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Abstract

Recent mainstream popularization of artificial intelligence (AI) has led to both positive
and negative sentiments concerning the future of the technology. Several of the current
most notable AI systems can be categorized as deep generative AI, a term that encompasses
highly complex models capable of generating data from different modalities. Another sub-
field called explainable AI (XAI) aims to develop methods to increase understanding of
opaque prediction models, an objective that both researchers and legislators continue to di-
rect considerable efforts towards. An emerging, especially human-friendly technique from
XAI corresponds to counterfactual explanations, which are valuable explanations for indi-
vidual predictions. In this thesis, we combine these two seemingly contradictory subfields
of AI, by applying deep generative models to synthesize counterfactual explanations.

Our main contributions are threefold. First, we develop an accessible and self-contained
exposition of diffusion probabilistic models, the generative models that underpin several of
the most successful technologies for generating data, for example, in art. Second, we add
to the literature on diffusion models applied to tabular data, by dissecting and thoroughly
explaining the key components of one such model. Third, we utilize the tabular diffusion
model to generate counterfactual explanations, by altering one specific model-agnostic
algorithm. The generative performance of the tabular diffusion model is evaluated on
three publicly available, real datasets against two previously demonstrated models —
one deep variational autoencoder model and one shallow decision tree model. Moreover,
counterfactual explanations are computed using the three models as foundations, in order
to evaluate their usefulness for explaining an arbitrary binary classifier.

In our experiments, we observe that all three models are able to generate tabular data
and counterfactual explanations, but with differing levels of faithfulness and reliability. In
fact, we do not find sufficient evidence to conclude that the considered diffusion model is
superior to the baselines, neither at generating data from an approximated unknown joint
distribution nor at generating counterfactual explanations for clarifying binary predictions
on test observations. Due to promising results, we urge researchers to consider the out-
of-the-box tree-based model as a reference during evaluation in further work on deep
generative modelling for tabular data. Finally, we provide possible directions for future
research on diffusion models for tabular data and counterfactual explanations.
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Sammendrag

Nylig popularisering av kunstig intelligens (KI) har ført til b̊ade positive og negative ut-
brudd ang̊aende fremtiden til teknologien. Flere av den siste tidens mest omdiskuterte
KI-systemer tilhører et omr̊ade kalt dyp generativ KI, som er en samlebetegnelse for høyst
kompliserte modeller i stand til å generere syntetiske data av ulike sorter. Et annet felt
ved navn forklarbar KI har som m̊al å utvikle metoder for å øke forst̊aelsen av ugjennom-
siktige prediksjonsmodeller. Dette er en problemstilling som en stadig økende andel av
forskere, lovgivere og brukere vier oppmerksomhet til. Kontrafaktiske forklaringer utgjør
en spesielt spennende forklaringsmetode, fordi de er verdifulle forklaringer av individuelle
prediksjoner, p̊a samme tid som de er enkle for mennesker å forst̊a. I denne avhandlingen
kombinerer vi de to nevnte, og tilsynelatende motstridende, underomr̊adene av KI ved å
bruke dype generative modeller til å generere kontrafaktiske forklaringer.

V̊art bidrag er tredelt. For det første gir vi en grundig og selvstendig, men likevel
tilgjengelig, innføring i teorien som omhandler diffusjonsmodeller. Disse modellene er fun-
damentale i flere av de hittil mest vellykkede rammeverkene for å fremstille syntetiske
data, for eksempel innenfor billedkunst. Deretter bidrar vi til forskningen innenfor dif-
fusjonsmodeller med fokus p̊a modellering av tabulære data. Dette gjør vi ved å gi en
omfattende redegjørelse av én spesifikk nylig etablert modell, der vi fyller inn vesentlige
detaljer som virker å mangle i den opprinnelige fremstillingen. Til slutt anvender vi den
tabulære diffusjonsmodellen til å generere kontrafaktiske forklaringer, ved å modifisere
en gitt modellagnostisk algoritme. Vi evaluerer den generative ytelsen til den tabulære
diffusjonsmodellen p̊a tre reelle og åpent tilgjengelige datasett, relativt til to tidligere
undersøkte modeller med veldokumenterte prestasjoner — én dyp modell basert p̊a vari-
ational autoencoders og én grunn modell basert p̊a beslutningstrær. I tillegg beregner vi
kontrafaktiske forklaringer ved hjelp av de tre nevnte modellene, før vi vurderer deres evne
til å forklare prediksjoner fra en arbitrær binær klassifiseringsmodell.

V̊are eksperimenter viser at alle tre modellene er i stand til å generere b̊ade syntetiske
tabelldata og kontrafaktiske forklaringer, men med ulik grad av tillit og p̊alitelighet. Vi
ser ingen tydelige tegn p̊a at den tabulære diffusionsmodellen yter bedre enn referanse-
modellene, verken n̊ar det kommer til å generere tabelldata fra en estimert underliggende
simultanfordeling eller n̊ar det kommer til å generere kontrafaktiske forklaringer for å
belyse binære prediksjoner av test-observasjoner. Grunnet lovende resultater, uten omfat-
tende justering av hyperparametre, oppfordrer vi til å benytte den tre-baserte modellen
som referanse i enhver evalueringsprosess i videre forskning innenfor generativ modellering
av tabulære data. Helt til slutt foresl̊ar vi noen mulige retninger for fremtidig forskning
p̊a diffusjonsmodeller anvendt p̊a tabelldata, med hovedvekt p̊a generering av syntetiske
data eller kontrafaktiske forklaringer.
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Chapter 1

Introduction

1.1 Context and Motivation

Technology constructed by use of artificial intelligence (AI) and its subdomain machine
learning (ML) is becoming increasingly prevalent and influential — for good reason. World
renowned content providers like Spotify and Netflix use developments from these fields to
power recommendation algorithms, increase personalization and optimize content encoding
[90, 132]. Tesla uses AI and ML to develop autonomy in robots, cars and other vehicles
[134]. Formula One, the highest class of international racing sanctioned by the Fédération
Internationale de l’Automobile (FIA), employs a large repertoire of developments from
these fields to improve on-track performance and fan engagement in the sport [4]. IBM’s
Watson provides a portfolio of tools for AI adoption in a wide range of sectors, for instance
healthcare, travel, retail and security [52]. Some of the largest technology companies in the
world have large research facilities that are important to the advancement of these fields,
for example Meta AI, Google AI, Amazon Web Services (AWS) and Azure AI by Microsoft.
Thus, there is no denying that AI and ML are important in today’s technology-landscape,
disciplines that likely will grow with increased speed in the future.

Of course, the omnipresence of AI does not only bring value, but plenty of challenges
as well. In the wake of Microsoft backed [82] OpenAI’s release of GPT-4 [96], a letter
titled “Pause Giant AI Experiments: An Open Letter” [37] was published, calling on
all developers to pause training of AI systems more powerful than GPT-4 for at least 6
months. The letter, signed by personalities like Yoshua Bengio, Elon Musk and Steve
Wozniak, states, among other profound arguments, that “powerful AI systems should be
developed only once we are confident that their effects will be positive and their risks
will be manageable” [37]. As of June 2023, the letter has collected over 30000 signatures,
showing that many people agree. However, there are plenty of people that disagree as
well, for instance some of the cited researchers in the letter, who accuse the publishers
of “prioritising imagined apocalyptic scenarios over more immediate concerns about AI,
such as racist or sexist biases” [16]. No matter how you feel about the letter itself, there
is no doubt that many of us are, and should be, concerned about AI and its implications
on society.

Many examples of lack of understanding and legislation of AI technology exist. As a
result, there is a growing unease among researchers, legislators and users about potential
severe consequences. For example, in 2018 a pedestrian was killed by an autonomous Uber-
car in Tempe, Arizona, after being hit by the vehicle while wheeling a bike across a road.
A human safety driver was present inside the car, an individual who in 2020 was charged
with negligent homicide. The incident lead to Uber ending its testing of autonomous
vehicles in Arizona and resulted in a greater deal of caution among their competitors [6].
A press release from the National Transportation Safety Board (NTSB) stated that the

1



2 1 Introduction

automated driving system detected the pedestrian 5.6 seconds before impact, but was not
able to accurately predict its path or recognize that the detected object was a pedestrian
[88].

Another example, told by Rich Caruana during the first ever debate at a Neural In-
formation Processing Systems (NeurIPS) conference in 2017, stems from healthcare. For
context, the proposition under discussion was: “interpetability is necessary in machine
learning” [91]. Caruana gives an example regarding a pneumonia risk prediction problem.
In this problem, researchers were interested in predicting high-risk pneumonia patients,
in need for rapid hospitalization. He talks about how they were able to train a neural
network with very good predictive performance on real patient data. However, after fur-
ther investigation, the researchers saw that the model took its decisions based on some
unusual patterns: patients previously diagnosed with asthma were predicted as having
lower probabilities of death from pneumonia, compared to the rest of the patients in the
dataset. In practice, one could say the model believed asthma was a protective factor
against pneumonia, which obviously is not well-aligned with medical research. This is
of course an example in which it is easy to conclude that the patterns in the data are
misaligned with reality — but what about if such a model is used in a different domain,
where such errors are not as easily recognizable? Caruana points to the fact that, in this
case, since asthma patients typically are more aware of their breathing patterns, they
usually notice pneumonia-symptoms earlier and receive treatment earlier, which explains
why these patterns exist in the data. Thus, the network actually found correct patterns in
the data, but made the wrong conclusions about them. Blind use of such a model, which
seems to yield great predictive performance, can hence be very dangerous — in this case
all asthmatics would have received treatment last!

In hindsight, it is easy to conclude that the death of the pedestrian could have been
avoided by increased understanding and transparency of the algorithms powering the au-
tonomous device. As demonstrated in Caruana’s example, taking time to reason about
what techniques the ML model is using might uncover unfortunate, but very important is-
sues. The discipline called explainable artificial intelligence (XAI) has grown out of a need
for understanding and securing AI systems [102]. Researchers in this field develop inter-
pretable or explainable models, with the objective of facilitating a deeper understanding
of how each model works internally [86].

The problems that XAI researchers are trying to solve can often be compressed into
one fundamental problem called the black box problem. Simply, picture an algorithm or
a model from ML, AI or statistical modelling as a black box. The black box is given
some input and returns some output. Since it is a black box, the user cannot see what is
happening inside. How does it make its decisions? For example, in image classification,
the black box is fed an image and outputs a prediction of what the image depicts. In
text-to-speech applications, from the field natural language processing (NLP), the black
box is given a textual input and returns a rendition of the input in speech. Should the
user care about what really happens inside the black box, as long as the outputs are
satisfactory? The previously discussed examples hopefully motivate why investigating
the black box is important, alongside reasons like scientific progress, quality control, and
increased knowledge and trust. Thus, the main objective of XAI can be shortened to
the simple task of transforming black boxes into white boxes, where the models’ inner
workings are known.

There exists many different strategies for “opening” the black box, but our focus lies on
a particularly interesting method that deals with counterfactual explanations. These are
human-friendly explanations, easily understood by practitioners and laymen alike, that
suggest actionable relations between an example and a consequence. More specifically,
according to Guidotti [43], “a counterfactual explanation reveals what should have been
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different in an instance to observe a diverse outcome”. Such explanations are post-hoc, and
they are model-agnostic, meaning that they can be applied to any previously trained model
[86]. Moreover, counterfactual explanations are local explanations, meaning that they
explain individual instances. These explanations can be calculated following a plethora
of different approaches, but perhaps one of the most exciting groups of synthesizers are
called on-manifold methods [107]1.

The commonality between on-manifold methods for generating counterfactual expla-
nations is that they generally work by modelling the underlying data distribution, the
data-manifold, before traversing it in search of explanations. Many of the most popular
methods from this group rely on generative models to fulfill their promise. In short, gen-
erative models work by estimating an unknown joint distribution based on some available
data, making them capable of, for example, making decisions or generating new sets of
data with certain characteristics.

Stepping aside from the question of explainability for a moment, synthetic data, which
can be constructed by generative models, is highly interesting in itself, for many reasons
[29]. According to Gartner [143], an estimated 60% of data used for analytics and AI
development will be synthetically generated by 2024. This estimate speaks in volumes
about the expected importance of truthfully generated synthetic data. Specifically, an ideal
synthetic dataset has identical mathematical properties to its corresponding real dataset,
but contains different information. For example, this means that no single instance from
the real dataset can be found in the synthetic dataset, while the overall set of instances
share the same traits in both datasets, on average. Why is synthetic data valuable? First
of all, synthetic data can be used to expand the size of databases in cases where availability
of data is low. Second, in cases where privacy is critical, we can create privacy-preserving
synthetic data, that then can be used and shared without compromising any individuals.
These are only two examples of situations where synthetic data is interesting — more
wide-spread application is probably yet to come.

In fact, generative models have recently reached mainstream attention, through the
introduction of models like DALL-E 2 [95, 106], Imagen [42, 114] and the aforementioned
GPT-4 [96, 97]. Figure 1.1 shows some examples of photorealistic images created with
Imagen. The two first models we mention are based on diffusion probabilistic models,
which are of special interest to us. More specifically, we are inspired by the unprecedented
progress that has taken place within this group of generative models in recent years, only
recently surpassing previous state-of-the-art (SOTA) models in fields like image generation
[20]. Our research topic is formed out of curiosity concerning if diffusion models can
be used to construct high-performing on-manifold methods for generating counterfactual
explanations.

More precisely, we concentrate on explaining models that deal with tabular data, which
is ubiquitous. Essentially, most phenomena that can be measured or recorded are typically
stored as tabular data. This makes it a highly interesting data modality to investigate,
as advancements in handling such data can be rapidly rolled out to most industries, with
large potential influence. However, this type of data is notoriously hard to model because
of its inherent heterogeneity, leaving much to be desired with regards to performance
compared to other data modalities.

Use of diffusion models to synthesize visual counterfactual explanations, i.e. counter-
factual explanations for explaining image classifiers, has been investigated previously. For
instance, some general research on this topic has been conducted [2, 55, 116, 142]. More-
over, some research on visual counterfactual explanations specific to medical imaging can

1Note that when we cite Redelmeier et al. [107] we are referring to a modified version of the paper,
which we received from Kjersti Aas. Since this version is yet to be published, we add the arXiv preprint
with the same name, but with slightly different content, to the reference list.
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Figure 1.1: A few examples of photorealistic images created with the text-to-image
diffusion model Imagen. The images are borrowed with permission from Saharia et al.
[114].

be found in Sanchez et al. [115]. However, to the extent of our knowledge, no research
has been done on generating counterfactual explanations for classifiers on tabular data
with diffusion models. This is likely connected to the seemingly minimal research con-
ducted on diffusion models applied to tabular data specifically. During the completing
stages of this thesis, we discovered some more research on the topic [61, 73, 147], which
we have not addressed in detail due to lack of remaining time. Nevertheless, a recently
submitted preprint by Kotelnikov et al. [67] treats diffusion models specifically designed
for synthesizing tabular data, a paper that is an important source of inspiration for our
work.2

2Parts of this introduction were also present in the author’s specialization project [93], either directly
or indirectly.
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1.2 Objectives and Thesis Structure

We aim to provide a self-contained and accessible introduction to diffusion probabilis-
tic models. We aim to present this with a certain level of mathematical rigor, although
intuition and applicability is of primary concern. Further, inspired by the recent surge
of powerful diffusion models in disciplines like image generation and natural language
processing, we seek to combine these advances with on-manifold methods for generating
counterfactual explanations for tabular data. In order to investigate this possibility, we
devise theory specific to tabular data, as well as perform informative experiments on a
diverse set of real-world data. Finally, we provide several ideas for further work, with
the objective of reducing friction in initiation of iterative improvement upon this work.
In general, we strive for high levels of transparency, facilitating greater understanding,
accessibility and potential for further development.

The structure of the thesis is:

Chapter 2 covers all necessary preliminaries. This includes a short reminder of con-
cepts from probability theory, as well as an overview of our notation and delimitation of
the scope. We proceed by presenting accessible introductions to explainable AI, genera-
tive modelling, decision trees, deep learning, autoencoders and variational autoencoders
(VAEs), before ending the chapter with some important evaluation metrics. We recom-
mend the familiar reader to skim or even skip topics that are known, but make sure to
familiarize yourself with our notation and assumptions.

Chapter 3 contains an exposition of diffusion models. We show how diffusion models
can be interpreted as an extension of VAEs. We proceed by treating two specific diffu-
sion models that are based on different sets of assumptions. Finally, we combine these two
models into a relatively simple model meant to be appropriate for all types of tabular data.

Chapter 4 introduces a specific method for generating counterfactual explanations, fol-
lowed by a modification of this method which employs diffusion models.

Chapter 5 contains a description of two experiments we perform to understand how the
models perform in practice. The chapter describes the datasets we utilize and outlines the
methodology we follow in a detailed manner, including the software we employ. The first
experiment is designed to evaluate the performance of the final model from Chapter 3, on
the task of synthesizing tabular data from an unknown probability distribution, estimated
from input data. The second experiment is designed to evaluate the performance of the
final model from Chapter 4, on generating counterfactual explanations for tabular data.
For context, we compare the diffusion-based models with two carefully selected reference
models.

Chapter 6 presents some results from the first experiment, on generating synthetic data.
We also provide some thoughts and comments on the results.

Chapter 7 lays out some results from the second experiment, on generating counterfac-
tual explanations. We also provide some thoughts and comments on the results.

Chapter 8 summarizes the thesis, highlights some main points of discussion and proposes
several possible directions for future research.





Chapter 2

Background Material

This chapter covers all necessary background material for understanding the contributions
of this thesis. The level of difficulty is chosen such that students with a fundamental
understanding of mathematics, optimization, probability, statistics and ML should be
able to understand the concepts. Some sections are modified versions of sections from the
author’s specialization project [93], with the notation changed accordingly. The reader
which does not have introductory knowledge in AI or ML is referred to Chapter 2 in the
project paper.

The chapter is organized as follows. First of all, Section 2.1 briefly covers some impor-
tant concepts from probability theory, as well as defines our notation. Second, Section 2.2
presents some important assumptions, setting the stage for the rest of our work. Next,
Section 2.3 introduces explainable AI and counterfactual explanations, using mostly re-
cycled material from the author’s specialization project [93]. In continuation, Section 2.4
gives a concise introduction to generative AI, with emphasis on deep generative AI. The
subsequent discussion on decision trees in Section 2.5 is also strongly inspired by content
in the author’s specialization project, with a new addition on gradient boosting. Then,
Section 2.6 on deep learning and Section 2.7 on autoencoders are updated versions of
elements from the introduction to deep learning in the project. Specifically, the former
section introduces deep learning from a historical perspective, in addition to feedforward
neural networks, as well as our notation for designing and describing neural network ar-
chitectures. Moreover, the latter section introduces the encoder-decoder architecture, as
well as some special types of autoencoders. Later, Section 2.8 gives a proper introduction
to variational autoencoders. Note that we described these models in the specialization
project as well, but this section introduces them from a new and updated perspective,
yielding a more complete introduction to the topic. Furthermore, a VAE especially de-
signed for tabular data, the TVAE [146], is explained in Section 2.9. Finally, in Section
2.10, we discuss some important metrics for evaluating our models later in the thesis.

2.1 Probability Theory

We assume that the reader is familiar with the essential parts of probability theory, but we
reiterate some important concepts for clarity. A probability distribution is a collection of
probabilities describing all possible events in a probability model [31]. Such a distribution
may be represented by different mathematical quantities, depending on the nature of
the random variables that map the sample space, i.e. the set of possible outcomes, to
R. Commonly, statisticians consider either discrete or continuous random variables, i.e.
random variables that are valued on discrete sets or intervals of real numbers, respectively.
When considering only the discrete variants, a probability distribution may be sufficiently
represented by a probability mass function (PMF), which assigns a probability to each

7
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discrete outcome in the sample space. Similarly, when considering continuous random
variables, the probability distribution may be represented by a probability density function
(PDF), which essentially describes the infinitesimal probability of each continuous value
in the sample space [31]. We refer to both PMFs and PDFs as densities, with the implicit
understanding that these are mass functions in cases where we are working with discrete
random variables. In addition, we use the terms distribution and density interchangeably,
which is common in the literature. The interested reader is referred to Evans and Rosenthal
[31], or Jacod and Protter [53], depending on the level of sophistication that is desired,
for more details on probability theory.

Notation

The material studied in this thesis comes from a variety of research fields, each with their
own conventions in notation. There is seemingly little to no standardization in notation
across disciplines that deal with concepts from probability and statistics. For clarity and
transparency, we thoroughly explain the notation we use throughout the thesis.

Capital, italic letters like X denote scalar random variables, while lower case, italic
letters like x denote their realizations. Bold letters denote vectors or matrices. More
specifically, italic letters like X and x denote random vectors and their realizations, while
roman letters like X denote matrices. Notice that bold, italic letters like x (or θ) also
denote vectors of scalars when discussing parameters or other non-random quantities. This
notation also applies to random and deterministic vector-valued functions, i.e. functions
whose range consists of either random or deterministic vectors. The reader should be
aware that, in most advanced textbooks and applied research, both random variables and
their realizations are typically denoted by lower case letters, leaving each symbol’s precise
meaning to be understood from context. In contrast, we practice different notations for
different quantities, to avoid unnecessary confusion in certain situations.

The probability of an event is denoted by capital P . In most cases, marginal densities
are denoted by p(·), conditional densities are denoted by p(· | ·) and joint densities are
denoted by p(· , ·). We use the same notation no matter the types of random variables
we are working with. It should be clear from the context if all random variables are
continuous or discrete, or if some random variables are continuous and others are discrete.
In these notations, we suppress any explicit dependence on random variables and leave
them to be understood from the context. For example, in order to be exact, one should
denote a marginal density as pX(x), explicitly stating the random variable, X, it carries
information about. This suppression is commonly used in statistics for brevity, in cases
where this information is clearly understood from the circumstances.

We let X ∼ p(x) denote that a random variable X is distributed according to a density
p(x). In addition, when X follows a well-known distribution, we use a notation specifying
the name of the distribution. For example, for the Gaussian distribution with parameters
µ and σ2, we simply write X ∼ N (µ, σ2). In this case, the notation means that X
is distributed as the specified Gaussian. Finally, in cases where we want to specifically
represent the density function of a well-known distribution, we add an argument, like for
example N (x;µ, σ2). For consistency, we let these considerations hold for vectors as well.

2.2 Assumptions

The work in this thesis is necessarily restricted because of limitations in time and prereq-
uisites. Some of the assumptions we make are highlighted here.

Let D denote a dataset, a set of observations, from a larger population. This data could
come from many different modalities, but our main focus is on tabular data, i.e. data that
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contains samples (rows) which consist of values of certain features (columns). Oftentimes,
the data is heterogeneous, meaning that continuous, discrete, binary, nominal and ordinal
data types may be present in D. Unless otherwise specified, we let the term categorical
encompass all non-continuous data types. In addition, without loss of generality, we only
consider datasets originally meant for binary classification, meaning that they have a
binary response, label or dependent variable. As a consequence, unless otherwise specified,
we discuss supervised models in the context of binary classification. To facilitate this, the
dataset D is assumed to consist of n observations,

D = {(x1, y1), (x2, y2), . . . , (xn, yn)},
where each observation consists of p+ 1 values. Precisely, the vectors are defined as

(xi, yi) := {x1i , x2i , . . . , xpi , yi}, i ∈ {1, . . . , n},

where xji , j ∈ {1, . . . , p}, represents the values of the features, covariates or independent
variables in observation (xi, yi). Additionally, yi ∈ {0, 1} represents the binary response
value corresponding to the feature values in xi. The sub-indices are suppressed in cases
where we are clearly discussing one observation. Even though we do not show this ex-
plicitly in the set-notation used above, vectors are always treated as column vectors. For
simplicity, it is assumed that all n points are independent samples from some under-
lying, or latent, distribution. We represent this distribution with the density p∗(x, y).
Moreover, we assume that this distribution is fixed. This means that if we could collect
another dataset D′, recording the same phenomena, it would be from exactly the same
underlying distribution as D. Of course, this is an assumption that oversimplifies real-
ity, but it is commonly made in statistics. In such a case, we say that the observations
(xi, yi), i ∈ {1, . . . , n}, are independently and identically distributed (i.i.d.).

The dataset D can also be represented in a different, more abstract way. Let (X, Y ) :=
{X1, . . . , Xp, Y } denote a set of random variables. These variables follow an unknown joint
distribution described by a collection of probabilities,

P ({X1, . . . , Xp, Y } ∈ A),

for all subsets A ⊆ Rp+1. We stress that the superscript indices are used to index the
random variables in the set and do not refer to exponentiation. To simplify the represen-
tation of the joint distribution, we assume that the set has a density denoted by p∗(x, y).
We do not go into detail about when such an assumption can be made, but note that it is
a fair assumption to make for most practical purposes. Details can be found in Jacod and
Protter [53]. Then, let (x, y) := {x1, x2, . . . , xp, y} represent a single sample from this joint
distribution. These constructs can be tied back to our dataset D quite nicely, by noticing
that the columns of D can be labelled by (X, Y ). As a consequence, each row of D can be
interpreted as a single sample from p∗(x, y). In other words, by letting the random vector
(X, Y ) represent the columns, each observation in D is a realization of (X, Y ) ∼ p∗(x, y).
Moreover, every value in a specific column j ∈ {1, . . . , p, p+ 1} in D, labelled by its corre-
sponding random variable from the set {X1, . . . , Xp, Y }, can be interpreted as a sample
from an underlying marginal distribution, represented by p∗(xj) for j ∈ {1, . . . , p} or p∗(y)
for j = p+ 1. This way of interpreting each value in a tabular dataset is useful in several
contexts, for example when discussing vector spaces corresponding to the domain of a
function or model. Conclusively, we have described two quite different ways of intuitively
arguing about what a given dataset D represents. Each representation will come in handy
throughout this thesis.
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2.3 Explainable Artificial Intelligence

The necessity of tangible explanations has increased alongside the rise in use of complex
models from AI and ML in high-risk areas like medicine, banking and anti-money launder-
ing [94]. Explainable artificial intelligence (XAI) is a branch of AI that treats explaining
such models. Another term that is often used for XAI in the context of ML is interpretable
machine learning (IML). Note that exactly what an explanation should include, or how
interpretability should be defined, is a great discussion in itself. These questions are sub-
ject to research, not only specific to XAI or IML, but in broader fields like psychology,
cognitive science and philosophy. We do not cover these questions in detail in this work,
but simply use the terms explanation and interpretation interchangeably, according to our
casual, imprecise understanding of them. The interested reader is referred to, e.g., Miller
[83] for a thorough review of the research, in conjunction with work on explanations in
AI.

Explainability vs performance. A tradeoff between explainability and performance
of models can be observed in a wide range of applications. Figure 2.1 illustrates how some
common ML methods generally compare to each other when it comes to predictive ac-
curacy and interpretability. We observe that simpler models like linear regression and
decision trees are highly interpretable. They perform well in some applications, but be-
cause of restrictive assumptions and non-robustness, there are other methods that yield
higher accuracy in many applications. Deep learning is on the other side of the spectrum.
Cutting edge algorithms in many fields — for example in generative modelling, image
classification and natural language processing — are based on deep learning. However,
these models are rarely innately interpretable.

Figure 2.1: Qualitative illustration of the tradeoff between accuracy and interpretability
in a set of common ML models. The image is borrowed with permission from Sivamani
[123].

Motivation. Frequent use of black boxes for high stakes decision-making yields in-
creased demand for explainability when deploying algorithms. Molnar [86] states that
“interpretability helps the developer to debug and improve the model, build trust in the
model, justify model predictions and gain insights”. Interpretability is of course not only
important for the developer — it is essential for users and individuals affected by deci-
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sions made by such models. For example, imagine that a patient is predicted to have
life-threatening cancer by a supervised learning model. This setting is not completely
unrealistic, because, in recent years, several ML models have been applied to cancer prog-
nosis and prediction [68]. Both for the patient and for the medical doctor in charge, it
is vital that they understand why the model has returned this prediction. They need to
know on what basis the prediction has been made and if the model’s conclusions can be
trusted. In addition to usefulness and necessity for trust, explanations are required by
legislators and regulators. The General Data Protection Regulation (GDPR), developed
by the EU, gives an individual subjected to automatic decisions that significantly affects
him or her, among other rights, the right to obtain an explanation. In addition, decisions
based solely on algorithms, without human intervention, having a significant effect on a
subject, should be prohibited unless authorized, and the subject should have the right not
to be subject to such decisions [30]. All these reasons make XAI attractive to researchers,
practitioners and the general public. Before moving on to some theoretical concepts in the
field, it is worth mentioning that despite today’s frequent use of natively non-interpretable
models, some argue that one should always use interpretable models instead of striving to
explain black boxes [111].

Global and local explanations. Explanations in XAI can at first be divided into
two different types: global and local explanations. The objective of a global explanation
is to describe the average behaviour of a model. As a consequence, such an explanation is
often stated as an expectation over the distribution of the data. In contrast, the objective
of a local explanation is to explain an individual prediction made by a model. Some
of the local explanation methods are so-called attribution methods, meaning that they
describe individual predictions using feature effects, while other methods are so-called
example-based, meaning that they produce new data points as explanations [86].

Model-specific and -agnostic explanations. Another important distinction in
the field can be made between model-specific and model-agnostic methods. As the name
implies, model-specific methods use assumptions in a ML model itself to explain its pre-
dictions. Thus, the specific ML model used to obtain the outputs we want to explain
needs to be well-known when implementing model-specific methods. On the other hand,
model-agnostic methods try to explain model predictions without using the inner workings
of the model itself. It is not obvious which of these approaches is best — both of them
have advantages and disadvantages — meaning that the choice of regime should be evalu-
ated case by case. An advantage of a model-agnostic method is that it can be used across
many different ML models, facilitating effective comparative evaluation of performance.
Such explanatory methods can become natural pieces of a typical software engineering
workflow. This is more challenging with model-specific methods, because one needs an
individual surrogate model to explain each ML model. An advantage of a model-specific
surrogate model is that it can be developed to deliver more focused and detailed explana-
tions, especially tailored to a specific ML model. For example, in the field of deep learning
there are plenty of examples of surrogate explanatory models that fall under this category
[86]. Notice the use of the term surrogate model. In practice, this is often what use of
methods from XAI entails, i.e. constructing new models to interpret or explain previously
trained, black-box models. Before moving on, we provide a hypothetical example to clarify
the ideas mentioned above.

Example 2.3.1. Imagine that a medical doctor has access to some ML-powered software
that predicts if a patient in the emergency room needs immediate medical attention. The
model uses feature values that are when a patient enters the emergency room. We are
interested in analyzing how this software works, in order to make sure it is fair. XAI could
provide such analyses. A global explanation method, like for example a partial dependence
plot (PDP), describes the average behaviour of the model; “the PDP shows the marginal
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effect one or two features have on the predicted outcome” [86]. In this case, a PDP of the
time of entry of a patient vs the predicted probability of the patient needing immediate
medical attention could be interesting to construct. This might reveal if the time a patient
has waited seems to be more important in explaining the model’s behaviour compared to
other patient characteristics. In contrast to this, a local explanation method, like for
example Shapley values or counterfactual explanations, explains individual predictions
made by the model. If the model predicts that a patient x in the emergency room does
not need immediate medical attention, a counterfactual to this prediction indicates which
feature values of the customer that should be changed for the prediction to flip, i.e. that
patient x would need immediate medical attention. For example, it could indicate that
patient x would have been predicted as in immediate need if the heartbeat was 40 instead
of a measured 70. We focus on this type of human-friendly explanations in this thesis
— counterfactual explanations are studied in detail in Section 2.3.1. A model-specific
explanation method would in this example be limited to, and constructed specifically for,
the given ML model the doctor uses. For example, if this is a deep learning model, Grad-
CAM [120] is an example of this type of method (for convolutional neural networks).
In contrast, a model-agnostic explanation method is not dependent on the underlying
prediction model. PDP, Shapley values and counterfactual explanations are usually model-
agnostic. For example, a local counterfactual explanation is determined solely based on a
specific individual and its corresponding prediction from the model. △

2.3.1 Counterfactual Explanations

Within XAI, our main focus lies on counterfactual explanations (CEs). Note that we use
the terms counterfactual explanations (CEs) and counterfactuals interchangeably in the
following, in reference to a prediction-explanation of this type. As noted, a CE is a local
explanation, since it can be used to explain predictions of individual instances in the data.
Notice that there exists both model-agnostic and model-specific methods for generating
CEs [86], but we focus on model-agnostic versions, where a counterfactual is produced
based only on the input and output of a prediction model. The aim of these types of
explanations is to find new instances that change the original prediction to one that is
desired, while making as few changes as possible to the feature values in the original input
instance. That is, a prediction is explained by a counterfactual by highlighting which
feature values in the input instance need to be changed in order to change the predicted
outcome. Specifically, in binary classification problems, this change in prediction amounts
to a binary flip; we construct a counterfactual that yields a positive prediction (binary
indicator 1) instead of the original negative prediction (binary indicator 0). According
to Redelmeier et al. [107], there exists some general criteria that counterfactuals should
meet:

1. on-manifold : The counterfactual should lie on the data-manifold. This means that
counterfactuals should ideally come from the same underlying distribution as the
data.

2. actionable: The counterfactual should not change feature values of the original in-
stance that are immutable or fixed. The fixed features are predefined in each specific
application.

3. valid : The counterfactual should represent an instance that gives a different pre-
dicted outcome. The desired different prediction is predefined in each specific appli-
cation. In a binary classification setting, we are typically looking for counterfactuals
that yield positive predictions (binary indicator 1).
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4. low cost : The number of different feature values in the original instance and the
counterfactual should be as small as possible. The amount of difference between
values of the same feature should also be as small as possible. This amount can be
measured in a variety of ways, depending on the application, as well as on if the
feature is continuous or categorical.

To clarify the ideas, we construct a simple, hypothetical example of what a counterfactual
may look like in practice.

Example 2.3.2. A person applies for a mortgage at his bank. The customer profile is
shown in Table 2.1a. The bank uses a supervised learning method, trained on data from

Table 2.1: The customer that solicits a mortgage, alongside an example of a useful
counterfactual and a useless counterfactual. The attributes of the customer are age, sex,
nationality, salary (yearly), work sector, marital status, years as customer at the bank and
postal code (ZIP).

(a) Customer that solicits a mortgage.

Age Sex Nat. Sal. Work Sect. Mar. Stat. Cust. Years. ZIP

22 M Norway 350K Public Single 2 7051

(b) An example of a useful counterfactual.

Age Sex Nat. Sal. Work Sect. Mar. Stat. Cust. Years. ZIP

22 M Norway 420K Private Single 2 7051

(c) An example of a useless counterfactual.

Age Sex Nat. Sal. Work Sect. Mar. Stat. Cust. Years. ZIP

200 F Sweden 2200K Private Single 10 7051

all previous applicants. We assume that this particular person is not granted a mortgage,
based on a prediction from the model. A possible counterfactual explaining this decision
is shown in Table 2.1b. This counterfactual does not change the fixed characteristics
(here: age, sex, nationality and years as customer at the bank), but it changes other
feature values that the customer might be inclined to modify in order to be granted a
mortgage based on a future application. For example, the customer could change to a job
in the private sector, which could perhaps also increase his salary. Given that the “new”
customer profile in Table 2.1b changes the predicted outcome to “mortgage granted”, that
it changes the feature values of the customer the least amount possible and is on the data-
manifold, this is a useful counterfactual explanation. To contrast this, Table 2.1c shows
a customer profile which is not a useful counterfactual. It changes all the fixed values of
the original customer, already deeming it useless. Notice that the age of the customer no
longer is realistic, indicating that the generated individual is not on-manifold. In addition,
the salary of the generated individual seems unreasonable, likely also yielding a generated
individual that is not on the data-manifold of the bank’s mortgage applicants. △

Calculating CEs. Because the research field on counterfactual explanations is emerg-
ing and rapidly developing, there is no universally agreed upon grouping of different strate-
gies for how to create counterfactuals. For example, Guidotti [43] uses a rather coarse split
between methods based on optimization strategies and methods based on heuristics for
minimizing some cost, where each of these two groups contains many different variants.
In our case, we choose to follow the dual grouping introduced by Redelmeier et al. [107],
between algorithmic-based approaches and on-manifold methods.
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Algorithmic-based. The first general strategy for synthesizing counterfactuals is
based on solving an optimization problem,

arg min
x′
{d1(f(x′), y′) + λd2(x,x

′)}, (2.1)

where f(·) is a binary classifier, and d1 and d2 are appropriate metrics. These methods
work by finding an instance x′ that is close to the original instance, x, according to the
metric d2, while ensuring that the new prediction, f(x′), is close to the desired outcome,
y′, according to the metric d1. The hyperparameter λ is used for changing the relative
importance of the two terms. An advantage of these methods is that a problem formulated
like Equation (2.1) can be solved with a wide variety of techniques, like gradient descent
methods, random walks or integer programming, among others [107]. Some disadvantages
of such methods are that they are susceptible to generating counterfactuals that are neither
on-manifold nor actionable. Additionally, they often require continuous and independent
features in the data, alongside certain assumptions on the model f , like differentiability.
Finally, the choice of appropriate metrics is not trivial, because the resulting x′ is highly
dependent on d1 and d2 [107].

On-manifold. The second general strategy for generating counterfactuals consists of
so-called on-manifold methods. In these methods, the objective is to model the underlying
data distribution, before finding counterfactuals on this manifold. An advantage of these
methods is that many of them can exploit advances in, for example, generative modelling,
a research field that is developing at an exceptional speed, which is covered in Section
2.4. Some disadvantages of such methods are that they often are restricted to explaining
gradient-based models, in which case they are not truly model-agnostic. Additionally,
many of the methods cannot effectively handle categorical features with more than two
levels, and they are not able to treat fixed features in a reasonable way, both of which are
large flaws in practice [107].

Closing remarks. For more details, the interested reader is referred to Guidotti’s
literature review [43], a survey that categorizes the most recent methods for calculating
counterfactuals based on their individual properties. In addition to developing a grouping
system based on theoretical properties, the author constructs a benchmarking system in
order to compare the methods in practice. Regarding this, he states that “the results
make evident that the current state of the art does not provide a counterfactual explainer
able to guarantee all these properties simultaneously” [43]. It is not crucial to state
exactly what properties the author is referring to, but most of them are similar to the
properties we stated previously. Thus, as of recently, a method for calculating all-purpose
counterfactuals does not exist, according to Guidotti. Hence, it is highly important that
each application is analyzed differently; the method for calculating CEs should be chosen
based on a careful consideration of the advantages and disadvantages in each case.

2.4 Generative Artificial Intelligence

Generative AI, or generative modelling, is one of the current major talking points within
AI. Owing to rapidly growing research and development, several highly complex, high-
performing models in their respective domains, like DALL-E 2 [106], Stable Diffusion
[110] and ChatGPT [97], entered the mainstream in 2022. The latter reached 1 million
users in only 5 days [85], with the public opinion ranging from dystopic to utopic. In this
section, we provide a concise introduction to generative modelling.

Discriminative vs. generative learning. Many examples where ML typically
is used can be interpreted as problems from decision theory, a subject concerned with
decision-making under uncertainty [8]. For instance, a typical scenario is: based on a set
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of training observations, the objective is to make an optimal decision concerning a new
and unseen observation. Consistent with previous notation, let (X, Y ) := {X1, . . . , Xp, Y }
denote the random variables that describe the phenomenon we are studying, where Y is
the chosen random variable we want to reason about. Specifically, when reasoning about
Y , the objective is to train a model for the true underlying distribution of Y |X, which
we represent with the density p∗(y|x), before using this model to assign new observations,
x = {x1, . . . , xp}, to the optimal response. Strategies for solving such decision problems
are commonly divided into two different groups; discriminative and generative [56]. These
two techniques are generally treated as opposites, although work has been done to combine
the two methodologies [56, 70]. Starting with the generative approach, it essentially boils
down to learning an approximation of the true joint distribution of (X, Y ), represented
by the density p∗(x, y). Access to the joint distribution facilitates answering a wide range
of uncertain questions, by marginalizing, conditioning or applying other mathematical
operations to the density. In addition, as the name suggests, we can generate new data
by sampling from the learnt model of the underlying joint distribution. For instance, the
decision problem we outlined above can be solved by determining approximations to the
posterior density,

p(y|x) =
p(x, y)

p(x)
, (2.2)

where p(x, y) is the learnt estimation of the true joint density and p(x) is a normalization
factor, which represents a model of the marginal distribution of X. Note that the joint
density can either be learnt directly or indirectly. The latter technique is based on the
relation p∗(x, y) = p∗(x|y)p∗(y), meaning that we could estimate p∗(x|y) and p∗(y) indi-
vidually to indirectly estimate p∗(x, y). Notice that this technique essentially transforms
Equation (2.2) into Bayes’ theorem. Thus, generative learning is highly attractive, since
access to a proper approximation of the true joint distribution acts more or less as an
oracle, because, as stated by Bishop [8], the joint “provides a complete summary of the
uncertainty associated with the variables”. However, this technique has some downsides.
Most importantly, calculating an approximation of p∗(x, y) is often computationally chal-
lenging. In many applications, X is high-dimensional, and adequate parameter estimation
of generative models typically requires a lot of data. Consequently, finding a reasonable
approximation to p∗(x, y), and normalizing it, which is necessary for decision-making of
the form in Equation (2.2), can be highly demanding or even intractable.

The complexity of the generative approach inspires discriminative models, which gen-
erally solve a decision problem by modelling the true posterior distribution, represented
by the density p∗(y|x), directly [8]. Thus, discriminative models bypass the issues related
to modelling the joint distribution by simply optimizing a prediction model directly [56].
In fact, as Bishop [8] states: “if we only wish to make classification decisions, then it can
be wasteful of computational resources, and excessively demanding of data, to find the
joint distribution”. However, as Tomczak [138] argues, estimating the joint distribution
is crucial not only for generating synthetic data, but also for evaluating the likelihood
of observations, properly weighting decisions and uncertainty assessment. Thus, a dis-
advantage of the less complex discriminative approach is that it does not facilitate such
analyses, which provide the practitioner with a more well-informed decision. For instance,
a downside of the typical discriminative model is that it displays certainty no matter how
probable an input observation is under p∗(x), whereas a generative model accounts for
uncertainty by weighting decisions with their probability under the approximated feature
joint, p(x), which can be observed from the relation p(x, y) = p(y|x)p(x). Actually, the
most rudimentary discriminative models simply map any observation, x, onto a response,
without constructing a probability model at all, which does not enable reasoning under
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uncertainty.
Deep generative models. Moving on to the group of models where the previously

mentioned mainstream technologies belong, deep generative models are generative models
that are parameterized using deep learning. We provide an exposition of deep learning
in Section 2.6, but, succinctly said, the research area consists of flexible and powerful
algorithms that have been highly influential over the years. Following the taxonomy of
Tomczak [138], we divide deep generative models into four main groups: autoregressive
models (ARMs), flow-based models (flows), latent variable models and energy-based models
(EBMs). In addition to these four, we mention a fifth group called score-based models
(SBMs), which are closely related to both energy-based models and latent variable models.
Our focus is on latent variable models, which we further divide into likelihood-based models
and non-likelihood-based models. As the names suggest, the former models p∗(x, y) directly
using the likelihood, or a bound on the likelihood, of the dataset D, while the latter models
p∗(x, y) in other ways. Notice that likelihood-based models exist in the other four main
groups of generative models as well, which is why, as Tomczak points out, there exists no
unique, one-size-fits-all taxonomy [138]. In fact, ARMs, flows, EBMs and SBMs largely
consist of likelihood-based models.

Generative adversarial networks. The most popular models in the non-likelihood
based paradigm are generative adversarial networks (GANs) [41]. Many high-performing,
state-of-the-art (SOTA) models for data modalities like images are based on variants of
GANs. Such models approximate complex sampling procedures by adversarial training.
Succinctly explained, a GAN is an unsupervised model that consists of a generator and a
discriminator. These two components are trained in parallel, by teaching the generator to
“fool” the discriminator. This implicitly teaches the generator to model p∗(x, y). Since this
model is not likelihood-based, we cannot evaluate the likelihood of an arbitrary observation
(x, y) ∈ D using GANs. We do not discuss such implicit generative models [84] any further,
but we mention GANs because they have pushed the envelope of deep generative modelling
for almost a decade.

Variational autoencoders and diffusion models. Within the group of deep
likelihood-based latent variable models, variational autoencoders (VAEs) [65, 109] have
been the most important model for years, rivaling GANs in some aspects. We provide a
detailed exposition of VAEs in Section 2.8. Moreover, in Chapter 3, we introduce diffusion
models [47, 124], which are the main likelihood-based latent variable models we investigate
in this thesis. These have only recently been shown as worthy competitors to GANs and
VAEs, being used to develop SOTA models for several data modalities. Notice that diffu-
sion models have score-based interpretations as well [76], extending the knowledge about
diffusion models to a whole new body of literature, a detail we swiftly return to later.

2.5 Decision Trees

Decision trees are among the most popular supervised ML models for both classification
and regression, because of their proven performance, alongside their simplicity and inher-
ent interpretability. In fact, they play important roles in this work, which is why this
section is added for completeness.

