
IEEE SENSORS JOURNAL 1

An Intelligent Collaborative System for Disease
Detection

Youcef Djenouri, Asma Belhadi, Anis Yazidi, Gautam Srivastava, and Jerry Chun-Wei Lin*

Abstract—In this paper we introduce a novel framework1

for disease detection. The framework is based on intelligent2

agents where each agent studies the interaction among the3

different medical data observations using reinforcement learning4

and targets to detect the diseases. The agents then collaborate5

to reach a joint reliable conclusion on the detected diseases.6

Intensive experimentation has been conducted on medical data.7

The obtained results revealed the importance of using intelligent8

agents for identifying diseases in the healthcare decision making9

process. In addition, collaboration increases the detection rate10

where the numerical results reveal the superiority of the pro-11

posed framework compared to the baseline solutions for disease12

detection.13

Index Terms—Communicable Disease, Multi-Agents System,14

Correlation.15

I. INTRODUCTION16

In the last two years, particularly since the start of the17

COVID-19 pandemic, technologies for controlling, managing,18

and detecting diseases have piqued attention [1], [2]. The19

pandemic has made the humanity aware of the necessity of20

the development of new intelligent systems for early disease21

detection. Artificial intelligence-based technologies hold a lot22

of promise in this regard and in medical applications in general23

[3], [4] with techniques such as multi-agent systems, deep24

learning networks, and evolutionary computation.25

A. Motivations26

Deep learning is a branch of artificial intelligence that en-27

tails creating complicated but complete models with intensive28

number of layers and high number of hyper-parameters. These29

models are capable of extracting useful characteristics directly30

from vast volumes of data, not just for learning. The analysis31

of medical data, particularly disease detection, is an intriguing32

area in deep learning [5]–[8]. For instance, COVID-19 samples33

were used to construct a smart model for calculating infection34

rates [5]. The latter work uses both supervised and unsuper-35

vised learning methodologies which led to a boost of detection36
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speed by 40 percent. Using transfer learning, pathogen frames 37

were evaluated and COVID-19 instances were validated with 38

typical virus-based pneumonia [6]. The outcome highlights 39

the value of employing intelligent approaches for COVID-19 40

diagnosis. 41

We can also observe examples that are substantially re- 42

searched by studying different types of deep learning models 43

in well-established in medical and disease detection in the 44

newer fresh area of distributed deep learning [9]–[13]. The 45

main purpose of these technologies, especially distributed 46

ones, is to identify diseases in order to assist medical personnel 47

in making fair and acceptable medical decisions. The detection 48

of diseases is subject to a number of constraints, the most sig- 49

nificant among them being data complexity. Indeed, diseases 50

can be in different forms and shapes which will be hard to 51

detect. To overcome these disadvantages, we are investigating 52

a complete framework that is based on the incorporation of 53

the deep learning (DL) and the multi-agent systems (MAS). 54

The large number of hyper-parameters supplied by deep learn- 55

ing models is another significant barrier for disease detection 56

process. Choosing these values at random results in a signif- 57

icant drop in the overall performance throughout the learning 58

period. Furthermore, the parameter setting procedure for such 59

frameworks takes a long time and there is no guarantee to 60

reach a satisfactory convergence. The effectiveness of evolu- 61

tionary computation (EC) in tackling complicated problems 62

[14], [15] drove this research to tune the parameters of the 63

proposed framework. 64

B. Contributions 65

To the best of our knowledge, this is the first study to look into 66

a detailed combination of multi-agent systems, evolutionary 67

computation, and deep learning for disease detection. The 68

following is a list of the most important contributions: 69

1) ALMOST (An coLlaborative systeM fOr diSease de- 70

Tection), a fresh new paradigm is provided that uses 71

DL, MAS, and EC to identify diseases. Each agent uses 72

various deep learning architectures to learn from medical 73

training data and various viral diseases. Each iteration 74

of the architecture establishes communication among 75

the various agents for knowledge exchange and error 76

learning rate reduction. 77

2) We show how several convolution neural networks can 78

be collaborated to handle complex medical data. Dif- 79

ferent optimizations, such as batch normalization and 80

dropout techniques, guarantee that the convolution neu- 81

ral network reach maturity in handling medical data. 82
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3) For intelligently exploring the configuration space of83

