of the total forces acting
on the system in Case 2.

For higher KC numbers there are more hydrodynamic interactions between the cylinders
since the force difference curve has a higher amplitude, and since the force curve of the
downstream cylinder is more rounded. Still, there is not as much hydrodynamic interaction
as in Case 1, which is as expected since the cylinders are further apart, but it does give
validation to the numerical model simulations. The force curves for Case 2 are also more
rounded toward the peaks, and look more even than the corresponding curves for Case 1,
indicating that there is a lesser influence of the nonlinear force terms. This can also be
seen in Figure 5.16 where the harmonic force amplitudes for FD,top and ∆FD are shown.
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(a) The numerical harmonic force amplitudes for
FD,top and the mean force difference in Case 2.

(b) The numerical harmonic force amplitudes for
∆FD and the mean force difference in Case 2.

Figure 5.16: The numerical harmonic force amplitudes for FD,top and ∆FD and the mean
force difference in Case 2.

Compared to the experimental case the harmonic force amplitude results look nothing alike
with a less linear 1ω force amplitude in Figure 5.16a and a nonlinear 2ω force amplitude
in Figure 5.16b, both with generally lower values. However, the results do compare well
with the same results from the numerical model of Case 1, with a similar, but larger 1ω
amplitude for the top cylinder and smaller 2ω curve for the force difference, which can be
linked directly to the earlier findings of less nonlinear contribution to the force and less
hydrodynamic interaction between the cylinders for Case 2 than for Case 1. The 2ω force
amplitude for the top cylinder is also smaller compared to the 1ω amplitude in this case
which further validates the findings. The differences between the ∆FD and 2ω curves also
seem consistent between the cases.

Case 3 is the next numerical model that will be discussed, and its force curves are shown in
Figure 5.17. When compared to the same results for the experimental test, it can be seen
that the numerical simulation overestimates the experienced drag force on the cylinders.
For KC = 8 the differences in force amplitudes are small, only about 10%, but for the
higher KC values the differences are more substantial with a 22% difference for KC = 16
and a 65% difference for KC = 21.5. These differences could be due to the reduced
dimensions of the model leaving out the end effects, or due to the turbulence model used
in the project not calculating the forces correctly as explained in Section 4.2.4. Either
way, the numerical model for Case 3 does output results that are coherent with Case 1,
and that could be expected from doubling the number of cylinders in the system.

(a) The forces acting on the numerically simu-
lated system for KC = 8 in Case 3.

(b) The forces acting on the numerically simu-
lated system for KC = 16 in Case 3.
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(c) The forces acting on the numerically simu-
lated system for KC = 21.5 in Case 3.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in Case 3.

Figure 5.17: The numerical force amplitudes and a comparison of the total forces acting
on the system in Case 3.

In the same manner as the other numerical models, the force amplitude curves for Case
3 are also more pointed toward the peaks and are less even than their experimental equi-
valent. The force difference curve is also a lot more prominent numerically with a more
established oscillation than the experimental force difference, especially for KC = 8, and
with more prominent peaks. Similar to cases 1 and 2 this implies a stronger contribution
from nonlinear force terms meaning larger higher-order frequency amplitudes.

The harmonic force amplitudes for FD,top and ∆FD are shown in Figure 5.18. When
compared to the experimental force amplitudes, it can be seen that they are quite similar
in both linearity and amplitudes. The 1ω force amplitude for the top cylinder is slightly
less linear than its experimental counterpart, which is probably due to the numerical 2ω
force amplitude for the top cylinder being twice as high as the experimental amplitude
for large KC numbers. Other than that, the 1ω amplitude barely overestimates the force
amplitude with only about 5%, and is about 20% higher than for the numerical model
of Case 1. The 2ω force amplitude of ∆FD does overestimate the experimental results
by roughly 30%, but the numerical mean force difference curve is almost identical to the
experimental one, which means that Case 3 has the same 2ω overprediction as cases 1 and
2.

(a) The numerical harmonic force amplitudes for
FD,top and the mean force difference in Case 3.

(b) The numerical harmonic force amplitudes for
∆FD and the mean force difference in Case 3.

Figure 5.18: The numerical harmonic force amplitudes for FD,top and ∆FD and the mean
force difference in Case 3.
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Since Case 4 was not modeled numerically as a stand-alone case, the next simulations
that will be presented are cases 11, 12, and 13, and they will be presented together in the
same manner as the experimental cases. The results from the three cases are presented
for KC = 16, with a total force comparison figure comparing the three cases to each other
in Figure 5.19. The figures showing the rest of the force amplitudes and comparison plots
can be located in Appendix C.1.

(a) The forces acting on the numerically simu-
lated system for KC = 16 in Case 11.

(b) The forces acting on the numerically simu-
lated system for KC = 16 in Case 12.

(c) The forces acting on the numerically simu-
lated system for KC = 16 in Case 13.

(d) A comparison of the total force for KC = 16
in cases 11, 12, and 13.

Figure 5.19: The numerical force amplitudes and a comparison of the total forces acting
on the cylinders in KC = 16 in cases 11, 12, and 13.

The first thing to notice about these force amplitudes is that they are significantly less
linear than the corresponding experimental force amplitudes and that their peak values
are much larger. This does again mean a significant nonlinear contribution to the force
amplitudes, and to an even greater extent than for the square-shaped numerical force
amplitudes which are much more rounded and linearly oscillating. The larger numerical
impact on the force of the higher-order harmonic force amplitudes does once again show
that the diamond-shaped cylinders are probably less desirable when designing floating
structures that will be exposed to harmonically oscillating flows.

Another element that is important to study is the numerical relation between the total
force curves in comparison with the experimental relation of cases 11, 12, and 13. For both
types of cases, it is Case 13 that has the highest peak values of FTotal for KC = 16, but
numerically it is Case 11 that has the lowest values, and experimentally the lowest values
belong to Case 12. Also, the peak values for Case 13 are much higher experimentally in
comparison with the other two cases, while numerically they are only slightly larger. The
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takeaway from these findings is that the numerical models overestimate the influence of
the nonlinear force terms, which is probably both due to the solver not capturing all of
the data of the flow due to the implemented turbulence model. It is also probably due to
the reduced dimension of the numerical simulations not taking into account the fluid that
escapes past the ends of the cylinders, as it is an inherently three-dimensional effect.

The numerical nonlinearity of cases 11, 12, and 13 can be further seen in the harmonic
force amplitudes for FD,top and ∆FD in the same manner as in cases 1, 2, and 3. Fig-
ure 5.20a shows that the 1ω amplitude is very similar for Case 11 numerically as it was
experimentally, with a close to linear curve in both cases and with almost identical values.
The nonlinearity of the force amplitudes of the top cylinder does therefore stem from the
higher-order force amplitudes, which behave differently for the numerical case than the
experimental case. The numerical 2ω amplitude follows the mean force difference curve
much closer than the experimental amplitude, especially for the highest KC values, and
both the 3ω and 4ω amplitudes are a lot more substantial in the numerical figure, even
though both these amplitudes are lowered towards the highest KC numbers.

(a) The numerical harmonic force amplitudes for
FD,top and the mean force difference in Case 11.

(b) The numerical harmonic force amplitudes for
∆FD and the mean force difference in Case 11.

Figure 5.20: The numerical harmonic force amplitudes for FD,top and ∆FD and the mean
force difference in Case 11.

For cases 12 and 13 only the harmonic force amplitudes of the force difference will be
presented since for the top cylinder the harmonic amplitudes behaved similarly to the
ones in Case 11. They can still be found in Appendix C.2. A first remark on the harmonic
amplitudes of Case 12 in Figure 5.21a is that the almost chaotic state of the same results for
the experimental test is not replicated numerically. This is an indication of the turbulence
model implemented in the simulations not being able to catch the irregularities of the flow,
while still maintaining the most vital information needed to understand the behavior of
the model. The numerical 2ω harmonic force amplitude for Case 11 is also a lot closer to
the ∆FD curve than any of the other 2ω amplitudes from the rest of the numerical cases,
and the 4ω curve is much more prominent. This could be because of the lower values for
the 1ω and 3ω amplitudes.
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(a) The numerical harmonic force amplitudes for
∆FD and the mean force difference in Case 12.

(b) The numerical harmonic force amplitudes for
∆FD and the mean force difference in Case 13.

Figure 5.21: The numerical harmonic force amplitudes for ∆FD and the mean force dif-
ference in cases 12 and 13.

The harmonic amplitudes for Case 13 are shown in Figure 5.21b, and are quite different
from their experimental counterparts. The mean force difference is closely numerically
estimated to the experimental curve, and the 2ω force amplitude overestimates the exper-
imental values in the same way as for most of the other numerical cases. What is different
about Case 13 is the other higher-order amplitudes which are much more prominent than
in the rest of the cases, where for the highest KC numbers the 1ω and 3ω amplitude
values are almost equivalent to half of the 2ω amplitude. The 4ω amplitude is also very
prominent in this case. These facts all contribute to the increase in the nonlinearity of the
experienced forces of the numerical simulation of Case 13 compared to the experimental
case.

The numerical models of the experimental cases did a good job of estimating the cases’
experienced forces and harmonic force amplitudes and validated many of the experimental
results. This validation also means that the numerical solver will most likely predict decent
results for the other case configurations presented later in this chapter. A general rule of
these numerical simulations is that they will overestimate the nonlinear force contributions,
especially the 2ω force amplitude, but will relay most of the flow information correctly,
and can therefore be used to gather data for modeling new cases as well as being used on
existing and tested cases.

A final analysis of the numerical models of the experimental cases is to study the added
mass, damping, and drag coefficients and has been done for cases 1 and 2. The coefficients
have been calculated based on the force outputs from OpenFOAM, the coefficient equations
from Section 2.8, and the constructed acceleration and velocity data from Section 2.9. The
three coefficients for the top and bottom cylinders, as well as the mean drag coefficient of
both cylinders, are presented in Figure 5.22.
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(a) The added mass, damping, and drag coeffi-
cients of Case 1.

(b) The added mass, damping, and drag coeffi-
cients of Case 2.

Figure 5.22: The added mass, damping, and drag coefficients of cases 1 and 2.

It immediately becomes clear from the drag coefficient curve that the drag coefficient model
created in Section 2.8 is not applicable for small KC numbers. Since the only variables that
affect the drag coefficient in this model are the KC number and the damping coefficients,
the drag coefficient will blow up for small KC values if the damping coefficient is not
sufficiently low, which is the case in these figures. It does seem to stabilize for higher KC
values, but should still not be completely trusted. Another problem is that the damping
coefficients in both cases seem unnaturally high and have tendencies of running almost
parallel to the added mass coefficients while never being lower at any point. This should
not happen for the lowest KC numbers where the oscillation is minimal, and there should
be only a tiny amount of damping. The most probable reason for these strange damping
coefficients is that the RANS turbulence model smears a lot of the flow field data when
averaging causing it to record falsely high values of damping in the forces. The added mass
coefficients do however seem less strange, especially for Case 1 where it seems to stabilize
at around CA = 1.2. For Case 2 it steadily grows for all KC numbers, but the growth
seems to let off towards the end where the added mass coefficient is around CA = 2.2.
The expected value for the added mass coefficient is around 1.51, as shown earlier in
Equation 2.62, for a single square cylinder in an infinite fluid. This value may not be
comparable at all to cases 1 and 2 since they consist of two cylinders in close proximity,
but the fact that the added mass coefficients in the two cases are close to the reference
value with Case 1 being lower and Case 2 being higher shows that the coefficient model
is not entirely false. Later in this chapter, it can be seen that for a constant KC value,
the model manages to give a very good estimation of the drag coefficients of two cylinders
that moves away from each other.

5.2.2 Varying the inflow angle

The experimental results for cases 1 and 4 presented in Section 3.2 made it clear that the
experienced forces on the cylinders are dependent on the inflow angle, and that a cylinder
configuration resulting in an inflow angle that is not directly in line with the configuration
may lead to higher forces and higher nonlinear contributions. However, there were not
enough data from these two experimental cases alone to establish a full picture of the inflow
angle dependency and how sensitive the cylinder configuration is to small adjustments in
the inflow angle. It was therefore decided to further test the inflow angle dependency
of cases 1 and 2 numerically by rotating them from their tandem configurations in the
experiments, which has an inflow angle defined as θ = 90◦, to a side-by-side configuration
with an inflow angle of θ = 0◦, with 5-degree increments. It was decided to test cases 1 and
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2 since these cases could also show if the two spacing configurations had different effects
from the inflow angle variation. Case 3 was not tested as it was deemed unnecessary mostly
on account of the double-axis symmetry of the case making the full rotation obsolete. Cases
11, 12, and 13 were also not tested as the experimental tests and the previous numerical
models indicated that diamond-shaped cylinders were less favorable than square-shaped
cylinders, and would therefore not be further used in the simulations.