Let D be a multivariate dataset (p > 1) of n training observations. Recall that every
value xj , j ∈ {1, . . . , p}, in an arbitrary observation x = {x1, . . . , xp} can be interpreted
as a realization of feature Xj , j ∈ {1, . . . , p}. Following such a philosophy, the input
space that a decision tree works in is p-dimensional, where each dimension pertains to
each feature. If Y is categorical, a decision tree trained on the covariate values, xi, i ∈
{1, . . . , n}, with yi, i ∈ {1, . . . , n}, as labels is called a classification tree. On the contrary,
if Y is continuous, the decision tree is called a regression tree. Decision trees are typical
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examples of discriminative models, essentially providing the practitioner with an estimate
of the distribution represented by the density p∗(y|x). Intuitively, a decision tree splits
the p-dimensional input space into p-dimensional rectangular segments. In each segment,
a model is fitted in order to predict the response. The traditional choice of such a model
in a regression tree is a density estimator, for instance a kernel density estimator, fitted
on the responses of the training points in the segment. Similarly, for a classification
tree, the prediction is typically decided based on the shares of the observed categories in
the training points in the segment. However, note that these models can be arbitrarily
complex, depending on the level of flexibility that is desired.

The popularity of decision trees is partly due to the simple manner in which they can
be represented, which makes trees simple to explain and interpret for most demographics.
An example of a decision tree in R2, i.e. p = 2, is shown in Figure 2.2. Notice the tree-
like structure to the left, which is how a fitted decision tree commonly is depicted. Each
horizontal line represents a split in the input space at a specific feature value. Each of
these intermediate subsets of the space are called internal nodes. These splits are almost
always constricted to being binary, defining binary decision trees, meaning that they split
continuous features into two segments, and partition the categories of categorical features
into two groups. At the bottom of the tree, the leaf nodes are denoted as Ri, in this
example with i ∈ {1, . . . , 5}. The panel to the right shows the space of features in R2

Figure 2.2: Example of a decision tree in R2. Please excuse the use of subscripts for
features instead of superscripts. The images are borrowed with permission from Hastie et
al. [44].

corresponding to the tree. For example, according to the tree splits, if a data point
x = {x1, x2} has continuous feature values such that x1 ≤ t1 and x2 ≤ t2, it belongs to
the segment represented by leaf node R1. For instance, in a binary classification tree,
R1 could contain a PMF over the binary indicators 0 and 1, where the probability of
each category is estimated from the share of the category among the training observations
belonging to the leaf node. Thus, the conditional probabilities P (Y = 0|X1 ≤ t1, X2 ≤ t2)
and P (Y = 1|X1 ≤ t1, X2 ≤ t2) are estimated based on the normalized ratios of response
values in the training observations with x1 ≤ t1 and x2 ≤ t2. Similarly, the other leaf nodes
contain estimations of other class-conditional PMFs, which illustrates why decision trees
are discriminative models. In addition, decision trees can be used to design rudimentary
discriminative models, by skipping the estimation of densities in the leaf nodes and simply
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assigning any new observation to a deterministic value, most often dependent on the
response values of the training observations belonging to each node. This value could for
instance be the average value in regression trees or a majority vote in classification trees.

As mentioned, decision trees are highly attractive to many practitioners because of
their simplicity in representation. Furthermore, they have certain theoretical properties
that make them useful in many applications. Since they are non-parametric, they can
handle interactions between features in a dataset automatically, to any order. Moreover,
they are usually fast to build, scalable, require little to no extra data pre-processing, can
handle mixed data types without issues and perform feature selection automatically [44,
107].

Parameter estimation. There exists several different algorithms for calculating
decision trees. Some of the most important differences between the algorithms are the
criteria used to find the internal nodes, how to estimate the response in each of the leaf
nodes, when to stop splitting on a particular feature and the general structure of the fitted
trees [86]. This overview does not give a detailed description of any of these algorithms, but
will instead refer to relevant literature. One of the most popular algorithms for growing
decision trees is CART: Classification and Regression Trees [11]. First introduced in the
1984 monograph with the same name, CART is a very important algorithm for many
different applications, which explains why citations of the original source can be found
in a wide variety of fields. CART builds trees by recursively splitting each feature in
two, stopping when some pre-specified criterion is fulfilled. Another popular algorithm
for calculating decision trees is called C4.5 [105]. Both CART and C4.5 were recognized
as two of the top ten most influential algorithms in the field of data mining, according to
a survey paper by the IEEE International Conference on Data Mining (ICDM) in 2006
[144]. This indicates the influence these algorithms have had. In addition, the fact that two
algorithms for building decision trees occupied this list further manifests the importance
of the decision tree idea and implementation.

2.5.1 Gradient Tree Boosting

Gradient boosted decision trees (GBDTs), i.e. models that are constructed by using gra-
dient boosting on decision trees, represent an improvement over regular decision trees. As
noted, decision trees have plenty of highly attractive properties. However, the main prob-
lem with decision trees, which sometimes prevents them from being used in their standard
form in practice, is that they rarely yield optimal predictive performance in applications.
GBDTs tend to improve predictive performance, often in dramatic fashion [44]. In ad-
dition, there exists GBDTs which are able to maintain most of the attractive features of
decision trees, with the exception of deteriorated interpretabilty and speed. In order to
understand what gradient tree boosting is, we break down the term systematically in the
following.

Boosting. The term boosting refers to the idea of improving a weak learner to yield
comparable performance to a strong learner. Casually stated, a weak learner is a model
that only is able to perform slightly better than random predictions, while a strong learner
is a model that is able to perform very well, with high confidence over most of the in-
stances in a dataset. Groundbreaking work was done on the concept of boosting in the
late 1980’s and 1990’s, proving its abilities mathematically. In fact, in 1990, Schapire
[117] proved equivalence between weak and strong learnability, which turned out being a
highly important result in statistics and ML. Hence, in theory, one only needs to build a
model that is able to classify a little over half of the available data points correctly, as its
performance can be boosted a posteriori.

Boosting in this form is not constrained to any specific learning model, making it a very
general idea. In common for all boosting algorithms is that they iteratively learn weak
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classifiers on the data, before adding their outcomes to produce the final prediction. When
added, each classifier is weighted according to its accuracy, giving larger weight to more
accurate classifiers. Additionally, each data point is usually weighted and re-weighted,
depending on how the classifier performed on the observation in the previous iteration.
Thus, “each successive classifier is thereby forced to concentrate on those training obser-
vations that are missed by previous ones in the sequence” [44]. An adaptive weighting
and re-weighting scheme, following similar ideas as those loosely described above, was in-
troduced in a seminal paper by Freund and Schapire [35] in 1995, as part of the infamous
method AdaBoost. The authors later showed that the boosting mechanism is feasible in
practice, providing experiments to assess the method on real learning problems [36].

Gradient boosting. It turns out that the AdaBoost algorithm can be formulated as
a simple form of gradient descent minimization, with a specific loss function and step size
search [81]. In fact, AdaBoost can be interpreted as a special case of gradient boosting,
a term that encompasses methods that minimize a variety of loss functions, depending
on the application, with functional gradient descent [44, 118]. The mathematical details
behind these discoveries are quite technical and are not covered because of lack of time.
However, the connection between boosting and optimization in certain function spaces is
very interesting to keep in mind, and is an example of how mathematical concepts often
are found to be linked together, yielding fruitful results when discovered. In particular, a
gradient boosting procedure builds an iterative sequence of predictors in a greedy fashion
[104]. Recall that, without loss of generality, we only consider binary classifiers, even
though the predictors can be classifiers on categorical responses or regression models on
continuous responses, as well. Let ft, t ∈ {0, 1, 2, . . .}, denote a sequence of binary classi-
fiers, where fT is the final classifier, given that the procedure has converged at iteration
T . These classifiers are defined sequentially as ft = ft−1 + αht, where α is a step size and
ht ∈ H, where H is a chosen family of functions. The step size α can either be set a priori
or estimated via techniques like, e.g., line search [92]. The function ht : Rp −→ R is chosen
according to

ht = arg min
h∈H

E[L(y, ft−1(x) + h(x))], (2.3)

where L is some smooth loss function and the expectation is calculated over all obser-
vations, (x, y), in a held-out test dataset. In fact, the expected loss in Equation (2.3)
is usually minimized with functional gradient descent, i.e. by choosing ht such that it
approximates the negative gradient of the loss. Mathematically, this can be stated as

ht(x) ≈ −gt(x, y) := −∂L(y, s)

∂s

∣∣∣
s=ft−1(x)

,

for all test observations, (x, y). In binary classification problems, L is usually defined as
the binary cross-entropy loss,

L(y, ft−1(x)) = −y log ft−1(x)− (1− y) log(1− ft−1(x)),

where (x, y) is an arbitrary observation. Importantly, y ∈ {0, 1} and ft−1(x) ∈ [0, 1],
i.e. the function ft−1 predicts the probability that x corresponds to a binary indicator 1
response. Commonly, this probability prediction is transformed into a either-or prediction
by introducing a discrimination threshold, which we discuss in Section 2.10. Note that
these are technical details we do not discuss exhaustively here, but the cross-entropy loss
is discussed in conjunction with the categorical distribution later in this work.

Gradient boosted decision trees. Finally, GBDTs are models that, on a superficial
level, follow the procedures outlined above, after defining H as a family of decision trees.
Based on the previous discussion, this means that each decision tree, ht, is trained to
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approximate the negative gradient of the loss function, L [104]. Thus, GBDTs improve
decision trees, which are the weak learners of choice, to yield strong learning capabilities,
by means of gradient boosting. Note that the size of each tree that is included in the
iterative boosting procedure is not trivial to determine. One simple option for specifying
the tree-size is to define a fixed number of leaf nodes, J , for every single tree. This should
be set a priori as a hyperparameter of the gradient boosting algorithm. A complete
discussion about this strategy can be found in Hastie et al. [44].

GBDTs yield impressive performance on many data modalities, especially on tabular
data. For instance, methods like XGBoost [13] are generally recommended for regression
and classification tasks on tabular data. In fact, a study by Shwartz-Ziv and Armon [122]
showed that XGBoost outperforms deep learning models across a plethora of datasets,
while requiring significantly less tuning of hyperparameters. According to Kotelnikov et
al. [67], CatBoost [104] is the leading GBDT implementation. Prokhorenkova et al. [104]
introduce two new techniques to the GBDT literature, created to combat a statistical
issue called prediction shift, which they show is present in all previously implemented
GBDTs. Because empirical results from these two papers indicate that CatBoost outper-
forms previous SOTA implementations, we employ CatBoost as a classifier on our binary
classification tabular datasets later in this thesis. Despite this choice, we note that the
performance differences between several of the most used GBDT methods, like CatBoost
[104], LightGBM [60] and XGBoost [13], are not dramatic in most cases, as remarked by
Shwartz-Ziv and Armon [122].

2.6 Deep Learning

Deep learning is a subfield of ML that encompassees methods for both supervised and
unsupervised learning. This topic is not new — it has been subject to research for many
decades — but its relevance has increased alongside the rise in accessible computing power
and large datasets. In fact, deep learning dates back to the 1940s, when some of the earliest
models were intended to simulate how learning could happen in the human brain. Because
of this, deep learning also goes by the name artificial neural networks (ANNs) [40]. We
use the names artificial neural networks, or simply neural networks, and deep learning,
interchangeably. Goodfellow et al. [40] state that a solution for “the tasks that are easy
for people to perform but hard for people to describe formally” is to “allow computers
to learn from experience and understand the world in terms of a hierarchy of concepts,
with each concept defined through its relation to simpler concepts”. When drawing a
graph that shows how all these concepts are connected, the graph will be deep, with many
layers. Hence the name deep learning. This class of methods exploits that many small,
linear terms can model any mathematical function when added and transformed via a
nonlinearity. This idea is summarized in the Universal approximation theorem. Theorem
1 shows Goodfellow et al.’s [40] precise statement of the theorem.

Theorem 1 (Universal Approximation Theorem). A feedforward neural network with a
linear output layer and at least one hidden layer with any “squashing” activation func-
tion can approximate any Borel measurable function from one finite-dimensional space
to another with any desired nonzero amount of error, provided that the network is given
enough hidden units.

Theorem 1 introduces a plethora of terms that need to be understood in order to recognize
what it states. Instead of defining each term directly here, we let the meaning of each
of the terms become clear gradually as we work our way through the material. Thus,
after reading this entire section, the theorem should hopefully be quite easily understood.
However, in order to keep the discussion relatively light, we do not cover the concept of
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Borel measurability in detail. In this context, it is sufficient to state that the Universal
approximation theorem is valid for every continuous function on a closed and bounded
subset of the real line. All in all, deep learning solves incredibly complex, nonlinear
problems — like for example mapping an image, or raw sensory input data, to the object
the image shows — by breaking down the problem into many small and simple calculations.

2.6.1 Feedforward Neural Networks

The most important model in the field of deep learning is the feedforward neural network
(FNN) or the multilayer perceptron (MLP) [40]. The MLP lays the foundation for the rest
of the field, since many of its components are cornerstones in more complex models. This
is analogous to how linear regression is often treated as the quintessential model in ML or
statistical learning. In fact, linear regression is closely related to the MLP, as will become
apparent. Neural networks are often depicted graphically for ease of comprehension, such
as the simple version of a MLP shown in Figure 2.3. We use this illustration throughout
our discussion to exemplify how different calculations in FNNs are performed.

Figure 2.3: Example of a simple FNN for binary classification. The image is borrowed
with permission from Dixon et al. [22].

In broad terms, MLPs consist of layers. There exists three types of layers; input,
hidden and output. Most MLPs have one input layer, one output layer and one or more
hidden layers. For instance, the FNN that is illustrated in Figure 2.3 has one input layer,
one output layer and two hidden layers between the input and the output. Each layer
consists of nodes, neurons or units. Each node represents a transformation, a mathematical
operation, that is performed on its input. The number of nodes in a layer is often referred
to as the width of the layer, while the number of hidden layers of the neural network is
often referred to as the depth of the network itself. Notice that the nodes are connected
by weights. In many cases, the way the nodes are connected decides what type of neural
network it is. In the network in Figure 2.3, the nodes only connect to each other in the
forward direction, from input to output, which is why it is a FNN. A more complicated
neural network is the recurrent neural network (RNN), which allows for cyclic connections.
RNNs are not treated here, but are mentioned to indicate that FNNs may be modified to
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yield more complex models. Before explaining how the mathematical operations in MLPs
are executed, we define some notation.

Notation. Recall our dataset, D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi =
{x1i , x2i , . . . , xpi }, i ∈ {1, . . . , n}, are feature values and yi, i ∈ {1, . . . , n}, are response
values. When constructing a neural network for this dataset, the width of the input layer
is set to p. That is, for a given observation xi, each unit j represents a xji , j ∈ {1, . . . , p}.
For clarity, when we enumerate nodes in a figure we choose to start counting from the top.
Thus, the FNN displayed in Figure 2.3 can be used for input data with p = 6 covariates,
such that each node j represents the feature value xji , j ∈ {1, 2, 3, 4, 5, 6}, for each observa-
tion xi, i ∈ {1, . . . , n}. In addition, the hidden units are denoted by hij , j ∈ {1, . . . , phi},,
where the first index indicates hidden layer number i (enumerated from the left) and the
second index indicates unit j (enumerated from the top) within hidden layer i. Note that
phi indicates the number of units in hidden layer i. For instance, in Figure 2.3, the hidden
nodes are denoted as h1j , j ∈ {1, 2, 3, 4}, and h2j , j ∈ {1, 2, 3}. Furthermore, the output
nodes are denoted by yj , j ∈ {1, . . . , pho}, where the number of output nodes, pho , depends
on if the problem deals with classification or regression. Usually, pho = 1 in a regression
setting, while pho > 1 in a classification setting. Finally, let wijk denote the weight that
connects node j in the previous layer with node k in the current layer i. This means that
in Figure 2.3, the weights are denoted as

w1jk, (j, k) ∈ {(1, 1), (2, 1), . . . , (6, 1), (1, 2), (2, 2), . . . , (6, 2),

(1, 3), (2, 3), . . . , (6, 3), (1, 4), (2, 4), . . . , (6, 4)},

and

w2jk, (j, k) ∈ {(1, 1), . . . , (4, 1), (1, 2), . . . , (4, 2), (1, 3), . . . , (4, 3)},
for the two hidden layers and

w3jk, (j, k) ∈ {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2)},
for the output layer. Having defined our notation, we explain how an input observation
is propagated through a FNN. In fact, doing all the mathematical operations through
the graph from the input layer to the output layer is commonly referred to as forward
propagation in the literature.

Forward propagation. The weights in a MLP can be interpreted as coefficients in a
linear combination of the units they go from, feeding into a node in the subsequent layer.
For example, given an arbitrary observation x ∈ D and assuming known values for the
weights wijk, ∀(i, j, k), in the neural network, the value of unit h11 is calculated as

valx(h11) = σh1

(
b+

p∑
k=1

xjw1k1

)
,

where valx(·) denotes the numerical value at node · based on observation x, b is a so-
called bias node and σh1 is called an activation function. Before explaining what these
quantities represent, notice the analogy to linear regression; the number that is fed into
the activation function is of the same form as a linear regression with xj , j ∈ {1, . . . , p},
as covariate values, given that the weights have already been estimated. As a side note,
in linear regression, the weights wijk are normally called coefficients βj . The bias node is
not connected to any of the nodes in the previous layer. Analogously to the intercept in
linear regression, this is often added to offset the linear combination of the weights and
inputs, increasing its flexibility beyond linear models passing through the origin. For now,
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we also assume that the value of the bias is known. Notice that this calculation, which was
performed on node h11 as an example, can be done in a similar manner for all the other
nodes, using the previous layer’s values, commonly referred to as activations, as input. For
example, for the output nodes in a FNN with two hidden layers, the calculations become
nested,

a
(1)
jx

= valx(h1j) = σh1

(
bh1 +

ph0∑
k=1

xkw1kj

)
, j ∈ {1, . . . , ph1}, (2.4)

a
(2)
jx

= valx(h2j) = σh2

(
bh2 +

ph1∑
k=1

a
(1)
kx
w2kj

)
, j ∈ {1, . . . , ph2}, (2.5)

ŷjx = valx(yj) = σho

(
bho +

ph2∑
k=1

a
(2)
kx
w3kj

)
, j ∈ {1, . . . , pho}, (2.6)

where σho , σh2 , σh1 are the activation functions, and bho , bh2 , bh1 are the bias nodes, for the
output layer, the second hidden layer and the first hidden layer, respectively. In addition,
let there be pho , ph2 , ph1 , ph0 = p nodes in the output layer, the second hidden layer, the
first hidden layer and the input layer respectively. Notice that each layer may have a
different activation function, which is why we explicitly added the sub-indices to σ.

Activation functions. The activation function, which we denote by σ, is a very
important component of any neural network. As stated in Theorem 1, a “squashing” acti-
vation function is a prerequisite for the FNN to be able to approximate any (measurable)
function. As the name indicates, the activation function essentially decides how each node
should be “activated”, i.e. what weight the value of the affine transformation that is used
as input to the activation function should be given. An activation function is simply a
fixed nonlinear function. For example, a FNN with σ defined as the identity function in
all layers will behave like a linear regression and will never be able to learn any nonlinear-
ities. Some commonly used activation functions are given in Table 2.2. Notice that the
first four examples are functions of a single scalar x. In contrast, the softmax function is
a vector-valued activation function, where the input and output are vectors in Rp×1. In
modern neural networks, the most used and recommended hidden activation function is
ReLU [40]. Note that all the functions in Table 2.2 are “squashing”, since their outputs
are constrained to a certain area of R. The activation function of the output layer has to
be chosen depending on the problem at hand. Table 2.3 shows some common examples of
supervised ML problems, alongside their corresponding output layer activation function
and number of output nodes.

Table 2.2: Some commonly used activation functions. The first four functions are defined
as σ· : R −→ R, while the softmax function is defined as
σsoft : Rp×1 −→ Rp×1, such that σsoft = {σsoft(x)1, . . . , σsoft(x)p}.

Name Activation function

Rectified linear unit (ReLU) σReLU(x) = max (0, x)
Logistic sigmoid σlogsig(x) = 1

1+exp (−x)
Hyperbolic tangent (tanh) σtanh(x) = exp (x)−exp (−x)

exp (x)+exp (−x)
Sigmoid-weighted linear unit (SiLU) σSiLU(x) = xσlogsig(x)

Softmax σsoft(x)j = exp (xj)∑p
i=1 exp (xi)

, j ∈ {1, . . . , p}

Linear algebraic implementations. Since deep learning operations are linear, they
are very well suited for highly efficient implementations using techniques from numerical
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Table 2.3: Common problems solved with supervised deep learning models, alongside
their corresponding output activation function and number of output nodes.

Problem Output activation Output node(s)

Binary classification Logistic sigmoid or softmax One or two
Multiclass classification Softmax Number of categories
Regression Identity function One

linear algebra. The equivalent formulations of equations (2.4), (2.5) and (2.6) for all units
simultaneously are

a(1) = σh1

(
b(1) + W(1)Tx

)
,

a(2) = σh2

(
b(2) + W(2)Ta(1)

)
,

ŷ = σho

(
b(o) + W(3)Ta(2)

)
,

where the activation functions are vector-valued. Moreover, the weight matrices W(j),
the activations a(j), the input vector x, the output vector ŷ and the bias vectors b(j) are
defined as

W(j) =


wj11 wj12 wj13 · · · wj1phj
wj21 wj22 wj23 · · · wj2phj

...
...

... · · · · · ·
wjph(j−1)

1 wjph(j−1)
2 wjph(j−1)

3 . . . wjph(j−1)
phj

 ,

a(j) =
(
a
(j)
1 a

(j)
2 · · · a

(j)
phj

)T
,

x =
(
x1 x2 · · · xp

)T
,

ŷ =
(
ŷ1 ŷ2 · · · ŷpho

)T
,

and
b(j) =

(
bhj bhj bhj · · ·

)︸ ︷︷ ︸
phj

elements

T
.

Notice that the explicit dependence on the observation x is dropped in the subscripts of
the activations. Moreover, for clarity, let ph3 = pho in this case, keeping the example in
Figure 2.3 in mind. Furthermore, note that an arbitrary scalar activation function, σ, can
be transformed into a vector-valued activation function, σ, by applying it component-wise
to its input vector. This yields the transformation

σ(x) = {σ(x1), σ(x2), . . . , σ(xp)},
when applied to a vector x = {x1, x2, . . . , xp}. Thus, in the example above, we can define
σh1 ,σh2 and σho based on any scalar- or vector-valued activation function. Finally, even
though we only work with one arbitrary observation, x ∈ D, in this exposition, we usually
work with groups of observations simultaneously in practice. In fact, we commonly forward
propagate batches of observations, a concept we return to later.

Parameter estimation. Until now, we have assumed that the weights and biases,
i.e. the parameters of the FNN, are known. However, in practice they are not known
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a priori and need to be estimated before we can use the neural network for anything
useful. Training, i.e. estimating the parameters of, deep learning models is an active area
of research, where many different algorithms have been suggested for optimal predictive
performance and computational efficiency. Because of lack of time, we do not dive deep
into this vast field, but instead mention the two most frequently used algorithms for
training deep learning models; mini-batch stochastic gradient descent and backpropagation.
Backpropagation, popularized by Rumelhart et al. [112], is an algorithm for calculating
the gradient of a loss function with respect to the parameters of a neural network. Said
simply, it is an efficient implementation of the chain rule for differentiation applied to the
loss function of a neural network. This loss function measures the error between the true
response values and the predicted responses in the output layer, and its specific shape is
defined based on the type of problem we are interested in solving. After calculating the
gradient, mini-batch stochastic gradient descent is typically used. Specifically, this term
refers to a group of methods that minimize a loss function iteratively by modifying the
weights and biases in the direction of the approximated negative gradients. Notice that,
in practice, the gradients are approximated, with, e.g., backpropagation, on stochastic
batches of data, instead of calculated exactly on the entire dataset. This is the reason
why the terms mini-batch and stochastic are used in conjunction with gradient descent,
where the former explicitly states that the stochastic batches of data are smaller than the
actual available dataset. As a side note, observe the analogy to the functional gradient
descent techniques discussed in Section 2.5.1, which are similar deterministic techniques,
applied to functional space instead of parameter space. The simplest mini-batch stochastic
gradient descent algorithm works by performing the iterations

θt = θt−1 − η∇̂θL(y, f(x)), t ∈ {1, 2, . . .}, (2.7)

where θt, t ∈ {0, 1, 2, . . .}, are the iteratively modified parameters of the neural network
f(·), L is a smooth loss function of choice, η is a learning rate and (x, y) ∈ D represents
an arbitrary observation. Moreover, we let ∇̂θL(y, f(x)) denote a mini-batch stochastic
approximation of the true gradient, ∇θL(y, f(x)). Consistent with our convention of
working with an arbitrary observation (x, y) ∈ D, we do not explicitly specify in Equation
(2.7) that the forward propagation in f(x), as well as the approximation of the true
gradient term, is commonly performed over batches of observations. The learning rate,
η, determines the step size that is taken in the direction of the approximated gradient,
which plays an important role during optimization. In continuation, there exists many
extensions and improvements on the basic mini-batch stochastic gradient descent iteration
scheme from Equation (2.7), like AdaGrad [27], RMSProp [46] and Adam [63]. We do not
go into detail about any of these optimizers, but one of the main improvements in all
these examples is the introduction of an adaptive learning rate, where the learning rate
is modified in each iteration. The strategy for how the learning rate is changed between
iterations differs in each of the optimizers. The interested reader is referred to Goodfellow
et al. [40], for more details on parameter estimation in neural networks, including a
thorough explanation of backpropagation, overview of how to choose the loss function and
how to stochastically optimize it by tweaking the network parameters.

2.6.2 Neural Network Notation

The notation we have used thus far for neural networks was designed mainly for instruc-
tional purposes, explicitly highlighting the most significant details. However, our previous
notation is slightly cumbersome in practice. For reference, we define some more practical
notation for representing neural network architectures. Most of the notation given in the
following list is inspired by Kotelnikov et al. [67] and Xu et al. [146]:
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• FCu→v(x): represents a fully connected linear layer. Applies an affine transformation
to an input x ∈ Ru×1 resulting in a vector in Rv×1.

• ReLU(x): represents a ReLU activation function applied element-wise to an arbitrary
input x. This is equivalent to the application of the scalar function denoted by σReLU

in Table 2.2 to each element of x.

• SiLU(x): represents a SiLU activation function applied element-wise to an arbitrary
input x. This is equivalent to the application of the scalar function denoted by σSiLU
in Table 2.2 to each element of x.

• tanh(x): represents a tanh activation function applied element-wise to an arbitrary
input x. This is equivalent to the application of the scalar function denoted by σtanh
in Table 2.2 to each element of x.

• softmax(x): represents a softmax activation function applied to an arbitrary input
x. This is equivalent to the application of the vector-valued function denoted by
σsoft in Table 2.2 to x. The output vector has elements σsoft(x)j , j ∈ {1, . . . , p},
when x ∈ Rp×1.

• Dropout(x): represents dropout in neural networks. The interested reader is referred
to Srivastava et al. [133] for details on this technique used to prevent overfitting.
This is a regularization method for neural networks, an idea we discuss in Section
2.7.

Closing remarks. Before moving on to some applications of deep learning, notice
how the idea of deep learning itself reveals a need for interpretability and explainability.
In many cases, it is difficult to monitor exactly what is going on with the data in each
step during forward propagation and backpropagation, especially when using deeper and
deeper networks. These methods are however still attractive, because they have achieved
very high performance in many problems.

2.7 Autoencoders

An autoencoder is a deep learning architecture that is primarily used to reduce the dimen-
sion of a dataset by learning efficient encodings of the original features [69]. This task is
often referred to as performing representation learning, which can be either supervised or
unsupervised. The autoencoder belongs to the unsupervised learning paradigm, because
its learning objective is essentially to reconstruct its input data. Why is this reconstruction
interesting? The idea is that if a properly constrained autoencoder is able to reconstruct
its input data, it has likely implicitly developed a useful and more compact representation
of the input data, depending on its exact constraints. In the following, we describe more
rigorously what type of constraints can be imposed and how the reconstruction of the data
should be.

Intuition. The general autoencoder consists of two parts: an encoder and a decoder.
These two parts cooperate in order to recreate the input. The encoder is a function f that
learns a different representation of the inputs (xi, yi) = {x1i , . . . , xpi , yi}, i ∈ {1, . . . , n}.
This representation is often referred to as the latent representation, which lives in a latent
space. In the following, we work with an arbitrary observation (x, y) ∈ D, consistent
with our previous practice. Thus, the encoder is a function such that f(x, y) = z, where
z is a new representation of (x, y). The decoder is another function, h, that learns to
reconstruct the input (x, y) from z, h(z) = r, where r is a reconstruction of (x, y).
Ideally, the reconstruction r should be “similar” to (x, y), but not identical. For example,
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an autoencoder which simply learns to copy or memorize the input, such that (xi, yi) =
ri, ∀i ∈ {1, . . . , n}, is useless, because this memorization leads to an uninteresting latent
representation. We return to why later. The encoder-decoder architecture can thus be
interpreted as a strategy for producing a new representation of the input, (x, y), during
training. After training, the model can be used for several tasks. The encoder can be
used to build a more efficient representation of an observation (x, y), which subsequently
can be used for some other task, such as classification or regression. This idea is closely
related to dimensionality reduction and feature extraction. Furthermore, the decoder can
be used to generate synthetic data, for example by randomly sampling a point in the latent
space of the autoencoder, before feeding the point through the decoder. In this way, an
autoencoder can be interpreted as a generative model, albeit a rudimentary variant. We
return to these ideas later, as they are crucial in this work.

Mathematical formulation. The general problem an autoencoder seeks to solve
may be formulated as an optimization problem,

arg min
h,f

E[L((x, y),h(f(x, y)))], (2.8)

where the expectation is calculated over all observations (x, y) ∈ D and L is a loss function
that penalizes r = h(f(x, y)) when it is “dissimilar” to an arbitrary (x, y) ∈ D. Thus,
the “similarity” between input and reconstruction we have been referring to is defined via
the loss function L. A typical loss function for autoencoders is the mean squared error,
L(x,h(f(x, y))) = 1

p∥(x, y)−h(f(x, y))∥22, which is usually averaged over all observations
in the dataset to estimate the expectation in Equation (2.8). Notice that we have not
defined specifically what the functions f and h should look like. They can be calculated
using any mathematical, statistical or ML model, but in the context of deep learning
we naturally parameterize them as neural networks. The typical autoencoder employs
relatively simple FNNs for f and h, but they may be designed with arbitrary complexity
depending on the application. An example of a simple autoencoder architecture is shown
in Figure 2.4.

Under- and overcomplete variants. As mentioned, an important consideration
when working with autoencoders is to avoid direct memorization of the input, i.e. such
that (x, y) = r = h(z) = h(f(x, y)). Oftentimes, this can happen in two different
scenarios. The first scenario is when the encoder f is an excessively nonlinear function.
For example, one could imagine a highly nonlinear encoder that learns to represent each
training point (xi, yi) ∈ D by its index i [40]. This would yield zero reconstruction loss,
L((xi, yi),h(f(xi, yi))), ∀(xi, yi), i ∈ {1, . . . , n}, meaning that Equation (2.8) is optimized
with respect to any loss function with image in the non-negative real numbers, for example
a mean squared error loss. Despite this, such an encoder yields a useless model, because
it is not generalizable. Specifically, the term generalization refers to the ability of a model
to adjust its behaviour properly to previously unseen data from the same underlying
distribution as the training data. Note that this example hardly occurs in practice, but
it illustrates how encoders that are exceedingly nonlinear can yield uninteresting results.
The second scenario occurs when the number of units in the output layer of the encoder
is greater than or equal to the number of input nodes. Specifically, when the dimension
of the latent representation is larger than the dimension of the input, the autoencoder
is overcomplete. In this scenario, the network is generally able to copy the input data
without learning an interesting latent representation, which yields a model that suffers
from poor generalization.

An undercomplete autoencoder has an architecture where the dimension of the latent
space is smaller than the number of input nodes [40]. We commonly refer to the internal
layer of an undercomplete autoencoder as a “bottleneck” [69], which can be interpreted
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Figure 2.4: Example of an undercomplete autoencoder architecture. The image is bor-
rowed with permission from Flores [34].

from Figure 2.4. This type of autoencoder is interesting in practice, because it avoids the
second scenario mentioned previously. The lower latent dimension “forces” the encoder
to learn the most prominent and important features in the data. An interesting note is
that when f is linear and L is the mean squared error loss, an undercomplete autoencoder
learns to span the same subspace as principal component analysis (PCA), but without
guaranteeing orthogonality of the vectors [40]. In contrast, undercomplete autoencoders
with nonlinear encoders have the potential of learning nonlinear dimensionality reductions.
Yet, it is important to avoid giving the functions f and h too much capacity, as discussed
in the first scenario above.

Regularization. Notice that both of the scenarios where mere memorization can oc-
cur, can be seen as special cases of overparameterization, which is a frequently occurring
problem in ML and statistical modelling. When models are given too many parameters,
they learn to overfit to the training data, which increases the generalization error. Because
of this, most statistical or ML models are constrained, usually by a regularization proce-
dure, which can be implemented either explicitly or implicitly. Implicit regularization can
be applied in a plethora of ways, some ways we have already discussed, for example by
choosing specific loss functions, choosing an undercomplete architecture or modifying the
optimization algorithm for training the neural networks. These forms of regularization may
seem more opaque, depending on the approach, but rest assured that most models include
some sort of regularization technique. In contrast to their implicit counterparts, explicit
regularization is more noticeable. In fact, a large group of problems can be represented in
the form

arg min
f∈F

E[L(y′, f(x′)) + λΩ(x′, f)], (2.9)

where (x′, y′) is an arbitrary observation in any dataset, F is a family of functions in which
one is searching, L is a loss function measuring the difference between the model output,
f(x′) = ŷ′, and the true label, y′, and Ω is a regularization term that can depend on
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the feature values and the function. The addition of the second term in the optimization
problem makes this regularization technique explicit. This term introduces the hyperpa-
rameter λ, which is important in balancing the two terms in Equation (2.9). Since this is
a hyperparameter, we must determine this value before optimizing the objective. When
λ→ 0, the regularization term becomes unimportant and only the loss is minimized. When
λ → ∞, the importance of the loss function vanishes, yielding a highly regularized func-
tion f . This greatly limits its flexibility, within the constraints of the family of functions
F . In fact, the unsupervised autoencoder problem from Equation (2.8) fits nicely into this
representation, by setting the observation (x, y) as the true label, h(f(x, y)) = r as the
model output, and adding a regularization term. Thus, memorization in an autoencoder
can be avoided via explicit regularization, by solving the problem

arg min
h,f

E[L((x, y),h(f(x, y))) + λΩ((x, y),h,f)],

where we let the general regularization term depend on both the encoder and decoder. In
this manner, we are not limited to solely using undercomplete autoencoders, but can utilize
overcomplete autoencoders with added regularization as well. The regularization term, Ω,
may take several shapes, depending on how one wants to penalize model complexity. For
instance, it can be defined in order to yield a sparse latent representation, such that
the encoder cannot simply act as the identity function, but needs to respond to certain
statistics in the input. Another example is to let

Ω((x, y),f) :=
∥∥∥∂f(x, y)

∂(x, y)

∥∥∥2
F
,

where ∥·∥F is the Frobenius norm, i.e. the sum of squared elements. This penalizes large
derivatives of the latent representation z = f(x, y), such that the encoder is forced to
learn a more robust function, i.e. a function that exhibits minimal change when (x, y)
changes slightly. Such autoencoders are called contractive autoencoders (CAEs) [40].

Closing remarks. As mentioned, the most important applications of autoencoders
are dimensionality reduction, representation learning, feature extraction and generative
modelling. If the optimization is successful, the latent representation should be of lower
dimensionality in comparison to the input, without loss of the most critical information.
For undercomplete autoencoders this dimensionality reduction is obvious, but overcom-
plete autoencoders may also be used for dimensionality reduction. For example, when
learning a function f to encode the input, the family of functions F is typically paramet-
ric. Thus, a parametric function f learnt by the network can be seen as a dimensionality
reduction from the number of features in the training data to the number of parameters of
f . This idea of learning a parametric function f is useful in the following section, where
we discuss an extension of the autoencoder.

2.8 Variational Autoencoders

A variational autoencoder (VAE) can be regarded as an extension of the autoencoder
architecture, although with a more intricate mathematical foundation and usually with
different applications. Succinctly described, VAEs are autoencoders combined with latent
variable models [40]. Recall from Section 2.4 that a VAE is a likelihood-based latent
variable deep generative model, whose main objective is to estimate the true distribution
of the population that our dataset, D, is sampled from, which we represent with the
density p∗(x). Notice that we have changed the notation from Section 2.2 slightly. Instead
of letting (X, Y ) = {X1, . . . , Xp, Y } represent our random variables, we define X :=
{X1, . . . , Xp, Y }. The reason behind this change is that, in the general case, Y does not
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have to be treated distinctly from the rest of the features. In fact, we already saw in the
previous section that we can train autoencoders to reconstruct its input, where Y was
interpreted as any of the other features in (X, Y ). Thus, unless otherwise specified, if our
objective is not to make decisions regarding a specific response, like in decision theory, we
prefer to interpret all the p+ 1 random variables similarly. This also makes the notation
slightly more refined, because we can refer to a general arbitrary observation vector x,
instead of the vector (x, y) we used throughout Section 2.7.

Latent variable. A latent variable model introduces one or more latent variables,
which are assumed connected to the observable random variable X in some unobservable
manner. Specifically, the VAE is developed under the assumption of one unobserved
random variable Z. As a side note, notice that X and Z are in fact random vectors,
i.e. they contain random variables as elements. Despite this, we refer to X and Z as
random variables as well. Returning from our digression, the joint distribution of X and
Z is p(x, z) = p(x|z)p(z), following the chain rule of probability. This factorization is not
just a mathematical trick; it indicates the generative process that is assumed in a VAE.
In detail, we assume that a single observation x is generated from p∗(x) by following the
process

Sample z, where Z ∼ p(z),

Sample x, where X|Z = z ∼ p(x|z),

which might seem unintuitive at first. However, a little philosophical exercise might high-
light why this procedure is reasonable. Think about how you would draw a physical
object, for example a car, on a piece of paper. Most likely, you would begin by sketching
characteristics like its shape, size and viewing angle, before filling in details like wheels,
door handles and brand. Thus, your generative process is to determine and sketch the
high-level attributes of the car, before adding and perfecting the details. Transferring this
observation to the generative process assumed in our simple latent variable model, the la-
tent variable realization z represents the high-level attributes of your object, drawn from a
collection (distribution) of plausible attributes p(z), while the observation x represents the
final product, which is completed based on a plausible collection (distribution) of details
p(x|z) depending on the realization z. This argument is not intended to replace a rigorous
justification of the generative process, or to start a philosophical debate concerning how
to draw objects, but hopefully we could agree that this way of thinking has some merit.

Likelihood maximization. As expressed many times already, the true data distri-
bution is unknown, and the objective of generative models is to estimate this distribution
via a set of observations D. For likelihood-based models, the strategy is to maximize the
likelihood of the observed data,

p(θ;D) :=
∏
x∈D

pθ(x),

where we let pθ(x) denote the likelihood of one sample x ∈ D. We assume that pθ(x)
belongs to a parametric family of distributions, parameterized by θ ∈ RQ×1, where Q
is defined based on the chosen family. Notice that the likelihood is a function of the
parameters and not the data. When the likelihood over all samples is maximized, the
idea is that p(θ;D) ≈ p∗(x), with the approximation becoming increasingly better with
a larger number of observations in the dataset. In the following, we concentrate on only
one observation x ∈ D. Then, each distribution in the product may be written as

pθ(x) =

∫
pθ(x, z)dz =

∫
pθ(x|z)p(z)dz = Ep(z)[pθ(x|z)], (2.10)
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where the latent variable is marginalized out since it cannot be observed. The nota-
tion Ep(z)[pθ(x|z)] is a shorthand, abuse of notation that represents EZ∼p(z)[pθ(x|Z)] =∫
pθ(x|z)p(z)dz, which is possible as a result of the law of the unconscious statistician.

This type of notation is used in the rest of the thesis.
There are a few important things to notice concerning Equation (2.10). First, the

prior p(z) does not have any parameters θ. That is because this is usually set a priori,
in analogy to any prior probability in Bayesian statistics, disregarding hierarchical priors
[38]. Of course, this analogy is slightly problematic due to Bayesian priors usually being
posed on parameters, but the idea is still illuminating. Second, a VAE is usually assumed
to be working with a continuous latent variable, as it simplifies the computations. The
case with a discrete latent variable is treated analogously, by simply replacing the integral
with a sum over all the discrete levels of the variable. Keeping our objective in mind, the
crucial question is: how can the integral in Equation (2.10) be calculated?

Intractability. Unfortunately, unless very strict assumptions are made on pθ(x|z),
the integral in Equation (2.10) is intractable, due to its high dimensionality [113]. For the
interested reader, Probabilistic principal component analysis (pPCA) [137] is one example
of a method that yields a tractable integral, by imposing, among other assumptions,
linear dependence between Z and X. In many applications, this linear assumption is
limiting and excessively simple, meaning that this analytically computable model is not
suitable. In the general case, when our models are more complex, the integral needs to
be approximated. There exists several ways of computing such an approximation, for
example by using Markov Chain Monte Carlo (MCMC) methods or variational inference
(VI). In the remainder of this section, we dive deeper into the latter method, which is the
technique used in VAEs. The interested reader may consult Speagle [131] for a conceptual
introduction to MCMC.

Variational inference. Following Bayes’ rule, the likelihood of each observation
x ∈ D can be rewritten as

pθ(x) =
pθ(x, z)

pθ(z|x)
=
pθ(x|z)p(z)

pθ(z|x)
.

Notice that the likelihood cannot be directly maximized using this expression either;
pθ(x|z) is tractable to compute, but the posterior pθ(z|x) is not [64, 113]. Since we
do not have access to this posterior, the VI approach is used to approximate it with a
simpler distribution from a family of tractable parameterized probability distributions.
Hence, we define the approximate posterior

qϕ(z|x) ≈ pθ(z|x).

Observe that we introduce the variational parameters ϕ ∈ RV×1, where V is defined based
on the chosen family. By replacing the true posterior with this approximation, we can
maximize the likelihood of the marginal, pθ(x), via a surrogate objective.

Before discussing the surrogate problem, and thus how the integral in Equation (2.10)
may be approximated, we try to close the gap between autoencoders and VAEs. Instead
of optimizing a function to deterministically regenerate its input, the objective of a VAE
is to approximately maximize the likelihood of the data, p(θ;D). In other words, the
deterministic encoder, f(x), and decoder, h(z), of an autoencoder are replaced by their
stochastic counterparts, qϕ(z|x) and pθ(x|z), respectively. This modification “forces”
the model to learn continuous and highly structured latent spaces, depending on the
parametric family of distributions that each of these densities belong to. An interesting
side note is that a VAE may also be viewed as a form of regularized autoencoder, where
the regularization depends on the choice of encoder family. In practice, the objective of the
encoder, qϕ(z|x), is to learn a conditional probability distribution over the latent variables,
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while the objective of the decoder, pθ(x|z), is to transform samples from qϕ(z|x) such
that the conditional probability distribution ∀x ∈ D is comparable to the corresponding
distribution in the input data.

Evidence lower bound. Returning to our surrogate problem, we derive the objective
function that is optimized in VAEs. For clarity, recall that we focus on one single obser-
vation x ∈ D. Following the standard procedure in maximum likelihood estimation, we
are interested in maximizing the log-likelihood of the marginal distribution (the marginal
log-likelihood) of x, which can be rewritten as

log pθ(x) = log pθ(x)

∫
qϕ(z|x)dz

=

∫
qϕ(z|x) log pθ(x)dz

= Eqϕ(z|x)[log pθ(x)]

= Eqϕ(z|x)
[
log

pθ(x, z)

pθ(z|x)

]
= Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

qϕ(z|x)

pθ(z|x)

]
= Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
︸ ︷︷ ︸

LV AE
θ,ϕ (x)

+Eqϕ(z|x)
[
log

qϕ(z|x)

pθ(z|x)

]
︸ ︷︷ ︸
DKL(qϕ(z|x) ∥ pθ(z|x))

. (2.11)

The first term in Equation (2.11) is often called the variational lower bound or the evidence
lower bound (ELBO), which we denote by LV AEθ,ϕ (x). The second term is the Kullback-
Leibler (KL) divergence between qϕ(z|x) and pθ(z|x), denoted byDKL(qϕ(z|x) ∥ pθ(z|x)),
which is always non-negative [64]. In this notation, the expressions qϕ(z|x) and pθ(z|x)
refer to the probability density functions of the random variables they describe. Since we
do not have access to the true posterior pθ(z|x), we replace direct maximization of Equa-
tion (2.11) with maximization of the ELBO. This idea gives rise to our surrogate problem,
which is to maximize a lower bound of the marginal log-likelihood by using LV AEθ,ϕ as the
objective function,

arg max
θ,ϕ

log pθ(x) = arg max
θ,ϕ

{LV AEθ,ϕ (x) +DKL(qϕ(z|x) ∥ pθ(z|x))}

≥ arg max
θ,ϕ

LV AEθ,ϕ (x).