different hyper-parameter values, we suggest new evo-84

lutionary computation technique based on a genetic85

behaviour. This hyper-parameters optimization approach86

improves ALMOST’s convergence for disease prediction87

from medical data.88

4) Extensive testing was conducted to demonstrate the89

applicability of the ALMOST. The results revealed that90

ALMOST surpassed other well-known disease detection91

algorithms in terms of quality of returned outputs and92

also in terms of computational time when training large93

scale medical data.94

C. Paper Outline95

From here on out, the paper will be organized as follows.96

Section II provides an in-depth examination of related stud-97

ies in disease detection. Section III gives a comprehensive98

understanding of the ALMOST methodology. A performance99

evaluation of ALMOST is shown in Section IV. Section V100

discusses the key consequences of using ALMOST on medical101

data, as well as the research’s prospective future prospects. To102

conclude, Section VI ends the paper.103

II. LITERATURE REVIEW104

Hawaz et al. [16] investigated the use of pattern mining in105

medical diseases analytics. The set of COVID patients data is106

converted to a set of transactions, each patient is represented107

by a transaction, and each COVID-based information related108

to the patient is represented by an item. Afterwards, a pattern109

mining algorithm is performed on the set of transactions to110

extract relevant patterns. These latter were used to identify111

diseases based on the correlation among medical data features.112

Lai et al. [5] automated the image assessment process by113

exploring the segmentation and the classification deep learning114

based architectures. This allows to reach a reasonable estimate115

of the always illusory COVID-19 infection rate. Jain et al. [17]116

showed the performances of three deep learning architectures117

(Inception V3, Xception, and ResNeXt) to identify Covid-19118

disease while using data augmentation for data enrichment.119

Chae et al. [18] predicted infectious diseases by successfully120

exploring the long-short term memory with the auto-regressive121

moving average. The proposed model is improved using the122

ensemble learning mechanism. Therefore, other sources of123

information have been collected and extracted from social124

networks. Wang et al. [6] find viral pneumonia from more125

than thousand of pathogen images. The experiments showed126

clear benefit of using intelligent methods for disease diagnosis.127

Ahuja et al. [19] implemented four deep learning architectures128

(ResNet18, ResNet50, ResNet101, and SqueezeNet) to capture129

COVID-19 from lungs CT-scan medical data. The models130

are pre-trained using large collection of images of different131

domains. The transfer learning mechanism is used to learn132

the COVID-19 cases from medical data. Wong et al. [20]133

analyzed the effect of the data-driven based solutions for in-134

fectious disease. They studied the combination of various data135

management and artificial intelligence techniques in helping136

the medical staffs to mitigate the risk of disease exploration,137

and allow better diagnosis in a smart healthcare environment. 138

Hirano et al. [21] classified the different diseases using the 139

deep learning model. The developed classification models 140

are based on three kinds of medical images: photographic 141

images, X-ray chest images, and retinopathy images. Three 142

applications are then studied including skin cancer, referable 143

diabetic, and pneumonia. Transfer learning with the adversar- 144

ial neural network were implemented. The transfer learning 145

mechanism allows to train the model developed from different 146

medical sources, where the adversarial network allows to 147

handle both non-targeted and targeted attacks, and to identify 148

fake medical images. Jamshidi et al. [22] handle different 149

sources of medical data, with the exploration of generative 150

adversarial networks, extreme learning, and long-short term 151

memory. This combination not only allows to handle hetero- 152

geneous medical data but also increases the disease detection 153

rate. Singh et al. [23] worked on developing hybrid model 154

based on both decomposition and deep learning to disease 155

detection. The set of segments are created by deploying the 156

k-means algorithm on medical data. These segments are then 157

injected in the convolution neural network to predict diseases 158

from the original medical images. Sedik et al. [24] showed 159

the efficiency of using both the convolution neural network 160

with the long-short term memory in COVID-19 identification. 161

The study also revealed the importance of multi-modal data 162

where the authors gathered the medical data from different 163

sources including tomography and the X-ray images. Shalbaf 164

et al. [25] implemented 15 pre-trained deep learning models to 165

automatically identify the COVID-19. These models are based 166

on three well-known classification based architecture including 167

Inception, ResNet, and DenseNet. Ensemble learning is then 168

investigated to merge the results obtained by these models 169

using the majority voting strategy. 170

As can be seen from the above brief literature review, a 171

lot of research studies explored deep learning for identifying 172

diseases from medical data. These models used the transfer 173

