
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Erling Nicolay Selvig

Comparative analysis of NMPC
performance for a semi-batch
reactor optimisation problem with
uncertain variables using state
estimators Extended Kalman Filter
and Moving Horizon Estimator

Master’s thesis in Chemical Engineering
Supervisor: Johannes Jäschke
Co-supervisor: Simen Bjorvand
June 2023

Erling Nicolay Selvig

Comparative analysis of NMPC
performance for a semi-batch reactor
optimisation problem with uncertain
variables using state estimators
Extended Kalman Filter and Moving
Horizon Estimator

Master’s thesis in Chemical Engineering
Supervisor: Johannes Jäschke
Co-supervisor: Simen Bjorvand
June 2023

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemical Engineering

PREFACE

This project was conducted as a master thesis at the Department of Chemical
Engineering at NTNU and is a continuation of a specialisation project. The spe-
cialisation project was undertaken the previous semester and acts and preparatory
for this thesis which aims to improve the concepts within state estimation and op-
timisation that were introduced. This thesis was performed in the last semester of
the 5 year master program Industrial Chemistry and Biotechnology with a work-
load equivalent of 20 weeks.

I would like to thank my co-supervisor Simen Bjorvand for invaluable guidance
throughout this work period which has been quite the learning experience for
me. I am very grateful of his guidance and I am certain this thesis would not
be the same without his involvement. Additionally, I would like to thank my
supervisor Johannes Jäschke and the Department of Chemical Engineering for
sparking my interest within process optimisation with their courses throughout
my study period. Finally, I would express my thanks to my family and friends
throughout the study period for their support and motivation.

ABSTRACT

The nonlinear model predictive controll (NMPC) is an optimisation technique
which aims to compute control actions that ensures optimal operation of a pro-
cess. This is done by calculating a sequence of control actions which purpose is
to control predicted behaviour of the system and thereby provide operational sta-
bility. In order to perform this, the NMPC requires information of the process,
often given in the form as ordinary differential equations (ODE), and the imposed
constraints which limit the optimisation problem.

However, obtaining information of the process may not be straightforward in prac-
tice. For instance, uncertainty caused by external factors in the form of process
and measurement noise could complicate this and result in operational instability
if this type of random behaviour is not accounted in the NMPC. Another example
are when states are simply immeasurable, either because they are economically
expensive or physically impossible to measure, which for instance can be the case
for a temperature sensor inside a rocket engine. If information about the opti-
misation problem is unattainable, the NMPC has to be provided state estimates
instead and there are several methodologies to achieve this.

This thesis therefore aims to conduct a comparative study between two state esti-
mators, Extended Kalman Filter (EKF) and Moving Horizon Estimator (MHE),
which aims to provide filtered estimates to the NMPC based off noisy measure-
ments of the states. This study is conducted on a semi-batch reactor, where the
aim is to produce the product C from reactants A and B, where measurement data
of the concentrations are unavailable. Finally, this thesis aims to include noise re-
lated uncertainty that had previously not been adressed in the preparatory work.

Based off the results, the EKF appeared to outperform the MHE as the most cost
effective choice of state estimator for the NMPC as it was able to produce more
C than the latter with less CPU time. However, the main cause for the lower
performance of the MHE remains somewhat unclear, and further work towards
improving the MHE, most notably regarding the choice of method for estimating
the arrival cost, is encouraged.

SAMMENDRAG

Nonlinear model predictive control (NMPC) er en optimaliseringsteknikk hvor
hovedmålet er å beregne kontrollhandlinger som forsikrer optimal drift av en pros-
ess. Dette gjøres ved å beregne kontrollhandlingsekvenser som sørger for trygg
og pålitelig drift av prosessen for fremtiden. Dersom NMPC-en skal beregne disse
sekvensene trenger den informasjon om prosessen den skal kontrollere og dette
oppgis som regel i form av ordinære differentialligninger og beskrankninger som
er påført optimaliseringsproblemet.

I praksis er det derimot ikke alltid mulig å tilføre NMPC-en informasjonen den kr-
ever, enten fordi tilstandene er umålelige eller usikre. Usikkerhet i en prosess kan
skyldes blant annet prosess- og målestøy og dersom NMPC-en ikke tar dette i be-
trakning når den løser optimaliseringsproblemet kan dette føre til sub-optimal eller
upresis kontroll av prosessen. Dersom informasjon om tilstandene som NMPC-en
kontrollerer er utiljengelige benyttes estimerte tilstander istedenfor og disse bereg-
nes med hjelp av tilstandmålinger som inkluderer støy.

Et Prosjektarbeid ble utført forrige semester og hadde som hovedmål å imple-
mentere en NMPC på et allerede eksisterende optimaliseringsproblem av en semi-
batch reaktor med mål om å maksimalisere produksjon av et stoff, C, ut ifra reak-
tantene A og B. I praksis benytter modellen målinger som inkluderer målestøy
og som dermed introduserer usikkerhet til NMPC-en, hvilket forble uadressert i
prosjektarbeidet. I tillegg er to av tilstandene i reaktoren, konsentrasjonene av
A og B, umålelige og av den grunn må tilstandestimatorer benyttes for å adresse
nevnt usikkerhet. Hovedmålet for denne masteroppgaven er av den grunn å utføre
et sammenligningsstudie mellom tilstandestimatorene, Extended Kalman Filter
(EKF) og Moving Horizon Estimator (MHE) og undersøke hvilken av dem som
er best egnet for modellen. Dette gjøres ved å undersøke hvilken av dem som
resulterer i størst produksjon av C og som bidrar til forutsigbar og stabil drift av
prosessen.

Ut ifra resultatene fremstår EKF som det mest kosteffektive alternativet grunnet
en høyere produksjon av C med kortere CPU tid sammenlignet med MHE. Hva
underpresteringen til MHE skyldes er uklart, men hvordan terminalkostnaden, Γk,
har blitt estimert kan være en mulig forklaring. Av den grunn oppfordres videre
arbeid til forskning innen andre måter å estimere denne variablen på, noe som
forhåpentligvis kan utgjøre en positiv forskjell for ytelsen til MHE sammenlignet
med EKF.

CONTENTS

Preface

Abstract

Sammendrag

Contents

List of Figures

List of Tables

Abbreviations

Nomenclature

1 Introduction 1
1.1 Background . 1
1.2 Literature review . 2
1.3 Scope of project . 3

2 Background 4
2.1 Nonlinear Model Predictive Control 4
2.2 Process Description . 8
2.3 Dynamic model . 9
2.4 Constraints and cost function . 10
2.5 Presence of process and measurement noise 12
2.6 Previous work and thesis motive . 15

3 Methodology 19
3.1 State Estimation . 19
3.2 Extended Kalman Filter . 22
3.3 Moving Horizon Estimator . 25

4 Results and Discussion 29
4.1 Comparative analysis on overall performance 29
4.2 Case studies . 34

4.2.1 Significance of length of estimation window 34

CONTENTS

4.2.2 Significance of NMPC prediction length 37
4.2.3 Significance of amount of seeds 39
4.2.4 Significance of initial guess 41
4.2.5 Significance of standard deviation of generated noise 44
4.2.6 Significance of regularisation terms 47
4.2.7 Overall thoughts from case studies 51

5 Conclusion 52
5.1 Conclusion . 52

6 Further work 53
6.1 Further work . 53

References 55

Appendices: 58

A - Orthogonal collocation 59

B - Code 61
.1 Plant Model: Plant.jl . 61
.2 Nonlinear Model Predictive Controller (NMPC): NMPC.jl 62
.3 Orthogonal collocation: colMatrix.jl 65
.4 Functions for EKF: Kalmanfunctions.jl 66
.5 Functions for MHE: MHEfunctions.jl 67
.6 Code for obtaining EKF results: resultsEKF.jl 71
.7 Code for obtaining MHE results: resultsMHE.jl 76
.8 Code for obtaining final comparative results: results.jl 82

LIST OF FIGURES

2.1.1 Illustration of overall objectives of MPC 4
2.1.2 Example of use of MPC . 5
2.1.3 Example of possible solutions to a nonlinear problem 7
2.2.1 Illustration of the semi-batch reactor 9
2.5.1 Example of a Gaussian probability distribution 13
2.5.2 Visual description of mean, and variance 13
2.5.3 Example of a multivariate Gaussian Distribution 14
2.6.1 Results from preparatory work . 16
2.6.2 NMPC Flowchart without state estimation 17
2.6.3 NMPC Flowchart with state estimation 18

3.1.1 Flowchart of State Estimation . 19
3.2.1 Illustration of EKF cycle . 23
3.3.1 Overview of Moving Horizon Estimator 26
3.3.2 Illustration of MHE cycle . 28

4.1.1 Main results of EKF . 30
4.1.2 Main results of MHE . 31
4.1.3 Comparative analysis between EKF and MHE 33
4.2.1 Results of Case Study 1,2 . 36
4.2.2 Results of Case Study 3,4 . 38
4.2.3 Results of Case Study 5,6 . 40
4.2.4 Results of Case Study 7,8 . 43
4.2.5 Results of Case Study 9,10 . 46
4.2.6 Control input profile from Seed 1 47
4.2.7 Control input profile from Seed 612 48
4.2.8 Results of Case Study 11,12 . 50

A.1 Example of a polynomial approximate with orthogonal collocation . 60

LIST OF TABLES

2.3.1 Plant model parameters . 10
2.4.1 Intial conditions and physical constraints of model 10
2.4.2 Bounds on control inputs . 11
2.4.3 Operational constraints of model 11

4.2.1 Overview of Case studies . 34
4.2.2 Intial guesses for Case study 7,8 . 41
4.2.3 Standard deviations for Case study 9,10 44
4.2.4 Regularisation terms for Case Study 11,12 49
4.2.5 Summary of results from Case Studies 51

ABBREVIATIONS

Description

CPU Central Processing Unit (Time)
DAE Differential Algebraic Equation
EKF Extended Kalman Filter
KF Kalman Filter
LQ Linear Quadratic (Control)

MHE Moving Horizon Estimator
MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control
NLP Nonlinear Programming
OC Orthogonal Collocation

ODE Ordinary Differential Equation
PDF Probability Density Function

NOMENCLATURE

Latin letters

Symbol Unit Description

AW m2 Inner surface area covered with reaction mixture
CA [mol/L] Concentration of A
CB [mol/L] Concentration of B
CB,in [mol/L] Input concentration of B
CC [mol/L] Concentration of C
CP [kJ/gK] Specific heat capacity of the reactor contents
CC,0 [mol/L] Initial concentration of C
dt [h] Sampling instant
ek [-] Innovation variable
h [-] Scaling parameter (Orthogonal Collocation)
H [kJ/mol] Reaction Enthalpy
k [L/molh] Reaction constant

KG [-] Kalman Gain
N [-] Maximum length of estimation window for MHE

NFE0 [-] Length of NMPC prediction horizon
P0 [-] Parametric variables
Q̇K [kJ/h] Cooling input
r [m] Radius of cross-section of inner reactor
T [m] Length of estimation for MHE at sampling instant k
Tin [K] Temperature of inflow to reactor
TJ [K] Reactor Jacket Temperature
TR [K] Reactor Temperature
v [-] Measurement noise
VR [L] Reactor volume
uk [-] Control inputs at each sampling instant
V̇in [L/h] Inflow input
x̌ [-] A priori guess of state for EKF
x̂k [-] Estimated state at sampling instant k
xk [-] Real state at sampling instant k
yk [-] Measurement of states at each sampling instant k

Greek letters

Symbol Unit Description

α [L/h] heat-transfer coefficient between the reactor and jacket
ΓT−N [-] Arrival cost for MHE
∆Q̇K [kJ/h] Variable cooling input at each sampling instant
∆V̇in [L/h] Variable inflow input at each sampling instant
ϵk [-] Slack variable at each sampling instant
π [-] Pi, Mathematical constant
ρ [g/L] Density of reactor contents
σ [-] Standard deviation
ω [-] Process noise

Matrices

Symbol Description

Ak Transition matrix
C Measurement matrix
G Process gain matrix
H Measurement gain matrix
M Weighting Matrix (Orthogonal collocation)
Πk State estimate error covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix

Units

Unit Description

g Gram
h Hour
J Joule
k Kilo
K Kelvin

kW Kilowatt
L Litre
m Meter

mol Mol

CHAPTER

ONE

INTRODUCTION

1.1 Background

For an industrial process there is always a desire to maximise the profit of a
product while keeping the cost of producing it at a minimum. In the chemical
industry, this approach is often labelled as process optimisation and mainly re-
volves around improving the efficiency and profitability of a chemical process by
identifying sub-optimal behaviour and implementing changes that results in an
increase of the operational goal. Such goals can for instance be directed towards
improving the purity of a product, or recovering more value from the waste of an
industrial process. However, reducing the carbon footprint while simultaneously
ensuring economic sustainability remains the most important goal for large com-
panies which aims to transition to a more sustainable business models. [1] This is
especially the case for the energy sector with large corporations that are currently
attempting to reduce their footprint by investigating alternative technology, such
as carbon capture and electrification of their processes.

It is therefore important that industrial processes are optimised, either econom-
ically or emission wise. Additionally, processes often do have either soft or hard
constraints imposed on them, such as economic budgets or safety measures that
can for instance include temperature or pressure ranges to operate within. The
process therefore has to be controlled while at the same time operate at opti-
mal conditions. The MPC, along with its nonlinear variant, NMPC, attempts
to achieve this by predicting future behaviour of a process and calculate control
inputs that ensures optimal operation. This control method remains a popular
choice of control in the industry and has displayed robust behaviour and a great
ability to incorporate imposed constraints for a process. [2]

In order to operate at optimal conditions, the MPC needs to have knowledge
about the states, for instance the temperature and volume of a process. These
states may be straightforward to measure, but this may not be the case for other
states that can prove to be more cumbersome to measure. The concentration,
and therefore the quantity of a specific component in a mixture, can for instance
be difficult to measure with sufficient accuracy. For instance, the formation of
bi-products and the presence of multi-stage phases can complicate the measuring

1

CHAPTER 1. INTRODUCTION Erling Selvig

of the concentrations to the point where it may become economically infeasible to
perform. Additionally, random process and measurement noise are present for ev-
ery real process, which introduces a grade of uncertainty of the process and further
exacerbate the difficulty of providing sufficiently accurate information to the MPC.

A proposed method to address these challenges is to estimate the states of the
system and there are various methods which can achieve this, each with their
respective advantages and disadvantages. The extended Kalman Filter (EKF)
and moving horizon estimator (MHE) are two alternatives that are capable of
producing estimates of unknown variables based off past measurements that are
uncertain, or noisy. These methods are already well-established in the process
industry as they have proven to produce usable estimates of unknown variables
while maintaining a low computational cost compared to other estimation meth-
ods. [3][4]

Since their approaches are mathematically different, this thesis therefore aims
to implement these methods on a specific optimisation problem in an effort to
investigate which is the most cost effective choice when addressing the uncertainty
of an optimisation problem. As there are many factors involved, a general and
absolute conclusion for all processes will not make sense as each method has their
own appeal for different processes. The aim of this thesis is however to indicate
the different results and comment on the similarities and differences in an effort
to highlight potential shortcomings of each method and encourage future research
towards addressing these.

1.2 Literature review
Both the EKF and MHE are well-known state estimator techniques that have ex-
isted for several decades and extensive research have been conducted on each.[5][6]
However, comparative analysis between the two methods seems to remain largely
an unexplored topic. An exception to this is a notable research paper written by
Eric. Haseltine and James Rawlings [7] which performs a critical evaluation of
each method and compare their performance. Based off this study, it was con-
cluded that the MHE overall provide improved state estimates compared to the
EKF and is more robust to poor initial conditions. This come at the expense of
an increased computational burden so a cost effective trade-off between accuracy
and time do exist for the two methods.

However, this thesis, and similar comparative analyses of the state estimators,
have primarily focused on solely producing state estimates based previous mea-
surements. The main goal of this thesis is however to compare the performance
of a control method, NMPC, based off state estimates which the EKF and MHE
are to provide. In other words, this thesis aims towards investigating the practical
consequences which the state estimators introduce to a specific control method,
and threfore an optimisation problem as well.

2

CHAPTER 1. INTRODUCTION Erling Selvig

1.3 Scope of project
In this thesis, the main workload is directed towards coding and implementation
of the state estimators for the NMPC and compare the closed-loop performances
of each. This task on its own requires significant time and effort, and in order to
keep the workload at a realistic amount before the deadline, this thesis will use an
already existing, optimisation problem derived by Sakthi Thangavel et. al. [8] It
is also worth mentioning that throughout this thesis a series of assumptions and
simplifications are to be made and what specifically these are is to be elaborated
in later sections. The point is that this project, and most likely the results, will
consist of a series inaccuracies based of assumptions that have been made in an
effort to direct the scope solely towards the state estimators and their effect on
the NMPC performance.

3

CHAPTER

TWO

BACKGROUND

2.1 Nonlinear Model Predictive Control
The main objective of an MPC is to calculate and provide control input sequences
to the system which it monitors for optimal operation. It achieves this by solving
an optimisation problem with given information of system dynamics and con-
straints through the use of a software optimiser. Despite calculating an entire
sequence with finite length, it is only the very first element which the MPC calcu-
lates that is to be used. The idea behind this is that the MPC should be able to
predict future behaviour, but only use the upcoming control action. This sequence
is to be continuously updated with the goal of accounting future states during op-
eration, thus ensuring predictability and operational stability of the process. An
illustration of the overall objectives of an MPC is given in Figure 2.1.1:

Figure 2.1.1: Illustration of the overall objectives of an MPC. With the dynamic
model and constraints, the MPC predicts future behaviour of the system and
calculates a control input sequence that ensures optimal operation in the future.[9]

4

CHAPTER 2. BACKGROUND Erling Selvig

With the main objective of the MPC presented, it makes sense to explain how the
MPC calculates control input in a more mathematical sense. An example of an
applied MPC can for instance be a car that has to follow a reference trajectory as a
safety measure. In order to explain the concept of state and inputs, an illustration
of the car example is given in Figure 2.1.2:

Figure 2.1.2: Example of the use of a MPC. The MPC attempts to control the
trajectory of the car based of its current states, xk. It does this by providing control
actions that results in a minimisation of the deviation between the reference and
real trajectory. [10]

For this example, the states of the dynamic optimisation problem will simply be
its position along the respective x and y-axis. The states, or xk, will therefore
describes the current behaviour of the optimisation problem that is to be solved.
With a reference trajectory, the MPC will, as mentioned previously, calculate a
control action, or input sequence uT

k , and execute the first element which for the
car example ensures optimal operation, or safe driving.

If the MPC is to calculate control actions, it has to be provided an objective
function which describes the dynamic optimisation problem. A generic formulation
of a quadratic objective function using a linear model is given in Equation 2.1:

f(z) =
k=0∑
N

fk(xk+1, uk) =
k=0∑
N−1

1

2
xT
k+1Qk+1xk+1 +

1

2
uT
kRkuk (2.1)

5

CHAPTER 2. BACKGROUND Erling Selvig

With the objective function defined, the MPC will attempt to solve the following
optimisation problem:

min
z∈Rn

f(z) =
k=0∑
N−1

1

2
xT
k+1Qk+1xk+1 +

1

2
uT
kRkuk (2.2)

subject to the following constraints:

xk+1 = Akxk +Bkuk, k = 0, ..., N − 1 (2.3a)
x0, u−1 = Given, (2.3b)

xlow ≤ xk ≤ xhigh, k = 0, ..., N (2.3c)
ulow ≤ uk ≤ uhigh, k = 0, ..., N − 1 (2.3d)

−∆uhigh ≤ uk ≤ −∆ulow, k = 0, ..., N − 1 (2.3e)
(2.3f)

where

Qk ≥ 0, k = 0, ..., N (2.3g)
Rk ≥ 0, k = 0, ..., N − 1 (2.3h)

∆uk = uk − uk−1 (2.3i)
zT = (xT

1 , ..., x
T
N , u

T
0 , ..., u

T
N−1) (2.3j)

(2.3k)

The matrices Qk and Rk are most often diagonal and are considered as tuning
parameters for the states and inputs respectively. The weighting 1

2
of each term

in the cost function may seem random, but this is conventionally used for a linear
quadratic (LQ) control which the aforementioned equations are based off. [11]

However, the dynamic model that is provided to the MPC often consists of ordi-
nary differential equations (ODE), which is an issue as they have to be integrated
in order to provide useful information about the states. This is usually addressed
with various collocation methods such as orthogonal collocation on finite elements,
single and multiple shooting which aim to calculate numerical solutions to the
ODEs with different methods. For this thesis, the former has been used as it has
been proven to be efficient in generating accurate solutions within a short time
frame [12]. A quick summary of orthogonal collocation can be found in Appendix
6.1.