As a side note, this means that the ELBO also is a lower bound to the logarithm of the
integral in Equation (2.10). This can be shown directly via Jensen’s inequality, see, e.g.,
Luo [76]. We skip this calculation deliberately, as we think the one performed above is
much more illustrative of the relationship between the likelihood and the ELBO. Never-
theless, this illustrates how VI is used in VAEs to solve the problem we initially posed, by
reducing our original problem to optimizing a proxy objective, which contains integrals
(expectations) that are tractable.

In consequence, we have developed an objective that can be optimized numerically.
Before explaining how this optimization can be done, we discuss some consequences of
optimizing a lower bound of the true objective. In fact, optimizing a lower bound might
not be enough to yield an adequate VAE. Notice that Equation (2.11) does not guarantee
that a numerically optimized LV AEθ,ϕ is close to the true marginal log-likelihood. The
discrepancy between the two quantities is measured by DKL(qϕ(z|x) ∥ pθ(z|x)), which
is zero only when qϕ(z|x) = pθ(z|x), leading to a tight bound. Actually, a situation
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where the ELBO is optimized and qϕ(z|x) ̸≈ pθ(z|x) does exist, for example when the
family of functions chosen for qϕ(z|x) is overly simplistic. The problem is that we cannot
deduce if the posterior should be assumed as more flexible or if the approximate posterior
is close to the true posterior. However, there is some light at the end of the tunnel.
Observe that the left-hand side of Equation (2.11), log pθ(x), is constant with respect to
the variational parameters, ϕ. It follows that the sum on the right-hand side is constant
with respect to ϕ as well. Thus, a minimization of DKL(qϕ(z|x) ∥ pθ(z|x)) with respect
to ϕ necessarily follows from the maximization of LV AEθ,ϕ with respect to ϕ, and vice versa.
Hence, optimizing the ELBO with respect to the parameters θ and ϕ will concurrently
minimize DKL(qϕ(z|x) ∥ pθ(z|x)) and maximize pθ(x), which are our two main objectives
[64, 76]. This adds some further intuition to why the ELBO is used as objective function
in VAEs, as well as in most VI methods. In general, however, we still cannot guarantee
tightness of the lower bound, because this depends on our parametric choices for the
encoder and decoder. Inference suboptimality, as Cremer et al. [18] call the mismatch
between the true and approximate posterior, is a well-known nuisance in VAEs. We refer
the interested reader to Chapter 4 in Tomczak [138], which contains a broad overview of
possible suggested remedies to this problem, and other well-known problems, as well as
references to further readings.

To gain additional insights into the objective function, we rewrite LV AEθ,ϕ as

LV AEθ,ϕ (x) = Eqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)]

= Eqϕ(z|x)[log pθ(x|z) + log p(z)− log qϕ(z|x)]

= Eqϕ(z|x)[log pθ(x|z)]− Eqϕ(z|x)[log qϕ(z|x)− log p(z)]

= Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x) ∥ p(z)). (2.12)

Equation (2.12) facilitates another interpretation of what is happening when the ELBO is
maximized. The first term is commonly called the negative reconstruction error. The term
negative is added because the loss function in ML and deep learning is typically defined
to be minimized, meaning that the reconstruction error is −Eqϕ(z|x)[log pθ(x|z)], which
should be minimized. Nevertheless, increasing the first term in Equation (2.12) implies
increasing the likelihood of the decoder producing an observation like x given samples
from the encoder. Ideally, this is achieved by improving the approximate posterior and
the decoder in conjunction [113]. The second term in Equation (2.12) can be understood
as a regularizer, as it measures the discrepancy between the encoder and the prior belief
on Z. Decreasing this term “forces” the encoder to retain prior information over the
latent variable, such that it learns a distribution instead of collapsing into deterministic
points or Dirac delta functions [76]. Thus, in total, maximizing the ELBO boils down to
maximizing the negative reconstruction error while minimizing the regularization term.

Minimization of the loss. One important question that remains unanswered is how
the ELBO can be optimized. More specifically, how can the expectation in the ELBO be
calculated? The technique that is typically used in VAEs is Monte Carlo (MC) estimation,
which is a standard method for numerical integration. Thus, the two different expressions
we have for the ELBO, as shown in Equations (2.11) and (2.12), can be estimated by

L̂Iθ,ϕ(x) :=
1

L

L∑
l=1

[log pθ(x, zl)− log qϕ(zl|x)], (2.13)

L̂IIθ,ϕ(x) :=
1

L

L∑
l=1

log pθ(x|zl)−DKL(qϕ(z|x) ∥ p(z)), (2.14)
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respectively, where zl, l ∈ {1, . . . , L}, are realizations of a random variable Z ∼ qϕ(z|x).
Notice that the regularizer in Equation (2.14) has not been estimated by sampling, since
it can be integrated analytically under certain restrictions. We return to this later. In
continuation, qϕ(z|x) and pθ(x|z) are commonly parameterized by neural networks, even
though, in theory, they may be calculated with any mathematical or statistical model.
When using neural networks to estimate these densities, the derivatives with respect to
the parameters need to be calculated, since deep learning models are typically trained using
optimization techniques that require the derivatives. In general, the ELBO expressions in
Equations (2.11) and (2.12) are differentiable with respect to θ, but not with respect to
ϕ. This is true, because, for arbitrary functions aθ(x, z), bϕ(x, z) and bϕ(z),

∇θ Ebϕ(z)
[
log

aθ(x, z)

bϕ(x, z)

]
= Ebϕ(z)

[
∇θ log

aθ(x, z)

bϕ(x, z)

]
,

while

∇ϕ Ebϕ(z)
[
log

aθ(x, z)

bϕ(x, z)

]
̸= Ebϕ(z)

[
∇ϕ log

aθ(x, z)

bϕ(x, z)

]
.

The expectation and derivative cannot be interchanged in the second case since they both
are performed with respect to the same parameters ϕ. The reparameterization trick [64,
65, 109] is used to rewrite the expectation in the ELBO in order to gain differentiability
with respect to ϕ. Assuming that the latent variable is continuous, the reparameterization
trick entails a relatively straightforward change of variables. Let z be a realization of a
random variable Z ∼ qϕ(z|x) and let X ∼ p∗(x). Z may oftentimes be expressed as a
transformation of another random variable, E ∼ p(ε), via a relation

Z = gϕ(X,E),

where p(ε) is independent of X and ϕ. In addition, gϕ(·, ·) is a vector-valued differentiable
and invertible function with ϕ as parameters [65]. We refer to Kingma and Welling [65] for
an overview of approaches for choosing gϕ and E ∼ p(ε). Now, differentiation is possible
with respect to the variational parameters. For instance, the derivative of the ELBO in
Equation (2.11) can be calculated as

∇ϕLV AEθ,ϕ (x) = ∇ϕ Eqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)]

= ∇ϕ Ep(ε)[log pθ(x, gϕ(x, ε))− log qϕ(gϕ(x, ε)|x)]

= ∇ϕ

∫
[log pθ(x, gϕ(x, ε))− log qϕ(gϕ(x, ε)|x)]p(ε)dε (2.15)

=

∫
∇ϕ[log pθ(x, gϕ(x, ε))− log qϕ(gϕ(x, ε)|x)]p(ε)dε (2.16)

= Ep(ε)[∇ϕ[log pθ(x, gϕ(x, ε))− log qϕ(gϕ(x, ε)|x)]].

The calculation of the gradient of the ELBO in Equation (2.12) is analogous and is there-
fore skipped. Notice that Equation (2.15) is equal to Equation (2.16) thanks to the fact
that E ∼ p(ε) is independent of ϕ, such that both the density function and the variable
of integration are considered as constants under differentiation with respect to the param-
eters. Thus, the reparameterization trick has essentially “externalized” the stochasticity
in Z|X = x to E, such that it is deterministic given a realization of E, through the bijec-
tive function gϕ. Hence, after reparameterization, MC estimates of the derivatives of the
ELBO in Equations (2.11) and (2.12) can be expressed as
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(
1
L

∑L
l=1∇θ[log pθ(x, zl)− log qϕ(zl|x)]

1
L

∑L
l=1∇ϕ[log pθ(x, zl)− log qϕ(zl|x)]

)
=

(
∇θL̂Iθ,ϕ(x)

∇ϕL̂Iθ,ϕ(x)

)
= ∇L̂Iθ,ϕ(x),

and(
1
L

∑L
l=1∇θ log pθ(x|zl)−∇θDKL(qϕ(z|x) ∥ p(z))

1
L

∑L
l=1∇ϕ log pθ(x|zl)−∇ϕDKL(qϕ(z|x) ∥ p(z))

)
=

(
∇θL̂IIθ,ϕ(x)

∇ϕL̂IIθ,ϕ(x)

)
= ∇L̂IIθ,ϕ(x),

respectively, where zl = gϕ(x, εl), and εl, l ∈ {1, . . . , L}, are realizations of a random

variable E ∼ p(ε). Finally, Kingma and Welling [65] state that L̂IIθ,ϕ (Equation (2.14)),

with its corresponding gradient, typically has less variance than L̂Iθ,ϕ (Equation (2.13)).

Hence, L̂IIθ,ϕ is typically the preferred approximation of the ELBO for optimization.
Families of distributions. The only choices that remain to be made are what families

of distributions should be used for pθ(x|z), qϕ(z|x) and p(z). First of all, the choice of dis-
tribution for the decoder is highly dependent on the application and the data that is avail-
able. For example, while working with images, like the frequently used MNIST database
[19, 72], which are commonly represented as integer pixel values, x ∈ {0, . . . , 255}1×p,
where p is the number of pixels in each image, a possible decoder distribution could be
the categorical distribution. It is represented by the density

pθ(x|z) = Categorical(x;fθ(z)), (2.17)

where the probability parameter is predicted by, e.g., a neural network fθ with input z and
a softmax output activation function [138]. For completeness, we define the categorical
distribution in Appendix A. When working with tabular data, we might be inclined to
use a different distribution for the decoder depending on the data type of each feature.
For simplicity, we could use an individual categorical distribution for each categorical
feature and a Gaussian distribution for the continuous features. We return to a similar
idea when discussing diffusion models in Chapter 3. Beyond the decoder, the distributions
corresponding to the latent variable need to be defined. In the quintessential VAE [65],
the latent variable is assumed continuous, with densities

p(z) = N (z;0, I),

qϕ(z|x) = N (z;µϕ(x),diag[σ2
ϕ(x)]).

(2.18)

Here, the mean and standard deviation parameters in the encoder density are predicted by
a neural network with input x. Note that we use the notational convention diag[σ2

ϕ(x)] for

a diagonal matrix with the elements of σ2
ϕ(x) on its diagonal. Based on these assumptions,

the KL term in L̂IIθ,ϕ can be integrated analytically, as swiftly remarked earlier. Let Λ

be the latent space dimension and denote the elements of µϕ(x) and σ2
ϕ(x) by µjϕ,x and

(σjϕ,x)2, for j ∈ {1, . . . ,Λ}, respectively. Then, the analytical solution is

DKL(qϕ(z|x) ∥ p(z)) = −1

2

Λ∑
j=1

(1 + log(σjϕ,x)2 − (µjϕ,x)2 − (σjϕ,x)2).

The details are given in Appendix B, for completeness. Another consequence of the as-
sumptions in Equation (2.18) is that gϕ in the reparameterization trick takes the shape

gϕ(x, ε) = µϕ(x) + σϕ(x)⊙ ε = µϕ(x) + exp

(
1

2
logσ2

ϕ(x)

)
⊙ ε,
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where ε is a realization of the random variable E ∼ N (0, I) and ⊙ denotes element-wise
multiplication. Hence, we are able to transform realizations ε of a standard Gaussian
random variable E to realizations z of a random variable Z ∼ N (µϕ(x),diag[σ2

ϕ(x)])
via gϕ, effectively transforming Z to a deterministic variable, when given a realization of
X ∼ p∗(x). This realization is necessary because the parameters µϕ(x) and diag[σ2

ϕ(x)]
depend on it. In closing, we have defined every piece of the puzzle necessary to apply VAEs
in practice, except for the exact forms of the function approximators. More specifically, the
functions that predict the parameters of the encoder and decoder densities, which in the
case of the assumptions in Equation (2.18) (and our MNIST example) are fθ,µϕ and σ2

ϕ,
can be defined as whatever model we like. However, as previously stated, neural networks
are usually used because of their proven abilities for this task. Their architectures can
be as simple or complex as desired, since we simply use their predictions in the encoder
and decoder. Despite the fact that we have put little emphasis on explaining how these
architectures should be defined thus far, the importance of their design should not be
underestimated, as it is vital for the ability of a VAE to learn from data in practice.
In fact, we highlight some different neural network architectures in Section 2.9, while
discussing one particular VAE, specialized for tabular data.

Closing remarks. Recall from Section 2.7 that a model with the encoder-decoder ar-
chitecture can be used for several tasks post training. The encoder can be used to produce
a novel representation of the input data, which then can be used for other downstream
tasks. For instance, the encoder of a VAE can be used to build latent diffusion models
(LDMs) [110], a rather new application where a diffusion model, which we investigate in
Chapter 3, works in the latent space that the encoder produces. Furthermore, the decoder
can be used to generate synthetic data, which is a popular application for VAEs. Specif-
ically, we can generate new samples from the inferred underlying joint density, p(x, z),
by sampling in the latent space and decoding the samples. Besides, another important
property of VAEs, which we have assumed implicitly in our discussion, is that the varia-
tional parameters, ϕ, in the encoder, qϕ(z|x), are shared across all observations in D. In
contrast, more traditional methods in VI define distinct variational parameters for each
x ∈ D, leading to much larger search spaces. This technique of sharing parameters is
called amortized variational inference, and leads to more efficient implementations using
common optimization techniques from deep learning like mini-batch stochastic gradient
descent and backpropagation, facilitated by the reparameterization trick [64]. Thus, the
VAE presents a possible solution to deeply-rooted problems in VI, marking its importance
in practical applications.

2.9 The Tabular Variational Autoencoder

In this section, we outline a VAE-variant that is specifically designed to deal with hetero-
geneous tabular data. This is used as a reference model for our experiments in Chapter
5. Precisely, we discuss the TVAE [146]. In summary, the TVAE is a relatively simple
VAE that is modified to better suit tabular data distribution modelling and generation
compared to the standard VAE [65, 109]. This is enabled by three main innovations:

1. A so-called mode-specific normalization [146] scheme for the continuous features.

2. Specialized assumptions for the decoder, pθ(x|z), to accommodate the change in
structure of the observations after pre-processing.

3. Special care when calculating the reconstruction term, Eqϕ(z|x)[log pθ(x|z)], in the
ELBO in Equation (2.12).
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In the following, we dive deeper into each of these devices. Notice that we alter and extend
the theoretical introduction to these topics, especially for points 2 and 3, compared to the
theory developed by Xu et al. [146]. This is done to adapt the theory to our notation, but
also to provide a more detailed introduction, according to our understanding of it, that is
hopefully more transparent and accessible than the original.

Assume a tabular dataset D, which contains observations

x := {(xcont)T , xcat1 , . . . , xcatC}.
Each observation consists of values from N continuous features, comprising xcont ∈ RN×1

and C categorical features, xcatj , j ∈ {1, . . . , C}, with Kj possible levels each. Thus, our
notation is consistent, but we have simply split the features into two groups; one containing
continuous random variables and the other containing categorical random variables. Notice
that p = N + C or p + 1 = N + C, depending on if the response, Y , is included as a
categorical feature or not.

Mode-specific normalization. Xu et al. [146] observe that almost half of the con-
tinuous features they consider, distributed across 8 real-world datasets, empirically follow
multimodal distributions. This frequently occurring non-Gaussian structure requires more
specialized transformations than, e.g., a min-max transformation, which is commonly used
in data modalities like images, to obtain an efficient data representation. Inspired by this
observation, they design a mode-specific normalization method that is meant to better
deal with continuous random variables that follow complicated multimodal distributions.
Succinctly stated, they represent each continuous value in an observation x ∈ D as a
one-hot encoded (OHE) vector which indicates a mode the value pertains to, alongside a
scalar that indicates its standardized value within the mode. More specifically, for each
continuous feature Xj ∈Xcont, their method consists of the following three steps:

1. Let the density

p(xj) =

Mj∑
k=1

πkN (xj ;µk, σ
2
k),

represent a Gaussian mixture model, where πk, k ∈ {1, . . . ,Mj}, are the mixing coef-

ficients, constrained such that
∑Mj

k=1 πk = 1. Assume that Xj follows this parametric
model, where the parameters are unknown. Estimate the number of modes, Mj , as
well as the other parameters, {πk, µk, σ2k}, k ∈ {1, . . . ,Mj}, of this mixture model

with VI [8]. This is done using all the available realizations, xji , i ∈ {1, . . . , n}, of
Xj in the dataset.

2. Compute the probability of each realization, xji , coming from each of the modes,
µ1, . . . , µMj , by using the previously fitted Gaussian mixture. Precisely, the proba-

bility densities of xji coming from each of the modes are

ρk(xji ) = πkN (xji ;µk, σ
2
k), k ∈ {1, . . . ,Mj},

which are used to compute the probabilities.

3. Sample a mode according to the computed probabilities in step 2. Use this mode
to construct a OHE representation of each realization, xji . Specifically, let βji =

{βj,1i , . . . , β
j,Mj

i } be a OHE vector representing the sampled mode. Moreover, let αji
be a scalar representing the value xji standardized within the mode. Thus, if the

sampled mode for xji is µk, then βj,ki = 1 and βj,li = 0 for l ̸= k, and αji =
xji−µk
4σk

.
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For categorical features, Xu et al. [146] apply a standard OHE representation. Thus, the
final representation of an arbitrary observation x ∈ D after this pre-processing is

x = {α1, (β1)T , α2, (β2)T , . . . , αN , (βN )T , (x1
OHE)T , . . . , (xCOHE)T }. (2.19)

Notice that a pair {αj ,βj} denotes a representation of an element j ∈ {1, . . . , N} of

xcont after mode-specific normalization. Furthermore, xjOHE = {xj,1OHE, . . . , x
j,Kj

OHE} de-
notes a OHE representation of xcatj , where each Xcatj has Kj possible outcomes, for
j ∈ {1, . . . , C}.

Encoder and decoder networks. As a consequence of the specialized pre-processing,
the density pθ(x|z) needs to facilitate use of observations in the shape shown in Equation
(2.19). Before explaining the special structure Xu et al. [146] implement, we first note
that the authors define the encoder similarly to the conventional VAE [65]. In fact, the
encoder and the prior follow the assumptions of what we called the quintessential VAE in
Section 2.8 (Equation (2.18)), defined as

p(z) = N (z;0, I),

qϕ(z|x) = N (z;µϕ(x),diag[σ2
ϕ(x)]),

where the Gaussian parameters are predictions from a neural network. In order to define
this neural network architecture, we follow the same idea for the structure as Xu et al.
[146], but extend the notation to handle arbitrary linear hidden layers. More specifically,
let CD := [cd1, cd2, . . . , cdξ] denote a list of hidden layer dimensions for the neural network
in the encoder. These dimensions are appropriately called the compression dimensions,
which explains why we call the list CD. Thus, ξ decides the number of hidden layers in the
network. In addition, recall that we denote the latent space dimension by Λ. Then, the
Gaussian parameters in the encoder can be calculated with a neural network architecture
of the form 

h(1) = ReLU(FC(N+
∑C

j=1Kj)→cd1
(x)),

h(2) = ReLU(FCcd1→cd2(h(1))),
...

h(ξ) = ReLU(FCcdξ−1→cdξ(h(ξ−1))),

µϕ = FCcdξ→Λ(h(ξ)),

σϕ = exp 1
2FCcdξ→Λ(h(ξ)),

for each observation x ∈ D. Notice, in the last line, that exponentiation is performed after
forward propagation to ensure that the standard deviation is positive.

The decoder is more involved. Xu et al. [146] make some key assumptions for the
elements αjk,β

j
k, j ∈ {1, . . . , N}, and xlOHE,k, l ∈ {1, . . . , C}, of an arbitrary decoded

point xk, given a latent realization zi. First, they assume that αjk, j ∈ {1, . . . , N}, are
samples from Gaussian distributions with different means for each pair {i, j}, and different
variances for each j, given zi and j ∈ {1, . . . , N}. Mathematically, this means that αjk
can be interpreted as a realization of Aji ∼ N (ᾱji , δ

j), where ᾱji is predicted by a neural
network and δj is a learnt parameter in the same network. Second, they assume that
βjk, j ∈ {1, . . . , N}, and xlOHE,k, l ∈ {1, . . . , C}, are samples from categorical distributions
with different probability parameters for each pair {i, j} and {i, l}, given zi, j ∈ {1, . . . , N}
and l ∈ {1, . . . , C}. Mathematically, this means that βjk can be interpreted as a realization

of Bj
i ∼ CategoricalOHE(γji ) and xlOHE,k as a realization of X l

OHE,i ∼ CategoricalOHE(ηli),

where γji and ηli are predicted by a neural network. Thus, these assumptions mean that
the distribution of the random variable
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(X|Z = zi) = {A1
i , (B

1
i )T , A2

i , (B
2
i )T , . . . , ANi , (B

N
i )T , (X1

OHE,i)
T , . . . , (XC

OHE,i)
T },

cannot easily be represented by a closed form density expression for pθ(x|z). However,
the probability of seeing a specific decoded observation

xk = {α1
k, (β

1
k)
T , α2

k, (β
2
k)
T , . . . , αNk , (β

N
k )T , (x1

OHE,k)
T , . . . , (xCOHE,k)

T },
as a result of decoding zi, can be calculated as

P (X = xk|Z = zi) =

N∏
j=1

P (Aji = αjk)
N∏
j=1

P (Bj
i = βjk)

C∏
j=1

P (Xj
OHE,i = xjOHE,k),

as specified by Xu et al. [146]. In the following, we define an extended neural network
architecture for calculating the mentioned quantities, following the authors’ idea. In order
to do this, let DD := [dd1, dd2, . . . , ddκ] be a list of hidden layer dimensions for the decoder
in TVAE. These are called the decompression dimensions. Then, the neural network for
calculating the parameters in the decoder has the architecture

h(1) = ReLU(FCΛ→dd1(z)),

h(2) = ReLU(FCdd1→dd2(h(1))),
...

h(κ) = ReLU(FCddκ−1→ddκ(h(κ−1))),

ᾱj = tanh(FCddκ→1(h
(κ))), 1 ≤ j ≤ N,

γj = softmax(FCddκ→Mj
(h(κ))), 1 ≤ j ≤ N,

ηj = softmax(FCddκ→Kj
(h(κ))), 1 ≤ j ≤ C,

(2.20)

for one latent realization z. Hence, to be clear, a latent point z can be decoded to yield a
sample from X|Z = z ∼ pθ(x|z), after fitting the neural network given by the architecture
above, by sampling the continuous feature values in mode-specific representations from
distributions N (ᾱj , δj) and CategoricalOHE(γj), for j ∈ {1, . . . , N}. In addition, the
categorical feature values in the decoded realization are sampled from CategoricalOHE(ηj),
for j ∈ {1, . . . , C}.

Modified calculation of ELBO. The ELBO in the TVAE follows the same expres-
sion as LV AEθ,ϕ in Equation (2.12). However, when calculating the reconstruction term,
Eqϕ(z|x)[log pθ(x|z)], some extra precaution needs to be taken because of the decoder
distribution. Recall that we typically approximate this term with a Monte Carlo (MC)
estimator, such that

Eqϕ(z|x)[log pθ(x|z)] ≈ 1

L

L∑
l=1

log pθ(x|zl),

where zl, l ∈ {1, . . . , L}, are realizations of a random variable Z ∼ qϕ(z|x). This tech-
nique is also utilized in the TVAE. However, the calculation of the terms log pθ(x|zl), l ∈
{1, . . . , L}, depends on each distinct component of an arbitrary decoded sample x. For the
components αj , j ∈ {1, . . . , N}, we simply calculate log pθ(x|zl) directly using the Gaus-
sian density, N (αj ; ᾱjl , δ

j). This implicitly teaches the TVAE to reconstruct the continuous
values in the pre-processed input with a mean squared error loss. For the OHE compo-
nents, βj , j ∈ {1, . . . , N}, and xjOHE, j ∈ {1, . . . , C}, such a reconstruction is taught by us-
ing a cross-entropy loss between the reconstructed elements and the true elements. In the
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following discussion, let the functions f jθ = {f j,1θ , . . . , f
j,Mj

θ } and gjθ = {gj,1θ , . . . , g
j,Kj

θ } rep-

resent the neural network output functions for γjl , j ∈ {1, . . . , N}, and ηjl , j ∈ {1, . . . , C},
by the neural network architecture in Equation (2.20), respectively. In this way, when
feeding these functions with zl, they provide the necessary predictions for the probability
parameters. For βj , j ∈ {1, . . . , N}, the (negative) cross-entropy is defined as

log pθ(βj |zl) =

Mj∑
k=1

βj,k log f j,kθ (zl), j ∈ {1, . . . , N}, (2.21)

while for xjOHE, j ∈ {1, . . . , C}, the (negative) cross-entropy is defined as

log pθ(xjOHE|zl) =

Kj∑
k=1

xj,kOHE log gj,kθ (zl), j ∈ {1, . . . , C}. (2.22)

These definitions follow directly from the PMFs of the categorical distributions Bj
l ∼

CategoricalOHE(γjl ), j ∈ {1, . . . , N}, and Xj
OHE,l ∼ CategoricalOHE(ηjl ), j ∈ {1, . . . , C}.

For instance, in the first case, the PMF is pθ(βj |zl) =
∏Mj

k=1(fθ(zl)
j,k)β

j,k
, as given in

Equation (A.2) in Appendix A. The second case is analogous. Notice that the negations
of Equations (2.21) and (2.22) are cross-entropy losses, since we are interested in maxi-
mizing the reconstruction term, Eqϕ(z|x)[log pθ(x|z)]. However, this is just a question of
terminology and making sure the signs are correct when either minimizing or maximizing
the objective function. Conclusively, we have to beware of how the reconstruction term is

calculated for each element in vectors in R(N+
∑C

j=1Kj)×1, i.e. the space of pre-processed
original data. As a final note, because of the assumptions on the latent prior and the
encoder in the TVAE, the KL term in the ELBO, DKL(qϕ(z|x) ∥ p(z)), is analytically
integrated in the same way as explained in Section 2.8.

2.10 Evaluation Metrics

In order to evaluate the performance of any ML model, it is necessary to define some
metrics. Inspired by Xu et al. [146] and Kotelnikov et al. [67], our main evaluation measure
for generative models is ML efficacy. It is also referred to as the “train on synthetic,
test on real (TSTR)” framework [61]. In short, this measure evaluates a classification
or regression model on real test data, after fitting the model on synthetic data. For all
practical purposes, a high-performing model trained on synthetic data implies a high-
performing synthesizer. A more detailed description of this methodology is given later in
this section.

However, to paint a more complete picture of a model’s performance, we prefer to per-
form initial qualitative evaluation as well. Visualizations can be used to make qualitative
comparisons between different models relatively simple, facilitating quick first impressions
of their behaviour. In the following, we describe the qualitative metrics and methods we
use, before describing the main quantitative metrics we use.

2.10.1 Qualitative Evaluation

Our initial procedure after producing results is to perform qualitative evaluation. For a
generative model, we are especially interested in acquiring a first impression concerning
the synthesizing performance of the model, because this quality is important not only
for generating new data points, but also for generating counterfactuals. Precisely, this is
the case for the specific on-manifold methods we discuss in Chapter 4. We qualitatively
evaluate generative performance by visualizing a generated dataset, of identical size as
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its corresponding real dataset, in conjunction with the real dataset. First, the marginal
distributions of all features in both datasets are plotted. An advantage of such plots is that
we can quickly spot if the synthetic data is very different from the real data. However, a
disadvantage is that we cannot evaluate interactions between the features in the datasets
by simply inspecting the marginal densities. Thus, in order to investigate connections
between the features, we calculate what we call the correlation matrix. This is a slight
abuse of language, since we cannot calculate correlation between non-numerical features, or
numerical-non-numerical pairs of features, but we use the term for simplicity. To be clear,
we use the term numerical to encompass continuous and discrete integer features, while
the term non-numerical refers to all other categorical features. We return to these terms
later. As its name suggests, the correlation matrix is a matrix that contains information
about the strength of association between the features in a dataset. Precisely, the Pearson
correlation coefficient [33] is calculated pairwise between the numerical features. This
measures the strength of the linear relationship between the numerical features in each
pair. Moreover, the strength of association between pairs of numerical and non-numerical
features are measured by the correlation ratio [33]. This is a measure of the dispersion
across the entire dataset in comparison to the dispersion within each category, and can be
used to measure non-linear relationships. Finally, the interactions between pairs of non-
numerical features are measured by Theil’s U statistic [135]. Without going into details,
this statistic, also known as the uncertainty coefficient, is an asymmetric measure of the
association between two non-numerical features. Essentially, it measures the uncertainty
of one feature explained by the other. Notice that the Pearson correlation and correlation
ratio are symmetric measures. Additionally, all these measures are constrained to [0, 1].
After calculating a correlation matrix for a dataset, we visualize it as a heatmap, such
that we can qualitatively inspect the magnitudes of the values.

2.10.2 Quantitative Evaluation

ML efficacy is a commonly used evaluation measure of synthetic data generators [146].
The idea behind this measure is that an ideal synthetic dataset should be able to yield (at
least) as good results in applications as the corresponding real dataset. Specifically, we
train a supervised model separately on both synthetic training data and the corresponding
real training data. Then, both the trained models are evaluated on the real test set.
If the performances of the two models are comparable, it is implied that the synthetic
dataset is of high quality. Ultimately, this reflects on the quality of the generative model
for synthesizing data. This method of evaluation is especially suitable for evaluating
generative models, as their synthetic data often are used in similar downstream tasks,
for example extending small datasets to train better ML models or constructing synthetic
datasets that can be shared publicly, for facilitating ML model development, when the real
datasets contain sensitive information. In such cases, we want the synthetic data to yield
(at least) as good performance as the real data, which, in these examples, unfortunately
is not sufficiently large or cannot be shared for protection of privacy.

Binary Classification Metrics

After generating synthetic datasets, we need to make some choices in order to use ML ef-
ficacy to evaluate the generators. Specifically, we need to decide which supervised models
we want to train on our datasets, in addition to how we want to evaluate these surrogate
models. Recall that we only consider binary classification datasets, meaning that only bi-
nary classifiers are interesting to train. As a consequence of this, we select three frequently
used metrics for evaluating binary classifiers: accuracy, Fβ-score and AUC. These choices
are succinctly discussed in the following.
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Confusion matrix. In order to facilitate a discussion concerning these metrics, we
consider a special type of contingency table called a confusion matrix. Figure 2.5 shows a
typical confusion matrix, which is used to visualize the performance of a binary classifier.
Notice the definitions of the true negatives (TN), false negatives (FN), false positives (FP)
and true positives (TP), which are used in the following.

Figure 2.5: Illustration of a confusion matrix for a binary classifier. It indicates what
groups of classified test observations are referred to as true negatives (TN), false negatives
(FN), false positives (FP) and true positives (TP). The image is borrowed from Thresh-
oldTom [136], and is licensed under the Creative Commons Attribution-Share Alike 4.0
International [17] license.

Accuracy. The first and most intuitive metric is the classification accuracy. For
completeness, the accuracy is defined as

Accuracy :=
TP + TN

TP + TN + FP + FN
∈ [0, 1].

An advantage of this metric is that it is simple and intuitive, yielding a quick overview of
the share of correct classifications on a test dataset. However, in many cases, evaluation of
the accuracy of a classifier is not sufficient, because it only takes into account the number
of correct predictions that are made. In other words, the main disadvantage of this metric
is that it does not take into account the types of correct or incorrect classifications that are
produced by the model. In most applications, we also care about which of the categories
the classifier is able to most accurately predict. The Fβ-score is one example of a metric
that takes this characteristic into account.

Fβ-score. The Fβ-score is a commonly used metric for evaluating a classification
algorithm in more detail than accuracy. Before stating the relatively simple formula for
calculating this score, we define the quantities precision and recall,

Precision :=
TP

TP + FP
∈ [0, 1],

Recall :=
TP

TP + FN
∈ [0, 1].
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Intuitively, “precision is the ability of the classifier not to label as positive a sample that
is negative, and recall is the ability of the classifier to find all the positive samples” [119].
This means that the precision is equal to one when all the observations that the classifier
predicts as true actually are true in the dataset, yielding zero FP. Furthermore, the recall
is equal to one when all the true observations in the dataset are correctly retrieved by the
model, yielding zero FN. Note that precision is often known as positive predictive value
and recall is often known as sensitivity or true positive rate. Then, the Fβ-score is defined
as

Fβ := (β2 + 1)
Precision · Recall

β2 · Precision + Recall
∈ [0, 1], β ≥ 0. (2.23)

Equation (2.23) was introduced by Chinchor [14], adapted from an earlier, slightly dif-
ferent definition by Van Rijsbergen [139]. The coefficient β sets the relative importance
of precision and recall when calculating the score. If β < 1, the score gives more weight
to the precision, while if β > 1, the score gives more weight to the recall. In practice,
precision should be given most weight during evaluation if minimizing the number of FP
should be prioritized, while recall should be given most weight during evaluation if min-
imizing the number of FN is more important. Of course, either precision or recall are
more reasonable metrics to use for evaluation in cases where it is vital to avoid either type
of misclassification. The choice of metric should not be underestimated for gaining the
desired performance in specific applications.

For simplicity, in cases where we do not have a clear preference to minimizing either
FP or FN, many researchers choose to give the two terms equal weight, by setting β = 1,
which yields the frequently used F1-score,

F1 = 2
precision · recall

precision + recall
∈ [0, 1]. (2.24)

In a multiclass setting, the F1-score can be calculated for each class. For example, in
binary classification, we can calculate one F1-score for class 1 and one F1-score for class
0, where the latter calculation is performed by simply switching the roles of the binary
indicators, treating 0 as positive instead of negative. Essentially, this switches the roles
of TN and TP, as well as the roles of FP and FN, in Figure 2.5. We could choose to
evaluate either of these F1-scores individually, depending on which of the classes we want
to focus on. However, in general cases where we don’t have a preference, it is common
to aggregate the F1-score of each class into one combined score. There are several ways
of doing this. We choose to simply use the average of the two scores as an overall F1-
score in our experiments with binary classifiers. We refer to this as the macro F1-score.
Other alternatives are to calculate an average weighted by the support of each class, or
to calculate a global F1-score by summing all the FN, FP and TP, respectively, across all
classes, before plugging into Equation (2.24).

In closing, an advantage of the Fβ-score is that it is calculated from two quantities that
take the types of misclassifications that a classifier makes into account. However, one of
the main disadvantages of this metric is that it needs to be optimized for a certain choice
of discrimination threshold. In binary classification, this threshold is the probability or
score value at which we choose the positive class over the negative class. In general, this
level is set to 0.5, but it can be adjusted based on the relative importance of TN, FN, FP
and TP in each application. In order to overcome this issue, we choose to evaluate the
binary classifiers using AUC as well.

AUC. The Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC) curve is another commonly used metric for evaluating binary classifiers. The
ROC curve is a plot that shows the performance of a binary classifier while changing the
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discrimination threshold in [0, 1]. In order to understand the ROC curve, we define the
false positive rate (FPR),

FPR :=
FP

FP + TN
.

In addition, remember that the recall is also known as the true positive rate (TPR), which
is the second quantity that is used to plot a ROC curve. More specifically, a ROC curve
is simply a plot of FPR against TPR, for differing levels of the discrimination threshold,
ranging continuously from 0 to 1. A few examples of such curves are shown in Figure
2.6. An ideal, but unrealistic predictor should simply be a point in the upper left corner,
representing FPR = 0 (no false positives) and TPR = 1 (no false negatives) for all
discrimination thresholds. The AUC is, as the name suggests, the area under the ROC

Figure 2.6: Examples of different ROC curves. The image is borrowed from cmglee &
MartinThoma [15], and is licensed under the Creative Commons Attribution-Share Alike
4.0 International [17] license.

curve. A random binary classifier yields a linear ROC curve, as shown in Figure 2.6,
meaning it has an AUC of 0.5, because both TPR and FPR increase linearly with a
decrease in the decision threshold. An ideal classifier has an area close to 1, because this
signals that the curve “hugs” the upper left corner, meaning that TPR is large, while FPR
is small. Thus, instead of relying on visual inspection of ROC curves, we can equivalently
rely on AUC values during evaluation. We do not dive deeper into the underlying theory
of ROC, but simply assume that larger AUC is better. The interested reader is referred
to, e.g., Fawcett [32] for a detailed introduction to ROC curves and their pitfalls.

ML Efficacy Protocols

After discussing the three metrics we chose for evaluating binary classifiers, we comment
on two different ML efficacy protocols that appear in the literature. More specifically,
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Kotelnikov et al. [67] highlight two different techniques, which we call the average protocol
and the optimal protocol.

Average protocol. This is the most commonly used protocol [146], in which a set
of different binary classifiers are trained on the real and synthetic datasets. Frequently
selected classifiers are logistic regression, decision trees, GBDTs and neural networks. Post
training, each model is evaluated, using the metrics of choice, on predictions on the test
set, before each of the metrics are averaged across all the classifiers. Kotelnikov et al.
[67] observe that this protocol often can be misleading, because it relies on simple and
typically sub-optimal classifiers. They argue that this is not a realistic situation in any
application, since a developer or researcher would not be inclined to use classifiers that
are clearly not optimal.

Optimal protocol. Kotelnikov et al. [67] develop a protocol where they simply train
a CatBoost [104] model on the real and synthetic datasets, stating that this model “is the
leading GBDT implementation providing state-of-the-art performance on tabular tasks”
[67]. They argue that this technique is more reliable and useful, since we always strive to
use high-performing classifiers in practice, instead of averaging over mediocre predictors.
Specifically, they argue that “this evaluation protocol demonstrates the practical value of
synthetic data more reliably since in most real scenarios practitioners are not interested
in using weak and suboptimal classifiers/regressors” [67]. Moreover, the authors observe
that their selected ML efficacy metrics have better values for the models trained on the
synthetic data compared to the models trained on the real data, while following the average
protocol. From this, they conclude that the average protocol gives a false impression that
the synthetic data is more valuable than the real data, which is never the case (unless,
e.g., the real dataset is extremely small, denying it of any real statistical power). While
using the optimal protocol, the authors do not observe the same phenomenon, which is
another reason why they conclude that it is more realistic.





Chapter 3

Diffusion Models

This chapter is dedicated to developing an accessible exposition of diffusion models, es-
pecially for applications with tabular data. This is one of our main contributions in this
thesis. Diffusion models were first introduced by Sohl-Dickstein et al. [124], inspired
by non-equilibrium thermodynamics and statistical physics. A physical diffusion process
describes progressive destruction of information. Inspired by this, generative diffusion
models steadily destroy information in the input data through a so-called forward diffu-
sion process, which commonly has a predefined structure. Subsequently, a so-called reverse
diffusion process is learnt in order to restore the information in the data. After estimat-
ing the model parameters, it is possible to sample synthetic data points, calculate both
unconditional and conditional probabilities, as well as compute likelihoods, in tractable
ways. Several high-performing generative models have been trained with this technique
as a backbone, e.g., [20, 106, 130].

Recall that we restrict our study to tabular data, which rarely contains homogeneous
sets of data types. As a result, our aim is to develop models that can handle all possible
data types in any tabular dataset. Because continuous and categorical data types are
different in nature, they require different assumptions when modelling. Consequently, we
discuss diffusion models that rely on different assumptions, depending on the data type
they are intended to be applied to. After discussing them individually, they are joined
together to build a model suitable for our data modality. This idea was actually recently
implemented by Kotelnikov et al. [67], which is a great inspiration for our work.

The rest of the chapter is organized as follows. First, Section 3.1 introduces an ex-
tension of VAEs; hierarchical variational autoencoders (HVAEs). In the author’s humble
opinion, the simplest way of approaching diffusion models theoretically is to first introduce
HVAEs, before extending their theory seamlessly into diffusion models. This is the reason
why we chose to add a section on HVAEs in this chapter. The subsequent section, Section
3.2, gives a brief and easily digestible introduction to diffusion models. Next, Sections 3.3
and 3.4 introduce two important variations of diffusion models for our application; Gaus-
sian diffusion models and Multinomial diffusion models. Furthermore, Section 3.5 exhibits
algorithms for sampling from these two models. Finally, the main generative model we
investigate in this thesis, which we call Tabular diffusion, is discussed in Section 3.6. This
model combines the previously studied diffusion models into one model, compatible with
any tabular dataset.

3.1 Hierarchical Variational Autoencoders

In the initial formulation of VAEs in Section 2.8, the number of latent variable levels is one.
To be more specific, recall that in the original formulation we suppose that the generative
model can be described by a joint density p(x, z), which relates an observable random
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variable X and a latent random variable Z. Thus, each observation, x, is allowed to
depend on one latent variable realization, z. However, the restriction that each observation
depends on only one level of latent variables need not be enforced, as we can introduce a
deeper hierarchy of latent variables that depend on each other, using similar ideas as in
the original VAE. Any Bayesian [5] would recognize this idea from Bayesian hierarchical
modelling, where each model parameter is allowed to depend on other hyperparameters in
a nested fashion through their hyperprior distributions [38].

Taking a step back from the mathematics, the following philosophical exercise demon-
strates why several layers of latent variables might be reasonable to assume. In the classic
VAE, we implement the idea that observable data depends on unobservable variables Z
in a latent space. Luo [76] uses Plato’s allegory of the cave to explain this concept. The
prisoners of the cave only observe the two-dimensional projection of the three-dimensional
world outside. In this situation, the projections are the observables, while the world out-
side the cave constitutes the latent variables in three dimensions. This leads us to the idea
of a VAE with latent variables in one latent space. But, this idea might be reasonable to
extend to more complex relationships. Imagine that the three-dimensional objects we ob-
serve in reality are projections of other latent variables of differing dimensionalities. Such
variables could represent abstract quantities like shapes, colors, temperatures or other
aspects of the objects we observe. With this idea in mind, the people of the cave could
imagine a generative model that consists of (at least) two layers of latent variables: the
first layer consisting of the three-dimensional objects outside the cave, which depends on
other abstract latents in a second layer. These ideas can be extended an arbitrary amount
of times, each extension increasing the hierarchical depth of the set of latent variables. As
a side note, the allegory of the cave is lacking when it comes to illustrating the relationship
between the dimensions of the latent variables and the observables in a VAE, since a bot-
tleneck is used in order to learn latent representations of smaller dimension than the data.
Because of this, recall that we introduced a different philosophical exercise in Section 2.8,
to highlight a VAE’s capabilities in representation learning, should it be desired.

More rigorously, let the set {Z1,Z2, . . . ,ZT } denote a hierarchy of latent variables.
Then, the joint distribution with the observables X can be represented by the density
p(x, z1, z2, . . . ,zT ), analogously to in VAEs. In this notation, z1 represents a realization
of the latent variable level closest to X, while zT represents a realization of the deepest or
highest latent variable level, furthest from X. In the rest of this thesis, we use the terms
lower, closer and shallower, as well as higher, further and deeper, interchangeably. Notice
that the introduction of more latent variables does not change the objective; recall that
the goal of a generative latent variable model is to estimate the true data distribution by
marginalization of the latent variables. For a likelihood-based model, this is achieved by
maximizing

p(θ;D) :=
∏
x∈D

pθ(x) =
∏
x∈D

∫
pθ(x, z1, . . . ,zT )dz1 · · · dzT , (3.1)

with respect to θ, where we let pθ(x) denote the likelihood of one sample x ∈ D. Without
loss of generality, we focus on an arbitrary observation x ∈ D in the following. Similarly
to in Equation (2.10), the joint distribution may be rewritten as a product of conditional
distributions by using the chain rule for random variables, which in general reads

P (X1, . . . , Xn) = P (X1)

n∏
t=2

P (Xt|X1, . . . , Xt−1), (3.2)

for a collection of unordered random variables {X1, . . . , Xn}. In our case, the joint distri-
bution may be factorized as
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pθ(x, z1, . . . ,zT ) = p(zT )
T∏
t=2

pθt−1(zt−1|zt, . . . ,zT )pθ0(x|z1, . . . ,zT ), (3.3)

where we have added an additional index on θ to explicitly highlight that the parameters
in each of the densities typically are different. The reason why p(zT ) has no parameters is
that it can be interpreted as a prior distribution, similar to the role of p(z) in VAEs. From
Equation (3.3) it is clear that each level in the hierarchy of latent variables is allowed to
condition on all higher latents relative to itself; as t ∈ {T, T − 1, . . . , 2} decreases, each
conditional distribution depends on an increasingly larger set of latent variables. This
structure can quickly lead to very large and complex models, with many parameters. As
discussed in Section 2.8, the marginal likelihood in Equation (3.1) is intractable in general.
In any case, one possible solution to this problem is to approximate it via maximization
of the ELBO. When parameterizing this latent variable model with neural networks, it is
called a hierarchical variational autoencoder (HVAE) [76]. In its general formulation, the
HVAE is a very flexible model, which can yield fruitful results, as well as some difficulties
[66, 126]. In this work, we are particularly interested in a special case of the HVAE, where
the hierarchy is assumed to follow a Markov chain. This assumption restricts the model,
effectively limiting some of its flexibility, but it is a stepping stone in the derivation of dif-
fusion models. We refer to this model as a Markovian hierarchical variational autoencoder
(MHVAE) [76].