learning and data augmentation to deal with the lack of the 174

medical data. They also used the adversarial neural network 175

to secure the training process and deal with sensitive informa- 176

tion of medical data. This is largely explored for distributed 177

platforms. These techniques have a long way to go to gain 178

acceptance in the medical field as they strive to improve the 179

detection rate performance. To achieve mature solution for 180

disease detection, this research work explores an intelligent 181

collaboration mechanism involving intelligent agents, and deep 182

learning. 183

III. ALMOST: AN COLLABORATIVE SYSTEM FOR 184

DISEASE DETECTION 185

A. Principle 186

We will start by explaining the most important aspects of the 187

ALMOST (An coLlaborative systeM fOr diSease deTection). 188

ALMOST is a combination of many smart strategies for 189

solving disease detection problem, as depicted in Figure 1. 190

For disease detection, the Convolution Neural Network (CNN) 191

is used. The multi-agent system is researched to accurately 192

execute the ALMOST in a distributed environment, where 193
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Fig. 1. ALMOST Framework.

each agent can benefit from the environment by applying the194

reinforcement learning paradigm. Because deep learning has a195

large number of parameters to tune, up to a million for some196

architectures, evolutionary computation is used to determine197

the best settings in real-time processing. The components of198

ALMOST will be discussed in the next parts.199

B. Learning Phase200

The learning phase is done using the CNN (Convolutional201

Neural Network) [26]. CNNs are a common sort of deep202

architecture in computer vision applications such as object203

detection and identification. In recent years, the adaptability204

of this method has helped both time series and text data.205

CNNs are built on the notion of extracting features from206

matrix data using convolutional filters. Convolutional filters207

create a new image by applying a set of weights to the208

matrix data of each pixel. In addition, well-known operators209

for deep learning models, batch normalization and dropout, are210

utilized in the training to improve the accuracy of the proposed211

framework. The batch normalization aids in the network’s212

faster convergence, while the Dropout is a regulator that aids in213

the avoidance of overfitting. Both these methods are necessary214

for the network to achieve high accuracy. The following is a215

full description of these components:216

1) Batch Normalization: For efficiently training a large217

number of layers, we adopted the batch normalization218

technique in all steps of the training phase. With only219

a few epochs, the learning process can be better con-220

verged. After each convolution layer in CNN, batch221

normalization is conducted.222

2) Dropout: It’s a technique for avoiding over-fitting223

throughout the workout. At each phase, it skips the224

outputs of the neurons in the hidden layers at random. It225

is simple to technique to make the predictions converge226

in the inference stage by propagating a deep network227

with a limited number of weights.228

C. Multi-Agents Systems 229

The multi-agent system is used to learn the different dis- 230

eases in the training phase. The agents collaborate with each 231

other using the reinforcement learning process. Consider the 232

tuple < A,S,U ,R >. A defines a multi-agent system. There 233

are A agents in total, and each of them is considered a separate 234

Markov decision process in this context. There is a finite 235

set of environment states represented by S, a set of actions 236

represented by U , and a reward function represented by R. 237

The strategies in A specify how each agent should behave 238

given the current state and how it should make decisions 239

about those actions. For example, in disease detection, the goal 240

of each agent is to find an optimal strategy that maximizes 241

the specified objective function, e.g., the number of correctly 242

diseases detected. The following sections detail the various 243

components of our multi-agent system: 244

1) Environment: The environment is a collection of 245

databases containing a massive amount of data from 246

smart sensor devices. This enables the environment to 247

generate specific states for the agent’s training and to 248

estimate the optimal actions to take. 249

2) State: Each agent’s next action is determined by the de- 250

cisions made in earlier phases. As a result, each agent’s 251

state is composed of two components: a collection of 252

previous actions and the current data to be processed. 253

The number of observations in the database is used to 254

determine the size of the state space S. 255

3) Action: It is the assignment of each observation in the 256

database’s decision-making behavior. For instance, in a 257

detection task, it is the assignment of each disease’s 258

category. 259

4) Reward: Determining an appropriate reward function 260

is critical. It enables each agent in A to learn more 261

effectively. We used data that contained ground truth 262

to create a reward for the agent’s actions. 263

So each agent Ai starts by scanning the observations of the 264
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ith smart sensor. It then computes the first and subsequent265

