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Abstract—This work addresses the problem of detecting gas
dispersions through concentration sensors with wireless trans-
mission capabilities organized as a distributed Wireless Sensor
Network (WSN). The concentration sensors in the WSN perform
local sequential detection (SD) and transmit their individual deci-
sions to the Fusion Center (FC) according to a transmission rule
designed to meet the low-energy requirements of a wireless setup.
The FC receives the transmissions sent by the sensors and makes
a more reliable global decision by employing a SD algorithm.
Two variants of the SD algorithm named Continuous Sampling
Algorithm (CSA) and Decision-Triggered Sampling Algorithm
(DTSA), each with its own transmission rule, are presented and
compared against a fully-batch algorithm named Batch Sampling
Algorithm (BSA). The CSA operates as a time-aware detector
by incorporating the time of each transmission in the detection
rule. The proposed framework encompasses the gas dispersion
model into the FC’s decision rule and leverages real-time weather
measurements. The case study involves an accidental dispersion
of carbon dioxide (CO2). System performances are evaluated in
terms of the receiver operating characteristic (ROC) curve as
well as average decision delay and communication cost.

Index Terms—Wireless Sensor Networks, Sequential Detection,
Distributed Detection, Industry 4.0, Gas Dispersion.

I. INTRODUCTION

W IRELESS SENSOR NETWORKS (WSNs) have be-
come increasingly popular for monitoring applications

in the past decade: a trend that was amplified with the
emergence of the Internet of Things (IoT) paradigm [3]. One
area of interest has been the detection of harmful events,
with applications related to (i) security, counter-terrorism, and
defense [4], and (ii) safety and environmental protection in
Industry 4.0 [5], [6].
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More specifically, WSNs are typically composed of low-
cost devices monitoring the surrounding environment. Due
to stringent bandwidth and/or energy constraints (e.g. to
ensure the long-lasting lifetime of IoT nodes), sensors are
usually required to send extremely-compressed versions of
their measurements to a Fusion Center (FC) which collects
and analyzes the data for a final decision. For this reason,
the detection of diffusive sources in safety-critical systems via
WSNs has shifted toward the adoption of binary sensors [7],
[8]. In such scenarios, the FC generates an alarm if an adverse
event is detected, triggering appropriate actions to mitigate the
consequences. This is particularly relevant to manufacturing,
energy, and process industries, where equipment malfunctions
can put workers and the environment in danger, as well as
result in unplanned shutdowns, high costs, and lost revenue [9].

In this context, the associated inference problems involve
the early detection of uncooperative sources, such as the
loss of containment of fluids in the process industry (in
gas and/or liquid form). The detection of heavy gases is
among the most relevant problems, as heavy gases do not
adhere to neutral or positively-buoyant dispersion behavior
and tend to spread along the ground, with the further threat of
asphyxiation induced by the displacement of air, resulting in
low oxygen concentrations. In these industrial scenarios, it is
of utmost importance to accurately detect such critical events
as quickly as possible. An additional source of complexity
must be taken into account in case the gas of interest is
commonly found in the atmosphere: this can sensibly decrease
the detector’s performance. To this end, an industrial IoT
setup with inexpensive sensors and the possibility of exploiting
real-time weather data as well as the integration of the gas
dispersion model represents an enabler for this problem.

This work addresses the sequential detection (SD) of gas
dispersion using a network of wireless concentration sensors,
focusing on gases with a non-null atmospheric concentration
in normal conditions. Performance evaluation is carried out on
a simulated dispersion of heavy gas. More specifically, in this
study, we adopt the SD framework with the aim of achieving
higher accuracy and lower detection time with respect to a
fully batch approach. In SD the observations are processed
one at a time, and a decision is made after each observation
to either declare the presence or absence of the event of interest
or continue with the detection process.
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A. Related Work

Several methods for gas detection have been developed
assuming a Gaussian-plume point-source model based on
diffusion/advection processes (not suitable for heavy gases) or
direct use of Fick’s laws of diffusion (not suitable for complex
systems), e.g. with application to dispersion of biochemical
moving sources [10], [11], atmospheric pollutants [12] and
release of light gases [13]. Also, in order to deal with the
vague prior, importance sampling was implemented using
the progressive correction technique in [14]. The algorithm
showed good performance in terms of both localization and
estimation accuracy. An interesting feature of this approach
is that system-level performance can be controlled by a local
detection threshold. Other novel methods rely on neural net-
works for plume tracking [15]. However, such works neglect
the detection task and directly focus on the characterization of
the dispersion which is facilitated by the use of a centralized
sensor network.

Nevertheless, the current literature lacks studies on the use
of WSNs for the detection of gases with a non-null atmo-
spheric concentration in normal conditions, e.g. carbon dioxide
(CO2) whose current average concentration in the atmosphere
is around 400 ppm. Most of the above-mentioned studies focus
on the detection of gases that are not commonly present in
the atmosphere, leading to amplified signal-to-noise ratios.
Some preliminary investigations have attempted to fill this
gap by demonstrating that the use of a model-based algorithm
implemented through a WSN can improve performances in
contrast to a model-free algorithm (i.e. the implementation of
a counting rule on the received binary decisions) [1], [2]. This
study builds upon these initial inquiries by incorporating the
issue of early detection, achieved through the implementation
of a SD approach.

Event detection can be tackled with multiple approaches.
Distributed detection via WSNs using batch decision rules
is a mature area of research [16]–[20]. SD (also known as
sequential analysis or sequential hypothesis testing) is a well
known framework popularized by Wald with the sequential
probability ratio test (SPRT) [21], [22]. The optimality of
SPRT allows achieving faster online decisions with respect to
traditional batch detectors requiring a fixed sample size before
decisions can be made via the likelihood ratio test (LRT) [23].
A complete overview of SD can be found in [21], [23], [24].

SD via WSNs has been explored in the last decade, but
still remains an open research topic. In [25], an architecture
was proposed where both the sensors and the FC perform
sequential detection with sensors communicating their respec-
tive local decisions to the FC. Such a setup was proven to
have asymptotically equivalent performance to the centralized
counterpart in specific conditions. A higher-performance alter-
native was presented later in [26], grounded on the assumption
that the observed signal is a sampled version of a contin-
uous stochastic process with continuous paths. Other works
(e.g. [27]) applied the distributed SD paradigm to develop
spectrum sensing schemes for cognitive radio networks explor-
ing quantization strategies. Practical aspects such as imperfect
reporting channels (between sensors and FC) and requirements

for reduced energy consumption were considered in [28], [29].
Recent works have focused on alternative tests than the SPRT
to be used in WSNs, as the exact knowledge of the distribution
function of the signal in the alternative hypothesis is often
missing. Therefore, for a composite hypothesis test suitable in
WSNs, a generalized sequential probability ratio test (GSPRT)
was studied in [30].

Truncated versions of sequential tests have been explored in
order to bind the decision time that might otherwise become
undesirably long. When applied to one-sided tests, they are
usually referred to as truncated one-sided (TOS) tests. A solid
overview of truncated tests can be found in [24]. This option
was firstly explored for SPRT and GSPRT in [31], and recently
adopted in combinations with other tests. More specifically,
truncation was applied to the repeated significance test in [32],
to the random distortion test in [33], and finally to a FC
performing the score test in the context of detection of a non-
cooperative moving target in [34], [35].