Decoding process. The Markov assumptions in MHVAEs yield a particularly simple
generative (or decoding) process; each transition to a latent Zt only conditions on the
neighbouring higher latent Zt+1. Hence, Equation (3.3) can be simplified to

pθ(x, z1, . . . ,zT ) = p(zT )
T∏
t=2

pθt−1(zt−1|zt)pθ0(x|z1). (3.4)

Generation from this model follows the process

Sample zT , where ZT ∼ p(zT ),

Sample zT−1, where ZT−1|ZT = zT ∼ pθT−1
(zT−1|zT ),

...

Sample z1, where Z1|Z2 = z2 ∼ pθ1(z1|z2),
Sample x, where X|Z1 = z1 ∼ pθ0(x|z1),

which is reminiscent of the generative process we commenced the discussion in Section 2.8
with, after nesting T levels of latent variables. Figure 3.1 further illustrates these ideas,
demonstrating a chain of realizations of the random variables. Notice that the two leftmost
nodes in the figure, representing the observables X and the most shallow latent Z1, gives
a VAE when seen in isolation from all the other latents, with the encoder dictating the
transformation from X to Z1 and the decoder dictating the transformation from Z1 to
X. Thus, another way of understanding a MHVAE is as a stack of VAEs, wherein each
VAE the leftmost latent in the pair is treated as an observable, given the neighbouring
higher VAE.

Encoding process. In order to complete the analogy to shallow VAEs, we should
mention the encoding process as well. Recall from Section 2.8 that we introduce an approx-
imate posterior, qϕ(z|x), in order to develop a variational lower bound for the VAE. For
HVAEs, the same idea is used. In this case, we are interested in inferring the distribution
of the closest latent variable Z1 given a realization of X, as well as the latent variable Zt
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Figure 3.1: Example of a hierarchical latent structure with Markovian assumptions. The
generative process moves from right to left, while the encoding process moves from left to
right. The parameters of the encoders and decoders are not shown explicitly. The image
is borrowed with permission from Luo [76].

conditioned on Zt−1 and the rest of the lower latents relative to itself, for t ∈ {2, . . . , T}.
Mathematically, using the chain rule once again, the encoding process can be written as

qϕ(z1, . . . ,zT |x) = qϕ1(z1|x)
T∏
t=2

qϕt(zt|x, z1, . . . ,zt−1), (3.5)

where we condition on an observation x ∈ D. Notice the complicated structure of this pro-
cess when Markov assumptions are not made. After making such assumptions, Equation
(3.5) can be expressed as

qϕ(z1, . . . ,zT |x) = qϕ1(z1|x)

T∏
t=2

qϕt(zt|zt−1). (3.6)

This process is also illustrated in Figure 3.1.
Evidence lower bound. Having introduced both the encoding and decoding pro-

cesses, the marginal log-likelihood of an arbitrary observation x ∈ D can be written as

log pθ(x) = log pθ(x)

∫
qϕ(z1, . . . ,zT |x)dz1 · · · dzT

=

∫
qϕ(z1:T |x) log pθ(x)dz1 · · · dzT

= Eqϕ(z1:T |x)[log pθ(x)]

= Eqϕ(z1:T |x)

[
log

pθ(x, z1:T )

pθ(z1:T |x)

]
= Eqϕ(z1:T |x)

[
log

pθ(x, z1:T )

qϕ(z1:T |x)

qϕ(z1:T |x)

pθ(z1:T |x)

]
= Eqϕ(z1:T |x)

[
log

pθ(x, z1:T )

qϕ(z1:T |x)

]
︸ ︷︷ ︸

LHV AE
θ,ϕ (x)

+Eqϕ(z1:T |x)

[
log

qϕ(z1:T |x)

pθ(z1:T |x)

]
︸ ︷︷ ︸
DKL(qϕ(z1:T |x) ∥ pθ(z1:T |x))

, (3.7)

where we use the notational convention z1:T = {z1, . . . ,zT }. In addition, recall that the
notation Eqϕ(z1:T |x)[log pθ(x)] is a shorthand, abuse of notation that represents
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EZ1:T |X=x∼qϕ(z1:T |x)[log pθ(x)] =

∫
qϕ(z1:T |x) log pθ(x)dz1 · · · dzT .

As expected, this calculation reveals that the ELBO, now with a different expression,
is a lower bound for the marginal log-likelihood. In this case, the bound is tight when
the entire approximate encoding process is equal to the true posterior, as expressed by
DKL(qϕ(z1:T |x) ∥ pθ(z1:T |x)). Moreover, analogously to in shallow VAEs, a minimization
of the KL term with respect to ϕ necessarily follows from maximization of the ELBO,
and vice versa, since the marginal log-likelihood is constant with respect to the variational
parameters. Issues concerning tightness of the bound and inference suboptimality can be
discussed for HVAEs as well, similar to in VAEs. Finally, similar analyses of LHV AEθ,ϕ can
be performed in this case, including expanding the expression for a better interpretation
of what terms are involved during maximization. Notice that LHV AEθ,ϕ can be simplified
when working with MHVAEs, by inserting Equations (3.4) and (3.6), which yields

LMHVAE
θ,ϕ (x) = Eqϕ(z1:T |x)

[
log

pθ(x, z1, . . . ,zT )

qϕ(z1, . . . ,zT |x)

]
= Eqϕ(z1:T |x)

[
log

p(zT )
∏T
t=2 pθt−1 (zt−1|zt) pθ0 (x|z1)

qϕ1(z1|x)
∏T
t=2 qϕt(zt|zt−1)

]
.

To conclude this section, we have seen how VAEs can be extended to models with arbitrar-
ily deep latent variable structures, under very similar formulations. By imposing certain
restrictions, like for instance Markovian, we can build tractable models that can be trained
in similar fashion to VAEs, commonly through parameterization via neural networks.

3.2 A Brief Introduction to Diffusion Models

As stated, we believe the most straightforward way of explaining diffusion models is to
use previously acquired knowledge on MHVAEs to segue into their quite vast body of
literature. In fact, diffusion models can be derived as a special case of MHVAEs by
imposing three key restrictions [76]. These simplifying assumptions are that

1. the latent variables, Zt, t ∈ {1, . . . , T}, have the same dimensionality as the input
data. For example, if X ∈ Rp+1, then Zt ∈ Rp+1, ∀t ∈ {1, . . . , T}.

2. the encoding process is fixed; the structure of the densities in the encoding process,
qϕ1(z1|x) and qϕt(zt|zt−1), t ∈ {2, . . . , T}, is known a priori and is therefore not
learnt. For example, in the most popular class of diffusion models, this structure is
assumed Gaussian.

3. the encoding densities are defined in such a way that the distribution of the highest
latent variable, when T →∞, is “standard” [130]. For example, the distribution of
ZT , when T →∞, is standard Gaussian when these densities are assumed Gaussian.

Let us dive deeper into the significance of each of these assumptions. First of all, the
fact that the latent variables have the same dimension as the input data means that the
bottleneck structure of autoencoders is not present. Consequently, diffusion models are
not suitable for representation learning, in contrast to VAEs. However, diffusion models
are suitable in applications where representation learning is not a requirement, for example
when the objective is purely generation of synthetic samples. Based on recent impressive
results with respect to generative quality and diversity, especially prevalent in computer
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vision [20, 106, 130], we anticipate that diffusion models can perform well on tabular
data also. In fact, as noted, this was recently investigated by Kotelnikov et al. [67],
demonstrating superiority over other alternatives. This paper is naturally an important
inspiration and guide for our work in this thesis, as it demonstrates that the idea of using
diffusion models for tabular data might have some merit.

The second assumption expresses that the structure of the encoding process is fixed
a priori, as defined in Sohl-Dickstein et al.’s [124] inaugural formulation of generative
diffusion models. For instance, the densities in Equation (3.6) can be assumed as Gaussian,

q(z1|x) = N (z1;
√

1− β1x, β1I),
q(zt|zt−1) = N (zt;

√
1− βtzt−1, βtI), t ∈ {2, . . . , T},

with coefficients βt, t ∈ {1, . . . , T}. Notice that, contrary to in Equation (3.6), the encod-
ing densities are not parameterized by ϕ, because they have no learnable parameters. This
pre-defined structure has been kept in more recent work, e.g. in what is regarded by many
as the set of seminal papers for diffusion models [20, 21, 47]. Obviously, the coefficients
βt, t ∈ {1, . . . , T}, play an important role, which we discuss in detail in Section 3.3.

Finally, the encoding distributions ensure that ZT is “standard”, when T is “sufficiently
large”. Extending our example above, the βt-coefficients are defined such that ZT , T ∈ Z,
approximately follows a standard Gaussian distribution. This is an approximate statement
because T has to be set to a finite scalar in practice, where some commonly found values in
the literature are T = 1000 [47] or T = 4000 [21]. As we know, a simple recipe for generat-
ing synthetic data points can be followed once we have p(zT ); after parameter estimation,
simply sample from ZT ∼ p(zT ) and sequentially decode the sample, following Equation
(3.4), in order to produce a new sample from {X,Z1, . . . ,ZT } ∼ pθ(x, z1, . . . ,zT ). De-
scribed in a hand-wavy way, if the model is trained to a satisfactory degree, this data
point should be new and unseen, but should resemble the training data.

In the following, we describe two fundamental classes of diffusion models. In fact,
they are the building blocks for the generative model that is mainly investigated in this
thesis. To begin with, inspired by the terminology in Kotelnikov et al. [67], we introduce
Gaussian diffusion models, which are quintessential [47, 124] for numerical data. Beware
that these models are typically referred to as diffusion models in the literature. For
clarity, the Gaussian assumptions we made in our reoccurring example above are from this
branch of models. After discussing Gaussian diffusion models, we introduce Multinomial
diffusion models [49], which make different assumptions in order to facilitate use in other
applications, mainly for categorical data.

3.3 Gaussian Diffusion

After the high-level introduction to diffusion models in the previous section, we define
some commonly used terminology and notation from the literature. Ho et al. [47]
introduce a slight abuse of notation, letting x0 represent an observation from D and
x1:T = {x1, . . . ,xT } represent the set of latent variables. In this way, the entire set of
variables in the hierarchy may be written as x0:T = {x0,x1, . . . ,xT }, which yields quite
short equations with regards to notation. This notation is used in most of the literature
on diffusion models. However, as statisticians, we prefer to keep our notation consistent
with earlier; x represents an observation and {Z1, . . . ,ZT } represents the set of latent
variables. We believe this leads to more easily understood equations.

Notice that diffusion models are usually said to consist of two different processes; the
forward process and the reverse process. In fact, these concepts are already familiar to
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us from Section 3.1, under different names. Bridging the gap between the terminologies,
what we called the encoding and decoding processes in HVAEs are called the forward and
reverse processes in diffusion models, respectively. In the following, we remind the reader
of what these processes entail, while adding the defining assumptions of Gaussian diffusion
models.

Forward Process

The forward, or diffusion, process is the common name for the approximate posterior
distribution, represented by the density q(z1, . . . ,zT |x). It consists of a fixed Markov
chain that adds Gaussian noise to the input observation iteratively, following the equations

q(z1, . . . ,zT |x) = q(z1|x)
T∏
t=2

q(zt|zt−1),

q(z1|x) = N (z1;
√

1− β1x, β1I),
q(zt|zt−1) = N (zt;

√
1− βtzt−1, βtI), t ∈ {2, . . . , T}.

(3.8)

The coefficients βt ∈ (0, 1), t ∈ {1, . . . , T}, define a variance schedule. The values of these
coefficients can be held constant as hyperparameters [47] or learnt [62]. For simplicity,
we choose to fix their values prior to training. Again, this choice explains why we have
removed the explicit dependence of the distributions on ϕ. In the literature, the two most
prevalent a priori fixed variance schedules for the forward process are called the linear and
cosine schedules.

Linear schedule. The linear schedule, first used by Ho et al. [47], defines the
parameters as linearly increasing from β1 = 10−4 to βT = 0.02. The authors justify this
choice by noting that the constants are small relative to the image data they work with,
scaled to [−1, 1]; “ensuring that the reverse and forward processes have approximately the
same functional form while keeping the signal-to-noise ratio at ZT as small as possible”
[47].

Cosine schedule. The cosine schedule [21] was introduced as an improvement of
the linear schedule. Precisely, Dhariwal and Nichol observed that the end of the forward
process is too noisy when using the linear schedule and provided empirical evidence that
the final parts of the process do not contribute a lot to sample quality. The cosine schedule
is defined as

βt := 1− ᾱt
ᾱt−1

,

ᾱt :=
f(t)

f(0)
, f(t) := cos

(
t/T + s

1 + s
· π

2

)2

, t ∈ {1, . . . , T},
(3.9)

where s := 0.008 is a small offset designed to prevent βt from being too small near t = 0,
i.e. near the observation. The numerical value of this offset is justified based on pixel bin
size, since the inventors of this schedule also evaluated diffusion models on image data.
In fact, an interesting note is that progress in diffusion models has predominantly been
made in image generation, especially early on, because this is the area where researchers
first discovered comparable performance to GANs [20, 128]. Returning from our slight
digression, note that when working with the cosine schedule in practice, the values of βt
are not allowed to grow larger than 0.999, to avoid singularities close to t = T [21]. Ad-
ditionally, notice the use of the symbol ᾱt when defining the cosine schedule in Equations
(3.9). There is a reason behind this choice of notation. Actually, ᾱt represents a quantity
that is very important in diffusion models, a quantity that is defined below.
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Closed form forward density. An important property of the forward process is that
it admits forward sampling to any latent, Zt, t ∈ {1, . . . , T}, in closed form. At first glance,
Equations (3.8) indicate that each conditional density needs to be calculated iteratively
given realizations of all lower latents, as well as the input observation x. Intuitively,
remember that such a process goes from left to right in Figure 3.1. However, this recursive
calculation is not necessary. The Gaussian assumptions in the diffusion process allow a
closed form formulation,

q(zt|x) = N (zt;
√
ᾱtx, (1− ᾱt)I), t ∈ {1, . . . , T}, (3.10)

where

ᾱt :=

t∏
i=1

αi, αt := 1− βt.

For completeness, the derivation of Equation (3.10) is provided in Appendix C.1. This
equation makes it possible to calculate the conditional density of any latent in the forward
chain, given only the variance schedule and the input observation. The main advantage
of this is decreased computational burden while training the diffusion model, which is ex-
ploited in order to estimate the model parameters more efficiently. Estimation of param-
eters will be addressed in detail later. In addition to creating a computational advantage,
Equation (3.10) illustrates the importance of ᾱt, facilitating simpler interpretation of the
behaviour of the linear and cosine variance schedules. Figure 3.2 illustrates how ᾱt evolves
throughout the diffusion process, for both schedules. The cosine schedule was designed
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Figure 3.2: ᾱt plotted against diffusion step for the linear and cosine schedules. This is
a recreation of Figure 5 in Dhariwal and Nichol [21], with T = 1000.

to conserve more information further in the forward process, something it seems to do
in comparison to the linear schedule, according to the figure. Furthermore, the equation
qualitatively shows that q(zT |x) ≈ N (zT ;0, I), because ᾱt → 0 when t→ T , which plays
a role when defining the loss function for parameter estimation. Intuitively, the densities
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that make up the forward process are transformed from a degenerate deterministic distri-
bution at t = 0, “a Gaussian with zero variance and mean x”, to a standard Gaussian at
t = T , following different paths based on the variance schedule.

Reverse Process

The reverse, or generative, process commonly refers to the joint distribution, represented
by the density pθ(x, z1, . . . ,zT ). Similarly to the forward process, this process is defined
as a Markov chain with Gaussian transitions according to the equations

pθ(x, z1, . . . ,zT ) = p(zT )
T∏
t=2

pθ(zt−1|zt)pθ(x|z1),

p(zT ) = N (zT ;0, I),

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)), t ∈ {2, . . . , T},
pθ(x|z1) = N (x;µθ(z1, 1),Σθ(z1, 1)),

(3.11)

where µθ and Σθ represent any ML or mathematical model. Such a model is trained on
inputs zt and t, for t ∈ {1, . . . , T}, in order to compute the mean and variance parameters
in Equations (3.11). In other words, µθ(zt, t) and Σθ(zt, t) are predictions from the model,
based on inputs zt and t, for t ∈ {1, . . . , T}. Commonly, neural networks are used for this
task, as they have been used successfully by many researchers. We also use deep learning
models in our experiments, whose architectures are outlined in Chapter 5. Notice that
we do not explicitly highlight that the (hyper-)parameters in each of the densities can be
different, as we did for HVAEs in Equation (3.4), i.e. we have removed the subindices on
θ. This is intentional, because all the parameters θ, over all diffusion steps t, are estimated
using the same model. Hence, θ essentially represents neural network parameters, while
the predictions from the neural network act as parameters in the Gaussian densities in
Equations (3.11). We return to this idea when discussing parameter estimation in detail.

It is not obvious why the reverse process transitions in Equations (3.11) are defined as
Gaussians. From a theoretical point of view, the ideal scenario would let us calculate the
posteriors, q(zt−1|zt), t ∈ {2, . . . , T}, and q(x|z1), such that we could compute

p(x, z1, . . . ,zT ) = p(zT )
T∏
t=2

q(zt−1|zt)q(x|z1),

directly. In this way, we could simply reverse the forward process by an iterative sampling
procedure, enabling us to recreate the true observation x from standard Gaussian noise.
However, the posterior distributions,

q(zt−1|zt) =
q(zt|zt−1)p(zt−1)

p(zt)
, t ∈ {2, . . . , T},

q(x|z1) =
q(z1|x)p∗(x)

p(z1)
,

(3.12)

are not tractable to compute. One reason why is that p(zt), ∀t ∈ {1, . . . , T − 1}, is
intractable, especially when T is large, due to high-dimensional integrals while performing
marginalization of the random variables. Another reason is that q(x|z1) depends on
the true data density, p∗(x), which is what we are trying to infer in generative models,
meaning that the true posteriors depend on the entire data distribution [21]. Despite
this intractability, it turns out that the posteriors are tractable when conditioned on X.
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Notice that this conditioning is superfluous because of the Markov assumptions, meaning
that q(zt−1|zt,x) = q(zt−1|zt), ∀t ∈ {2, . . . , T}, a property that is frequently used in
derivations. More specifically, these distributions can be represented by the densities

q(zt−1|zt,x) = N (zt−1; µ̃t(zt,x), Σ̃tI), t ∈ {2, . . . , T},

µ̃t(zt,x) =

√
ᾱt−1βt

1− ᾱt
x +

√
αt(1− ᾱt−1)

1− ᾱt
zt,

Σ̃t =
1− ᾱt−1

1− ᾱt
βt.

(3.13)

For completeness, the derivation of these expressions is also given in Appendix C.1. Notice

that µ̃1(z1,x) =
√
ᾱ0β1

1−ᾱ1
x +

√
α1(1−ᾱ0)
1−ᾱ1

z1 = x and Σ̃1 = 1−ᾱ0
1−ᾱ1

β1 = 0, because ᾱ0 = 1. This
means that q(x|z1,x) is a degenerate distribution, because the Gaussian density does not
exist when the covariance matrix is not symmetric and positive-definite. This distribution
can be represented by a Dirac delta at x,

q(ξ|z1,x) =

{
1, ξ = x,

0, ξ ̸= x,

where we rename the argument to ξ for clarity. Intuitively, this result seems sensible,
because we would deterministically choose x in the final forward posterior density if we
have access to x — there is no point in defining a probability distribution over x in such
a case. Unfortunately, we cannot use Equations (3.13) to reverse the forward process
either. Recall that the philosophy of generative modelling is to estimate p∗(x) using the
realizations x ∈ D of X := {X1, . . . , Xp, Y } ∼ p∗(x), to enable inference on observations
x′ /∈ D from the same distribution. This explains why we cannot use these equations
to reverse the forward process, since we do not have access to an arbitrary observation
x′ /∈ D of X ∼ p∗(x) at time of inference, i.e. while simultaneously trying to generate
x′. Thus, since we cannot rely on the posteriors (Equations (3.12)) or the conditional
posteriors (Equations (3.13)), the approximate densities in the reverse process, as stated
in Equations (3.11), are introduced.

Interestingly, the reason why the reverse process transitions in Equations (3.11) are
defined as Gaussians can be observed from Equations (3.13); in order to reverse the for-
ward process, we seek to learn a reverse process where each transition pθ(zt−1|zt), t ∈
{2, . . . , T}, “matches” q(zt−1|zt,x), t ∈ {2, . . . , T}, as closely as possible. This “match-
ing” procedure can be interpreted from the ELBO. Note that for t = 1, we cannot perform
such a matching explicitly, since we defined pθ(x|z1) to be stochastic. Similarly to in a
VAE, this is represented by a reconstruction term in the ELBO. This discussion is a little
hand-wavy, with focus on intuition, but is made rigorous after deriving the loss function
for estimating the parameters of the diffusion model, which is based on the ELBO. Before
moving on to a detailed explanation of parameter estimation, Algorithm 1 shows how a
Gaussian diffusion model can be trained in practice. We develop this algorithm with the
training algorithm in Ho et al. [47] as inspiration. Steps 3 through 6 represent the forward
process, where step 6 uses the closed form formulation from Equation (3.10) to diffuse an
observation. Steps 7 and 8 represent the reverse process, where the parameters of a neural
network gθ are modified with backpropagation and a stochastic gradient descent method.
Keep in mind that training is most commonly done with batches of observations, not sin-
gular observations, in each iteration, but we do not include this explicitly in the algorithm
for simplicity. In the next subsection, we justify why this algorithm can be used.
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Algorithm 1 Training a Gaussian Diffusion Model

1: Assume T and βt, t ∈ {1, . . . , T}, set a priori.
2: while not converged do
3: x← one sample from D (equivalently from X ∼ p∗(x)).
4: t← one sample from T ∼ Uniform[1, T ].
5: ε← one sample from E ∼ N (0, I).
6: zt ←

√
ᾱtx +

√
1− ᾱtε. ▷ Diffuse x to step t.

7: Calculate ∇θ∥ε− gθ(zt, t)∥22 via backpropagation.
8: Take gradient descent step.
9: end while

Details About Parameter Estimation

The main objective of diffusion models is to estimate the parameters of the reverse process,
such that we can reverse the destruction of information in the forward process. This can
be done in different ways. We have chosen to interpret diffusion models as likelihood-based
models, meaning that our objective is to maximize the likelihood of the data, p(θ;D), as
shown in Equation (3.1). As a side note, diffusion models can be interpreted as score-based
generative models as well, an interpretation we have chosen not to focus on. Precisely, the
equivalence between denoising diffusion probabilistic models (DDPMs) and score-based
generative models was shown by Ho et al. [47], in one of the key papers we rely on in
this work. The interested and motivated reader should therefore also study diffusion mod-
els from a perspective of score-based generative models, stochastic differential equations
(SDEs) and Langevin dynamics [128, 129, 130]. In fact, according to Tomczak [138], one
of the reasons why diffusion probabilistic models have reached popularity is that they can
be approached from several different perspectives, which grants an extensive theoretical
foundation.

Returning from our slight digression, diffusion models are trained by optimizing a
variational lower bound, analogously to VAEs. Without loss of generality, we focus on
maximizing the likelihood of an arbitrary instance x ∈ D in the following. The marginal
likelihood, pθ(x), is intractable, meaning that an approximate technique is necessary.
More specifically, the loss function is the (negative) evidence lower bound (ELBO). The
ELBO in diffusion models also appears as a lower bound to the marginal log-likelihood,

log pθ(x) ≥ Eq(z1|x) [log pθ(x|z1)]︸ ︷︷ ︸
L0

−DKL(q(zT |x) ∥ p(zT ))︸ ︷︷ ︸
LT

−
T∑
t=2

Eq(zt|x) [DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt))]︸ ︷︷ ︸
Lt−1

=: LGDθ (x).

(3.14)

The derivation of this lower bound is quite involved, but it is given in Appendix C.1 for
completeness. Each of these terms can be given relatively clear interpretations [76]. The
first term, L0, can be interpreted as a reconstruction term, in the same way as in VAEs and
HVAEs. The second term, LT , can be interpreted as a prior matching term; it represents
how close the final forward process density is to the standard Gaussian prior of the reverse
process. This also appears in the ELBO in VAEs, as the KL divergence between the
encoder, qϕ(z|x), and the prior belief on Z, p(z). Each of the components in the third
term, Lt−1, can be interpreted as a regularizer; at each diffusion step t ∈ {2, . . . , T}, the
reverse process density, pθ(zt−1|zt), should be as similar as possible to the forward process
posterior conditioned on the observation, q(zt−1|zt,x). This is an attractive property,
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because q(zt−1|zt,x) describes how each latent zt should be denoised into zt−1 when the
initial observation x is known. Thus, during training, the density q(zt−1|zt,x) acts as a
ground-truth signal for each reverse process density [76]. A closer look at LGDθ reveals
some important properties of the loss that can be used during parameter estimation.

Optimizing LT . First of all, under the assumption of a known and fixed vari-
ance schedule, where the coefficients βt, t ∈ {1, . . . , T}, are defined such that q(zT |x) ≈
N (zT ;0, I), the term LT can be ignored in the objective function. This is because q(zT |x)
has no learnable parameters, and q(zT |x) ≈ p(zT ), meaning that LT can be treated as a
small constant during optimization.

Optimizing Lt−1. Second, the main cost of maximization stems from minimizing
Lt−1, ∀t ∈ {2, . . . , T}. Observe that

∑T
t=2 Lt−1 should be minimized in order to max-

imize LGDθ . This explains why we previously stated that pθ(zt−1|zt) should “match”
q(zt−1|zt,x). More rigorously, the objective is to minimize their KL divergence,

DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt)), ∀t ∈ {2, . . . , T}.
Importantly, notice that this quantity can be calculated in closed form, making optimiza-
tion much more feasible than in regular HVAEs. This is because, according to Equations
(3.11) and (3.13), both the terms are Gaussian, and the KL divergence between two Gaus-
sians has a closed form expression, as derived in Appendix F. We return to this fact
later.

Recall that the mean, µθ, and variance, Σθ, of the reverse process densities, pθ(x|z1)
and pθ(zt−1|zt), t ∈ {2, . . . , T}, represent a ML model. However, since the variance
schedule, βt, t ∈ {1, . . . , T}, is known a priori, it is convenient to simply let Σθ(zt, t) :=
Σ̃tI, t ∈ {2, . . . , T}, where Σ̃t is given in Equations (3.13). With this strategy, we do
not need to train a ML model to predict the variance parameters of the reverse process
densities, which makes mathematical derivations, as well as implementations, simpler.
As a side note, Ho et al. [47] state that this choice is empirically optimal, among two
different untrained time dependent constants, when the instance x is deterministically
set to one point, which is precisely what we assume of our instance. Assuming that we
make this choice, the parametric family of functions and the variances of q(zt−1|zt,x) and
pθ(zt−1|zt) are already equal, for all t ∈ {2, . . . , T}. After this simplification, the only
element remaining to match, in order to minimize the KL divergence between the two
distributions at each step, is the mean. Ho et al. [47] develop three different techniques
for matching the mean predictions of pθ(zt−1|zt) in Equations (3.11), µθ(zt, t), with the
means of q(zt−1|zt,x) in Equations (3.13), µ̃t(zt,x), for all t ∈ {2, . . . , T}. These three
strategies are explained in the following.

Predict mean, alternative I. Since pθ(zt−1|zt) does not depend on x, we cannot
simply set µθ(zt, t) = µ̃t(zt,x), t ∈ {2, . . . , T}, as we did with the variances. The first
parameterization of µθ is based on the fact that we can write

Lt−1 = Eq(zt|x)
[

1

2Σ̃t

∥µθ(zt, t)− µ̃t(zt,x)∥22
]
, t ∈ {2, . . . , T}, (3.15)

when the reverse transitions are defined as pθ(zt−1|zt) = N (zt−1;µθ(zt, t), Σ̃tI). This
can be shown by direct calculation of DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt)), which is given in
Appendix C.1 for completeness. Thus, the most obvious choice is to fit a ML model, µθ,
whose predictions, µθ(zt, t), are close to µ̃t(zt,x), trained by minimization of Equation
(3.15).

Predict mean, alternative II. Instead of predicting the mean directly, we can al-
ternatively train a ML model to predict the input instance. Keeping Equations (3.13) in
mind, this strategy can be derived after setting
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µθ(zt, t) =

√
ᾱt−1βt

1− ᾱt
fθ(zt, t) +

√
αt(1− ᾱt−1)

1− ᾱt
zt, t ∈ {2, . . . , T}. (3.16)

Here, we approximate x by predictions from a model fθ, typically a neural network, based
on inputs zt and t for t ∈ {2, . . . , T}. Defining µθ(zt, t) like this yields a modified version
of Equation (3.15),

Lt−1 = Eq(zt|x)
[

1

2Σ̃t

ᾱt−1β
2
t

(1− ᾱt)2
∥fθ(zt, t)− x∥22

]
, t ∈ {2, . . . , T}, (3.17)

which is attained by inserting Equations (3.13) and (3.16) into Equation (3.15). The
details are provided in Appendix C.1. Thus, the ML model, fθ, can be trained to predict
the observation x as closely as possible from the noised version of x at any diffusion step
t ∈ {2, . . . , T}, by using Equation (3.17) as loss function.

Predict mean, alternative III. However, Equation (3.16) is not the only possible
way of parameterizing µθ(zt, t) to “match” µ̃t(zt,x). The reparameterization trick applied
to Equation (3.10) can be used to obtain

µ̃t(zt,x) = µ̃t

(
zt,

1√
ᾱt

(zt −
√

1− ᾱt)ε
)

=
1√
αt

(
zt −

βt√
1− ᾱt

ε

)
,

(3.18)

where ε is a realization of the random variable E ∼ N (0, I). More specifically, repa-
rameterization of q(zt|x) reads zt =

√
ᾱtx +

√
1− ᾱtε, which can be rearranged as

x = 1√
ᾱt

(zt −
√

1− ᾱtε). This can be plugged in for x in µ̃t(zt,x) in Equations (3.13),

which yields Equation (3.18). Insertion into Equation (3.15) now yields

Lt−1 = Ep(ϵ)

 1

2Σ̃t

∥∥∥∥∥µθ(
√
ᾱtx +

√
1− ᾱtε, t)−

1√
αt

(
zt −

βt√
1− ᾱt

ε

)∥∥∥∥∥
2

2

 , (3.19)

where the expectation is taken with respect to E ∼ p(ε) = N (ε;0, I) because of the
reparameterization trick. Equation (3.19) reveals that µθ should be trained to predict
1√
αt

(
zt − βt√

1−ᾱt
ε
)

based on inputs zt and t, for t ∈ {2, . . . , T}. Hence, the loss function

can be stated as

Lt−1 = Ep(ε)
[

β2t
2Σ̃tαt(1− ᾱt)

∥ε− gθ(
√
ᾱtx +

√
1− ᾱtε, t)∥22

]
, t ∈ {2, . . . , T}, (3.20)

were gθ is a model that predicts a realization ε of the random variable E ∼ N (0, I)
from zt =

√
ᾱtx +

√
1− ᾱtε and t, trained with Equation (3.20) as loss function. For

completeness, the arithmetic details from this discussion are given in Appendix C.1.
Thus, we are left with three different choices regarding what to train our ML model

to predict; either we predict µ̃t(zt,x), x or ε, at each diffusion step t ∈ {2, . . . , T}. How
do we make this choice? Ho et al. [47] found that the best choice is to predict the noise,
ε, when combined with a reweighted loss function

LGDsimple := Ep(ε),t
[
∥ε− gθ(

√
ᾱtx +

√
1− ᾱtε, t)∥22

]
, (3.21)

where the subscript t of the expectation is a shorthand notation that indicates that we
also calculate the expectation over diffusion steps t that are realizations of a random
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variable T ∼ Uniform[1, T ]. More specifically, the authors found it beneficial for sample

quality and simplicity of implementation to simply discard the factor
β2
t

2Σ̃tαt(1−ᾱt)
, and use

the reweighted loss function in Equation (3.21), for each instance x ∈ D. Based on this
conviction, we choose to use this technique for training a Gaussian diffusion model in the
experiments outlined in Chapter 5 as well.

Optimizing L0. Taking a step back, we have discussed the regularizers Lt−1 to a
great extent and shown how they can be calculated and minimized in several different
ways. However, recall that the ELBO in Equation (3.14) contains a reconstruction term,
L0, as well. Above we state that Equation (3.21) is used as loss function, essentially
replacing maximization of LGDθ with minimization of LGDsimple, with stochastic sampling of
diffusion steps uniformly between 1 and T . In a rather cryptic fashion, Ho et al. [47] state
that “the t = 1 case corresponds to L0 (...)”, in reference to LGDsimple, without clarifying
exactly how. Theoretically, we find that defining the lowest reverse process density as

pθ(x|z1) = N (x;µθ(z1, 1),Σθ(z1, 1)),

µθ(z1, 1) =
1√

1− β1

(
z1 −

√
β1gθ(z1, 1)

)
,

Σθ(z1, 1) = aI,

(3.22)

where a ∈ R is arbitrary, enables inclusion of L0 in LGDsimple. Note that a can be arbitrary
since we reweight the ELBO anyway, removing the coefficients in front of the Euclidean
norm. Despite the simple calculations needed to show this, we include the computations in
Appendix C.1 for completeness. Thus, the way we understand Ho et al.’s [47] statement
is that implicit inclusion of L0 in LGDsimple at t = 1 is equivalent to defining pθ(x|z1) as
in Equation (3.22), before explicitly computing and reweighting the reconstruction term,
L0 = Eq(z1|x) [log pθ(x|z1)], and including this term in the loss function alongside LGDsimple

for t ∈ {2, . . . , T}. It follows that gθ is trained to predict ε in z1 =
√
ᾱ1x +

√
1− ᾱ1ε,

which is consistent with gθ for the other diffusion steps. Thus, using LGDsimple (Equation
(3.21)) as objective function implicitly teaches the lowest reverse process distribution to
reconstruct the input with a mean squared error loss, similar to the continuous components
of the decoder in TVAE, as discussed in Section 2.9. To be clear, recall that LT is not
considered during optimization, since it has no learnable parameters. In addition, notice
that when t > 1, LGDsimple corresponds to a reweighted version of Lt−1 in Equation (3.20).

Hence, a minimization of LGDsimple can replace a (reweighted) maximization of LGDθ , because
all the terms in the latter are included in the former.

Interpretation. Thus, we are now able to understand why Algorithm 1 can be used
for training a Gaussian diffusion model, since we minimize

Ep(ε),t
[
∥ε− gθ(

√
ᾱtx +

√
1− ᾱtε, t)∥22

]
,

iteratively over batches of inputs x ∈ D. The expectation is approximated with a Monte
Carlo (MC) method, over stochastic samples of diffusion steps and noise. LGDsimple can be
interpreted as a weighted variational bound that gives different weight to reconstruction
and regularization compared to directly optimizing LGDθ . This idea is not new, and was for
example introduced in the theory of VAEs with the β-VAE framework [45]. Ho et al. [47]
state that this reweighting of the objective causes the objective to “down-weight loss terms
corresponding to small t”, leading to the network prioritizing more accurate denoising of
latents at larger t. This lead to better sampling quality in their setup, according to the
authors, probably because of the connection to score-based generative modelling, which
uses analogous losses [128, 129, 130].
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ML model design. Before moving on, we remind the reader about the vital role of the
ML model trained to predict the relevant quantities. When choosing a deep learning model,
the neural networks can be of any architecture we see fit depending on the application.
The importance of its design should not be underestimated.

3.4 Multinomial Diffusion

Up until this point, we have mostly discussed diffusion models with Gaussian assump-
tions. However, the Gaussian assumptions in the forward and reverse processes represent
only one way of restricting diffusion models to achieve tractability. In this section, we
discuss Multinomial diffusion models, for handling categorical data, first introduced by
Hoogeboom et al. [49].

Interestingly, note that Sohl-Dickstein et al. [124] experimented with diffusion mod-
els with Binomial assumptions, showing successful empirical results for binary sequence
learning. Hoogeboom et al. [49] extend this idea by defining a diffusion process directly
on categorical features with more than two levels. Recall the three key simplifying as-
sumptions, effectively transforming a MHVAE to a diffusion model, stated in Section 3.2.
These still hold for Multinomial diffusion models. The only assumption that differs in
Gaussian and Multinomial diffusion is the assumption on the forward structure, otherwise
known as the diffusion kernel, yielding a different distribution for zT and modifying the
assumed reverse process structure accordingly.

Precisely, let x ∈ D represent an arbitrary realization of X := {X1, . . . , Xp, Y } ∼
p∗(x). Assume that we are interested in modelling the jth element of X, denoted by
Xj ∼ p∗(xj), which we assume is a categorical random variable with K different categories.
Thus, element xj of x contains a value representing one of the K categories. Suppose
that this value is represented in one-hot encoded (OHE) format, as a vector xjOHE =

{xj,1OHE, . . . , x
j,K
OHE}. For clarity, this means that, assuming xj pertains to category k ∈

{1, . . . ,K}, then xj,kOHE = 1 and xj,iOHE = 0 for i ̸= k. As a consequence, we let Xj
OHE

represent Xj in RK×1, and introduce the latent variables Zj
t , t ∈ {1, . . . , T}, corresponding

to Xj
OHE, as vectors in RK×1. For ease of notation, in the following we drop the subscript

text, in addition to the superscript specification of the a priori selected element j of x ∈ D,
in all observable vectors, like x := xjOHE, with the implicit understanding that x represents
the value xj in OHE format. Moreover, we drop the superscript j in the latent variables,
like Zt := Zj

t , t ∈ {1, . . . , T}.
Forward process. The forward process in Multinomial diffusion is characterized by

q(z1, . . . ,zT |x) = q(z1|x)
T∏
t=2

q(zt|zt−1),

q(z1|x) = CategoricalOHE

(
z1; (1− β1)x +

β1
K
1

)
,

q(zt|zt−1) = CategoricalOHE

(
zt; (1− βt)zt−1 +

βt
K
1

)
, t ∈ {2, . . . , T},

where 1 ∈ RK×1 is a vector of ones. For completeness, the categorical distribution is
defined in Appendix A. From the forward process mass functions we can derive a closed
form forward sampling formula,

q(zt|x) = CategoricalOHE

(
zt; ᾱtx +

1− ᾱt
K

1

)
, (3.23)
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whose derivation is given in Appendix C.2. Moreover, from the development of ᾱt with
increasing diffusion step, illustrated in Figure 3.2, we deduce that the limit of the forward
process reaches the distribution

p(zT ) = CategoricalOHE

(
zT ;

1

K
1

)
,

because the first term, ᾱTx, in the parameter of the categorical distribution in Equation
(3.23) becomes vanishingly small, leaving 1−ᾱT

K 1 ≈ 1
K1 as the dominating term.

Reverse process. Like in Gaussian diffusion, the forward posterior distributions are
not tractable. However, the posteriors can be calculated analytically when conditioned on
Xj

OHE, which yields the conditional posteriors

q(zt−1|zt,x) = CategoricalOHE (zt−1;Λpost(zt,x)) , t ∈ {2, . . . , T},

Λpost(zt,x) =
λ

∥λ∥1
,

λ =

[
αtzt +

1− αt
K

1

]
⊙
[
ᾱt−1x +

(1− ᾱt−1)

K
1

]
,

(3.24)

where ∥·∥1 is the L1 norm or Manhattan distance, i.e. the sum of absolute elements. For
completeness, these equations are also derived in Appendix C.2. Notice that Λpost(z1,x) =

1
∥λ∥1 ((α1z1 + 1−α1

K 1)⊙ (ᾱ0x+ 1−ᾱ0
K 1) = 1

∥λ∥1 ((α1z1 + 1−α1
K )⊙x) = x, because x is OHE.

This means that q(x|z1,x) follows a deterministic degenerate distribution at one point,
analogously to in Gaussian diffusion.

As always in diffusion models, the objective is to learn a reverse process that is able to
denoise the slowly destroyed input data. For this aim, the conditional forward posteriors
q(zt−1|zt,x), t ∈ {2, . . . , T}, are “matched” as closely as possible by the reverse process
densities pθ(zt−1|zt), t ∈ {2, . . . , T}. Hence, the reverse process is parameterized as

pθ(x, z1, . . . ,zT ) = p(zT )

T∏
t=2

pθ(zt−1|zt)pθ(x|z1),

p(zT ) = CategoricalOHE

(
zT ;

1

K
1

)
,

pθ(zt−1|zt) = CategoricalOHE

(
zt−1;Λpost(zt,hθ(zt, t))

)
, t ∈ {2, . . . , T},

pθ(x|z1) = CategoricalOHE(x;hθ(z1, 1)),

where hθ represents a ML model of choice, commonly a neural network with a suitable
architecture, that is trained to predict a probability vector for x from zt and t for t ∈
{1, . . . , T}. Notice that, when hθ is parameterized by a neural network, we ensure non-
negative and correctly normalized probability vector predictions, hθ(zt, t), t ∈ {1, . . . , T},
via a softmax function in the output layer of the network. As in Gaussian diffusion, we
cannot use the matching principle when t = 1, since the final decoder is stochastic. This
is handled via a reconstruction term in the ELBO, which assures that hθ is trained to
predict a probability parameter in pθ(x|z1) that maximizes the likelihood of each input
observation, x, in the training data.

Before moving on to a detailed discussion concerning parameter estimation, Algorithm
2 describes how a Multinomial diffusion model can be trained in practice. We develop
this algorithm analogously to in Gaussian diffusion, hoping to show how similar the train-
ing procedures are. Steps 4 through 7 represent the forward process, where step 6 uses
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Algorithm 2 Training a Multinomial Diffusion Model

1: Assume T , βt, t ∈ {1, . . . , T}, set a priori and select a categorical feature.
2: K ← number of levels in categorical feature.
3: while not converged do
4: x← one sample from D (equivalently from X ∼ p∗(x)).
5: x← select element corresponding to categorical feature and one-hot encode.
6: t← one sample from T ∼ Uniform[1, T ].
7: zt ← one sample from Z ∼ CategoricalOHE

(
ᾱtx + 1−ᾱt

K 1
)
.

8: if t = 1 then
9: Calculate −∇θ log pθ(x|z1) via backpropagation.

10: else
11: Calculate ∇θDKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt)) via backpropagation.
12: end if
13: Take gradient descent step.
14: end while

the closed form formulation from Equation (3.23), enabling efficient training. In prac-
tice, sampling from a categorical distribution is performed via the Gumbel-Max trick [78],
which we outline in Appendix A.1. Steps 8 through 13 represent the reverse process,
where the parameters of the neural network hθ are modified with backpropagation and
a stochastic gradient descent method. Notice that this network is not explicitly stated
in Algorithm 2 to promote a less cluttered algorithm, but it appears implicitly through
pθ(zt−1|zt), t ∈ {2, . . . , T}, and pθ(x|z1). Before continuing, note that we derived the
ELBO in Equation (3.14) without any assumptions specific to Gaussian diffusion, meaning
that parameter estimation in Multinomial diffusion is based on the same ELBO. However,
in this case, L0 is not implicitly included in the expression for Lt−1 when t = 1, which is
why the backpropagation algorithm is applied slightly differently when t = 1 in Algorithm
2. As noted previously, keep in mind that training is most commonly performed with
batches of observations, not singular observations, in each iteration, but we do not include
this explicitly in the algorithm for simplicity. In the next paragraph, we explain why
Algorithm 2 can be used for training, and state the expanded expressions of log pθ(x|z1)
and DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt)) that appear in lines 8 and 10 in the algorithm.

Details about parameter estimation. Estimation of the parameters follows a simi-
lar idea as discussed for Gaussian diffusion. The starting point is the ELBO, LGDθ , as stated
in Equation (3.14). LT can still be neglected, since it has no learnable parameters. The
KL divergences between the two sets of categorical distributions in Lt−1, t ∈ {2, . . . , T},
can be computed as

DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt))
= DKL(CategoricalOHE(zt−1|Λpost(zt,x)) ∥ CategoricalOHE(zt−1|Λpost(zt,hθ(zt, t))))

=

K∑
k=1

Λpost(zt,x)k · log
Λpost(zt,x)k

Λpost(zt,hθ(zt, t))k
, (3.25)

where Λpost(zt,x)k and Λpost(zt,hθ(zt, t))
k, for k ∈ {1, . . . ,K}, are the elements of

Λpost(zt,x) and Λpost(zt,hθ(zt, t)), respectively. Moreover, L0 can be calculated by

log pθ(x|z1) =

K∑
k=1

xk log hθ(z1, 1)k, (3.26)
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where xk and hθ(z1, 1)k, for k ∈ {1, . . . ,K}, are the elements of the OHE vector x and
the probability vector hθ(z1, 1), respectively. Equation (3.26) follows directly from the
PMF of a categorical distribution, as shown in Equation (A.2) in Appendix A, because

pθ(x|z1) =
∏K
k=1(hθ(z1, 1)k)x

k
. In fact, this is identical to the (negative) cross-entropy

loss we defined for the OHE components of the decoder in TVAE, as discussed in Section
2.9. Thus, the loss function in Multinomial diffusion is

LMD
j :=

T∑
t=2

Eq(zt|x) [DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt))]

− Eq(z1|x) [log pθ(x|z1)] ,
(3.27)

where the KL divergences in Lt−1, t ∈ {2, . . . , T}, as well as the conditional log-likelihood
term in L0, are calculated as shown in Equations (3.25) and (3.26). Notice the addition of
the sub-index j in LMD

j , which explicitly highlights that Multinomial diffusion models one
categorical feature j at a time. This notation is necessary in Section 3.6, where we model
several categorical features in the same dataset simultaneously. Conclusively, we are able
to understand why Algorithm 2 can be used to train a Multinomial diffusion model; we
essentially minimize Equation (3.27) iteratively over values from a categorical feature j
from batches of inputs x ∈ D and over stochastic samples of diffusion steps, using a MC
method.