6

CHAPTER 2. BACKGROUND Erling Selvig

As the previously described MPC utilises linear dynamic models, the accuracy of
the controller be questionable as industrial processes often do not inherit ideal
behaviour that can be considered as linear. A nonlinear system is considered
nonlinear when it does not obey the principle of superposition, or in other words,
when its output is not directly proportional to the input. [13] This is most often
the case for a real process and in order to address this, the nonlinear variant
of the MPC, NMPC, is proposed. Nonlinear problems are however significantly
more challenging to solve compared to linear problems as the former can have
multiple local solutions, rather than a single global solution. [14] Figure 2.1.3 is
an illustration of how the solutions of an arbitrary nonlinear problem could look
like:

Figure 2.1.3: An illustration of the multiple solutions of an arbitrary nonlinear
problem. [15]

Because of the multiple feasible solutions, it is often impractical to compute a
global solution within a reasonable time period as the optimiser will struggle to
settle for a specific solution. To address this, it is therefore suggested to use regu-
larisation terms which purpose is to force the optimiser towards one specific local
solution, rather continuously evaluate multiple when solving an optimisation prob-
lem. These terms are calculated based off subsequent control inputs and penalise
the NMPC if these are significantly different .Without these terms, the optimiser
would continuously evaluate all of the local solutions in the feasible set, something
that can be considered counterproductive when trying to achieve numerical con-
vergence towards a unique solution.

With a calculated input, the NMPC will provide the optimal input to a Plant
which will, along with prior states, calculate the next real state of the optimisation
problem. The plant can be defined with different methods, but in this thesis a
standard ODE solver from the DifferentialEquations package in Julia is to be used
for this purpose.

7

CHAPTER 2. BACKGROUND Erling Selvig

2.2 Process Description
A simple benchmark semi-batch reactor derived by Sakthi Thangavel [8] has been
chosen as the basis for this thesis. The semi-batch reactor share many similarities
to a batch-reactor, as both operate in a single stirred tank that has no outflow
during operation. However, the main difference between them is that the for-
mer has the ability to use an inflow input during operation while the latter do
not. [16] Additionally, both can be equipped with a reactor jacket which enables
heat transfer which makes it possible to regulate the thermal energy of the system.

The semi-batch described by Sakthi Thangavel consists of a series of states, differ-
ential algebraic equations (DAE) and inputs. The operational goal of the process
is to maximise the production of a desired substance, C, which is dependent on
the concentrations of reactants A and B in the reactor. The chemical reaction
that takes place in the reactor is:

A+B → C (2.4)

This reaction, and therefore the production of C, is dependent on the states,inputs
and DAEs of the system. The states are; the reactor volume, VR, concentration of
reactant A, CA, concentration of reactant B, CB, the temperature of the reactor,
TR, and the temperature of the encapsulated heating jacket TJ . It is given in
Thangavel’s paper that the aforementioned reaction is exothermic, which means
that heat is generated throughout the operation. The purpose of the jacket is
thereforee to counter this by applying cooling through heat transfer with the re-
actor. The cooling power, QK , is therefore one of the two control inputs that can
directly affect the optimisation problem.

Vin on the other hand denotes the inflow input, which is to be used when the
concentration of the reactants needs to be regulated in order to ensure optimal
operation. Finally, the concentration of C, CC , and the inner surface area that is
covered with reaction mixture, AW , are the differential algebraic equations of the
system that explicitly depend on some of the states.

Finally, the semi-batch reactor is to operate for an hour with a sampling instant
dt = 0.05. This means that throughout the operation, the NMPC is to solve the
optimisation problem every third minute. A visual representation of the semi-
batch reactor is given in Figure 2.2.1:

8

CHAPTER 2. BACKGROUND Erling Selvig

Figure 2.2.1: Illustration of the semi-batch reactor along with its states and
inputs

2.3 Dynamic model
In order to solve the upcoming optimisation problem, the NMPC requires infor-
mation about the semi-batch reactor, which is provided with the the dynamic
algebraic (DAE) model derived by Sakthi Thangavel. This model consists of a
series of differential equations which are:

V̇R = V̇in (2.5a)

ċA = − V̇in

VR

cA − kcAcB (2.5b)

ċB =
V̇in

VR

(cB,in − cB) (2.5c)

ṪR =
V̇in

VR

(Tin − TR)−
αAW (TR − TJ)

ρVRcp
− kcAcBH

ρcp
(2.5d)

ṪJ =
Q̇K + αAW (TR − TJ)

ρVJcp
, (2.5e)

and the algebraic equations which are explicitly dependent of the states VR and
CA

CC =
cA,0VR,0 + cC,0VR,0 − cAVR

VR

(2.6a)

AW = πr2 +
0.002VR

r
(2.6b)

9

CHAPTER 2. BACKGROUND Erling Selvig

The DAEs are parameterised by a set of constants and are given in Table 2.3.1.

Table 2.3.1: Plant Model parameters

Parameter Description Value Unit

α heat-transfer coefficient 1700 kJK−1h−1m−2

r cross-section radius of inner reactor 0.092 m
ρ density of the reactor contents 1000 gL−1

CP heat capacity of reactor contents 4.2 · 10−3 kJg−1K−1

CB,in input concentration of reactant B 3 molL−1

VJ content volume in cooling jacket 2.22 L
Tin temperature of inflow 300 K
CC,0 initial concentration of the product C 0 molL−1

Additionally, there are two parameters, k and H, which occurs in Equation 2.5b
and 2.5d. These denotes the respective reaction constant and enthalpy of the
chemical reaction and it is given that the values of these are not known pre-
cisely. In his paper, Sakthi Thangel originally investigates the cost effectiveness
of implementing a multi-stage NMPC that estimates the values of these unknown
parameters. The focus of this thesis is however the implementation of the EKF
and MHE, and this uncertainty issue is chosen to remain out of scope. For this
thesis, the parameters have been fixed at the specific initial values that are given
in the article:

p0 =

(
H
k

)
=

(
−355 kJ

mol
1.205 l

mol h

)
(2.7)

2.4 Constraints and cost function
This section has been taken from the preparatory work.[17] For the semi-batch
reactor there are a series of constraints, both physical and operational, that limit
the production of C. The physical constraints of the states along with proposed
initial conditions x0 are summarised in Table 2.4.1

Table 2.4.1: Physical constraints of the states along with proposed initial con-
ditions

State Intial Condition Lower Bound Upper Bound Unit

VR 3.5 0 8 L
CA 2 0 5 mol L−1

CB 0 0 5 mol L−1

TR 325 273 350 K
TJ 325 273 350 K

In addition to the physical constraints, there are operational constraints on the
control inputs that are given to be;

10

CHAPTER 2. BACKGROUND Erling Selvig

Table 2.4.2: Upper and lower bounds of control inputs

Control Initial Lower Bound Upper Bound Unit

V̇in 0.0 0 32.4 L h−1

Q̇K 0.0 -9000 0 kJ h−1

Finally, the optimisation problem also have operational constraints on the volume
and temperature in the reactor. These are considered soft constraints, and vio-
lations of these are not as critical compared to the physical as they are imposed
from mostly an economic point of view. The operational constraints are;

Table 2.4.3: Operational constraints of the states

State Lower Bound Upper Bound Unit

TR 322 326 K
VR [-] 7 L

and the cost function of the optimisation problem is given as;

min
xk,uk,ϵk

N∑
k=1

−cCVR+0.0154(∆V̇in,k)
2+5.5×10−5(∆Q̇k)

2+106ϵk,[1]
2+1010ϵk,[2]

2 (2.8)

where ∆V̇in,k = V̇in,k − V̇in,k-1 and ∆Q̇k = Q̇k − Q̇k−1 and represents the regularisa-
tion terms. Additionally, slack variables are introduced in the cost function as ϵ1
and ϵ2, which purpose is to provide flexibility to the optimiser. The slack variables
are available for the optimiser, although the use of them are heavily penalised for
cost function with their significant weighting. ϵ1 and ϵ2 therefore provide a slight
increase or decrease to the TR and VR constraints which may make the difference
for the optimiser to calculate an optimal solution.

In summary, the cost function of the optimisation problem given in Equation 2.8
subject to the aforementioned constraints can be summarised as;

xk+1 = f(x, uk, dk) (2.9a)
322 ≤ TR,k + ϵk,[1] ≤ 326 (2.9b)

VR,k + ϵk,[2] ≤ 7 (2.9c)
−1 ≤ϵk,[1] ≤ 1 (2.9d)

−0.01 ≤ϵk,[2] ≤ 0.01 (2.9e)

ulow
k ≤uk ≤ uhigh

k (2.9f)
(2.9g)

11

CHAPTER 2. BACKGROUND Erling Selvig

2.5 Presence of process and measurement noise
In reality, the semi-batch reactor will not follow its particular model exactly, as
it will be prone to external disturbances. This could for instance be caused by
temperature and pressure variations in the room which could affect the chemical
reacitons that partake in the reactor. Another example could be a dysfunctional
rotor in the reactor that would result in uneven mixing during operation. Process
noise ωk is used to describe the deviation, or uncertainty, that arises from the dif-
ference between ideal and real behaviour of the semi-batch reactor [18]. Unlike the
unpredictable nature of process noise, measurement noise vk is mainly caused by
the equipment that is used to obtain measurements of the system. For instance,
with electric signals, measurement noise is often caused by inference from other
electric sources or caused by wear and tear on the sensors. [19]

In order to make the dynamic model more realistic, the uncertainties are to be
simulated in an attempt to include the element of randomness by generating ran-
dom values and adding them to the states. The noise is to follow a Gaussian
distribution with an assumed mean µ = 0:

ω ∼ N(0, σω
2) (2.10a)

v ∼ N(0, σv
2) (2.10b)

along with the standard deviations σω and σv

σω = [σω,VR
σω,CA

σω,CB
σω,TR

σω,TJ
] = [0.01 0.05 0.05 0.5 0.5]

σv = [σv,VR
σv,TR

σv,TJ
] = [0.2 1.0 1.0]

For the semi-batch reactor, every state has process noise associated with it, but
this is not the case for the measurement noise. So far it has not mentioned
that the CA and CB states are actually immeasurable, and therefore result in
σv only being three dimensional. The cause of this is to be elaborated in later
sections, but for now the focus remains towards simply presenting the process
and measurement noise that are present in the semi-batch reactor. A Gaussian-
distributed probability curve is given in Figure 2.5.1 in an attempt to further
explain the behaviour the noise is to inherit;

12

CHAPTER 2. BACKGROUND Erling Selvig

Figure 2.5.1: Example of a Gaussian distributed probability curve. [20]

and the variance of each state will determine the degree of uncertainty associated
with their respective distributions. The greater the variance is, the wider the
probability curve become, which in turn will result in a single most probable
event becoming less apparent. The randomly generated noise of each state will
remain within range of their respective variances ±2σω,v and are to be added to the
process and measured states as a term that represents the unpredictable deviation
from ideal behaviour. A visual description of the significance of the mean and
variance on the probability curve is given in Figure 2.5.2

Figure 2.5.2: Visual description of mean and variance in a normal distribution.
The greater the variance, the more varied, or uncertain, the process and measure-
ment noise will be [21]

Throughout the operation of the semi-batch reactor, it is assumed that the stan-
dard deviations σωk

and σvk do not change significantly and therefore remain fixed
at the given values. This assumption was considered to be reasonable as the semi-
batch reactor will only operate for a single hour and not be exposed to external
disturbances that would significantly affect the probability distribution. Wear and
tear on the measurement devices could obviously affect the measurement noise dis-
tributions, but this aspect is considered to be negligible as the semi-batch reactor
will only operate for 1 hour.

As there are 5 different states for the semi-batch reactor, the question remains
whether the generated noise of these are correlated or not. For multiple correlated
states, the concept of multivariate normal distributions is introduced and a visual
example of this is given in Figure 2.5.3,

13

CHAPTER 2. BACKGROUND Erling Selvig

Figure 2.5.3: Visual example of multivariate normal distribution that is used to
describe correlated values of random variables. Higher density of random variables,
as seen within the green ellipse, indicates the peak of the Gaussian distribution.
[22]

and the covariances of σωk
and σvk are summarised as the respective process and

measurement noise-covariance matrices Q and R:

Q =

σω,VR

2 0 0 0 0
0 σω,CA

2 0 0 0
0 0 σω,CB

2 0 0
0 0 0 σω,TR

2 0
0 0 0 0 σω,TJ

2

R =

σv,VR
2 0 0

0 σv,TR
2 0

0 0 σv,TJ
2

For simplicity, it is assumed that the generated σω,v are uncorrelated, and as
a result Q and R are diagonal matrices where the diagonal consists of the re-
spective variances. Since the standard deviations are assumed to remain constant
throughout the optimisation problem, Q and R will as well. The weighting of these
matrices will determine the shape of the Gaussian distributions and therefore the
degree of uncertainty associated with the generated ωk and vk.

14

CHAPTER 2. BACKGROUND Erling Selvig

2.6 Previous work and thesis motive
This thesis is largely a continuation of preparatory work that was conducted the
previous semester [17], and aims to improve the certain aspects that were intro-
duced. The goal of the project work was to develop a nonlinear model predictive
controller (NMPC) on the semi-batch reactor in order to familiarise the student
with the theory and implementation of nonlinear optimisation. This was intended
to be preparatory work for the upcoming master thesis, and originally the ob-
jective of this thesis was, as explained with the parameters k and H, to develop
a multi-stage NMPC and investigate the cost effectiveness of it. However, the
topic changed from this to be more focused towards addressing uncertainty of the
reactor which was a topic that had, because of time constraint, largely remained
outside the scope of the project work. This was to be done in an effort to make
NMPC operation more realistic and provide results that hopefully could be used
for real world applications or future research.

The main results, or the real state trajectories, from the preparatory work are
given in Figure 2.6.1:

15

CHAPTER 2. BACKGROUND Erling Selvig

Figure 2.6.1: Real trajectory results from the preparatory work. The operational
constraints for VR and TR are not violated and the production of C also remains
strictly increasing over prediction horizon.

16

CHAPTER 2. BACKGROUND Erling Selvig

The main takeaway from these results is that the operational objective of max-
imising the production of C seem to be achieved. The production of C appears to
be strictly increasing throughout the simulation while the constraints, most no-
tably VR and TR, are not violated. Additionally, the control inputs profiles do not
fluctuate, which indicate that the output of the NMPC remain stable throughout
the simulation.

However, there are two significant issues associated with the optimisation problem
that might question the legitimacy of the results. Firstly, it was assumed that the
states of the semi-batch reactor were measured perfectly at every iteration. This
means that knowledge of the system is exact and there are no uncertainties asso-
ciated with it. This assumption results in a inaccurate model that disregards the
presence of process and measurement noise which are unavoidable in the real world.

The second issue is that measurements that are related to a chemical quantity, for
instance the concentration of specific components, are unrealistic to obtain. [23]
This practice is generally considered expensive since it requires precise measure-
ments of minuscule components, such as molecules of specific products. Because of
mixing, the specific amount of the components that are consumed and produced
becomes a complicated manner that ultimately result in a high computational
burden for the measurement sensors which provide information to the NMPC.
Because of this, the states are estimated, rather than attempt to measure them
with sufficient accuracy. There are various methods that can achieve this, but
for this thesis the EKF and MHE are chosen specifically for this purpose. Their
respective theory and implementation are to be presented in the upcoming section.

The overall objectives of this thesis are summarised with Figure 2.6.2 and 2.6.3:

Figure 2.6.2: Flowchart of NMPC algorithm without state estimation. In the
project work it was assumed that the states of the semi-batch reactor were mea-
sured perfectly, which is unrealistic for real world applications

17

CHAPTER 2. BACKGROUND Erling Selvig

Figure 2.6.3: Flowchart of NMPC algorithm with state estimation. The NMPC
is to be provided state estimates for operation that are obtained with noisy mea-
surements.

This thesis therefore aims to improve the NMPC that was developed in the project
work and implement state estimators that address uncertainty that stem from pro-
cess and measurement noise along with estimating CA and CB that are immeasur-
able. Throughout these cycles the real, measured and estimated values are to be
stored in global lists in order to plot them and visually interpret the performance
of the NMPC using each of the estimators.

18

CHAPTER

THREE

METHODOLOGY

3.1 State Estimation

Before explaining each of the estimators, the overall objectives of state estimation
and the common traits the mentioned techniques share should be presented. A
flow diagram of state estimation and the components of it is given in Figure 3.1.1

Figure 3.1.1: Flow diagram of state estimation and the components of it. The
overall objective is to use observations, or noisy measurements yk, along with a
known input uk to produce a filtered estimate x̂k that optimises a given criteria.
[24]

The physical system, a semi-batch reactor in this thesis, is driven by a series of
inputs and its corresponding outputs that are measured by various devices, such
as sensors. Because of this, the knowledge of the system behaviour is given by the
known inputs uk and observed outputs, yk. However, these observations contain
errors, or more specifically process, ωk, and measurement noise ,vk, that represent
the difference between ideal and real behaviour. These errors therefore introduce
an uncertainty to the process and thus makes knowledge about the states not
exact. Information about the states is still required for the NMPC and thus the
states have to be estimated. The EKF and MHE are to produce, albeit with

19

CHAPTER 3. METHODOLOGY Erling Selvig

different approaches, filtered estimates x̂k based off model predictions, observed
state measurements yk, and past estimates x̂k−n, [25] that hopefully provides the
NMPC with information of sufficient accuracy in order to solve the optimisation
problem.

For the process model, consider a system described by the following discrete model:

xk+1 = f(xk, uk, ωk) (3.1a)
yk = h(xk, vk), (3.1b)

where xk is the system state vector, uk the input vector, and f(xk, uk) the system
dynamics vector. The measurements yk are expressed as a nonlinear function of
the states and measurement noise and its respective jacobian with respect to xk

is:

C =
∂h

∂x
=

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 ,

as A and B are not measured. In the discrete model it seems that the system
dynamics f and measurement function are dependent of ωk and vk. However, in
this thesis it is assumed that these are additive and the discrete model is therefore
formulated as:

xk+1 = f(xk, uk) +Gωk (3.2a)
yk = C(xk) +Hωk + vk, (3.2b)

where G and H are the gain matrices that relates the process noise to the dynamic
model and measurements. The latter is introduced as the process noise will affect
the states, which in turn will affect measurements of it. It is however, for simplicity,
common to assume that the measurements are independent of this regardless [26],
which results in H becoming a zero-matrix:

H =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

In the upcoming simulations, the process and measurement noise are to be ran-
domly generated within a Gaussian distribution with a mean equal zero. Because
of this, ωk and vk are considered to be independent of the dynamic model and
adidative, thus resulting in G being equal to:

G = I =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

20

CHAPTER 3. METHODOLOGY Erling Selvig

With these assumptions, the discrete model can be written as:

xk+1 = f(xk, uk) + ωk (3.3a)
yk = C(xk) + vk, (3.3b)

As described earlier, the ODEs of the semi-batch reactor in itself do not provide
useful information to the optimisation problem and have to be integrated. Or-
thogonal collocation, which is described in Appendix 6.1, is used to numerically
integrate the states for the NMPC:

xk+1 = F (xk, uk) + ωk (3.4a)
yk = C(xk) + vk, (3.4b)

The equations that are to be used for the estimators depend on whether the
dynamic model is continuous or discrete. In this thesis, a discrete model is to
be used and the continuous model of the semi-batch reactor therefore has to be
discreditized. This is done using the forward Euler method:

xk+1 = F (xk, uk) = xk + dtf(xk, uk)︸ ︷︷ ︸
forward Euler method

, (3.5)

where dt is the step length of the discredization. With the discrete model ex-
plained, it is time to present the other matrices that are to be used in both
methods. Certain steps of each methods revolves around linearising the filtered
estimate x̂k in order to update different parameters and in order to achieve this
the transition matrix Ak, which represents a linearised 5x5 matrix model, is to be
used:

Ak =
∂F

∂xk

|uk,x̂k,0 (3.6a)

=
∂xk

∂xk

+
∂(dtf(xk, uk))

∂xk

(3.6b)

= I + dt
∂f

∂xk

(xk, uk), (3.6c)

where the final term is:

∂f

∂xk

(xk, uk) =
0 0 0 0 0

Vin

VR
2CA −Vin

VR
− kCB −kCA 0 0

− Vin

VR
2 (CBin − CB) −kCB −Vin

VR
− kCA 0 0

Vin

VR
2 (Tin − TR) +

αAW (TR−TJ)

ρVR
2CP

−kCBH
ρCP

kCAH
ρCP

−Vin

VR
− αAW

ρVRCP

αAW

ρVJCP

0 0 0 αAW

ρVJCP
− αAW

ρVJCP

In addition to Ak, the covariance matrices Q and R are also required to update the
algorithm. These are to be used in the cost function of MHE and the calculation
of updated covariance matrices Πk. The latter will be a 5x5 matrix that describes
the covariance of the estimation errors.