B. Contribution and Paper Organization

This work investigates the use of a WSN made of con-
centration sensors in an industrial IoT setup with inexpensive
small-battery sensors for gas detection purposes. First, we
introduce a fully-batch algorithm, named Batch Sampling
Algorithm (BSA), characterized by a fixed sample size at
both sensors and FC. Next, with the goal of reducing the
detection time, we propose two fully sequential algorithms.
In the proposed strategies, each sensor measures the local
concentration and takes a local decision via SD regarding the
presence or absence of a gas dispersion. A transmission rule
is present to regulate the communication from the sensors to
the FC. Next, the FC, based on the transmissions received by
the sensors, performs a global decision taking advantage of
updated weather measurements and the integration of the gas
dispersion model in the detection rule.

The first proposed method, named Decision-Triggered Sam-
pling Algorithm (DTSA), has the FC sampling the sensors’
transmission only when local decisions are taken. The second
proposed method, named Continuous Sampling Algorithm
(CSA), requires the FC to continuously monitor the trans-
missions from the sensors (which also encodes the temporary
lack of a local decision). In the CSA, at each instant, the FC
updates a test statistic based on the transmission values and
the time elapsed since the last sensors’ decision, resulting in
a time-aware algorithm.

This work presents new advances in the field of industrial
monitoring as listed in the following:

• The study is based on the integration of the gas dispersion
model into the design of the FC;

• The proposed methods make use of externally-available
measurements from weather stations (e.g. wind measure-
ments);

• The sequential nature of the proposed methods allows
to reduce the detection time and removes the limitation
imposed by a fixed number of samples needed to take a
decision;
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• The introduction of a transmission rule tailored for se-
quential binary local detectors allows for reduced energy
consumption in the case of CSA.

This work further explores the use of WSNs for gas
detection via the integration of the dispersion model within
the detection algorithm previously presented in [1], [2]. In
these earlier works, we compared the well-known model-free
counting fusion rule with a model-aware generalized Chair-
Varshney fusion rule, proving the benefits of such implemen-
tation. The further contribution given by this work is the
extension from a single-sample detection to a SD approach.

The remainder of the paper is organized as follows: Sec. II
provides a system overview, focusing on the WSN archi-
tecture and the signal model (including the gas dispersion
characterizations); the batch approach is described in Sec. III;
the proposed sequential algorithms are described in Sec. IV,
focusing on both sensors and the FC; Sec. V discusses the
performances of the local sequential detectors in terms of
accuracy, and decision delay; the computational complexity
and the communication costs are discussed in Sec. VI; nu-
merical results of the considered case study are presented in
Sec. VII; finally, conclusions and further works are addressed
in Sec. VIII.

C. Notation

Uppercase (resp. lowercase) bold letters denote matrices
(resp. column vectors); [·]T denotes the transpose operator;
â is an estimate of the variable a; E(·), Var(·), Cov(· , ·)
denote expectation, variance, and covariance; P(·) and p(·)
denote probability mass functions (PMFs) and probability
density functions (PDFs), while P(·|·) and p(·|·) their corre-
sponding conditional counterparts; in particular, Ej(·), Pj(·)
and pj(·) denote the expectation, the PMF, and PDF, respec-
tively, under the hypothesis Hj , with j ∈ {0, 1}; Lθ(a) ≜
ln[P1(a; θ)/P0(a)] is the log-likelihood ratio where the de-
pendence on the parameter θ is highlighted; U(a, b) denotes
a continuous uniform distribution with minimum value a and
maximum value b; N (µ,Σ) denotes a multivariate Gaussian
distribution with mean µ and covariance matrix Σ; Q(·) is
the complementary cumulative distribution function (CCDF)
of the standard normal distribution; δa,b is the Kronecker delta;
finally O(·) denotes the big O notation.

II. SYSTEM MODEL

What follows is the overview of the distributed WSN under
consideration, followed by the characterization of the signal
measured by the sensors.

A. Wireless Sensor Network Model

The scenario consists of a distributed WSN comprising K
static sensors and its task is to assess the global absence
(H0) or presence (H1) of a gas leak within the monitored
environment (a schematic representation is given in Fig. 1)1.

1The possibility of incurring faulty sensors is not taken into account as it
is outside of the scope of the present work. Fault detection and identification
techniques based on data-driven philosophy could be readily incorporated in
the proposed approach [36].

... ...




Fig. 1: Wireless Sensor Network Architecture.

Such a dispersion is characterized by its position θ and
intensity I . For the kth sensor (k = 1, . . . ,K), the location and
the measurement of gas concentration at discrete-time t ∈ N+

are denoted by xk and ykt , respectively. Each sensor computes
a test statistic on the above-mentioned signal and assesses
the local absence (H0) or presence (H1) of an anomalous
excessive gas concentration. For the sake of convenience, we
assumed the sensor to have the same sampling frequency
and to be perfectly synchronized. In the algorithms under
study, when a sensor makes a decision, it immediately starts
a new detection instance until the FC takes a global decision,
allowing the FC to receive multiple decisions from a single
sensor. The global decision exploits the integration of real-time
weather data as well as the dispersion model of the gas.

When the BSA is employed, each sensor takes a decision
after a fixed number of measurements. At each instant, each
sensor sends a transmission value τkt = 1 (resp. τkt = −1)
to the FC if H1 is declared (resp. H0), or τkt = 0 if the
sensor has not finished collecting its fixed number of samples.
Specifically, when τkt = 0, the sensor does not transmit a
physical communication to the FC. At a predetermined time,
the FC takes a global decision Ĥ ∈ {H0,H1} computing a
test statistic on the received values

{
τkt :

∣∣τkt ∣∣ = 1
}
k,t

.
In the newly proposed methods (DTSA and CSA), both the

sensors and the FC make use of SD, with the aim of reducing
the decision delay obtained in the BSA.

In the DTSA, the sensors send a transmission value to the
FC after completing a sequential test, i.e. not at predetermined
times, unlike in the BSA. Here, at each t, the FC performs a
test on

{
τkt :

∣∣τkt ∣∣ = 1
}
k

and takes a global decision.
In the CSA, each individual sensor transmits a bit τkt = 1
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(resp. τkt = 0) to the FC if H1 is locally declared (resp. if H0

is locally declared or if the sensor has not reached a decision
yet). In addition to being spectrally efficient, as only one bit is
transmitted on the communication channel between the sensor
and the FC, such a system is highly energy efficient when
OOK modulation is employed for communicating the local de-
cisions [5]. Moreover, at each t, the FC sequentially performs a
time-aware test on the transmission values

{
τkt , a

k
t

}
k
, where

akt is the number of instants passed since the last decision
made by the kth sensor.

In this work, we assume a perfect communication channel
between sensors and FC.

B. Signal Model

The statistical model of the measured gas concentration ykt ,
depending on the corresponding hypothesis, is the following:{

H0 : ykt = wk
t

H1 : ykt = ck + wk
t

, (1)

where wk
t ∼ N

(
µk, σ

2
k

)
represents the gas concentration

present in normal operating conditions in the surrounding of
the kth sensor [37], where the values of µk and σ2

k are both
known. The values of {µk}k and

{
σ2
k

}
k

can be estimated by
calculating the sample mean and sample variance from a set of
measurements acquired in normal operating conditions (H0).
Also, ck ≥ 0 is the observed excess gas concentration resulting
from dispersion, here assumed constant in time since this work
deals with steady-state dispersions.