As a first study of the inflow angle effects on the systems, the general time series of the
drag forces will be compared for a selection of inflow angles which are θ = 0◦, 25◦, 45◦ and
75◦. This can also be compared to the 90-degree configurations of cases 1 and 2 from the
numerical simulations of the experiments. All the simulations that are presented in this
section have been performed at KC = 16 with an oscillation period of T = 1 s.

(a) The forces acting on the numerically simu-
lated system for KC = 16 in Case 1 with an
inflow angle of θ = 0◦.

(b) The forces acting on the numerically simu-
lated system for KC = 16 in Case 1 with an
inflow angle of θ = 25◦.

(c) The forces acting on the numerically simu-
lated system for KC = 16 in Case 1 with an
inflow angle of θ = 45◦.

(d) The forces acting on the numerically simu-
lated system for KC = 16 in Case 1 with an
inflow angle of θ = 75◦.

Figure 5.23: The forces acting on the numerically simulated system for KC = 16 in Case
1 with a range of inflow angles.

The drag force time series for Case 1 at the four inflow angles are shown in Figure 5.23. As
expected, for an inflow angle of θ = 0◦ the experienced drag forces of each of the cylinders
are equal and there is thus no force difference since the cylinders are side-by-side with
regards to the inflow angle, which is the same as the direction of oscillation. This means
that there is no noticeable hydrodynamic interaction between the cylinders. However, this
side-by-side cylinder configuration will be subjected to a minuscule amount of the effects
experienced by a perforated plate exposed to the same conditions, where the fluid velocity
in the gaps of the plate will be larger than the general fluid velocity generating pockets of
lower moving or still fluid directly behind the solid portions of the plate.

Cases 1 and 2 are not perforated plates since [Mentzoni 2020] found that at least nine
bodies in side-by-side configurations would be needed for the same effects. Still, the fluid
velocity in between the cylinders is larger than the fluid velocities on the outsides of the
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cylinders mimicking the perforation effects. This can be seen in Figure 5.24 where the
velocity in the z-direction of the case is shown as both streamlines, which are continuous
lines through the data set, and glyphs, which are rendered geometries at certain data
points showing the direction and intensity of the flow. A red-to-blue scale has been used
to indicate the fluid velocity, where a dark red color indicates a high velocity downwards,
a dark blue color indicates a high velocity upwards, and a lighter blue color indicates very
slow-moving fluid. From the figures, it can be seen that there is a darker shade of red or
a larger glyph concentration between the cylinders than elsewhere.

This small amount of perforation effect can lead to an overall larger experienced drag force
than for instance the same case with an inflow angle of θ = 90◦. This will be further shown
and discussed in a study later in this section.

(a) The velocity streamlines in the z-direction of
Case 1 at KC = 16 with θ = 0◦.

(b) The velocity glyphs in the z-direction of Case
1 at KC = 16 with θ = 0◦.

Figure 5.24: The velocity streamlines and glyphs for Case 1 at KC = 16 with θ = 0◦.
Both subfigures use the red-to-blue color scale for the fluid velocity.

For the force time series of Case 1 with an inflow angle of θ = 25◦ from Figure 5.23b,
there are some noticeable changes from the smaller inflow angle. Firstly, the total force
amplitude, and thus the force amplitudes for both cylinders, has increased by around a
third of the same amplitude for θ = 0◦ meaning that this configuration experiences larger
forces. Secondly, the force difference is no longer zero as there is some hydrodynamic
interaction between the cylinders. This is because this inflow angle has an upstream
and a downstream cylinder where the upstream cylinder will somewhat disturb the flow
experienced by the downstream cylinder. The hydrodynamic interaction is still quite
small, but it shows that even cylinders that are nearly side-by-side will affect each other.

The numerical equivalent to Case 4, which is Case 1 with an inflow angle of θ = 45◦, is
shown in Figure 5.23c, and the results show an overestimation of the force amplitudes when
compared to the experimental case. As previously seen in Section 5.2.1, the numerical
simulations will overestimate the nonlinear force contributions for cases with an inflow
angle of θ = 90◦, and for other inflow angles this overestimation can be even more drastic.
Compared to the smaller inflow angles, the difference between the experienced forces of
the upstream and downstream cylinders is larger and more nonlinear. This is both due
to the general nonlinear overestimation from the numerical solver and the flow becoming
much more turbulent causing a larger hydrodynamic interaction between the cylinders.
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(a) The velocity streamlines of
Case 1 with an inflow angle of
θ = 45◦ at KC = 16 at T =
10 s.

(b) The velocity streamlines of
Case 1 with an inflow angle of
θ = 45◦ at KC = 16 at T =
10.25 s.

(c) The velocity streamlines of
Case 1 with an inflow angle of
θ = 45◦ at KC = 16 at T =
10.5 s.

Figure 5.25: The velocity streamlines of Case 1 with an inflow angle of θ = 45◦ at KC = 16
at T = 10, 10.25, and 10.5 seconds.

In figure Figure 5.25 the streamlines of Case 1 with an inflow angle of θ = 45◦ at KC = 16
are shown at three different times during an oscillation period. The first image shows the
streamlines at T = 10 s which corresponds to a point where the fluid velocity is at its
peak, and the fluid acceleration is equal to zero. At this point, the wakes are fully formed
underneath each cylinder. The second figure shows the streamlines a quarter period later
at T = 10.25 s which is the turning point of the flow meaning that the fluid velocity is close
to zero in most of the domain and the wakes below the cylinders begin to shift around to
the top. The third figure shows the streamlines at T = 10.5 s which is the exact opposite
of the first figure, meaning that the fluid velocity is at a negative peak, the acceleration
is zero, and the wakes are fully formed on the top of the cylinders.

Together these three figures show half an oscillation period of the flow. They show that
the wakes are at their largest just as the oscillation movement turns when the fluid velocity
is zero, but that they at the same time are less intense. The fully formed wakes in the
first and third figures are the ones that will cause the most hydrodynamic interaction
between the cylinders, and the interaction can be seen in these figures from the way the
streamlines are bent through the system creating irregularities in the fluid flow and causing
the wakes to not be directly in line with the oscillation motion, but fluctuating outwards.
The streamline plots for Case 1 at inflow angles of θ = 0◦, 65◦, and 90◦ are shown in
Appendix D. The cases with inflow angles of θ = 25◦ and 75◦ were not simulated in ways
that allowed for these streamline plots to be created, and are therefore not included.

Finally, in Figure 5.23d the forces for Case 1 with an inflow angle of θ = 75◦ are shown.
Here, the total force amplitude is lower than for the two previous inflow angles, but at the
same time, there are a lot more nonlinear force contributions. At this point, most of the
area of the downstream cylinder in the z-direction is directly covered by the area of the
upstream cylinder, which causes the flow to be much more disrupted before reaching the
downstream cylinder, and more turbulent. This will increase the nonlinear contributions to
the forces. Also, for inflow angles of θ = 25◦ and 45◦, the downstream cylinder experienced
higher drag forces than the upstream cylinder, while here it is the opposite. This happens
since the flow that was impacting the upstream cylinder at the smaller inflow angles was
pushed to the side and was also impacting the downstream cylinder. This can be seen
in Figure 5.25a where the region just above the top right of the downstream cylinder has
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a darker color than the same region for the upstream cylinder. For an inflow angle of
θ = 75◦ the same effect is not present as the fluid being pushed to the side will overshoot
the downstream cylinder causing it to experience less force. The switch in which of the
cylinders experiences more force means that for a specific inflow angle, the experienced
drag force will be equal for both cylinders and there will be no force difference. This effect
will also be discussed in a later study in this section.

Now that the effects of changing the inflow angle in Case 1 have been discussed, it is
time to do the same for Case 2. This is also the case that was tested experimentally by
master student Kristian Mikkelsen, and it is the results found in this section that will be
compared to his experimental results in Section 5.3. The force time series for Case 2 at
KC = 16 for inflow angles of θ = 0◦, 25◦, 45◦ and 75◦ are shown in Figure 5.26.

(a) The forces acting on the numerically simu-
lated system for KC = 16 in Case 2 with an
inflow angle of θ = 0◦.

(b) The forces acting on the numerically simu-
lated system for KC = 16 in Case 2 with an
inflow angle of θ = 25◦.

(c) The forces acting on the numerically simu-
lated system for KC = 16 in Case 2 with an
inflow angle of θ = 45◦.

(d) The forces acting on the numerically simu-
lated system for KC = 16 in Case 2 with an
inflow angle of θ = 75◦.

Figure 5.26: The forces acting on the numerically simulated system for KC = 16 in Case
2 with a range of inflow angles.

In the same way as Case 1, the experienced forces on the cylinders for an inflow angle
of θ = 0◦ are equal, and there is no force difference between the cylinders meaning no
hydrodynamic interaction. The perforation effect from Case 1 is much smaller for Case
2 as the spacing between the cylinders has doubled, meaning that the fluid flow is not
moving as fast between the cylinders. This can be seen in Figure 5.27 where the velocity
streamlines and glyphs for Case 2 with an inflow angle of θ = 0◦ are shown. It can be seen
in the first figure that the area between the cylinders is not as dark in color as it was in
the same figure for Case 1, and in the second figure, the glyph concentration between the
cylinders is less prominent than for Case 1. This means that the cylinders in Case 2 at
this inflow angle experience slightly less drag force than in Case 1. This perforation effect
is a hydrodynamic effect caused by the cylinders being in close proximity to each other
meaning that even at an inflow angle of θ = 0◦ there exists some degree of hydrodynamic
interaction between the cylinders for both Case 1 and Case 2, but not in the same way as
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the nonlinear hydrodynamic effects of the other inflow angles.

(a) The velocity streamlines in the z-direction of
Case 2 at KC = 16 with θ = 0◦.

(b) The velocity glyphs in the z-direction of Case
2 at KC = 16 with θ = 0◦.

Figure 5.27: The velocity streamlines and glyphs for Case 2 at KC = 16 with θ = 0◦.
Both subfigures use the red-to-blue color scale for the fluid velocity.

For an inflow angle of θ = 25◦ the force amplitudes in Case 2 are slightly lower than in
Case 1, which is as expected since the cylinders are further apart and less of the fluid
being pushed to the side of the upstream cylinder will impact the downstream cylinder.
However, the force difference between the cylinders is larger for Case 2 than for Case 1,
where the downstream cylinder experiences significantly more force than the upstream
cylinder. Additionally, the downstream force seems to be almost equal in both cases, and
it is the upstream force that is much smaller in this case meaning that the flow that is
pushed to the side of the upstream cylinder in Case 1 tends to be pushed between the
cylinders at a much higher velocity than in Case 2, since the spacing has doubled, leading
to more force on the upstream cylinder in Case 1. This is also due to the small amount
of perforation effect that affects the system, which clearly is not only present at θ = 0◦.
Another detail about this inflow angle is that the force curves are still affected by nonlinear
contributions in Case 2 but to a somewhat lesser degree than in Case 1 as the curves are
slightly more rounded at the peaks. This is also due to the increased spacing which causes
less wake interaction and irregularities between the cylinders.

When it comes to the inflow angle of θ = 45◦ the force amplitudes are overall slightly lower
for Case 2 than in Case 1, which is probably due to the same reasons as for θ = 25◦ where
the increased spacing affects the impact of the downstream cylinder from the flow of the
upstream cylinder. In Case 1, at this inflow angle, the inner vertex of the two cylinders
lined up exactly at the center of the system, while in Case 2 this does not happen, which
means that more fluid is allowed to move between the cylinders causing less interference
and hydrodynamic interaction between the cylinders. This is also reflected by the force
curve shapes for Case 2 which are much less nonlinear than for Case 1. This can be
especially seen when comparing the force difference curves.
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(a) The velocity streamlines of
Case 2 with an inflow angle of
θ = 45◦ at KC = 16 at T =
10 s.

(b) The velocity streamlines of
Case 2 with an inflow angle of
θ = 45◦ at KC = 16 at T =
10.25 s.

(c) The velocity streamlines of
Case 2 with an inflow angle of
θ = 45◦ at KC = 16 at T =
10.5 s.

Figure 5.28: The velocity streamlines of Case 2 with an inflow angle of θ = 45◦ at KC = 16
at T = 10, 10.25, and 10.5 seconds.

