
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Karoline Lillevestre Langli

Sentiment Analysis of Customer
Emails Using BERT

Master’s thesis in Computer Science
Supervisor: Jon Atle Gulla
Co-supervisor: Benjamin Kille
June 2023

Karoline Lillevestre Langli

Sentiment Analysis of Customer Emails
Using BERT

Master’s thesis in Computer Science
Supervisor: Jon Atle Gulla
Co-supervisor: Benjamin Kille
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

In recent years, language models have become popular, and they are currently used
to solve various natural language processing tasks. Many companies have stored large
quantities of unstructured text that is still not being automatically processed. There-
fore, this thesis examines if language models can automatically process customer emails
sent to Sparebank 1 SMN.

This thesis utilizes four BERT models, namely NB-BERT, NorBERT, mBERT, and
DistilmBERT, to perform sentiment analysis on Norwegian text. The BERT models
were also compared to baseline models using TF-IDF combined with SVM, logistic re-
gression, or K-nearest neighbor. Two datasets were used: the publicly available NoReC
dataset containing reviews and a dataset of customer emails provided by Sparebank
1 SMN. Active learning was performed on the emails to create sentiment labels. This
worked to some extent, but there is still room for improvement.

The models were evaluated using the F1-score and precision of the negative class and by
examining the calculated confusion matrices. NB-BERT achieved the highest score on
the NoReC dataset, and NorBERT did best on the emails. The baseline outperformed
mBERT and DistilmBERT on the NoReC dataset and mBERT, DistilmBERT, and
NB-BERT on the email dataset. Additionally, it was shown that the predictions were
notably slower with the BERT models compared to the baseline.

The code written during this thesis is available on Github1.

1https://github.com/Karolill/master thesis/tree/main

i

https://github.com/Karolill/master_thesis/tree/main

ii

Sammendrag

I løpet av de siste årene har spr̊akmodeller blitt veldig populære, og de brukes for
øyeblikket til å løse ulike oppgaver innen naturlig spr̊akprosessering (NLP). Mange
selskap har store mengder ustrukturert tekst lagret som fortsatt ikke blir prosessert
automatisk. Derfor undersøker denne oppgaven om spr̊akmodeller kan brukes for å
automatisk prosessere eposter fra kunder sendt til Sparebank 1 SMN.

Oppgaven bruker de fire BERT-modellene NB-BERT, NorBERT, mBERT og Dis-
tilmBERT for å utføre sentimentanalyse av norsk tekst. BERTmodellene ble ogs̊a sam-
menliknet med mindre modeller som brukte TF-IDF etterfulgt av SVM, logistisk re-
gresjon eller KNN. To datasett ble brukt: Det offentlig tilgjengelige datasettet NoReC
best̊aende av anmeldelser, og et datasett med eposter sendt fra kunder til Sparebank
1 SMN. Aktiv læring ble gjennomført for å klassifisere epostene. Dette fungerte til en
viss grad, men det er fortsatt rom for forbedring.

Modellene ble evaluert ved bruk av F1-scoren og presisjonen oppn̊add p̊a den negative
klassen, og ved å se p̊a de genererte forvirringsmatrisene. NB-BERT var den beste
modellen p̊a NoReC datasettet, mens NorBERT gjorde det best p̊a epostene. Modellen
som brukte TF-IDF oppn̊adde høyere score enn mBERT og DistilmBERT p̊a NoReC
datasettet, og mBERT, DistilmBERT og NB-BERT p̊a epostene. I tillegg til dette ble
det vist at prediksjon gjennomføres mye raskere av modellen som brukte TF-IDF enn
ved bruk av BERT.

Koden skrevet i denne masteroppgaven er tilgjengelig p̊a Github2.

2https://github.com/Karolill/master thesis/tree/main

iii

https://github.com/Karolill/master_thesis/tree/main

iv

Preface

This master’s thesis concludes the work performed during the 2023 spring semester
in the course TDT4900 - Computer Science, Master’s Thesis. The work has been
carried out at the Department of Computer Science (IDI) at the Norwegian University
of Science and Technology. This thesis has been written in collaboration with the
Norwegian Research Center for AI Innovation (NorwAI) and Sparebank 1 SMN.