observations for the ith intelligent sensor. A reward function266

for this choice is constructed using the ground truth for the first267

observation. This procedure is performed for each observation268

of the ith intelligent sensor. This results in a collection of269

local choices, denoted LDi, for each agent Ai. The agents270

then learn from the local choices {LDi} to optimally find the271

global decision. This learning is realized by the reinforcement272

learning process, where a reward is given to the best agents273

that have high score for their local choices.274

D. Hyper-parameters Optimization275

To achieve optimal performance, we apply an evolutionary-276

based technique for hyper-parameters optimization. The adap-277

tation of the genetic algorithm is proposed because of its278

well-known balance of intensification and diversification. For279

solving our hyper-parameters optimization problem, a full280

description of the proposed algorithm is given.281

Let HP = {HP1,HP2, . . . ,HPr} be the set of the hyper-282

parameters where r represents the number of hyper-parameters283

in the developed ALMOST. Each HPi represents a set of284

the potential values of the hyper-parameter in question. The285

configuration space C is then defined according to the set286

of all potential configurations where each configuration is a287

vector. The possible values of all the hyper-parameters belong288

to HP . When it comes to hyper-parameters optimization, our289

framework focuses on deriving the optimal configuration that290

can provide the best accuracy result. The configuration space’s291

size is determined by the number of all possible values for the292

hyper-parameters, as specified in Equation 1.293

|C| =
r∏

i=1

|HPi| (1)

The size of the configuration space is very huge, thus it294

takes high computational cost to find the optimal solutions. For295

example, imagine that 1, 000 possible values are considered for296

epoch parameter, 100 possible values are considered for the297

error rate and 100 possible values is the number of the agents298

in the designed model, then the search space will include299

10 million configurations, thus it is unfeasible to apply the300

exhaustive search methods in this case. In order to solve this301

challenge, evolutionary computation methods are used. The302

following are the primary components of our solution.303

1) Population Initialization: We attempt to distribute |P|304

which is the initial population, noted P . This starting popula-305

tion should be uniformly distributed in the configuration space306

C. The proper examination of each of the numerous alternative307

configurations that tend to cover most locations within C may308

then be accomplished using this even distribution technique.309

We must first create the basic population, and we must do it310

while respecting diversity.311

This process itself is begun by randomly generating one312

individual that is represented by a single C configuration. Start-313

ing with this individual, we then can generate an additional314

|P|−1, where each and every new individual should be differ-315

ent than the individuals already generated. We can make use of316

a distance measure between two back to back configurations to317

determine the dissimilarity using the individuals generated in 318

those configurations. P , shown as the initial population, should 319

in turn be able to maximize the diversification function shown 320

in Equation 2. 321

Diversify(P) =

|P|∑
i=1

|P|∑
j=1

Distance(Ci, Cj), (2)

where Distance(Ci, Cj) is the distance between the configu- 322

rations of the ith, and jth individuals, respectively. 323

2) Crossover: To produce new offspring, each of the two 324

individuals in the present population goes through the follow- 325

ing steps: 326

• From 1 to r, we generate a random series of crossing 327

points, each of which we divide into two halves, the left 328

and right. 329

• The left side of the original is duplicated on the left side 330

of the first descendant, and the right side of the original 331

is duplicated on the right side of the second descendant. 332

• In the second generation, the left side of the second 333

individual is inherited by the second generation, while 334

the right side is inherited by the first generation. 335

3) Mutation: The process of mutation encourages the pur- 336

suit of diversity. We use a strategy where the value of a single 337

parameter is randomly changed in each existing configuration. 338

The mutation point is randomly generated and can have a value 339

between 1 and r depending on the algorithm. At each iteration 340

of the crossover operation, the crossover operator changes the 341

value of the mutation point in the resulting offspring. 342

4) Fitness Function: ALMOST’s objective is to maximize 343

disease detection accuracy. Thus, we utilize the following 344

function to assess individuals inside populations: 345

Fitness(Ci) = DetectionALMOST (Ci) (3)