21

CHAPTER 3. METHODOLOGY Erling Selvig

3.2 Extended Kalman Filter
In essence, the main objective of the Kalman Filter (KF) is to produce optimal
estimates based off noisy measurements of the states. The KF revolves around
performing consecutive cycles of prediction and filtering with dynamics that are
calculated based off Gaussian probability functions (PDFs).

The greatest limitation of the KF is its strict use of linear models, something
which the EKF aims to adress. When either the system dynamics or observations
are nonlinear, the PDFs that provide the minimum mean square estimate errors
becomes non-Gaussian. One way to solve this is to propagate the non-Gaussian
functions and evaluate their respective mean, something which introduces a high
computational burden and is therefore deemed not optimal [25]. The most com-
mon approach to address nonlinear dynamics is to rather linearize the filter dy-
namics around previous filtered estimates, something which has been performed
in this thesis with the help of the previously mentioned transition matrix Ak.

Producing the optimal estimates revolves around minimising the state estimation
errors that are derived from the difference between real and estimated states.
From a Bayesian viewpoint, the EKF propagates the PDFs of desired quantities
(optimisation problem) based off knowledge of actual data, or measurements yk.
With a known input uk and measurement yk+1 at iteration k let

p(xk|yk, uk−1) ∼ N (x̂(k|k),Π(k|k)), (3.8)

represent the conditional PDF as a Gaussian PDF where x̂(k|k) denotes the state
estimate and Π(k|k) the covariance matrix of estimation errors that quantifies the
uncertainty of the state estimate. The EKF therefore aims to obtain the "best", or
optimal estimate, that optimises a chosen criteria, or in this thesis, the semi-batch
reactor optimisation problem.

There are mainly two steps that make up the EKF method: an a priori guess,
and an a posteriori correction of the guess. A flow diagram of this cycle is given
Figure 3.2.1

22

CHAPTER 3. METHODOLOGY Erling Selvig

Figure 3.2.1: Illustration of the EKF cycle

First, the a priori guess, or prediction, of the optimal state estimate x̌k+1 is made:

x̌k+1 = F (xk, uk) (3.9a)

Π̌k+1 = AkΠ̂kAk
T +Q, (3.9b)

where Ak is the transition matrix, F (xk, uk) the integrated discrete model, and Π̂k

and Q the respective error and process noise covariance matrices. This prediction
is then corrected with the Kalman Gain (KG) which uses the predicted error
estimate covariance Π̌k+1

KG = Π̌k+1C
T (CΠ̌k+1C

T +R)−1 (3.10)

The main purpose of KG is to relate the new information obtained from the current
measurement yk to the predicted estimate x̌k+1. This gain is then multiplied by
the innovation variable ek which represent the difference between the measurement
vector yk, and predicted state x̌k:

ek = yk − C(x̌k). (3.11)

23

CHAPTER 3. METHODOLOGY Erling Selvig

The corrected a posteriori state estimate x̂k+1 and its corresponding covariance
matrix Π̂k+1 are then:

x̂k+1 = x̌k+1 +KGek (3.12a)

Π̂k+1 = Π̌k+1 −KGCΠ̌k+1 (3.12b)

For iteration k, the cycle of prediction and correction is then completed and the
output is the filtered state estimate x̂k+1. It is these estimates that are to be
stored and later compared to the real states in order to evaluate the accuracy and
performance of the state estimators. With the cycle completed, as indicated in
Figure 3.2.1, the iteration shifts and the values of x̂k and Π̂k are updated.

However, as every iteration requires information from the previous one, a question
of how the algorithm is initialised arises. For the first iteration, there is no prior
knowledge of F (xk, uk), and thus an estimation has to be made. For the initial
prediction, it is assumed that the initial state and error estimation covariance
matrix of the semi-batch reactor are:

x̌0+1 ≈ x0 + ω0 (3.13a)
Π̌0+1 ≈ Q (3.13b)

These are only approximations and their accuracy are debatable, but it stems from
the fact that the given initial real state x0 is known. Because of the certain x0, the
state uncertainty quantified as Π̌1 will be relatively small. The initial guess of Π̌1

is therefore assumed to be approximately equal to Q, as the uncertainty associated
with the process noise will be more dominant than state estimation errors for the
exception k = 0. With the a priori guesses x̌1 and Π̌1 estimated, the EKF can
proceed as mentioned above.

24

CHAPTER 3. METHODOLOGY Erling Selvig

3.3 Moving Horizon Estimator
The Moving Horizon Estimator (MHE) is a state estimation technique where the
current state is estimated based off an optimisation problem that incorporates past
measurements and states. Unlike the EKF, the MHE is capable of addressing non-
linear dynamics and do not resort to linearising the filtered estimates. Based off
various literature [7], there is a general consensus that MHE often outperform the
EKF in terms of state estimation and robustness towards poor initial guesses and
tuning parameters. This improved performance do however come at the expense
of an increased computational burden. This is because the MHE solves an opti-
misation problem based off a sequence of past measurements, unlike EKF which
only use the most recent.

Given the system model, the MHE aims to solve the following optimisation prob-
lem to estimate the states at time T with estimation window length N:

min
w,v,x

T−1∑
k=T−N

wk
TQk

−1wk +
T−1∑

k=T−N

vk
TRk

−1vk + ΓT−N(xT −N), (3.14a)

s.t. xk+1 = F (uk, xk) + ωk (3.14b)
yk = C(xk) + vk (3.14c)
xk ∈ X (3.14d)
wk ∈ Wk, (3.14e)

(3.14f)

or in other words, produce an estimate x̂k with minimal uncertainty that stem
from ωk, vk. Q and R remains the tuning matrices of the noise uncertainties and
are equal to the ones previously presented for the EKF. The MHE requires prior
knowledge of the system and this is provided to it with a series of past measure-
ments. An issue with this approach is the question of how many prior states the
MHE should account for. On one hand, the MHE could include all prior measure-
ments in order to output the most optimal estimates that follow prior behaviour
of the system. However, the issue with this is that the computational burden
would only accumulate with the increasing number of previous measurements to
the point where the MHE would not be able to produce estimates within a reason-
able time frame. Because of this, a selection of which measurements to account
for in the MHE is done with the sliding window concept which is illustrated in
Figure 3.3.1:

25

CHAPTER 3. METHODOLOGY Erling Selvig

Figure 3.3.1: Overview of MHE. Which of the past measurements that are used
to estimate the current state are determined by a shifting window. A terminal
cost Γk−N is added to the cost function to account for previous measurements that
are not included. [27]

The arrival cost, ΓT−N(xT −N), acts as a corrective term that attempts to include
prior information of the system states outside the sliding window with length N .
The ideal arrival cost can be calculated by solving the optimisation problem:

Γk+1(xk+1) = min
wk,vk,xk

wk
TQk

−1wk + vk
TRk

−1vk + Γk(xk) (3.15a)

s.t. xk+1 = F (uk, xk, wk) (3.15b)
yk = C(xk) + vk (3.15c)
xk ∈ X (3.15d)
wk ∈ Wk (3.15e)

(3.15f)

Unfortunately, this method is not particularly useful as it introduces another op-
timisation problem which will significantly increase the computational burden. In
order to adress this, the arrival cost is rather estimated as the following quadratic
expression:

Γk(xk) = (x̌k − xk)
TΠk

−1(x̌k − xk), (3.16)

Once again, uncertainty is introduced in the optimisation problem in the form
of Πk that denotes the covariance matrix of the estimation errors. xk are the
state variables that are to be optimised in the MHE cost function and x̌ denote
previously estimated states of the MHE. At iteration k, x̌k represents the most
recent estimate outside the estimation window. If Equation 3.16 is expanded, the
presented arrival cost can be simplified as:

(x̌k − xk)
TΠk

−1(x̌k − xk) = xk
TΠ−1xk − 2x̌Π−1x+ x̌TΠ−1x̌

= xk
TΠ−1xk − 2x̌Π−1x,

26

CHAPTER 3. METHODOLOGY Erling Selvig

as the latter term do not contain the xk variable and will therefore be insignificant
for the optimisation problem.

As most of components in MHE depend on calculations from previous iterations,
the question remains of how the algorithm is initialised. For the initialisation, the
optimisation problem given in Equation 3.16 is solved, but this time it will rather
be:

min
w,v,x

T−1∑
k=T−N

wk
TQk

−1wk +
T−1∑

k=T−N

vk
TRk

−1vk + ΓT−N(xT −N)

= min
v,x

v0R0
−1v0 + Γ0(x0),

where the initial arrival cost estimate is equal to:

Γ0 = (x̌0 − xk)
TΠ0

−1(x̌0 − xk) (3.19)

At the first iteration, k = 0, it is assumed that the simulation has not developed
significant process noise yet, therefore making the process noise term of the opti-
misation problem equal to zero. For k = 0, x̌ remains unknown, as no previous
filtered state estimate has been produced yet. To address this, x̌k is estimated
to be equal to the known initial state x0 which has been presented earlier in this
report. The initial iteration of MHE therefore only depend on the measured state
of the system and attempts to solve the optimisation problem based off it. After
this initialisation, the MHE will proceed as described earlier until the simulation
is complete. The estimation window will have a maximum length of T = 10 so
for iterations k ≤ 10, there will be no excluded x̌ that represent prior knowledge.
To address this, it is assumed that, until the estimation window fills up, x̌ = x0+ω.

As the covariance error estimation matrix, Π0, requires prior information as well,
it has to be estimated for the initialisation. Similarly to the EKF, it is assumed
for the initialisation that

Π0 = Q, (3.20)

as the uncertainty associated with the process noise will be more significant than
state estimations since x0 is known. With the the concept of the arrival cost
explained, the overall procedure of the MHE can be presented. A flowchart of an
iteration in MHE is given in Figure 3.3.2

27

CHAPTER 3. METHODOLOGY Erling Selvig

Figure 3.3.2: Illustration of the MHE cycle

First, as previously described, the algorithm is initialised with the initial inputs
u0, states x0 and covariance matrix Π0. With the cost function, previous noisy
measurements yTk and inputs uT

k , an optimiser produces an estimate, x̂k that fulfils
the constraints imposed on the system. It is important to note that, unlike the
NMPC, the constraints incorporated in the MHE are physical:

xk+1 = f(x, uk, dk) ≤ 0 (3.21a)
VR,k ≤ 8L, (3.21b)

(3.21c)

rather than operational. This is done in order to ensure that the state estimations
from the MHE remains positive as negative states would not make physical sense.
The optimal estimate x̂k is then stored and the algorithm can shift to the next
iteration. However, similarly to the EKF, the parameters, or x̌k and Πk, have
to be updated for the next iteration. The covariance error estimate matrix Πk is
updated using the Ricatti equation:

Πk+1 = Ak(Πk − ΠkC
T (CΠkC

T +R)−1CΠk)Ak
T +GQGT , (3.22)

while x̌k is automatically updated as the estimation window progresses and there-
fore do not require additional computation to be updated. Ak represents the
transition matrix that linearises the dynamic model around the filtered estimate
x̂k and is equal to the one previously used for EKF. With Πk updated, the esti-
mated, real and measured states of the iteration are stored before the algorithm
shifts to the next iteration with T = T + 1. This cycle of measuring, estimating
and updating of x̌k and Πk continues until the semi-batch reactor operation is
complete. The final results will be a series of measured,real and estimates states
that can be plotted in order to visually interpret the performance of the MHE and
compare it to the output from the EKF.

28

CHAPTER

FOUR

RESULTS AND DISCUSSION

4.1 Comparative analysis on overall performance

In this chapter, the output of the optimisation problem and the overall perfor-
mance of the state estimators are to be presented and discussed. There are three
main criteria that are to be used when evaluating the results;

• State trajectories that appear to be physically realistic

• Similarity to the real trajectories from the project work

• Production of the desired product C

The first criteria may be considered to be vague, but the purpose of it to check
if the results actually provide useful information. For instance, if the volume VR

at certain iterations is negative, the results would not be useful as negative state
values do not make physical sense. This type of error naturally stem from im-
plementation errors in the code framework, but it is regardless important to be
critical of the physical behaviour of the state trajectories. For instance, if some
of the operational constraints are consistently violated, this could indicate code
errors or that there are no feasible solutions.

Ideally, the results, or state trajectories, should appear similar to the results from
the project work that were given in Figure 2.6.1. As described earlier, the main
difference between the previous project work and this thesis is the implementa-
tion of state estimation for the former in the optimisation problem. The NMPC
from the project work use real, and not estimated, states and therefore output the
real state trajectories. These results therefore represent the real behaviour of the
semi-batch reactor and are to be used as metrics to investigate if the state esti-
mators are capable of providing estimates to the NMPC with reasonable accuracy.

Finally, and probably the most important criteria, is how much C is produced.
This will indicate which of the estimators are able to provide estimates to the
NMPC that results in maximisation of its operational goal.

29

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Since the process and measurement noise are to be random, it is important that
these are generated in a consistent manner as this is necessary in order to produce
comparative results. Additionally, it is also important to note that the randomness
exhibited for each simulation will produce varying results. To achieve representa-
tive results despite the element of randomness, the upcoming state trajectories are
to represent the mean of 100 seed states, or simulations. Each of the simulation
are to follow their respective seed state, or in other words, the first simulation will
follow seed state 1, the second seed will follow seed state 2 and so on up to seed
state 100. This will ensure consistency of the generated noise as the simulations
will follow a pre-defined sequence of randomness which will be unique for each
seed state. The mean state and C trajectories obtained with the EKF from seed
1− 100 are given in Figure 4.1.1:

Figure 4.1.1: Main results of the optimisation problem using EKF

30

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Based of these results, it seems that the EKF is functional as it appears to be
capable of providing estimates to the NMPC that results in maximisation of C.
The trajectory of CC strictly increases throughout the simulation which indicate
that the operational goal was achieved with the EKF. Compared to the results
of the project, the estimated states follow approximately the same trajectories of
the real states and overall these results confirms the expected performance of the
EKF. With the same settings, the optimisation problem was simulated once again
with the MHE instead and the results are given in Figure 4.1.2:

Figure 4.1.2: Main results of optimisation problem using MHE

Similarly to the EKF, the MHE overall display expected behaviour, albeit with
minor differences. For instance, the estimated trajectory of TR do in general follow
the real trajectory more closely than EKF. Another difference is the slight devi-
ation at the end of the simulation for the CB trajectory, although it is debatable
how significant this is. The most interesting difference between the two estima-
tors are their respective real VR trajectories and which constraints they operate

31

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

from. It appears that the real VR trajectories of EKF and MHE operate based
off the operational VR ≤ 7L and physical VR ≤ 8L constraints respectively. The
estimated trajectory of both do however satisfy the former, but this difference is
worth noting regardless. Regarding the operation goal of maximising the produc-
tion of C, it seem that both methods achieve relatively similar output. There is
however a minor difference, as it appears that at the final iteration, k = 20, the
EKF has resulted in a slightly, or ≈ 0.05 [mol/L], higher concentration of C than
MHE.

In summary, both estimators provide estimates to the NMPC that results in ex-
pected behaviour and fulfilment of the operational goal of maximising C. The state
trajectories for each method do however display a difference despite being exposed
to the same sequence of generated noise. This is expected as the estimators will
provide different state estimates to the NMPC which will calculate control actions,
which in turn results in different state trajectories.

Although the aforementioned results appear straightforward, there are however
other aspects of the optimisation problem that should be evaluated as well. The
previously presented trajectories represent the mean of 100 simulations and it
would be interesting to investigate the associated uncertainties of each method.
With the mean of the real state trajectories, the standard deviation at each itera-
tion were calculated and the corresponding uncertainties are illustrated in Figure
4.1.3:

32

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Figure 4.1.3: Comparative analysis of uncertainty with the mean of the real
trajectories of EKF and MHE. The shaded area represents the mean ±2 times the
standard deviation at each iteration

It appears that the system states are quite prone to uncertainty regardless of the
choice of estimator. This is especially the case for the temperature related states
TR and TJ , with the latter having a variance up to ≈ 16K for the EKF. These
variances are most likely caused by the irregular and excessive use of the cooling
input Q̇k, which directly affects the state trajectories for each seed, and thus the
mean overall as well. This topic is however to be discussed in greater detail in
Section 4.2.6. The most interesting result is probably the uncertainties associated
with the VR trajectories, as there is a significant difference between the EKF and
MHE at the end of the simulation. The exact reason for this may be difficult to
pinpoint, but a possible explanation could be the estimated arrival cost Γk which
the MHE uses.

33

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

4.2 Case studies
So far the performance of each estimator have yielded rather similar results and
it may be difficult to recommend one method over the other. There are a series
of factors that could affect these results and it may be interesting to investigate
if changing these would result in a more significant difference in performance of
the estimators. Because of that, a series of case studies have been conducted and
these are summarised in Table 4.2.1:

Table 4.2.1: Overview of Case studies

Variable Case Value

Length of estimation window (MHE) 1,2 N = 5, 20
Length of prediction horizon (NMPC) 3,4 NFE = 5, 15
Seed amount 5,6 10, 1000
Initial Guess 7,8 x0,2, x0,3

Standard deviation of noise 9,10 σω,2, σv,2, σω,3σv,3

Regularisation terms 11,12 ∆V̇in,2,∆Q̇2,∆V̇in,3,∆Q̇3

The generated results in the previous section are considered as the "Base case" and
the upcoming case studies are therefore to be compared to it in order to determine
whether the change of variables result in a significant change on the output of the
optimisation problem.

4.2.1 Significance of length of estimation window

So far the length of the estimation window of the MHE has had a fixed length
of N = 10. The comparative results given in Figure 4.1.3 indicated significant
uncertainty associated with the MHE and it may be interesting to investigate
if increasing this to N = 20 would improve the performance. It could also be
interesting if shortening the prediction could yield approximately the same perfor-
mance, and therefore prove to be a more cost-effective choice of N . The results of
Case 1 and Case 2 with their respective lengths N = 5 and N = 20 were conducted
and the results are given in Figure 4.2.1.

34

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

35

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Figure 4.2.1: Results from Case Study 1 and 2. The most notable result is the
change of the VR trajectory with the increased horizon N = 20

With an increased CPU time, the uncertainty with N = 20 remains largely the
same for most of the states compared to the shorter horizon N = 5. However, a
rather interesting result is the trajectory of VR that, with the increased length,
makes the MHE achieve a performance almost identical to the EKF. This result
is preferable, as the VR trajectory from the MHE will converge towards the opera-
tional, and not the physical constraint. Violating the latter, which would result in
a spillover, would be problematic for the optimisation problem and it is therefore
desirable if the state trajectories rather converge, and remain, at the operational
constraint. This increased performance of the MHE do obviously come at the
expense of increased CPU time, and the cost effectiveness of this, along with the
results of the other case studies, is a topic that is to be evaluated later.