The thesis builds on a project from the previous semester in the course TDT4501 -
Computer Science, Specialization Project. Continuing in the same field meant less
time had to be spent on the literature review, and more effort could be put into the
experiments. Specifically, Sections 2.8 to 2.10 and 2.12 to 2.14 are based on the report
written in TDT4501.

First, I would like to thank my supervisor Benjamin Kille who has greatly helped with
this thesis by answering questions, participating in weekly meetings, and providing
feedback on this paper. I am also grateful for the help from Stian Fagerli Arntsen at
Sparebank 1 SMN, who also attended the weekly meetings, came with valuable insight
into the business side of the project, and created and provided access to the necessary
data. Also, thanks to my main supervisor Jon Atle Gulla.

Finally, I want to thank my friends and family for supporting and helping me through-
out the five years of my studies. This period of my life would not have been the same
without you.

v

vi

Table of Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 2

1.3 Approach . 2

1.4 Limitations . 2

1.5 Outline . 3

2 Background Theory 5

2.1 Classification vs. Regression . 5

2.2 Logistic Regression . 6

2.3 K-Nearest Neighbor . 6

2.4 Neural Networks . 7

2.5 Support Vector Machine . 8

2.6 Train, Validation, and Test Datasets 9

2.7 Hyper-Parameter Optimization . 10

2.8 Evaluation . 10

2.9 Sentiment Analysis . 12

2.10 Text Representations . 13

2.10.1 Text Preprocessing . 13

2.10.2 Bag-of-Words - Frequency Vector 13

2.10.3 TF-IDF . 14

2.10.4 WordPiece Model . 15

2.11 Language Models . 15

vii

2.12 Recurrent Neural Networks . 16

2.13 Transformers . 17

2.13.1 Attention . 17

2.13.2 The Transformer Architecture 19

2.13.3 BERT . 20

2.13.4 Multilingual BERT . 22

2.13.5 NB-BERT . 23

2.13.6 NorBERT . 23

2.13.7 DistilBERT . 23

2.13.8 Strengths and Weaknesses of Transformer-Based Language Models 24

2.14 Methods for Handling Missing Labels 24

2.14.1 Transfer Learning . 24

2.14.2 Active Learning . 25

3 Related Work 27

3.1 TF-IDF for Sentiment Analysis . 27

3.2 BERT for Sentiment Analysis . 28

3.2.1 BERT for Sentiment Analysis in Norwegian 28

3.2.2 BERT for Sentiment Analysis in Finance 29

3.2.3 Distilled Models . 30

3.3 Label Generation . 30

3.3.1 Transfer Learning . 30

3.3.2 Active Learning . 31

4 Data 33

4.1 The NoReC Dataset . 33

4.2 The SMN Dataset . 35

5 Method 39

5.1 Tools and Libraries . 39

5.2 Preprocessing . 40

5.2.1 The NoReC Dataset . 41

5.2.2 The SMN Dataset . 41

5.3 Research Question 2 - Active Learning 42

5.4 Research Question 3 - Language Models 43

viii

5.4.1 Baseline Models . 43

5.4.2 BERT Models . 46

5.4.3 Qualitative Evaluation of the Model’s Utility 49

6 Results 51

6.1 Research Question 2 - Active Learning 51

6.2 Research Question 3 - Language Models 51

6.2.1 NoReC Dataset . 51

6.2.2 SMN Dataset . 57

6.2.3 Qualitative Evaluation of the Model’s Utility 60

7 Discussion 61

7.1 State-of-the-Art Techniques for Sentiment Analysis in Norwegian 61

7.2 Active Learning for Customer Emails 62

7.3 Comparison of Models for Sentiment Analysis 63

7.3.1 Comparison of the Transformer-Based Models 63

7.3.2 Transformer-Based Models vs. Previously Used Methods 65

7.3.3 What Model is the Best? . 65

7.4 Challenges . 66

8 Conclusion and Future Work 69

8.1 Conclusion . 69

8.2 Future Work . 70

8.2.1 Improving the Active Learning Process 70

8.2.2 Testing More Model Versions 71

8.2.3 Reducing Errors from Preprocessing 71

8.2.4 Creating a Larger Dataset . 71

8.2.5 Sentiment Analysis from a Business Perspective 72

Bibliography 73

A Example Description 81

B NoReCtrain full vs. NoReCtrain no neutral 83