3.5 Sampling From Diffusion Models

In this section, we display algorithms for generating synthetic data from Gaussian and
Multinomial diffusion models. We require that the parameters of the models are estimated
before applying these algorithms. Sampling from a Gaussian diffusion model is shown in
Algorithm 3. This algorithm is developed with the sampling algorithm by Ho et al.
[47] as inspiration. Essentially, it generates each synthetic observation, z0, by sampling
an observation from a standard Gaussian random variable, before running the sample
iteratively through a denoising process, resembling Langevin dynamics with gθ estimating
the data density gradient [47]. Recall that the reverse process densities are defined as

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)), t ∈ {2, . . . , T}.
Furthermore, recall that, while deriving how to estimate the parameters of a Gaussian
diffusion model, we let Σθ(zt, t) := Σ̃tI, t ∈ {2, . . . , T}. Additionally, as realized from
Equation (3.19), we defined

µθ(zt, t) :=
1√
αt

(
zt −

1− αt√
1− ᾱt

gθ(zt, t)

)
, t ∈ {2, . . . , T}.

Thus, the denoising process simply consists of a reparameterization of pθ(zt−1|zt) for
t ∈ {T, . . . , 2}, with the predictions µθ(zt, t) and Σθ(zt, t) defined as above at each step
in the loop. Finally, when t = 1 we do not apply reparameterization, because µθ(z1, 1) =

1√
1−β1

(
z1 −

√
β1gθ(z1, 1)

)
predicts the mean of pθ(x|z1), which is the mode, i.e. the point

of largest probability density, in the Gaussian, no matter the variance Σθ(z1, 1) = aI.
Similarly, sampling from a Multinomial diffusion model is shown in Algorithm 4. We

develop this algorithm analogously to Algorithm 3, hoping to show how similar the sam-
pling procedures are. The idea is similar; the sampling process starts by sampling a
realization zT from ZT ∼ p(zT ), which in this case is a categorical distribution with equal
probability of sampling each of the K categories. Then, the sample is iteratively modified
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Algorithm 3 Sampling from a Gaussian Diffusion Model

1: Assume T and βt, t ∈ {1, . . . , T}, set a priori.
2: Assume gθ has been trained.
3: zT ← one sample from Z ∼ N (0, I).
4: for t ∈ {T, . . . , 1} do
5: if t > 1 then
6: ε← one sample from E ∼ N (0, I).
7: else
8: ε← 0. ▷ Don’t add noise to last forward posterior.
9: end if

10: zt−1 ← 1√
αt

(
zt − 1−αt√

1−ᾱt
gθ(zt, t)

)
+ Σ̃tε.

11: end for
12: return z0

Algorithm 4 Sampling from a Multinomial Diffusion Model

1: Assume T and βt, t ∈ {1, . . . , T}, set a priori.
2: Assume hθ has been trained for a selected categorical feature.
3: K ← number of levels in categorical feature.
4: zT ← one sample from Z ∼ CategoricalOHE

(
1
K1
)
.

5: for t ∈ {T, . . . , 1} do
6: ẑ ← hθ(zt, t).
7: zt−1 ← one sample from Z ∼ CategoricalOHE (Λpost(zt, ẑ)).
8: end for
9: return z0 ▷ Returns one-hot encoded vector.

through a denoising process. In each iteration, we predict a probability parameter and
use it to sample from a categorical distribution to get the new, slightly denoised synthetic
sample. Finally, after T iterations, the result is a OHE vector representing a synthetic
sample from a pre-selected categorical feature in the dataset D, on which we can, for
example, apply an arg max- or softmax-operation to find the most likely category. Notice
that Algorithm 4 only produces samples from the same categorical feature in the dataset
that the Multinomial diffusion model was originally trained on.

Keep in mind that we usually sample some larger positive number of synthetic data
points, ν ∈ R, in parallel, and not only one, as shown in Algorithms 3 and 4. We only
discuss one sample at a time in the algorithms, for simplicity, since discussions concerning
how or if computations may be optimized or parallelized are outside our scope.

3.6 Tabular Diffusion

Finally, in this section we develop Tabular diffusion, a probabilistic diffusion-based model
for tabular data. This is done by combining the previously discussed Gaussian and Multi-
nomial diffusion models in a relatively simple way. In fact, this idea was recently imple-
mented by Kotelnikov et al. [67], introducing a model called TabDDPM. The authors
evaluate their model on a set of benchmarks, against other deep generative models from
the literature, specifically TVAE and two GAN-variants. In addition, they use a simple
interpolation technique called SMOTE [12] as a benchmark. However, two drawbacks of
this paper come to mind. First, they do not evaluate their model against more “classical”
ML algorithms. We design experiments involving such a model, specifically a decision tree-
based model, in Chapter 5, using it as a baseline against Tabular diffusion. Second, they
develop their model rather hastily — they skip details on several of its key constituents.



66 3 Diffusion Models

One of our contributions to the literature is thus to extend the background material and
theoretical development of the model. Most of the previous material in this thesis creates
the backbone for this objective. We dissect their paper and add detailed reasoning behind
each specific choice, the way we understand it. Finally, we make some additions where we
find it appropriate.

Recall the notation we developed in Section 2.9; we assume a tabular dataset D,
which contains observations x = {(xcont)T , xcat1 , . . . , xcatC}. Each observation consists of
values from N continuous features, comprising xcont ∈ RN×1 and C categorical features,
xcatj , j ∈ {1, . . . , C}, with Kj possible levels each. Keeping the two previously introduced
variants of diffusion models in mind, a Gaussian diffusion model can plausibly model the
continuous features, but not the categorical features. Similarly, each categorical feature
can be modelled by Multinomial diffusion, but the continuous features cannot truthfully be
modelled using categorical distributions. Thus, the question is if it is possible to combine
the two models into one? In certain ways, this is what Tabular diffusion does. In the
following, we explain how Tabular diffusion can be used to model X := {X1, . . . , Xp, Y } ∼
p∗(x), where we focus on an arbitrary instance x ∈ D for instructional purposes.

Forward process. First of all, we define a Gaussian diffusion process for the con-
tinuous features Xcont ∈ RN×1. This process destroys the information in the continuous
feature values slowly until reaching approximate standard Gaussian noise, as we have seen
previously. Then, we define a separate Multinomial diffusion process for each categorical
feature Xcatj , since we have seen that only one categorical feature can be modelled at once.
Each distinct process destroys the information in each separate set of categorical feature
values gradually until reaching approximate uniform probabilities for each category. Thus,
in total, Tabular diffusion consists of C + 1 forward processes. Our objective is to reverse
all these forward processes.

Reverse process. Actually, the reverse process in Tabular diffusion is constructed
similarly to in previously studied models. Let fθ denote a ML model, typically a neural
network, that contains all the learnable parameters in Tabular diffusion. The objective is
to train this model to predict the Gaussian noise added to xcont, as well as the probability
parameters for xcatj , j ∈ {1, . . . , C}, from each diffusion step t and corresponding diffused
observation zt, for t ∈ {1, . . . , T}.

Mathematical formulation. More precisely, let the hierarchical latent variables,
{Z1, . . . ,ZT }, consist of continuous and categorical components, i.e. each realization is
represented by zt = {(zcontt )T , zcat1t , . . . ,zcatCt }, such that they have the same structure
and dimensionality as X. We assume that the categorical realizations, xcatj , are trans-
formed to OHE vectors, xcatj ∈ RKj×1, for j ∈ {1, . . . , C}, before diffusion is performed.

Hence, every categorical latent variable component, Z
catj
t , t ∈ {1, . . . , T}, is also repre-

sented as a vector in RKj×1, for j ∈ {1, . . . , C}. Then, the forward process is given by

q(z1, . . . ,zT |x) = q(z1|x)

T∏
t=2

q(zt|zt−1),

q(zcont1 |xcont) = N (zcont1 ;
√

1− β1xcont, β1I),

q(z
catj
1 |xcatj ) = CategoricalOHE

(
z
catj
1 ; (1− β1)xcatj +

β1
Kj

1

)
, j ∈ {1, . . . , C},

q(zcontt |zcontt−1 ) = N (zcontt ;
√

1− βtzcontt−1 , βtI),

q(z
catj
t |zcatjt−1 ) = CategoricalOHE

(
z
catj
t ; (1− βt)zcatjt−1 +

βt
Kj

1

)
, j ∈ {1, . . . , C}.

Furthermore, the reverse process is given by
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pθ(x, z1, . . . ,zT ) = p(zT )
T∏
t=2

pθ(zt−1|zt)pθ(x|z1),

p(zcontT ) = N (zcontT ;0, I),

p(z
catj
T ) = CategoricalOHE

(
z
catj
T ;

1

Kj
1

)
, j ∈ {1, . . . , C},

pθ(zcontt−1 |zcontt ) = N (zcontt−1 ;µθ(zcontt , t), Σ̃tI),

pθ(z
catj
t−1 |z

catj
t ) = CategoricalOHE

(
z
catj
t−1 ;Λpost(z

catj
t ,h

catj
θ (z

catj
t , t))

)
, j ∈ {1, . . . , C},

pθ(xcont|zcont1 ) = N (xcont;µθ(zcont1 , 1), aI), a ∈ R,

pθ(xcatj |zcatj1 ) = CategoricalOHE

(
xcatj ;h

catj
θ (z

catj
1 , 1)

)
, j ∈ {1, . . . , C},

where Σ̃t is given in Equation (3.13) and a ∈ R is arbitrary. Moreover, µθ is given by

µθ(zcontt , t) =
1√
αt

(
zcontt − 1− αt√

1− ᾱt
gθ(zcontt , t)

)
, t ∈ {1, . . . , T},

as established in Section 3.3, and Λpost is given by

Λpost(z
catj
t ,xcatj ) =

λ

∥λ∥1
, t ∈ {2, . . . , T},

λ =

[
αtz

catj
t +

1− αt
Kj

1

]
⊙
[
ᾱt−1x

catj +
(1− ᾱt−1)

Kj
1

]
,

as established in Section 3.4. Notice that we introduce the functions gθ and hθ in the
equations above. This is done in order to explicitly highlight that different elements of
the output of the model fθ are used in each of the reverse process densities, depending
on if they pertain to the continuous or the categorical features. In the following, for
simplicity, we assume that fθ is a neural network. In this context, gθ represents the
first N nodes in the output layer of fθ, which is trained to predict a realization, ε,
of E ∼ N (0, I) in zcontt =

√
ᾱtx

cont +
√

1− ᾱtε at any diffusion step t ∈ {1, . . . , T}.
Additionally, hθ = {hcat1θ , . . . ,hcatCθ } represents the rest of the

∑C
j=1Kj nodes in the

output layer of fθ. Each component, h
catj
θ , is trained to predict the probability parameter

of xcatj by applying a softmax function to the corresponding Kj output nodes in fθ. Thus,
a prediction can be split between the two functions like

fθ(zt, t) = gθ(zcontt , t) + hcat1θ (zcat1t , t) + · · ·+ hcatCθ (zcatCt , t), t ∈ {1, . . . , T}.

Finally, the loss function that is used in Tabular diffusion is a relatively simple sum,

LTD := LGDsimple +
1

C

C∑
j=1

LMD
j ,

where we weight the sum of the multinomial losses by the reciprocal of the number of
categorical features, in order to balance the two terms of the total loss, LTD [67]. To
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complete this chapter, Algorithms 5 and 6 show how to train, and sample from, a Tabular
diffusion model, respectively.

Training algorithm. The forward process in Algorithm 5 is performed in steps 4
through 22, including extra data-processing steps in between. Then, the reverse pro-
cess is performed in steps 23 through 33, including calculation of the total loss, LTD,
where the parameters of fθ are adjusted. The adjustments are performed with back-
propagation and a stochastic gradient descent method. We stress that, in theory, the
neural network should be able to learn the parameters in the reverse process densities of
all the features at the same time, where the first N output nodes are taught to predict
the noise, whose predictions are represented by gθ(zcontt , t), and the rest of the output
nodes learn to predict the probability parameters, whose predictions are represented by
h
catj
θ (z

catj
t , t), j ∈ {1, . . . , C}. Notice that the predictions h

catj
θ (z

catj
t , t) from step 21 are

used when calculating the losses in the if-else statement in steps 25 through 29, though
not included explicitly to avoid excess clutter. Finally, note that in Sections 3.4 and 3.5,
we assumed that a softmax activation function was applied directly in the output layer of
hθ, whereas here we need to apply it explicitly to hθ after making the prediction, since we
manually arrange the output nodes in fθ depending on the features they are applied to.
This is one way of solving this problem, but we specify this difference explicitly to avoid
confusion between Algorithms 2 and 5.

Sampling algorithm. Sampling from a previously trained Tabular diffusion model
can be performed according to Algorithm 6. In this case, similar comments to the ones
added in Section 3.5 can be made. In general, we start generation by sampling from Z ∼
p(zT ). For the continuous features this amounts to sampling from a standard Gaussian
and for each categorical feature j it amounts to sampling from a categorical distribution
with equal probability of sampling each of the Kj categories. Then, these samples are run
iteratively through the decoding process. In each step t ∈ {T, . . . , 1}, we first concatenate
the samples into one single vector zt. Then, we make a prediction based on zt and t from
the estimated fθ, and split the prediction into its corresponding continuous and categorical
parts, before modifying the corresponding parts as derived in this chapter. In the end,
after T iterations, we return a concatenation of zcont0 and z

catj
0 , j ∈ {1, . . . , C}, which can

then be further processed. Finally, we reiterate that training is usually done on batches
of observations from D and we usually sample more than one observation at once.
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Algorithm 5 Training a Tabular Diffusion Model

1: Assume T and βt, t ∈ {1, . . . , T}, set a priori.
2: Assume Kj , j ∈ {1, . . . , C}, known.
3: while not converged do
4: x← one sample from D (equivalently from X ∼ p∗(x)).
5: xcont ← select N elements in x corresponding to the continuous features.
6: for j ∈ {1, . . . , C} do
7: xcatj ← select Kj elements in x corresponding to categorical feature j.
8: xcatj ← one-hot encode xcatj .
9: end for

10: t← one sample from T ∼ Uniform[1, T ].
11: ε← one sample from E ∼ N (0, I).
12: zcontt ←

√
ᾱtx

cont +
√

1− ᾱtε.
13: for j ∈ {1, . . . , C} do
14: z

catj
t ← one sample from Z ∼ CategoricalOHE

(
ᾱtx

catj + 1−ᾱt
Kj

1

)
.

15: end for
16: zt ← {(zcontt )T , zcat1t , . . . ,zcatCt }.
17: Calculate prediction fθ(zt, t).
18: gθ(zcontt , t)← select first N components of fθ(zt, t).
19: for j ∈ {1, . . . , C} do
20: h

catj
θ (z

catj
t , t) ← select each successive, consecutive set of Kj values

remaining in fθ(zt, t) after the first N .

21: h
catj
θ (z

catj
t , t)← σsoft(h

catj
θ (z

catj
t , t)).

22: end for
23: LGDsimple ← ∥ε− gθ(zcontt , t)∥22.
24: for j ∈ {1, . . . , C} do
25: if t = 1 then
26: LMD

j ← log pθ(xcatj |zcatj1 ).
27: else
28: LMD

j ← DKL(q(z
catj
t−1 |z

catj
t ,xcatj ) ∥ pθ(z

catj
t−1 |z

catj
t )).

29: end if
30: end for
31: LTD ← LGDsimple + 1

C

∑C
j=1 L

MD
j

32: Calculate ∇θL
TD via backpropagation.

33: Take gradient descent step.
34: end while
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Algorithm 6 Sampling from a Tabular Diffusion Model

1: Assume T and βt, t ∈ {1, . . . , T}, set a priori.
2: Assume fθ has been trained.
3: Assume Kj , j ∈ {1, . . . , C}, known.
4: zcontT ← one sample from Z ∼ N (0, I).
5: for j ∈ {1, . . . , C} do
6: z

catj
T ← one sample from Z ∼ CategoricalOHE

(
1
Kj
1

)
.

7: end for
8: for t ∈ {T, . . . , 1} do
9: zt ← {(zcontt )T , zcat1t , . . . ,zcatCt }.

10: Calculate prediction fθ(zt, t).
11: gθ(zcontt , t)← select first N components of fθ(zt, t).
12: for j ∈ {1, . . . , C} do
13: h

catj
θ (z

catj
t , t) ← select each successive, consecutive set of Kj values

remaining in fθ(zt, t) after the first N .

14: h
catj
θ (z

catj
t , t)← σsoft(h

catj
θ (z

catj
t , t)).

15: end for
16: if t > 1 then
17: ε← one sample from E ∼ N (0, I).
18: else
19: ε← 0.
20: end if
21: zcontt−1 ← 1√

αt

(
zcontt − 1−αt√

1−ᾱt
gθ(zcontt , t)

)
+ Σ̃tε.

22: for j ∈ {1, . . . , C} do
23: ẑcatj ← h

catj
θ (z

catj
t , t).

24: z
catj
t−1 ← one sample from Z ∼ CategoricalOHE

(
Λpost(zt, ẑ

catj )
)
.

25: end for
26: end for
27: return z0 = {(zcont0 )T , zcat10 , . . . ,zcatC0 }.



Chapter 4

Generating Counterfactuals

This chapter is devoted to discussing one particular strategy for generating counterfactual
explanations. In general, recall from Section 2.3.1 that we group the techniques for calcu-
lating counterfactuals into two main groups; algorithmic-based methods and on-manifold
methods. In this thesis, we focus on the latter approach. More specifically, we take inspira-
tion from one particular recently introduced method from this paradigm, which facilitates
modifications with generative models.

The chapter is structured as follows. Section 4.1 is devoted to explaining a novel on-
manifold method for generating counterfactuals called MCCE: Monte Carlo Sampling of
Realistic Counterfactual Explanations, introduced by Redelmeier et al. [107]. We note
that this section is a largely rewritten version of a chapter contained in the author’s
specialization project [93]. Then, Section 4.2 outlines a modification of this method,
where we introduce a different generative model, more specifically Tabular diffusion, as
discussed in the previous chapter. Notice that we investigated a modification of MCCE in
our project [93] as well, where we relied on a simple VAE as a generative model, but we
have chosen not to address this specific variant here. However, as is explained in Chapter
5, we use a modification based on TVAE, as outlined in Section 2.9, as a baseline in our
experiments.

4.1 MCCE

The main innovation in Redelmeier et al. [107] is two-fold. First, a simple process consist-
ing of three independent steps is introduced, making the method highly modular. Second,
MCCE relies on decision trees to model the underlying data distribution, which alleviates
some of the disadvantages of other on-manifold methods. MCCE guarantees generation of
actionable counterfactuals, which is one of the main reasons why the authors claim it is an
improvement over competing methods, like, e.g., CRUDS [24], REVISE [58] or C-CHVAE
[100]. Additionally, the method handles categorical features with more than two levels
and is not restricted to explaining certain types of models.

Succinctly put, MCCE consists of three independent steps:

1. Distribution modelling : The underlying data distribution of the mutable features
given the fixed features is modelled.

2. Generation: A large set of random samples is generated from the model in step 1.

3. Post-processing : Samples that do not obey the counterfactual criteria are removed
from the set of samples in step 2.

In the following, we dive deeper into each of these steps.
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Distribution Modelling

As stated, the authors make use of decision trees to model the underlying data distribution.
However, recall from Section 2.5 that decision trees are common examples of discrimina-
tive models, which generally do not model the joint distribution of X := {X1, . . . , Xp},
represented by the density p∗(x). Despite this, the authors model the joint distribution
indirectly, by combining discriminative models, particularly decision trees, in a specific
way. The chain rule for random variables, as stated in Equation (3.2), is a crucial part of
this technique.

Assume a dataset D = {x1, . . . ,xn}, where each observation is a realization of X ∼
p∗(x). Recall the actionability constraint for counterfactuals; the immutable feature values
in the input instances should be preserved in their corresponding counterfactual explana-
tions. To quantify this, we assume that the random variables are split into two groups.
Let X = Xm ∪Xf , such that Xm ∩Xf = ∅, where

Xf := {X1
f , . . . , X

u
f },

and

Xm := {X1
m, . . . , X

q
m},

denote fixed features and mutable features, respectively. Notice that p = u + q, where
u denotes the number of fixed features and q denotes the number of mutable features.
Since the fixed features are immutable, Redelmeier et al. [107] chose to model the un-
derlying joint distribution of the q mutable features conditional to the u fixed features, a
distribution that can be represented by the density p∗(xm|xf ). The chain rule for random
variables lets us rewrite the density as

p∗(xm|xf ) = p∗(x1m, . . . , x
q
m|xf )

= p∗(x1m|xf )

q∏
j=2

p∗(xjm|xf , x1m, . . . , xj−1
m ).

In practice, the factorization into a product of conditional distributions enables modelling
one dependent variable at a time, which is typically a much easier problem to solve com-
pared to modelling multivariate distributions directly [107]. Notice the analogy to the
generative processes we discussed in Section 2.8 and Chapter 3; we imagine a similar
generative process in this case, where, instead of latent variables, we condition on fixed
features, as well as previously modelled mutable features, in each step. However, it is
important to notice that p∗(x) is not modelled in MCCE, in contrast to the previously
discussed generative models, precisely because of the actionability constraint. Despite
this, note that the underlying joint distribution of all the features can be calculated by
using the property p∗(x) = p∗(xm|xf )p∗(xf ), where the underlying joint distribution of
the fixed features is modelled separately. This is something we further explore in Chapter
5.

Specifically, each of the conditional distributions is learnt by a decision tree in MCCE.
To clarify, let Tj , j ∈ {1, . . . , q}, denote a set of decision trees that are trained to model
p∗(xm|xf ). The trees are fitted like
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T1 : x1
m ∼ (x1

f , . . . ,x
u
f ),

T2 : x2
m ∼ (x1

f , . . . ,x
u
f ,x

1
m),

T3 : x3
m ∼ (x1

f , . . . ,x
u
f ,x

1
m,x

2
m),

...

Tq : xqm ∼ (x1
f , . . . ,x

u
f ,x

1
m,x

2
m,x

3
m, . . . ,x

q−1
m ),

(4.1)

where xji , i ∈ {m, f}, j ∈ {1, . . . ,max (q, u)}, denotes a vector of all the values in a
specific column in the training data. Thus, we stress that the trees are fitted with all
available observations at training time, like any other supervised learning algorithm. In
addition, the abuse of notation a ∼ (b, c), inspired by notation in Redelmeier et al. [107],
symbolizes that a tree is fitted to the response values a based on feature values b and
c. We reiterate that this process is a concrete example of how a discriminative model
can be used to construct a generative model; each of the trees are discriminative models,
for either classification or regression, which are combined to model a joint distribution
represented by the density p∗(xm|xf ).

Before moving on, as mentioned in Section 2.5, there exists several different algorithms
for fitting decision trees. Redelmeier et al. [107] chose CART for calculating the trees,
based on a specific set of beneficial characteristics of this algorithm. Essentially, they
chose CART over other non-parametric models because “CART is consistent and allows
for high dimensionality” [107]. Moreover, the authors refer to Drechsler and Reiter [25],
and Reiter [108], which are instances where CART has performed well on generative tasks.

Generation

Once the parameters have been estimated, the generation step is relatively simple. A
large number, K, of data points is sampled from the tree-based model that represents the
density p∗(xm|xf ), for each relevant set of fixed feature values. These sets of fixed feature
values are based on the instances we want to calculate explanations for. This is formalized
later. Given that the tree-model is able to approximate the underlying data distribution
in a truthful manner, the likelihood of the empirical distribution of the mutable features
given the fixed features, represented by p(xm|xf ), in the training data, should be large. K
should be large in order to ensure that successful counterfactuals are produced after the
post-processing step. The authors do not define exactly how large K should be, but we
believe it should follow a heuristic along the lines of “the larger the better, while taking
available computing resources and time into account”.

Specifically, generation of synthetic samples is done by sampling recursively from the
trees in order of increasing number of conditional features. Suppose q decision trees have
been fitted, as illustrated in Equation (4.1). LetH be a set of observations with undesirable
predictions. Recall that we restrict our discussion to binary classification, meaning that
an undesirable prediction is a prediction with binary indicator 0. As is common in parts of
the literature, we refer to H as a set of factuals. Furthermore, let Dh ∈ RK×p denote a set
of generated observations for each h ∈ H. Precisely, recall that p = u+ q, since we leave
the response variable, Y , out of the modelling in step 1 when constructing explanations
for prediction models. Circling back to Example 2.3.2, H would be the set of all clients
getting their mortgage solicitation rejected, h ∈ H would be a specific client vector among
these (e.g., the one that was highlighted) and Dh would be a generated set of K synthetic
customer vectors, with fixed feature values identical to the ones in h and mutable feature
values “close” to the ones in h. Notice that this “closeness” is what the post-processing
deals with ensuring.
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Algorithm 7 outlines the procedure for producing Dh for one h ∈ H [107]. The idea
is to first define the matrix Dh with K copies of the factual h, in such a way that the
fixed feature columns are placed to the left of the mutable feature columns. This is the
reason why the first step in Algorithm 7 explicitly states that Dh should be a matrix of
dimension K× (u+ q), instead of simply writing K× p. This structure is necessary in our
version of the algorithm, in order for the indexing in the rest of the algorithm to make
sense. Then, we proceed from row i = 1 to i = K through one mutable feature column
j ∈ {1, . . . , q}, at a time, overwriting each cell iteratively. Precisely, each cell is filled by
first finding the leaf node of tree Tj based on input data consisting of the fixed feature
values and the previously filled values in Dh from trees Tj−1, . . . , T1, for j ≥ 2. Thus, the
inputs to each tree are simply all the values in the preceding columns, in the same row i.
Then, after finding the leaf node, each cell is filled by sampling from the set of response
values of the training observations classified to the leaf node. Tying this back to Section
2.5, this is an example where the conditional density in each leaf node is roughly estimated
by random sampling from the set of training response values belonging to the node. For
extra clarity, notice that indexing is assumed to start at 1 in Algorithm 7, whereas many
programming languages have a starting index of 0.

Algorithm 7 Generation (Step 2) in MCCE per h ∈ H
1: Dh ← matrix(K × (u+ q)) ▷ each row is a copy of the factual h.
2: for 1 ≤ j ≤ q do
3: for 1 ≤ i ≤ K do
4: Find leaf node of tree Tj based on vector Dh[i, 1 : (u+ j − 1)].
5: Dh[i, u+ j]← one sample from the set of response values
6: of the training observations
7: belonging to the leaf node.
8: end for
9: end for

10: return Dh

Post-processing

The post-processing step is important for ensuring that the generated samples in Dh fulfill
the criteria of counterfactuals ∀h ∈ H. In this final step of MCCE, rows that do not obey
the criteria from Section 2.3.1 are removed from each Dh, such that the remaining rows
can be used as counterfactuals. The procedure varies slightly depending on if we want
to generate several, or only one, counterfactual(s) per factual. Notice that criteria 1 (on-
manifold) and 2 (actionable) are automatically fulfilled following the first step of MCCE,
since “the observations come from an approximation to the data distribution conditioned
on the fixed features” [107]. Thus, for the first criterion we simply assume that the
generative model is able to truthfully model the true underlying data distribution, an
assumption that is challenged in the experiments outlined in Chapter 5. In order to fulfill
criterion 3 (valid), rows of Dh which do not yield a desirable prediction, which necessarily
is different from the prediction on h, are removed. In binary classification, this means
that the rows i of Dh where f(Dh[i, ]) < c, are removed, where f(·) is a binary classifier
and c is a discrimination threshold at which binary indicator 0 is split from 1. Tying
this to Example 2.3.2, every row in Dh that does not yield a granted mortgage prediction
is removed. Thus, after this filtering, we have ensured that the remaining rows in Dh

have the same fixed feature values as the factual, but with a positive predicted outcome.
Criterion 4 (low cost) relates to the previously mentioned “closeness” between h and the
generated observations in Dh. This is also where we decide if we want to produce one
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or more counterfactuals per h. The authors of MCCE chose to calculate the quantities
sparsity and Gower distance between h and each remaining row of Dh. These are used
as tools to satisfy criterion 4. The sparsity of row d of Dh is simply equal to the number
of feature values that are different in d and h. Furthermore, the Gower distance between
factual h = {h1, . . . , hp} and row d = {d1, . . . , dp} of Dh is defined as

G(h,d) :=
1

p

p∑
j=1

δG(hj , dj) ∈ [0, 1],

where

δG(hj , dj) :=

{
1
Rj
|hj − dj | if hj is continuous,

1hj ̸=dj if hj is categorical,

where 1hj ̸=dj is the indicator function,

1x̸=y :=

{
1 if x ̸= y,

0 otherwise,

and Rj normalizes the jth continuous feature values such that they lie between 0 and
1. The value Rj , for any column j pertaining to a continuous feature, is not explicitly
defined by Redelmeier et al. [107]. However, the pre-processing steps the authors follow
in their open source implementation1 indicate that they use the empirical range of each
continuous feature in the entire dataset D. Precisely, Rj = |maxxj −minxj |, where xj

denotes a vector of all values in continuous feature column j in the entire dataset. In
this manner, the distance in G(·, ·) between two values indexed by continuous feature j is
constrained to [0, 1]. Again, an important assumption is that the distribution of the data
is well-modelled in step 1 in MCCE, such that the distance |hj − dj | does not exceed Rj
for any continuous feature j.

If we choose to return only one counterfactual per h ∈ H, the process for ensuring
fulfilment of criterion 4 has two steps. First, the minimum sparsity across the rows in Dh

is calculated, and the rows with larger sparsity than this minimum value are removed.
Next, the row with the smallest Gower distance to h among the remaining rows is the
final counterfactual for h.

If we instead choose to return a set of counterfactuals per h ∈ H, the process for
ensuring fulfilment of criterion 4 is slightly different. One suggestion by Redelmeier et
al. [107] is to set upper bounds for sparsity and Gower distance across the rows in Dh,
and remove rows with values exceeding these bounds. Another suggestion is to return a
set of counterfactuals which are not close to each other. In this way, the recipient of the
counterfactuals gets a certain variety in the explanations, which might be reasonable in
some domains. The final suggestion they mention is to return the “Pareto Front of valid
samples in Dh” [107], which we do not discuss further.

4.2 Diff-MCCE

In this section, we propose an alteration of MCCE. As previously covered, the first two
steps of the three-step MCCE algorithm are solved using conditional probability modelling
in combination with decision trees [107]. The three-step procedure is especially attractive
due to its high degree of modularity, in particular between the two first steps and the
third step. We propose a modification where Tabular diffusion, as developed in Chapter

1The open source implementation of MCCE can be found at https://github.com/NorskRegnesentr
al/mccepy. Note that we modify this implementation to fit our needs, as explained in Chapter 5.

https://github.com/NorskRegnesentral/mccepy
https://github.com/NorskRegnesentral/mccepy
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3, is used for distribution modelling and generation. As a consequence, some slight, but
necessary, modifications are introduced in the post-processing step, but the main ideas
from MCCE remain unchanged. For simplicity, we call this modification Diff-MCCE. In
the following, we discuss each of the steps this modification consists of.

Distribution Modelling

First of all, we use Tabular diffusion to estimate the joint distribution of X := {X1, . . . , Xp} ∼
p∗(x) directly. As in Section 4.1, we do not model Y alongside the rest of the features
in the dataset, because it is not necessary when constructing explanations for prediction
models with the three-step method. In particular, in reference to the notation from Sec-
tions 2.9 and 3.6, p = N + C. In contrast to MCCE, we cannot model any conditional
distribution, like the one represented by the density p∗(xm|xf ), because our relatively
simple Tabular diffusion model is not capable of modelling such a complex distribution
in general. This means that the concept of fixed and mutable features is irrelevant in
the first two steps of Diff-MCCE. Note that Tabular diffusion can be extended to allow
for conditional modelling. For example, such conditioning may be implemented using a
technique called guidance, in the form of classifier guidance [20] or classifier-free guidance
[48]. Unfortunately, because of lack of time, we have not discussed this in detail, meaning
that such an addition is left as further work.

Generation

Once the diffusion model is fitted, sampling is done following Algorithm 6. Recall from
the previous section that we sample K realizations from the model of the conditional
distribution, represented by p∗(xm|xf ), for each factual in H. Thus, the total number of
generated points are K · |H|, where |H| represents the number of factuals in H. Hence, in
order to stay consistent with the method from Section 4.1, we sample a total of K · |H|
synthetic data points from the trained Tabular diffusion model, using Algorithm 6. In
practice, this can done with relative ease, because of efficient implementations of linear
algebraic computations with matrices and tensors.

Post-processing

After generating data from the estimated underlying distribution, post-processing is per-
formed. In Diff-MCCE, the post-processing is slightly more involved, because actionability
is not inherently fulfilled after non-conditional sampling. First of all, the on-manifold crite-
rion should be satisfied. Of course, we cannot be certain that our fitted Tabular diffusion
model has modelled the underlying data distribution truthfully. As a consequence, we
cannot be certain that samples from the model are samples from p∗(x). However, if the
likelihood of our data under the model is large, we assume that the approximation of
p∗(x) is good. Within this statement is a discussion about exactly what a large likelihood
really is, but we skip those details. Thus, just as in MCCE, we simply assume that the
trained generative model is able to truthfully model the underlying data distribution, an
assumption that we challenge in the experiments outlined in Chapter 5. Next, we need
to satisfy criterion 2 (actionable) of the counterfactuals. This is not very demanding —
we simply remove every observation in Dh which does not have the same fixed covariate
values as h. Finally, criteria 3 (valid) and 4 (low cost) are satisfied by following the same
procedure as in Section 4.1.

Thus, we have seen how easily MCCE can be modified to include any other generative
model. In the next chapter, we design some experiments to evaluate these models in
practice.



Chapter 5

Experiments

In this chapter, we design an evaluation procedure for Diff-MCCE. This facilitates exten-
sive evaluation of the method, which is one of our main contributions. In order to provide
a detailed account of its strengths and weaknesses, we construct two different experiments.
The first experiment is devoted to assessing the first two steps; population modelling and
generation of synthetic data. These two steps have to be evaluated in conjunction, as it
is difficult to get an impression of the correctness of the approximated underlying distri-
bution without sampling data from it. Succinctly stated, in this experiment we compare
the performance of Diff-MCCE with respect to these two steps to the performance of two
carefully selected baselines. The first baseline is the tree-based model used in MCCE, as
outlined in Section 4.1. The second baseline is TVAE, as discussed in Section 2.9. To the
best of our knowledge, this is the leading VAE-based deep generative model for tabular
data, with open source code. Results from the first experiment are evaluated in Chapter
6. Subsequently, the second experiment is devoted to investigating the capabilities of Diff-
MCCE with regards to generating counterfactuals, which is our main interest. Thus, this
experiment evaluates the entire three-step process simultaneously. In order to gain a more
nuanced picture of Diff-MCCE’s performance, it is compared to its counterpart, MCCE, as
well as another modification of MCCE where TVAE is used as generative model. Results
from this second experiment are evaluated in Chapter 7.

The chapter is organized as follows. Section 5.1 describes the datasets that we base
our experiments on. Then, Section 5.2 gives some general practical information about the
experiments. Furthermore, Section 5.3 outlines our chosen model architectures and hyper-
parameters in each of the methods we evaluate, as well as explains the data pre-processing
steps we follow. We discuss the choices we make thoroughly, including some implemen-
tation details where necessary. Finally, Sections 5.4 and 5.5 explain how evaluation of
Diff-MCCE is performed relative to the baselines in each of the experiments.

5.1 Data

In this section, we briefly describe the datasets we consider during our experiments. For
the sake of investigating the applicability of Tabular diffusion and Diff-MCCE in a variety
of scenarios, we tried to choose a diverse set of datasets. For simplicity, our starting point
was the list of datasets used by Kotelnikov et al. [67]. All these datasets are publicly
available, and most have been used in several previous research papers on tabular data
applications, which promotes easier and quicker comparison between works. From this
list, we chose three datasets of differing sizes, distributions and compositions of features,
while restricting our freedom of choice to binary classification datasets. This restriction
constrains our study, making it easier to understand and implement, while still being
extensible to more complex situations with some effort. Table 5.1 contains a list of the
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chosen datasets, describing the number of observations in our train, test and validation
sets. In addition, it contains the total number of features corresponding to each dataset,
alongside the number of continuous, numerical and categorical features among them. To
be precise, we count both integers and floats as numerical features, meaning that all the
continuous features, in addition to discrete data types that innately describe numeric
phenomena, are included in the number of numerical features. Also, recall that all non-
continuous features are counted as categorical. We note that the binary response is not
included while counting the number of categorical features. Furthermore, each dataset is
given a two-letter abbreviation, which is used to refer to them in the rest of the work.
Finally, Appendix D gives an overview of the different features in each dataset, as well as
a description of how we pre-processed the data initially. At this point we do not present
standard results from exploratory data analysis, because we take a deeper look at marginal
distributions, correlations and other metrics in the results in Chapter 6. Notice that we use

Table 5.1: List of datasets we use during the experiments. We report the number of
observations in the entire dataset after initial pre-processing, in addition to the number
of observations in each of the three datasets after stochastic splitting. The total number
of features, alongside the number of continuous, numerical and categorical features, cor-
responding to each dataset is also given, excluding the binary response.

Code Name # Total # Train # Test # Validation # Feat. # Cont. # Num. # Cat.

AD Adult Census 45222 36177 4522 4523 13 0 6 13
CH Churn Modelling 10000 8000 1000 1000 10 2 6 8
DI Diabetes 768 614 77 77 8 2 8 6

the splits {0.8, 0.1, 0.1} for training, testing and validation for all datasets, respectively.
This is a simple way of gaining a level of standardization across currently (and future)
treated datasets, for reproducibility of the results.

5.2 Experiments — General Information

In order to account for some of the inherent stochasticity and variability when applying
our models to data, we aggregate most of the results over five different trials, each initial-
ized with a different (pseudo-)random number seed. The seeds we use in each trial are
given in Table 5.2. In Chapters 6 and 7, we report results that summarize the performance
of each of the models, on the quantitative metrics described in Section 2.10, over the five
trials. Specifically, we report the mean± standard error of each given metric over the five
trials. Additionally, we produce box plots, which display a five number summary over the
five trials; minimum, first quartile, median, third quartile and maximum. More on this
later. For complete transparency, we use the term trial to encompass the entire experi-
mental pipeline of ML; loading and pre-processing the data, estimating model parameters
and testing or using the model in practice. Thus, each experiment has essentially been
performed five times in its entirety. The reason why we chose five different seeds, is that
we believe this number yields a decent trade-off between computational cost and bias of
the reported results.

Speaking of trials, the experiments are implemented in Python [140] — a popular
open source programming language which is used in many different applications. Specific
details concerning libraries, methods and hyperparameters are given when relevant in
each experiment, to ensure transparency and reproducibility. For full disclosure, all our
implementations1 are publicly available.

1The source code for our models and experiments is available at https://github.com/alexaoh/tabul
ar-diffusion-for-counterfactuals

https://github.com/alexaoh/tabular-diffusion-for-counterfactuals
https://github.com/alexaoh/tabular-diffusion-for-counterfactuals
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Table 5.2: Five different (pseudo-)random number seeds used for different trials.

Seed

#1 1234
#2 4500
#3 2018
#4 1999
#5 2023

Before moving on, we comment on the use of testing and validation data while per-
forming our experiments. Recall that a supervised ML model is usually trained on a
training dataset, before it is validated and tested on two disjoint, held-out datasets. The
validation is often performed iteratively, in order to help guide the training process, while
testing is left out until the parameters are estimated. As expected, we follow this design
when training supervised models, using the splits shown in Table 5.1. However, generative
models are unsupervised models, which changes the training process slightly. Specifically,
when estimating their parameters, we do not need a held-out testing dataset for evaluation
after completion of model training. Intuitively, this is because they essentially are trained
to be able to synthesize data that closely resembles the training data, not to, for instance,
discriminate between a number of classes. Thus, we choose to concatenate the validation
and testing datasets, before using the concatenation for validation of the generative model
during parameter estimation. As a side note, we could have validated and tested each
of the trees, Ti, i ∈ {1, . . . , q}, in MCCE in a supervised manner, but we chose not to,
because discriminative performance on each of the features is of secondary importance.
Moreover, since we are interested in using MCCE as a reference for Diff-MCCE, this type
of evaluation is useless, since we cannot calculate similar metrics in the diffusion model.

Another important note is that we do not perform systematic hyperparameter tuning
in any of our experiments. Our hyperparameter choices are guided by previous results
from other authors, where possible. Specifically, we use the hyperparameter values of
the best performing models in Kotelnikov et al. [67] as a starting point for both Tabu-
lar diffusion and TVAE, for all three datasets. These values are available in their open
source implementation2. Then, we compare the achieved performance with our starting
point with a few selected sets of hyperparameter values chosen based on intuition, finally
selecting the values that seem to perform the best. Thus, we are mindful when choosing
the hyperparameter values in each model, but not highly systematic or modern in our ap-
proach. Despite our slight neglect, due to limitations in scope and research time, the value
of performing proper hyperparameter tuning should not be underestimated for optimizing
predictive performance.

5.3 Implementation Details

This section is devoted to explaining how we implement Tabular diffusion and the base-
line models in practice, including necessary pre-processing steps on input data and hy-
perparameter choices. Keep in mind that, our initial interest lies in investigating the
performance of Tabular diffusion on modelling, and generating synthetic realizations of,
(X, Y ) := {X1, . . . , Xp, Y } ∼ p∗(x, y). Ultimately, this is interesting because we hypothe-
size that it is crucial for the counterfactual generating capabilities within the framework of
Diff-MCCE. For instance, if the generative model is not capable of truthfully modelling the

2https://github.com/rotot0/tab-ddpm

https://github.com/rotot0/tab-ddpm
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underlying data distribution, and sampling from it, the quality of counterfactuals would
likely suffer.

5.3.1 Data Pre-processing

The first step of any data analysis is data pre-processing. To what extent a dataset
needs pre-processing is highly dependent on the data itself, alongside the statistical or
ML model in question, but pre-processing is usually accepted as an integral part of any
ML workflow. For instance, in Tabular diffusion and TVAE, we use neural networks as
function approximators, which introduces certain requirements on the input data format.
Most importantly, neural networks cannot inherently process categorical features when
they are represented as strings. In addition, without going into detail, training data for
fitting neural networks should be scaled in certain ways to increase convergence rate and
performance. For instance, MLPs converge faster in practice if their numerical inputs are
standardized, i.e. transformed to approximately zero means and unit variances [71].

In the following, we discuss how we pre-process the numerical and non-numerical
feature values. The reason why we distinguish between numerical and non-numerical in
this case, instead of continuous and categorical, is that, in practice, we treat all floats
and integers as continuous, and all non-numerical data types as categorical. This is a
rather common assumption to make, for simplicity, especially when the integer random
variables represent phenomena with large numbers of possible outcomes. Intuitively, the
larger the number of possible discrete outcomes, the closer an integer feature is to behave
like a continuous random variable. In fact, we observe in Appendix D that the majority
of the integer features corresponding to the data we want to model contain relatively
large sets of possible outcomes. Another consequence of large discrete sample spaces
is that the standard treatment of categorical features, i.e. one-hot encoding, becomes
computationally troublesome. The practical implications, implementation-wise, of our
assumptions are quite simple; any time we, for instance, fit a generative model to a
tabular dataset or construct a supervised classifier, all non-continuous numerical features
are treated as if they were continuous, alongside the continuous features, whereas the rest
of the categorical features are treated as expected. Note that the basic pre-processing
mentioned in Appendix D is performed before the pre-processing we discuss here.

Non-numerical features. As considered several times already, we simply one-hot
encode (OHE) the non-numerical feature values in the data, representing them as numer-
ical vectors that can be used as input to neural networks. To be specific, the OHE scheme
we use throughout the thesis does not yield full-rank design matrices, like those we usually
strive for in some standard statistical methods. For example, in linear regression, the de-
sign matrix is invertible only if the matrix is full rank, i.e. all row- and column-vectors are
linearly independent. This property is necessary for calculating the closed form solution of
the parameters in linear regression. Full rank is often accomplished by dropping one of the
vectors in the OHE, for example in dummy coding, where one category is set as a reference
level. However, in methods where we use approximate solvers, like neural networks, we
do not care about linear dependence between OHE columns in the data matrix. Thus, we
follow the convention in the ML literature of working with rank-deficient data matrices.