36

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

4.2.2 Significance of NMPC prediction length

Similar to the length of the estimation window, the length of the prediction horizon
of the NMPC, NFE0, could also have a significance on the outputted state trajec-
tories. For the base case, this length was NFE0 = 20, but it would be interesting
to investigate if whether a more cost effective alternative, such as NFE0 = 5 and
NFEO = 15 could output trajectories with acceptable accuracy. The respective
results of these lengths are given in Figure 4.2.2:

37

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Figure 4.2.2: Results from Case Study 3 and 4.

Based off these results, it is apparent that the short horizon, NFE0 = 5 results
in greater standard deviations for the EKF, and therefore more uncertainty. This
is an expected result, as the short horizon will not be able to predict future state
trajectories to the same degree as the longer horizon NFE0 = 15. On the other
hand, the shorter horizon will require significantly less CPU time compared to the
longer alternatives NFE0 = 15 and NFE0 = 20. Because of this, a tradeoff be-
tween accuracy, and therefore operational reliability, and the corresponding CPU
time exists. In the case of NFE0 = 15, it appears that this length provide almost
identical trajectories to NFE0 = 20 with the exception of the VR which regard-
less output trajectories with reasonable accuracy. Overall, the main takeaway from
these cases are therefore that the prediction horizon length NFE0 = 15 is a more
cost effective alternative than NFE0 = 20, as the former output approximately
the same state trajectories at the cost of only minor deviations.

38

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

4.2.3 Significance of amount of seeds

As mentioned earlier, the base case results given in Figure 4.1.3 represent the
mean state trajectories which were calculated from the seed states 1 − 100. It
is therefore questionable if this method yield representative enough results where
general trends, or behaviour, can be discussed and conclusions drawn. Case 5 and
Case 6 therefore investigate the effect of the amount of data points, or seed states,
has on the calculated state trajectories. The results are given in Figure 4.2.3:

39

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Figure 4.2.3: Results from Case Study 5 and 6.

Unfortunately, with only 10 datapoints, or seed states, the state uncertainties be-
comes much greater, especially for the MHE. This is expected as fewer datapoints
will naturally reflect less knowledge about general trends of the optimisation prob-
lem. What could however be interesting was if the fewer datapoints could somehow
output state trajectories similar to the base case with 100 datapoints, thereby be-
coming a more cost effective alternative. This proved to not be case and indicates
that state trajectories should at least consist of more than 10, for example 50,
datapoints if the results are to be representative of general behaviour.

40

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

For Case 6, the amount of data points was incread to 1000 in order to investigate
if this resulted in new or interesting trends which the base case with 100 data
points could not achieve. As a consequence of this, the CPU time to calculate this
increased by a tenfold and unfortunately output almost identical state trajectories
to the base case. These results do however indicate that the initial amount of 100
datapoints in the base case appear to provide representative results, as increasing
this amount do not yield new results. Using 100 datapoints, or seed states, there-
fore appears to be a cost effective choice when analysing trends of the optimisation
problem.

4.2.4 Significance of initial guess

When attempting to solve a nonlinear optimisation problem, the choice of an initial
guess will be detrimental as it will initialise the iterative algorithm of the solver.
The guess will therefore be significant for both the CPU time and final solution,
as it determines how quickly the solver converges towards a global extremum. As
nonlinear problem tend to consist of multiple local extrema, the initial guess will
also have an affect on which of those the solver will converge towards. [28] For
Case 7 and 8, there are 3 aspects that are of interest:

• Sensitivity of the optimisation problem towards initial guess

• Robust performance of NMPC despite "bad" initial guesses

• The effect the initial guess has on the amount of produced C

Case 7 has an initial guess, x0,2 which consist of minor differences compared to
the base initial guess x0. The purpose of x0,2 is to investigate the sensitivity the
optimisation problem has towards a minor change of initial guess. Case 8 on the
other hand uses an intentional "bad" guess, x0,3, which is used to highlight whether
the NMPC has robust, or consistent, performance despite given an inaccurate
initialisation. The initial guesses for Case 7 and 8 are given in Table 4.2.2 and the
corresponding results in Figure 4.2.4:

Table 4.2.2: Intial guesses for Case 7 and 8

Case Initial VR Initial CA Initial CB Initial TR Initial TJ

Base 3.5 2.0 0.0 325.0 325.0
7 2.5 1.0 0.0 328.0 328.0
8 4.5 2.3 1.0 330.0 330.0

41

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

42

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Figure 4.2.4: Results from Case Study 7 and 8.

For Case 7 with the minor perturbation of x0,2 proved to not produce results that
were of particular interest. The states had approximately the same trajectories
compared to the base cases, albeit with shifted values along y-axis. The most
interesting results was of the MHE TJ trajectory which consists of peaks at the
half point of the simulation. These spikes were not present in the base case and
could indicate excessive use of control input Qk caused by x0,2.

For greater perturbations of x0, such as x3, it seems that the initial guess overall
have a significant effect on the state trajectories. In both cases it appears that
the NMPC was able to calculate similar state trajectories compared to the base
case. This indicate that the NMPC is robust and functional despite varying initial
guesses. For Case 8, the initial TR was outside the range of the operational con-
straint, but despite this, the NMPC was able to adjust itself to this inconvenience
and eventually output a state trajectory similar to the base case.

43

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

One of the more notable results is the production of C in Case 8, which is sig-
nificantly higher than previous case studies. This is expected as the initial VR,
and therefore, CA, and CB, were greater than the base case which resulted in the
semi-batch reactor producing more C throughout the operation. This indicate
that inital VR,CA, and CB have a significant effect on the final amount of pro-
duced C. Finally, it is worth mentioning that the CPU time to calculate these
results in Case 7 and 8 were significantly higher compared to the base case with
x0. This could indicate that the initial guesses x0,2 x0,3 were inferior CPU time
wise compared to x0, as they resulted in the optimiser requiring more iterations
in order to evaluate and calculate feasible solutions.

4.2.5 Significance of standard deviation of generated noise

So far the random variables, or more specifically the process and measurement
noise, have been generated within a Gaussian distributions with fixed standard
deviations σω,σv. The values of the standard deviations determine the degree
uncertainty in the optimisation problem and it would be interesting to investigate
if changes to these could affect the state trajectories. The values of the respective
process and measurement noise standard deviations for Case 9 and 10 are given
in Table 4.2.3 and the corresponding results in Figure 4.2.5

Table 4.2.3: Standard deviations for Case 9 and 10

Case Variable Value

Base σω,1 0.01, 0.05, 0.05, 0.5, 0.5
Base σv,1 0.4, 1.0, 1.0
9 σω,2 0.05, 0.20, 0.20, 2.0, 2.0
9 σv,2 0.8, 2.0, 2.0
10 σω,3 0.001, 0.005, 0.005, 0.05, 0.05
10 σv,3 0.04, 0.1, 0.1

44

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

45

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Figure 4.2.5: Results from Case Study 9 and 10.

For Case 9, the standard deviations were increased by 4 and 2 times respectively
and as expected this greatly increased the uncertainty of the problem. Regarding
Case 10, the tenfold decrease of σω,σv did, as expected, result in a significant de-
crease of the uncertainty.

However, an interesting result are the trajectories of TR and TJ where the uncer-
tainty significantly increase towards the end of the simulation. With a shrinking
horizon towards the end of operation, the NMPC will attempt to further maximise
the production of C by adding more reactants A and B with the inflow input. This
results in more heat generated which has to compensated by the cooling input,
and it appears that how these actions are executed varies greatly for each of the
seed states. This uncertainty seems to be much more apparent for Case 10 with
the small values of σω,σv compared to Case 9.

Despite the varying values of σω,σv, the mean of the state trajectories remain
roughly the same compared to the base case. Because of that it seems that while

46

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

the uncertainties of the optimisation problem are sensitive to changes in σω,σv, the
overall performance and production of C remains roughly the same. This could
indicate that the estimators achieves their operational goal of producing filtered
estimates for the NMPC despite changes in σω,σv.

4.2.6 Significance of regularisation terms

So far in the report, the operational behaviour of the control inputs have not
been presented. The reason for this is that the input profiles have displayed
irregular behaviour, which is expected as the control actions will vary significantly
because of the random variables that are uniquely generated for each seed state.
To elaborate this argument further, the control profiles of both MHE and EKF
from seed state 1 and 612 are given in Figure 4.2.6 and 4.2.7:

Figure 4.2.6: Example of control input profile taken from Seed 1. To the left
are the input profile for the state estimator MHE and to the right from EKF

47

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Figure 4.2.7: Another example of the control profiles, this time from seed state
612

Based off these examples, it appears that the NMPC has a tendency to "spike"
for some of the iterations. On the other hand, there are many of the seeds who
do not display this similar behaviour and have "smooth" control input trajecto-
ries, such as seed 612 with EKF. Through trial and error with a series of different
seeds, it was observed that the control profiles in general attempted to follow the
trajectory where Vin would increase to ≈ 6.5L before decreasing halfway during
operation and Qk converge towards a steady state value of ≈ −1500kW. The main
problem were the inconsistent and sudden spiking the NMPC would execute at
approximately halfway through the operation. This is an issue as the control in-
puts such as these seem to have destabilised, or complicated, the convergence of
the input trajectories. It is questionable how problematic this actually is, but
it would preferable if the inputs trajectories were converging and thus provided
predictability and operational stability.

This erratic behaviour of the NMPC is probably the main cause of the uncertainties
that have been presented and discussed so far in this report. These spikes are
roughly occurring either once or twice for each of the seed states, and the calculated
trajectories will therefore have a significant standard deviation which again results
in increased uncertainty of the mean trajectories. Addressing the uncertainty that
stem from these spikes are the main motivation for conducting Case study 11 and
12. For each of the cases, the weighting of the regularisation terms of the cost
function, ∆V̇in and ∆Q̇k, are to be increased. The motivation of this is that the
increased weights would discourage spikes by further penalising the cost function
for subsequent control inputs that had a significant difference. The settings of
Case 11 and 12 are given in Table 4.2.4 and the results in Figure 4.2.8:

48

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Table 4.2.4: Regularisation terms for Case Study 11 and 12

Case Variable Weight

Base ∆V̇in 0.0840

Base ∆Q̇1 5.5 ∗ 10−5

11 ∆V̇in,2 0.1708

11 ∆Q̇2 7.5 ∗ 10−5

12 ∆V̇in,3 0.8054

12 ∆Q̇3 9.5 ∗ 10−5

49

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

Figure 4.2.8: Results from Case Study 11 and 12.

Unfortunately, it appears that the increased weighting of the regularisation terms
did not result in a significant improvement. For Case 12, it seems that the increase
of the the Vin input actually resulted in more uncertainty which are apparent for
the CB and VR trajectories. However, for the TJ trajectory, the uncertainty asso-
ciated with the MHE decreased overall. This could indicate that the significant
weighting of Vin complicated the optimisation problem, while the moderate weight-
ing for the Qk input forced the NMPC to perform less spikes, thus decreasing the
overall uncertainty.

These results confirms that the weights of the regularisation terms make a differ-
ence towards the performance of the NMPC. The main motivation for these cases
was however to investigate if changing the weights could result in an immediate
improvement of the performance. Finding the optimal weights do however remain
outside the scope of this thesis, as it will involve a significant amount of trial
and error. The main takeaway from these case studies are therefore to encourage
finding more optimal weights of the regularisation terms as further work.

50

CHAPTER 4. RESULTS AND DISCUSSION Erling Selvig

4.2.7 Overall thoughts from case studies

The performance and results of each of the case studies have been quantified and
stored in Table 4.2.5 in an effort to generate some overall ideas and conclusions.

Table 4.2.5: Production of C from Case Studies. CPU denotes the time it took
to solve the various Case studies.

Unit [mol/L] [mol/L] [min:s] [min:s]
Case CEKF CMHE CPUEKF CPUMHE

1 0.6260 0.5702 02:45 03:27
2 0.6260 0.5980 02:45 04:35
3 0.5582 0.5362 01:19 02:42
4 0.6286 0.5865 02:42 03:52
5 0.6126 0.6573 00:24 00:31
6 0.6124 0.5933 26:29 47:50
7 0.3105 0.2891 04:45 06:38
8 1.042 0.9909 11:22 13:31
9 0.6253 0.5020 07:40 09:46
10 0.6025 0.5867 02:27 03:43
11 0.6070 0.5670 02:49 04:00
12 0.5606 0.5256 02:31 04:21

Overall, it appears that, with the exception of Case 8 and 9, the production of
C has remained largely the same at C ≈ 0.60 [mol/L] despite the different case
settings. This indicates that the individual settings may not affect the output of C
significantly on their own. However, one of the most interesting results from Case
2 indicated that the base case length of the estimation window, N = 10, resulted
in sub-optimal operation by MHE compared to EKF, as the former converged
towards the physical, VR ≤ 8L and not operational constraint at VR ≤ 7L.

According to the results summarised in Table 4.2.5, the EKF consistently out-
performed, with the exception of Case 5, the MHE in terms of production of C
and required CPU time. This indicates that the EKF is most likely a more cost
effective choice of estimator than the MHE, as the latter is supposed to provide
more accurate estimates to the NMPC at the expensive of increased computational
time. There could be several reasons for the underperformance of the MHE, but it
is difficult to pinpoint the exact cause of reason for this behaviour. At this point,
the optimisation problem is, with the state estimators, random noise, NMPC,
orthogonal collocation and so on, quite complicated and the under performance
could either be caused by a single element or an accumulation of different errors
or assumptions.

However, based off Case 2, a probable reason for the underperformance of the
MHE could be the choice of arrival cost method. As discussed in the methodology
chapter, the arrival cost Γk is estimated and the accuracy and cost effectiveness
of this method remains questionable. [29]

51

CHAPTER

FIVE

CONCLUSION

5.1 Conclusion
Overall, it seems that the operational goal of maximising the production of C has
been achieved despite the challenges posed by the random noise and immeasurable
states. Based off the base case results, the concentration of C in the semi-batch
reactor strictly increase throughout the simulation and the corresponding state
trajectories display realistic behaviour. The constraints of the semi-batch reactor,
most notably VR ≤ 7L and 322K ≤ TR ≤ 326K, are not violated which indicate
that the NMPC is able to consistently solve the optimisation problem. It also seem
that the NMPC is robust to process and measurement noise of the semi-batch reac-
tor and overall has been able to control the semi-batch reactor in a reliable manner.

However, the NMPC would not able to solve the optimisation problem without
the state estimators MHE and EKF, which implementations for the semi-batch
reactor have been the main focus of this thesis. Overall, it appears for the state
estimators that the operational goal of producing filtered state estimates for the
NMPC have been achieved. The estimators produce similar results compared to
the real state trajectories, although there is a minor difference in performance be-
tween the methods. Based off the case study results given in Table 4.2.5, it could
be argued that EKF is a more cost effective choice than MHE since the former
consistently results in slightly more C produced than the latter with significantly
less CPU time. It was also observed for the MHE that increasing the length of
the estimation window from N = 10 to N = 20 resulted in improved, and almost
identical trajectories compared to the EKF.

According to literature [7], the MHE is supposed to produce more accurate esti-
mates than the EKF and the under performance of the former is most likely caused
by the various simplifications and estimations that has been made throughout this
thesis. Examples of these can be the choice of method for estimating the arrival
cost Γk, the weights of different variables, or simply implementation error in the
code.

52

CHAPTER

SIX

FURTHER WORK

6.1 Further work
The main objective of this thesis was to perform a comparative analysis of imple-
menting EKF and MHE for the semi-batch reactor in order to address uncertainty
and produce state estimates of CA and CB which were considered immeasurable.
Even though this objective was overall achieved based off the results, there are
still a series of factors that has not been properly addressed in this thesis. The
most significant is the arrival cost for the MHE, Γk, which was calculated using
the first estimate, x̂k−N , outside the estimation window. As explained earlier in
this report, this estimation may be inaccurate and alternative methods, such as
NLP sensitivity analysis [29], are currently being researched on.

One of the more worrisome results from the case studies were from Case 10 which
investigated the significance of the values of σω and σv. For the temperature
states, TR and TJ it was observed that the uncertainty increased significantly to-
wards the end of the simulations, despite σω and σv being minimal. It is believed
that this is caused by excessive usage of the cooling input, Qk, in order to counter
the increasingly generated heat towards the end of operation, although the exact
cause remains uncertain. Investigating the behaviour and cause of the changing
behaviour of the NMPC towards the end of the simulation is therefore recom-
mended as further work.

In the dynamic model of the semi-batch reactor the respective reaction constant
and enthalpy, k and H, have throughout this thesis been estimated to remain
fixed at specific values. This simplification may had a significant impact on the
presented results as they are actually uncertain variables as well. Originally, the
research paper which this thesis has taken the optimisation problem from, orig-
inally investigates a multi-stage NMPC which branches these variables in upper
and lower values. In this thesis, k and H were assumed to remain fixed despite this
as implementing a multi-stage NMPC remained out of scope. Somehow properly
addressing the uncertain parametric variables is therefore encouraged as further
work, as this will make the dynamic model more realistic, and hopefully result in
decreased uncertainty.

53

CHAPTER 6. FURTHER WORK Erling Selvig

Finally, as presented in Case 11 and 12, addressing the spiking behaviour of the
NMPC is advised. Irregular occasions of the control action spikes significantly
disrupt the control action trajectories and results in more uncertainty associated
with the mean state trajectories. Forcing the NMPC to not perform such spikes
is therefore encouraged as further work and could for instance revolve around
reevaluating the weighting of the regularisation terms, NMPC settings, or the
cost function entirely.

54

REFERENCES

[1] 101 Companies Comitted To Reducing Their Carbon Footprint. url: http
s://forbes.com/sites/blakemorgan/2019/08/26/101-compa
nies-committed-to-reducing-their-carbon-footprint/?sh
=26273f86260b.

[2] Max Schwenzer, Thomas Bergs, and Dirk Abel. “Review on model predic-
tive control: an engineering perspective”. In: The International Journal of
Advanced Manufacturing Technology 117 (2021).

[3] François Auger et al. “Industrial Applications of the Kalman Filter: A Re-
view”. In: IEEE Transactions on Industrial Electronics (2013).

[4] Andrea Tuveri et al. “Bioprocess Monitoring: A Moving Horizon Estimation
Experimental Application”. In: IFAC-PapersOnLine (2013).

[5] Bashar Alsadik. “Kalman Filter”. In: Jan. 2019, pp. 299–326. isbn: 9780128175880.
doi: 10.1016/B978-0-12-817588-0.00010-6.

[6] Christopher Rao and James Rawlings. “Constrained Process Monitoring:
Moving-Horizon Approach”. In: AIChE Journal 48 (Jan. 2002), pp. 97–109.
doi: 10.1002/aic.690480111.

[7] Eric Haseltine and James Rawlings. “Critical Evalation of Extended Kalman
Filtering and Moving-Horizon Estimation”. In: Industrial and Engineering
Chemistry Research 44 (Apr. 2005), pp. 2451–2460. doi: 10.1021/ie034
308l.

[8] Sakthi Thangavel, Radoslav Paulen, and Sebastian Engell. “Multi-stage NMPC
using sigma point principles”. In: IFAC-PapersOnLine 53 (2020), pp. 18–19.
issn: 2405-8963.

[9] Md. Sohel Rana, Hemanshu Pota, and Ian Petersen. “Performance of sinu-
soidal scanning with MPC in AFM imaging”. In: IEEE/ASME Transactions
on Mechatronics 20 (Jan. 2014). doi: 10.1109/TMECH.2013.2295112.

[10] Yonghwan Jeong and Seongjin Yim. “Model Predictive Control-Based In-
tegrated Path Tracking and Velocity Control for Autonomous Vehicle with
Four-Wheel Independent Steering and Driving”. In: Electronics 10 (Nov.
2021), p. 2812. doi: 10.3390/electronics10222812.

[11] Bjarne Foss and Tor Aksel N. Heirung. Merging Optimization and Control.
Mar. 2016, pp. 18–19. isbn: 978-82-7842-201-4.