In this work, we assume that the measurements collected
by the same sensor

{
ykt
}
t

are i.i.d., while the measurements
collected by different sensors

{
ykt
}
k

are independent, with
distributions that vary depending on {ck}k. This assumption
arises from Eq. (1) and the treatment of

{
wk

t

}
t,k

as i.i.d.
variables. Although this treatment simplifies reality, assuming
null space and time correlation in the modeling of

{
wk

t

}
t,k

can
be justified by ensuring adequate spatial separation between
the sensors and a sufficiently low sampling frequency. A low
sampling frequency results in auto-covariance values domi-
nated by lower-frequency components. Moreover, accurately
predicting these lower-frequency components in the atmo-
spheric fluctuation of the concentration of the gas presents
significant complexities. Therefore, we chose to simplify the
model by excluding them [20], [38]. Hence, the distribution
of ykt is: {

H0 : ykt ∼ N
(
µk, σ

2
k

)
H1 : ykt ∼ N

(
µk + ck, σ

2
k

) , (2)

where the value of ck is the result of a dispersion phenomenon.
There is extensive literature on how to obtain the value of ck
due to its industrial safety applications. We assume:

ck = F(xk,A,B, C) , (3)

where A is the set of all unknown variables such as the
release position (θ), and the intensity (I); B is the set of
variables whose value is known and constant in time, once
the variables in A are fixed. B includes variables such as

temperature, density, initial concentration of the release, as
well as morphological properties of the area. C is the set
of variables that can be considered independent from the
variables in A and xk, and whose value is known via real-time
measurement. This set includes the meteorological parameters.
The values of the variables in B are set by exploiting the
knowledge of the monitored environment, while those in C
require real-time meteorological data. For the case of a release,
the most important variables belonging to A are θ and I , hence
once xk, θ, and I are fixed, and the variables in B and C are
available, the value of ck can be unequivocally determined.

III. BATCH DETECTION

This section is dedicated to the BSA which relies on
fixed sample size at both sensors and FC levels for the
detection task. This algorithm is designed for a FC that is
able to compute ck via the map in Eq. (3) once the unknown
dispersion variables belonging to A have been fixed. ck is
written as ck(θ, I) to emphasize the unknown variables. The
other variables in Eq. (3) are known and constant throughout
the detection procedure. Real-time weather data and, possibly,
physical knowledge of the monitored area are necessary to
determine the variables in B and C. The considered archi-
tecture requires solving a maximization problem: we assume
grid-search optimization.

Specifically, the kth sensor will take a local decision after
collecting Tk samples, after which it restarts a new detection
instance. As a consequence, each sensor is characterized by a
deterministic stopping time corresponding to the mth decision
tkm = mTk. For the model described in Eq. (1), the likelihood
ratio test (LRT) is uniformly most powerful, resulting in each
sensor calculating a statistic Λk

t with the following form2:

Λk
t ≜

t∑
i=1

(
yki − µk

)
=

{
λk
1 , t = 1

Λk
(t−1) + λk

t , t > 1
, (4)

where λk
t ≜ ykt −µk. This leads to the following decision rule:

dkm ≜

{
H1 , if Λk

mTk
− Λk

(m−1)Tk
≥ γk

H0 , otherwise
, (5)

with γk as a local test threshold. The probability of false alarm
(Pk

F ) and detection (Pk
D(ck)) of the local batch detector are

the following:

Pk
F ≜ P0

(
dkm = H1

)
= P0

(
dk1 = H1

)
= P0

(
Λk
Tk

≥ γk
)
= Q

(
γk√
Tkσ2

k

)
,

Pk
D(ck) ≜ P1

(
dkm = H1

)
= Q

(
γk − Tkck√

Tkσ2
k

)
, (6)

where we exploited the fact that
{
Λk
mTk

− Λk
(m−1)Tk

}
m

are
i.i.d., and therefore we chose m = 1.

2The LRT statistic can be simplified into
t∑

i=1
yki . However, we prefer using

the above-mentioned statistic to ease the comparison with the DTSA and CSA.
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To prove that the above-mentioned elements are i.i.d., it is
sufficient to say that, since

{
yki
}
i

are i.i.d., the same applies

to the disjoint subsequences
{
yk(m−1)Tk+1, . . . , y

k
mTk

}
m

. This
means that the set of statistics computed over these subse-

quences, expressed as

{
mTk∑

i=(m−1)Tk+1

λk
i

}
m

, also consist of

i.i.d. elements. Finally, by applying the definition of Λk
t from

Eq. (4), we can conclude that the elements in the sequence{
Λk
mTk

− Λk
(m−1)Tk

}
m

are i.i.d. as well.
At each instant t, the kth sensor sends a transmission value

to the FC according to the following transmission rule:

τkt ≜


+1 , if ∃m : t = m Tk ∧ dkm = H1

−1 , if ∃m : t = m Tk ∧ dkm = H0

0 , otherwise
, (7)

with τkt = 0 indicating the absence of physical communication
from the sensor to FC during the sensor’s fixed decision period.

At predetermined time T ∗, the FC takes a global decision
employing a GLRT statistic ΛB on the local decisions:

Ĥ ≜

{
H1 , if ΛB ≥ γ∗

H0 , otherwise
, (8)

with γ∗ as a global test threshold. Since the statistic is a func-
tion of the local decisions having known fixed decision delays,
it is recommended to set T ∗ so that ∃ k, a ∈ N+ : T ∗ = a Tk.
In order to calculate ΛB, the FC has to keep track of the
transmission times tkm:

tkm = inf
{
t > tkm−1 :

∣∣τkt ∣∣ = 1
}
, tk0 = 0 . (9)

Specifically, ΛB is a statistic on the received local deci-
sions, which translates into a test on the transmission values{
τkt :

∣∣τkt ∣∣ = 1
}
t,k

:

ΛB ≜ max
θ,I

{
Lθ,I

({
τkt :

∣∣τkt ∣∣ = 1
}
1≤t≤T ∗

1≤k≤K

)}

= max
θ,I


K∑

k=1

Mk
T ∗∑

m=1

Lθ,I

(
τktkm

) , (10)

where Mk
T ∗ ≜

T ∗∑
t=1

∣∣τkt ∣∣ is the number of local decisions taken

by the kth sensor up to time T ∗. In particular, Lθ,I

(
τktkm

)
has

the following form:

Lθ,I

(
τktkm

)
=

ln
Pk

D(ck(θ,I))

Pk
F

, if τktkm = +1

ln
1−Pk

D(ck(θ,I))

1−Pk
F

, if τktkm = −1
. (11)

IV. SEQUENTIAL DETECTION

In this section, we explore the CSA and DTSA. First, we
examine the SD algorithm at a sensor level shared by both
architectures. Next, we outline the algorithm at the FC level
in the two different methods.

A. Local Sequential Detection

Each sensor performs SD on the hypotheses in Eq. (1).
Eq. (2) highlights that the test has to be one-sided since
{H0,H1} correspond to {ck = 0, ck ≥ 0}, respectively. For
this task, we compute the GSPRT statistic, where the parame-
ter ck in the log-likelihood ratio is replaced with its maximum

likelihood estimate ĉk,t ≜ 1
t

t∑
i=1

yki − µk. This results in the

same statistic Λk
t already introduced in Eq. (4).