In the same way as Case 1, the velocity streamlines of Case 2 with an inflow angle of θ = 45◦

at KC = 16 are shown in Figure 5.28, with the three figures showing the development of
the flow at T = 10, 10.25, and 10.5 seconds. The streamline plots for Case 2 at inflow
angles of θ = 0◦, 65◦, and 90◦ are shown in Appendix D. In the first figure, it can be seen
that at the point of maximum downward fluid velocity, the wakes are fully formed below
the cylinders. In the second figure, the fluid velocity is equal to zero and the oscillation is
at a turning point, which means that the wakes are much larger and less intense than in
the first figure as they are transitioning to the top of the cylinders. Finally, in the third
figure, the wakes are fully formed on top of the cylinders, and the fluid has reached a
maximum upwards velocity. The wakes themselves are very similar in all three figures for
cases 1 and 2, but the flow moving between the cylinders is much less intense in this case,
which reflects many of the findings discussed in the previous paragraph.

The largest differences between cases 1 and 2 can be found for an inflow angle of θ = 75◦.
Unlike the previously discussed inflow angles, it is Case 2 that experiences the largest forces
in this case. This is most probably due to how the cylinders align in this case compared
to Case 1. Here, the inner vertex of the upstream cylinder aligns almost exactly with the
midpoint of the top inner face of the downstream cylinder, meaning that the wake of the
upstream cylinder will impact the downstream cylinder head-on. This does not happen in
Case 1 since the inner vertex of the upstream cylinder aligns with a point much further out
on the downstream cylinder allowing much more of the flow to pass it by. Case 2 is also a
lot less nonlinear than Case 1, and has a much less irregular force difference. This is also
due to the alignment of the cylinders, and since the spacing has doubled the wake from the
upstream cylinder is allowed to form a lot more before impacting the downstream cylinder
meaning that the hydrodynamic interaction between them becomes much less dependent
on higher-order harmonic force amplitudes.

The effects the inflow angle has on the nonlinearity and amplitude of the experienced forces
in the system are quite interesting to study. The experimental data and the data from the
previous numerical simulations only give results that are valid at an inflow angle of θ = 90◦,
and the results are far from conservative in comparison to the results from a number of
other inflow angles. This means that finding the results for a specific inflow angle is not
enough to understand the entirety of the hydrodynamic interactions between the cylinders
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and a full analysis of the system should be performed to understand and implement these
effects correctly. The outward bending of the flow as seen in the streamline plots is another
interesting effect related to the inflow angle that can cause large lift forces on the cylinders,
which in these cases means forces acting orthogonal to the oscillation direction. Together,
these effects show that a harmonic analysis of the force components at all inflow angles
between θ = 0◦ and θ = 90◦ is necessary. This has been done in the same manner as
for the numerical models of the experimental cases in Section 5.2.1 where it was done for
each KC number, and the results are presented in polar plots relating the non-dimensional
harmonic force amplitudes to the inflow angles. All polar plots presented in this section
were created based on the results for KC = 16.

(a) A polar plot showing the harmonic force
amplitudes of FD,top for Case 1 at KC = 16 for
all inflow angles.

(b) A polar plot showing the harmonic force
amplitudes of ∆FD for Case 1 at KC = 16 for
all inflow angles.

Figure 5.29: Polar plots showing the harmonic force amplitudes of FD,top and ∆FD for
Case 1 at KC = 16 for all inflow angles.

Figure 5.29 shows the polar plots for the harmonic force contributions for FD,top and ∆FD

for Case 1 at KC = 16. In the first figure, it can be seen that the experienced drag force
of the top cylinder has almost no higher-order harmonic force contributions, and is almost
entirely linear. The plot shows that the 1ω force amplitude increases drastically for inflow
angles around θ = 45◦, which reflects the amplitudes of the force curves from Figure 5.23.
The amplitude is almost three times as large for θ = 45◦ as for θ = 90◦, which again
shows that results from modeling only the tandem configuration of the cylinders can not
be relied on to reflect the actual forces experienced by the system in all conditions. Also,
for the smaller inflow angles, it can be seen that the 1ω amplitude slightly increases. This
is due to the perforation effect discussed earlier in this section which induces a higher
experienced drag force on the cylinders. This also shows that the 1ω amplitude for θ = 0◦

is actually much larger than for θ = 90◦, meaning that the negative drag induced on the
cylinders in the tandem configuration amount to a lot. It is also worth mentioning that
of the higher-order contributions it is the 3ω harmonic amplitude that has the highest
amplitude values.
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The second figure shows the harmonic force contributions of the drag force difference
between the cylinders. As for the standard cases presented earlier, there is next to no
contribution from the 1ω and 3ω amplitudes as they are canceled out when subtracting
the bottom force from the top force. The force difference is therefore heavily influenced
by the 2ω force amplitude, and in the same way as the other numerical cases, the 2ω
amplitude is overestimated since it overshoots the mean force difference while their shapes
coincide. The 4ω contribution is also present but to a much smaller degree. It is worth
noting that the non-dimensional force axes of the two figures are not equal, and that in
total the higher-order contributions of ∆FD are much smaller than the linear contribution
to FD,top, which again reflects the results from the previous numerical cases well.

(a) A polar plot showing the harmonic force
amplitudes of FL,top for Case 1 at KC = 16 for
all inflow angles.

(b) A polar plot showing the harmonic force
amplitudes of ∆FL for Case 1 at KC = 16 for all
inflow angles.

Figure 5.30: Polar plots showing the harmonic force amplitudes of FL,top and ∆FL for
Case 1 at KC = 16 for all inflow angles.

The polar plots in Figure 5.30 show the harmonic force contributions for the lift force
experienced by the top cylinder, and the lift force difference between the cylinders. As
previously mentioned, for many of the inflow angles the lift force may be substantial, and
as seen in the first figure the harmonic contributions of FL,top are heavily present for a
large range of inflow angles except towards the tandem and side-by-side configurations.
The experimental cases and first numerical cases were done for an inflow angle of θ = 90◦

and the lift forces were found to be negligible, which coincides with the polar plots where
the values at the highest inflow angles go to zero very quickly. An interesting observation
on the harmonic amplitudes in the first figure is that in opposition to the drag force for the
top cylinder, the lift force is heavily influenced by higher-order harmonic force amplitudes
for most of the inflow angles. An exception is for the lowest inflow angles where only the
1ω amplitude is present. Also, for an inflow angle of θ = 45◦ the 1ω component races
towards zero creating two large regions of the 1ω force amplitude. A theory behind why
this has happened is that at this exact inflow angle, the inner vertexes of the cylinders
line up exactly in the direction of the oscillation which may cause the 1ω amplitude to
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decrease drastically as the flow around the cylinder becomes entirely nonlinear. This
may be an entirely numerical phenomenon as the RANS turbulence model used in these
simulations does not capture the wake correctly, which may lead to inaccurate results.
Another observation of the harmonic amplitudes is that while the 1ω amplitude for FL,top

is much lower than for FD,top, the 2ω amplitude is actually much larger, meaning that the
lift force has much more higher-order harmonic force contributions than the drag force
and that it is much more nonlinear.

In the second figure the harmonic force amplitudes of ∆FL show similar properties to
the amplitudes of ∆FD with some major differences. Firstly, the values of the 2ω and
4ω amplitudes are a lot larger for the lift force difference, and the mean force difference
also has much higher values. This again shows how the lift force has way more nonlinear
contributions than the drag force. Secondly, the values close to inflow angles of θ = 0◦

and 90◦ go rapidly towards zero, explaining the lack of lift forces in the tandem cases.
The 1ω and 3ω harmonic force amplitudes are in the same way as for ∆FD negligible and
show that the force difference between the cylinders is completely nonlinear for both the
drag and the lift forces. The largest amplitudes in both figures are occurring at an inflow
angle of around θ = 60◦, with the exception of the 1ω amplitude for FL,top which has an
additional peak at θ = 20◦. The main peak is located at around the same inflow angle as
where the upstream and downstream cylinders switch between who experiences the largest
drag force, as explained earlier in this section. This may be coincidental, but it may also
show a coupling between the drag and lift forces at these inflow angles, as it is also in the
same area where the largest amplitudes for ∆FD are found.

One important aspect to note when comparing Figure 5.30a with Figure 5.30b is that
the 2ω force amplitude curves have close to identical shapes, and the curve in the second
figure has around twice as high amplitudes as the one in the first figure. This can be
seen by the non-dimensional axes of the figures, as well as by comparing the 2ω amplitude
curves with the mean force difference curves which are the exact same curve in the two
figures. This phenomenon comes from the creation of the lift force difference where the lift
force of one cylinder is subtracted from the other and shows that the 2ω force amplitudes
are 180◦ out of phase with each other. This leads to them not canceling out, but being
added together due to their phases. These same properties can also be found for the 4ω
amplitudes, which also have the same shapes in both figures and twice as high amplitudes
in the second figure. The 1ω and 3ω amplitudes do however have the same phase leading to
them canceling each other out in the creation of the lift force difference. This phenomenon
does not only occur for the lift forces but also the drag forces. It is much harder to see in
Figure 5.29, but the 2ω and 4ω force amplitudes do have the same shapes in both figures
and twice as high amplitudes in the second figure in the same way as for the lift force.

What this phenomenon means for the system is that while the odd-numbered harmonic
force amplitudes will mostly interact with each cylinder on their own, the even-numbered
amplitudes will dominate the hydrodynamic loads between them. This could be problem-
atic to model theoretically due to the nature of Morison’s equation. When looking at the
Fourier series of the drag term of Morison’s equation in Equation 5.1, it becomes apparent
that only the odd-numbered terms are included in this load formulation, and an improved
load formulation should be created to better capture the effects of the even-numbered
harmonic force amplitudes.

The polar plots of the harmonic force amplitudes of FD,top and ∆FD for Case 2 are
presented in Figure 5.31 in the same manner as for Case 1. The non-dimensionalized
axes have been scaled to the same values as in Figure 5.29 to better show the differences
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in the amplitudes between the cases. Figure 5.31a shows that the 1ω force amplitude
dominates the drag force of the top cylinder and that the higher-order contributions are
a lot smaller, which is the same as for Case 1. Also, all of the harmonic amplitudes for
FD,top have lower values for most of the inflow angles than for Case 1, with the exception
of inflow angles larger than θ = 65◦. This means that the findings from Section 5.2.1
where Case 2 was found to have larger harmonic contributions than Case 1 are not valid
for all inflow angles, and that for most inflow angles it is Case 1 that experiences larger
forces. This does make sense from a geometry perspective when the increased spacing is
considered. The upstream cylinder will cover the downstream cylinder for fewer inflow
angles in Case 2 than in Case 1 since the rotation will reveal the downstream cylinder
to the flow earlier when the distance between them is greater, and the hydrodynamic
interaction between the cylinders will decrease. The fact that the switch between which
case experiences higher amplitudes happens at around the same inflow angle as where
the upstream and downstream cylinders in both Case 1 and Case 2 switch between who
experiences the largest drag force may again be purely coincidental, but it is still worth
having in mind.

(a) A polar plot showing the harmonic force
amplitudes of FD,top for Case 2 at KC = 16 for
all inflow angles.

(b) A polar plot showing the harmonic force
amplitudes of ∆FD for Case 2 at KC = 16 for
all inflow angles.

Figure 5.31: Polar plots showing the harmonic force amplitudes of FD,top and ∆FD for
Case 2 at KC = 16 for all inflow angles.

Figure 5.29b shows that the harmonic force contributions for ∆FD behave quite differently
in cases 1 and 2. The inflow angles which had the highest 2ω amplitudes in Case 1 have the
lowest in Case 2. This can, however, be explained by the same phenomenon found earlier
that there exists an inflow angle where the upstream and downstream experience the exact
same drag force, which means that the force difference becomes zero at that inflow angle.
This will of course mean that there are also no harmonic force contributions as there is
nothing to contribute to. This does also happen in Case 1, but very differently since the
2ω amplitude does not go to zero, it only goes a bit down at θ = 65◦, and the 4ω goes to
a lower value, but at a different inflow angle of θ = 50◦. These observations for cases 1
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and 2 may lead to the conclusion that this phenomenon is heavily influenced by numerical
effects, such as the RANS model, and that in experimental tests, the complexity of the flow
would not lead to zero force difference for any inflow angles resulting in more continuous
amplitude curves. Even though there are significant differences in how the harmonic
force contributions for ∆FD behave in Case 1 and 2, the same fact still remains that the
amplitudes for the higher-order force difference contributions are dominant resulting in
an almost strictly nonlinear force difference, while the linear force contribution dominates
the force of the top cylinder making FD,top almost linear.