Note that, 346

• The configuration of the population’s ith individual is 347

represented by Ci . 348

• DetectionALMOST (Ci) shows the detection ratio of the 349

ALMOST framework by using the Ci. 350

On the basis of these operations, we proposed the following 351

hyper-parameters optimization algorithm. To begin, the initial 352

population size, defined as |P|, is generated randomly. Follow- 353

ing that, each individual is constructed using the population 354

initialization. Following that, the mutation, and crossover with 355

mutation and crossover rates (Mr and Cr) are used to generate 356

configurations from C. To ensure a stable population size, 357

each individual is evaluated using the fitness function, with an 358

emphasis on retaining the first high-quality |P| individuals. 359

At this point, all others are removed. This process is then 360

repeated indefinitely until the maximum number of iterations, 361

noted IMAX, has been reached. 362

IV. PERFORMANCE EVALUATION 363

To validate the use of the proposed ALMOST frame- 364

work, extensive tests were undertaken on well-known medical 365

databases created for disease detection applications. The ex- 366

periments were conducted on a desktop computer equipped 367
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with an Intel i7 processor and 16 GB of main memory.368

PythonTorch was used to implement all algorithms. We used369

Kvasir medical database [27] for validating the applicability370

of ALMOST in disease detection namely for disease data for371

human digestive system. The aim is to automate the detec-372

tion of the endoscopic findings in the esophagus, stomach,373

bowel and rectum. It is represented into two versions. The374

first version which is called Kvasir (v1), consists of 4,000375

images grouped in 8 classes showing anatomical landmarks,376

phatological findings or endoscopic procedures. The second377

version which is called Kvasir (v2) extends the first version378

and consists of 8,000 images with the same number of classes.379

The ALMOST performance is calculated using the accuracy380

and the F1 formulas which are defined as follows:381

F1 =
2× Precision×Recall

Precision+Recall
(4)

and,382

Accuracy =
TP + TN

TP + TN + FN + FP
(5)

such as,383

Precision =
TP

TP + FP
(6)

and,384

Recall =
TP

TP + FN
(7)

where,385

1) True positive (TP) is determined by counting the number386

of corrected positive observations. An observation is387

called correct and positive if it is endoscopic finding and388

the running model considers it as an endoscopic finding.389

2) True negative (TN) is determined by counting the num-390

ber of corrected negative observations. An observation is391

called correct and negative if it is not endoscopic finding392

and the running model considers it as non endoscopic393

finding.394

3) False positive (FP) is determined by counting the num-395

ber of wrongly positive observations. An observation is396

called wrong and positive if it is an endoscopic finding397

and the running model considers it as non endoscopic398

finding.399

4) False negative (FN) is determined by counting the num-400

ber of wrongly negative observations. An observation is401

called wrong and negative if it is not an endoscopic find-402

ing and the running model considers it as an endoscopic403

finding.404

A. Parameter Setting405

In ALMOST, several parameters need to be optimized406

including the number of agents, the number of generations, the407

crossover and the mutation rates, and the population size. The408

choice of the optimal values of these parameters is crucial for409

better performance of ALMOST framework. This experiment410

is conducted by analyzing the behaviour of ALMOST with411

varying the numbers of agents, and the number of generations,412

the crossover rate and the mutation rate values. We varied the413

number of agents from 2 to 20, the number of generations,414

and the population size from 10 to 100, the crossover and the 415

mutation rate from 0.01 to 0.99, the behaviour of ALMOST 416

is summarized as follows: 417

1) Number of agents: The experimentation showed when 418

we varied the number of agents from 2 to 20, the 419

accuracy of ALMOST increases until 5 agents for Kvasir 420

(V1), and 8 agents for Kvasir (V2) where the stabiliza- 421

tion of the accuracy is observed. 422

2) Number generations: The experimentation showed when 423

we varied the number of generations from 10 to 100, the 424

accuracy of ALMOST increases until 45 generations for 425

Kvasir (V1), and 58 generations for Kvasir (V2) where 426

the stabilization of the accuracy is observed. 427

3) Population size: The experimentation showed when we 428

varied the population size from 10 to 100, the accuracy 429

of ALMOST increases until 85 individuals for Kvasir 430

(V1), and 93 individuals for Kvasir (V2) where the 431

stabilization of the accuracy is observed. 432

4) Crossover rate: The experimentation showed when we 433

varied the crossover from 0.01 to 0.99, the accuracy of 434

ALMOST increases until 0.35 for Kvasir (V1), and 0.47 435

for Kvasir (V2) where the stabilization of the accuracy 436

is observed. 437

5) Mutation rate: The experimentation showed when we 438

varied the mutation from 0.01 to 0.99, the accuracy of 439

ALMOST increases until 0.53 for Kvasir (V1), and 0.61 440

for Kvasir (V2) where the stabilization of the accuracy 441

is observed. 442

TABLE I
SUMMARY OF PARAMETER SETTING OF ALMOST

Dataset |A| IMAX |P | Cr Mr
Kvasir (v1) 5 45 85 0.35 0.53
Kvasir (v2) 8 58 93 0.47 0.61