The GSPRT, analogously to the generalized likelihood ratio
test, is asymptotically non-negative for one-sided hypothesis
testing problems, thus the use of a negative threshold is
unfeasible. To overcome this issue, we resort to a TOS test
by establishing the maximum amount of time Tk between two
consecutive local decisions that the kth sensor can take in order
to declare H1, otherwise, H0 is declared. Denoting γk as a
positive local threshold and the time at which the sensor takes
the mth decision with tkm, the mth stopping time is defined as
the following:

tkm ≜ min
{
inf
{
t > tkm−1 : Λk

t − Λk
tkm−1

≥ γk

}
, tkm−1 + Tk

}
= min

inf

t > tkm−1 :

t∑
i=tkm−1+1

λk
i ≥ γk

, tkm−1 + Tk

,

(12)

with tk0 = 0 and Λk
0 = 0. Next, the decision rule is as follows:

dkm ≜

{
H1 , if Λk

tkm
− Λk

tkm−1
≥ γk

H0 , otherwise
. (13)

Remarks – In the process of deriving the local detector, we
employ the Karlin-Rubin theorem to reduce the test statistic
(via monotonic transformations) before substituting ck with
its MLE. This reduction is achieved by exploiting the non-
negative nature of ck.

B. Fusion Center Sequential Detection

Here we describe the two FC detection methods for gas
dispersion: (i) DTSA, a SD algorithm with the FC performing
a test statistic solely based on the received local decisions (the
knowledge of the sampling period is not required); (ii) CSA, a
novel time-aware SD algorithm with the FC performing a test
statistic on those instants where the sensors take decisions as
well as on those instants where the sensors have not reached
a decision yet (the knowledge of the sampling period for each
sensor is required). As in the BSA, both methods rely on the
ability to calculate the values of ck via the map in Eq. (3).

1) Decision-Triggered Sampling Algorithm (DTSA): This
algorithm consists of the FC sequentially updating a test
statistic when a local decision is taken. Similarly to the
BSA, the transmission rule encodes the detection status of
the sensors:

τkt ≜


+1 , if ∃m : t = tkm ∧ dkm = H1

−1 , if ∃m : t = tkm ∧ dkm = H0

0 , otherwise
, (14)
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where τkt = 0 indicates the absence of a physical transmission
from the sensor to FC. This transmission rule translates into a
test statistic performed on those transmission values that are
decision-triggered

{
τkt :

∣∣τkt ∣∣ = 1
}
t,k

. Similarly to the design
of the local detectors, the presence of the unknown parameters
θ and I in the hypothesis H1 requires the use of a GSPRT
statistic here denoted by ΛD

t . Likewise, we use a time limit
T ∗ at which, if the FC has not declared H1 yet, H0 is
automatically reported, leading to the following stopping rule
and decision rule:

t∗ ≜ min{inf{t : ΛD

t ≥ γ∗}, T ∗} , (15)

Ĥ ≜

{
H1 , if ΛD

t∗ ≥ γ∗

H0 , otherwise
. (16)

At each t, in order to calculate ΛD
t , the FC needs to recover

the stopping times tkm (using Eq. (9)), as well as (recursively)
calculate the number of local decisions taken by the kth sensor
up to time t, for all k:

Mk
t = Mk

t−1 +
∣∣τkt ∣∣ , Mk

0 = 0 . (17)

The next step consists of the FC computing the GSPRT
statistic ΛD

t :

ΛD

t ≜ max
θ,I

{
Lθ,I

({
τki :

∣∣τki ∣∣ = 1
}

1≤i≤t
1≤k≤K

)}

= max
θ,I


K∑

k=1

Mk
t∑

m=1

Lθ,I

(
τktkm

) , (18)

where again we exploited the independence of the local
decisions in time and space. The term Lθ,I

(
τktkm

)
can be

obtained using the overall local performances of the sensors:

Lθ,I

(
τktkm

)
=

ln
Pk

D(ck(θ,I))

Pk
F

, if τktkm = +1

ln
Pk

M (ck(θ,I))

Pk
C

, if τktkm = −1
, (19)

with Pk
D, Pk

F , Pk
M , and Pk

C representing the overall prob-
ability of detection, false alarm, miss detection, and correct
rejection, respectively, of a sequential detector. These metrics
are discussed in Sec. V.

2) Continuous Sampling Algorithm (CSA): In this configu-
ration, the kth sensor transmits a message to the FC only when
H1 is declared, so we can state the following transmission rule
at each t:

τkt ≜

{
1 , if ∃m : t = tkm ∧ dkm = H1

0 , otherwise
, (20)

where τkt is the transmission value, with τkt = 0 indicating
the absence of a physical transmission from the sensor to FC.

Meanwhile, the FC sequentially updates a statistic using
the received transmission values

{
τkt
}
k,t

. The knowledge of
the sampling period of each sensor allows such a continuous
sampling although τkt = 0 does not constitute a physical
transmission. The reason behind the use of the same trans-
mission value τkt = 0 to represent the absence of a decision
and a negative decision lies in the deterministic nature of the
time taken by a sensor to declare H0 (equal to Tk) which

allows to unequivocally distinguish the two cases. Similarly to
the previously proposed architecture, we employ a truncated
GSPRT, whose statistic is indicated with ΛC

t with a time limit
T ∗, leading to the following stopping rule and decision rule:

t∗ ≜ min{inf{t : ΛC

t ≥ γ∗}, T ∗} ,

Ĥ ≜

{
H1 , if ΛC

t∗ ≥ γ∗

H0 , otherwise
. (21)

At each t, the calculation of ΛC
t requires the FC to

sequentially deduce, for each sensor, whether the received
transmission value τkt corresponds to a local decision or not,
and retrieve the current delay akt :

tkm = min
{
inf
{
t > tkm−1 : τkt = 1

}
, tkm−1 + Tk

}
, (22)

Mk
t =

{
Mk

t−1 + 1 , if t = tkMk
t−1

+ 1

Mk
t−1 , otherwise

, (23)

akt =

{
1 , if t = tkMk

t−1
+ 1

akt−1 + 1 , otherwise
, (24)

where Mk
t now counts the number of local decisions taken

by the kth sensor at time t including the one that is currently
being taken, with tk0 = 0 and Mk

0 = 0. The next step consists
of the FC computing the GSPRT statistic ΛC

t :

ΛC

t ≜ max
θ,I

{
Lθ,I

({
τki
}

1≤i≤t
1≤k≤K

)}
(25)

= max
θ,I


K∑

k=1

Mk
t∑

m=1

Lθ,I

(
τkmin{t,tkm}, a

k
min{t,tkm}

) ,

where we exploited the independence of the local decisions
in time and space. The generic value of Lθ,I

(
τkt , a

k
t

)
can be

expressed using the instant local performances of the sensors:

Lθ,I

(
τkt , a

k
t

)
=


ln

P(k,ak
t )

D (ck(θ,I))

P(k,ak
t )

F

, if τkt = 1

ln
P(k,ak

t )

M (ck(θ,I))

P(k,ak
t )

C

, if τkt = 0

, (26)

with P(k,i)
D , P(k,i)

F , P(k,i)
M , and P(k,i)

C representing the instant
probability of detection, false alarm, miss detection, and
correct rejection, respectively (see Sec. V).

V. ANALYSIS OF LOCAL SEQUENTIAL DETECTION

The assessment of the local performances of sequential
detectors is now reported. First, we assess the instant and
overall performances. Next, we analyze the local decision
delays. In the rest of the work, to ease the comparison between
the presented architectures, we will assume that the deadlines
Tk’s (resp. T ∗) used in the DTSA and CSA are set to have
the same values of the sample sizes at sensor level (resp. FC
level) used in the BSA.
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A. Instant Local Performances
We analyze the local performances at the kth sensor in

terms of instant probability of false alarm P(k,i)
F and instant

probability of detection P(k,i)
D (ck) for the generic mth decision

with respect to each time instant
{
tkm−1 + i

}Tk

i=1
:

P(k,i)
F ≜ P0

(
dkm = H1, t

k
m − tkm−1 = i

)
= P0

({
Λk
t < γk

}
t<i

,Λk
i ≥ γk

)
,

P(k,i)
D (ck) ≜ P1

({
Λk
t < γk

}
t<i

,Λk
i ≥ γk; ck

)
, (27)

where, analogously to Eq. (6), we exploited the fact that{
Λk
t − Λk

tkm−1

}
m

are i.i.d. for any t ∈ [tm−1 + 1, tm−1 + i],
and therefore we chose m = 1.