55

https://forbes.com/sites/blakemorgan/2019/08/26/101-companies-committed-to-reducing-their-carbon-footprint/?sh=26273f86260b
https://forbes.com/sites/blakemorgan/2019/08/26/101-companies-committed-to-reducing-their-carbon-footprint/?sh=26273f86260b
https://forbes.com/sites/blakemorgan/2019/08/26/101-companies-committed-to-reducing-their-carbon-footprint/?sh=26273f86260b
https://forbes.com/sites/blakemorgan/2019/08/26/101-companies-committed-to-reducing-their-carbon-footprint/?sh=26273f86260b
https://doi.org/10.1016/B978-0-12-817588-0.00010-6
https://doi.org/10.1002/aic.690480111
https://doi.org/10.1021/ie034308l
https://doi.org/10.1021/ie034308l
https://doi.org/10.1109/TMECH.2013.2295112
https://doi.org/10.3390/electronics10222812

REFERENCES Erling Selvig

[12] G.F. Carey and Bruce A. Finlayson. “Orthogonal collocation on finite el-
ements”. In: Chemical Engineering Science 30.5 (1975), pp. 587–596. issn:
0009-2509.

[13] Shakir Saat, Sing Kiong Nguang, and Alireza Nasiri. “Chapter 1 - Intro-
duction”. In: Analysis and Synthesis of Polynomial Discrete-Time Systems.
Ed. by Shakir Saat, Sing Kiong Nguang, and Alireza Nasiri. Butterworth-
Heinemann, 2017, pp. 1–27. isbn: 978-0-08-101901-6. doi: https://doi
.org/10.1016/B978-0-08-101901-6.00001-3.

[14] Crina Grosan and Ajith Abraham. “Multiple Solutions for a System of Non-
linear Equations”. In: International Journal of Innovative Computing, Infor-
mation and Control 4 (Sept. 2007).

[15] Solver for Nonlinear Programming. url: https://www.wiomax.com/s
olver-for-nonlinear-programming (visited on 04/10/2023).

[16] Semi-Batch or Semi-Continuous Reactor. url: https://www.process
operations.com/CKRE/RE_Chp03c.htm (visited on 05/31/2023).

[17] Erling Selvig. Optimal online control of a semi-batch reactor with vary-
ing prediction horizon. 2022. url: https://folk.ntnu.no/jasch
ke/Masters/ProjectTheses/2022/ErlingSelvig/ (visited on
06/15/2023).

[18] Noise and disturbances in process control. url: https://controleng.c
om/articles/noise-and-disturbances-in-process-control
(visited on 06/05/2023).

[19] Tuning Kalman Filter to Improve State Estimation. url: https://math
works.com/help/fusion/ug/tuning-kalman-filter-to-impr
ove-state-estimation.html (visited on 05/06/2023).

[20] National Cancer Institute. Learn More about Normal Distribution. url: ht
tps://dietassessmentprimer.cancer.gov/learn/distribut
ion.html (visited on 06/15/2023).

[21] Gaussian analysis. url: https://ml-science.com/gaussian-anal
ysis (visited on 05/18/2023).

[22] Multivariate Normal Distribution. url: https://en.wikipedia.org/
wiki/Multivariate_normal_distribution (visited on 05/18/2023).

[23] Wei He, Songsheng Zhu, and Wei Wang. “A measurement method of batch
solution concentration based on normalized compressed sensing”. In: Mea-
surement and Control 53 (Jan. 2020), p. 002029401988296. doi: 10.1177
/0020294019882964.

[24] Ronald Alexander et al. “Challenges and Opportunities on Nonlinear State
Estimation of Chemical and Biochemical Processes”. In: Processes 8 (Nov.
2020), p. 1462. doi: 10.3390/pr8111462.

[25] Maria Ribeiro. Kalman and Extended Kalman Filters: Concept, Derivation
and Properties. url: https://researchgate.net/publication/2
888846_Kalman_and_Extended_Kalman_Filters_Concept_Der
ivation_and_Properties (visited on 05/20/2023).

56

https://doi.org/https://doi.org/10.1016/B978-0-08-101901-6.00001-3
https://doi.org/https://doi.org/10.1016/B978-0-08-101901-6.00001-3
https://www.wiomax.com/solver-for-nonlinear-programming
https://www.wiomax.com/solver-for-nonlinear-programming
https://www.processoperations.com/CKRE/RE_Chp03c.htm
https://www.processoperations.com/CKRE/RE_Chp03c.htm
https://folk.ntnu.no/jaschke/Masters/ProjectTheses/2022/ErlingSelvig/
https://folk.ntnu.no/jaschke/Masters/ProjectTheses/2022/ErlingSelvig/
https://controleng.com/articles/noise-and-disturbances-in-process-control
https://controleng.com/articles/noise-and-disturbances-in-process-control
https://mathworks.com/help/fusion/ug/tuning-kalman-filter-to-improve-state-estimation.html
https://mathworks.com/help/fusion/ug/tuning-kalman-filter-to-improve-state-estimation.html
https://mathworks.com/help/fusion/ug/tuning-kalman-filter-to-improve-state-estimation.html
https://dietassessmentprimer.cancer.gov/learn/distribution.html
https://dietassessmentprimer.cancer.gov/learn/distribution.html
https://dietassessmentprimer.cancer.gov/learn/distribution.html
https://ml-science.com/gaussian-analysis
https://ml-science.com/gaussian-analysis
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://doi.org/10.1177/0020294019882964
https://doi.org/10.1177/0020294019882964
https://doi.org/10.3390/pr8111462
https://researchgate.net/publication/2888846_Kalman_and_Extended_Kalman_Filters_Concept_Derivation_and_Properties
https://researchgate.net/publication/2888846_Kalman_and_Extended_Kalman_Filters_Concept_Derivation_and_Properties
https://researchgate.net/publication/2888846_Kalman_and_Extended_Kalman_Filters_Concept_Derivation_and_Properties

REFERENCES Erling Selvig

[26] Finn Haugen. State estimation withKalman Filter. 2007. url: techteac
h.no/fag/seky3322/0708/kalmanfilter/kalmanfilter.pdf
(visited on 05/20/2023).

[27] Mohamed Elsheikh et al. “A comparative review of multi-rate moving hori-
zon estimation schemes for bioprocess applications”. In: Computers and Chem-
ical Engineering 146 (2021). issn: 0098-1354.

[28] Rick Wicklin. How to find an initial guess for an optimization. 2014. url:
https://blogs.sas.com/content/iml/2014/06/11/initial-
guess-for-optimization.html (visited on 05/25/2023).

[29] Simen Bjorvand and Johannes Jäschke. “Improving Moving Horizon Esti-
mation using Parametric Nonlinear Programming Sensitivity”. In: FRIPRO
Project SensPATH (2022), pp. 1–2.

57

techteach.no/fag/seky3322/0708/kalmanfilter/kalmanfilter.pdf
techteach.no/fag/seky3322/0708/kalmanfilter/kalmanfilter.pdf
https://blogs.sas.com/content/iml/2014/06/11/initial-guess-for-optimization.html
https://blogs.sas.com/content/iml/2014/06/11/initial-guess-for-optimization.html

APPENDICES

58

A - ORTHOGONAL COLLOCATION

In short, orthogonal collocation (OC) is a method used to numerically approximate
solutions of differential equations. In order for the NMPC to calculate optimal
inputs it has to have information regarding the states of the system. For the op-
timisation problem, the NMPC is provided the dynamic model which consist of a
series of ODEs that have to be integrated in order to provide useful information.
In this appendix the main ideas of orthogonal collocation are presented.

The main idea of orthogonal collocation is to divide the prediction horizon into
finite elements, which again are further divided based off the number of collocation
points that is to be used. For this project the Gauss-Radau collocation points,
t = [01151, 0.6449, 1.0000], are utilised as they remove the need to interpolate at
the end of every finite element since the last collocation point is 1.0.

An example of ODEs that are to be integrated is:

M

ẋ1

ẋ2

ẋ3

 =

x1

x2

x3

−

x0

x0

x0

 , (1)

where M is the weighting matrix. The state trajectory can be approximated as a
polynomial with Equation 1

x(t) ≈ A+Bt+
1

2
Ct2 +

1

3
Dt3, (2)

and the derivative ẋ can be calculated by simply differentiating with the respect
to t:

ẋ(t) ≈ B + Ct+Dt2. (3)

59

An example of an approximation state trajectory, x, is illustrated in Figure A.1.

Figure A.1: An example of a polynomial approximated by orthogonal collocation

The goal is then to solve the aforementioned equations with respect to x. To do
this the weighting matrix M first has to be calculated. Inserting Equation 2 and
3 into Equation 1 yields

M

B + Ct1 +Dt1
2

B + Ct2 +Dt2
2

B + Ct3 +Dt3
2

 =

A+Bt1 +
1
2
Ct1

2 + 1
3
Dt1

3

A+Bt2 +
1
2
Ct2

2 + 1
3
Dt2

3

A+Bt3 +
1
2
Ct3

2 + 1
3
Dt3

3

−

x0

x0

x0

 (4)

If B,C, and D are factorised and the A is set equal to the initial condition, A = x0,
Equation 4 can be simplified to:

M

1 + t1 + t1
2

2 + t2 + t2
2

3 + t3 + t3
2

BC
D

 =

t1 + 1
2
t1

2 + 1
3
t1

3

t2 +
1
2
t2

2 + 1
3
t2

3

t3 +
1
2
t3

2 + 1
3
t3

3

BC
D

 (5)

The weighting matrix M can then be calculated to be equal to:

M =

t1 + 1
2
t1

2 + 1
3
t1

3

t2 +
1
2
t2

2 + 1
3
t2

3

t3 +
1
2
t3

2 + 1
3
t3

3

1 + t1 + t1
2

2 + t2 + t2
2

3 + t3 + t3
2

−1

(6)

The weighting matrix is therefore calculated based on the position of the utilised
collocation points. Finally, the state trajectory x can be approximated with M
from Equation 6 inserted in to Equation 1.

x1

x2

x3

 =

x0

x0

x0

+ hM

f(x1, u1, z1, p1)f(x2, u2, z2, p2)
f(x3, u3, z3, p3)

 , (7)

where x represents the states, u the inputs, z the algebraic variables, and p the
parameters of the process that is to be optimised. h is a scaling parameter that
is utilised if the collocation points range is not between 0 and 1. This is however
the case for Gauss-Radau collocation points and this parameter is therefore set to
be h = 1.

60

B - CODE

.1 Plant Model: Plant.jl

� �
using JuMP
using Ipopt
using DifferentialEquations
using Plots

------Define the model-----------

Define given constants
α = 1700.0 # Heat transfer coefficient between reactor and jacket [kJ/Khm

^2]
r = 0.092 # Radius of cross section inner part [m]
ρ = 1000.0 # Density of the reactor contents [g/L]
Cp = 4.2*1e-3 # Specific heat capacity of the reactor contents [kJ/gK]
Cbin = 3.0 # Input concentration of reactant B [mol/L]
Vj = 2.22 # Volume of the contents inside the cooling jacket [L]
Tin = 300 # Temperature of the flows entering the reactor [K]

Define initial conditions
Vr0 = 3.5 # [L]
Ca0 = 2.0 # [mol/

L]
Cb0 = 0.0 # [mol/

L]
Cc0 = 0.0 # [mol/

L]
Tr0 = 325.0 # [K]
Tj0 = 325.0 # [K]
Aw0 = (π*(rˆ2))+((0.002*Vr0)/(r)) # [m^2]
x0 = [Vr0,Ca0,Cb0,Tr0,Tj0]

------Define dynamic model-----------
function dotStates(inputStates,p,t)

Vr,Ca,Cb,Tr,Tj = inputStates
u = p[1:2]
par = p[3:4] # par[1] = K par[2] = H
Aw = (π*(rˆ2))+((0.002*Vr)/(r))

VrDot = u[1]
CaDot = -((u[1]*Ca)/Vr) - (par[1]*Ca*Cb)
CbDot = ((u[1]/Vr)*(Cbin-Cb)) - (par[1]*Ca*Cb)
TrDot = ((u[1]/Vr)*(Tin-Tr)) - ((α*Aw*(Tr-Tj))/(ρ*Vr*Cp)) - ((par[1]*Ca*Cb*

par[2])/(ρ*Cp))
TjDot = (u[2] + α*Aw*(Tr-Tj))/(ρ*Vj*Cp)
return [VrDot,CaDot,CbDot,TrDot,TjDot]

end

------Define the ODEsolver-----------
function ODEmodel(x,u,t)

return dotStates(x,u,t)
end

61

function PlantODE(x0,u0,dt)
tspan = (0.0,dt)
function f(x,u,t)

return ODEmodel(x,u,t)
end

prob = ODEProblem(f,x0,tspan,u0)
sol = DifferentialEquations.solve(prob)
x = sol.u
xk = sol.u[end]
return xk

end

Since we can calculate Cc and Aw explicitly from the xstates we do not need to
use a DAEsolver.� �

.2 Nonlinear Model Predictive Controller (NMPC):
NMPC.jl

� �
include("colMatrix.jl")

Initialize the NMPC
#This function only builds the nlp as it lacks the sufficient info to solve
function nMPC0(u0List::Vector{Float64},x0List::Vector{Float64},z0List::Vector{

Float64},pList::Vector{Float64},NFE)
col = [0, 0.155051,0.644949,1.0] #colpoint 1 is the zeroth colpoint in this

formulation

colMat,colCont,colObj = colMatrix.collocationMatrix(col) #colMat is square
but first row will be ignored

setting Timescale and number of steps

dt = 0.05 #! [hours]
Nx = 5 # States
Nu = 2 # Inputs
Nz = 2 # Algebraic equations
Np = 2 # Parameters
NCP = 3 # Collocation points

Define initial guesses
uG = u0List
xG = x0List
zG = z0List

optimizer = optimizer_with_attributes(Ipopt.Optimizer,
"linear_solver" => "mumps",
"print_level" => 1, # print_level => 5 output print. Set to 1 to

save CPU time
"max_iter" => 1000,
"tol" => 1e-8,
"acceptable_tol" => 1e-8,
"mu_init" => 10ˆ(-1))

nlp = Model(optimizer)

#-------Declare variables----------

Lower and upper bounds on u. Vin and Qk respectively
ubl = [0.0, -9000.0]
ubu = [32.4, 0.0]

#Input variables
Declare input and corresponding bounds
@variable(nlp, ubl[nu] <= u[nu=1:Nu,-1:NFE-1] <= ubu[nu])

62

Declare operational state constraints
xbl = [0.0,0.0,0.0,273.0,273.0]
xbu = [8.0,5.0,5.0,350.0,350.0]

State variables
Declare states and corresponding bounds
@variable(nlp, xbl[nx] <= x[nx=1:Nx,1:NFE,0:NCP] <= xbu[nx])
#Declare xend for the collocation
@variable(nlp, xend[nx=1:Nx])

Declare algebraic variables
@variable(nlp, 0.0 <= z[1:Nz,1:NFE,1:NCP])

Declare slack variables
@variable(nlp, e1[1,1:NFE,0:NCP])
@variable(nlp, e2[1,1:NFE,0:NCP])

Setting initial values
for nx in 1:Nx

set_start_value.(x[nx,:,:],xG[nx])
end

for nu in 1:Nu
set_start_value.(u[nu,:],uG[nu])

end

for nz in 1:Nz
set_start_value.(z[nz,:,:],zG[nz])

end

Parameter variables and initial state
Declare parameters
@NLparameter(nlp, par[np=1:Np,1:NFE] == pList[np])
#Define initial states
@NLparameter(nlp, x0[nx=1:Nx] == x0List[nx])

Model equations (Dynamic Model)
State integration so collocation points are used
@NLconstraints(nlp, begin

[nfe=1:NFE,ncp=1:NCP], sum(colMat[ncp+1,h+1]*x[1,nfe,h] for h in 0:NCP)
- dt*((u[1,nfe-1])) == 0 # Vr

[nfe=1:NFE,ncp=1:NCP], sum(colMat[ncp+1,h+1]*x[2,nfe,h] for h in 0:NCP)
- dt*(-((u[1,nfe-1]*x[2,nfe,ncp])/x[1,nfe,ncp]) - (par[1,nfe]*x[2,
nfe,ncp]*x[3,nfe,ncp])) == 0 # Ca

[nfe=1:NFE,ncp=1:NCP], sum(colMat[ncp+1,h+1]*x[3,nfe,h] for h in 0:NCP)
- dt*(((u[1,nfe-1]/(x[1,nfe,ncp]))*(Cbin-x[3,nfe,ncp])) - (par[1,
nfe]*x[2,nfe,ncp]*x[3,nfe,ncp])) == 0 # Cb

[nfe=1:NFE,ncp=1:NCP], sum(colMat[ncp+1,h+1]*x[4,nfe,h] for h in 0:NCP)
- dt*(((u[1,nfe-1]/x[1,nfe,ncp])*(Tin-x[4,nfe,ncp])) - ((α*z[2,nfe,
ncp]*(x[4,nfe,ncp]-x[5,nfe,ncp]))/(ρ*x[1,nfe,ncp]*Cp)) - ((par[1,
nfe]*x[2,nfe,ncp]*x[3,nfe,ncp]*par[2,nfe])/(ρ*Cp))) == 0 # Tr

[nfe=1:NFE,ncp=1:NCP], sum(colMat[ncp+1,h+1]*x[5,nfe,h] for h in 0:NCP)
- dt*(((u[2,nfe-1]+(α*z[2,nfe,ncp]*(x[4,nfe,ncp]-x[5,nfe,ncp])))/(ρ

*Vj*Cp))) == 0 # Tj
end)

Model equations (Algebraic Model)
The algebraic variables are dependent on the states, so collocation points

has to be used
@NLconstraints(nlp,begin

[nfe=1:NFE,ncp=1:NCP], z[1,nfe,ncp] - ((Ca0*Vr0 + Cc0*Vr0 - x[2,nfe,ncp]

*x[1,nfe,ncp])/x[1,nfe,ncp]) == 0
[nfe=1:NFE,ncp=1:NCP], z[2,nfe,ncp] - (π*(rˆ2) + ((0.002*x[1,nfe,ncp])/r

)) == 0
end)

Constraint 25c, 25d, 25e, 25f
@NLconstraint(nlp, [nfe=1:NFE,ncp=0:NCP], 322.0 <= x[4,nfe,ncp] + e1[1,nfe,

ncp] <= 326.0) # 25c
@NLconstraint(nlp, [nfe=1:NFE,ncp=0:NCP], x[1,nfe,ncp] + e2[1,nfe,ncp] <= 7

.0) # 25d

63

@NLconstraint(nlp, [nfe=1:NFE,ncp=0:NCP], -1.0 <= e1[1,nfe,ncp] <= 1.0) # 25
e

@NLconstraint(nlp, [nfe=1:NFE,ncp=0:NCP], -1.0 <= e2[1,nfe,ncp] <= 1.0) # 25
f

Collocation constraints
@NLconstraint(nlp, [nx=1:Nx,nfe=2:NFE,ncp=0], x[nx,nfe,ncp] - sum(colCont[h+

1]*x[nx,nfe-1,h] for h in 0:NCP) == 0)
@NLconstraint(nlp, [nx=1:Nx,nfe=1,ncp=0], x[nx,nfe,ncp] - x0List[nx] == 0)
@NLconstraint(nlp, [nx=1:Nx], xend[nx] - sum(colCont[h+1]*x[nx,NFE,h] for h

in 0:NCP) == 0)

Defining initial u0 constraint
@NLconstraint(nlp, [nu=1:Nu], u[nu,-1] - u0List[nu] == 0)

Defining the objective function to be minimized (negative production of Cc
)

I adjusted the weighting of the regularisation terms here through trial
and error! Literature: 0.0154*Deltau1 and 5.5e-5*Deltau2.