The harmonic force contributions of FL,top and ∆FL for Case 2 are shown in Figure 5.32.
Much in the same way as FD,top the harmonic force contributions for FL,top are very similar
in cases 1 and 2, but with slightly lower amplitudes in Case 2. The 2ω amplitude is almost
equally dominant as the 1ω amplitude for most inflow angles, with the exception of angles
lower than θ = 35◦ where the 1ω amplitude has a second peak which dominates the force.
The same trend of the 1ω amplitude going towards zero for an inflow angle of θ = 45◦ is
found in both cases. This was explained in Case 1 as being due to the inner vertexes of the
cylinders lining up with the oscillation motion axis making the force entirely nonlinear,
but this does not happen in Case 2 since the spacing between the cylinders is increased.
It is however at θ = 45◦ that the cylinders are exactly diamond-shaped which means that
the upstream cylinder should in theory split the flow equally to either side. It is probably
this property that creates the nonlinearity in both cases, but the explanation in Case 1
may still be valid for that particular case. Another aspect of the first figure is that at the
second peak of the 1ω amplitude, there is also a small 3ω peak. This peak exists for both
cases, but it is the only amplitude peak that is larger in Case 2 than in Case 1. This may
be traced back to Case 2 being, in general, more influenced by the nonlinear contributions
since the wakes have more space to form between the cylinders.

(a) A polar plot showing the harmonic force
amplitudes of FL,top for Case 2 at KC = 16 for
all inflow angles.

(b) A polar plot showing the harmonic force
amplitudes of ∆FL for Case 2 at KC = 16 for all
inflow angles.

Figure 5.32: Polar plots showing the harmonic force amplitudes of FL,top and ∆FL for
Case 2 at KC = 16 for all inflow angles.
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The harmonic amplitudes for ∆FL for Case 2 in Figure 5.32b show similar properties to
the same amplitudes in Case 1, but the values are somewhat lower. This indicates that
the increased spacing between the cylinders affects the lift force since the fluid flow is
impacting the inner faces of the cylinders with less intensity, as the flow is moving slower
between the cylinders in Case 2 than in Case 1. The amplitude peaks are less rounded
in Case 2 than in Case 1 which means that Case 2 has lift contributions on a smaller
range of inflow angles than Case 1. Also, the location of the peak has moved to θ = 55◦

which is a lower inflow angle than in Case 1 where the peak was located at θ = 60◦.
This shift also happened for the main peaks for FL,top. In the same way as for Case 1
the 2ω and 4ω amplitudes are 180◦ out of phase for the top and bottom cylinders and
are therefore added together when creating ∆FL, while the 1ω and 3ω amplitudes are in
phase and are canceled out. This again leads to the 2ω and 4ω amplitudes having the
same shapes in both figures, but twice the amplitude in the second figure, which once more
shows that an improved load formulation than the existing Morison’s equation is needed
to fully capture the hydrodynamic loads of the system. Polar plots directly comparing the
different harmonic force amplitudes of both the drag and lift forces of Case 1 and 2 can
be found in Appendix E.

The last part of this study is to look briefly into the vorticity of Case 1 and Case 2 at a
selection of inflow angles which is θ = 0◦, 45◦, 65◦, and 90◦. The vorticity describes the
spinning motion of the fluid, meaning that it describes the wakes, and since these cases
are two-dimensional in the xz-plane, the vorticity has no y-component but runs in parallel
to the y-axis. The 2D vorticity in the xz-plane is expressed by [Faltinsen 1993] as

ωy =
∂u

∂z
− ∂w

∂x
, (5.2)

where u and w are the fluid velocities in the x and z directions. Since the RANS model
is being used to model the turbulence in these cases much of the vorticity is smeared out
due to the averaging, and the vorticity of Case 1 and Case 2 is therefore not completely
accurate but can be used to get the general idea of how the wakes are formed in these
cases. The vorticity for the range of inflow angles is shown in Figure 5.33 for both cases. In
these figures, a red color indicates vortexes that spin counter-clockwise, while a blue color
indicates a clockwise spin. The vorticity images were all created from the tests with the
maximum amount of wakes, which was for KC = 21.5 at points of maximum oscillation
velocity.
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(a) The vorticity of
Case 1 at KC = 21.5
for an inflow angle of
θ = 0◦.

(b) The vorticity of
Case 1 at KC = 21.5
for an inflow angle of
θ = 45◦.

(c) The vorticity of
Case 1 at KC = 21.5
for an inflow angle of
θ = 65◦.

(d) The vorticity of
Case 1 at KC = 21.5
for an inflow angle of
θ = 90◦.

(e) The vorticity of
Case 2 at KC = 21.5
for an inflow angle of
θ = 0◦.

(f) The vorticity of
Case 2 at KC = 21.5
for an inflow angle of
θ = 45◦.

(g) The vorticity of
Case 2 at KC = 21.5
for an inflow angle of
θ = 65◦.

(h) The vorticity of
Case 2 at KC = 21.5
for an inflow angle of
θ = 90◦.

Figure 5.33: The vorticity of Case 1 and Case 2 at KC = 21.5 for inflow angles of θ = 0◦,
45◦, 65◦, and 90◦.

For an inflow angle of θ = 0◦ the vorticity coming from the inner faces of the cylinders
has a darker color in Case 1 than in Case 2, which is because the tighter spacing in Case
1 moves the fluid faster through the system. This does also back the idea that Case 1
experiences some degree of perforation effect, while the effect is much less prevalent in
Case 2. The vorticity for an inflow angle of θ = 45◦ shows that the inner vorticity of
the upstream cylinder is thoroughly forced through the middle of the cylinders in Case
1, and while this also happens in Case 2, it is allowed to move further away from the
body. This may lead to the upstream cylinder being exposed to less force than in Case
1. Additionally, the vorticity of the downstream cylinder is very different on the inside
and outside of the cylinder in Case 1, while in Case 2 they are much more equal. This is
most likely due to more fluid being allowed to pass through the middle of the cylinders
inducing a larger vortex shedding off of the inner vertex of the downstream cylinder in
Case 2 than in Case 1. The first finding from θ = 45◦ is also found for θ = 65◦ where the
inner vorticity of the upstream cylinder can move more freely away from the body while
still being pushed between the cylinders. The inner vorticity of the downstream cylinder
seems to be more intense also for this inflow angle, but not so much that it equals the
outer vorticity. The final inflow angle of θ = 90◦ shows that the vorticity of the upstream
cylinder in Case 1 heavily impacts the downstream cylinder, while for Case 2 the vorticity
dies out to a certain degree before impacting the downstream cylinder. This is again due
to the cylinders going from being in the same flow regime in Case 1 to being in different
regimes in Case 2, as proposed by [Zdravkovich 1977]. Other than that, the vorticity
behaves similarly in both cases.

A better turbulence model than RANS would have shown more of the vortex shedding
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and would have done a better job of showcasing the general vorticity in these images, but
as previously mentioned it was the optimal model for these two-dimensional cases. Also,
the vorticity of especially θ = 0◦ and 90◦ seems to be very symmetrical, and a numerical
perturbation should be added to the flow field to encourage more vortex shedding and
more fluctuation in the flow. However, some wakes can be seen despite the drawbacks of
the turbulence model. For instance, at an inflow angle of θ = 65◦, the slightly blue area to
the left of the downstream cylinder in both cases is a vortex spinning in a clockwise motion.
Similar vortexes can be seen for θ = 90◦ where small red and blue areas are present on
either side of the vorticity of the downstream cylinder in both cases. These areas are two
vortexes that have opposite spinning motions and were shed by the downstream cylinder
around half a second earlier when the system was moving with a maximum velocity in the
opposite direction. These vortexes, and many more that are blended out by the averaging
in these cases, would have been shown much more clearly if a better turbulence model was
used.

5.2.3 Horizontal misalignment of the cylinders

These results are gathered from the three cases created with Case 2 as a base, where the
downstream cylinder is shifted 3, 5, and 10 percent of the cylinder diameter as described
in Section 4.1.3. The cases were tested for a range of inflow angles from θ = 0◦ to 90◦,
with a 5-degree step size, which is the same range as the one used in Section 5.2.2. The
results will be presented from their harmonic force amplitudes in polar plots where the
three cases will be presented alongside a reference case with no shift of the downstream
cylinder. All of the tests were performed for KC = 16, and with an oscillation period of
T = 1 s. Many of the same properties were seen for these cases as for the cases in the last
section, and therefore not all harmonic force amplitudes will be shown, as many of them
were negligible. Also, the hydrodynamic phenomena seen in the plots will not be discussed
in this section as they have been covered in previous sections. Only the effect the cylinder
shifting has on the phenomena will be studied. The effects on the drag and lift forces will
be presented separately as the combination of the two would make the plots difficult to
read both due to the number of curves and also due to the difference in amplitude.

(a) A polar plot showing the 1ω harmonic force
amplitude of FD,top for Case 2 at KC = 16 for
different cylinder misalignments.

(b) A polar plot showing the 3ω harmonic force
amplitude of FD,top for Case 2 at KC = 16 for
different cylinder misalignments.
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(c) A polar plot showing the 2ω harmonic force
amplitude of ∆FD for Case 2 at KC = 16 for
different cylinder misalignments.

(d) A polar plot showing the 4ω harmonic force
amplitude of ∆FD for Case 2 at KC = 16 for
different cylinder misalignments.

Figure 5.34: Polar plots showing the 2ω and 4ω harmonic force amplitudes of ∆FD for
Case 2 at KC = 16 for a cylinder shift of 0%, 3%, 5%, and 10% of the cylinder diameter.

Figure 5.34 shows the results of the 1ω and 3ω harmonic force amplitudes for FD,top and the
2ω and 4ω harmonic force amplitudes for ∆FD in Case 2 at KC = 16 for the four different
cylinder misalignments. In general, the figures show that the misalignments do not affect
the harmonic amplitudes in any significant manner, or in any special pattern. Which
case results in the highest amplitudes varies between all three of the new misalignment
cases, but they all have generally larger amplitudes for the drag force of the top cylinder
than the case with zero misalignments for most inflow angles, even though the amplitude
differences are not significant. The force difference seems less negatively affected by the
misalignments for the 4ω amplitude where it is the case with zero misalignments that
has the largest amplitudes for most inflow angles, while the 2ω amplitude behaves more
similarly to the amplitudes of the drag force.

77



CHAPTER 5. RESULTS AND DISCUSSIONS

(a) A polar plot showing the 1ω harmonic force
amplitude of FL,top for Case 2 at KC = 16 for
different cylinder misalignments.

(b) A polar plot showing the 3ω harmonic force
amplitude of FL,top for Case 2 at KC = 16 for
different cylinder misalignments.

(c) A polar plot showing the 2ω harmonic force
amplitude of ∆FL for Case 2 at KC = 16 for
different cylinder misalignments.

(d) A polar plot showing the 4ω harmonic force
amplitude of ∆FL for Case 2 at KC = 16 for
different cylinder misalignments.

Figure 5.35: Polar plots showing the 2ω and 4ω harmonic force amplitudes of ∆FL for
Case 2 at KC = 16 for a cylinder shift of 0%, 3%, 5%, and 10% of the cylinder diameter.

Much of the same can be seen in Figure 5.35 which shows the results of the harmonic
force amplitudes for FL,top and ∆FL in Case 2 at KC = 16 for the four different cylinder
misalignments. Many of the same trends can be seen in the first two figures for the lift force
amplitudes of the top cylinder as for the drag force amplitudes, where the misaligned cases
in general have higher amplitudes than the reference case. Also, the first of the two peaks
for the 1ω amplitude show that of the four cases, the reference case and the case with a
10% misalignment both experience some anomalies for inflow angles between θ = 60◦ and
80◦. These anomalies are not present in the 3ω amplitude, which means that there may
be much numerical uncertainty and instability interfering with some of the results as a
consequence of either the turbulence model, the mesh, the time step, or other factors. The
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force difference amplitudes in the last two figures are much more smooth for all four cases
and show a smaller level of uncertainty than the drag amplitudes, which is probably not
due to higher stability in the system, but rather a poor refinement of the higher harmonic
lift force amplitudes due to the turbulence model.

One effect that may be surprising is that the results coincide at θ = 90◦ in all of the
figures, while at lower inflow angles there are more disparities. This makes perfect sense
for the figures where the amplitude values at this point are zero, but for the figures where
they are not, it may seem unnatural since the misalignments mean that a portion of the
downstream cylinder is directly hit by the fluid flow and that the vorticity of the upstream
cylinder impacts it unevenly. This should mean that the results differed more than they
do, but this is not the case. This is because the magnitudes of the misalignments are
very small in the cases even though they should be significant, but due to the size of the
mesh that has been used the misalignments do not account for that much. The mesh
that was used in the cases is Mesh 2 from Table 5.1 that is shown later in Section 5.4.
The reasons for using this mesh will be explained in that section. With a general cell
length of ∆x = 0.001667m, and a cylinder diameter of D = 0.05m, the actual size of the
misalignments becomes apparent. This means that a 3% shift equals less than one cell,
a 5% shift equals one and a half cells, and a 10% shift equals three cells. When this is
combined with the fact that the RANS turbulence model does not simulate the wakes well
enough it becomes obvious that most of the effects are averaged and smeared, and that
both a finer mesh and a better turbulence model should have been used for this analysis
so that the finer details of the flow and thus the small effects of the misalignments would
be captured.