By examining Eqs. (2) and (4), we have:{
H0 : Λk

i ∼ N
(
0, iσ2

k

)
H1 : Λk

i ∼ N
(
ick, iσ

2
k

) . (28)

Therefore Eq. (27) is obtained via computing the CDF of
a multivariate Gaussian random variable in the form of
Pj

(
zk
i ≤ 0

)
, with zk

i

Hj∼ N
(
µj

zk
i

,Σzk
i

)
, where:

zk
i ≜


Λk

1−γk

...
Λk

i−1−γk

−Λk
i +γk

, µ0
zk
i
≜

−γk

...
−γk
γk

, µ1
zk
i
≜

 ck−γk

...
(i−1)ck−γk

−ick+γk

,

Σzk
i
≜


σ2
k σ2

k ··· σ2
k −σ2

k

σ2
k 2σ2

k ··· 2σ2
k −2σ2

k

...
...

. . .
...

...
σ2
k 2σ2

k ··· (i−1)σ2
k −(i−1)σ2

k

−σ2
k −2σ2

k ··· −(i−1)σ2
k iσ2

k

 . (29)

Moreover, computing the instant probability of correct
rejection (P(k,i)

C ) and the instant probability of miss detection
(P(k,i)

M (ck)) is needed for the CSA:

P(k,i)
C ≜ 1−

i∑
j=1

P(k,j)
F , P(k,i)

M (ck) ≜ 1−
i∑

j=1

P(k,j)
D (ck) .

(30)

Hence, the values of P(k,i)
C and P(k,i)

M are obtained from previ-
ously calculated probabilities. However, such probabilities are
computed via numerical methods (being CDFs of multivariate
Gaussian random variables). Unless the approximation error is
sufficiently low, we might experience (mainly for high values
of i) an accumulation of errors in the final result, especially
undesirable when leading to negative values in Eq. (30). For
this reason, we also include the direct calculation of P(k,i)

C

and P(k,i)
M (ck) which are defined as:

P(k,i)
C ≜ P0

({
Λk
t < γk

}
t≤i

)
,

P(k,i)
M (ck) ≜ P1

({
Λk
t < γk

}
t≤i

; ck

)
. (31)

These can be obtained computing Pj

(
vk
i ≤ 0

)
, with vk

i

Hj∼
N
(
µj

vk
i

,Σvk
i

)
. Specifically:

vk
i ≜

 Λk
1−γk

...
Λk

i −γk

, µ0
vk
i
≜

[−γk

...
−γk

]
, µ1

vk
i
≜

 ck−γk

...
(i−1)ck−γk

ick−γk

,

Σvk
i
≜


σ2
k σ2

k σ2
k ··· σ2

k

σ2
k 2σ2

k 2σ2
k ··· 2σ2

k

σ2
k 2σ2

k 3σ2
k ··· 3σ2

k

...
...

...
. . .

...
σ2
k 2σ2

k 3σ2
k ··· iσ2

k

 . (32)

Σzk
i

and Σvk
i

are derived in Appendix A.

B. Overall Local Performances
The overall probabilities of false alarm (Pk

F ) and detection
(Pk

D(ck)) at the kth sensor for the mth decision are:

Pk
F ≜ P0

(
dkm = H1

)
=

Tk∑
i=1

P(k,i)
F ,

Pk
D(ck) ≜ P1

(
dkm = H1; ck

)
=

Tk∑
i=1

P(k,i)
D (ck) . (33)

The results in Eq. (30) do not relate to local decisions except
for i = Tk, in such case, the overall probabilities of correct
rejection (Pk

C) and miss detection (Pk
M (ck)) are readily given:

Pk
C ≜ P(k,Tk)

C , Pk
M (ck) ≜ P(k,Tk)

M (ck) . (34)

C. Local Decision Delays
With the local detection algorithm being sequential, one can

evaluate the average time taken to reach a decision. We use
Dk

1j to represent the expected time taken by the kth sensor
to declare H1 when Hj is true, while Dk

0X refers to the
declaration of H0 independently of the true hypothesis:

Dk
10 ≜ E0

(
tkm − tkm−1

∣∣dkm = H1

)
=

Tk∑
i=1

iP0

(
tk1 = i

∣∣dk1 = H1

)
=

1

Pk
F

Tk∑
i=1

iP(k,i)
F ,

Dk
11(ck) ≜

1

Pk
D(ck)

Tk∑
i=1

iP(k,i)
D (ck) ,

Dk
0X ≜ E

(
tkm − tkm−1

∣∣dkm = H0

)
= Tk . (35)

In particular, given dkm = H0, then Dk
0X = Tk almost surely.

Moreover, it is possible to express the expected time Dk
Xj

taken by the kth sensor to take any decision when Hj is true:

Dk
X0 ≜ E0

(
tkm − tkm−1

)
=

Tk∑
i=1

iP0

(
tk1 = i

)
= Dk

10Pk
F + TkPk

C = Tk −
Tk∑
i=1

(Tk − i)P(k,i)
F ,

Dk
X1(ck) ≜ Dk

11(ck)Pk
D(ck) + TkPk

M (ck)

= Tk −
Tk∑
i=1

(Tk − i)P(k,i)
D (ck) . (36)

These expressions explicitly show that the local decision
delay of the kth sensor, in the case of sequential detection, is
always upper-bounded by Tk.

VI. COMPUTATIONAL COMPLEXITY

This section assesses the computational complexity and the
communication costs associated with the online FC detection
algorithm in the case of the BSA, DTSA, and CSA.
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A. Offline Preparation

In the three algorithms, the main task of the FC is to sum
the observations’ log-likelihood ratios and find the maximum
with respect to the unknown parameters. Since the online
computation of log-likelihood ratios becomes computationally
intensive as the grids get finer, we assume an offline stage
preceding the online detection where the log-likelihood ratios
are pre-computed for each grid point and uploaded to the FC.
The variables in C are known (thanks to the use of real-time
weather data) but vary with time, thus a grid of possible values
for those variables is required as well.

Such an offline data preparation has the benefit of reducing
the real-time computational toll on the FC, but it suffers from
the mismatch between the measured meteorological data and
its closest value on the grid. However, such a difference can
be arbitrarily reduced using a finer grid for the variables in C
during the offline data computation.

B. Computation Complexity

The three different algorithms contain instructions for the
FC on when and how the decision statistic must be up-
dated. Given an instant where the FC is required to update
the statistic, we have the same computational complexity
O(K · |grid(θ)| · |grid(I)|) across the three algorithms. The
main computational difference lies in the rate at which these
updates must be carried out which varies according to the em-
ployed algorithm. Let us assume that our network consists of
a single sensor (K = 1): the BSA calculates the statistic only
once after T ∗ instants (because of its batch nature); the DTSA,
instead, has a mean update period of D1

X1(ck) when H1 is true
(resp. D1

X0 when H0 is true) with T1 as an upper bound (see
Eq. (36)), while the CSA has an update period equal to 1. We
conclude by saying that: 1 ≤ D1

X1 ≤ D1
X0 ≤ T ∗, which shows

the higher rate of update of the CSA, followed by the DTSA,
both bounded by the BSA. Variations of the CSA might be
proposed where the update of the statistic is carried out with
a period higher than 1 and lower or equal than T1 as long
as no local positive decision is taken (if the update period is
equal to T1 the update frequency would collide with that of
the DTSA). These observations can be extended to networks
having K > 1.