@NLobjective(nlp, Min, -(NFE/1)*(z[1,NFE,NCP]*x[1,NFE,NCP])
+ sum(0.0854*(u[1,nfe]-u[1,nfe-1])ˆ2 for nfe in 0:NFE-1)
+ sum(5.5e-5*(u[2,nfe]-u[2,nfe-1])ˆ2 for nfe in 0:NFE-1)
+ sum(sum(1e6*e1[1,nfe,ncp]ˆ2 for ncp in 0:NCP) for nfe

in 1:NFE)
+ sum(sum(1e10*e2[1,nfe,ncp]ˆ2 for ncp in 0:NCP) for nfe

in 1:NFE))
return nlp

end

function nMPC(u0List::Vector{Float64},x0List::Array{Float64,1},z0List::Vector{
Float64},pList::Array{Float64,1},NFE)
#NFE=20
Nx = 5
Nu = 2
Nz = 2
Np = 2
NCP = 3
nlp = nMPC0(u0List,x0List,z0List,pList,NFE)

Initial condition required for integration
nlp.nlp_data.nlparamvalues[end-Nx+1:end] = x0

####Solving part:
optimize!(nlp)

Return 1 if optimal solution was found
optFlag = termination_status(nlp) == JuMP.MOI.TerminationStatusCode(4)

Return first optimal u and flag that can be used to indicate if optimal
solution was found

return value.(nlp[:u][:,0]).data,optFlag
end� �

64

.3 Orthogonal collocation: colMatrix.jl

� �
This code was written and handed out by co-supervisor Simon Bjorvand
module colMatrix

function polEval(pol,x)
N = length(pol)
return sum(xˆ(N-i)*pol[i] for i in 1:N)

end

function polDiff(pol)
N = length(pol)
diffPol = Array{typeof(pol[1])}(undef,N-1)
for i = 1:N-1

diffPol[i] = pol[i]*(N-i)
end
return diffPol

end

function polInte(pol)
N = length(pol)
intePol = Array{typeof(pol[1])}(undef,N+1)
for i = 1:N

intePol[i] = pol[i]/(N+1-i)
end
intePol[N+1] = 0
return intePol

end

function lagrangeInterpolation(x,j)
function polMult(pol1,pol2)

N1 = length(pol1)
N2 = length(pol2)

typ = typeof(pol1[1])
pol = zeros(typ,N1+N2-1)

for i in 1:N2
pol[i:(N1+i-1)] += pol1*pol2[i]

end
return pol

end

function lpol(x,i)
N = length(x)
typ = typeof(x[1])
pol = ones(typ,1)
for j in 1:N

if j != i
pol = polMult(pol,[1;-x[j]])

end
end
return pol

end

tempPol = lpol(x,j)
return tempPol/polEval(tempPol,x[j])

end

function collocationMatrix(col_roots)
K = length(col_roots)
colMat = Array{Float64}(undef,K,K)
colCont = Array{Float64}(undef,K)
colObj = Array{Float64}(undef,K)

for i = 1:K
ltemp = lagrangeInterpolation(col_roots,i)
dltemp = polDiff(ltemp)
itemp = polInte(ltemp)

65

for j = 1:K
colMat[j,i] = polEval(dltemp,col_roots[j])

end
colCont[i] = polEval(ltemp,1)
colObj[i] = polEval(itemp,1)

end

return colMat,colCont,colObj
end

end� �

.4 Functions for EKF: Kalmanfunctions.jl

� �
using Distributions
using LinearAlgebra

include("plant.jl")

Returns Jacobian of dynamic system
function dfdx(xk::Vector{Float64},up::Vector{Float64})

Need to define explicit Aw
Aw = (π*(rˆ2))+((0.002*xk[1])/(r))

Define dfdx
ddx1 = [0 0 0 0 0]
ddx2 = [up[1]*xk[2]/xk[1]ˆ2 -up[1]/xk[1]-up[3]*xk[3] -up[3]*xk[2] 0 0]
ddx3 = [(-up[1]*(Cbin-xk[3]))/xk[1]ˆ2 -up[3]*xk[3] -up[1]/xk[1]-up[3]*xk[1]

0 0]
ddx4 = [(-up[1]*(Tin-xk[4]))/(xk[1]ˆ2)+(α*Aw*(xk[4]-xk[5])/ρ*(xk[1]ˆ2)*Cp) -

up[3]*xk[3]*up[4]/ρ*Cp -up[3]*xk[2]*up[4]/ρ*Cp (-up[1]/xk[1])-(α*Aw/ρ*
xk[1]*Cp) (α*Aw/ρ*xk[1]*Cp)]

ddx5 = [0 0 0 (α*Aw/ρ*Vj*Cp) -(α*Aw/ρ*Vj*Cp)]

Construct matrix
dfdx = [ddx1;ddx2;ddx3;ddx4;ddx5]
return dfdx

end

Perform a priori guess based off previous estimate
function prediction(xekprev::Vector{Float64},up::Vector{Float64},Pekprev::Array{

Float64})
xek = PlantODE(xekprev,up,dt) # Predict next xk based of previous

estimate
Ak = IM + dt*dfdx(xekprev,up) # Define transition matrix A
G = IM # Assumed addidative process noise so G=IM
Pek = Ak*Pekprev*transpose(Ak) + G*Q*transpose(G)
return xek,Pek

end

Obtain measurement of current real states
function measurement(xk::Vector{Float64})

return C*xk
end

Correct a priori guess of states with newly obtained information from
measurement

function correction(yk::Vector{Float64},xek::Vector{Float64},Pek::Matrix{Float64
})
KG = Pek*transpose(C)*inv(C*Pek*transpose(C)+R) # Kalman Gain
h = measurement(xek) # Measure predicted

estimate
ek = yk-h # Innovation variable
xck = xek + KG*ek # Perform a posteriori

correction

66

Pck = (IM-KG*C)*Pek # Corrected Covariance
matrix Pk

return xck,Pck
end

Obtain corrected x and Pk values with measurement yk, previous estimate
xekprev and covariance Pekprev

function Kalman(yk::Vector{Float64},xekprev::Vector{Float64},up::Vector{Float64}
,Pekprev::Array{Float64})
xek,Pek = prediction(xekprev,up,Pekprev)
xck,Pck = correction(yk,xek,Pek)
return xck,Pck

end� �

.5 Functions for MHE: MHEfunctions.jl

� �
include("plant.jl")

using Distributions
using LinearAlgebra

Define unique MHE function for the initial iteration
function MHEinit(x0List::Vector{Float64},ykList::Array{Float64},Pk0::Matrix{

Float64})

Nx = 5 # Process states
Ny = 3 # Measurable states

optimizer = optimizer_with_attributes(Ipopt.Optimizer,
"linear_solver" => "mumps",
"print_level" => 1,
"max_iter" => 1000,
"tol" => 1e-8,
"acceptable_tol" => 1e-8,
"mu_init" => 10ˆ(-1))

#optimizer = with_optimizer(Ipopt.Optimizer, linear_solver = "mumps")
nlp = Model(optimizer)

#-------Declare variables----------

Only need physical constraints, not operational
xbl = [0.0,0.0,0.0,0,0]

State variables
@variable(nlp, x[nx=1:Nx] >= xbl[nx])

Measurement noise variables
@variable(nlp, v[nx=1:Ny])

Measurement constraints
@NLconstraints(nlp, begin

ykList[1]-x[1]-v[1] == 0
ykList[2]-x[4]-v[2] == 0
ykList[3]-x[5]-v[3] == 0

end)

Approximate initial arrival cost
AC01 = transpose(x)*inv(Pk0)*x
AC02 = -2*transpose(x0List)*inv(Pk0)*x
AC0 = AC01+AC02

objfunc = transpose(v)*inv(R)*v + AC0

Define the objective function that is to be minimised
@NLobjective(nlp, Min, objfunc)
return nlp

67

end

function MHEinit2(x0::Vector{Float64},ykList::Array{Float64},Pk0::Matrix{Float64
})

nlp = MHEinit(x0,ykList,Pk0)

####Solving part:
optimize!(nlp)

Return 1 if optimal solution was found
optFlag = termination_status(nlp) == JuMP.MOI.TerminationStatusCode(4)

Return first optimal u and flag that can be used to indicate if optimal
solution was found

return value.(nlp[:x]),optFlag
end

Build MHE framework
function MHE0(x0List::Vector{Float64},uwindow::Vector{Vector{Float64}},pList::

Vector{Float64},T::Int64,N::Int64,xkcheck::Vector{Float64},ykList::Vector{
Vector{Float64}},Pkcheck::Matrix{Float64})
col = [0, 0.155051,0.644949,1.0] #colpoint 1 is the zeroth colpoint in this

formulation

colMat,colCont,colObj = colMatrix.collocationMatrix(col) #colMat is square
but first row will be ignored

Setting Timescale and number of steps
dt = 0.05 #! [hours]
Nx = 5 # Process states
Ny = 3 # Measurable states
Nz = 2 # Algebraic equations
Np = 2 # Parameters
NCP = 3 # Collocation points
wl = min(T,N) # Define window length wl based of

T and N

Define initial guesses
xG = x0List

Define optimizer settings
optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"linear_solver" => "mumps",
"print_level" => 1,
"max_iter" => 1000,
"tol" => 1e-8,
"acceptable_tol" => 1e-8,
"mu_init" => 10ˆ(-1))

#optimizer = with_optimizer(Ipopt.Optimizer, linear_solver = "mumps")
nlp = Model(optimizer)

#-------Declare variables---------#

Only need physical, not operational constraints,
xbl = [0.0,0.0,0.0,0.0,0.0]
xbu = [8.0,Inf,Inf,Inf,Inf]

Process noise variable constraints. Chosen to be 5 times standard
deviation

ωbl = [-0.05,-0.25,-0.25,-2.50,-2.50]
ωbu = [0.05,0.25,0.25,2.50,2.50]

Measurement noise variable constraints. Chosen to be 5 times standard
deviation

vbl = [-2.0,-5.0,-5.0]
vbu = [2.0,5.0,5.0]

State variables
Declare states and corresponding bounds
@variable(nlp, xbl[nx] <= x[nx=1:Nx,1:wl-1,0:NCP] <= xbu[nx])
#Declare xend for the collocation

68

@variable(nlp, xbl[nx] <= xend[nx=1:Nx] <= xbu[nx])

Process noise variables
@variable(nlp,start=0.0, ωbl[nx] <= ω[nx=1:Nx,1:wl-1] <= ωbu[nx])

Measurement noise variables
@variable(nlp,start=0.0, vbl[nx] <= v[nx=1:Ny,1:wl] <= vbu[nx])

Algebraic variables
@variable(nlp, 0.0 <= z[1:Nz,1:wl-1,1:NCP]) # Declare algebraic states

Setting initial values
for nx in 1:Nx

set_start_value.(x[nx,:,:],xG[nx])
end

Parameter variables and initial state
@NLparameter(nlp, par[np=1:Np,1:wl-1] == pList[np]) # Declare parameters

Model equations (Dynamic Model)
States are to be integrated so so collocation points are used
@NLconstraints(nlp, begin

[nfe=1:wl-1,ncp=1:NCP], sum(colMat[ncp+1,h+1]*x[1,nfe,h] for h in 0:NCP)
- dt*((uwindow[nfe][1])) == 0 # Vr

[nfe=1:wl-1,ncp=1:NCP], sum(colMat[ncp+1,h+1]*x[2,nfe,h] for h in 0:NCP)
- dt*(-((uwindow[nfe][1]*x[2,nfe,ncp])/x[1,nfe,ncp]) - (par[1,nfe]

*x[2,nfe,ncp]*x[3,nfe,ncp])) == 0 # Ca
[nfe=1:wl-1,ncp=1:NCP], sum(colMat[ncp+1,h+1]*x[3,nfe,h] for h in 0:NCP)

- dt*(((uwindow[nfe][1]/(x[1,nfe,ncp]))*(Cbin-x[3,nfe,ncp])) - (
par[1,nfe]*x[2,nfe,ncp]*x[3,nfe,ncp])) == 0 # Cb

[nfe=1:wl-1,ncp=1:NCP], sum(colMat[ncp+1,h+1]*x[4,nfe,h] for h in 0:NCP)
- dt*(((uwindow[nfe][1]/x[1,nfe,ncp])*(Tin-x[4,nfe,ncp])) - ((α*z[
2,nfe,ncp]*(x[4,nfe,ncp]-x[5,nfe,ncp]))/(ρ*x[1,nfe,ncp]*Cp)) - ((
par[1,nfe]*x[2,nfe,ncp]*x[3,nfe,ncp]*par[2,nfe])/(ρ*Cp))) == 0 # Tr

[nfe=1:wl-1,ncp=1:NCP], sum(colMat[ncp+1,h+1]*x[5,nfe,h] for h in 0:NCP)
- dt*(((uwindow[nfe][2]+(α*z[2,nfe,ncp]*(x[4,nfe,ncp]-x[5,nfe,ncp]
)))/(ρ*Vj*Cp))) == 0 # Tj

end)

Model equations (Algebraic Model)
The algebraic variables are dependent on the states, so collocation points

have to be used
@NLconstraints(nlp,begin

[nfe=1:wl-1,ncp=1:NCP], z[1,nfe,ncp] - ((Ca0*Vr0 + Cc0*Vr0 - x[2,nfe,ncp
]*x[1,nfe,ncp])/x[1,nfe,ncp]) == 0

[nfe=1:wl-1,ncp=1:NCP], z[2,nfe,ncp] - (π*(rˆ2) + ((0.002*x[1,nfe,ncp])/
r)) == 0

end)

Collocation constraints
@NLconstraint(nlp, [nx=1:Nx,nfe=2:wl-1,ncp=0], x[nx,nfe,ncp] - sum(colCont[h

+1]*x[nx,nfe-1,h] for h in 0:NCP) - ω[nx,nfe-1] == 0)
Here we implement the process noise ω in the xk+1=F(xk,uk) constraint.
@NLconstraint(nlp, [nx=1:Nx], xend[nx] - sum(colCont[h+1]*x[nx,wl-1,h] for h

in 0:NCP) - ω[nx,wl-1] == 0)

Constraint for measurements yk
@NLconstraints(nlp, begin

[nfe=1:wl-1], ykList[nfe][1]-x[1,nfe,0]-v[1,nfe] == 0
[nfe=1:wl-1], ykList[nfe][2]-x[4,nfe,0]-v[2,nfe] == 0
[nfe=1:wl-1], ykList[nfe][3]-x[5,nfe,0]-v[3,nfe] == 0

end)

Constraint for xend for measurement yk
@NLconstraints(nlp, begin

ykList[wl][1]-xend[1]-v[1,wl] == 0
ykList[wl][2]-xend[4]-v[2,wl] == 0
ykList[wl][3]-xend[5]-v[3,wl] == 0

end)

The states rewritten this specific way for the arrival cost AC

69

xk = [x[1:Nx,1,0][1];x[1:Nx,1,0][2];x[1:Nx,1,0][3];x[1:Nx,1,0][4];x[1:Nx,1,0
][5]]

Define arrival cost AC
AC1 = transpose(xk)*inv(Pkcheck)*xk
AC2 = -2*transpose(xkcheck)*inv(Pkcheck)*xk
AC = AC1+AC2

term1 = sum(diag(transpose(ω[1:Nx,1:wl-1])*inv(Q)*ω[1:Nx,1:wl-1]))
term2 = sum(diag(transpose(v[1:Ny,1:wl])*inv(R)*v[1:Ny,1:wl])) + AC

Defining the objective function
objfunc = term1+term2

@NLobjective(nlp, Min, objfunc)

return nlp
end

Perform optimisation that yield state estimate using the MHE framework
function MHE(x0::Vector{Float64},uwindow::Vector{Vector{Float64}},pList::Vector{

Float64},T::Int64,N::Int64,xkcheck::Vector{Float64},ykList::Vector{Vector{
Float64}},Pkcheck::Matrix{Float64})

nlp = MHE0(x0,uwindow,pList,T,N,xkcheck,ykList,Pkcheck)

####Solving part:
optimize!(nlp)

Return 1 if optimal solution was found
optFlag = termination_status(nlp) == JuMP.MOI.TerminationStatusCode(4)

Return first optimal u and flag that can be used to indicate if optimal
solution was found

return value.(nlp[:xend]),optFlag
end

Obtain measurement of current states
function measurement(xk::Vector{Float64})

return C*xk
end

Linearizes the produced state estimate around dynamic model. Used for updating
error estimate covariance matrix Pk

function lin1(xk::Vector{Float64},up::Vector{Float64})
Need this defined
Aw = (π*(rˆ2))+((0.002*xk[1])/(r))

Define dfdx
ddx1 = [0 0 0 0 0]
ddx2 = [up[1]*xk[2]/xk[1]ˆ2 -up[1]/xk[1]-up[3]*xk[3] -up[3]*xk[2] 0 0]
ddx3 = [(-up[1]*(Cbin-xk[3]))/xk[1]ˆ2 -up[3]*xk[3] -up[1]/xk[1]-up[3]*xk[1]

0 0]
ddx4 = [(-up[1]*(Tin-xk[4]))/(xk[1]ˆ2)+(α*Aw*(xk[4]-xk[5])/ρ*(xk[1]ˆ2)*Cp) -

up[3]*xk[3]*up[4]/ρ*Cp -up[3]*xk[2]*up[4]/ρ*Cp (-up[1]/xk[1])-(α*Aw/ρ*
xk[1]*Cp) (α*Aw/ρ*xk[1]*Cp)]

ddx5 = [0 0 0 (α*Aw/ρ*Vj*Cp) -(α*Aw/ρ*Vj*Cp)]

dfdx = [ddx1;ddx2;ddx3;ddx4;ddx5]
return dfdx

end

Update state estimation error covariance matrix Pk using Ricatti equation
function ricatti(Ak::Matrix{Float64},Pkprev::Matrix{Float64},Ck::Matrix{Int64},

Rk::Matrix{Float64},Qk::Matrix{Float64})
Pk = Ak*(Pkprev-(Pkprev*transpose(Ck)*inv(Ck*Pkprev*transpose(Ck)+Rk)*Ck*

Pkprev))*transpose(Ak) + Qk
return Pk

end� �

70

.6 Code for obtaining EKF results: resultsEKF.jl

� �
include("plant.jl")
include("colMatrix.jl")
include("NMPC.jl")

using Random
using Statistics
using ProgressBars

Define global variables
Step length
dt = 0.05
Intial input
u0 = [0.0,0.0]
Initial state guess x0
Vr0,Ca0,Cb0,Tr0,Tj0 = [3.5,2.0,0.0,325.0,325.0]
x0 = [Vr0,Ca0,Cb0,Tr0,Tj0]
Initial DAE guess z0
z0 = [Cc0,Aw0]
Fixed parameters K and H
p0 = [1.205,-355.0]
Length of NMPC prediction horizon
NFE0 = 20

Noise
#Define process and measurement noise. Change these for Case stuudy 9 and 10
Standard deviation for process noise. Chosen myself
σω = [0.01,0.05,0.05,0.5,0.5]
Standard deviation for measurement noise. Chosen myself
σv = [0.4,1.0,1.0]
Assumed mean of Gaussian distributions
µ = 0.0

Define required matrices
Measurement Gain matrix. A,B immeasurable
C = [1 0 0 0 0; 0 0 0 1 0; 0 0 0 0 1]

Identity Matrix
IM = diagm([1.0,1.0,1.0,1.0,1.0])

Process noise gain Matrix. Process noise is assumed addidative so G=IM
G = IM

Process noise auto covariance. Assumed no correlation
Q = diagm([σω[1]ˆ2,σω[2]ˆ2,σω[3]ˆ2,σω[4]ˆ2,σω[5]ˆ2])

Measurement noise auto covariance. Assumed no correlation
R = diagm([σv[1]ˆ2,σv[2]ˆ2,σv[3]ˆ2])

Initial guess of state estimation covariance error matrix.
The initial guess x0 is known so Pk0=Q
Pk0 = Q

Define list that will store the results:
kxekresultsList = Array{Array{Float64,2}}(undef,0)
kxkrresultsList = Array{Array{Float64,2}}(undef,0)
kykresultsList = Array{Array{Float64,2}}(undef,0)
kzkrresultsList = Array{Array{Float64,2}}(undef,0)
kzekresultsList = Array{Array{Float64,2}}(undef,0)

Obtain results from 100 seeds
for j in ProgressBar(1:100)

Generate a specific seed so that the random noise follow the same random
distribution

Random.seed!(j)