Table I gives the optimal values of the parameters used in 443

ALMOST for both Kvasir (v1), and Kvasir (v2). The next 444

experiments target validating the usability of the suggested 445

ALMOST framework for disease detection. To reach this 446

conclusion, intensive analysis has been carried out by com- 447

paring ALMOST with the baseline solutions InceptionResNet 448

[23], and DenseNet [25]). The detailed results with complete 449

explanation will be shown in the following. 450

B. Quality of the Outputs 451

Table II presents the quality of the outputs of ALMOST 452

and the baseline solutions: InceptionResNet, DenseNet on 453

Kvasir (V1) and Kvasir (V2). We varied the percentage of 454

images used in the training from 1000 to 4000 for Kvasir 455

(V1), and from 1000 to 8000 images for Kvasir (V2). Then, 456

we compute the quality of the outputs represented by F1 457

and accuracy formulas. The results reveal the superiority of 458

ALMOST compared to the baseline solutions for all scenarios. 459

For instance, ALMOST accuracy is 0.96 when handling the 460

entire data of Kvasir (V2), whereas the accuracy for the two 461

solutions is below 0.80 when training the same data. This 462

great achievement is obtained thanks to efficient components 463
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TABLE II
ALMOST VS. DISEASE DETECTION SOLUTIONS.

Dataset|Images| ALMOST InceptionResNet DenseNet
F1 Accuracy F1 Accuracy F1 Accuracy

Kvasir(V1) 1000 0.53 0.57 0.48 0.51 0.47 0.49
Kvasir(V1) 2000 0.56 0.59 0.50 0.53 0.50 0.51
Kvasir(V1) 3000 0.58 0.63 0.52 0.55 0.52 0.53
Kvasir(V1) 4000 0.63 0.66 0.55 0.58 0.54 0.54
Kvasir(V2) 1000 0.57 0.62 0.56 0.56 0.53 0.54
Kvasir(V2) 2000 0.64 0.66 0.59 0.60 0.54 0.57
Kvasir(V2) 3000 0.69 0.73 0.60 0.60 0.58 0.61
Kvasir(V2) 4000 0.75 0.77 0.65 0.69 0.63 0.64
Kvasir(V2) 5000 0.80 0.84 0.68 0.72 0.65 0.67
Kvasir(V2) 6000 0.83 0.86 0.72 0.74 0.66 0.69
Kvasir(V2) 7000 0.87 0.91 0.75 0.77 0.71 0.72
Kvasir(V2) 8000 0.92 0.96 0.77 0.79 0.72 0.75

TABLE III
ALMOST VS. ADVANCED DISEASE DETECTION SOLUTIONS WITH DIFFERENT NUMBER OF ERROR LOSS VALUES (0.10, 0.08, 0.05, 0.02, 0.01).

Dataset ALMOST Xception SqueezeNet
0.10 0.08 0.05 0.02 0.01 0.10 0.08 0.05 0.02 0.01 0.10 0.08 0.05 0.02 0.01

Kvasir(V1) X 1K 2178 2357 2498 2603 2759 2542 2865 2980 3006 3284 2540 2640 2759 3112 3294
Kvasir(V1) X 10K 4578 4744 4857 5009 5131 4892 5123 5546 5980 6129 4754 5123 5545 5760 5982

Kvasir(V1) X 100K 6657 7135 8249 9983 10234 7129 8832 9123 11209 12398 7105 9125 10510 11234 12786
Kvasir(V2) X 1K 2543 2764 2986 3319 3349 2769 3104 3340 3876 4129 2831 3127 3349 3981 4068
Kvasir(V2) X 10K 5874 6592 7193 8675 9831 6907 7764 8125 10942 11237 8754 9211 9938 11204 12305