C. Communication Costs

Each architecture is configured with a distinct combination
of decision rule and transmission rule at the sensor level,
resulting in a different average transmission period (ATP)
between physical communications from each sensor to the FC.
The subsequent results show the average transmission periods
for each of the shown architectures:

ATPCSA ≜ E

tkb − tka

∣∣∣∣∣∣
tkb∑

t=tka

τkt = 2


=

{
Dk

X0/Pk
F , if H0 is true

Dk
X1(ck)/Pk

D(ck) , if H1 is true
, (37)

ATPDTSA ≜ E
(
tkm − tkm−1

)
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(a) Low intensity: I = 0.05m3/s (maximum value)
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(b) High intensity: I = 0.5m3/s (maximum value)

Fig. 2: (Mean) concentration maps in a dispersion scenario
at different intensities with θ = [25m 75m]T, φ = 315◦,
D = 0.1m, and u = 5m/s.

=

{
Dk

X0 , if H0 is true
Dk

X1(ck) , if H1 is true
, (38)

ATPBSA ≜ tkm − tkm−1 = Tk , almost surely . (39)

The derivation of ATPCSA is reported in Appendix B.
We can immediately observe that ATPCSA ≥ ATPDTSA.

This is a direct consequence of the absence of physical
communication when a sensor decides H0 in the CSA archi-
tecture. We can further notice, using Eq. (36), that ATPBSA ≥
ATPDTSA. A comparison between ATPCSA and ATPBSA is
less trivial and will be discussed via the case study in Sec. VII.

VII. RESULTS

The considered scenario simulates the dispersion of satu-
rated carbon dioxide (CO2), a heavy gas whose density, at
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atmospheric temperature and pressure, is about 1.5 times larger
than the air density. Heavy gases need specialized models
that can predict their behavior like the well-known Britter
& McQuaid (B&M) model for continuous releases [39]–[41].
The B&M model is based on the manual reading of a chart
which prevents its use by the FC, thus a set of analytical
relationships described in [2] is employed to convert it into a
set of equations. The B&M’s output, with respect to the kth
sensor, is ck. The variables belonging to the sets A, B, and C,
for the B&M model are the following:

A = {θ, I,D}, B = {T, ρ, c0}, C = {Tatm, ρair, u, φ}, (40)

where T , ρ, c0, and I are the temperature, density, concen-
tration, and intensity of the gas at release condition; D is the
release diameter; Tatm is the atmospheric temperature; ρair is
the density of air at Tatm; finally u and φ are the wind speed
at the height of 10 meters3 and its direction4. D is a parameter
that, like θ and I , should be estimated as it is unknown.
However, its contribution to the value of ck is negligible for
small values of D (which is the case for accidental dispersion),
allowing us to assume it as known and equal to zero reducing
the computational complexity of the algorithms.

Here, we assume that both the dispersion model and the
signal model in Sec. II are accurate so that possible differences
between the assumptions and the actual phenomenon can
be neglected. The evaluation of the consequences of a non-
negligible mismatch is outside the scope of this work.

The results are obtained via simulation of a monitored
square area with sides of 100 meters with equally-spaced
sensors, as shown in Fig. 2. The simulated settings refer to
combinations of network size K ∈ {9, 16} each with low
intensity and high intensity dispersions. The corresponding
four combinations allow an exhaustive comparison of the
proposed algorithms. The results of each combination have
been computed via numerical simulation with 105 Monte
Carlo runs equally divided between H0 and H1 via MATLAB
software. At each run, parameters such as wind direction (φ),
wind speed (u), dispersion position (θ), intensity (I), and
dispersion diameter (D) are generated according to a uniform
distribution in a predetermined realistic range of values. The
remaining parameters are kept constant across all the runs.
The values or the distribution boundaries of the parameters
are shown in Tab. I, while the specifications of the parameter
grids necessary for the offline preparation of data are reported
in Tab. II. In the present study, the selection of the threshold
of a detector (γk) is done by fixing Pk

F and Tk. For a batch
local detector, this is done via inversion of Eq. (6). For the
sequential case, this can be achieved via common root-finding
methods applied to Eqs. (27) and (33).

Fig. 3 shows the ROC surfaces of the kth sensor in the
case of a batch detector (Fig. 3a) and a sequential detector
(Figs. 3b and 3c). These plots are obtained using the relations
introduced in Sec. V. It is immediate to notice how the
probability of detection strongly depends on ck, for a fixed

3If wind speed is available at a different height, several conversion methods
are available [42].

4Wind blowing from north: 0◦ (360◦), east: 90◦, south: 180◦, west: 270◦.

TABLE I: Parameters used for the simulations

Parameter Value / NotesDistribution

θ1 and θ2 U(0, 100)m uniform in monitored area
c0 1 molar vapor fraction (1 = 106 ppm)

T (op) 253 K [43]
P (op) 19.8 bar saturation pressure at T (op)

T 219 K Soave-Redlich–Kwong EOS [44]
Patm 1.01 bar –
ρ 2.48 kg/m3 Soave-Redlich–Kwong EOS [44]

Tatm 293 K –
ρair 1.20 kg/m3 –
u U(0, 10)m/s –
φ U(0, 2π) –
I U(0, 0.05)m3/s low intensity dispersion
I U(0.4, 0.5)m3/s high intensity dispersion
D U(0, 0.2)m –

µk 400 ppm ∀k
σk 200 ppm ∀k
Tk 4 ∀k
Pk
F 0.05 ∀k

γk 693 ppm ∀k, DTSA and CSA
γk 658 ppm ∀k, BSA

TABLE II: Parameters used for grid construction

Parameter Grid Limits Grid Interval

θ1 and θ2 [0, 100]m 1m
I (low intensity) [0, 0.05]m3/s 1/60 m3/s

I (medium intensity) (0.05, 0.4)m3/s 60/7 m3/s
I (high intensity) [0.4, 0.5]m3/s 1/30 m3/s

u [0.5, 10]m/s 0.5m/s
φ [0, 2π) π/8

probability of false alarm. In terms of area under the curve
(AUC), as ck → 0, we have AUC → 0.5 (random detector),
while as ck → ∞, AUC → 1 (perfect detector), regardless of
the used approach5. Furthermore, the figure highlights the de-
cision delays in the two different approaches as the probability
of false alarm and ck change. Fig. 3a shows a constant decision
delay equal to Tk, while the remaining surfaces highlight the
changes in Dk

11 and Dk
X1. In particular, when Pk

F → 1, we
have

(
Dk

11,Dk
X1

)
→ (1, 1), while when Pk

F → 0, we obtain(
Dk

11,Dk
X1

)
→ (Tk, Tk) thanks to the truncation that prevents

the delays to diverge to infinity. Finally, in the sequential case,
the plots show how the delays tend to lower from Tk to 1 at
a faster rate with respect to Pk

F as ck increases.
The comparison between a batch and a sequential detector

can be facilitated using Fig. 4. In particular, Fig. 4a displays
three sets of ROC curves at different values of ck showing
the negligible difference in performance between the two
approaches. Meanwhile, Fig. 4b shows that once Pk

F has been
fixed, the value of Tk required to achieve a desired value
of Pk

D is similar in the case of batch and the sequential
approach. Hence we can say that the differences in terms
of detection accuracy between the batch approach and the
sequential approach are negligible. The main advantage of
a sequential approach can be seen in Fig. 4c where the
decision delay Dk

X1 is always smaller than Tk with this

5We remind that, for a generic detector, AUC ≜
∫ 1
0 PD(PF ) dPF , where

PF and PD are the probability of false alarm and detection, respectively.
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(a) Batch detector (colorbar shows Tk) (b) Sequential detector (colorbar shows Dk
11) (c) Sequential detector (colorbar shows Dk

X1)

Fig. 3: ROC surfaces of local detectors using batch and sequential approach (red line indicates performances at Pk
F = 0.05).