C Results on NoReCval by the BERT Models 85

C.1 NB-BERT . 86

ix

C.2 NorBERT . 88

C.3 mBERT . 90

C.4 DistilmBERT . 92

x

List of Figures

2.1 Logistic regression. 6

2.2 An illustration of how a KNN model classifies examples. 7

2.3 A neural network architecture. 8

2.4 An illustration of how an SVM solves classification tasks. 9

2.5 Illustration of an example confusion matrix. 12

2.6 An example of BoW. 14

2.7 An example of TF-IDF. 15

2.8 Bigram model. 16

2.9 Illustration of an RNN. 17

2.10 An example of self-attention. 18

2.11 The transformer architecture. 19

2.12 The BERT architecture as explained in [17]. 21

2.13 An example of the input embeddings sent as input to the BERT model. 21

2.14 An illustration of the AL workflow. 25

4.1 The distribution of scores in the original NoReC datasets. 34

4.2 The distribution of original scores in the balanced NoReC training data-
sets. 35

4.3 Word cloud of the customer emails in the SMN dataset. 36

4.4 A visualization of the label distribution in the three SMN datasets. . . 37

5.1 The preprocessing steps performed on the SMN dataset. 41

5.2 The general architecture of the baseline models. 44

xi

5.3 The normalization process for the baseline models, including an example. 44

5.4 The workflow to create and find the best BERT model for SA. 46

5.5 Architecture of the BERT model for one input text. 46

6.1 Baselines’ confusion matrices on NoReCtest. 53

6.2 Results from hyper-parameter tuning of the BERT models. 54

6.3 The BERT models’ confusion matrices from predictions on NoReCtest. . 56

6.4 The baseline models’ confusion matrices after making predictions on
SMNtest. 57

6.5 The score of all four BERT models on SMNval after each epoch. 58

6.6 The BERT models’ confusion matrices from predictions on SMNtest. . . 60

C.1 Results on the validation dataset from the fine-tuning of NB-BERT. . . 87

C.2 Results on the validation dataset from the fine-tuning of NorBERT. . . 89

C.3 Results on the validation dataset from the fine-tuning of mBERT. . . . 91

C.4 Results on the validation dataset from the fine-tuning of mBERT. . . . 93

xii

List of Tables

3.1 Results found by Avinash and Sivasankar [41] on five different datasets. 28

4.1 Overview of the NoReC datasets used for this task. 34

4.2 An overview of the columns from the Sparebank 1 SMN dataset used
during this project. 35

4.3 Overview of the SMN datasets used for this task. 37

5.1 The Python libraries used for the experiments. 40

5.2 All ML models trained and the hyper-parameters tuned during the grid
search for the best baseline models. 45

5.3 The best model parameters found through a grid search for the best
baseline models. 45

5.4 Model specifications. 47

5.5 Overview of which BERT models and parameter values were tested
during the grid search. 48

6.1 Results by the six possible baseline models tested on NoReCtest. 52

6.2 Results by the BERT models tested on NoReCtest. 55

6.3 Time spent on prediction of the NoReCtest dataset. 55

6.4 Results by the three possible baseline models tested on SMNtest. 58

6.5 Results by the BERT models tested on SMNtest. 59

6.6 Time spent on prediction of the SMNtest dataset. 59

B.1 Results when training two similar NorBERT models on NoReCtrain full

or NoReCtrain no neutral. 83

xiii

xiv

Abbreviations

AI Artificial Intelligence
AL Active Learning
BERT Bidirectional Encoder Representations from Transformers
BoW Bag-of-Words
CNN Convolutional Neural Network
KNN K-Nearest Neighbor
ML Machine Learning
NLP Natural Language Processing
NN Neural Network
RNN Recurrent Neural Network
SA Sentiment Analysis
SOTA State-of-the-Art
SVM Support Vector Machine
TF-IDF Term Frequency - Inverse Document Frequency
TL Transfer Learning