In spite of this, the study did procure relevant results and indications which show that
the misalignment caused by independent movements of experimental test rigs can pollute
the test data and that one should be cautious of these issues, since the amplitudes may
become larger or smaller at seemingly random places. It does, however, seem likely that
the bandpass filtering used for the experimental cases as explained in Section 3.4 will
filter out most of the pollution caused by these movements. Numerically, the independent
movement is of course not a problem as the only misalignments that should be possible to
create are made on purpose, as has been done in this analysis. This can also be done to find
uncertainty levels that can be applied to the numerical data to better mimic experimental
data, or it can be done as a way of refining experimental data by tuning it using the
misalignment uncertainty results to get rid of any pollution that is left after filtering the
data.

5.2.4 The effect of the spacing between the cylinders

In this section, the results from the numerical models of two square cylinders with in-
creasing spacing between them are shown. These tests were done to thoroughly study the
effects of the spacing between the cylinders, and what would happen to the harmonic force
components when the cylinders were moved away from each other. The chosen spacings for
the models started at s/D = 0.2, where s is the distance between the cylinders and D is the
cylinder diameter. The next ten cases were then created at intervals of 0.2 until s/D = 2.2
before creating six cases with s/D = 2.5, ...5.0 with intervals of 0.5. A larger interval was
chosen for the larger spacings as the dependency on the distance was expected to drop as
the distance increased. The creation of the cases is also discussed earlier in Section 4.1.4.
The effect the spacing between the cylinders has on the added mass, damping, and drag
coefficients of the two cylinders will also be covered in this section. The same coefficient
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model that was used to calculate the coefficients for cases 1 and 2 in Section 5.2.1 is also
implemented for these cases.

All of the cases presented in this section were performed using the same parameters as
previous numerical tests, with KC=16 and an oscillation period of T = 1 s, again for better
correspondence with the other cases so that they can more easily be compared. The most
interesting part of these models are the harmonic force amplitudes and coefficients, and
therefore the standard force curve figures for the cases will not be presented here.

Figure 5.36: The harmonic force amplitudes of FD,top for the square cylinder cases with a
varying s/D at KC = 16.

In Figure 5.36 the harmonic force amplitudes of FD,top for the cases with varying s/D at
KC=16 are shown. In the same way as in previous numerical models, the results of the
top and bottom cylinders are too close to necessitate individual presentations, and thus
the findings from this figure are also valid for the drag force of the bottom cylinder. Two
vertical lines have also been plotted and labeled in the figure to better show exactly which
s/D values correspond with cases 1 and 2. From this figure, the dependency of the distance
between the cylinders on the harmonic drag force amplitudes, and thus the drag force,
is obvious. The 1ω force amplitude is rapidly increasing with increasing spacing, before
evening out after around s/D = 3.0, which corresponds to a case with three times the
cylinder spacing as Case 1. The value that it seems the 1ω amplitude converges towards is
roughly 80% larger than its initial value at s/D = 0.2. This convergence implies that the
effect the spacing has on the force results will diminish with an increased s/D, and after
a certain distance between the cylinders each cylinder will behave as a single cylinder in
infinite fluid, and the hydrodynamic interaction between the cylinders is gone.

The statement that Case 1 has both cylinders in the same flow regime and Case 2 has each
cylinder in a different flow regime, is not reflected that well from the 1ω amplitude. It is
however clear from the 2ω amplitude and to a lesser degree the 3ω and 4ω amplitudes,
that there is a change in the regimes between Case 1 and Case 2. The 2ω harmonic force
amplitude is slightly increasing from s/D = 0.2 until s/D = 1.0, which is Case 1, before
decreasing towards a negligible value at around s/D = 3.0, which is the same spacing
value where the 1ω amplitude flattened out. The 3ω amplitude is subtly decreasing from
s/D = 0.2 to s/D = 0.6 before increasing to a constant value at s/D = 2, while the 4ω
amplitude is almost constant for all spacings, but has some fluctuating values before
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s/D = 1.0. The mean force difference curve reflects the same as the 2ω amplitude curve
but with generally higher values.

These findings imply that for the cylinder spacings that are smaller than Case 1, the
drag force is at its most nonlinear since it is in this first region that the higher-order
harmonic force amplitudes are largest, while the linear amplitude is the smallest. For
spacings between s/D = 1.0 and around s/D = 3.0, the next region is located and it is
here the nonlinearity of the drag force diminishes, and where the linear harmonic force
amplitudes start to converge. After s/D = 3.0 the drag force is almost entirely linear, with
a small contribution of the 3ω amplitude, and the two cylinders are not really treated as
a pair of cylinders in close proximity to each other, but rather as independent cylinders.
[Havel et al. 2001] found that for two-dimensional cases the so-called close-spacing regime,
which is where the two cylinders will be in the same regime, will end at a spacing value
of s/D = 1.5, which corresponds well with the results in Figure 5.36. They also claim that
there is no evidence of the existence of this regime for three-dimensional cases.

Figure 5.37: The harmonic force amplitudes of ∆FD for the square cylinder cases with a
varying s/D at KC = 16.

Figure 5.37 shows the harmonic force amplitudes of ∆FD for the cases with varying s/D
at KC=16. The same behavior of the harmonic force components is seen here as for
previous models. The 1ω and 3ω are canceled out since these contributions of the two
cylinders are in phase with each other, while the 2ω and 4ω amplitudes keep their shapes
and double in value since they are 180◦ out of phase with each other, and are added
together when the force difference is calculated. The same harmonic behaviors as for
FD,top that leads to the identification of the flow regimes are also present here. Before
s/D = 0.8 the 2ω amplitude increases quite a bit before rapidly decreasing after s/D = 1.0,
before stabilizing at small values after s/D = 3.5. In the same way as before, the mean
force difference has the same shape as the 2ω curve, but with different amplitude values.
In Section 5.2.1 it was concluded that OpenFOAM overestimates the 2ω amplitude with
regards to three-dimensional experiments while managing to correctly model the mean
force difference, which explains this difference between the curves. The 4ω amplitude
curve seems to increase and decrease at irregular intervals before converging towards a
low value at around s/D = 3.0, and as previously mentioned, the 1ω and 3ω amplitudes
are negligible for all spacing values. This implies many of the same ideas as the harmonic

81



CHAPTER 5. RESULTS AND DISCUSSIONS

components of FD,top did, which is that the nonlinearity of the drag force is nowhere near
as prevalent after around s/D = 3.0 as for smaller spacing values and that for large enough
spacings, the drag force is almost entirely linear.

From these results, it would seem that for spacing values larger than s/D = 3.0 ∆FD is
almost negligible, and only the odd-numbered harmonic force amplitudes have an effect on
FD,top, and thus also on FD,bot. This implies that for single cylinders, and pairs of cylinders
at sufficiently large distances, the load formulation from Morison’s equation will capture
the drag force almost perfectly, while for smaller spacing values there is still a need for a
better load formulation to also include the even-numbered harmonic force contributions.

When creating these models an additional function was added to the controlDict, as
explained in Section 4.2.2, that is able to extrapolate the drag coefficient directly from
OpenFOAM. This means that the drag coefficient from the model created from the out-
put forces, coefficient equations, and constructed acceleration and velocity data can be
compared with the drag coefficient taken straight from the numerical solver, which can
validate or invalidate the calculation model presented in Section 2.8. The coefficients will
be presented in the same way as in Section 5.2.1, With individual coefficients for the top
and bottom cylinders as there were some discrepancies between them. While for the other
cases, the drag coefficient that was presented was the average coefficient, both the drag
coefficients of the top and bottom cylinder are presented for these models. This is done
so that they can be better compared to the drag coefficient from OpenFOAM, as well as
to show the differences between them.

Figure 5.38: The added mass, damping, and drag coefficients for the square cylinder cases
with a varying s/D at KC = 16.

Figure 5.38 shows the added mass, damping, and drag coefficients of the top and bottom
cylinders that are calculated based on the presented model, as well as the drag coeffi-
cient taken from OpenFOAM. The first takeaway from the figure is that the added mass
coefficients are probably too high as for the larger spacings they should converge toward
the reference added mass of a square cylinder which is 1.51, but they end up at around
2.5. This may however not be entirely wrong, but rather a consequence of the numerical
models being tested in an oscillating flow, while the reference added masses presented by
[Pettersen 2007] were probably found at steady flows. This is however pure speculation
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and no conclusions can be drawn without extensive testing and modeling.

The drag coefficients from the top cylinder, bottom cylinder, and the one taken from
OpenFOAM, which is averaged, coincide with each other closely after around s/D = 1.6.
This is very promising with regards to the validation of the calculation model and shows
that at least for these larger spacings at KC=16 the model will adequately calculate the
drag coefficients, and thus the damping coefficients, of the system, when compared to the
internal drag coefficient calculations done by the OpenFOAM solver. Before s/D = 1.6
there are a lot more differences between both the calculated drag coefficients and between
them and the drag coefficient from OpenFOAM. This is possibly due to several reasons.
The smaller spacing values may lead to a much more complex flow that the OpenFOAM
function manages to capture, but not the calculation model, or the smearing from the
RANS turbulence model may affect the force output that the calculated coefficients are
based on and not the drag coefficient output.

Even though the discrepancies exist at these smaller spacings, the fact that the drag
coefficients coincide as well as they do for larger spacing values and that they all converge
at a value slightly higher than CD = 2.0 is a very promising result. [Havel et al. 2001] found
that the two-dimensional drag coefficient of a square cylinder converges at CD∞ = 2.05
for the upstream cylinder and CD∞ = 2.08 for the downstream cylinder when conducting
experiments at Re = 22 000. [Hoerner 1965] also found that the drag coefficient of a two-
dimensional square cylinder would be CD = 2.05 for a range of Reynolds numbers between
Re = 104 to Re = 106. The cases presented in this thesis have been modeled by the KC
number, and not the Reynolds number, but by using Equation 2.57 and Equation 2.51,
the Reynolds number for these model cases at KC = 16 can be found to be Re = 40 000,
which is the same order of magnitude as [Havel et al. 2001] and within the same range as
[Hoerner 1965]. This means that the drag coefficient gathered from OpenFOAM and the
calculated drag coefficients concur well with the coefficients from the existing literature.

5.3 Comparison of 2D numerical results with 2D and 3D
experimental results

This section will cover a more extensive comparison between the numerical and experi-
mental tests for Case 1 and Case 2 than what has previously been done. In Section 5.2.1
the two-dimensional numerical results from OpenFOAM were presented and compared to
the three-dimensional results from the experimental test results presented in Section 5.1.
These comparisons could be misleading as there are many effects that are lost when going
from two to three dimensions and vice versa. Therefore, to imply that the numerical solver
falsely estimates some values may only be true when comparing 2D and 3D data. To ac-
count for this the two-dimensional results will first be compared to newer three-dimensional
experimental results that come from recent experiments conducted by [Mikkelsen 2023],
where master student Kristian Mikkelsen replicated the tests from the specialization pro-
ject and ran them again after tweaking some parameters to achieve better and less polluted
results. These new experiments use a length-to-diameter ratio of L/D = 3, which means
that these experimental values are probably different than the ones presented earlier in
this thesis with L/D = 1. After this has been done, the numerical results will be compared
with the experimental results from [Reiten 2022].

During his master’s thesis in the spring of 2022, Henrik Reiten conducted experiments for
Case 1 and Case 2 in a similar fashion to the ones conducted during the specialization
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project for this thesis, but he did it by attaching the actuator plates on either end of
the cylinders, and not in the middle. This meant that his experiments were as close to
two-dimensional as possible. Comparing the 2D numerical results from this thesis with
his 2D experimental results is expected to give a much closer match than when compared
with the 3D experimental results.

Kristian Mikkelsen also managed to rotate Case 2 between θ = 90◦ and 35◦ with 5-degree
increments for his thesis. The limitations of the rig made it impossible to rotate the case
at lower angles. This means that the numerical data for Case 2 with a varying inflow
angle from Section 5.2.2 can also be compared to experimental results, and was done as
the last part of this comparison study. For both the 3D and 2D comparisons and the
inflow angle comparison it is only the 1ω and 2ω harmonic force components that will
be compared. All of the data sets in this section have been non-dimensionalized by their
respective parameters.

(a) A comparison of 3D experimental test results
and 2D numerical test results for FD,top in Case
1.