(a) ROC curves of the sensors (b) Pk
D vs. Tk, with Pk

F = 0.05 (c) Tk vs. Dk
X1, with Pk

F = 0.05

Fig. 4: Detection performances of the sensor.

difference increasing as we allow higher values of Tk. This
highlights that, once the probability of false alarm has been
fixed, a sensor can perform detection with a smaller decision
delay when a sequential approach is used rather than a batch
approach at virtually the same probability of detection.

Fig. 5 shows the values of the ATP using the different
architectures once the probability of occurrence of the disper-
sion P1 ≜ P(H1) is marginalized, making it easier to compare
ATPCSA and ATPBSA. This is because it is fair to assume that
such an event happens with low frequency, with the desirable
reduction communication in the WSN when H1 does not
occur. We can notice that ATPCSA and ATPDTSA increase as
P1 decreases. However, while ATPDTSA is upper-bounded by
ATPBSA (as discussed in Sec. VI), the behavior of ATPCSA

relative to ATPBSA varies according to both P1 and ck. In the
limit case of P1 = 1 (resp. P1 = 0), we can see the values of
the ATP’s in the hypothesis H1 (resp. H0): in H1, ATPCSA

tends to increase for lower values of ck eventually leading
to values greater than ATPBSA; in H0, ATPCSA is sensibly
higher than ATPBSA, regardless of ck. Thus, ATPCSA shows
an improvement in the reduction of communication costs when
the assumption of low P1 holds.

Next, we discuss the performances of the FC for each of the
four configurations mentioned above in terms of global prob-
ability of false alarm P∗

F ≜ P0

(
Ĥ = H1

)
, global probability

of detection P∗
D ≜ P1

(
Ĥ = H1

)
, and global decision delay

Fig. 5: Average Transmission Period vs. Probability of Occur-
rence.

(in H1) defined as D∗
X1 ≜ E1(t

∗) for the CSA and DTSA,
and equal to D∗

X1 ≜ T ∗ for the BSA. The results are reported
at increasing values of T ∗ for comparison purposes.

Figs. 6 and 7 illustrate the ROC curves and the curves where
DX1 is shown as function of P∗

F . Different points of the curve
are obtained by applying different values of global threshold
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(a) ROC curves, T ∗ = 4, K = 9 (b) ROC curves, T ∗ = 12, K = 9 (c) Decision delay curves, K = 9

Fig. 6: ROC curves and decision delay curves, K = 9.

(a) ROC curves, T ∗ = 4, K = 16 (b) ROC curves, T ∗ = 12, K = 16 (c) Decision delay curves, K = 16

Fig. 7: ROC curves and decision delay curves, K = 16.

TABLE III: AUC in the simulated configurations

K Method T ∗ = 4 T ∗ = 8 T ∗ = 12
low I high I low I high I low I high I

9
CSA 0.6556 0.8173 0.6672 0.8252 0.6754 0.8313

DTSA 0.6509 0.8121 0.6593 0.8169 0.6654 0.8208
BSA 0.6307 0.7710 0.6686 0.8251 0.6781 0.8343

16
CSA 0.7183 0.8878 0.7343 0.8945 0.7428 0.8988

DTSA 0.7047 0.8786 0.7157 0.8822 0.7221 0.8848
BSA 0.6724 0.8294 0.7320 0.8911 0.7444 0.9010

γ∗ to the FC’s detection rule. The plots report results for T ∗ ∈
{4, 12} (as these are multiples of Tk)6. The corresponding
values of AUC are reported in Tab. III (with the intermediate
scenario with T ∗ = 8 also present). Analogously to the AUC
of the ROC curve, we define AUC(D∗

X1) ≜
∫ 1

0
D∗

X1(P∗
F ) dP∗

F

to facilitate the discussion of Figs. 6c and 7c. This metric is
the mean value of D∗

X1 over the domain of P∗
F and its values

are reported in Tab. IV.
The ROC curves show that increasing the number of sensors

improves P∗
D, irrespective of the algorithm used. There are

two reasons for this: Firstly, a larger number of sensors
provides more information to the FC, enabling better discrimi-
nation between hypotheses. Secondly, since gas dispersions are
anisotropic, having more sensors increases the chances of more
sensors being in contact with the gas plume, resulting in a
greater number of sensors experiencing ck > 0, which enables

6Higher values of T ∗ are not reported as they did not show any significant
changes in the ROC curves and in the respective values of AUC.

TABLE IV: AUC(D∗
X1) in the simulated configurations

K Method T ∗ = 4 T ∗ = 8 T ∗ = 12
low I high I low I high I low I high I

9
CSA 2.2263 1.6320 3.8154 2.4724 5.3837 3.2943

DTSA 2.4062 1.7448 3.9661 2.5883 5.5021 3.4148
BSA 4 4 8 8 12 12

16
CSA 2.1243 1.4326 3.4569 1.9629 4.7146 2.4609

DTSA 2.3249 1.5427 3.6606 2.0990 4.9415 2.6321
BSA 4 4 8 8 12 12

non-random local detections. Another noticeable behavior is
the higher value of P∗

D when the intensity I increases. This is
because increasing I (fixing the other parameters) results in a
higher ck for those sensors already in the gas plume, as well
as more sensors experiencing ck > 0 (see Fig. 2 for a visual
description of the effect of an increase of I). Such behavior
of P∗

D with respect to K and I are numerically confirmed by
an increase of AUC.

Using Tab. III, one can notice an increase in the AUC
as higher values of T ∗ are used. Moreover, at T ∗ = 4, the
reported values show AUCCSA > AUCDTSA > AUCBSA, with
the difference in AUC (averaged among the four configura-
tions) between the CSA and BSA, being 0.0439. This changes
at T ∗ = 12, showing a convergence trend in the AUC, with
the BSA having the highest values. Nevertheless, the average
difference in AUC between the CSA and BSA is equal to
−0.0024, making this difference negligible.

Further analysis of the results showed the reason behind
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the negligible differences in performance obtained by all the
architectures as higher values of T ∗ are used. This lies in
the anisotropic behavior of gas dispersions. In the simulated
scenarios, a non-negligible number of Monte Carlo runs re-
sulted in none of the sensors experiencing ck > 0. In such
a scenario all the sensors (and so the FC) acts as a random
detector regardless of the current value of T ∗.

Unlike the previous discussion, the benefits in terms of D∗
X1,

as K and I increase, are only experienced by the CSA and
the DTSA and are shown in Figs. 6c and 7c. This means that
while, on one hand, we reach converging values of AUC by
increasing T ∗, on the other hand, we are further amplifying
the difference in AUC(D∗

X1) in favor of the sequential algo-
rithms, and in particular the CSA. Tab. IV clearly shows that
AUC(D∗

X1)CSA > AUC(D∗
X1)DTSA > AUC(D∗

X1)BSA, for all
configurations and values of T ∗. This is because, in the CSA
and DTSA, D∗

X1 grows slower than T ∗, unlike in the BSA
where the growth is identical.