xv

xvi

Chapter 1

Introduction

This section starts by discussing the motivation behind this thesis. Then, three re-
search questions are defined, and the approach utilized to answer them will be briefly
mentioned. Afterward, limitations that influenced the experiments that were conduc-
ted to answer the research questions are stated. Finally, an outline of this thesis will
be provided.

1.1 Motivation

In the wake of the recent artificial intelligence (AI) boom, which follows the release
of ChatGPT, it is compelling to investigate some of these recently created language
models’ use cases in the industry. Many companies have large amounts of unstructured
textual data stored on their servers, which is not used for automatic processing [62].
Creating AI programs capable of structuring this data and extracting critical inform-
ation can ease the workload for employees and improve customer relations. Since the
creation of the transformer architecture, language models have improved significantly,
and they can be used for a variety of natural language processing (NLP) tasks. One
such task which has been thoroughly explored and improved throughout the years is
sentiment analysis (SA), where the goal is to determine the sentiment on a scale from
negative to positive [43]. Therefore, it is interesting to examine if this technology can
improve customer relationships.

This thesis was written in collaboration with the Norwegian bank Sparebank 1 SMN.
The bank daily receives numerous emails and other written messages from customers.
However, there is currently limited automatic processing of these texts, which presents
an opportunity for AI to enhance the efficiency of handling these emails. With this
in mind, this thesis focused on SA as a step toward automating email processing.
Additionally, since the emails were originally unlabeled, meaning they were not marked
as positive or negative, examining whether AI methods can generate labels is also a
rewarding experiment.

1

1.2 Research Questions

This thesis aims to gain insight into the use of SA on customer emails sent to Spare-
bank 1 SMN. To achieve this goal, three research questions guided the experiments
performed. They are defined as:

RQ1 What are the state-of-the-art techniques for sentiment analysis in Norwe-
gian?

RQ2 Can active learning be used to create sentiment labels on customer emails?
RQ3 How do different transformer-based language models compare to each

other when used to solve sentiment analysis tasks? And how do
transformer-based language models compare to previously used methods
for sentiment analysis?

This thesis contributes to the research field by labeling a new dataset using active
learning (AL) and performing SA on the labeled dataset. Due to privacy reasons, the
dataset itself can not be published, but the results will be presented and discussed.

1.3 Approach

To answer the research questions, previous work in the field was examined, and exper-
iments were performed. RQ1 was answered through a literature study, which looked
into recent developments in the field of NLP, and took special care to examine find-
ings related to SA of Norwegian texts. Some of the literature was read last semester
as a part of the course TDT4501. RQ2 and RQ3 were answered by conducting ex-
periments. RQ2 was answered by performing AL and receiving feedback from bank
employees evaluating the labels’ accuracy. The AL process was completed before con-
ducting the experiment related to RQ3, as it required the emails to be labeled. To
answer RQ3 two datasets, the dataset of emails provided by Sparebank 1 SMN and
a publicly available dataset named NoReC, were used. It was decided to use the
NoReC dataset to create reproducible results, as the emails are not publicly available
and, therefore, can not be used to reproduce the experiments. Four transformer-based
models and a baseline were compared on the two datasets to create the final results,
which were later discussed.