Define global list/matrices that are continously updated for each
iteration

71

xkrList = Array{Array{Float64,1}}(undef,0) # Real x
xekList = Array{Array{Float64,1}}(undef,0) # Estimated x
zrList = Array{Array{Float64,1}}(undef,0) # Real DAEs
zeList = Array{Array{Float64,1}}(undef,0) # Estimated DAEs
PkList = Array{Array{Float64,2}}(undef,0) # For storing covariance matrices
ukList = Array{Array{Float64,1}}(undef,0) # Store inputs
ykList = Array{Array{Float64,1}}(undef,0) # Store inputs
solveList = Array{Bool,1}(undef,0) # Store flags from optimisation

for i in 1:NFE0
NFE = min(20,NFE0-i+1)
if i == 1 # Initialization

Generate random Gaussian distributed process noise
vrpn = rand(Normal(µ,σω[1]))
capn = rand(Normal(µ,σω[2]))
cbpn = rand(Normal(µ,σω[3]))
trpn = rand(Normal(µ,σω[4]))
tjpn = rand(Normal(µ,σω[5]))
ω = [vrpn,capn,cbpn,trpn,tjpn]

Generate random Gaussian distributed measurement noise
vrmn = rand(Normal(µ,σv[1]))
trmn = rand(Normal(µ,σv[2]))
tjmn = rand(Normal(µ,σv[3]))
v = [vrmn,trmn,tjmn]

For initialisation, predict what the current state is
xk0 = x0 + ω
Also predict the initial covariance matrix Pk
Pkprev = Q

Implement check here to ensure initial prediction do not result in
negative DAE values

If negative, these can result in infeasible solutions from NMPC
if xk0[1] > Vr0

xk0[1] = Vr0
end
if xk0[2] > Ca0

xk0[2] = Ca0
end
if xk0[3] < Cb0

xk0[3] = Cb0
end

Initial estimate DAE
Ccr0 = (Ca0*Vr0 + Cc0*Vr0 - xk0[2]*xk0[1])/(xk0[1])
Awr0 = (π*(rˆ2))+((0.002*xk0[1])/(r))
zr0 = [Ccr0,Awr0]

Need this for initial point when plotting results
push!(ukList, u0)
push!(xkrList,x0)
push!(zrList,zr0)
push!(zeList,zr0)

Measurement of initial real state
yk0 = measurement(xk0) + v
push!(ykList,yk0)

Obtain corrected estimate.
Since we have done prediction already, for initialisation we only

need to use the correction function.
xck,Pck = correction(yk0,xk0,Pkprev)

Implement checks on corrected estimate as well
if xck[1] > Vr0

xck[1] = Vr0
end
if xck[2] > Ca0

xck[2] = Ca0
end
if xck[3] < Cb0

xck[3] = Cb0

72

end

Calculate inital estimated DAEs for plotting
Cce0 = (Ca0*Vr0 + Cc0*Vr0 - xck[2]*xck[1])/(xck[1])
Awe0 = (π*(rˆ2))+((0.002*xck[1])/(r))
ze0 = [Cce0,Awe0]

Store covariance
push!(PkList,Pck)
Store estimate
push!(xekList,xck)
Store estimated DAEs
push!(zeList,ze0)

Perform the NMPC with the corrected estimate
uk,optFlag = nMPC(u0,xck,ze0,p0,NFE)
print("Iteration: ",i,", Solved to optimailty: ",optFlag)
Store flags for optimality
push!(solveList,optFlag)
Store inputs
push!(ukList,uk)

Inject uk into plant and obtain optimal states
ukp = [uk;p0]
Obtain real x
xkr = PlantODE(x0,ukp,dt) + ω

Calculate real DAEs for plotting
Ccr = (Ca0*Vr0 + Cc0*Vr0 - xkr[2]*xkr[1])/(xkr[1])
Check here as well, as inital negative Cc does not make physical

sense
if Ccr < 0

Ccr = 0
end

Awr = (π*(rˆ2))+((0.002*xkr[1])/(r))
zr = [Ccr,Awr]

Store real x
push!(xkrList, xkr)
Store real DAEs
push!(zrList,zr)

else
Generate random normal-distributed process noise
vrpn = rand(Normal(µ,σω[1]))
capn = rand(Normal(µ,σω[2]))
cbpn = rand(Normal(µ,σω[3]))
trpn = rand(Normal(µ,σω[4]))
tjpn = rand(Normal(µ,σω[5]))
ω = [vrpn,capn,cbpn,trpn,tjpn]

Generate random normal-distributed measurement noise
vrmn = rand(Normal(µ,σv[1]))
trmn = rand(Normal(µ,σv[2]))
tjmn = rand(Normal(µ,σv[3]))
v = [vrmn,trmn,tjmn]

Obtain input, previous xek,xkr,Pk
Known input
ukk = ukList[i]
Build ukp argument
ukkp = [ukk;p0]
Previous covariance matrix
Pkprev = PkList[i-1]
Previous estimate
xekprev = xekList[i-1]
Real state
xkrprev = xkrList[i]
Current measurement
yk = measurement(xkrprev) + v
push!(ykList,yk)

73

Obtain estimated states and co-variance matrix
xek,Pk = Kalman(yk,xekprev,ukkp,Pkprev)

Calculate estimated DAEs for plotting
Cce = (Ca0*Vr0 + Cc0*Vr0 - xek[2]*xek[1])/(xek[1])
Awe = (π*(rˆ2))+((0.002*xek[1])/(r))
ze = [Cce,Awe]

Store covariance
push!(PkList,Pk)
Store estimate
push!(xekList,xek)
Store estimated DAEs
push!(zeList,ze)

Perform the NMPC with the estimate
uk,optFlag = nMPC(ukk,xek,ze,p0,NFE)
print("Iteration: ",i,", Solved to optimailty: ",optFlag)
Store flags for optimality
push!(solveList,optFlag)
Store optimal inputs
push!(ukList,uk)

Inject uk into plant and obtain optimal states
ukp = [uk;p0]
Obtain real x
xkr = PlantODE(xkrprev,ukp,dt) + ω

Calculate real DAEs for plotting
Ccr = (Ca0*Vr0 + Cc0*Vr0 - xkr[2]*xkr[1])/(xkr[1])
Check here as well, as negative Cc does not make physical sense

when plotting
if Ccr < 0

Ccr = 0
end
Awr = (π*(rˆ2))+((0.002*xkr[1])/(r))
zr = [Ccr,Awr]

Store real x
push!(xkrList, xkr)
Store real DAEs
push!(zrList,zr)

Need to obtain final values for plotting
if i == NFE0

xkr = xkrList[end]
yk = measurement(xkr) + v
push!(ykList,yk)

Pkprev = PkList[i-1] # Previous covariance matrix
xekprev = xekList[i-1] # Previous estimate
ukk = ukList[i] # Known input
ukkp = [ukk;p0] # Build ukp argument
Obtain estimated states and co-variance matrix
xek,Pk = Kalman(yk,xekprev,ukkp,Pkprev)
Calculate estimated DAEs for plotting
Cce = (Ca0*Vr0 + Cc0*Vr0 - xek[2]*xek[1])/(xek[1])
Awe = (π*(rˆ2))+((0.002*xek[1])/(r))
ze = [Cce,Awe]

push!(PkList,Pk) # Store covariance
push!(xekList,xek) # Store estimate
push!(zeList,ze) # Store estimated

DAEs

Perform the NMPC with the estimate
uk,optFlag = nMPC(ukk,xek,ze,p0,NFE)
print("Iteration: ",i,", Solved to optimailty: ",optFlag)
push!(solveList,optFlag) # Store flags for

optimality
push!(ukList,uk) # Store inputs

Inject uk into plant and obtain optimal states

74

ukp = [uk;p0]
xkr = PlantODE(xkrprev,ukp,dt) + ω # Obtain next x (

or real)

Calculate real DAEs for plotting
Ccr = (Ca0*Vr0 + Cc0*Vr0 - xkr[2]*xkr[1])/(xkr[1])
Check here as well, as negative Cc does not make physical

sense when plotting
if Ccr < 0

Ccr = 0
end
Awr = (π*(rˆ2))+((0.002*xkr[1])/(r))
zr = [Ccr,Awr]

push!(xkrList, xkr) # Store "real" or
optimal x

push!(zrList,zr) # Store real DAEs
end

end
end

Have to use hcat to convert Vector{Vector} to Matrix that can be pushed to
an array

xekresult = hcat(xekList...)
xkresult = hcat(xkrList...)
ykresult = hcat(ykList...)
zeresult = hcat(zeList...)
zrresult = hcat(zrList...)
Store all results in a matrix
push!(kxekresultsList,xekresult)
push!(kxkrresultsList,xkresult)
push!(kykresultsList,ykresult)
push!(kzekresultsList,zeresult)
push!(kzkrresultsList,zrresult)

end

Plotting EKF trajectories
Calculate and unpack function can be found in results.jl
Obtain real, measured and estimated states from result matrix
kvrr,kcar,kcbr,ktrr,ktjr,kccr= calculateµσ(kxkrresultsList)[1]
kvrm, ktrm, ktjm = unpackyk(kykresultsList)
kvre, kcae, kcbe, ktre,ktje,kcce = calculateµσ(kxekresultsList)[1]

Plotting settings
styles1 = [:solid :dash :dash]
styles2 = [:solid :dash]
colors1 = [:blue :red :green]
colors2 = [:blue :red]
size = [2 2 3]

Perform EKF plotting
plot(xaxis, [kvrr kvre kvrm], line=(size,styles1),color=(colors1), title="

Reactor volume Vr", xlabel = "Time [h]",ylabel = "Volume [L]",label=["Real"
"Estimated" "Measured"],legendtitle="State type (EKF)",legend=:right,
tickfontsize=16,guidefontsize=16,titlefontsize=25, legendfontsize=15)

plot(xaxis, [kcar kcae], line=(size,styles2),color=(colors2), title = "
Concentration of A", xlabel = "Time [h]",ylabel = "Concentration [mol/L]",
label=["Real" "Estimated"],legendtitle="State type (EKF)",legend=:right,
tickfontsize=16,guidefontsize=16,titlefontsize=25, legendfontsize=15)

plot(xaxis, [kcbr kcbe], line=(size,styles2),color=(colors2), title = "
Concentration of B", xlabel = "Time [h]",ylabel = "Concentration [mol/L]",
label=["Real" "Estimated"],legendtitle="State type (EKF)",legend=:right,
tickfontsize=16,guidefontsize=16,titlefontsize=25, legendfontsize=15)

plot(xaxis, [ktrr ktre ktrm], line=(size,styles1),color=(colors1),title = "
Reactor Temperature Tr", xlabel = "Time [h]",ylabel = "Temperature [K]",
label=["Real" "Estimated" "Measured"],legendtitle="State type (EKF)",legend
=:topright,tickfontsize=16,guidefontsize=16,titlefontsize=25,
legendfontsize=10)

plot(xaxis, [ktjr ktje ktjm], line=(size,styles1),color=(colors1),title = "
Jacket Temperature Tj", xlabel = "Time [h]",ylabel = "Temperature [K]" ,
label=["Real" "Estimated" "Measured"],legendtitle="State type (EKF)",legend
=:topright,tickfontsize=16,guidefontsize=16,titlefontsize=25,
legendfontsize=15)

75

plot(xaxis, [kccr kcce],line=(size,styles2),color=(colors2), title = "
Concentration of C", xlabel = "Time [h]",ylabel = "Concentration [mol/L]",
label=["Real" "Estimated"],legendtitle="State type (EKF)",legend=:
bottomright,tickfontsize=16,guidefontsize=16,titlefontsize=25,
legendfontsize=15)� �

.7 Code for obtaining MHE results: resultsMHE.jl

� �
include("plant.jl")
include("colMatrix.jl")
include("NMPC.jl")

using Random
using Statistics
using ProgressBars

Define initial conditions
dt = 0.05
u0 = [0.0,0.0]

Initial guess
Vr0,Ca0,Cb0,Tr0,Tj0 = [3.5,2.0,0.0,325.0,325.0]
x0 = [Vr0,Ca0,Cb0,Tr0,Tj0]

Initial DAE guess
z0 = [Cc0,Aw0]
p0 = [1.205,-355.0]
Length of NMPC prediction horizon
NFE0 = 20

Noise
#Define process and measurement noise
Standard deviation for process noise. Chosen myself
σω = [0.01,0.05,0.05,0.5,0.5]
Standard deviation for measurement noise. Chosen myself
σv = [0.4,1.0,1.0]
Assumed mean of Gaussian distributions
µ = 0.0

Define required matrices
Measurement Gain matrix. A and B are immeasurable
C = [1 0 0 0 0; 0 0 0 1 0; 0 0 0 0 1]
Identity Matrix
IM = diagm([1.0,1.0,1.0,1.0,1.0])
Process Noise Gain Matrix. Process noise is assumed to be addidative so G=IM
G = IM
Process noise auto covariance. Assume no correlation
Q = diagm([σω[1]ˆ2,σω[2]ˆ2,σω[3]ˆ2,σω[4]ˆ2,σω[5]ˆ2])
Measurement noise auto covariance. Assume no correlation
R = diagm([σv[1]ˆ2,σv[2]ˆ2,σv[3]ˆ2])

Initial guess of state estimation covariance error matrix.
The initial guess x0 is known so Pk0=Q
Pk0 = Q
Length of MHE estimation window (BASE CASE)
N = 10

Define list that are to store the results:
xekresultsList = Array{Array{Float64,2}}(undef,0)
xkrresultsList = Array{Array{Float64,2}}(undef,0)
ykresultsList = Array{Array{Float64,2}}(undef,0)
zkrresultsList = Array{Array{Float64,2}}(undef,0)
zekresultsList = Array{Array{Float64,2}}(undef,0)

for j in ProgressBar(1:100)

76

Generate a specific seed so that the random noise follow the same
distribution

Random.seed!(j)

Define global list/matrices that are continously updated for each
iteration

xkrList = Array{Array{Float64,1}}(undef,0) # Real x
xekList = Array{Array{Float64,1}}(undef,0) # Estimated x
zeList = Array{Array{Float64,1}}(undef,0) # Estimated DAEs
zrList = Array{Array{Float64,1}}(undef,0) # Real DAEs
PkList = Array{Array{Float64,2}}(undef,0) # For storing covariance matrices
ukList = Array{Array{Float64,1}}(undef,0) # Store inputs
ykList = Array{Array{Float64,1}}(undef,0) # Store inputs
solveList1 = Array{Bool,1}(undef,0) # Information if optimal solution

for MHE was found
solveList2 = Array{Bool,1}(undef,0) # Information if optimal solution

for NMPC was found

for i in 1:NFE0
Change first argument here to change length of NMPC horizon (Case 3

and 4)
NFE = min(20,NFE0-i+1)
if i == 1 # Initialisation

T = i
Generate random normal-distributed process noise
vrpn = rand(Normal(µ,σω[1]))
capn = rand(Normal(µ,σω[2]))
cbpn = rand(Normal(µ,σω[3]))
trpn = rand(Normal(µ,σω[4]))
tjpn = rand(Normal(µ,σω[5]))
ω = [vrpn,capn,cbpn,trpn,tjpn]

Generate random normal-distributed measurement noise
vrmn = rand(Normal(µ,σv[1]))
trmn = rand(Normal(µ,σv[2]))
tjmn = rand(Normal(µ,σv[3]))
v = [vrmn,trmn,tjmn]

Predict what the initial state is
xk0 = x0 + ω

#Implement check here to ensure initial prediction do not result in
negative physical values, most importantly Cc and Cb

if xk0[1] > Vr0
xk0[1] = Vr0

end
if xk0[2] > Ca0

xk0[2] = Ca0
end
if xk0[3] < Cb0

xk0[3] = Cb0
end

Calculate initial estimate DAE
Ccr0 = (Ca0*Vr0 + Cc0*Vr0 - xk0[2]*xk0[1])/(xk0[1])
Awr0 = (π*(rˆ2))+((0.002*xk0[1])/(r))
ze0 = [Ccr0,Awr0]

Calculate initial real DAE
Ccr0 = (Ca0*Vr0 + Cc0*Vr0 - x0[2]*x0[1])/(x0[1])
Awr0 = (π*(rˆ2))+((0.002*x0[1])/(r))
zr0 = [Ccr0,Awr0]

Need this for initial point in plotting
push!(xkrList,x0)
push!(zrList,zr0)
push!(zeList,ze0)

Obtain measurement of x
yk0 = measurement(x0) + v
push!(ykList,yk0)

Obtain estimate based off previous estimates

77

xek,optFlag1 = MHEinit2(xk0,yk0,Pk0)
print("Iteration: ",i,", Solved to optimailty: ",optFlag1)
push!(solveList1,optFlag1)

Checks here as well to make sure the estimate is not negative
Negative arguments to the NMPC can result in infeasible solutions
if xek[1] > Vr0

xek[1] = Vr0
end
if xek[2] > Ca0

xek[2] = Ca0
end
if xek[3] < Cb0

xek[3] = Cb0
end

Calculate estimated DAEs for plotting
Cce0 = (Ca0*Vr0 + Cc0*Vr0 - xek[2]*xek[1])/(xek[1])
Awe0 = (π*(rˆ2))+((0.002*xek[1])/(r))
ze0 = [Cce0,Awe0]

Store estimate
push!(xekList,xek)
Store estimated DAEs
push!(zeList,ze0)

Perform the NMPC with the estimate
uk,optFlag2 = nMPC(u0,xek,ze0,p0,NFE)
print("Iteration: ",i,", Solved to optimailty: ",optFlag2)
Store flags for optimality
push!(solveList2,optFlag2)
Store optimal inputs
push!(ukList,uk)

Inject uk into plant and obtain optimal states
ukp = [uk;p0]
Geneerate new noise for real state
vrpn = rand(Normal(µ,σω[1]))
capn = rand(Normal(µ,σω[2]))
cbpn = rand(Normal(µ,σω[3]))
trpn = rand(Normal(µ,σω[4]))
tjpn = rand(Normal(µ,σω[5]))
ω = [vrpn,capn,cbpn,trpn,tjpn]

Obtain real x
xkr = PlantODE(x0,ukp,dt) + ω

Calculate real DAEs for plotting
Ccr = (Ca0*Vr0 + Cc0*Vr0 - xkr[2]*xkr[1])/(xkr[1])
Check here as well, as negative Cc does not make physical sense

when plotting
if Ccr < 0

Ccr = 0
end
Awr = (π*(rˆ2))+((0.002*xkr[1])/(r))
zr = [Ccr,Awr]

Store real x
push!(xkrList, xkr)
Store real DAEs
push!(zrList,zr)

Update covariance matrix Pk for next iteration
Define transition matrix A
Ak = IM + dt*lin1(xek,ukp)
Pk = ricatti(Ak,Pk0,C,R,Q)
Store Pk
push!(PkList,Pk)

else
T = i
Generate random normal-distributed process noise
vrpn = rand(Normal(µ,σω[1]))
capn = rand(Normal(µ,σω[2]))

78

cbpn = rand(Normal(µ,σω[3]))
trpn = rand(Normal(µ,σω[4]))
tjpn = rand(Normal(µ,σω[5]))
ω = [vrpn,capn,cbpn,trpn,tjpn]

Generate random normal-distributed measurement noise
vrmn = rand(Normal(µ,σv[1]))
trmn = rand(Normal(µ,σv[2]))
tjmn = rand(Normal(µ,σv[3]))
v = [vrmn,trmn,tjmn]

Obtain input, previous xek,xkr,Pk
Known input
ukk = ukList[i-1]
Build ukp argument for PlantODE
ukkp = [ukk;p0]
Previous covariance matrix
Pkprev = PkList[i-1]
Real state
xkrprev = xkrList[i]
Current measurement
yk = measurement(xkrprev) + v
push!(ykList,yk)

Obtain xkcheck (first xk outside window for AC) and the
corresponding Pk for that specific iteration

Before the estimation window is filled up, xcheck, Pkcheck = x0,
Pk0

if i <= N
xkcheck = x0
Pkcheck = Pk0

else
xkcheck = xekList[i-N]
Pkcheck = PkList[i-N]

end

Construct input argument. Only pass the most recent (final 10)
inputs to the MHE

uwindow = ukList[max(1,i-N+1):i-1]

Update ykList argument. Only pass the most recent (final 10)
measurements to the MHE

ykwindow = ykList[max(1,i-N+1):i]

Obtain estimate based off previous measurements
xek,optFlag1 = MHE(xkrprev,uwindow,p0,T,N,xkcheck,ykwindow,Pkcheck)
print("Iteration: ",i,", Solved to optimailty: ",optFlag1)
push!(solveList1,optFlag1)