(b) A comparison of 3D experimental test results
and 2D numerical test results for ∆FD in Case
1.

Figure 5.39: A comparison of 3D experimental test results and 2D numerical test results
for FD,top and ∆FD in Case 1. The experimental results are gathered from [Mikkelsen
2023].

First, the three-dimensional experimental results and the two-dimensional numerical res-
ults of Case 1 have been compared, and the comparisons of the harmonic force amplitudes
are presented in Figure 5.39. In the first figure, both the experimental and numerical 1ω
and 2ω amplitudes have similar shapes, but the numerical results are generally higher,
which for the 1ω amplitude is an opposite behavior as the previous comparisons, meaning
that the 3D data are heavily influenced by the length of the cylinders, which is to be
expected. The 2ω amplitude in both figures shows the same tendency as before by having
significantly higher amplitude values. This shows that the numerical models seem to sim-
ulate a more nonlinear drag force in two dimensions than what is captured experimentally
in three dimensions.
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(a) A comparison of 3D experimental test results
and 2D numerical test results for FD,top in Case
2.

(b) A comparison of 3D experimental test results
and 2D numerical test results for ∆FD in Case
2.

Figure 5.40: A comparison of 3D experimental test results and 2D numerical test results
for FD,top and ∆FD in Case 2. The experimental results are gathered from [Mikkelsen
2023].

The comparison between the 3D experimental and 2D numerical results for Case 2 is
shown in Figure 5.40. Here, much of the same can be said as for Case 1, but Case 2 does
have 1ω and 2ω amplitudes that are much closer in value to the numerical model than in
Case 1. In the first figure, the 2ω amplitudes for the 3D and 2D data are close to equal up
until around KC = 14, while for Case 1 the similarities ended at around KC = 9. Also, the
2ω amplitude for ∆FD seems to follow the numerical mean force difference closely until
KC = 18 when it diverges from it, while the 1ω amplitudes in the same figure differ much
more than they did in Case 1. It may seem that the 2D numerical model becomes better
at estimating the harmonic components when the spacing between the cylinders increases,
but with only two cases it is not viable to draw any conclusions.

(a) A comparison of 2D experimental test results
and 2D numerical test results for FD,top in Case
1.

(b) A comparison of 2D experimental test results
and 2D numerical test results for ∆FD in Case
1.

Figure 5.41: A comparison of 2D experimental test results and 2D numerical test results
for FD,top and ∆FD in Case 1. The experimental results are gathered from [Reiten 2022].

When comparing the two-dimensional experimental results with the two-dimensional nu-
merical results, the differences become much smaller. Figure 5.41 shows this comparison
for Case 1. The 1ω amplitudes are very similar for all but the highest KC numbers, and
the 2ω amplitudes are as good as equal for all KC values. This shows that there is a very
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good correlation between the 2D experiments and the 2D numerical model and that the
model is capable of estimating the two first harmonic components at this cylinder spacing
with high precision and certainty. There are some differences in the harmonic amplitudes
for ∆FD, but nowhere near the differences when comparing the three-dimensional exper-
iments with the model. Here, the 2ω amplitude has very similar amplitude values, but
the experimental amplitude is generally slightly lower than the numerical with the excep-
tion of after KC = 20 where it overtakes the numerical amplitude. The experimental 1ω
amplitude has higher values than its numerical counterpart, but since the values are low
there seems to be some disturbances of the experimental curve meaning that the apparent
differences may not be real.

(a) A comparison of 2D experimental test results
and 2D numerical test results for FD,top in Case
2.

(b) A comparison of 2D experimental test results
and 2D numerical test results for ∆FD in Case
2.

Figure 5.42: A comparison of 2D experimental test results and 2D numerical test results
for FD,top and ∆FD in Case 2. The experimental results are gathered from [Reiten 2022].

In the comparison of the two-dimensional experimental and numerical results for Case
2, there are still many similarities to Case 1, but the amplitudes seem to be slightly
more different in this case. Figure 5.42 shows the comparison. In the first figure, the
amplitudes behave similarly. The 1ω amplitudes are closely related until around KC = 14
where the experimental amplitude curve becomes lower, and the 2ω amplitude curves
are once again very close to each other. This means that the model retains much of its
precision and certainty also for this cylinder spacing. The force difference figure however
shows a numerical 2ω amplitude that is much more different than the experimental curve
than the same figure for Case 1, but they are still in a closer vicinity to each other than
the corresponding figure in the comparison of the model and the 3D experiments. The 1ω
amplitudes are also still behaving similarly as in Case 1, and the differences can probably
be accounted to experimental data pollution.

This section shows that the numerical model created in OpenFOAM for this thesis can
with good conscience be used as an estimation tool for two-dimensional experiments that
uses the same test configurations and parameters as the numerical model, at least for a
spacing of s/D = 1 and s/D = 2. The conformity of the 2D experimental and numerical
results shows that even though there are probably many flaws in the model such as the
imperfect RANS turbulence model, the data estimation is still good enough for these cases.
When using the model as an estimation tool for three-dimensional experiments, there will
be some discrepancies. So, for the best estimation results the model should be expanded
into three dimensions while also replacing the turbulence model with for instance the LES
model. These changes will however demand a lot more computational power and time to
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achieve, and therefore, if used carefully, the two-dimensional model could still be a useful
tool at least for estimations where the accuracy is less vital, and the computational speed
is more important.

5.4 Sensitivity analysis

In this section, the meshes that have been used during this thesis and their characteristics
will be discussed. Initially, the mesh that was used for the first tests of the numerical
models was a rather coarse mesh that was chosen based on an example case that came
with the pvcFoam solver from [Senthuran Ravinthrakumar 2023]. The example case only
dealt with a single cylinder in an oscillating flow with very low motion amplitudes, meaning
that the mesh could be too coarse for the numerical models in this thesis. It was therefore
deemed necessary to perform a sensitivity analysis of the mesh with regard to both the
cell size and the time step. Additionally, a sensitivity analysis was performed for the
case-specific parameters of the inflow angle and the KC number. All the cases that have
been run in this sensitivity analysis were run on the Schlichting 80-core computer.

5.4.1 Mesh size & time step sensitivity

Before the analysis, the numerical models described in Sections 4.1.1 and 4.1.2 had been
run with the example mesh. It was therefore decided to run a selection of cases from
Section 4.1.2 again with two finer meshes and compare the results to establish how fine
the mesh should be for the rest of the cases, as well as if the already finished cases should
be run again with a finer mesh. For the sensitivity analysis the example mesh was named
Mesh 1, while two finer meshes called Mesh 2 and Mesh 3 were created. All of the mesh
characteristics can be found in Table 5.1, and in Figure 5.43 the meshes close to the
geometry of a cylinder are shown. A fourth mesh which would be twice as fine as the
finest mesh in this analysis was also considered, but the number of cells needed would
surpass the allowed threshold of the model, and the cases would crash. Even though this
limit could be circumvented the amount of time and computational power it would take
to run the cases at that mesh level would be too immense for the thesis. Moreover, as
described later in this section, it was determined that there was no need for a finer mesh
since the results were satisfactory enough with Mesh 2 for this stage of the project.

Table 5.1: The details of each mesh used in the convergence study. The D/∆x column is
only valid for the 90-degree configurations due to the geometry of the cells. The mesh
level column refers to the mesh levels used in OpenFOAM, where an increase in the level
equals ∆x being divided by 2.

Name Mesh Level ∆x [m] D/∆x [−] Number of cells ∆t [s]

Mesh 1 5 0.003333 14 10 132 0.001

Mesh 2 6 0.001667 28 32 196 0.0004

Mesh 3 7 0.000833 56 57 752 0.0002
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(a) Mesh 1 with the geometry of a square cyl-
inder with 10 132 cells and D/∆x = 14.

(b) Mesh 2 with the geometry of a square cyl-
inder with 32 196 cells and D/∆x = 28.

(c) Mesh 3 with the geometry of a square cyl-
inder with 57 752 cells and D/∆x = 56.

(d) Mesh 2 with the geometry of a square cyl-
inder with an inflow angle of θ = 45◦.

Figure 5.43: A zoomed-in view of the meshes from Table 5.1 around the geometry of
a square cylinder in a 90-degree configuration. Additionally, Mesh 2 for a 45-degree
configuration is shown as a comparison of the mesh cell structure in the two configurations.

To get a clear indication of how sensitive the cases are to the mesh size and time step,
cases 1 and 2 from Section 4.1.2 were run again with all three meshes and time steps. This
process could also determine what type of mesh and time step that should be used for the
other numerical cases. The results from this sensitivity analysis are shown in Figure 5.44,
where the sensitivity of the 1ω and 2ω force components in the drag and lift directions
can be studied. Each figure contains two parameters, the harmonic force output in the
drag and lift directions, with three mesh iterations per parameter. This means that the
sensitivity comparison can be done independently of both case and force direction.

(a) The non-dimensional 1ω force out-
puts for the top cylinder in Case 1 for
the three meshes.

(b) The non-dimensional 1ω force out-
puts for the top cylinder in Case 2 for
the three meshes.
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(c) The non-dimensional 2ω force outputs of
the force difference of the cylinders in Case 1
for the three meshes.

(d) The non-dimensional 2ω force outputs of
the force difference of the cylinders in Case 2
for the three meshes.

Figure 5.44: The 1ω and 2ω force outputs as functions of the inflow angle for cases 1 and
2 in the drag and lift directions for Mesh 1, Mesh 2, and Mesh 3.

The drag component from Figures 5.44a and 5.44b shows that Mesh 3 is the least fluctuat-
ing mesh-iteration, but also the least conservative as its values are lower than for Mesh 1
and Mesh 2 in the region with the highest values. This could indicate that Mesh 3 is closer
to reality than the other meshes, and it could also indicate numerical instability for Mesh
3, and that it should be refined before an eventual implementation. The lift components
show a similar story for Case 1, but not for Case 2. In Figures 5.44c and 5.44d the drag
components are quite small and messy, making it difficult to compare the meshes. The
lift components are very distinct and show how Mesh 2 is the most conservative mesh
for both cases and that Mesh 3 for Case 2 has a very different result than Mesh 1 and
Mesh 2. This could again be due to numerical instability, and a more refined study with
finer meshes should be performed to better determine the stability. Without any further
studies, the recommended mesh is, therefore, Mesh 2 as it is both the most conservative
mesh and results in force data with similar trends and values as Mesh 1.

5.4.2 Inflow angle and KC number sensitivity

The cases used in the sensitivity analysis of the inflow angles and KC numbers were chosen
to be for an inflow angle of θ = 45◦, 65◦, and 90◦ and for KC numbers 0.1, 8, 16, and
21.5. These inflow angles were chosen as they represent three different mesh stages from
a straightforward square mesh for θ = 90◦, to a more skewed mesh for θ = 45◦, with
θ = 65◦ being somewhere in between the two others. The KC numbers were chosen to
get a maximum spread across the KC numbers used experimentally and for the models
described in Section 4.1.1. KC = 0.1 was chosen instead of KC = 1 to get the data for
a case with almost no movement since this is very close to potential theory. Since the
harmonic force outputs related to these parameters are widely different, they cannot be
compared in the same way as the mesh size. Instead, the sensitivity can be shown through
the run time, where the complexity of the flow is reflected, and the mesh creation time,
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which indicates the intricateness of the mesh.

In figure Figure 5.45 the run times and mesh creation times of Mesh 1, Mesh 2, and Mesh
3 for the three inflow angles at KC = 21.5 are shown. It can be seen that the run times at
an inflow angle of θ = 45◦ are larger than for the other inflow angles for all meshes. The
relative sizes of the differences are not significant, but they do show some sensitivity with
regard to the inflow angle. The mesh creation times are quite similar for inflow angles of
θ = 45◦ and 90◦, and somewhat longer for θ = 65◦. This is most likely due to the skewness
of the mesh cells in the close vicinity of the geometries at θ = 65◦. At θ = 90◦ they are
all mostly squares, and at θ = 45◦ they are transformed into triangular cells close to the
boundary, while for θ = 65◦ it is a somewhat more chaotic mesh with both square-shaped
and triangular mesh cells.

Figure 5.45: The run times and mesh creation times in seconds for the three meshes at
inflow angles of θ = 45◦, 65◦, and 90◦ at KC = 21.5.

Even though the effects of changing the inflow angle do not seem to be that significant,
the effects of changing the mesh levels certainly are. The increases in both run times and
mesh times are quite extensive with Mesh 2 taking between 8 - 12 times longer to run
and mesh than Mesh 1, and Mesh 3 taking around 3 times longer than Mesh 2. This
corresponds well with the data from Table 5.1 where Mesh 2 has about 3.2 times more
mesh cells than Mesh 1, and Mesh 3 has 1.8 times the cells of Mesh 2.