1.4 Limitations

The experiments were limited by the time available for the thesis and the access to
computing resources. The email dataset provided by the bank was only accessible
through a virtual machine, which did not have a GPU. Therefore, computations on
that dataset were quite time-consuming. RQ1 was limited by the available time
and will therefore only focus on four transformer-based language models, namely the

2

Norwegian models NB-BERT and NorBERT and the multilingual models mBERT and
DistilmBERT. Other multilingual models that could perform well on the datasets also
exist but will not be discussed. RQ2 was answered by performing a complete round
of AL. However, further improvements beyond the first results could not be researched
due to time limitations. RQ3 is limited to testing the same four transformer-based
models mentioned in RQ1, in addition to TF-IDF combined with support vector
machines, logistic regression, and K-nearest neighbor as baselines. Recurrent neural
networks for SA will also be mentioned, but it was not used for the experiments. As
the experiments conducted to answer RQ3 required a lot of computing power, they
were limited by the lack of access to a GPU as well as the available time.

1.5 Outline

This thesis is divided into eight chapters as follows:

Section 1 - Introduction presents the thesis. It states the motivation for the project
and defines three research questions that guided the experiments conducted.

Section 2 - Background Theory introduces theoretical concepts necessary to un-
derstand the remainder of the thesis. It presents general machine learning (ML) topics
before explaining task-specific theory.

Section 3 - Related Work summarizes previous work in the field relevant to the task.
Previous findings are helpful when interpreting the results and trying to understand
what caused unexpected results.

Section 4 - Data gives an overview of the two datasets used for the experiments: the
NoReC dataset and the email dataset provided by Sarebank 1 SMN.

Section 5 - Method describes the experimental method used to answer RQ2 and
RQ3. It explains technical aspects such as the Python libraries and objects used and
the steps to perform the experiments.

Section 6 - Results presents the experimental results achieved and highlights the
most important findings.

Section 7 - Discussion will discuss the results presented in Section 6. It examines if
the expected results were achieved and tries to understand why that was not the case
for all results.

Section 8 - Conclusion and Future Work summarizes the findings related to each
research question and states future research that helps to improve the performance
and understand the problem.

3

4

Chapter 2

Background Theory

This section will introduce the theory needed to understand the experiments conducted
for this thesis. First Sections 2.1 to 2.8 will present some basic concepts, methods, and
models used in many ML applications today before the remaining part of this section
will dive into the task-specific theory related to this thesis. Specifically, SA will be
introduced, and much focus will be put on text vectorization techniques and language
models, as these are necessary to perform SA.

2.1 Classification vs. Regression

Supervised ML tasks can be divided into two categories, namely classification and
regression. Kuhn and Johnson [33] discuss both in more detail, but a quick overview
of the differences is given here. Classification is an ML task aiming to create a model
that predicts one of a limited set of possible answers or classes. For example, a task
could be to look at an image of either oranges or apples and attempt to classify it
as the correct fruit. Another example, using text, would be looking at a text and
predicting whether it is positive or negative. These examples are binary classification
problems, as there are only two classes. More classes could also exist, for instance, if
an image of a handwritten digit is provided, and the task is to predict what digit the
image shows. Then there are ten possible solutions. In most cases, classification tasks
will give you one or more continuous answers, representing the probability of a given
solution being correct. The class with the highest probability is then the final answer.
The answer to what class the example belongs to is also called a label, so a labeled
example already has a class, while it is currently unknown what class an unlabeled
example belongs to.

Regression problems are tasks where the final solution is any number in a continuous
range. For example, if the task is to predict house prices, the model could take in
information about the house size, location, and so on, and the answer is any positive
number. Although the following sections will focus on ML models for classification,
many of the same techniques can also be adapted to solve regression tasks.

5

2.2 Logistic Regression

Logistic regression is a technique for classifying data points. An illustration of this can
be seen in Figure 2.1. You start with example data points from the two classes, where
you want one class to have the value y = 0 and the other to have the value y = 1. Then
it is attempted to fit an S-shaped logistic function f to these data points to maximize
the likelihood of the data given f . After f is found, the class of a new data point x
can be predicted by looking at its y-value f(x), which states the probability of the
data point belonging to class 1. If this value is lower than 0.5, the data point probably
belongs to class 0, otherwise to class 1. In some instances, adjusting the threshold for
choosing a given class might be desirable. For example, the threshold could be set so
that the model would have to be 80% certain that a data point belonged to class 1 to
classify it as such. The information in this section is based on [54, p. 725-727], where
more detailed information about the topic can also be found.