A method to OHE any feature is not difficult to implement manually. However,
since there are open source options for performing this transformation, we use code
that many researchers and practitioners have used before us. More specifically, we use
the OneHotEncoder method from Scikit-learn’s [101] pre-processing module on the non-
numerical feature values in each of our datasets. Precisely, we OHE the non-numerical
feature values in the entire dataset, before splitting. Exactly this order of operations
should be followed to ensure that all the different categories in each of the columns are
represented in the OHE dataset.
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Numerical features. The numerical feature values in the training data are trans-
formed with a Gaussian Quantile transformer, when used to train Tabular diffusion and
MCCE. We do not apply this transformation to the numerical feature values in the train-
ing data for TVAE, due to the introduction of the specialized mode-specific normalization
scheme. The Gaussian Quantile transformer implements a non-linear transformation that
uses quantile information in the dataset to put all feature values into a desired distri-
bution. Here, our target distribution is a standard Gaussian. We argue that this is a
good choice for two reasons. First, because the continuous features in Tabular diffusion
are assumed to follow a Gaussian. Second, we aim at mapping to a standard Gaussian
to improve convergence in MLP training [71]. Precisely, the transformation is applied
to each feature, Xj , independently. It is based on the formula G−1(F (Xj)), where F is
the cumulative distribution function (CDF) of Xj and G−1 is the quantile function of the
standard Gaussian. In practice, the CDF of Xj is estimated using all available realizations
of Xj in the training dataset. The subsequent application of the approximate CDF on
these values maps them to an approximate Uniform[0, 1] distribution. This is possible
based on the well-known result that F (X) is uniformly distributed in [0, 1], when F is
the CDF of X, for any continuous random variable X. Finally, the standard Gaussian
quantile function, G−1, is applied to the approximately uniformly distributed values, to
map them to a standard Gaussian distribution. Before moving on, because we assume that
it is reasonable to treat integers as continuous values in practice, we apply the Gaussian
Quantile transformer and the mode-specific normalization scheme (in TVAE) not only to
floats, but also to integers.

We implement the Quantile transformer using the QuantileTransformer method from
Scikit-learn’s [101] pre-processing module. To be specific, we first perform this transfor-
mation on the training data. Then, the quantile information from the training data is
used to perform the transformations on the held-out testing and validation datasets. Be
wary of the fact that we perform the transformations on each of the three splits separately,
using only the information from the training dataset in each case. This is very important
to avoid data leakage [59] — a phenomenon where the real-world performance of a trained
model is overestimated during testing due to illegitimate information in the training set,
giving it unrealistic power. There are many manifestations of this phenomenon, but one
instance occurs if we perform the Quantile transformation on the entire dataset at once.
In such a case, we introduce information about the quantiles from more data than what
we have available in the training dataset alone, leaving the purpose of splitting the data
into several disjoint sets compromised. This is a research field in itself, which we do not
dive deeper into, but we have tried to avoid such subtle mistakes in our experiments. The
interested reader is referred to Kaufman et al. [59] for a more detailed overview of the
topic.

5.3.2 Model Architectures and Hyperparameters

Some of the most important choices we make, are the model architectures and hyperpa-
rameters in Tabular diffusion, as well as in the baselines. For utmost clarity, we recall
that (X, Y ) = {X1, . . . , Xp, Y } ∼ p∗(x, y), meaning that we consider Y alongside the
rest of the features, such that p∗(x, y) represents a distribution of dimension p + 1. In
addition, we define X̃ := (X, Y ), which we use to simplify the notation in certain cases, to
be consistent with previous expositions of VAEs and diffusion models in Chapters 2 and
3, respectively, without sacrificing clarity. We start by describing our choices in Tabular
diffusion, before explaining TVAE and the tree-based model in MCCE.
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5.3.3 Tabular Diffusion

Recall that the parameters in Tabular diffusion are all contained in the function fθ. As
already stated, we let this function represent a neural network. We hypothesize that the
architecture of this neural network is vital for the performance of Tabular diffusion. Here,
we explain our choice of architecture. In order to simplify its representation, we define

MLPBlocku→v(x) = Dropout(ReLU(FCu→v(x)),

for an arbitrary vector x ∈ Ru×1. Actually, we evaluate the performance of Tabular
diffusion based on two different techniques for modelling, and sampling from, p∗(x, y).
The two techniques, which we refer to as direct joint modelling and conditional modelling,
are explained in the following.

Direct Joint Modelling

In the first technique, we model the joint underlying data density, p∗(x, y), directly. Pre-
cisely, we learn the reverse process

pθ(x̃, z1, . . . ,zT ) = p(zT )

T∏
t=2

pθ(zt−1|zt)pθ(x̃|z1),

as given in Section 3.6, where fθ represents a neural network. In general, the architecture
of this network is

MLP[α,...,ψ,ω](u) = FCω→p+1(MLPBlockψ→ω(· · · (MLPBlockτ→α(u)))),

u := u(zt, t) = FCp+1→τ (zt) + t emb(t),

t emb(t) = FCτ→τ (SiLU(FCτ→τ (SinTimeEmbτ (t)))),

(5.1)

where zt ∈ R(p+1)×1 is a forward diffused observation, x̃ ∈ R(p+1)×1, to a diffusion step
t ∈ {1, . . . , T}. There are quite a few parts of this architecture, which is inspired by
Kotelnikov et al.’s [67] MLP, that need an explanation. First of all, ignoring t emb(t),
notice that zt is linearly transformed to a vector in Rτ×1, before it is used as input to the
MLP. Moreover, the MLP is relatively simple, made up of |[α, . . . , ψ, ω]| MLPBlocks, with
dimensions given by [α, . . . , ψ, ω]. Notice that the output from the MLP is a vector in
R(p+1)×1, which is defined to match the input data dimension.

Sinusoidal embedding. The term t emb(t) is a crucial addition to the neural network
that enables training one neural network across all diffusion steps. Notice the introduction
of SinTimeEmbτ (t) inside this term. This refers to a sinusoidal embedding [141], first
introduced as a positional embedding for use in Transformers. The use of this embedding
in diffusion models was first mentioned by Ho et al. [47], without a detailed account of why
this is an attractive choice. However, while training diffusion models, it is essential that
the neural network has good awareness of the noise level t, since the estimated function
essentially should be different for different t’s. Intuitively, a noise prediction from zT−1

should be very different from a noise prediction from zT/2 or z2. In fact, the predicted noise
should be much larger in the former than the two latter cases. The sinusoidal positional
embedding by Vaswani et al. [141] is one possible technique for providing the neural
network with the necessary awareness, such that it can be used to learn the denoising
process across all noise levels t ∈ {1, . . . , T}. Said succinctly, a sinusoidal embedding uses
sine and cosine functions of different frequencies to encode a scalar input t in a space Rτ×1

[141].
For simplicity, notice that we keep the embedding dimension τ constant throughout

the linear transformations that make up t emb(t). This can be generalized to differing
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dimensions in each transformation, similar to in the main MLP. The hyperparameters
that define the exact diffusion model we use to produce results in Chapters 6 and 7 are
provided in Table 5.3. This table contains all necessary hyperparameters for uniquely
defining the diffusion process, as well as the reverse process, in Tabular diffusion.

Role in algorithms. Recall Algorithms 5 and 6, for training and sampling from our
diffusion model, respectively. The role of the MLP in Equation (5.1) is to calculate the
prediction fθ(zt, t) in step 17 and 10 in Algorithm 5 and Algorithm 6, respectively.

Conditional Modelling

In the second technique, we model the underlying joint density, p∗(x, y), via the property

p∗(x, y) = p∗(y)p∗(x|y).

This technique is inspired by the observation that Kotelnikov et al. [67] solely define a
class-conditional model for classification datasets, where they learn the reverse process
densities conditional to the label, i.e. pθ(x|z1, y) and pθ(zt−1|zt, y), t ∈ {2, . . . , T}. Thus,
our second technique is a concretization of the strategy that Kotelnikov et al. [67] appear
to follow, where we develop a corresponding equation for the reverse process and explain
how the densities are calculated. Notice that we develop direct joint modelling, with the
intention of contrasting Kotelnikov et al.’s [67] suggested strategy.

Precisely, we learn the reverse process

pθ(x̃, z1, . . . ,zT ) = pθ(x, y, z1, . . . ,zT )

= pθ(x, z1, . . . ,zT |y)p∗(y)

= p(zT )
T∏
t=2

pθ(zt−1|zt, y)pθ(x|z1, y)p∗(y),

(5.2)

where the distributions pθ(zt−1|zt, y), t ∈ {2, . . . , T}, and pθ(x|z1, y) are parameterized
by a neural network fθ. In this case, the neural network uses y as input, in addition to
zt ∈ Rp×1 and t ∈ {1, . . . , T}, when making predictions. Thus, the architecture of fθ is

MLP[α,...,ψ,ω](u) = FCω→p(MLPBlockψ→ω(· · · (MLPBlockτ→α(u)))),

u := u(zt, t, y) = FCp→τ (zt) + t emb(t) + FC1→τ (y),

t emb(t) = FCτ→τ (SiLU(FCτ→τ (SinTimeEmbτ (t)))).

(5.3)

This MLP is identical to the one shown in Equation (5.1), with the exception of two
details. First, any observation, x, belongs to Rp×1, which implies that the latent variables
also are defined in this space. Second, the linear transformation FC1→τ (y) is added to
the input, in order to learn a representation of the class label that can be used by the
network. Figure 5.1 illustrates the Tabular diffusion model implemented by Kotelnikov
et al. [67], where the role of the class-conditional MLP is highlighted. Please ignore the
slightly different notation. The idea is to illustrate that a data point is first split into
its numerical and non-numerical parts, which are pre-processed differently. For clarity,
we reiterate that, because of our assumptions on the data types, we process all numerical
features as continuous features, i.e. in the Gaussian “part” of Tabular diffusion, and all the
non-numerical features as categorical features, i.e. in the Multinomial “part” of Tabular
diffusion. After the pre-processing, the two sets of features are forward diffused to a level
t ∈ {1, . . . , T} (during training) or separately sampled (during generation) — a process
that is not explicitly shown in the figure. Thereafter, the two parts are concatenated
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Figure 5.1: Schematic illustration of Tabular diffusion used for conditional modelling.
Please ignore the slightly different notation. Specifically, Kotelnikov et al. [67] denote the
latent variables by x, as noted in the introduction of Section 3.3. In addition, t denotes
a diffusion level, y denotes a class label, l denotes a logit and ϵ denotes a Gaussian noise
prediction. The image is borrowed with permission from Kotelnikov et al. [67].

into zt, which then is used as input to fθ, alongside t and y, to output a prediction,
where different elements of the output are treated differently. Thus, the role of the MLP
from Equation (5.3) during training and sampling is exactly the same as in direct joint
modelling, with the exception that each input, x, from the training dataset does not
contain a value y, such that zt ∈ Rp×1, and y is instead used as an extra input in steps 17
and 10 in Algorithms 5 and 6, respectively. Moreover, recall that we need to estimate p∗(y)
separately in order to sample using the reverse process in Equation (5.2). At sampling
time, p∗(y) is approximated by simply sampling realizations y from Y ∼ Categorical(p),
where p is a vector of the empirical proportions of negative and positive predictions in the
entire dataset. Finally, for simplicity, we use the same hyperparameters as in direct joint
modelling, as shown in Table 5.3.

Technical details

The Tabular diffusion models are implemented using PyTorch [98]. This is a highly popular
open source framework, used both in academia, research and industry, for implementing
deep learning models in computer vision, natural language processing, generative mod-
elling and many more fields. We use PyTorch for both the forward and reverse processes.
For completeness, we actually first implement both Gaussian and Multinomial diffusion
models separately, before combining them into the Tabular diffusion model. In this way,
we facilitate modelling the fully numerical data in DI, when using the conditional mod-
elling technique, with Gaussian diffusion, while the rest of the situations with AD, CH
and DI can be modelled with the mixed Tabular diffusion model.

During implementation, we have taken inspiration from Kotelnikov et al.’s [67] diffu-
sion model implementation3. While studying their code, it becomes clear that they have
recycled several pieces of code from other authors that have used PyTorch as well. In
fact, they make some explicit comments about this in some of their files. Some of the
code that is recycled comes from the openly available implementations4 by Dhariwal and
Nichol [20, 21]. The first implementation among these two is attributed to a rewrite of
Ho et al.’s [47] implementation5 in Tensorflow [1], which is the main competitor of Py-

3https://github.com/rotot0/tab-ddpm
4https://github.com/openai/improved-diffusion and https://github.com/openai/guided-diffu

sion
5https://github.com/hojonathanho/diffusion

https://github.com/rotot0/tab-ddpm
https://github.com/openai/improved-diffusion
https://github.com/openai/guided-diffusion
https://github.com/openai/guided-diffusion
https://github.com/hojonathanho/diffusion
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Table 5.3: Hyperparameters used for training Tabular diffusion for each dataset. We
explicitly highlight when the hyperparameter value is default.

(a) Adult Census (AD)

Hyperparameter Value

T 1000
MLPBlock dims. [256, 1024, 1024, 1024, 1024, 256]
Emb. dim. (τ) 128
Var. schedule (βt) Linear
Batch size 256
Epochs 200
Early stop. tol. 10
Dropout 0.0
Optimizer Adam
Learning rate 0.0001
Weight decay (L2
penalty)

0 (default)

(b) Churn Modelling (CH)

Hyperparameter Value

T 1000
MLPBlock dims. [512, 1024, 1024, 1024, 1024, 512]
Emb. dim. (τ) 128
Var. schedule (βt) Linear
Batch size 128
Epochs 200
Early stop. tol. 10
Dropout 0.0
Optimizer Adam
Learning rate 0.0001
Weight decay (L2
penalty)

0 (default)

(c) Diabetes (DI)

Hyperparameter Value

T 1000
MLPBlock dims. [128, 512]
Emb. dim. (τ) 128
Var. schedule (βt) Linear
Batch size 64
Epochs 200
Early stop. tol. 10
Dropout 0.0
Optimizer Adam
Learning rate 0.0001
Weight decay (L2 penalty) 0 (default)
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Torch among deep learning platforms. The mentioned implementations are only for the
Gaussian part, whereas the Multinomial part of Kotelnikov et al.’s [67] implementation
was inspired by Hoogeboom et al.’s [49] implementation6. The point of this discussion is
to show that researchers do not re-implement every part of the models in their individual
research. In fact, many of the researchers more or less copy the main framework, before
making modifications to suit their novel theories. This is one of the great assets of open
research and open source code, which probably has increased the speed of research on
diffusion models. Some of our code, for example a function defining the variance sched-
ules in Gaussian diffusion, is mostly copied from one of the mentioned sources, whereas
other parts are re-implemented by us. For instance, we have chosen to construct the main
framework for Gaussian, Multinomial and Tabular diffusion differently than the rest of
the works, but this is just an implementation detail. Thus, despite using the mentioned
open source repositories as inspiration, we have copied little code directly, adding some
originality to our implementation. An advantage of this strategy is that it has helped us
deepen our knowledge on diffusion probabilistic models. For transparency, we strive to
give explicit credit in the form of comments in our code at parts we have copied or parts
that are highly recognizable from other implementations.

As a side note, the Multinomial diffusion implementation has some intricacies that we
want to comment on. Drawing inspiration from Hoogeboom et al. [49], we implement
Multinomial diffusion in log-space, to facilitate greater numerical stability. The interested
reader should read Appendix A in Hoogeboom et al. [49] for a concise technical explanation
of how this may be performed. In addition to this, some more in-depth considerations we
make while developing are added in Appendix E.

Finally, we clarify some hyperparameter names from Table 5.3. “Early stop. tol.”
refers to the fact that we have added early stopping to our training loops. This is a sim-
ple regularization technique that stops training when the validation loss stops improving,
according to some pre-specified tolerance. For example, setting the tolerance to 10 in
our case means that training is stopped if the validation loss does not reach a new mini-
mum for 10 epochs in a row. While training, the model parameters are updated and the
parameters that yield the lowest validation loss are saved. Notice that the criterion we
have implemented is very simple. The interested reader is referred to Prechelt [103] for
a more detailed discussion on when and how to use early stopping. Moreover, note that
the hyperparameters “Learning rate” and “Weight decay (L2 penalty)” in Table 5.3 all
refer to hyperparameters of the Adam optimizer [63] implementation in PyTorch (from
torch.optim). Notice that we do not use any weight decay during optimization, which is
the default value in the PyTorch implementation, which we specify by “default” in Table
5.3.

5.3.4 TVAE

Before explaining how we use TVAE to model the joint underlying data distribution, we
provide some more context on why we chose TVAE as a baseline model. First, to the best
of our knowledge, TVAE [146] is the state-of-the-art (SOTA) VAE-based tabular data
synthesizer. Moreover, it has open source code, which makes it practical to incorporate
in experiments. For these reasons, it was also used as a baseline by Kotelnikov et al. [67],
which we, as noted, exploit to guide our choices concerning hyperparameter values.

With TVAE, we model the joint underlying data density, p∗(x, y), directly, analogously
to in direct joint modelling in Tabular diffusion. In reference to the neural networks used
for the encoder and decoder described in Section 2.9, the hyperparameters we use for
training and sampling from TVAE are shown in Table 5.4.

6https://github.com/ehoogeboom/multinomial_diffusion

https://github.com/ehoogeboom/multinomial_diffusion
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Table 5.4: Hyperparameters used for training TVAE for each dataset. We explicitly
highlight when the hyperparameter value is default.

(a) Adult Census (AD)

Hyperparameter Value

CD [128, 128] (default)
DD [128, 128] (default)
Latent space dimension (Λ) 128 (default)
Batch size 256
Epochs 200
Optimizer Adam (default)
Learning rate 0.001 (default)
Weight decay (L2 penalty) 1e-5
Loss factor 2 (default)

(b) Churn Modelling (CH)

Hyperparameter Value

CD [256, 512]
DD [256, 512]
Latent space dimension (Λ) 256
Batch size 128
Epochs 200
Optimizer Adam (default)
Learning rate 0.001 (default)
Weight decay (L2 penalty) 1e-5
Loss factor 2 (default)

(c) Diabetes (DI)

Hyperparameter Value

CD [128, 128] (default)
DD [128, 128] (default)
Latent space dimension (Λ) 128 (default)
Batch size 64
Epochs 200
Optimizer Adam (default)
Learning rate 0.001 (default)
Weight decay (L2 penalty) 1e-5
Loss factor 2 (default)
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Technical details

We implement TVAE with open source code7 under the project the Synthetic Data Vault
Project (SDV) [99]. First created at MIT in 2016, it was designed to be the “one-stop shop
for synthetic data”, according to the inventors. SDV contains open source implementations
for the entire synthetic data pipeline, from data pre-processing to measuring quality and
privacy of different synthetic data generation models. Our initial idea was to use the API
provided by SDV to train, and sample data, from TVAE [146]. At the time of developing
our code, the developers of SDV were in the middle of transitioning into a 1.0 Beta
version, with several improvements and new documentation sites. However, because of
incompatibilities with our system, specifically the beta not yet being available for the conda
package manager, we chose to use the pre-beta implementation of the code. In fact, since
SDV contains a simple wrapper on top of the standalone open source implementation8,
we use the latter directly. The code we develop using this API is available in our final
repository9.

Again, note that the hyperparameters “Learning rate”, “Weight decay (L2 penalty)”
and “Loss factor” in Table 5.4 all refer to hyperparameters of the Adam optimizer [63]
implementation in PyTorch (from torch.optim). Notice the values with an added “(de-
fault)” — these refer to default hyperparameter values in the standalone open source
implementation of TVAE.

5.3.5 Trees

Analogously to in the conditional modelling technique for Tabular diffusion, we model the
joint density p∗(x, y) via the property

p∗(x, y) = p∗(y)p∗(x|y),

where X := Xm := {X1, . . . , Xp}. The conditional density p∗(x|y) is approximated by
use of the two first steps in MCCE after defining Xf := Y . Thus, we fit p trees in
total, following the illustration in Equation (4.1). After estimating the parameters of the
tree-based model, we use Algorithm 7 to generate data, where Dh is initialized slightly
differently, depending on the experiment. In the first experiment, where we do not have
any factuals to explain, we define Dh as a matrix of mostly zeroes in RK×(p+1), except for
the values in the entire left-most column, which are random samples from the response
column in the original dataset D, i.e. the column corresponding to Y . Thus, at sampling
time, p∗(y) is essentially modelled by sampling y-values from D, analogously to in the
conditional modelling technique for Tabular diffusion, such that p∗(x, y) ultimately can
be estimated. In the second experiment, where the goal is to synthesize counterfactuals,
we define Dh as described in Section 4.1, where the sets of mutable and fixed features are
pre-defined. We return to this in Section 5.5.

Technical Details

When producing results from the trees in MCCE, we use the API10 developed by Re-
delmeier at al. [107]. In fact, we adapt certain parts of the MCCE-implementation to fit
our needs. For completeness, we added the entire open source implementation of MCCE,
including our amendments, to our final code repository. For example, we have explic-
itly added the normalization values, Rj , as the empirical range, for all continuous (in

7All code is openly available at https://github.com/sdv-dev/SDV
8The standalone implementation of TVAE can be found at https://github.com/sdv-dev/CTGAN
9https://github.com/alexaoh/tabular-diffusion-for-counterfactuals

10The open source implementation of MCCE can be found at https://github.com/NorskRegnesentr
al/mccepy

https://github.com/sdv-dev/SDV
https://github.com/sdv-dev/CTGAN
https://github.com/alexaoh/tabular-diffusion-for-counterfactuals
https://github.com/NorskRegnesentral/mccepy
https://github.com/NorskRegnesentral/mccepy
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Table 5.5: Hyperparameters used for training MCCE across all three datasets. The hy-
perparameters refer to the DecisionTreeClassifier implementation of CART in Scikit-
learn [101]. We explicitly highlight when the hyperparameter value is default.

Hyperparameter Value

criterion gini (default)
splitter best (default)
max depth None (default)
min samples split 2 (default)
min samples leaf 5 (default)
min weight fraction leaf 0.0 (default)
max features None (default)
max leaf nodes None (default)
min impurity decrease 0.0 (default)
class weight None (default)
ccp alpha 0.0 (default)
random state seeds from Table 5.2.

our case, all numerical) features j, for calculating the Gower distance, since this was im-
plicitly added through the pre-processing performed by Redelmeier et al. [107] in their
original implementation. Moreover, notice that they implemented CART with Scikit-
learn’s [101] DecisionTreeClassifier, which uses an optimized version of the CART
algorithm. As a consequence, we specify the hyperparameters we use to produce results
in Chapters 6 and 7, with the tree-based model, in reference to the terms defined in the
DecisionTreeClassifier. These hyperparameters are specified in Table 5.5. Notice that
we only use the default hyperparameters from Redelmeier et al.’s [107] implementation
or the defaults from DecisionTreeClassifier, except for the random state. Either of
these two situations are specified with “(default)” in Table 5.5.

5.4 Experiment I — Evaluation of Synthetic Data Genera-
tion

The first experiment is devoted to evaluating the performance of Diff-MCCE on its first
two steps in isolation. The objective is to compare the performance of Tabular diffusion to
our two baselines; TVAE and the tree-based model in MCCE. All the generative models
are trained according to the techniques for modelling p∗(x, y) described in Section 5.3.
Then, after estimating the parameters, we generate synthetic datasets of identical sizes
to the full original datasets, as specified in the column “# Total” in Table 5.1. Precisely,
recall that pre-processing, training and sampling is performed in five different random
trials for each generative model and each real-world dataset. In the following, we describe
precisely how we evaluate the models, post sampling.

Qualitative evaluation. Initial qualitative evaluation is performed, following the
processes described in Section 2.10. Notice that we initially select a synthetic dataset
from each generative model from only one of the five trials performed for each of the
three real-world datasets. Then, the following procedures are performed for each set of
five datasets; one real dataset and four corresponding synthetic datasets. We overlay all
marginal distributions in each pair of real and synthetic datasets, in order to easily spot
high-level similarities and differences. Moreover, we calculate the correlation matrices of
all the datasets, both synthetic and real. After that, we perform element-wise subtraction
of the correlation matrix of each synthetic dataset from the correlation matrix of the
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corresponding real data, before applying the absolute value. These matrices of absolute
differences in correlation are then visualized as heatmaps, arranged in a grid-like structure,
enabling an easy qualitative understanding of where the synthetic data is suboptimal, both
for each individual synthesizer and comparatively between the synthesizers.

Quantitative evaluation. ML efficacy is our quantitative evaluation measure of
choice. Adding to the outline in Section 2.10, we explain specifically how we calculate
ML efficacy in this experiment. The following procedure is performed in each trial. We
assume the starting point is a synthetic dataset per generative model. The synthetic data
is randomly split into training, validation and testing datasets, following the same split
ratios as for the real data. We proceed by employing the optimal protocol for ML efficacy,
meaning that we fit a CatBoost model on each of the training datasets, stemming from real
and synthetic data. Thus, in total we fit five binary classifiers for each real-world dataset;
one using the real training data and four using the synthetic training data. Specifically, we
use the CatBoostClassifier method from the open source Python implementation11 of
CatBoost by Prokhorenkova et al. [104]. We leave all the hyperparameters of the model as
default, except for the random seed, which is changed according to the seeds in Table 5.2,
to initiate each trial. Also, since the CatBoost model can handle non-numerical features,
and because it is not as sensitive to differing scales in numerical feature values as, for
example, neural networks, we simply skip pre-processing and train the CatBoost model
on the original training datasets. After parameter estimation, every CatBoost classifier is
evaluated, with respect to our chosen metrics, on the real test dataset. Finally, the results
are presented as the mean ± standard error of each given metric over the five distinct
trials. To complement this presentation, we make some box plots as well, which display
the minimum, first quartile, median, third quartile and maximum, of each metric over the
five distinct trials, in a visually pleasing way. Both the qualitative and quantitative results
are presented and discussed in Chapter 6.

5.5 Experiment II — Evaluation of Counterfactual Gener-
ation

The second experiment is devoted to evaluating the performance of Diff-MCCE on gener-
ating counterfactuals for a set of test observations. We use the different generative models
from the previous experiment to solve the first two steps of the MCCE-framework, before
post-processing the samples, as explained in Chapter 4. As in the first experiment, we
perform five different trials and report aggregated results across them. In the following,
we explain the process that is performed in each trial, from how the set of factuals for
each real-world dataset is found to how the final results are reported.

Find factuals. We base the experiment on a binary classifier we assume that we
are interested in understanding to a greater extent. Specifically, we train a CatBoost
model to predict the binary response in each real-world dataset, without pre-processing
the data. We leave all hyperparameter values as default, except for the random seed,
just as in the previous experiment. After estimating the parameters, we use the models
to make predictions on test data. Among the predicted individuals, we randomly select
100 negatively predicted individuals in AD and CH, while we select only 10 negatively
predicted individuals in DI. This has to do with the different test dataset sizes in each
case, as shown in Table 5.1. These sets of individuals constitute the sets of factuals, H,
we want to explain in each case. Notice that the sets of factuals are most likely different
in each trial, since the process described above is stochastic and included in each distinct
trial.

11https://github.com/catboost/catboost

https://github.com/catboost/catboost
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Fixed features. Recall that the actionability constraint of CEs require a predefined
notion of immutable features. The fixed features we assume in each of the datasets are
given in Table 5.6, implicitly assuming that the rest of the features in each dataset are
mutable. Please notice that we are not experts in any of the domains where these datasets
were collected. This means that we risk naively overlooking or defining certain variables
as fixed or mutable, but we have done our best given our limited domain knowledge.
However, this should not take away from the main objectives of the work, so we do not
spend much time making sure these choices are realistic.

Table 5.6: Predefined fixed features in each dataset.

Dataset Fixed features

Adult Census (AD) age, sex
Churn Modelling (CH) Age, Gender
Diabetes (DI) age

Counterfactual synthesis. In each trial, we simply use the three-step process de-
scribed in Chapter 4 to generate CEs from each model. We set K = 10000, meaning
that we generate K = 10000 samples for each counterfactual h ∈ H, each set repre-
senting the possible CEs to choose from, Dh. Moreover, we choose to return only one
counterfactual per factual, instead of several. The first two steps in Diff-MCCE and the
TVAE-based reference are implemented according to the descriptions in Section 5.3, with
a slight alteration. Instead of modelling (X, Y ) = {X1, . . . , Xp, Y } ∼ p∗(x, y), we model
X = {X1, . . . , Xp} ∼ p∗(x), because it is not necessary to include Y in the modelling
when the objective is to generate counterfactuals. Moreover, the third step in Diff-MCCE
and the TVAE-based reference is performed according to the post-processing outlined in
Section 4.2. Finally, we utilize MCCE exactly as explained in Section 4.1, with the fixed
features in Table 5.6.

Results. The results from this experiment are reported in Chapter 7. In every trial, we
calculate the average values, across all factuals, of sparsity and Gower distance. Moreover,
we count the number of factuals that are given CEs, which we denote by NCE. As a side
note, this means that if NCE < 100 in AD and CH, and NCE < 10 in DI, then some of the
factuals have not obtained explanations from the method in question. After calculating
these three metrics in each trial, we report the first two as the mean ± standard error
over the five distinct trials. In addition, to complement this presentation, we display
some box plots calculated from the first two metrics, similarly to in the first experiment.
Furthermore, the third metric is reported as a list of NCEs, containing one value of NCE

per trial. Finally, in addition to the aggregated results, we report some examples of
explanations for a randomly selected factual h ∈ H, calculated from Diff-MCCE, as well
as the baselines.





Chapter 6

Results — Generating Synthetic
Data

This chapter is dedicated to demonstrating and discussing results from the first experiment
described in Chapter 5, on generating synthetic data. Specifically, these results are used
to evaluate the performance of Diff-MCCE on the task of modelling (X, Y ) ∼ p∗(x, y)
and generating synthetic realizations of the random variables.

6.1 Qualitative Evaluation

The marginal distributions in each synthetic and corresponding real dataset are plotted
in Figures 6.2 to 6.13. Notice that we do not explicitly add the category names of the
non-numerical features to make the plots more readable, since the specific categories are
not of primary concern. In addition to the marginals, the matrices of absolute differences
in correlation, as explained in Section 5.4, are plotted as heatmaps in Figure 6.1. We have
deliberately placed this figure before the others, to facilitate easier comparison between
the marginals from the different models when reading the thesis in two page view.

Naming. When presenting the results, the terms TabDiffJoint and TabDiffCond
refer to results when using Tabular diffusion with direct joint modelling and conditional
modelling, respectively. Moreover, the terms TVAE and MCCE refer to results when
using TVAE and the tree-based model in MCCE for modelling and sampling, respectively.

Initial observation. Our initial observation is that the tree-based model in MCCE
is clearly superior, on all datasets, according to all qualitative measures. The qualitative
differences between the results from this model and the rest are quite striking. In the
following, we dive deeper into a qualitative evaluation of the models on each of the datasets
separately.

Adult Census (AD) dataset. Moving past the most striking initial observation,
there is no clearly superior variant among the three other models. Studying the marginals
from these three models in AD, in Figures 6.2 to 6.4, most marginal distributions in
both the sets of results from Tabular diffusion look similar. The marginals of some of
the features look more similar to the real marginals in direct joint modelling, and vice
versa, but neither of the two models produce an overwhelmingly superior set of marginals
across all features. However, most of the marginal distributions produced by both Tabular
diffusion models look qualitatively better than the results from TVAE. This is not the
case in the correlation matrices for AD, in Figure 6.1; TVAE is clearly superior to the
Tabular diffusion variants on these measures. Diving deeper, they look quite similar in
terms of quality of reconstruction of linear correlations between the numerical features,
but the Tabular diffusion models perform much worse according to the correlation ratios
in non-numerical and numerical pairs of features, as well as according to the Theil’s U
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statistics between non-numerical features. For instance, the two models struggle especially
with truthfully modelling the relation between marital status and relationship, in
both asymmetric cases, as well as the relation relationship given sex. From this we
might hypothesize that Tabular diffusion performs relatively better for datasets with only
numerical features, i.e. that errors in correlation-reconstruction are introduced mainly
because of issues with modelling interactions including non-numerical features. Further
investigation in the other datasets will illuminate the sense of this hypothesis. Finally, note
that the correlation matrices in Figure 6.1 for AD are almost identical for both Tabular
diffusion models, meaning that we cannot immediately distinguish them with regards to
correlation modelling capabilities either.

Churn Modelling (CH) dataset. A similar discussion is performed on CH. Look-
ing at the marginals in Figures 6.6 to 6.8, the numerical features look relatively similar in
all three, except for TVAE severely overestimating the number of customers with Tenure

1 and overestimating the number of customers around the mode in CreditScore. At the
same time, both sets of results from Tabular diffusion show an overestimation of values
close to the maximum in CreditScore, while this number is underestimated in TVAE.
These observations might be consequences of choosing to treat the integers as continu-
ous variables, especially for Tenure, which only has 11 levels. However, opposing this
hypothesis, notice that the estimations of NumOfProducts are not very far off the true
marginals, especially in TVAE, despite the fact that this integer only has four different
recorded levels in the full real CH dataset. Thus, this assumption seems to yield adequate
results in some cases and inadequate results in others, but we do not see enough evidence
to make more specific conclusions. Moreover, keep in mind that we pre-process the data
in the same way for the tree-based model, in which we do not observe any of these is-
sues, which implies that there are other elements behind the performance discrepancies.
Moving on from the numerical features, most of the non-numerical feature marginals look
closer to the corresponding marginals in the real data in the results from Tabular diffusion.
The sum of all these observations lead us to believe that the two, almost indistinguish-
able Tabular diffusion models have reproduced the real empirical marginals in CH to a
greater extent than TVAE. Progressing to the correlation matrices in Figure 6.1, all three
heatmaps look relatively similar. TVAE seems to struggle a little more with accurately
reproducing the relation between some of the non-numerical and integer features, while
both the Tabular diffusion correlation matrices look marginally better. Thus, for CH, we
argue that Tabular diffusion seems to qualitatively perform better than TVAE, where the
two diffusion-techniques are practically indistinguishable. In contrast to in AD, the recon-
struction of correlation from Tabular diffusion does not seem to suffer from the existence
of non-numerical features in CH, which does not support the hypothesis we introduced
in the previous paragraph.

Diabetes (DI) dataset. Finally, we qualitatively reflect on the performance of the
models on DI. First of all, despite MCCE still clearly performing the best, the marginal
distributions and the correlation matrices are not as close to the corresponding quantities
in the real dataset as observed in the two other datasets. This is likely because of the very
limited sizes of the data. In continuation, the marginals in Figures 6.10 to 6.12 reveal that
the Tabular diffusion models struggle with learning truthful marginals. The direct joint
modelling technique performs especially bad, producing many outliers or values close to
and beyond the minimum and maximum values in the real dataset. A similar phenomenon
can be observed for the conditional modelling version as well, but this model seems to learn
a larger part of the marginals somewhat more truthfully. TVAE does not suffer from such
a problem. It clearly performs better, in some cases quite close to the performance of
MCCE. The most notable unrealistic result from TVAE is that it has synthesized negative
values in dbp, when the diastolic blood pressure should not be negative in practice. In
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addition, it has produced values of plasma larger than 199, which has not occurred in the
other generative models, and does not exist in the complete real dataset. However, we
lack the domain knowledge to conclude if this is physiologically unrealistic. Moving on to
the correlation matrices in Figure 6.1, our conclusions are similar to the ones we made
based on the marginals. Tabular diffusion struggles to truthfully model the correlations
in the real dataset, especially in the direct joint modelling version, but the conditional
modelling version is also suboptimal. TVAE seems more comparable to MCCE, although
still suboptimal, performing a lot better than Tabular diffusion. Thus, keeping our hy-
pothesis raised in the paragraph on AD in mind, we do not find the statement reasonable
in general, because DI only consists of numerical features, but Tabular diffusion clearly
displays the worst qualitative performance among the set of models.

Closing remarks. A general observation is that the Tabular diffusion models seem to
consistently overestimate the number of observations in the smallest and largest numerical
value bins in the marginal distributions. As noted, this is spotted in DI, in Figures
6.10 and 6.11, where the overestimation is quite severe. However, we also observe the
same phenomenon in AD and CH, although in a notably less critical fashion. It is not
immediately apparent why this happens, but it seems to be a downfall for Tabular diffusion
in comparison to the other generative models we investigate. Keeping our choice of treating
integers as continuous values in mind, we do not find any obvious evidence to conclude
that this assumption aggravates the behaviour, as the overestimation seems to appear with
similar severity for both floats and integers. For DI, the problem may be exacerbated by
the size of the dataset, because we only evaluate a synthetic dataset containing 768 points.
Thus, the evaluations made on DI perhaps do not have great statistical power, but they
indicate how the models could perform on small tabular, binary classification datasets
with only numerical features. At the same time, TVAE seems to consistently overestimate
the number of observations around the modes of the marginal distributions. It is not
immediately clear why this happens either, but it would be reasonable to hypothesize that
the Gaussian-based (mode-specific in TVAE) pre-processing of discrete numerical values
could exacerbate this problem. With this idea in mind, we would also expect similar effects
on the integer features in Tabular diffusion and MCCE, because of the continuous pre-
processing, in addition to the Gaussian assumptions in the forward process of the former,
but we do not observe this. This means that we, again, do not think the “continuous-
integer” assumption is vital for any of these observed differences in performance. All in
all, whatever the true explanations are, the observations perhaps point at some general
practical disadvantages of Tabular diffusion and TVAE. However, a clear conclusion cannot
be reached without further investigation.
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Figure 6.1: Absolute differences between correlations in synthetic and real datasets for
the Adult Census (AD), Churn Modelling (CH) and Diabetes (DI) datasets, for both
Tabular diffusion techniques, as well as TVAE and the decision tree model in MCCE.
Deeper red colors indicate larger absolute differences in correlation between the synthetic
and real data.
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Figure 6.2: Histograms and bar plots of all the features in the Adult Census (AD)
dataset, comparing the real dataset with a synthetic dataset generated by Tabular dif-
fusion with direct joint modelling. The non-numerical feature values are normalized,
such that the vertical axes show ratios out of 1.0.
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Figure 6.3: Histograms and bar plots of all the features in the Adult Census (AD)
dataset, comparing the real dataset with a synthetic dataset generated by Tabular Dif-
fusion with conditional modelling. The non-numerical feature values are normalized,
such that the vertical axes show ratios out of 1.0.



6.1 Qualitative Evaluation 99

20 40 60 80

0.00

0.02

0.04

age

0.0 0.5 1.0 1.5

×106

0

2

4

×10−6 fnlwgt

5 10 15

0.0

0.5

1.0

education_num

0 20000400006000080000100000

0.0000

0.0002

0.0004

capital_gain

0 1000 2000 3000 4000

0.000

0.005

0.010

0.015

capital_loss

0 20 40 60 80 100

0.0

0.1

0.2

0.3

hours_per_week

0.0

0.2

0.4

0.6

workclass

0.0

0.2

0.4

marital_status

0.00

0.05

0.10

0.15

occupation

0.0

0.2

0.4

relationship

0.00

0.25

0.50

0.75

race

0.0

0.2

0.4

0.6

sex

0.0

0.5

1.0

native_country

0.00

0.25

0.50

0.75

y

Synth.

Real

Figure 6.4: Histograms and bar plots of all the features in the Adult Census (AD)
dataset, comparing the real dataset with a synthetic dataset generated by TVAE. The
non-numerical feature values are normalized, such that the vertical axes show ratios out
of 1.0.
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Figure 6.5: Histograms and bar plots of all the features in the Adult Census (AD)
dataset, comparing the real dataset with a synthetic dataset generated by the two first
steps of MCCE. The non-numerical feature values are normalized, such that the vertical
axes show ratios out of 1.0.
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Figure 6.6: Histograms and bar plots of all the features in the Churn Modelling (CH)
dataset, comparing the real dataset with a synthetic dataset generated by Tabular Dif-
fusion with direct joint modelling. The non-numerical feature values are normalized,
such that the vertical axes show ratios out of 1.0.
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Figure 6.7: Histograms and bar plots of all the features in the Churn Modelling (CH)
dataset, comparing the real dataset with a synthetic dataset generated by Tabular Dif-
fusion with conditional modelling. The non-numerical feature values are normalized,
such that the vertical axes show ratios out of 1.0.
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Figure 6.8: Histograms and bar plots of all the features in the Churn Modelling (CH)
dataset, comparing the real dataset with a synthetic dataset generated by TVAE. The
non-numerical feature values are normalized, such that the vertical axes show ratios out
of 1.0.
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Figure 6.9: Histograms and bar plots of all the features in the Churn Modelling (CH)
dataset, comparing the real dataset with a synthetic dataset generated by the two first
steps of MCCE. The non-numerical feature values are normalized, such that the vertical
axes show ratios out of 1.0.
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Figure 6.10: Histograms and bar plots of all the features in the Diabetes (DI) dataset,
comparing the real dataset with a synthetic dataset generated by Tabular diffusion with
direct joint modelling. The non-numerical feature values are normalized, such that the
vertical axes show ratios out of 1.0.
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Figure 6.11: Histograms and bar plots of all the features in the Diabetes (DI) dataset,
comparing the real dataset with a synthetic dataset generated by Tabular Diffusion with
conditional modelling. The non-numerical feature values are normalized, such that the
vertical axes show ratios out of 1.0.
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Figure 6.12: Histograms and bar plots of all the features in the Diabetes (DI) dataset,
comparing the real dataset with a synthetic dataset generated by TVAE. The non-
numerical feature values are normalized, such that the vertical axes show ratios out of
1.0.
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Figure 6.13: Histograms and bar plots of all the features in the Diabetes (DI) dataset,
comparing the real dataset with a synthetic dataset generated by the two first steps of
MCCE. The non-numerical feature values are normalized, such that the vertical axes
show ratios out of 1.0.
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6.2 Quantitative Evaluation

After the initial qualitative evaluation, we perform a quantitative evaluation based on ML
efficacy, as described in Section 5.4. The ML efficacy metrics of each of the models, for
each of the datasets, aggregated as empirical mean ± standard error over the five trials,
are shown in Table 6.1. We highlight the best mean and standard error values in each
column, among the models we evaluate, in bold.

Naming. We use the same naming conventions as in Section 6.1, and we introduce the
term Real. This refers to a situation where we both train and test the classifier with the
true real-world datasets. These values are added as another baseline for the performance
of the models, representing a theoretical upper limit for the performance on synthetic
data. Intuitively, we should not expect a model fitted with synthetic training data to
perform better on the true test data compared to an identical model that is trained on
real training data, when both these datasets are of identical size. This would indicate that
the synthetic data is innately more valuable than the real data in a binary classification
setting, which is not the case, as mentioned in Section 2.10.

Initial observation. Just as in the qualitative evaluation, our initial observation is
that MCCE is superior to the rest of the models when it comes to all average ML efficacy
metrics displayed in Table 6.1, except for the AUC in DI. MCCE not only attains the
largest average values on all metrics across all datasets, excluding the previously mentioned
exception, but it also achieves low standard errors across the five trials compared to the
competing methods. This indicates that MCCE steadily outperforms its rivals, with less
variable and better performance. However, notice that several of the results from the other
models are within a few standard errors of the results from MCCE. Thus, the metrics in
the table do not paint the full picture. To obtain a better idea of the metrics in each
of the trials, we add some box plots in Figures 6.14 to 6.16. These are constructed with
all the same metrics as used for Table 6.1. To be clear, the top and bottom limits of
the whiskers, i.e. the vertical lines drawn through each box, denote the maximum and
minimum attained metric values across the five trials, respectively. Moreover, the upper
and lower limits of the boxes denote the third and first quartiles, respectively, while the
orange, horizontal lines denote the median values. Note that the difference between the
third and first quartile, i.e. the height of the box, is often referred to as the interquartile
range. These plots still indicate that MCCE is superior in many cases, but not all, as
the table might lead us to conclude at first sight. In the following, we dive deeper into a
quantitative evaluation of the models’ performance on each of the datasets, moving past
our initial observations.

Adult Census (AD) dataset. When it comes to AD, the reported F1 scores in
Table 6.1 make it quite clear that the Tabular diffusion models, especially when trained
using the conditional modelling technique, perform notably worse than the rest of the
models. The other two metrics paint a similar picture, although the relative differences in
performance between the models seem less notable. Overall it is clear from Table 6.1 that
Tabular diffusion is inferior to both the baselines on this dataset, with the conditional
modelling technique being the worst performer. This conclusion is also the most obvious
one to make from the box plots in Figure 6.14, where any practitioner would prefer TVAE
and MCCE over Tabular diffusion.

Churn Modelling (CH) dataset. A similar discussion can be performed for CH.
First of all, notice that the means and standard errors of both the F1 score and the
accuracy are strikingly low for Tabular diffusion based on conditional modelling. The
reason behind this is that, in all five trials, the CatBoost classifier that is trained on the
synthetic data makes zero or close to zero positive predictions on the real test data. Thus,
the classifier that is trained on this data is not able to discriminate between the positive
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Table 6.1: ML efficacy for both techniques of Tabular diffusion, as well as TVAE and the
two first steps of MCCE, for all three datasets. The reported numbers are aggregations
over five different random seeds, given as empirical mean ± standard error. The Real rows
show results when using true training and true test data. Upward arrows symbolize that
higher is better.