The sensitivity of the KC number is shown in Figure 5.46. With regards to the mesh
creation times the change of the KC number has no effect since it only affects the flow.
The run times are however heavily affected. The trend for all three meshes is that the run
times are longer for larger KC numbers, which is logical as a higher KC number will result
in faster movements and more fluctuations creating a more complex flow. The run times
for the lower KC numbers do seem very high, and one would think that the difference
between KC = 0.1 and KC = 21.5 would be much larger, but it happens since these tests
use a very low time step that is almost never modified by the solver. In reality, the lower
KC numbers could have larger time steps, but for comparison sake, all KC number cases
used the same base time step.
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Figure 5.46: The run times and mesh creation times in seconds for a KC number of 0.1,
8, 16, and 21.5 at an inflow angle of θ = 45◦.

As a conclusion to both sensitivity analyses that were performed in this section, a single
mesh and time step should be chosen to be used for all remaining numerical cases. Mesh
1 was very fast to use and gave decent results, but there are signs of information being
lost due to the large mesh size and time step, as seen in Figure 5.44. Also, since it was
originally an example mesh for a single cylinder it is probably not good enough for the
more complex flow when adding a second cylinder. Mesh 2 shows better qualities than
Mesh 1 with fewer fluctuations and a more conservative output estimate in most cases,
but is however severely slower to use. Mesh 3 has indications of being the best mesh,
but it may also be tainted by numerical instability. It is also extremely time-consuming
to use for many cases, and if run in parallel it demands a lot of computational power as
well, especially for the meshing. Since Mesh 2 returns output values that were deemed
reasonable, while also being a lot less time-consuming than Mesh 3, it was decided to use
Mesh 2 for the remainder of the numerical simulations, as well as to rerun the existing
cases that had been run with Mesh 1 with Mesh 2. This was also done to have all the
numerical models with the same mesh and time step so that the output data could easily
be compared across cases without needing to be concerned with the mesh instability in-
between cases.

5.5 Summarizing comments

In this final section, a brief summary of the results discussed in this chapter will be
presented. The first takeaway from these results is that when two square-shaped cylinders
are in close proximity to each other and exposed to a forced oscillatory flow, the forces
experienced by the cylinders will be heavily affected by large nonlinear contributions.
These contributions are present in both 2D numerical analyses and in both 2D and 3D
experimental analyses. The second takeaway considers the effect the geometry and spacing
of the cases have on the forces. It has been established that the diamond-shaped cylinders
generally had larger experienced force amplitudes and were therefore only considered in
parts of the analyses. The spacing has been found to heavily influence the nonlinearity
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of the harmonic force amplitudes of the experienced forces, and also on the added mass,
damping, and drag coefficients of the cylinders. The flow regimes of which the cylinders
resides in the cases are also dependent on the spacing between the cylinders, and they
can change if they are in the same or in different regimes based on the spacing. The
final takeaway of the results is that there is a need for an improved load formulation.
The existing formulation presented in Morison’s equation can only account for the odd-
numbered harmonic force contributions, while these results have shown that in every case
there are large even-numbered harmonic force contributions present that are not accounted
for, where the 2ω harmonic force amplitude has the definite highest impact on the cylinder
forces. These even-numbered harmonic force contributions are also dependent on the
spacing, and for spacings larger than about s/D = 3 they become negligible. This shows
that the existing load formulation, while adequate for systems where there are cylinders
far apart, is not capturing the complete forces for systems where there are cylinders in
close proximity to each other.

A final remark on an important step of the future works regarding similar hydrodynamic
theses. An improved load model should be created that accounts for all harmonic force
contributions. This formulation should evaluate all harmonic force contributions separ-
ately, where each contribution has its own drag coefficient. These coefficients must be
found by thorough experimental and numerical analyses. [Kristiansen 2023] explained
that these new coefficients would be implemented into individual forces for each harmonic
contribution, and also showed the dependencies of these coefficients. The individual drag
forces are

Fnω
D = ρDCnω

D (S,C,KC, θ,Re)u, (5.3)

where n signifies which harmonic contribution the force is valid for, S is the sectional shape,
meaning if the cylinders are square-shaped, diamond-shaped, or have another shape, C
is the configuration, meaning the number of cylinders, spacing, and other configuration
specific to each case, and the rest of the parameters are known. Within the S and C
parameters, there are probably many more variables that affect the drag coefficient. The
same type of individual force can also be applied to the lift force. The new load formula-
tion is complex and depends on a great number of parameters, which makes the task of
developing it difficult, but necessary.
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Chapter 6
Conclusions & further work

This final chapter will present the conclusions drawn from the results acquired in this
thesis, as well as introduce ideas for how the findings from the thesis can be developed
further.

6.1 Conclusions

The analyses that have been done in this thesis have had the purpose of studying the
hydrodynamic interactions between two square-shaped cylinders in close proximity when
exposed to a forced harmonically oscillating flow. A number of different parameters such
as the number of cylinders, the cylinder shape, the inflow angle, the spacing between
the cylinders, and different mesh configurations have all been studied to find where the
hydrodynamic interaction occurs, and what it is sensitive to.

All of the numerical and experimental analyses that have been performed during this
thesis have found strong indications of hydrodynamic interaction between the cylinders.
The hydrodynamic interaction has been found to be especially sensitive to the KC number,
the inflow angle, and the spacing between the cylinders. The focus of the thesis has been on
both the forces experienced by the upstream and downstream cylinders individually, but
mostly on the force difference between them which shows the hydrodynamic interaction.
In most cases, the individual forces have been found to be strongly linear, with some
exceptions having a larger presence of nonlinear force contributions. The force difference
between the cylinders has been dominated by the nonlinear contributions in all cases,
where the 2ω harmonic force amplitude has had an especially large influence. The odd-
numbered harmonic force contributions of the upstream and downstream cylinders were
found to be in phase with each other meaning that they would cancel out almost completely
when creating the force difference, while the even-numbered contributions were 180◦ out
of phase with each other and would therefore be added together founding the large higher-
order influence of the force difference.

There is a close correlation between the 2D numerical model created in OpenFOAM and
2D experiments. This implies that the findings are backed both numerically and experi-
mentally, which means that there is a strong validation of the presence of the hydrodynamic
interaction which should be considered when designing and developing floating structures
with cylinders in close proximity.
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6.2 Further work

There are a great number of adjustments and improvements that can be done to the
analyses that were performed in this thesis to get even better results and a wider base of
knowledge regarding the hydrodynamic interaction. Below is a list of the main attributes
that should be added or changed in the numerical models used in this thesis.

• The numerical solver should be expanded into three dimensions. This will give closer
results to 3D experiments which give more physical results.

• If the model is three-dimensional, a new turbulence model such as LES should be
implemented. If it is still in 2D, RANS may still give the best results, but one
should experiment with using other model parameters than from the k − ε model,
for instance, the k − ω model.

• Other numerical solvers such as Ansys, Autodesk CFD, and REEF3D should be
tested and implemented. OpenFOAM has many limitations and does not have the
most user-friendly interface without additional proper software.

• More refined meshes should be tested. This would however demand more computa-
tional power and time.

• More configurations involving the number of cylinders, KC numbers, shapes, inflow
angles, spacings, as well as other parameters.

• Testing the hydrodynamic sensitivity towards other parameters than the ones used
in this thesis.

• Creating and implementing a new load formulation that captures all harmonic force
contributions.
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Appendix

A Literature review

Fig. A.1: Combined drag of two wires vs. angle of stagger [Pannell et al. 1915, Zdravkovich
1977].
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Fig. A.2: Interference drag coefficient vs. the spacing ratio [Biermann and Herrnstein
1933, Zdravkovich 1977].

Fig. A.3: The pressure distributions around two cylinders in tandem [Hori 1959,
Zdravkovich 1977].

II



APPENDIX

Fig. A.4: Pressure distribution around downstream cylinder in various tandem arrange-
ments [Zdravkovich and Stanhope 1972, Zdravkovich 1977].

Fig. A.5: Interference drag coefficient for side by side cylinders [Biermann and Herrnstein
1933, Zdravkovich 1977].
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Fig. A.6: Drag coefficient vs. Reynolds number for various KC values [Sarpkaya 2010].

Fig. A.7: Inertia coefficient vs. Reynolds number for various KC values [Sarpkaya 2010].
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B Numerical modeling

Fig. B.1: An example of the movingCoordinateSystemProperties dictionary for a case
with KC = 16.

(a) The definition of the parameters in the controlDict
dictionary.

(b) The definition of the func-
tions in the controlDict dic-
tionary.

Fig. B.2: An example of a controlDict dictionary.
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C Experimental results

C.1 Force plots

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 2 in Case 1.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 2 in Case 1.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 2 in Case 1.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 2 in Case 1.

Fig. C.1: The forces acting on the system with L/D = 2 in Case 1, as well as a comparison
of the total forces.

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 3 in Case 1.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 3 in Case 1.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 3 in Case 1.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 3 in Case 1.

Fig. C.2: The forces acting on the system with L/D = 3 in Case 1, as well as a comparison
of the total forces.
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(a) The forces acting on the system for KC = 8
for cylinders with L/D = 2 in Case 3.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 2 in Case 3.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 2 in Case 3.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 2 in Case 3.

Fig. C.3: The forces acting on the system with L/D = 2 in Case 3, as well as a comparison
of the total forces.

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 3 in Case 3.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 3 in Case 3.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 3 in Case 3.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 3 in Case 3.

Fig. C.4: The forces acting on the system with L/D = 3 in Case 3, as well as a comparison
of the total forces.
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(a) The forces acting on the system for KC = 8
for cylinders with L/D = 2 in Case 4.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 2 in Case 4.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 2 in Case 4.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 2 in Case 4.

Fig. C.5: The forces acting on the system with L/D = 2 in Case 4, as well as a comparison
of the total forces.

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 3 in Case 4.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 3 in Case 4.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 3 in Case 4.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 3 in Case 4.

Fig. C.6: The forces acting on the system with L/D = 3 in Case 4, as well as a comparison
of the total forces.
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(a) The forces acting on the system for KC = 8
for cylinders with L/D = 1 in Case 11.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 1 in Case 11.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 1 in Case 11.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 1 in Case 11.

Fig. C.7: The forces acting on the system with L/D = 1 in Case 11, as well as a comparison
of the total forces.

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 2 in Case 11.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 2 in Case 11.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 2 in Case 11.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 2 in Case 11.

Fig. C.8: The forces acting on the system with L/D = 2 in Case 11, as well as a comparison
of the total forces.
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(a) The forces acting on the system for KC = 8
for cylinders with L/D = 3 in Case 11.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 3 in Case 11.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 3 in Case 11.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 3 in Case 11.

Fig. C.9: The forces acting on the system with L/D = 3 in Case 11, as well as a comparison
of the total forces.

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 1 in Case 12.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 1 in Case 12.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 1 in Case 12.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 1 in Case 12.

Fig. C.10: The forces acting on the system with L/D = 1 in Case 12, as well as a comparison
of the total forces.
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(a) The forces acting on the system for KC = 8
for cylinders with L/D = 2 in Case 12.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 2 in Case 12.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 2 in Case 12.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 2 in Case 12.

Fig. C.11: The forces acting on the system with L/D = 2 in Case 12, as well as a comparison
of the total forces.

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 3 in Case 12.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 3 in Case 12.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 3 in Case 12.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 3 in Case 12.

Fig. C.12: The forces acting on the system with L/D = 3 in Case 12, as well as a comparison
of the total forces.
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(a) The forces acting on the system for KC = 8
for cylinders with L/D = 1 in Case 13.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 1 in Case 13.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 1 in Case 13.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 1 in Case 13.

Fig. C.13: The forces acting on the system with L/D = 1 in Case 13, as well as a comparison
of the total forces.

(a) The forces acting on the system for KC = 8
for cylinders with L/D = 2 in Case 13.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 2 in Case 13.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 2 in Case 13.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 2 in Case 13.

Fig. C.14: The forces acting on the system with L/D = 2 in Case 13, as well as a comparison
of the total forces.
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(a) The forces acting on the system for KC = 8
for cylinders with L/D = 3 in Case 13.

(b) The forces acting on the system for KC = 16
for cylinders with L/D = 3 in Case 13.

(c) The forces acting on the system for KC =
21.5 for cylinders with L/D = 3 in Case 13.

(d) A comparison of the total force for KC = 8,
16, and 21.5 in L/D = 3 in Case 13.

Fig. C.15: The forces acting on the system with L/D = 3 in Case 13, as well as a comparison
of the total forces.