0

0.5

1

0.1
0.2
0.3
0.4

0.6
0.7
0.8
0.9

Figure 2.1: Illustration of logistic regression for a binary classification problem. The
horizontal line at y = 0.5 is the threshold between classes, and the gray square is a new
data point with a 40% chance of belonging to class 1 and a 60% chance of belonging
to class 0. Class 1 is the pink crosses, and class 0 is the yellow circles.

2.3 K-Nearest Neighbor

As explained by Russell and Norvig [54, p. 738] K-nearest neighbor (KNN) is a method
where the k nearest training data points are used to classify new examples. For
example, in Figure 2.2, the five closest training examples are used for classification
since k = 5. In that case, the new example would be classified as a yellow circle which
is the majority class of the neighbors. Different distance measures can be used to find
the closest training data points, such as the Euclidean or Manhattan distance.

6

Figure 2.2: An illustration of how a KNN model with k = 5 classifies examples in a
binary classification problem. The gray square is the example that should be classified
based on its five neighbors, and in this case, it would be classified as a yellow circle.
The large circle shows the square’s “neighborhood”.

2.4 Neural Networks

A neural network (NN) is an architecture often used in ML. Figure 2.3 illustrates what
a NN can look like. It has three main parts, an input layer, one or more hidden layers,
and an output layer. All layers consist of multiple nodes (illustrated as circles in the
image), also called neurons. These nodes are connected through edges, sometimes
called connections (the lines in the image). Each edge has a weight that decides how
important the information being sent across that connection is, and the weight is
illustrated through different thickness of the edges in the figure.

The input layer consists of continuous inputs, representing different things in different
tasks. In image tasks, the inputs are numbers representing the pixels in the image. If
you try to predict the electricity consumption in the next hour, the input might be
numbers representing the consumption in the past few hours. Or, if one is working on
texts, the input could be numbers representing the text. These inputs are sent to the
hidden layer.

When input n, noted as in, is sent to node m in the hidden layer, it is multiplied with
a weight wn,m. The input to the hidden layer can then be written as in · wn,m. Inside
the hidden nodes, all inputs are summed and passed through an activation function,
such as ReLU= max(0, x). This means that the output from a node in the hidden
layer is ReLU

(∑
n in · wn,m

)
. If the output from all nodes in the previous layer, here

the input layer, is sent to all nodes in the current layer, this is called a fully connected
layer. This is the case for the hidden layer in Figure 2.3. It is also possible to have
multiple hidden layers, in which case the output from the first hidden layer is sent to
the nodes in the next hidden layer. This is called a deep NN.

7

The outputs from the final hidden layer are sent to the output layer, which typically
has as many nodes as there are classes. Also here, each node sums the inputs and
passes that through an activation function, for example a sigmoid function, that gives
an answer between 0 and 1. Afterward, a softmax transformation is performed on the
outputs to make the numbers add up to one. At this point, the output indicates the
probability of a given class being correct, and the most probable class is chosen as the
answer. The information presented in this section is found in [33, p. 333-337] and [54,
p. 727-737], and interested readers can find more in-depth information there as well.

i0

i1

i2

i3

o1

Input layer Hidden layer Output layer

o0

o2

Figure 2.3: A neural network architecture. There are three layer types: one input layer,
one or more hidden layers (here: one), and one output layer. There are connections
between the nodes in each layer, whose weight is shown through the line’s thickness.

2.5 Support Vector Machine

Support vector machine (SVM) is an ML technique that tries to separate the classes
using few data points, making it an effective method. Suykens et al. [61] thoroughly
explains the subject, but this section will merely outline the basics. An illustration of
a simple binary classification task can be seen in Figure 2.4. A line called a decision
boundary, has been drawn between the two classes. Two dashed lines have been drawn
equally far from and parallel to the decision boundary. The distance between these
lines is called the margin, and it is decided by how far away from the decision boundary
you can set the dashed lines without crossing a data point. The optimization problem
solved by an SVM is where to place the decision boundary to maximize the margin.
The data points that affect the decision boundary are called support vectors, which are
the points closest to the boundary. These points also decide the model’s runtime [22].