Calculate estimated DAEs for plotting
Cce = (Ca0*Vr0 + Cc0*Vr0 - xek[2]*xek[1])/(xek[1])
Awe = (π*(rˆ2))+((0.002*xek[1])/(r))
ze = [Cce,Awe]

Store estimate
push!(xekList,xek)
Store estimated DAEs
push!(zeList,ze)

Perform the NMPC with the estimate
uk,optFlag2 = nMPC(ukk,xek,ze,p0,NFE)
print("Iteration: ",i,", Solved to optimailty: ",optFlag2)
Store flags for optimality
push!(solveList2,optFlag2)
Store optimal inputs
push!(ukList,uk)

Inject uk into plant and obtain optimal states
ukp = [uk;p0]
Obtain real x
xkr = PlantODE(xkrprev,ukp,dt) + ω

Calculate real DAEs for plotting

79

Ccr = (Ca0*Vr0 + Cc0*Vr0 - xkr[2]*xkr[1])/(xkr[1])
Check here as well, as negative Cc does not make physical sense

when plotting
if Ccr < 0

Ccr = 0
end
Awr = (π*(rˆ2))+((0.002*xkr[1])/(r))
zr = [Ccr,Awr]

Update Pk for next iteration
Define transition matrix A
Ak = IM + dt*lin1(xek,ukp)
Update Pk for next iteration using Ricatti equation
Pk = ricatti(Ak,Pkprev,C,R,Q)

Store real x
push!(xkrList,xkr)
Store real DAEs
push!(zrList,zr)
Store covariance matrices
push!(PkList,Pk)

Need to measure and estimate final state (for plotting)
if i == NFE0

xkrprev = xkrList[end]
yk = measurement(xkr) + v
push!(ykList,yk)

Construct input argument. Only pass the most recent (final 10)
inputs to the MHE

uwindow = ukList[max(1,i-N+1):i-1]

Update ykList argument. Only pass the most recent (final 10)
measurements to the MHE

ykwindow = ykList[max(1,i-N+1):i]

xkcheck = xekList[i-N]
Pkcheck = PkList[i-N]
xek,optFlag1 = MHE(xkrprev,uwindow,p0,T,N,xkcheck,ykwindow,

Pkcheck)
print("Iteration: ",i,", Solved to optimailty: ",optFlag1)
push!(solveList1,optFlag1)

Calculate estimated DAEs for plotting
Cce = (Ca0*Vr0 + Cc0*Vr0 - xek[2]*xek[1])/(xek[1])
Awe = (π*(rˆ2))+((0.002*xek[1])/(r))
ze = [Cce,Awe]

Store estimate
push!(xekList,xek)
Store estimated DAEs
push!(zeList,ze)

Perform the NMPC with the estimate
uk,optFlag2 = nMPC(ukk,xek,ze,p0,NFE)
print("Iteration: ",i,", Solved to optimailty: ",optFlag2)
Store flags for optimality
push!(solveList2,optFlag2)
Store inputs
push!(ukList,uk)

Inject uk into plant and obtain optimal states
ukp = [uk;p0]
Obtain real x
xkr = PlantODE(xkrprev,ukp,dt) + ω

Calculate real DAEs for plotting
Ccr = (Ca0*Vr0 + Cc0*Vr0 - xkr[2]*xkr[1])/(xkr[1])
Check here as well, as negative Cc does not make physical

sense when plotting
if Ccr < 0

Ccr = 0
end

80

Awr = (π*(rˆ2))+((0.002*xkr[1])/(r))
zr = [Ccr,Awr]

Define transition matrix A
Ak = IM + dt*lin1(xek,ukp)
Update Pk using the Ricatti equation
Pk = ricatti(Ak,Pkprev,C,R,Q)

Store real x
push!(xkrList,xkr)
Store real DAEs
push!(zrList,zr)
Store covariance matrices
push!(PkList,Pk)

end
end

end

Have to use hcat to convert Vector{Vector} to Matrix that can be pushed to
an array

xekresult = hcat(xekList...)
xkresult = hcat(xkrList...)
ykresult = hcat(ykList...)
zeresult = hcat(zeList...)
zrresult = hcat(zrList...)
Store all results in a matrix
push!(xekresultsList,xekresult)
push!(xkrresultsList,xkresult)
push!(ykresultsList,ykresult)
push!(zekresultsList,zeresult)
push!(zkrresultsList,zrresult)

end

Plotting of MHE trajectories
Calculate and unpack function can be found in results.jl
Obtain real, measured and estimated states from result matrix
vrr,car,cbr,trr,tjr,ccr = calculateµσ(xkrresultsList)[1]
vrm, trm, tjm = unpackyk(ykresultsList)
vre, cae, cbe, tre,tje,cce = calculateµσ(xekresultsList)[1]

Plotting settings
styles1 = [:solid :dash :dash]
styles2 = [:solid :dash]
colors1 = [:blue :red :green]
colors2 = [:blue :red]
size = [2 2 3]

Perform MHE plotting
xaxis = LinRange(0.0, 1.0, 21)

plot(xaxis, [vrr vre vrm], line=(size,styles1),color=(colors1), title="Reactor
volume Vr", xlabel = "Time [h]",ylabel = "Volume [L]",label=["Real" "
Estimated" "Measured"],legendtitle="State type (MHE)",legend=:right,
tickfontsize=16,guidefontsize=16,titlefontsize=25, legendfontsize=15)

plot(xaxis, [car cae], line=(size,styles2),color=(colors2), title = "
Concentration of A", xlabel = "Time [h]",ylabel = "Concentration [mol/L]",
label=["Real" "Estimated"],legendtitle="State type (MHE)",legend=:right,
tickfontsize=16,guidefontsize=16,titlefontsize=25, legendfontsize=15)

plot(xaxis, [cbr cbe], line=(size,styles2),color=(colors2), title = "
Concentration of B", xlabel = "Time [h]",ylabel = "Concentration [mol/L]",
label=["Real" "Estimated"],legendtitle="State type (MHE)",legend=:right,
tickfontsize=16,guidefontsize=16,titlefontsize=25, legendfontsize=15)

plot(xaxis, [trr tre trm], line=(size,styles1),color=(colors1),title = "Reactor
Temperature Tr", xlabel = "Time [h]",ylabel = "Temperature [K]",label=["
Real" "Estimated" "Measured"],legendtitle="State type (MHE)",legend=:
bottomleft,tickfontsize=16,guidefontsize=16,titlefontsize=25,
legendfontsize=15)

plot(xaxis, [tjr tje tjm], line=(size,styles1),color=(colors1),title = "Jacket
Temperature Tj", xlabel = "Time [h]",ylabel = "Temperature [K]" ,label=["
Real" "Estimated" "Measured"],legendtitle="State type (MHE)",legend=:right,
tickfontsize=16,guidefontsize=16,titlefontsize=25, legendfontsize=15)

81

plot(xaxis, [ccr cce],line=(size,styles2),color=(colors2), title = "
Concentration of C", xlabel = "Time [h]",ylabel = "Concentration [mol/L]",
label=["Real" "Estimated"],legendtitle="State type MHE",legend=:bottomright
,tickfontsize=16,guidefontsize=16,titlefontsize=25, legendfontsize=15)� �

.8 Code for obtaining final comparative results:
results.jl

� �
include("resultsKalman.jl")
include("resultsMHE.jl")

Define required functions:
Calculate means and standard deviation for every state over simulation based

off the results matrix
function calculateµσ(results::Array{Array{Float64,2}})

Define required lists

For extracing data
vrresults = Array{Array{Float64,1}}(undef,0)
caresults = Array{Array{Float64,1}}(undef,0)
cbresults = Array{Array{Float64,1}}(undef,0)
trresults = Array{Array{Float64,1}}(undef,0)
tjresults = Array{Array{Float64,1}}(undef,0)
ccresults = Array{Array{Float64,1}}(undef,0)

For calculating means
vrmeanList = Array{Float64,1}(undef,0)
cameanList = Array{Float64,1}(undef,0)
cbmeanList = Array{Float64,1}(undef,0)
trmeanList = Array{Float64,1}(undef,0)
tjmeanList = Array{Float64,1}(undef,0)
ccmeanList = Array{Float64,1}(undef,0)

For calculating standard deviation
stdvrList = Array{Float64,1}(undef,0)
stdcaList = Array{Float64,1}(undef,0)
stdcbList = Array{Float64,1}(undef,0)
stdtrList = Array{Float64,1}(undef,0)
stdtjList = Array{Float64,1}(undef,0)
stdccList = Array{Float64,1}(undef,0)

Extract data
for i in 1:length(results)

vrseed = Array{Float64,1}(undef,0)
caseed = Array{Float64,1}(undef,0)
cbseed = Array{Float64,1}(undef,0)
trseed = Array{Float64,1}(undef,0)
tjseed = Array{Float64,1}(undef,0)
ccseed = Array{Float64,1}(undef,0)
for j in 1:length(results[i][1,:])

push!(vrseed,results[i][1,j])
push!(caseed,results[i][2,j])
push!(cbseed,results[i][3,j])
push!(trseed,results[i][4,j])
push!(tjseed,results[i][5,j])

end
push!(vrresults,vrseed)
push!(caresults,caseed)
push!(cbresults,cbseed)
push!(trresults,trseed)
push!(tjresults,tjseed)
ccseed = (Ca0.*Vr0.+Cc0.*Vr0.-(caseed.*vrseed))./(vrseed)

82

push!(ccresults,ccseed)
end

Easier to sum rows than columns apparently
vrresults = hcat(vrresults...)
caresults = hcat(caresults...)
cbresults = hcat(cbresults...)
trresults = hcat(trresults...)
tjresults = hcat(tjresults...)
ccresults = hcat(ccresults...)

for i in 1:21
Calculate means for every point
vrsum = sum(vrresults[i,:])
casum = sum(caresults[i,:])
cbsum = sum(cbresults[i,:])
trsum = sum(trresults[i,:])
tjsum = sum(tjresults[i,:])
ccsum = sum(ccresults[i,:])
vrmean = vrsum/length(vrresults[1,:])
camean = casum/length(caresults[1,:])
cbmean = cbsum/length(cbresults[1,:])
trmean = trsum/length(trresults[1,:])
tjmean = tjsum/length(tjresults[1,:])
ccmean = ccsum/length(ccresults[1,:])

With the mean, ccalculate std for every point
push!(vrmeanList,vrmean)
push!(cameanList,camean)
push!(cbmeanList,cbmean)
push!(trmeanList,trmean)
push!(tjmeanList,tjmean)
push!(ccmeanList,ccmean)

stdvr = stdm(vrresults[i,:],vrmeanList[i])
stdca = stdm(caresults[i,:],cameanList[i])
stdcb = stdm(cbresults[i,:],cbmeanList[i])
stdtr = stdm(trresults[i,:],trmeanList[i])
stdtj = stdm(tjresults[i,:],tjmeanList[i])
stdcc = stdm(ccresults[i,:],ccmeanList[i])

Store calculated standard deviations
push!(stdvrList,stdvr)
push!(stdcaList,stdca)
push!(stdcbList,stdcb)
push!(stdtrList,stdtr)
push!(stdtjList,stdtj)
push!(stdccList,stdcc)

end
return [[vrmeanList,cameanList,cbmeanList,trmeanList,tjmeanList, ccmeanList]

,[stdvrList,stdcaList,stdcbList,stdtrList,stdtjList,stdccList]]
end

Calculate upper deviation
function calculateupper(mean::Array{Float64,1},std::Array{Float64,1})

return mean+(2*std)
end

Calculate lower deviation
function calculatelower(mean::Array{Float64,1},std::Array{Float64,1})

return mean-(2*std)
end

Unpack result matrix to obtain mean measured trajectories
function unpackyk(results::Array{Array{Float64,2}})

Define required lists
For extracing data
vrresults = Array{Array{Float64,1}}(undef,0)
trresults = Array{Array{Float64,1}}(undef,0)
tjresults = Array{Array{Float64,1}}(undef,0)

For calculating means
vrmeanList = Array{Float64,1}(undef,0)

83

cameanList = Array{Float64,1}(undef,0)
cbmeanList = Array{Float64,1}(undef,0)
trmeanList = Array{Float64,1}(undef,0)
tjmeanList = Array{Float64,1}(undef,0)

Extract data
for i in 1:length(results)

vrseed = Array{Float64,1}(undef,0)
trseed = Array{Float64,1}(undef,0)
tjseed = Array{Float64,1}(undef,0)
for j in 1:length(results[i][1,:])

push!(vrseed,results[i][1,j])
push!(trseed,results[i][2,j])
push!(tjseed,results[i][3,j])

end
push!(vrresults,vrseed)
push!(trresults,trseed)
push!(tjresults,tjseed)

end

Easier to sum rows than columns apparently
vrresults = hcat(vrresults...)
trresults = hcat(trresults...)
tjresults = hcat(tjresults...)

for i in 1:21
Calculate means for every point
vrsum = sum(vrresults[i,:])
trsum = sum(trresults[i,:])
tjsum = sum(tjresults[i,:])
vrmean = vrsum/length(vrresults[1,:])
trmean = trsum/length(trresults[1,:])
tjmean = tjsum/length(tjresults[1,:])

With the mean, ccalculate std for every point
push!(vrmeanList,vrmean)
push!(trmeanList,trmean)
push!(tjmeanList,tjmean)

end
return [vrmeanList,trmeanList,tjmeanList]

end

MHE
Extract means and standard deviations of the real states from the result

matrix
vrmeans,cameans,cbmeans,trmeans,tjmeans,ccmeans = calculateµσ(xkrresultsList)[1]
stdvr,stdca,stdcb,stdtr,stdtj,stdcc = calculateµσ(xkrresultsList)[2]

Define upper deviations
vru = calculateupper(vrmeans,stdvr)
vrl = calculatelower(vrmeans,stdvr)
cau = calculateupper(cameans,stdca)
cal = calculatelower(cameans,stdca)
cbu = calculateupper(cbmeans,stdcb)
cbl = calculatelower(cbmeans,stdcb)
tru = calculateupper(trmeans,stdtr)
trl = calculatelower(trmeans,stdtr)
tju = calculateupper(tjmeans,stdtj)
tjl = calculatelower(tjmeans,stdtj)
ccu = calculateupper(ccmeans,stdcc)
ccl = calculatelower(ccmeans,stdcc)

Define midpoints(mean value) and vertical deviation around midpoint
midvr = (vrmeans)
wvr = (vrl .- vru) ./ 2
midca = (cameans)
wca = (cal .- cau) ./ 2
midcb = (cbmeans)
wcb = (cbl .- cbu) ./ 2
midtr = (trmeans)
wtr = (trl .- tru) ./ 2
midtj = (tjmeans)
wtj = (tjl .- tju) ./ 2

84

midcc = (ccmeans)
wcc = (ccl .- ccu) ./ 2

EKF
Extract means and standard deviations of the real states from the result

matrix
kvrmeans,kcameans,kcbmeans,ktrmeans,ktjmeans,kccmeans = calculateµσ(

kxkrresultsList)[1]
kstdvr,kstdca,kstdcb,kstdtr,kstdtj,kstdcc = calculateµσ(kxkrresultsList)[2]

kvru = calculateupper(kvrmeans,kstdvr)
kvrl = calculatelower(kvrmeans,kstdvr)
kcau = calculateupper(kcameans,kstdca)
kcal = calculatelower(kcameans,kstdca)
kcbu = calculateupper(kcbmeans,kstdcb)
kcbl = calculatelower(kcbmeans,kstdcb)
ktru = calculateupper(ktrmeans,kstdtr)
ktrl = calculatelower(ktrmeans,kstdtr)
ktju = calculateupper(ktjmeans,kstdtj)
ktjl = calculatelower(ktjmeans,kstdtj)
kccu = calculateupper(kccmeans,kstdcc)
kccl = calculatelower(kccmeans,kstdcc)

kmidvr = (kvrmeans)
kwvr = (kvrl .- kvru) ./ 2
kmidca = (kcameans)
kwca = (kcal .- kcau) ./ 2
kmidcb = (kcbmeans)
kwcb = (kcbl .- kcbu) ./ 2
kmidtr = (ktrmeans)
kwtr = (ktrl .- ktru) ./ 2
kmidtj = (ktjmeans)
kwtj = (ktjl .- ktju) ./ 2
kmidcc = (kccmeans)
kwcc = (kccl .- kccu) ./ 2

Define x axis
xaxis = LinRange(0.0, 1.0, 21)

Perform plotting for comparative study
plot(xaxis, [midvr kmidvr], ribbon = [wvr kwvr] , fillalpha = [0.65 0.35], c = [

2 6], lw = [4 4], label = ["MHE" "EKF"],title="Reactor volume Vr", xlabel =
"Time [h]",ylabel = "Volume [L]",legendtitle="State Estimator",legend=:
bottomright, tickfontsize=16,guidefontsize=16,titlefontsize=25,
legendfontsize=10)

plot(xaxis, [midca kmidca], ribbon = [wca kwca] , fillalpha = [0.65 0.35], c = [
2 6], lw = [4 4], label = ["MHE" "EKF"],title = "Concentration of A",
xlabel = "Time [h]",ylabel = "Concentration [mol/L]",legendtitle="State
Estimator",legend=:bottomleft,tickfontsize=16,guidefontsize=16,
titlefontsize=25, legendfontsize=15)

plot(xaxis, [midcb kmidcb], ribbon = [wcb kwcb] , fillalpha = [0.65 0.35], c = [
2 6], lw = [4 4], label = ["MHE" "EKF"],title = "Concentration of B",
xlabel = "Time [h]",ylabel = "Concentration [mol/L]",legendtitle="State
Estimator",legend=:bottomright,tickfontsize=16,guidefontsize=16,
titlefontsize=25, legendfontsize=10)

plot(xaxis, [midtr kmidtr], ribbon = [wtr kwtr] , fillalpha = [0.65 0.35], c = [
2 6], lw = [4 4], label = ["MHE" "EKF"],title = "Reactor Temperature Tr",
xlabel = "Time [h]",ylabel = "Temperature [K]",legendtitle="State Estimator
",legend=:bottomleft,tickfontsize=16,guidefontsize=16,titlefontsize=25,
legendfontpointsize=10)

plot(xaxis, [midtj kmidtj], ribbon = [wtj kwtj] , fillalpha = [0.65 0.35], c = [
2 6], lw = [4 4], label = ["MHE" "EKF"],title = "Jacket Temperature Tj",
xlabel = "Time [h]",ylabel = "Temperature [K]",legendtitle="State Estimator
",legend=:bottomleft,tickfontsize=16,guidefontsize=16,titlefontsize=25,
legendfontsize=15)

plot(xaxis, [midcc kmidcc], ribbon = [wcc kwcc] , fillalpha = [0.65 0.35], c = [
2 6], lw = [4 4], label = ["MHE" "EKF"],title = "Concentration of C",
xlabel = "Time [h]",ylabel = "Concentration [mol/L]",legendtitle="State
Estimator",legend=:topleft,tickfontsize=16,guidefontsize=16,titlefontsize=
25, legendfontsize=15)� �

85

	Preface
	Abstract
	Sammendrag
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Nomenclature
	Introduction
	Background
	Literature review
	Scope of project

	Background
	Nonlinear Model Predictive Control
	Process Description
	Dynamic model
	Constraints and cost function
	Presence of process and measurement noise
	Previous work and thesis motive

	Methodology
	State Estimation
	Extended Kalman Filter
	Moving Horizon Estimator

	Results and Discussion
	Comparative analysis on overall performance
	Case studies
	Significance of length of estimation window
	Significance of NMPC prediction length
	Significance of amount of seeds
	Significance of initial guess
	Significance of standard deviation of generated noise
	Significance of regularisation terms
	Overall thoughts from case studies

	Conclusion
	Conclusion

	Further work
	Further work

	References
	Appendices:
	A - Orthogonal collocation
	B - Code
	Plant Model: Plant.jl
	Nonlinear Model Predictive Controller (NMPC): NMPC.jl
	Orthogonal collocation: colMatrix.jl
	Functions for EKF: Kalmanfunctions.jl
	Functions for MHE: MHEfunctions.jl
	Code for obtaining EKF results: resultsEKF.jl
	Code for obtaining MHE results: resultsMHE.jl
	Code for obtaining final comparative results: results.jl