(a) A comparison of the total force for KC = 16
for cylinders with L/D = 2 in cases 11, 12, and
13.

(b) A comparison of the total force for KC = 16
for cylinders with L/D = 3 in cases 11, 12, and
13.

Fig. C.16: A comparison of the total force for KC = 16 for cylinders with L/D = 2 and
L/D = 3 in cases 11, 12, and 13.
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(a) The forces acting on the numerical system
for KC = 8 in Case 11.

(b) The forces acting on the numerical system
for KC = 8 in Case 12.

(c) The forces acting on the numerical system
for KC = 8 in Case 13.

(d) A comparison of the total force for KC = 8
for cases 11, 12, and 13.

(e) The forces acting on the numerical system
for KC = 21.5 in Case 11.

(f) The forces acting on the numerical system
for KC = 21.5 in Case 12.

(g) The forces acting on the numerical system
for KC = 21.5 in Case 13.

(h) A comparison of the total force for KC =
21.5 for cases 11, 12, and 13.

Fig. C.17: The numerical force amplitudes and a comparison of the total forces for KC = 8
and 21.5 in cases 11, 12, and 13.
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C.2 Harmonic analysis plots

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 1 with
L
D = 2.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 1 with
L
D = 2.

Fig. C.18: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 1 with L

D = 2.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 1 with
L
D = 3.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 1 with
L
D = 3.

Fig. C.19: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 1 with L

D = 3.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 3 with
L
D = 2.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 3 with
L
D = 2.

Fig. C.20: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 3 with L

D = 2.
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(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 3 with
L
D = 3.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 3 with
L
D = 3.

Fig. C.21: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 3 with L

D = 3.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 4 with
L
D = 2.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 4 with
L
D = 2.

Fig. C.22: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 4 with L

D = 2.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 4 with
L
D = 3.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 4 with
L
D = 3.

Fig. C.23: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 4 with L

D = 3.
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(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 11 with
L
D = 2.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 11 with
L
D = 2.

Fig. C.24: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 11 with L

D = 2.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 11 with
L
D = 3.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 11 with
L
D = 3.

Fig. C.25: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 11 with L

D = 3.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 12 with
L
D = 1.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 12 with
L
D = 1.

Fig. C.26: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 12 with L

D = 1.
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(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 12 with
L
D = 2.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 12 with
L
D = 2.

Fig. C.27: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 12 with L

D = 2.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 12 with
L
D = 3.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 12 with
L
D = 3.

Fig. C.28: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 12 with L

D = 3.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 13 with
L
D = 1.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 13 with
L
D = 1.

Fig. C.29: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 13 with L

D = 1.
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(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 13 with
L
D = 2.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 13 with
L
D = 2.

Fig. C.30: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 13 with L

D = 2.

(a) The harmonic force amplitudes for FD,top

and the mean force difference for Case 13 with
L
D = 3.

(b) The harmonic force amplitudes for ∆FD

and the mean force difference for Case 13 with
L
D = 3.

Fig. C.31: The harmonic force amplitudes for FD,top and ∆FD and the mean force differ-
ence for Case 13 with L

D = 3.

(a) The numerical harmonic force amplitudes for
FD,top and the mean force difference in Case 12.

(b) The numerical harmonic force amplitudes for
FD,top and the mean force difference in Case 13.

Fig. C.32: The numerical harmonic force amplitudes for FD,top and the mean force differ-
ence in cases 12 and 13.
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D Streamline plots for cases 1 & 2.

(a) The velocity streamlines of
Case 1 with an inflow angle of
θ = 0◦ at KC = 16 at T = 10 s.

(b) The velocity streamlines of
Case 1 with an inflow angle of
θ = 0◦ at KC = 16 at T =
10.25 s.

(c) The velocity streamlines of
Case 1 with an inflow angle of
θ = 0◦ at KC = 16 at T =
10.5 s.

Fig. D.1: The velocity streamlines of Case 1 with an inflow angle of θ = 0◦ at KC = 16 at
T = 10, 10.25, and 10.5 seconds.

(a) The velocity streamlines of
Case 1 with an inflow angle of
θ = 65◦ at KC = 16 at T =
10 s.

(b) The velocity streamlines of
Case 1 with an inflow angle of
θ = 65◦ at KC = 16 at T =
10.25 s.

(c) The velocity streamlines of
Case 1 with an inflow angle of
θ = 65◦ at KC = 16 at T =
10.5 s.

Fig. D.2: The velocity streamlines of Case 1 with an inflow angle of θ = 65◦ at KC = 16
at T = 10, 10.25, and 10.5 seconds.
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(a) The velocity streamlines of
Case 1 with an inflow angle of
θ = 90◦ at KC = 16 at T =
10 s.

(b) The velocity streamlines of
Case 1 with an inflow angle of
θ = 90◦ at KC = 16 at T =
10.25 s.

(c) The velocity streamlines of
Case 1 with an inflow angle of
θ = 90◦ at KC = 16 at T =
10.5 s.

Fig. D.3: The velocity streamlines of Case 1 with an inflow angle of θ = 90◦ at KC = 16
at T = 10, 10.25, and 10.5 seconds.

(a) The velocity streamlines of
Case 2 with an inflow angle of
θ = 0◦ at KC = 16 at T = 10 s.

(b) The velocity streamlines of
Case 2 with an inflow angle of
θ = 0◦ at KC = 16 at T =
10.25 s.

(c) The velocity streamlines of
Case 2 with an inflow angle of
θ = 0◦ at KC = 16 at T =
10.5 s.

Fig. D.4: The velocity streamlines of Case 2 with an inflow angle of θ = 0◦ at KC = 16 at
T = 10, 10.25, and 10.5 seconds.
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(a) The velocity streamlines of
Case 2 with an inflow angle of
θ = 65◦ at KC = 16 at T =
10 s.

(b) The velocity streamlines of
Case 2 with an inflow angle of
θ = 65◦ at KC = 16 at T =
10.25 s.

(c) The velocity streamlines of
Case 2 with an inflow angle of
θ = 65◦ at KC = 16 at T =
10.5 s.

Fig. D.5: The velocity streamlines of Case 2 with an inflow angle of θ = 65◦ at KC = 16
at T = 10, 10.25, and 10.5 seconds.

(a) The velocity streamlines of
Case 2 with an inflow angle of
θ = 90◦ at KC = 16 at T =
10 s.

(b) The velocity streamlines of
Case 2 with an inflow angle of
θ = 90◦ at KC = 16 at T =
10.25 s.

(c) The velocity streamlines of
Case 2 with an inflow angle of
θ = 90◦ at KC = 16 at T =
10.5 s.

Fig. D.6: The velocity streamlines of Case 2 with an inflow angle of θ = 90◦ at KC = 16
at T = 10, 10.25, and 10.5 seconds.
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E Polar plots comparing cases 1 & 2.

(a) The comparison of the 1ω harmonic force
amplitude for Ftop in cases 1 and 2 for KC = 16.

(b) The comparison of the 2ω harmonic force
amplitude for Ftop in cases 1 and 2 for KC = 16.

(c) The comparison of the 3ω harmonic force
amplitude for Ftop in cases 1 and 2 for KC = 16.

(d) The comparison of the 4ω harmonic force
amplitude for Ftop and ∆F in cases 1 and 2 for
KC = 16.

Fig. E.1: The comparison of the harmonic force amplitudes for Ftop in cases 1 and 2 for
KC = 16.
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(a) The comparison of the 2ω harmonic force
amplitude for ∆F in cases 1 and 2 for KC = 16.

(b) The comparison of the 4ω harmonic force
amplitude for ∆F in cases 1 and 2 for KC = 16.

Fig. E.2: The comparison of the harmonic force amplitudes for ∆F in cases 1 and 2 for
KC = 16. The 1ω and 3ω amplitudes are not presented as they were negligible.
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F Script for creating the model geometries.

1 import numpy as np

2 import os

3 import stl

4 from stl import mesh

5

6

7 class Case:

8 def __init__(self , case_number):

9 self.shape = None

10 self.dist = None

11 self.cyl_number = None

12 self.case_number = case_number

13

14 def attribute(self):

15 if self.case_number == 1:

16 self.shape = 'square '
17 self.dist = 0.1

18 self.cyl_number = 2

19 elif self.case_number == 2:

20 self.shape = 'square '
21 self.dist = 0.15

22 self.cyl_number = 2

23 elif self.case_number == 3:

24 self.shape = 'square '
25 self.dist = 0.1

26 self.cyl_number = 4

27 elif self.case_number == 11:

28 self.shape = 'diamond '
29 self.dist = 0.1

30 self.cyl_number = 2

31 elif self.case_number == 12:

32 self.shape = 'diamond '
33 self.dist = 0.15

34 self.cyl_number = 2

35 elif self.case_number == 13:

36 self.shape = 'diamond '
37 self.dist = 0.1

38 self.cyl_number = 4

39 else:

40 print(f'Unknown case: {self.case_number}')
41 exit()

42

43

44 def cylinder(center_x , center_z , side_length , depth , number):

45 y1 = - depth / 2

46 y2 = depth / 2

47 z1 = center_z - side_length / 2

48 z2 = center_z + side_length / 2

49 vert = np.zeros ((number , 8, 3))

50 fac = np.zeros((number , 12, 3))

51 x_sgn = -1

52 z_sgn = -1

53 faces = np.array([

54 [0, 3, 1],

55 [1, 3, 2],

56 [0, 4, 7],

57 [0, 7, 3],

58 [4, 5, 6],

59 [4, 6, 7],

60 [5, 1, 2],

61 [5, 2, 6],
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62 [2, 3, 6],

63 [3, 7, 6],

64 [0, 1, 5],

65 [0, 5, 4]

66 ])

67

68 for idx in range(number):

69 x1 = x_sgn * center_x - side_length / 2

70 x2 = x_sgn * center_x + side_length / 2

71 if number % 4 == 0:

72 if idx <= 1:

73 z1 *= z_sgn

74 z2 *= z_sgn

75 z_sgn *= -1

76 else:

77 z1 , z2 = abs(z1), abs(z2)

78

79 vertices = np.array ([

80 [z1 , y1 , x1],

81 [z2 , y1 , x1],

82 [z2 , y2 , x1],

83 [z1 , y2 , x1],

84 [z1 , y1 , x2],

85 [z2 , y1 , x2],

86 [z2 , y2 , x2],

87 [z1 , y2 , x2]

88 ])

89

90 vert[idx] = vertices

91 fac[idx] = faces

92 x_sgn *= -1

93

94 return vert , fac

95

96

97 def createSTLfile(case):

98 case.attribute ()

99 if case.cyl_number % 4 == 0:

100 z = case.dist / 2

101 else:

102 z = 0

103

104 vertices , faces = cylinder(case.dist / 2, z, 0.05, 2, case.cyl_number)

105 faces = faces.astype(int)

106 filenames = []

107 solidnames = []

108

109 for x in range(len(vertices)):

110 F = faces[x]

111 print(F.shape [0])

112 V = vertices[x]

113 solidnames.append(f'hull{x}H')
114 cube = mesh.Mesh(np.zeros(F.shape [0], dtype=mesh.Mesh.dtype))

115 for i, f in enumerate(F):

116 for j in range (3):

117 cube.vectors[i][j] = V[f[j], :]

118 cube.save(f'case_{case.case_number}_{x + 1}_BIN.stl')
119 cube_text = mesh.Mesh.from_file(f'case_{case.case_number}_{x + 1}

_BIN.stl')
120 cube_text.save(f'case_{case.case_number}_{x + 1} _ASCII.stl', mode=

stl.Mode.ASCII)

121 filenames.append(f'case_{case.case_number}_{x + 1} _ASCII.stl')
122 os.remove(f'case_{case.case_number}_{x + 1}_BIN.stl')
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123

124 text1 = 'solid '
125 text2 = 'endsolid '
126 y = 0

127 n = []

128

129 path = "PATH"

130 name = f'{path}case_{case.case_number }.stl'
131 for nam in range(case.cyl_number):

132 n.append(f'{path}case_{case.case_number}_{nam + 1}.stl')
133

134 with open(name , 'w') as outfile:

135 for fname in filenames:

136 with open(fname) as infile:

137 for line in infile:

138 if text2 in line:

139 line = f'endsolid {solidnames[y]}\n'
140 y += 1

141 elif text1 in line:

142 line = f'solid {solidnames[y]}\n'
143 outfile.write(line)

144 outfile.write('LINEBREAK !\n')
145 os.remove(fname)

146

147 with open(name) as f:

148 lines = f.read()

149 data = lines.split("LINEBREAK !\n")

150 for op in range(case.cyl_number):

151 with open(n[op], "w") as f:

152 f.write(data[op])

153 os.remove(name)

154

155 return vertices
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