(a) Adult Census (AD)

Macro F1 ↑ AUC ↑ Accuracy ↑
Real 0.7280± 0.0027 0.9320± 0.0003 0.8720± 0.0013

TabDiffJoint 0.4500± 0.0289 0.8210± 0.0123 0.8000± 0.0046
TabDiffCond 0.2130± 0.0379 0.7670± 0.0256 0.7630± 0.0072
TVAE 0.6230± 0.0344 0.8820± 0.0090 0.8150± 0.0134
MCCE 0.7250± 0.0031 0.9300± 0.0005 0.8700± 0.0017

(b) Churn Modelling (CH)

Macro F1 ↑ AUC ↑ Accuracy ↑
Real 0.9200± 0.0017 0.8630± 0.0006 0.8630± 0.0031

TabDiffJoint 0.9010± 0.0037 0.7360± 0.0346 0.8200± 0.0061
TabDiffCond 0.0010± 0.0022 0.7200± 0.0017 0.1790± 0.0009
TVAE 0.9080± 0.0061 0.8030± 0.0111 0.8420± 0.0090
MCCE 0.9120± 0.0037 0.8290± 0.0050 0.8490± 0.0065

(c) Diabetes (DI)

Macro F1 ↑ AUC ↑ Accuracy ↑
Real 0.8370± 0.0096 0.8150± 0.0042 0.7790± 0.0130

TabDiffJoint 0.7850± 0.0255 0.6460± 0.0545 0.6600± 0.0169
TabDiffCond 0.5710± 0.0491 0.7480± 0.0268 0.5710± 0.0450
TVAE 0.7890± 0.0266 0.8050± 0.0053 0.7270± 0.0275
MCCE 0.8270± 0.0099 0.8010± 0.0024 0.7640± 0.0142
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Figure 6.14: Box plots for the ML efficacy metrics across all five trials in the Adult
Census (AD) dataset. The upward arrows in the titles symbolize that higher is better.
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Figure 6.15: Box plots for the ML efficacy metrics across all five trials in the Churn
Modelling (CH) dataset. The upward arrows in the titles symbolize that higher is better.
Notice that we do not display box plots for Macro F1 and Accuracy for Tabular diffusion
with conditional modelling, because of the very low values in these cases.
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Figure 6.16: Box plots for the ML efficacy metrics across all five trials in the Diabetes
(DI) dataset. The upward arrows in the titles symbolize that higher is better.
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and negative binary responses in the real test data, signalling that the synthetic training
data and the real test data are not well synchronized. Naturally, this reflects badly on
the synthesizer, leading us to conclude that Tabular diffusion with conditional modelling
is essentially useless for CH. Of course, this conclusion opposes our reasoning from the
qualitative evaluation, where both Tabular diffusion models seem to perform decently. In
contrast to the conditional variant, we conclude differently for the direct joint modelling
variant of Tabular diffusion. This synthesizer seems to work quite well, relative to the
baselines, according to Table 6.1. To complement the previous observations, the box plots
in Figure 6.15 paint a more complete picture. In fact, the first quartiles in the results
from TVAE and MCCE are consistently above the maximums in the results from Tabular
diffusion, indicating that the baselines perform systematically better. Notice that we do
not display box plots for F1 and accuracy for Tabular diffusion with conditional modelling,
because of the very low values in these cases. All in all, any practitioner would also prefer
MCCE and TVAE over Tabular diffusion, based on these results.

Diabetes (DI) dataset. Finally, for DI, we make similar arguments as in the two
other datasets. Tabular diffusion seems to perform worse than the baselines according to
Table 6.1. This is substantiated by the box plots in Figure 6.16. Tabular diffusion with
direct joint modelling seems to be better than its conditional counterpart according to F1

score and accuracy, but worse on AUC. This is slightly curious and we are not sure why.
Perhaps it is connected to the smaller number of observations in DI. In conclusion, we see
no clear evidence that would endorse using Tabular diffusion over any of the baselines.

6.3 Final Evaluation

Finally, we provide a conclusive evaluation in this experiment. The most striking re-
sult from this experiment is that MCCE is overwhelmingly superior to the deep learning
methods in most regards. It is superior in all qualitative investigations and on most quan-
titative metrics. Thus, we argue that MCCE is a highly competitive model. In the words
of Kotelnikov et al. [67], admittedly used in a different context, this observation “raises
the question if sophisticated deep generative models are needed”. Beyond this conclusion,
we discuss the overall performance of Tabular diffusion compared to TVAE, within the
framework of the first experiment, in the following.

We do not observe any convincing results in favour of Tabular diffusion over TVAE,
for any specific composition of data types, in contrast to what Kotelnikov et al. [67]
report. For instance, in their paper, they provide fairly convincing absolute correlation
matrices for AD and CH, in favour of Tabular diffusion over TVAE. Moreover, most
of their ML efficacy values indicate that Tabular diffusion is superior to TVAE, with the
exception of the F1 score for DI. In our case, the qualitative analysis indicates that Tabular
diffusion and TVAE perform relatively similarly overall, with the marginal distributions
seemingly superior more often with Tabular diffusion, and vice versa for the correlation
reconstructions. This is not true in all cases however, because the marginals in DI with
Tabular diffusion are useless compared to TVAE, while the correlation reconstructions
are marginally better with Tabular diffusion in CH compared to TVAE. Based on the
quantitative analysis, TVAE is generally notably superior to Tabular diffusion. Hence, it
seems like Tabular diffusion is better than TVAE when it comes to modelling the marginal
distributions, but worse when it comes to modelling the joint probability, according to the
qualitative evaluation of correlation and the ML efficacy values. One possible reason
why the qualitative and quantitative analyses indicate different relative strengths and
weaknesses of Tabular diffusion and TVAE, is the metrics we use when calculating the
correlation matrices. Precisely, recall that we employ Pearson correlation, the correlation
ratio and Theil’s U statistic to measure the interactions between the features. Choosing
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these metrics restricts the types of dependencies we are able to detect between the features,
because each metric is designed to detect certain relationships. For example, Pearson
correlation only takes linear dependence into account, which means that we cannot use
the correlation matrices to detect non-linear relationships. As a side note, we could use,
for example, copulas [80, 89] to investigate non-linear dependencies between continuous
features. Consequently, we are not able to investigate all forms of dependencies between
the features in a dataset in our qualitative analysis. In contrast, in a sense, ML efficacy
implicitly investigates all types of relationships between the features in a dataset, since it
uses the synthetic data on a downstream task, and compares the results to results from
the same task solved with real data. Thus, the quantitative analysis is not inherently
restricted, like the qualitative analysis, meaning that the relationships that are overlooked
in the latter are ideally implicitly accounted for in the former. Moreover, we argue that
high performance on the ML efficacy metrics should be regarded as more important than
high performance in the qualitative analysis, as it indicates high performance on the task
we are most interested in; modelling and sampling from p∗(x, y). Finally, we conclude that
we find no evidence, in the first experiment, to promote the idea that Tabular diffusion is
superior to any of the baselines, especially MCCE, on the task of modelling p∗(x, y) and
synthesizing data from it.

Before moving on, we also discuss the relative performance of the two techniques we
introduce for Tabular diffusion. We argue that the evidence is sufficient to conclude that
direct joint modelling yields marginally better performance than conditional modelling.
As stated, in the qualitative analysis, the two models seem hard to distinguish, but their
relative performances in the quantitative analysis are quite different in many cases. In
fact, in most cases, the direct joint modelling technique yields superior ML efficacy values.
Thus, we argue that direct joint modelling is a better technique to use to construct a
generative model with Tabular diffusion, compared to conditional modelling. However,
this matter should be investigated further in order to gain complete confidence in the
conclusion.





Chapter 7

Results — Generating
Counterfactuals

In this chapter, we demonstrate and discuss results from the second experiment described
in Chapter 5, on generating counterfactuals. Specifically, these results are used to evaluate
the performance of Diff-MCCE on the entire three-step process outlined in Chapter 4.

Table 7.1 shows the obtained values of the counterfactual metrics described in Sec-
tion 5.5, for each dataset and each model. In addition, notice that we do not perform a
systematic qualitative evaluation, like in Chapter 6, but we add Table 7.2 to show some
examples of factuals and their corresponding counterfactuals, generated from each of the
synthesizers. In these examples, we observe that some of the counterfactuals are rather
similar, while others are quite different. We cannot establish if some of them are more
reasonable than others with the naked eye, but perhaps a domain expert could argue in
either direction about each of the proposed counterfactuals. However, notice that the ac-
tionability constraint is fulfilled in all these examples, which we have highlighted with grey
vertical bars in Table 7.2. Moreover, observe that the validity constraint is also fulfilled
in all these examples, because the predictions on the CEs are positive, in contrast to the
negative predictions on the factuals. We deduce this from the rows fAD(·), fCH(·) and
fDI(·), which represent the binary predictions from the CatBoost models, after applying
a discrimination threshold of 0.5, on the observations in each column. For clarity, we add
the subscripts to explicitly highlight that separate classifiers are trained on each of the
datasets.

Naming. We use the naming conventions from Section 6.1, except that the terms
refer to the use of the different generative models followed by the post-processing steps
outlined in Chapter 4. Specifically, post-processing in MCCE is performed as explained
in Section 4.1, while post-processing in the three other cases is performed as explained in
Section 4.2.

Quantitative evaluation. Observe in Table 7.1 that MCCE has the lowest reported
average sparsity and Gower distance in all three datasets. In addition, MCCE provides
explanations for all the factuals in all cases, except for one case in the first trial in AD.
This exception is a consequence of the fact that none of the K = 10000 synthetic points
are valid for the given factual, according to the predictions from the CatBoost model.
This could likely have been solved by increasing K. Overall, MCCE displays the lowest
average metrics and lowest standard errors, except for a case where TVAE displays a lower
standard error in sparsity in CH. Thus, at first sight we conclude, similarly to in the
first experiment, that MCCE steadily outperforms its rivals, with less variable and better
performance. However, as discussed previously, Table 7.1 does not paint the entire picture.
We construct and display some box plots in Figures 7.1 to 7.3, in order to complement
the information from the table. Specifically, these box plots are constructed based on the
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average metric values of sparsity and Gower distance over all the counterfactuals in each
trial.

Generally, the deep learning based models suffer from worse values across the metrics,
indicating that the explanations they are able to find are of higher cost compared to the
counterfactuals that are calculated with MCCE. This is clear from both Table 7.1 and the
box plots. However, perhaps the biggest downfall of the rest of the methods is that they
are not reliably able to calculate explanations for all factuals in H, in all datasets. There
might be several reasons behind this. The most obvious reason is that the deep learning
models are less successful generative models overall, as we concluded in Chapter 6. This
deteriorates the performance of the MCCE-framework, because the two first steps rely
on high generative capacity. Next, all models, except for MCCE, are not able to sample
conditional to the fixed features, meaning that is it likely that the majority of the total
number of generated samples, K · |H|, are not actionable. Thus, this majority is discarded
during post-processing, leaving only actionable points. Then, if none of these actionable
points are valid, there are no possible explanations left in Dh, meaning that the model
cannot calculate an explanation for the corresponding factual h ∈ H. Another reason is
that K is too small, i.e. an increase in K would likely increase NCE. However, we do not
know how much of an increase would be necessary, which is an issue that merits further
research.

Interestingly, TVAE exhibits worse performance than Tabular diffusion when it comes
to NCE in AD. However, neither of these models are clearly better in AD when it comes
to the other metrics in Table 7.1 or the box plots in Figure 7.1. When it comes to CH and
DI, the Tabular diffusion models demonstrate worse performance than the two baselines
in reference to NCE. In addition, the two other metrics display quite large standard errors
compared to TVAE and MCCE, indicating that Tabular diffusion is less reliable. In the
box plots, we observe that most of the interquartile ranges, as well as the distances between
the maximums and minimums, are larger in Tabular diffusion than in the baselines, which
is in agreement with our previously mentioned observations. We declare no clear winner
in terms of performance among the deep learning methods, in reference to sparsity and
Gower distance, but we argue that TVAE is more reliable overall, because it can provide
counterfactuals for larger sets of factuals.

As a technical side note, we exclude the final trial from the averages, standard errors
and box plot calculations when working with Tabular diffusion in DI, since none of the
10 factuals are provided a counterfactual in this trial. Thus, we cannot calculate any of
the metrics in these cases.

Conclusively, we argue that MCCE is the superior method for generating counterfac-
tuals among the four variants we have investigated, representing a reliable method across
all three datasets. It would have been interesting to compare this method to other SOTA
on-manifold or algorithmic-based methods for generating CEs, similar to the comparison
performed by Redelmeier et al. [107]. We have not done this because of lack of time,
but it should be investigated further. When it comes to the relative performance of the
deep learning models, it is not clear which is better. Based on sparsity and Gower dis-
tance, the difference between the three models is not large, but we argue that there is no
evidence that supports the idea that Tabular diffusion is a better generative model than
TVAE for use in the three-step MCCE-process. In fact, the low numbers of NCE in many
cases in Tabular diffusion compared to TVAE indicates that the latter is a more reliable
choice. Finally, we find no clear evidence that supports that either of the Tabular diffusion
techniques is better for use in Diff-MCCE.
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Table 7.1: Average counterfactual performance metrics for 100 test observations from
the Adult Census (AD) and Churn Modelling (CH) datasets, as well as for 10 test ob-
servations from the Diabetes (DI) dataset. Results are produced with K = 10000. The
reported numbers are aggregations over five different random seeds, given as empirical
mean ± standard error. Downward arrows symbolize that lower is better, while upward
arrows symbolize that higher is better.

(a) Adult Census (AD)

Sparsity ↓ Gower ↓ NCE ↑
TabDiffJoint 4.76± 0.12 2.56± 0.08 [91, 92, 90, 95, 94]
TabDiffCond 4.81± 0.22 2.58± 0.15 [93, 78, 95, 93, 90]
TVAE 4.95± 0.13 2.46± 0.10 [79, 72, 88, 64, 79]
MCCE 3.43± 0.08 1.23± 0.05 [99, 100, 100, 100, 100]

(b) Churn Modelling (CH)

Sparsity ↓ Gower ↓ NCE ↑
TabDiffJoint 4.38± 0.16 1.60± 0.25 [87, 90, 90, 91, 90]
TabDiffCond 4.20± 0.11 1.34± 0.07 [89, 91, 90, 91, 90]
TVAE 4.56± 0.04 1.57± 0.07 [99, 100, 100, 99, 100]
MCCE 3.33± 0.08 0.68± 0.02 [100, 100, 100, 100, 100]

(c) Diabetes (DI)

Sparsity ↓ Gower ↓ NCE ↑
TabDiffJoint 6.00± 0.82 2.23± 1.50 [1, 1, 1, 1, 0]
TabDiffCond 5.50± 1.00 0.78± 0.14 [1, 1, 1, 1, 0]
TVAE 5.34± 0.09 0.88± 0.10 [10, 10, 10, 10, 10]
MCCE 4.56± 0.09 0.61± 0.05 [10, 10, 10, 10, 10]
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Table 7.2: Comparison of three different counterfactuals for the same factual h, in each
of the three datasets. The rows fAD(·), fCH(·) and fDI(·) represent predictions from the
CatBoost binary classifiers trained on each of the datasets. We have shortened some of
the feature names and categories in the Adult Census (AD) datasets to make the table
fit vertically.

(a) Adult Census (AD)

h TabDiffJoint TabDiffCond TVAE MCCE

age 25 25 25 25 25
fnlwgt 188767 270018 218210 96857 104097
ed num 12 13 13 13 13
cap gain 0 26013 0 99325 13550
cap loss 0 0 1933 0 0
h p w 45 52 16 49 45
workcl. Priv. Priv. Priv. Self-emp-n. Priv.
mar stat Nev-mar. Mar-civ. Mar-civ. Nev-mar. Nev-mar.
occup. Exec. Other-s. Sales Prof. Exec.
rel. Not-fam. Not-fam. Husband Not-fam. Not-fam.
race White White White White White
sex Male Male Male Male Male
country US US US US US

fAD(·) 0 1 1 1 1

(b) Churn Modelling (CH)

h TabDiffJoint TabDiffCond TVAE MCCE

CreditScore 509 850 470 539 511
Age 46 46 46 46 46
Tenure 1 1 0 1 1
Balance 0.0 0.0 0.0 96236.7 104947.7
NumOfProducts 1 1 2 1 1
EstimatedSalary 71244.6 53670.2 114890.7 48596.9 55072.3
Geography France France France France France
Gender Female Female Female Female Female
HasCrCard 1 1 1 1 1
IsActiveMember 0 1 0 0 0

fCH(·) 0 1 1 1 1

(c) Diabetes (DI)

h TabDiffJoint TabDiffCond TVAE MCCE

num pregnant 0 0 0 0 0
plasma 177 199 146 108 134
dbp 60 0 69 60 60
skin 29 31 30 29 30
insulin 478 846 742 90 158
bmi 34.6 0.0 30.9 31.3 34.6
pedi 1.1 0.1 0.9 0.4 0.5
age 21 21 21 21 21

fDI(·) 0 1 1 1 1
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Figure 7.1: Box plots for the CE metrics across all five trials in the Adult Census
(AD) dataset. The downward arrows in the titles symbolize that lower is better.
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Figure 7.2: Box plots for the CE metrics across all five trials in the Churn Modelling
(CH) dataset. The downward arrows in the titles symbolize that lower is better.
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Figure 7.3: Box plots for the CE metrics across all five trials in the Diabetes (DI)
dataset. The downward arrows in the titles symbolize that lower is better.





Chapter 8

Summary and Outlook

In this chapter, we summarize the work. Moreover, we acknowledge and discuss some
limitations of our study, and provide a plethora of further research opportunities, which
we have not been able to pursue due to lack of time.

Summary

In this thesis, we have developed a self-contained and accessible introduction to diffusion
models. This was done by providing preliminaries on generative modelling, deep learning,
autoencoders and their variational extensions ranging from a simple VAE to a more com-
plex hierarchical variant. We have explained a specific diffusion model for tabular data,
including assumptions and restrictions apt for applications within this data modality. In
particular, we have elaborated a more detailed theoretical exposition of TabDDPM [67].
Finally, we have constructed a method for applying Tabular diffusion to generate coun-
terfactual explanations, which are up-and-coming tools from XAI. In order to accomplish
this, we first provided the unfamiliar reader with an introduction to XAI and counter-
factual explanations, before adapting MCCE [107], which is our fundamental model of
choice.

Beyond the theoretical work, we have performed two experiments to evaluate our
diffusion model for tabular data. Precisely, we designed, implemented and evaluated
two different strategies for applying this model in practice. For some perspective, we
evaluated the performance of Tabular diffusion relative to two carefully selected baselines
with previously proven outputs. Preliminaries on decision trees, gradient tree boosting,
TVAE [146] and a selection of evaluation metrics has been provided, to facilitate evaluation
of the diffusion model in relation to the baselines. The first experiment evaluated the
generative capabilities of Tabular diffusion relative to TVAE and the tree-based model in
MCCE. The second experiment evaluated the performance of Diff-MCCE on synthesizing
counterfactuals relative to MCCE and an alternative variant of MCCE with TVAE as
generative model.

The results from our experiments indicate that the shallow tree-based technique is
superior to the deep generative frameworks we have investigated at modelling p∗(x, y), at
sampling from it and at counterfactual synthesis using the modular three-step procedure
introduced by Redelmeier et al. [107]. Moreover, we found no convincing evidence that
Tabular diffusion performs better than any of the baselines at modelling the underlying
joint data distribution and at sampling from it. In continuation, we argue that Tabular
diffusion with direct joint modelling generally is superior to Tabular diffusion with con-
ditional modelling at solving the first two steps in the three-step process. For generating
tabular counterfactuals, which is the main application of diffusion models we are inter-
ested in, we found no evidence that Tabular diffusion performs better than the baselines.
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The diffusion models seem to yield quite similar performance to TVAE in the second ex-
periment, according to sparsity and Gower distance, but they appear unable to reliably
calculate counterfactuals for many of the factuals. Finally, we found no compelling evi-
dence that separate either of the Tabular diffusion models in performance on generating
explanations.

The tree-based model introduced alongside the three-step method by Redelemeier et
al. [107] is especially designed to tackle the problem of generating counterfactuals. Specif-
ically, it implements a generator that synthesizes conditional to the fixed features, such
that all K synthetic observations per factual are actionable before post-processing. With
this in mind, none of the three deep learning models we investigated in Experiment II
implement conditional generation, which seems to be the largest disadvantage of these
methods. An addition of this feature to any of these models would likely notably im-
prove upon the results we obtained in the second experiment. This can, for instance, be
implemented in TVAE by combining it with CVAE [125], while it can be implemented
in Tabular diffusion by adding guidance, either classifier guidance [20] or classifier-free
guidance [48]. Moreover, we hypothesize that systematic hyperparameter tuning would
yield marked performance increases in the deep learning methods. It seems probable that
such tuning would not yield as pronounced increases in performance in MCCE, as the
tree-based generator already performs quite closely to the real cases, as observed in the
qualitative and quantitative analyses in Chapter 6.

Our systematic evaluation has not taken aspects like computational burden, imple-
mentation difficulty, theoretical complexity or ease of adoption into account. This is a
clear limitation of our empirical study, because these are all critical aspects for utility
in business, industry or academia. Despite this limitation, we argue that the tree-based
baseline model is superior with regards to these characteristics as well. First of all, it is
easier to understand, building on decision trees, which have been around for a long time.
Moreover, it is easier to implement, making it easier to adopt, and we observed that the
computational burden is clearly less than that of the deep learning variants, despite taking
no exact measurements of metrics like training and sampling times. When it comes to
the two deep learning models, TVAE seems superior to Tabular diffusion with respect to
most, if not all, of these characteristics. Theoretically, Tabular diffusion is obviously more
involved, as we observe from this work. In addition, it is more computationally demanding
than TVAE, at least in our implementations. Also, we argue that it is more burdensome
to implement. Thus, all in all, we found no evidence that indicates that the out-of-the-box
performance of MCCE, in either of the three steps from Redelmeier et al. [107], is inferior
to any of the deep generative frameworks, especially Tabular diffusion.

Based on our findings, we argue that MCCE represents a baseline that is hard to
beat. This seems obvious from Experiment I, as the tree-based model is the superior
generative model, even displaying results close to the real results in both the qualitative
and quantitative analyses. Consequently, we urge researchers to use the tree-based model
as a reference in future research on generative models for tabular data. When it comes to
MCCE as a method for generating counterfactuals, we have not presented any evidence
pointing at the level of performance of MCCE relative to other on-manifold or algorithmic-
based methods. However, based on the performance reported by Redelmeier et al. [107],
it is tempting to urge researchers to employ MCCE as a baseline also for this purpose.

Limitations

Keep in mind that our study has been under strict time constraints, and we need to
acknowledge some additional important limitations of our work. Above all, we should
interpret our results with caution. When it comes to our empirical study, our objective
has been to provide an extensive and fair evaluation of Tabular diffusion, relative to the
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reference models. However, we acknowledge that further evaluation is necessary in order
to draw more certain and significant conclusions.

First, despite our efforts, we have focused on a rather limited set of real-world datasets
in our assessment. Investigation of a larger group of datasets, containing, e.g., high-
dimensional datasets, data with multivariate responses, multiclass classification datasets
and regression datasets, would likely add more nuance to the discussion. Second, we
have fixed certain neural network architectures, optimizers, batch sizes and other hyper-
parameters, in addition to certain classifiers. Implementation of a thorough procedure for
optimizing these choices could yield more useful and realistic results for the practitioner.
Third, we have chosen some popular metrics for evaluating generative models and counter-
factual synthesizers. However, unsupervised evaluation of this sort remains challenging, as
there exists no agreed upon best practice for this. For instance, ablation studies could be
conducted to investigate Tabular diffusion with and without certain features. In addition,
utilizing a larger set of metrics, for example for simultaneously measuring performance on
the three essential conditions in the generative learning trilemma [145], would be benefi-
cial for increased confidence in any conclusions. Fourth, the inherent stochasticity of the
methods poses another challenge when it comes to drawing significant conclusions. We
have aimed at controlling some of this variability during the quantitative evaluation by
aggregating the results over five distinct trials, but the qualitative evaluation is lacking
robustness to random seeds. Nevertheless, we urge researchers to implement evaluation
procedures with meticulous care, in order to investigate the possible practical benefits of
Tabular diffusion, and other deep generative models, for applications with tabular data.

Outlook

Conclusively, we provide some ideas for further research. We do not go into detail about
each specific research direction, but focus on providing actionable ideas, with references if
relevant. Naturally, there are plenty of extensions we have not been able to pursue, several
of which we expect to improve the obtained results from the deep learning frameworks,
especially Tabular diffusion.

Improving Tabular diffusion. To begin with, we consider some techniques aimed at
improving the relatively simple Tabular diffusion model. The most obvious strategies for
increasing the flexibility of the model are connected to the set of simplifying assumptions
we made during our theoretical development in Chapter 3. For example, recall that we
chose to define the variance schedule, βt, t ∈ {1, . . . , T}, a priori, introducing the linear
and cosine schedules. In contrast to this, we could either design a new a priori schedule
or define the variance schedule as parameters that can be estimated during training [62].
Moreover, we could perhaps redefine the constant values β1, βT or s to better fit the
tabular data modality, if we prefer working with the linear or cosine schedule, respectively.
Subsequently, recall from Chapter 3 that we also assumed that the variance parameters in
the reverse process densities, Σθ(z1, 1) and Σθ(zt, t), t ∈ {2, . . . , T}, were known a priori.
Precisely, we defined their values as Σθ = Σ̃tI, t ∈ {2, . . . , T}, where Σ̃t is a combination
of the variance schedule parameters, and Σθ(z1, 1) = aI, where a ∈ R is arbitrary. We
imagine two possible strategies for redefining these parameters to increase flexibility. First,
we could simply define them a priori, but combine it with learning the variance schedule.
Estimation of the variance schedule would then, as a consequence, iteratively change
the variance parameters, until training converges, which implicitly learns the variance
parameters [62]. Second, they could be learnt explicitly, similarly to how we learn the
mean parameters; by teaching a ML model to predict the parameter in each diffusion step.
However, Nichol and Dhariwal [21] find that predicting the variances like this is difficult in
practice, and instead defined the variance parameters as an interpolation between Σ̃t and
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βt at each diffusion step, where a vector combining the two quantities is output from a
model. According to Nichol and Dhariwal [21] “learning variances of the reverse diffusion
process allows sampling with an order of magnitude fewer forward passes with a negligible
difference in sample quality, which is important for the practical deployment of these
models”. This leads us nicely into the next propositions, for improved sampling speed.
For instance, we could reduce the number of reverse steps in Tabular diffusion [21, 75,
127], or we could introduce parallel computation of reverse process transitions, as recently
proposed by Shih et al. [121].

Another simplifying assumption we made in Chapter 3 is to sample diffusion steps
uniformly for training the reweighted loss function, LGDsimple, in Gaussian diffusion. We
could replace this uniform sampling with importance sampling [21], which might lead to
better optimums. In continuation, in Chapter 5 we mentioned the sinusoidal embeddings
[141], which have not been tuned. In the literature, it seems like most research after Ho et
al. [47] simply employs this technique, without explicitly investigating other options. For
instance, could we provide the neural network with the necessary diffusion step awareness
by simply adding or concatenating fractions in the range [1, T ] to the features? We argue
that the effects of the sinusoidal embeddings, as well as alternative methods, should be
investigated in further research. In addition, it would be interesting to discuss why these
embeddings, as well as the linear embedding of the label in the conditional modelling
technique, are added to the diffused input transformation, making up the MLP in the
reverse process. Why are they, for instance, not concatenated? Would this yield completely
different performance? This should also be investigated. In connection to these ideas, one
could investigate use of distinct diffusion models for different diffusion steps, which, in the
limiting case, effectively removes the need for a diffusion step embedding [138]. As far as
we know, this has not been investigated to a great extent, because of computational issues,
but we expect a tractable implementation of this idea to notably increase performance in
diffusion models.

Moving on, we suggest further research on designing new variants of diffusion models
based on different distributional or parametric assumptions. For example, for the con-
tinuous features, it is not clear that a Gaussian assumption would work well as decoding
distribution for all features. Defining a different decoding distribution, either throughout
the entire reverse process, consequently having to change the forward process as well, or
just by changing the final decoder distribution, could yield fruitful results for features
with less regular distributions, even after applying a Quantile transformation. Naturally,
since we decided to treat all numerical features as continuous, these reflections also hold
for integer values. In addition, Multinomial diffusion can be extended into a more general
framework for discrete state-space diffusion, moving beyond forward information destruc-
tion with uniform probabilities, as introduced by Austin et al. [3].

Data pre-processing. An ever-present matter in data analysis is data pre-processing.
We suggest some extensions to the methods we applied, which could be worth pursuing
in future research. First, the Gaussian Quantile transformer we applied to the numeri-
cal features is robust, but it may distort linear correlations in a dataset, because it is a
non-linear transformation. This might limit the correctness of the investigated correlation
matrices Figure 6.1, despite the fact that we used the same transformation on all datasets
when modelling with Tabular diffusion and MCCE. However, in retrospect, we could have
applied the Quantile transformation before using the mode-specific normalization scheme
in TVAE as well, which one could argue would make the comparison between TVAE and
the two other methods slightly more appropriate. This idea leads to a more general sugges-
tion, where combinations of pre-processing transformations can be applied. For instance,
the Gaussian Quantile transformation is approximate, meaning that its output is only ap-
proximately standard Gaussian. Thus, this transformation could, e.g., be followed by an
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application of standardization, perhaps yielding data closer to standard Gaussian, before
training the models. This could improve convergence of MLP-training [71] or improve the
general performance of models with Gaussian, or other, regularity assumptions. Moreover,
another interesting idea that came to mind is to apply the mode-specific normalization
introduced by Xu et al. [146] to data that is modelled with Gaussian diffusion. There is
no obvious way of doing this, but our idea is the following: pre-process the continuous
data using the mode-specific scheme and define separate Gaussian diffusion processes for
each Gaussian in the mixture model from the pre-processing scheme. Keeping the no-
tation from Section 2.9 in mind, this essentially requires Mj forward processes for each
continuous feature, Xj ∈ Xcont, analogously to how we define C Multinomial diffusion
processes in Tabular diffusion. After defining the forward processes, proceed by training
the reverse processes. Notice that this is a mere idea at this stage — we do not know if
it has any merit. Nevertheless, in further works, other continuous transformations should
be investigated. Moving on from the continuous features, pre-processing categorical fea-
tures is another issue that should be investigated. One-hot encoding (OHE) is regarded
as the standard technique for this purpose. However, as Lee et al. [73] point out; treating
discrete variables in continuous spaces, like is the case after OHE, may be suboptimal,
essentially compromising what they call the “inter-column correlations” between the con-
tinuous and discrete variables. Moreover, recall that one of the reasons we chose to treat
integer features as if they were continuous is related to compute and memory; when using
OHE on discrete random variables with large sample spaces, the memory and compute
requirements can be very large. Thus, perhaps alternative pre-processing methods for
categorical data could facilitate treating integers as categorical. For instance, Zheng and
Charoenphakdee [147] propose two other techniques for pre-processing categorical data;
analog bits encoding and feature tokenization. Similar techniques should be investigated
in conjunction with Tabular diffusion, in order to more effectively handle continuous and
categorical features at once.

New design for tabular data. Beyond the tweaks in Tabular diffusion described
previously, larger structural changes in the design of the diffusion model can be made. Lee
et al. [73] recently introduced a novel technique for combining Gaussian and Multinomial
diffusion models, which we argue is a more complicated extension of the relatively simple
design we highlighted in Section 3.6. Essentially, they propose two co-evolving diffusion
models, one Gaussian and one Multinomial, for modelling continuous and discrete columns
simultaneously. The individual diffusion models work conditionally to each other, at each
diffusion step, in both the forward and reverse processes — hence they are co-evolving.
This exciting novel twist on diffusion models for tabular data should be compared to work
in this thesis in future research, but we expect it to perform notably better than Tabular
diffusion on both qualitative and quantitative metrics, based on initial impressions from
Lee et al. [73].

Theoretical extensions. We argue that a great advantage of diffusion models is that
they have a vast theoretical underpinning, as exemplified in Section 3.3, where we note that
diffusion models can be equivalently discussed from a perspective of score-based generative
models [128, 129, 130]. Further research should focus on bridging the gap between these
two perspectives [47, 50], with tabular data as a focal point. In addition, we suggest
further research on latent diffusion models (LDMs), for tabular data. To the best of our
knowledge, research of this sort has not been conducted. LDMs have recently been used
to build high-performing models in, e.g., image generation [110] and video synthesis [10],
effectively solving some of the most pressing issues in diffusion models, like scalability and
computational demands. We believe such models could be worth pursuing for tabular data
applications, especially for high-dimensional data.

Privacy. Finally, we mention a research direction we have not considered in detail
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previously in this work; protection of privacy. The societal impact of high-performing
generative models is not solely positive, because an increase in realistic fake data might
lead to more severe misuse, including abuse against individuals. As a consequence, the
topic of privacy protection needs to be studied [73]. In fact, several deep generative models
have been proposed for synthesizing tabular data with differential privacy [28] guarantees
[51, 57, 74]. Some research on differentially private diffusion models has been conducted
recently as well [23, 39, 77], but it has mostly been restricted to image data, consistent
with the modality that diffusion models predominantly have been developed for. To the
best of our knowledge, no thorough research has been conducted on diffusion models with
inherent privacy protection for tabular data. As a consequence, further research should be
conducted on this matter, as we predict that this is a domain where deep generative models
could be highly beneficial over shallow methods like the tree-based model from MCCE.
Such a result would give an affirmative answer to the previously mentioned question raised
by Kotelnikov et al. [67]; “if sophisticated deep generative models are needed”.
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Appendices

The appendices are organized as follows. Appendix A defines the categorical distribution
and outlines how we can sample from it in practice. Appendix B shows how the KL
divergence term in the ELBO in VAE can be integrated analytically under Gaussian
assumptions. Appendix C provides complete derivations of several equations referenced
when discussing diffusion models in Chapter 3. Appendix D contains further descriptions
of the datasets that are used for the experiments we design in Chapter 5, including how
we initially process them. Appendix E adds some thoughts on implementing Multinomial
diffusion. Appendix F contains a proof of the closed form formula for calculating the KL
divergence between two multivariate Gaussian distributions.

The code we have developed while working on this thesis can be found in the following
repository on GitHub: https://github.com/alexaoh/tabular-diffusion-for-count

erfactuals.
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Appendix A

The Categorical Distribution

The categorical distribution plays an important role in our tabular diffusion model in
Chapter 3 and appears in conjunction with the decoder distributions in VAEs in Sections
2.8 and 2.9. The term categorical distribution has no universally acknowledged definition
across all disciplines, like, for example, the Gaussian distribution. For instance, in ML,
the categorical and multinomial distributions are conflated, making it essential for us to
define clearly what our terminology refers to mathematically. This appendix is devoted
to this task.

The categorical distribution is a probability distribution that describes the outcome
of a single draw from a discrete random variable X with Ψ possible categories, labelled
or indexed, but not necessarily ordered, by {1, . . . ,Ψ}. The probability of each of the
categories is specified by a probability parameter, which we denote by π = {π1, . . . , πΨ}.
Thus, P (x = i) = πi, i ∈ {1, . . . ,Ψ}, and ∥π∥1 = 1. Based on this, the PMF of X is

Categorical(x;π) := π
[x=1]
1 · · · π[x=Ψ]

Ψ , (A.1)

where [·] is the Iverson bracket, which is defined as

[ξ] :=

{
1, if ξ is true,

0, otherwise,

for a condition ξ. Notice that the support of the function in Equation (A.1) is a scalar value
such that x ∈ {1, . . . ,Ψ}, representing the index of the corresponding category of a real-
ization x of X. When we denote the PMF with a vector argument, like Categorical(x;πj),
we refer to the application of Equation (A.1) element-wise, where each realization xj , j ∈
{1, . . . , p}, in x = {x1, . . . , xp} has its own probability parameter πj , each containing Ψ
elements. For instance, when discussing the MNIST data mentioned in Section 2.8, where
each image can be represented as x ∈ {0, . . . , 255}1×p, the notation in Equation (2.17)
refers to a situation where the pixels follow a random vector X = {X1, . . . , Xp}, where
each component Xi, i ∈ {1, . . . , p}, is distributed according to a categorical distribution
with PMF

Categorical(x;πi) = π
[x=1]
i,1 · · · π[x=256]

i,256 ,

and separate probability parameters πi = {πi,1, . . . , πi,256}, i ∈ {1, . . . , p}. Thus, for
correctness, fθ(z) in Equation (2.17) should actually be a matrix with softmax applied
row-wise to the outputs of the neural network, where each row gives rise to one πi. This
is a slight abuse of notation, but we skip this detail.

When analyzing data in practice, realizations of categorical variables are often one-hot
encoded (OHE), meaning that the scalar x representing the index i of the corresponding
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category that the realization has taken is represented by a vector x ∈ RΨ×1, where element
i equals one and the rest of the elements are zero. In such a case, we write the the PMF
of X as

CategoricalOHE(x;π) := πx
1

1 · · · πx
Ψ

Ψ , (A.2)

where x = {x1, . . . , xΨ} and we add the subscript OHE to specify that the support of this
function is a OHE representation, x, of x. This PMF was for instance adopted by Bishop
[8], without using the term categorical distribution, and by Murphy [87], referring to it as
the categorical, discrete and multinoulli distribution. To be clear, the PMFs (A.1) and
(A.2) describe the same discrete random variable X, but have different supports, because
they are based on slightly different representations.

A.1 Gumbel-Max Trick

We explain the Gumbel-Max trick [78], a method frequently used for sampling from a
categorical distribution in practice. For instance, we use this trick to train, and sample
from, Multinomial diffusion models, as noted in Sections 3.4 and 3.5.

Consistent with our previous notation in this appendix, we let X denote a categorical
random variable with probability parameter π = {π1, . . . , πΨ}. In addition, let

gk = − log (− log uk), uk ∼ Uniform[0, 1], k ∈ {1, . . . ,Ψ},
be Ψ i.i.d. samples from a standard Gumbel distribution [54]. Then, a sample from the
categorical distribution with PMF given in Equation (A.1) can be drawn as

x = arg max
k

(log πk + gk). (A.3)

Moreover, a sample from the OHE variant of the PMF, as given in Equation (A.2), can
be drawn by simply representing the resulting x from Equation (A.3) in OHE format [54].

As a side note, the arg max function is not differentiable, which is problematic when
using this trick in certain situations. To avoid issues related to its non-differentiability,
the Gumbel-Softmax, otherwise known as the Concrete, distribution was invented [54, 79].
Without going into detail, this distribution was derived by using the softmax function
as an approximation of the arg max function in Equation (A.3). This distribution can,
for instance, be used to implement a discrete version of the continuous reparameterization
trick, which we have seen some vital applications of in VAEs and Gaussian diffusion models
in this work. The interested reader is referred to Jang et al. [54] and Maddison et al. [79]
for detailed expositions of this invention. Interestingly enough, these two sets of authors
developed highly similar methods in parallel.



Appendix B

Derivation of KL Term in ELBO in
VAE With Gaussian Assumptions

As stated in Section 2.8, the KL divergence term in L̂IIθ,ϕ can be integrated analytically
under certain assumptions. While discussing VAEs, we simply stated the solution, assum-
ing a specific Gaussian prior and encoder, as defined in Equation (2.18). The details were
however omitted. Here, we provide a simple proof.

Recall that we let Λ be the latent space dimension and denote the elements of µϕ(x)

and σ2
ϕ(x) by µjϕ,x and (σjϕ,x)2, for j ∈ {1, . . . ,Λ}, respectively. For clarity, the diagonal

covariance structure of qϕ(z|x) implies that diag[σ2
ϕ(x)] = diag((σ1ϕ,x)2, . . . , (σΛϕ,x)2) is a

diagonal matrix with the elements of σ2
ϕ(x) on its diagonal. In general, the KL divergence

between two multivariate Gaussian distributions with densities p1(x) = N (x;µ1,Σ1) and
p2(x) = N (x;µ2,Σ2), in Rn is

DKL(p1(x) ∥ p2(x)) =
1

2

(
log

detΣ2

detΣ1
− n+ trace

(
Σ−1

2 Σ1

)
+ (µ2 − µ1)

T Σ−1
2 (µ2 − µ1)

)
,

which is proved in Appendix F. In our case, n = Λ, p1 = qϕ(z|x) and p2 = p(z), meaning
that µ1 = µϕ(x), Σ1 = σ2

ϕ(x)I, µ2 = 0 and Σ2 = I, which yields

DKL(qϕ(z|x) ∥ p(z))

=
1

2

(
log

det I

detσ2
ϕ(x)I

− Λ + trace(I−1σ2
ϕ(x)I) + (0− µϕ(x))T I−1(0− µϕ(x))

)

=
1

2

− log
Λ∏
j=1

(σjϕ,x)2 − Λ +
Λ∑
j=1

(σjϕ,x)2 +
Λ∑
j=1

(µjϕ,x)2


=

1

2

− Λ∑
j=1

(log(σjϕ,x)2 + 1) +
Λ∑
j=1

((σjϕ,x)2 + (µjϕ,x)2)


= −1

2

Λ∑
j=1

(1 + log(σjϕ,x)2 − (µjϕ,x)2 − (σjϕ,x)2).
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Appendix C

Complete Derivations in Diffusion
Models

This section is devoted to deriving the essential equations in diffusion models, as discussed
in Chapter 3. Most of this material is gathered from papers [47, 49, 76, 124], modified
and extended where we find it necessary. Section C.1 contains derivations for Gaussian
diffusion models, while Section C.2 contains derivations for Multinomial diffusion models.

C.1 Gaussian Diffusion

Closed Form Forward Density Formula

The closed form formulation of any density in the forward process, as stated in Equation
(3.10), is derived here. Specifically, the derivation is inspired by Luo [76]. Recall the
Gaussian assumptions in the forward process,

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), t ∈ {2, . . . , T},
q(z1|x) = N (z1;

√
1− β1x, β1I).

(C.1)

According to the reparameterization trick, sampling from the Gaussian distributions rep-
resented by the densities in Equation (C.1) may be achieved by

zt =
√

1− βtzt−1 +
√
βtεt−1, t ∈ {1, . . . , T}

where z0 := x and εt, t ∈ {0, . . . , T − 1}, is i.i.d. standard Gaussian noise of the same
dimension as zt, t ∈ {1, . . . , T}. Equation (3.10) is derived by recursive use of this trick.
Before doing so, we let ε∗t , t ∈ {0, . . . , T − 1}, denote a second set of i.i.d. standard
Gaussian noise observations. Then, we proceed to a direct calculation,

zt =
√

1− βtzt−1 +
√
βtεt−1

=
√

1− βt(
√

1− βt−1zt−2 +
√
βt−1εt−2) +

√
βtεt−1

=
√

(1− βt)(1− βt−1)zt−2 +
√
βt−1 − βtβt−1εt−2 +

√
βtεt−1 (C.2)

=
√

(1− βt)(1− βt−1)zt−2 +
√
βt−1 − βtβt−1 + βtε

∗
t−2 (C.3)

=
√

(1− βt)(1− βt−1)zt−2 +
√

1− (1− βt)(1− βt−1)ε
∗
t−2

=
√

(1− βt)(1− βt−1)(
√

1− βt−2zt−3 +
√
βt−2εt−3) +

√
1− (1− βt)(1− βt−1)ε

∗
t−2

=
√

(1− βt)(1− βt−1)(1− βt−2)zt−3 +
√

1− (1− βt)(1− βt−1)(1− βt−2)ε
∗
t−3
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=

√√√√ t∏
i=(t−2)

(1− βi)zt−3 +

√√√√1−
t∏

i=(t−2)

(1− βi)ε∗t−3

...

=

√√√√ t∏
i=2

(1− βi)z1 +

√√√√1−
t∏
i=2

(1− βi)ε∗1

=

√√√√ t∏
i=1

(1− βi)x +

√√√√1−
t∏
i=1

(1− βi)ε∗0

=

√√√√ t∏
i=1

αix +

√√√√1−
t∏
i=1

αiε
∗
0

=
√
ᾱtx +

√
1− ᾱtε∗0, (C.4)

where the equality of Equations (C.2) and (C.3) is achieved by using that the sum of two
independent Gaussian random variables is Gaussian, with mean as the sum of means and
variance as the sum of variances. More precisely,

√
βt−1 − βtβt−1εt−2 may be interpreted

as a sample from N (0, (βt−1−βtβt−1)I) and
√
βtεt−1 may be interpreted as a sample from

N (0, βtI), meaning that their sum may be interpreted as a sample from N (0, (βt−1 −
βtβt−1 + βt)I). Notice that Equation (C.4) is the reparameterization trick applied to a
Gaussian distribution described by the density N (zt;

√
ᾱtx, (1 − ᾱt)I). Thus, we have

derived Equation (3.10).