Both Figs. 6 and 7 show how the selection of the threshold
γ∗ affects performances. It can be seen how lowering γ∗

simultaneously results in a higher P∗
D and lower D∗

X1, with
the drawback of an increased value of P∗

F . Nevertheless, the
curves show how both the CSA and DTSA are able to have
lower P∗

F maintaining a steady level of P∗
D and D∗

X1. This is
especially visible at low values of T ∗.

The appropriate value of γ∗ can be found via simulation
after selecting a metric to satisfy. Possible strategies include:
(a) given a fixed number of sensors, the threshold is chosen by
satisfying a desired maximum P∗

F ; (b) given a fixed number
of sensors, the threshold is chosen so that a minimum value
of P∗

D is achieved given a value of I; (c) the threshold is
selected by minimizing the Bayes Risk; (d) the threshold is
chosen, together with the number of sensors, so that both P∗

F

and P∗
D satisfy the desired requirements, given a value of I .

To conclude, the two proposed algorithms present the fol-
lowing differences in terms of performance and complexity:

• The CSA shows superior performances with respect to the
DTSA both in terms of detection accuracy and decision
delay;

• The CSA shows a great advantage in terms of commu-
nication costs, while the DTSA requires more frequent
transmissions from the sensors to the FC;

• The DTSA requires less computations since the FC needs
to update the detection statistic only when a decision
is taken by the sensors. The CSA, on the other hand,
requires the FC to update the detection statistic at each
instant.

Thus, because of its high performance, the CSA is par-
ticularly suitable for highly safety-critical applications like
hazardous gas detection. The DTSA, still maintaining high
performances, shows a lower degree of accuracy and higher
delay with respect to the CSA as well as higher communication
costs. However, the DTSA’s lower requirement in terms of
computations performed by the FC makes it a desirable
solution as long as a higher number of sensors is employed.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We proposed two sequential algorithms addressing the task
of distributed gas detection in WSNs, named CSA and DTSA.
The setup consists of sensors taking binary decisions via SD
and transmitting them to a FC which takes a final decision
benefiting from the integration of meteorological data and
the dispersion model. The proposed methods constitute fully
sequential alternatives to the traditional batch approach (BSA),
with the further innovation introduced by the CSA of a time-
aware sequential fusion. This enabled a significant improve-
ment in terms of detection accuracy and delay, especially
desired in such a time-critical application. System performance
was also assessed in terms of communication costs showing
how a time-aware algorithm as the CSA greatly reduces
transmissions from sensors to the FC. The case study of CO2
dispersion confirmed the validity of the proposed architectures.

Future works include (a) the reduction of complexity via
more efficient strategies for the searching of (θ, I), including
the estimation of possible variations of I over time; (b) mod-
eling erroneous communication channels; (c) use of Bayesian
methods to improve detection and parameter estimation; (d)
more accurate statistical characterization of the signal mea-
sured by the sensors including possible correlations between
measurements in space and time; (e) development of algo-
rithms accounting for imperfect knowledge of the dispersion
model; (f ) use of more comprehensive dispersion models, or
direct use of computational fluid dynamics software; (g) inte-
gration of machine learning strategies for improved detection
performances.

APPENDIX A
COVARIANCE MATRICES

The following is the derivation of the matrices Σzk
i

and
Σvk

i
, for any k = 1, . . . ,K and i = 1, . . . , Tk. The element

of the matrix Σvk
i

located in the rth row and sth column is
defined as the following:[

Σvk
i

]
r,s

≜ Cov
(
Λk
r − γk,Λ

k
s − γk

)
= Cov

(
Λk
r ,Λ

k
s

)
.

When r = s ≤ i, we have that:[
Σvk

i

]
r,s

= Var
(
Λk
s

)
= sσ2

k = rσ2
k .

On the other hand, when r < s ≤ i:[
Σvk

i

]
r,s

= Cov

Λk
r ,Λ

k
r +

s∑
j=r+1

λk
j


= E

Λk
r

Λk
r +

s∑
j=r+1

λk
j

− E
(
Λk
r

)
E

Λk
r +

s∑
j=r+1

λk
j


= E

((
Λk
r

)2)− E2
(
Λk
r

)
= Var

(
Λk
r

)
= rσ2

k .

Analogously, when s < r ≤ i,
[
Σvk

i

]
r,s

= sσ2
k. Hence, it is

easy to obtain the following:[
Σvk

i

]
r,s

= min{r, s} · σ2
k , ∀ r ≤ i, s ≤ i .
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For the case of Σzk
i

, the previous holds as long as r < i
and s < i. In fact, when r < s = i:[

Σvk
i

]
r,s

≜ Cov
(
Λk
r − γk,−Λk

s + γk
)
= Cov

(
Λk
r ,−Λk

i

)
= Cov

Λk
r ,−Λk

r −
i∑

j=r+1

λk
j


= E

−Λk
r

Λk
r +

i∑
j=r+1

λk
j


− E

(
Λk
r

)
E

−Λk
r −

i∑
j=r+1

λk
j


= −E

((
Λk
r

)2)
+ E2

(
Λk
r

)
= −Var

(
Λk
r

)
= −rσ2

k .

Similarly, when s < r = i,
[
Σvk

i

]
r,s

= −sσ2
k. Lastly, when

r = s = i, we have:[
Σzk

i

]
r,s

≜ Cov
(
−Λk

r + γk,−Λk
s + γk

)
= Var

(
−Λk

i

)
= Var

(
Λk
i

)
= iσ2

k .

These four cases form the following rule:

[
Σzk

i

]
r,s

=


min{r, s} · σ2

k , if r < i and s < i

−rσ2
k , if r < s = i

−sσ2
k , if s < r = i

iσ2
k , if r = s = i

= σ2
k min{r, s}

[
1 + 2δi,max{r,s}

(
δi,min{r,s} − 1

)]
.

APPENDIX B
AVERAGE TRANSMISSION PERIOD IN THE CSA

We here report the derivation of the ATPCSA reported in
Eq. (37). We show the proof for the case where H0 is true:

E0

tkb − tka

∣∣∣∣∣∣
tkb∑

t=tka

τkt = 2

 = E0

tki

∣∣∣∣∣∣
tki∑
t=1

τkt = 1


=

∞∑
i=1

E0

tki

∣∣∣∣∣∣
tki∑
t=1

τkt = 1

P0

 tki∑
t=1

τkt = 1


=

∞∑
i=1

[
(i− 1)E0

(
tk1
∣∣dk1 = H0

)
+ E0

(
tk1
∣∣dki = H1

)]
× P0

(
dk1 = H1

)[
1− P0

(
dki = H1

)]i−1

=

∞∑
i=1

[
(i− 1)Tk +Dk

10

]
Pk
F

(
1− Pk

F

)i−1

= Pk
F

∞∑
i=0

(
i Tk +Dk

10

)(
1− Pk

F

)i
= Pk

F

(
Tk

∞∑
i=0

i
(
1− Pk

F

)i
+Dk

10

∞∑
i=0

(
1− Pk

F

)i)

= Pk
F

(
Tk

1− Pk
F(

Pk
F

)2 +
Dk

10

Pk
F

)
=

Tk(1− Pk
F ) + Pk

FDk
10

Pk
F

=
Dk

X0

Pk
F

.

Similarly, we obtain Dk
X1(ck)/Pk

D(ck) when H1 is true.
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