Kvasir(V2) X 100K 7123 9746 11204 17594 18594 9210 10395 11204 15473 21381 10954 13058 16759 21462 24568

of ALMOST represented by the deep learning solution, and464

the multi-agent systems, and also to the accurate way of the465

hyper-optimization process.466

C. ALMOST for large scale data467

The next experiment has as goal to study the scalability468

of ALMOST compared to the baseline solutions in handling469

large scale data. Xception [17] and SqueezeNet [19] are470

used for comparison. These algorithms proved their efficiency471

in training large scale data. Different training scenario are472

launched with different data sizes of Kvasir (v1), and Kvasir473

(v2). Data duplication is generated by multiplying Kvasir (v1),474

and Kvasir (v2) multiple times (1000, 10000, and 100000).475

For each redundant sample, changes are generated using a476

generative adversarial network. We varied the error loss to be477

optimized from 0.10 to 0.01, the results are given in Table III.478

From these results, we can say clear superiority of ALMOST479

against the two other solutions in terms of training time. This480

performance can be explained by the fact that ALMOST is481

an optimized deep learning where collaboration between the482

different agents speedup the training process.483

D. Case Study for ALMOST484

This last part of experiments is to show some real cases485

detected by ALMOST. Figure 2 shows some of the cor-486

rect diseases detected by ALMOST. The first three images487

are considered as esophagitis disease. It is an inflammation488

that could harm the esophagus, i.e., the muscular tube that489

transports food from the mouth to the stomach. The second490

three images are considered as polyps which is a disease491

characterized by tissue growths that resemble little, flat bumps492

or miniature mushroom stems. The majority of polyps are493

tiny, measuring less than half an inch in diameter. Polyps 494

in the uterus and colon are the most prevalent, but they can 495

also form in other sites like the ear canal and cervix. The 496

last three images are considered as ulcerative colitis disease. 497

They are inflammation and ulcers in the digestive tract. The 498

innermost linings of the large intestine and rectum are affected 499

by ulcerative colitis. Symptoms usually appear gradually rather 500

than quickly. These images show the complexity of the disease 501

detection problem, where the disease appears in different shape 502

and in different sizes. ALMOST is able to identify these 503

diseases efficiently compared to the other algorithms. These 504

promising results confirm the usability of ALMOST in real 505

case applications. Even ALMOST gives good results however 506

more mature solutions need to be developed. For instance, how 507

can we explain these diseases, how these diseases interact, and 508

communicate? All these issues need further investigation and 509

open research direction. 510

V. DISCUSSIONS AND FUTURE DIRECTIONS 511

The primary benefits of applying the propounded ALMOST 512

framework to disease detection data are presented in this 513

section. We also make some recommendations for how to 514

improve the ALMOST framework. 515

1) The effective combination of smart technologies repre- 516

sented by deep learning, multi-agent system, and meta- 517

heuristics produces high level of precision. For manag- 518

ing medical data and identifying diseases in real time, 519

runtime performance is still a challenge. Making hybrid 520

systems between evolutionary and exact approaches [28] 521

to ameliorate ALMOST performances could be an inter- 522

esting way to go. 523
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Fig. 2. Case study of ALMOST: The first three images are considered as esophagitis disease, the second three images are considered as polyps disease,
where the last three images are considered as ulcerative colitis disease.

2) The proposed methodology has been used to success-524

fully detect diseases. It yields better results than the525

previous approaches for detecting diseases.526

The results of the ALMOST on additional smart health-527

care applications, such as brain tumor detection [29],528

surgery [30] and medical pattern recognition [31] would529

be very interesting to explore.530

3) The output interpretation is a challenge in ALMOST. In531

fact, it is built on black-box models that do not explain532

the output inference process implicitly. Practitioners in533

healthcare settings must understand how the given out-534

come is achieved to trust it. This issue is being addressed535

by the developing discipline of XAI (eXplainable Artifi-536

cial Intelligence), which provides numerous approaches537

for providing some level of explanation to deep learning538

AI solutions. We intend to incorporate XAI approaches539

into ALMOST. This gives more accurate interpretation540

of the outputs of ALMOST.541

VI. CONCLUSION 542

This paper proposed an intelligent collaborative system to 543

identify diseases. It studied the different interactions among 544

the medical data using the intelligent agents with an efficient 545

reinforcement learning mechanism. This allows to significantly 546

determine the different diseases in the healthcare systems. The 547

proposed framework has been tested on different medical data 548

sets. The initial outcomes revealed the benefit of resorting 549

to intelligent agents for diagnosis in the healthcare settings. 550

Numerical results also reveal the superiority of the proposed 551

framework compared to the baseline solutions in terms of 552

disease detection rate. 553
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