Forward Posterior Conditioned on Data

The forward posterior densities conditioned on an arbitrary observation x ∈ D, q(zt−1|zt,x), t ∈
{2, . . . , T}, as given in Equation (3.13), are derived in this section. The derivation is in-
spired by Luo [76]. The starting point is Bayes’ rule, which reads

q(zt−1|zt,x) =
q(zt|zt−1,x)q(zt−1|x)

q(zt|x)
, t ∈ {2, . . . , T}, (C.5)

in this case. We know that q(zt|x) = N (zt;
√
ᾱtx, (1 − ᾱt)I), t ∈ {1, . . . , T}, as proved

in the previous section, which implies that q(zt−1|x) = N (zt−1;
√
ᾱt−1x, (1− ᾱt−1)I), t ∈

{2, . . . , T}. In addition, we know that q(zt|zt−1,x) = N (zt;
√

1− βtzt−1, βtI) because
q(zt|zt−1,x) = q(zt|zt−1) via the Markov property. Thus, insertion yields

q(zt−1|zt,x) =
q(zt|zt−1,x)q(zt−1|x)

q(zt|x)

=
(2π(1− ᾱt))(p+1)/2

(2πβt · 2π(1− ᾱt−1))(p+1)/2

exp {− 1
2βt
∥zt −

√
αtzt−1∥2} exp {− 1

2(1−ᾱt−1)
∥zt−1 −

√
ᾱt−1x∥2}

exp {− 1
2(1−ᾱt)

∥zt −
√
ᾱtx∥2}

∝ exp

(
−1

2

(
1

βt
∥zt −

√
αtzt−1∥2 +

1

1− ᾱt−1
∥zt−1 −

√
ᾱt−1x∥2 −

1

1− ᾱt
∥zt −

√
ᾱtx∥2

))

= exp

(
−1

2

(
1

βt
(−2
√
αtz

T
t zt−1 + αt∥zt−1∥2) +

1

1− ᾱt−1
(∥zt−1∥2 − 2

√
ᾱt−1x

Tzt−1) + C(zt,x)

))
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∝ exp

(
−1

2

(
∥zt−1∥2

(
αt
βt

+
1

1− ᾱt−1

)
− 2zTt−1

(√
αtzt
βt

+

√
ᾱt−1x

1− ᾱt−1

)))
= exp

(
−1

2

(
∥zt−1∥2

(
αt(1− ᾱt−1) + βt
βt(1− ᾱt−1)

)
− 2zTt−1

(√
αtzt(1− ᾱt−1) + βt

√
ᾱt−1x

βt(1− ᾱt−1)

)))

= exp

(
−1

2

(
∥zt−1∥2

(
1− ᾱt

βt(1− ᾱt−1)

)
− 2zTt−1

(√
αtzt(1− ᾱt−1) + βt

√
ᾱt−1x

βt(1− ᾱt−1)

)))
= exp

(
−1

2

(
1− ᾱt

βt(1− ᾱt−1)

)(
∥zt−1∥2 − 2zTt−1

(√
αtzt(1− ᾱt−1) + βt

√
ᾱt−1x

1− ᾱt

)))
= exp

(
−1

2

(
1

βt(1−ᾱt−1)
1−ᾱt

)(
∥zt−1∥2 − 2zTt−1

(√
αtzt(1− ᾱt−1) + βt

√
ᾱt−1x

1− ᾱt

)))

∝ exp

(
−1

2

(
1

βt(1−ᾱt−1)
1−ᾱt

)∥∥∥∥zt−1 −
√
αtzt(1− ᾱt−1) + βt

√
ᾱt−1x

1− ᾱt

∥∥∥∥2
)

(Complete square)

= N
(
zt−1;

(√
αtzt(1− ᾱt−1) + βt

√
ᾱt−1x

1− ᾱt

)
,
βt(1− ᾱt−1)

1− ᾱt
I

)
=: N (zt−1; µ̃t(zt,x), Σ̃tI)

where C(zt,x) is a term not involving zt−1 and where ∥·∥ is the Euclidean norm. The
completion of the square implicitly reintroduces C(zt,x), such that equality in fact holds
between the left and right hand sides of the equation. This can be verified with standard
arithmetic. Hence

µ̃t(zt,x) :=

√
ᾱt−1βt

1− ᾱt
x +

√
αt(1− ᾱt−1)

1− ᾱt
zt,

and

Σ̃t :=
1− ᾱt−1

1− ᾱt
βt.

Thus, we have derived the quantities in Equations (3.13).

Evidence Lower Bound

The ELBO, as given in Equation (3.14), is derived here. The derivation is inspired by the
corresponding derivation by Luo [76], but we have added several more detailed calculations,
as well as modified it to fit our notation. The initial expression of the ELBO of diffusion
models is almost identical to the ELBO of HVAEs, which is shown in Equation (3.7). The
expression reads

LGDθ (x) = Eq(z1,...,zT |x)

[
log

pθ(x, z1, . . . ,zT )

q(z1, . . . ,zT |x)

]
,

where the variational parameters, ϕ, have been suppressed, because the forward process
densities have no learnable parameters. Using Equations (3.8) and (3.11), it can be rewrit-
ten as

LGDθ (x) = Eq(z1,...,zT |x)

[
log

p(zT )
∏T
t=2 pθ(zt−1|zt)pθ(x|z1)

q(z1|x)
∏T
t=2 q(zt|zt−1)

]
. (C.6)

This equation is expanded further through the following calculations
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LGDθ (x) = Eq(z1,...,zT |x)

[
log

p(zT )
∏T
t=2 pθ(zt−1|zt)pθ(x|z1)

q(z1|x)
∏T
t=2 q(zt|zt−1)

]

= Eq(z1,...,zT |x)

[
log

p(zT )pθ(x|z1)
∏T
t=2 pθ(zt−1|zt)

q(zT |zT−1)
∏T−1
t=2 q(zt|zt−1)q(z1|x)

]

= Eq(z1,...,zT |x)

[
log

p(zT )pθ(x|z1)
∏T
t=3 pθ(zt−1|zt)pθ(z1|z2)

q(zT |zT−1)
∏T
t=3 q(zt−1|zt−2)q(z1|x)

]

= Eq(z1,...,zT |x)[log pθ(x|z1)] + Eq(z1,...,zT |x)

[
log

p(zT )

q(zT |zT−1)

]
+ Eq(z1,...,zT |x)

[
log

pθ(z1|z2)
q(z1|x)

]
+ Eq(z1,...,zT |x)

[
log

T−1∏
t=2

pθ(zt|zt+1)

q(zt|zt−1)

]

= Eq(z1,...,zT |x)[log pθ(x|z1)] + Eq(z1,...,zT |x)

[
log

p(zT )

q(zT |zT−1)

]
+ Eq(z1,...,zT |x)

[
log

pθ(z1|z2)
q(z1|x)

]
+
T−1∑
t=2

Eq(z1,...,zT |x)

[
log

pθ(zt|zt+1)

q(zt|zt−1)

]
= Eq(z1|x)[log pθ(x|z1)] + Eq(zT−1,zT |x)

[
log

p(zT )

q(zT |zT−1)

]
+ Eq(z1,z2|x)

[
log

pθ(z1|z2)
q(z1|x)

]
+
T−1∑
t=2

Eq(zt−1,zt,zt+1|x)

[
log

pθ(zt|zt+1)

q(zt|zt−1)

]
= Eq(z1|x)[log pθ(x|z1)]−Eq(zT−1|x)[DKL(q(zT |zT−1) ∥ p(zT ))]︸ ︷︷ ︸

(A)

−Eq(z2|x)[DKL(q(z1|x) ∥ pθ(z1|z2))]︸ ︷︷ ︸
(B)

−
T−1∑
t=2

Eq(zt−1,zt+1|x)[DKL(q(zt|zt−1) ∥ pθ(zt|zt+1)]︸ ︷︷ ︸
(C)

, (C.7)

where we show that (A), (B) and (C) hold in the following. In order to show that the
second term can be written as (A) we use the property

q(zT , zT−1|x) = q(zT |zT−1,x)q(zT−1|x) = q(zT |zT−1)q(zT−1|x),

where the first equality is a standard conditional probability calculation and the second
equality holds because of the Markov assumptions. Direct calculation then gives

(A) = Eq(zT−1,zT |x)

[
log

p(zT )

q(zT |zT−1)

]
= Eq(zT |zT−1)q(zT−1|x)

[
log

p(zT )

q(zT |zT−1)

]
=

∫∫
− log

q(zT |zT−1)

p(zT )
q(zT |zT−1)q(zT−1|x)dzTdzT−1

= −
∫
DKL(q(zT |zT−1) ∥ p(zT ))q(zT−1|x)dzT−1

= −Eq(zT−1|x)[DKL(q(zT |zT−1) ∥ p(zT ))].
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Next, in order to show that the third term can be written as (B) we use the property

q(z2, z1|x) = q(z1|z2,x)q(z2|x) = q(z1|x)q(z2|x),

which holds for similar reasons as above. Direct calculation then gives

(B) = Eq(z1,z2|x)
[
log

pθ(z1|z2)
q(z1|x)

]
= Eq(z1|x)q(z2|x)

[
log

pθ(z1|z2)
q(z1|x)

]
=

∫∫
− log

q(z1|x)

pθ(z1|z2)
q(z1|x)q(z2|x)dz1dz2

= −
∫
DKL(q(z1|x) ∥ pθ(z1|z2))q(z2|x)dz2

= −Eq(z2|x)[DKL(q(z1|x) ∥ pθ(z1|z2))].
Finally, in order to show that the fourth term can be written as (C) we use the property

q(zt−1, zt, zt+1|x) = q(zt|zt−1, zt+1,x)q(zt−1, zt+1|x) = q(zt|zt−1)q(zt−1, zt+1|x),

which holds ∀t ∈ {2, . . . , T − 1}. Then, direct calculation gives

(C) =
T−1∑
t=2

Eq(zt−1,zt,zt+1|x)

[
log

pθ(zt|zt+1)

q(zt|zt−1)

]

=

T−1∑
t=2

Eq(zt|zt−1)q(zt−1,zt+1|x)

[
log

pθ(zt|zt+1)

q(zt|zt−1)

]

=

T−1∑
t=2

∫∫∫
− log

q(zt|zt−1)

pθ(zt|zt+1)
q(zt|zt−1)q(zt−1, zt+1|x)dztdzt−1dzt+1

= −
T−1∑
t=2

∫∫
DKL(q(zt|zt−1) ∥ pθ(zt|zt+1))q(zt−1, zt+1|x)dzt−1dzt+1

= −
T−1∑
t=2

Eq(zt−1,zt+1|x)[DKL(q(zt|zt−1) ∥ pθ(zt|zt+1)].

Thus, we have expanded the ELBO into separate expectations, which can be estimated.
However, when estimating Equation (C.7), Monte Carlo (MC) estimators suffer from large
variance, especially for large values of T , since the expectations are calculated based on
several random variables at once [76]. This is one example of the phenomenon often
referred to as the curse of dimensionality [7, 44]. This is a collective term for phenomena
that often arise when dealing with data in high-dimensional spaces. Since MC estimators
use direct sampling, the number of samples necessary to achieve a reasonable accuracy
increases rapidly with an increase in dimension. Thus, they are usually highly attractive
estimators in low-dimensional probability spaces, preferably of only one dimension, but
suffer from large variance or reduced efficiency in larger dimensions. Thus, the question
is: are we able to find an expression of the ELBO that enables approximation of only
one-dimensional integrals?

In fact, in order to avoid this problem, Sohl-Dickstein et al. [124] and Ho et al. [47]
use a different expression as their ELBO. We derive this expression using Bayes’ rule, as
given in Equation (C.5). Precisely, Bayes’ equation is rewritten as
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q(zt|zt−1,x) =
q(zt−1|zt,x)q(zt|x)

q(zt−1|x)
, t ∈ {2, . . . , T}. (C.8)

In addition, we combine this with

q(zt|zt−1) = q(zt|zt−1,x), t ∈ {2, . . . , T}, (C.9)

which holds because of the Markov property. Keeping Equations (C.8) and (C.9) in mind,
we expand Equation (C.6) through the following calculations

LGDθ (x)

= Eq(z1,...,zT |x)

[
log

p(zT )
∏T
t=2 pθ(zt−1|zt)pθ(x|z1)

q(z1|x)
∏T
t=2 q(zt|zt−1)

]
.

= Eq(z1,...,zT |x)

[
log

p(zT )pθ(x|z1)
∏T
t=2 pθ(zt−1|zt)

q(z1|x)
∏T
t=2 q(zt|zt−1,x)

]
(Equation (C.9))

= Eq(z1,...,zT |x)

[
log

p(zT )pθ(x|z1)
q(z1|x)

]
+ Eq(z1,...,zT |x)

[
T∑
t=2

log
pθ(zt−1|zt)
q(zt|zt−1,x)

]

= Eq(z1,...,zT |x)

[
log

p(zT )pθ(x|z1)
q(z1|x)

]
+ Eq(z1,...,zT |x)

 T∑
t=2

log
pθ(zt−1|zt)

q(zt−1|zt,x)q(zt|x)
q(zt−1|x)

 (Equation (C.8))

= Eq(z1,...,zT |x)

[
log

p(zT )pθ(x|z1)
����q(z1|x)

]
+ Eq(z1,...,zT |x)

[
log

����q(z1|x)

q(zT |x)

]
+ Eq(z1,...,zT |x)

[
T∑
t=2

log
pθ(zt−1|zt)
q(zt−1|zt,x)

]
(Telescoping sum)

= Eq(z1,...,zT |x)

[
log

p(zT )pθ(x|z1)
q(zT |x)

]
+

T∑
t=2

Eq(z1,...,zT |x)

[
log

pθ(zt−1|zt)
q(zt−1|zt,x)

]
= Eq(z1|x) [log pθ(x|z1)] + Eq(zT |x)

[
log

p(zT )

q(zT |x)

]
+

T∑
t=2

Eq(zt,zt−1|x)

[
log

pθ(zt−1|zt)
q(zt−1|zt,x)

]
= Eq(z1|x) [log pθ(x|z1)]−DKL(q(zT |x) ∥ p(zT ))

−
T∑
t=2

Eq(zt|x) [DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt))] ,

where the second term follows from the definition of the KL divergence and the final term
follows because

T∑
t=2

Eq(zt,zt−1|x)

[
log

pθ(zt−1|zt)
q(zt−1|zt,x)

]

=

T∑
t=2

Eq(zt−1|zt,x)q(zt|x)

[
log

pθ(zt−1|zt)
q(zt−1|zt,x)

]
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=
T∑
t=2

∫∫
− log

q(zt−1|zt,x)

pθ(zt−1|zt)
q(zt−1|zt,x)q(zt|x)dzt−1dzt

= −
T∑
t=2

∫
DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt))q(zt|x)dzt

= −
T∑
t=2

Eq(zt|x) [DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt))] ,

similarly to the previous calculations of (A), (B) and (C). Moreover, the telescoping sum
is

T∏
t=2

q(zt|zt−1,x) =
T∏
t=2

q(zt−1|zt,x)q(zt|x)

q(zt−1|x)

=
q(z1|z2,x)����q(z2|x)

q(z1|x)

q(z2|z3,x)q(z3|x)

����q(z2|x)

T∏
t=4

q(zt−1|zt,x)q(zt|x)

q(zt−1|x)

= q(z1|z2,x)q(z2|z3,x) · · · q(zT−1|zT ,x)
q(zT |x)

q(z1|x)

=
q(zT |x)

q(z1|x)

T∏
t=2

q(zt−1|zt,x),

which means that

T∑
t=2

log q(zt|zt−1,x) =
T∑
t=2

log
q(zt−1|zt,x)q(zt|x)

q(zt−1|x)

= log
q(zT |x)

q(z1|x)
+

T∑
t=2

log q(zt−1|zt,x),

which was used in the derivation above. Thus, we have derived an expression of the ELBO
that facilitates approximation of only one-dimensional integrals, which is the expression
we displayed in Equation (3.14).

Direct Calculation of Lt−1

As stated in the main text, Lt−1 can be calculated directly using the formula for the KL
divergence between two Gaussians that is proved in Appendix F. The direct calculation is

Lt−1 = Eq(zt|x) [DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt))]
= Eq(zt|x)[DKL(N (zt−1; µ̃t(zt,x), Σ̃tI) ∥ N (zt−1;µθ(zt, t), Σ̃tI))]

= Eq(zt|x)

[
1

2

(
log

det Σ̃tI

det Σ̃tI
− n+ trace

(
(Σ̃tI)

−1Σ̃tI
)

+ (µθ − µ̃t)
T (Σ̃tI)

−1 (µθ − µ̃t)

)]

= Eq(zt|x)
[

1

2

(
(µθ(zt, t)− µ̃t(zt,x))T (Σ̃tI)

−1 (µθ(zt, t)− µ̃t(zt,x))
)]

= Eq(zt|x)
[

1

2Σ̃t

∥µθ(zt, t)− µ̃t(zt,x)∥22
]
, (C.10)
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where we suppress the arguments of the mean parameter predictions in the third line to
avoid line overflow. This explains why we can train the ML model µθ according to the
loss in Equation (3.15). After setting

µθ(zt, t) :=

√
ᾱt−1βt

1− ᾱt
fθ(zt, t) +

√
αt(1− ᾱt−1)

1− ᾱt
zt,

this expression can be further simplified to

Lt−1 = Eq(zt|x) [DKL(q(zt−1|zt,x) ∥ pθ(zt−1|zt))]

= Eq(zt|x)
[

1

2Σ̃t

∥µθ(zt, t)− µ̃t(zt,x)∥22
]

= Eq(zt|x)

 1

2Σ̃t

∥∥∥∥∥
√
ᾱt−1βt

1− ᾱt
fθ(zt, t) +

√
αt(1− ᾱt−1)

1− ᾱt
zt −

√
ᾱt−1βt

1− ᾱt
x−
√
αt(1− ᾱt−1)

1− ᾱt
zt

∥∥∥∥∥
2

2



= Eq(zt|x)

 1

2Σ̃t

∥∥∥∥∥
√
ᾱt−1βt

1− ᾱt
fθ(zt, t)−

√
ᾱt−1βt

1− ᾱt
x

∥∥∥∥∥
2

2


= Eq(zt|x)

[
1

2Σ̃t

ᾱt−1β
2
t

(1− ᾱt)2
∥fθ(zt, t)− x∥22

]
.

This explains why we can train a model, fθ, to predict the input instance x ∈ D, using
the loss in Equation (3.17), which is the second strategy from Ho et al. [47] for learning
the reverse process parameters in a Gaussian diffusion model. Finally. the third strategy
can be derived by realizing that the rearrangement

x =
zt −

√
1− ᾱtε√
ᾱt

,

of q(zt|x), where ε is a realization of E ∼ N (0, I), can be inserted into µ̃t(zt,x). This
insertion yields

µ̃t(zt,x) =

√
ᾱt−1βt

1− ᾱt
x +

√
αt(1− ᾱt−1)

1− ᾱt
zt

=

√
ᾱt−1βt

1− ᾱt
· zt −

√
1− ᾱtε√
ᾱt

+

√
αt(1− ᾱt−1)

1− ᾱt
zt

=
βt

1− ᾱt
· zt −

√
1− ᾱtε√
αt

+

√
αt(1− ᾱt−1)

1− ᾱt
zt

=
βt

(1− ᾱt)
√
αt

zt −
βt
√

1− ᾱtε
(1− ᾱt)

√
αt

+

√
αt(1− ᾱt−1)

1− ᾱt
zt

=

(
βt + αt(1− ᾱt−1)

(1− ᾱt)
√
αt

)
zt −

βt√
1− ᾱt

√
αt

ε

=

(
1− αt + αt − ᾱt

(1− ᾱt)
√
αt

)
zt −

βt√
1− ᾱt

√
αt

ε

=
1√
αt

zt −
βt√

1− ᾱt
√
αt

ε

=
1√
αt

(
zt −

βt√
1− ᾱt

ε

)
.
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This means that we can match the two means by defining

µθ(zt, t) :=
1√
αt

(
zt −

βt√
1− ᾱt

gθ(zt, t)

)
,

where gθ is a predictor of ε. Insertion into Equation (C.10) yields

Lt−1 = Eq(zt|x)
[

1

2Σ̃t

∥µθ(zt, t)− µ̃t(zt,x)∥22
]

= Ep(ε)

 1

2Σ̃t

∥∥∥∥∥ 1√
αt

zt −
βt√

1− ᾱt
√
αt

gθ(zt, t)−
1√
αt

zt +
βt√

1− ᾱt
√
αt

ε

∥∥∥∥∥
2

2


= Ep(ε)

 1

2Σ̃t

∥∥∥∥∥− βt√
1− ᾱt

√
αt

gθ(zt, t) +
βt√

1− ᾱt
√
αt

ε

∥∥∥∥∥
2

2


= Ep(ε)

[
1

2Σ̃t

β2t
αt(1− ᾱt)

∥ε− gθ(zt, t)∥22
]
,

where the expectation is taken with respect to E ∼ p(ε) = N (ε;0, I) because of the
reparameterization trick. Recall that zt =

√
ᾱtx +

√
1− ᾱtε. This explains why we

can train a model, gθ, to predict the added noise during diffusion of the input instance
x ∈ D, ε, using the loss function in Equation (3.20). In conclusion, we have shown how
Lt−1, t ∈ {2, . . . , T}, can be calculated in three different ways, each case indicating what
quantity we train our ML model to predict.

Inclusion of L0 in LGDsimple

In the main text we state that explicitly defining pθ(x|z1) as

pθ(x|z1) = N (x;µθ(z1, 1),Σθ(z1, 1)),

µθ(z1, 1) =
1√

1− β1

(
z1 −

√
β1gθ(z1, 1)

)
,

Σθ(z1, 1) = aI,

explains why L0 is in fact included in LGDsimple when t = 1. In this section, we show that

minimizing LGDsimple when t = 1 is equivalent to explicitly defining pθ(x|z1) according to
the equations above, before reweighting log pθ(x|z1) and including this term in the loss
function alongside LGDsimple for t ∈ {2, . . . , T}. The calculations are simple, but we add
them here for completeness.

Following the definition above,

log pθ(x|z1) = logN (x;µθ(z1, 1),Σθ(z1, 1))

= log

{
(2π)−

p+1
2 det(aI)−

1
2 exp

[
−1

2
(x− µθ)T (aI)−1(x− µθ)

]}
= − 1

2a
∥x− µθ∥22 + C,

where we have added all constants irrelevant to the optimization problem in C ∈ R. Recall
that q(z1|x) = N (z1;

√
1− β1x, β1I), meaning that the reparameterization trick can be

applied to yield z1 =
√

1− β1x+
√
β1ε, where ε is a realization of E ∼ N (0, I). Rewriting

with respect to x and inserting in log pθ(x|z1) gives
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log pθ(x|z1) = − 1

2a

∥∥∥∥ 1√
1− β1

(
z1 −

√
β1ε
)
− µθ

∥∥∥∥2
2

+ C.

From this relation, we can conclude that defining µθ(z1, 1) := 1√
1−β1

(
z1 −

√
β1gθ(z1, 1)

)
,

where gθ is a neural network for predicting ε, gives the relation we are looking for. Hence,

log pθ(x|z1) = − 1

2a

∥∥∥∥ 1√
1− β1

(
z1 −

√
β1ε
)
− µθ

∥∥∥∥2
2

+ C

= − 1

2a

∥∥∥∥ 1√
1− β1

(
z1 −

√
β1ε
)
− 1√

1− β1

(
z1 −

√
β1gθ(z1, 1)

)∥∥∥∥2
2

+ C

= − β1
2a(1− β1)

∥gθ(z1, 1)− ε∥22 + C.

C.2 Multinomial Diffusion

Closed Form Forward Sampling Formula

The closed form formulation of any mass function in the forward process, as stated in
Equation (3.23), is derived here. This formula was simply stated by Hoogeboom et al.
[49] without proof, but we prove it in detail here. Recall the categorical assumptions in
the forward process,

q(zt|zt−1) = CategoricalOHE

(
zt; (1− βt)zt−1 +

βt
K
1

)
, t ∈ {2, . . . , T},

q(z1|x) = CategoricalOHE

(
z1; (1− β1)x +

β1
K
1

)
.

These assumptions are applied iteratively to calculate the probability parameter of q(zt|x),
which we conveniently denote by pq(zt|x). From our assumptions we know that

pq(zt|zt−1) = (1− βt)zt−1 +
βt
K
1 = αtzt−1 +

βt
K
1.

Using this, we derive that

pq(zt|zt−2) = αtpq(zt−1|zt−2) +
βt
K
1

= αt

(
(αt−1)zt−2 +

βt−1

K
1

)
+
βt
K
1

=

t∏
i=t−1

αizt−2 +
1

K

(
1−

t∏
i=t−1

(1− βi)
)
1

=

t∏
i=t−1

αizt−2 +
1

K

(
1−

t∏
i=t−1

αi

)
1.

Applying this recursively, without showing all the details, leads to the probability param-
eter of interest,

pq(zt|x) =
t∏
i=1

αix +
1

K

(
1−

t∏
i=1

αi

)
1
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= ᾱtx +
1− ᾱt
K

1,

where we have used that z0 := x. Finally, this means that the closed form forward formula
is

q(zt|x) = CategoricalOHE

(
zt; ᾱtx +

1− ᾱt
K

1

)
,

as stated in Equation (3.23). As a side note, Austin et al. [3] state this formula in matrix
form, without proof, in their generalized framework for diffusion applied to discrete data.

Forward Posterior Conditioned on Data

The forward posterior mass functions conditioned on a OHE categorical feature from an
arbitrary observation from D, q(zt−1|zt,x), t ∈ {2, . . . , T}, as given in Equation (3.24),
are derived in this section. Hoogeboom et al. [49] state Equation (3.24) without proof,
but we prove it in detail here. The starting point is the same as in Gaussian diffusion;
Bayes’ rule, as stated in Equation (C.5). Then, we simply replace the mass functions with
their corresponding expressions from Section 3.4. The direct calculation reads

q(zt−1|zt,x)

=
q(zt|zt−1,x)q(zt−1|x)

q(zt|x)
(Bayes’ rule)

=
q(zt|zt−1)q(zt−1|x)

q(zt|x)
(Markov)

=
CatOHE

(
zt; (1− βt)zt−1 + βt

K1

)
CatOHE

(
zt−1; ᾱt−1x + 1−ᾱt−1

K 1

)
CatOHE

(
xt; ᾱtx + 1−ᾱt

K 1
)

=
CatOHE

(
zt;αtzt−1 + 1−αt

K 1
)

CatOHE

(
zt−1; ᾱt−1x + 1−ᾱt−1

K 1

)
CatOHE

(
zt; ᾱtx + 1−ᾱt

K 1
) (C.11)

=
CatOHE

(
zt−1;αtzt + 1−αt

K 1
)

CatOHE

(
zt−1; ᾱt−1x + 1−ᾱt−1

K 1

)
CatOHE

(
zt; ᾱtx + 1−ᾱt

K 1
) (C.12)

∝ CatOHE

(
zt−1;αtzt +

1− αt
K

1

)
CatOHE

(
zt−1; ᾱt−1x +

1− ᾱt−1

K
1

)
= CatOHE(zt−1;λ),

λ =

[
αtzt +

1− αt
K

1

]
⊙
[
ᾱt−1x +

1− ᾱt−1

K
1

]
, (C.13)

where we use Cat as a shorthand for Categorical to avoid line overflow. The equality of
Equations (C.11) and (C.12) needs to be explained. The function CategoricalOHE

(
zt;αtzt−1 + 1−αt

K 1
)

can be written as

CategoricalOHE

(
zt;αtzt−1 +

1− αt
K

1

)
=

{
αt + 1−αt

K , zt−1 = zt,
1−αt
K , zt−1 ̸= zt.

Notice that this function is symmetric with respect to the function argument and the
latent variable realization in the probability parameter, i.e. zt and zt−1 [49]. This implies
that we can switch them around without changing the function, which yields
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CategoricalOHE

(
zt−1;αtzt +

1− αt
K

1

)
=

{
αt + 1−αt

K , zt = zt−1,
1−αt
K , zt ̸= zt−1,

which explains why Equation (C.11) is equal to Equation (C.12). Furthermore, we as-
sume that the product of two categorical random variables is categorical with probability
parameter equal to the product of the probability parameters of each of the factors. The
final step in the derivation of the forward posterior in Equation (3.24) is the realization
that the parameter λ in Equation (C.13) needs to be normalized such that ∥λ∥1 = 1, i.e.
such that the sum of all individual probabilities sum to one. This leads to the forward
posterior given in Equation (3.24). As a side note, Austin et al. [3] state this formula in
matrix form, without proof, in their generalized framework for diffusion applied to discrete
data.



Appendix D

Data

This appendix is devoted to describing each of the datasets we use to evaluate our models,
as listed in Table 5.1. Moreover, we explain how we perform rudimentary pre-processing
of each dataset.

Adult Census Data (AD)

This is data from the 1994 Census database, containing information on individuals mostly
from the United States. The dependent variable is binary, measuring if each individual
has a yearly income above (1) or below (0) $50000 USD. The initial processing we perform
for this dataset follows the steps:

• Download the data from UCI Machine Learning repository [26].

• Check if there are any missing values. The missing values are signalled by a question
mark by default in the downloaded files. Approximately 7.5% of the total number
of observations contain at least one piece of missing information. We simply remove
all observations with at least one missing measurement.

• Remove the education column, since this information is essentially a more coarse
representation of the information in the column education num.

The total number of observations after this pre-processing is stated in Table 5.1. Further-
more, Table D.1 shows the features in AD, their data types, as well as simple descriptions
of what the different quantities measure. Moreover, we indicate the range [min,max] of
each numerical feature, as well as the shares of categories in each non-numerical feature.

Churn Modelling (CH)

This dataset contains information on individual customers from a bank. The dependent
variable is binary, measuring if the customer has left the bank (1) or not (0). The initial
processing we perform for this dataset follows the steps:

• Download the data from Kaggle: https://kaggle.com/datasets/shrutimechle

arn/churn-modelling

• Check if there are any missing values. There are none.

• Remove CustomerID, as this is a unique key for each customer and not interesting
for prediction or inference.
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• Remove Surname. It contains 2932 different names, where 1558 exist only once and
2311 exist less than five times. Thus, most of the names are recorded few times,
which makes them difficult to draw inferences from in the first place. Moreover, one-
hot encoding yields 2932 columns for this feature. For these two reasons, alongside
computational difficulties following from such an encoding, we remove this feature.
As a side note, the most common names are Smith, Martin, Scott, Walker and
Brown, all recorded over 25 times in the dataset.

• Change the response name from Exited to y.

• Flip the original response class labels. Instead we use binary flag 1 if the customer
is retained and 0 if the customer closed their account with the bank. We do this
because counterfactuals are commonly focused on explaining how we can change
a negative result to a positive one. While modelling customer churn, retaining a
customer should be regarded as positive.

The total number of observations after this pre-processing is stated in Table 5.1. Further-
more, Table D.2 shows the features in CH, their data types, as well simple descriptions
of what the different quantities measure. Moreover, we indicate the range [min,max] of
each numerical feature, as well as the shares of categories in each non-numerical feature.

Diabetes (DI)

This dataset contains data from a database titled “Pima Indians Diabetes Database” from
the National Institute of Diabetes and Digestive and Kidney Diseases. It contains records
of patients, where all individuals are females above 20 years old of Pima Indian heritage.
The dependent variable is binary, stating if the individual has tested positively to diabetes
(1) or not (0). The initial processing we perform for this dataset follows the steps:

• Download the data from OpenML: https://openml.org/search?type=data&sort
=runs&id=37&status=active [26]

• Check if there are any missing values. There are none.

• Change the response name from class to y. Also, we change some of the other
feature names to make them more understandable.

• Flip the original response class labels. Instead we set the response class labels to 1
if patient tested negative to diabetes and 0 if patient tested positive to diabetes. We
do this for the same reason as earlier; we want 1 to signal a positive result in our
application. In this case, testing negative should be regarded as a positive outcome
for each patient.

The total number of observations after this pre-processing is stated in Table 5.1. Further-
more, Table D.3 shows the features in DI, their data types, as well as a simple description
of what the different quantities measure. Moreover, we indicate the range [min,max] of
each numerical feature.

https://openml.org/search?type=data&sort=runs&id=37&status=active
https://openml.org/search?type=data&sort=runs&id=37&status=active
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Table D.1: The features in the Adult Census (AD) dataset, along with their data
types and descriptions of the quantities they measure. The description contains the range
[min,max] of each numerical feature. In addition, it contains the levels, and their relative
shares, of each non-numerical feature.

Column Data Type Description

age integer Age of individual [17, 90].
fnlwgt integer “Final Weight”: proxy for the demographic

background of the individual [13492, 1490400].
education num integer Number of years of schooling [1, 16].
capital gain integer Capital gain incurred by the individual

[0, 99999].
capital loss integer Capital loss incurred by the individual [0, 4356].
hours per week integer Hours worked per week [1, 99].
workclass non-numerical Private (74%), Self-emp-not-inc (8%), Local-

gov (7%), State-gov (4%), Self-emp-inc (4%),
Federal-gov (3%) or Without-pay (∼ 0%).

marital status non-numerical Married-civ-spouse (47%), Never-married
(32%), Divorced (14%), Separated (3%), Wid-
owed (3%), Married-spouse-absent (1%) or
Married-AF-spouse (∼ 0%).

occupation non-numerical Craft-repair (13%), Prof-specialty (13%),
Exec-managerial (13%), Adm-clerical (12%),
Sales (12%), Other-service (11%), Machine-
op-inspct (7%), Transport-moving (5%),
Handlers-cleaners (5%), Farming-fishing (3%),
Tech-support (3%), Protective-serv (2%), Priv-
house-serv (1%) or Armed-Forces (∼ 0%).

relationship non-numerical Husband (41%), Not-in-family (26%), Own-
child (15%), Unmarried (11%), Wife (5%) or
Other-relative (2%).

race non-numerical White (86%), Black (9%), Asian-Pac-Islander
(3%), Amer-Indian-Eskimo (1%) or Other (1%).

sex binary Male (68%) or Female (32%).
native country non-numerical The native country of individual (41 levels):

USA (91%), Mexico (2%), Philippines (0.6%),
etc.

y binary The response; 1 if > 50K (25%), 0 if ≤ 50K
(75%), USD.
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Table D.2: The features in the Churn Modelling (CH) dataset, along with their data
types and descriptions of the quantities they measure. The description contains the range
[min,max] of each numerical feature. In addition, it contains the levels, and their relative
shares, of each non-numerical feature.

Column Data Type Description

CreditScore integer Credit score of customer [350, 850].
Age integer Age of customer [18, 92].
Tenure integer Number of years as customer [0, 10].
Balance float Bank balance of customer [0.0, 250898.1].
NumOfProducts integer Number of bank products customer has [1, 4].
EstimatedSalary float Estimated yearly salary of customer in USD

[11.6, 199992.5].
Geography non-numerical France (50%), Germany (25%) or Spain (25%).
Gender binary Male (55%) or Female (45%).
HasCrCard binary Customer has credit card (71%) or not (29%).
IsActiveMember binary Customer is an active member of the bank (52%)

or not (48%).
y binary The response; 1 if customer is retained (80%), 0

if customer churns (20%).

Table D.3: The features in the Diabetes (DI) dataset, along with their data types and
descriptions of the quantities they measure. The description contains the range [min,max]
of each numerical feature.

Column Data Type Description

num pregnant integer Number of times pregnant [0, 17].
plasma integer Plasma glucose concentration [0, 199].
dbp integer Diastolic blood pressure (mm Hg) [0, 122].
skin integer Triceps skin fold thickness (mm) [0, 99].
insulin integer 2-hour serum insulin (mu U/ml) [0, 846].
bmi float Body mass index (kgm−2) [0.00, 67.10].
pedi float Diabetes pedigree function [0.08, 2.42].
age integer Age of individual [21, 81].
y binary The response; 1 if patient tests negative to dia-

betes (65%), 0 if test is positive (35%).



Appendix E

Multinomial Diffusion
Implementation Notes

This appendix collects some considerations we make while implementing Multinomial dif-
fusion. We recommend that the interested reader keeps this appendix in mind while
studying our open source implementations of Multinomial and Tabular diffusion, as it
helps to clarify some vital techniques.

As noted in Section 5.3, we implement Multinomial diffusion in log-space, inspired
by Hoogeboom et al. [49]. In practice, this means that we work with logarithms of
probabilities, instead of probabilities directly. It might not be immediately clear why this
is a good choice; why does it promote numerical stability? The inventors do not provide
any explicit reasoning behind this choice, except stating that their implementation1 is done
in a “safe manner”. In Appendix A of their paper, they define a few helper functions in
Python, that are used to compute quantities in log-space, as well as transform quantities
to and from log-space, but they do not explain how these functions were designed. Due to
this lack of contextualization, we outline where they can be derived from, while clarifying
why computations in log-space are preferred.

Precisely, two different “tricks” are employed to avoid problems with underflow, i.e.
assigning absolute values that are too small and out of the range of the declared data type.
First of all, in order to avoid underflow, when calculating the product of two (or more)
small quantities, we use the fact that

log ab = log a+ log b. (E.1)

For simplicity, and without loss of generality, we illustrate how arithmetic operations are
performed in log-space with only two quantities. Moreover, to make this exposition even
simpler, we focus on a single example, on calculating the probabilities of the forward
process densities, q(zt|zt−1), in Multinomial diffusion. Specifically, we define

p := (1− βt)zt−1 +
βt
K
1. (E.2)

Equation (E.1) is used to calculate such quantities in a numerically safe manner. In
log-space, each of the terms in p can be represented as

log (1− βt)zt−1 = log (1− βt)1 + log zt−1, (E.3)

and

log
βt
K
1 = log βt1− logK1, (E.4)

1https://github.com/ehoogeboom/multinomial_diffusion
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respectively, which follows from Equation (E.1). Calculating the terms via addition in
log-space avoids underflow in p when either of the factors in either of the terms are very
small, because the multiplication is no longer performed. Thus, in practice, to ensure what
Hoogeboom et al. [49] call a “safe” implementation, we calculate all individual terms in
the categorical probability parameters in log-space.

Second, notice that, as a consequence of the first trick, we encounter problems when
calculating p, because it is not straightforward to use log (1− βt)zt−1 and log βt

K1 to cal-
culate p in Equation (E.2). Transforming calculations like Equations (E.3) and (E.4) from
log-space back to linear-space can easily lead to underflow, for reasons we have already
discussed. For instance, if we naively apply the exponential function to log-space calcu-
lations, when probabilities are very small, the exponential can underflow because of very
small logarithmic inputs to the function. In practice, this means that we cannot reliably
calculate p = (1−βt)zt−1 + βt

K1 by first using the logarithm rules above, then applying an
exponential and finally adding the individual terms. In order to solve this problem, one
possible trick is to use log (1− βt)zt−1 and log βt

K1 to calculate log p directly in log-space.
But how can this be done, since we cannot do it naively? In fact, such a calculation
is widely used in ML and statistics, precisely for the reasons we outline. Keeping our
example in mind, we are interested in calculating log p = log {(1− βt)zt−1 + βt

K1} given

loga := log (1− βt)zt−1 and log b := log βt
K1, which we assume have been previously cal-

culated. For this purpose, the log-sum-exp function can be used. In general, in its naive
form, it takes a real vector u = {u1, . . . , up} as input and returns

lse(u) := log

p∑
j=1

eu
j
. (E.5)

From Equation (E.5), we notice that lse({loga, log b}) = log (a + b), which is why it is
useful in our case. The reason it is attractive in practice is because it has been shown that
it can be calculated in a numerically stable manner [9], and because it has implementations
in commonly used libraries in high-level languages like Python [140]. Notice that

log(a+ b) = log(a(1 +
b

a
)) = log a+ log(1 +

b

a
) = log a+ log(1 + elog b−log a),

for any scalars a, b, which can be extended to rewrite the log-sum-exp function like

lse(u) = log

p∑
j=1

eu
j

= log

p∑
j=1

edeu
j−d = d+ log

p∑
j=1

eu
j−d. (E.6)

Numerical problems occur in the exponential in Equation (E.6) if uj , for any j ∈ {1, . . . , p},
is very large compared to d, essentially making it “blow up”. To mitigate this, define
d := max(u), such that uj − d ≤ 0 and hence 1 ≥ eu

j−d ≥ 0 [9]. Thus, returning to our
simple example,

log p = log {(1− βt)zt−1 +
βt
K
1}

= lse({log(1− βt)zt−1, log
βt
K
1})

= d + log
(
elog(1−βt)zt−1−d + elog(

βt
K
1)−d

)
,

where d = max {log(1− βt)zt−1, log βt
K1}, is mathematically equivalent to the naive com-

putations, but numerically stable. For clarity, the logarithm and the exponential are
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applied element-wise to the vectors, as we have assumed throughout this entire discus-
sion. This is precisely the trick that Hoogeboom et al. [49] use in the helper func-
tions log add exp and log sum exp in Appendix A of their paper. In our implementa-
tion, instead of using these manual implementations, we rely on the methods logaddexp,
logsumexp and logcumsumexp from PyTorch [98], which perform numerically stable com-
putations following strategies similar to the one we have outlined in this appendix.





Appendix F

KL Divergence Between Two
Multivariate Gaussians

In this appendix, we provide a proof of the general formula for the KL divergence between
two multivariate normally distributed random variables. Assume two random variables
X1 ∼ N (µ1,Σ1) and X2 ∼ N (µ2,Σ2) in Rn. For completeness, recall that the probability
density function of a random variable X ∼ N (µ,Σ) is

N (x;µ,Σ) = (2π)−
n
2 det(Σ)−

1
2 exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
.

Note that it exists when Σ is symmetric and positive-definite. For clarity, the densities of
X1 and X2 are p1(x) = N (x;µ1,Σ1) and p2(x) = N (x;µ2,Σ2), respectively. The proof
consists of the following direct calculation:

DKL(p1(x) ∥ p2(x))

=

∫
p1(x) log

(
p1(x)

p2(x)

)
dx

= Ep1(x) [log p1(x)− log p2(x)]

=
1

2
Ep1(x)

[
− log detΣ1 − (x− µ1)

T Σ−1
1 (x− µ1) + log detΣ2 + (x− µ2)

T Σ−1
2 (x− µ2)

]

=
1

2
log

detΣ2

detΣ1
+

1

2
Ep1(x)

[
− (x− µ1)

T Σ−1
1 (x− µ1) + (x− µ2)

T Σ−1
2 (x− µ2)

]
(F.1)

=
1

2
log

detΣ2

detΣ1
+

1

2
Ep1(x)

[
− trace

(
Σ−1

1 (x− µ1) (x− µ1)
T
)

+ trace
(
Σ−1

2 (x− µ2) (x− µ2)
T
)]

(F.2)

=
1

2
log

detΣ2

detΣ1
− 1

2
trace

(
Σ−1

1 Σ1

)
+

1

2
trace

(
Σ−1

2 Ep1(x)
[
(x− µ2) (x− µ2)

T
])

(F.3)

=
1

2
log

detΣ2

detΣ1
− 1

2
n+

1

2
trace

(
Σ−1

2

(
Σ1 + (µ2 − µ1)(µ2 − µ1)

T
))

(F.4)

=
1

2

(
log

detΣ2

detΣ1
− n+ trace

(
Σ−1

2 Σ1

)
+ trace

(
Σ−1

2 (µ2 − µ1)(µ2 − µ1)
T
))

(F.5)

=
1

2

(
log

detΣ2

detΣ1
− n+ trace

(
Σ−1

2 Σ1

)
+ (µ2 − µ1)

T Σ−1
2 (µ2 − µ1)

)
. (F.6)
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In the following, we explain the most important steps above, whose details we skipped.
The equality of Equations (F.1) and (F.2) is based on the property

trace(abT ) = bTa, (F.7)

applied to the pairs of vectors a = Σ−1
1 (x− µ1) and bT = (x − µ1), as well as a =

Σ−1
2 (x− µ2) and bT = (x−µ2), respectively. Then, equality of Equations (F.2) and (F.3)

holds because of linearity of the trace, i.e. E(trace(A)) = trace(E(A)) for an arbitrary
matrix A. We use this to show that

Ep1(x)(trace(Σ−1
1 (x− µ1)(x− µ1)

T ) = trace(Ep1(x)(Σ
−1
1 (x− µ1)(x− µ1)

T ))

= trace(Σ−1
1 Ep1(x)((x− µ1)(x− µ1)

T ))

= trace(Σ−1
1 Σ1).

The linearity of the trace is also used to obtain the third term in Equation (F.3). For
completeness, we mention that we also use the linearity of the expectation several places.
Later, equality of Equations (F.3) and (F.4) is based on the result

Ep1(x)
[
(x− µ2) (x− µ2)

T
]

= Ep1(x)
[
((x− µ1)− (µ2 − µ1)) ((x− µ1)− (µ2 − µ1))

T
]

= Ep1(x)
[
(x− µ1)(x− µ1)

T − (x− µ1)(µ2 − µ1)
T

−(µ2 − µ1)(x− µ1)
T + (µ2 − µ1)(µ2 − µ1)

T
]

= Σ1 − Ep1(x)
[
(x− µ1)(µ2 − µ1)

T
]︸ ︷︷ ︸

=0

− Ep1(x)
[
(µ2 − µ1)(x− µ1)

T
]︸ ︷︷ ︸

=0

+ Ep1(x)
[
(µ2 − µ1)(µ2 − µ1)

T
]

= Σ1 + (µ2 − µ1)(µ2 − µ1)
T ,

where both the middle terms are equal to zero because the random variable X1 − µ1 is
centered at 0. This can easily be demonstrated algebraically as well, by calculating the
expectations. Moreover, the trivial property trace(Σ−1

1 Σ1) = trace(I) = n is used to
obtain the first term in Equation (F.4). Finally, equality of Equations (F.5) and (F.6) is
attributed to Property (F.7), with a = Σ−1

2 (µ2 − µ1) and bT = (µ2 − µ1)
T .
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