8

When the optimal decision boundary is found, new data points can be classified by
checking on what side of the decision boundary the data point lies. Decision boundaries
do not have to be linear, they can allow for misclassification, and SVMs can increase
the dimensionality of the data points to make the decision boundaries easier to set.
However, these topics will not be described further in this section.

Margin

Figure 2.4: An illustration of how an SVM solves a binary classification task. The two
points with a thicker edge are support vectors that limit the size of the margin.

2.6 Train, Validation, and Test Datasets

A training dataset is needed to create good ML models such as the ones mentioned
above, as the models learn by looking at examples of input-output pairs. For instance,
NNs learn by using examples in the training dataset to update the weights [54, p. 733],
while SVMs learn by using the training examples to set the decision boundary [33,
p. 344]. It is common to use 80% of the labeled examples for training, in which
case the remaining 20% are used as a test dataset. After training is finished, the
models make predictions on the test dataset, and it is then possible to estimate the
performance of the models. The training dataset can not be used for this purpose,
as models will typically overfit to it while training, meaning that they learn how to
perform almost perfectly on the training dataset, but what the models learn does not
generalize well to new unseen data [33, p. 62].

In addition to the two datasets mentioned, it can be good to have a validation dataset.
As Russel and Norvig [54, p. 708-709] explain: If the test dataset is used to tune
hyper-parameters to create the best model, the developers are peeking at the test
dataset during development and will not receive an objective evaluation of which model
performs best on unseen data. To get an objective evaluation, the model must be
tested on a dataset that has not, in any way, affected the model training. If three
datasets are used, the training dataset is used for training, the validation dataset for
hyper-parameter optimization, and the test dataset to get a final objective evaluation.

9

In some cases, these datasets are imbalanced, meaning that one class naturally occurs
significantly more often than the others [21, p. 19]. The most common class is called
the majority class, and the other is the minority class. If the data is imbalanced, you
also want the validation and test datasets to be equally imbalanced, as that would
show the model’s actual performance on new data. If the available dataset is large,
randomly splitting the data into a train, validation, and test dataset will typically
achieve this. On the other hand, as illustrated in Fernández et al. [21, p. 20-22], feeding
the model an imbalanced training dataset will make it less capable of classifying the
minority class. Since creating a model that performs equally well on all classes is
usually desirable, this issue should be dealt with. Two possible ways to mitigate the
problem are undersampling, where some examples from the majority class are removed
from the training dataset, and oversampling, where some examples from the minority
class are replicated or new examples are made from the original ones [21, p. 80].

2.7 Hyper-Parameter Optimization

ML models have one or more hyper-parameters that can be tuned. Unlike the weights
in a NN or the decision boundary in an SVM, the hyper-parameters are not altered by
training. These values are set before training starts and affect how the model learns.
Examples of such hyper-parameters are the number of neurons in a NN, which will
affect how complicated functions the model can learn, and the number of neighbors
used to make decisions in a KNN model. Since these hyper-parameters affect the final
results, they should be tuned to achieve as high scores as possible.

Bergstra and Bengio [5] explain two methods for hyper-parameter optimization, namely
grid search and random search. During a grid search, a set of values for each hyper-
parameter is defined, and all possible combinations of these parameters are used to
train the model before testing it on a validation dataset. During random search, the
hyper-parameters to try are randomly chosen from a given range of continuous values,
or a list of discrete values if there is only a limited set of options for a parameter value.
The randomly chosen combinations are used to train a model before it is tested on the
validation dataset. Finally, the score achieved can be used to choose the best model.

2.8 Evaluation

After performing a classification task, evaluating the performance to compare different
methods is important. Christen [14, p. 166-168] describes the much-used evaluation
metrics accuracy, precision, F1-score, and recall, which will be explained here.

10

Before defining the evaluation metrics, some other concepts must first be explained.
In binary classification, one of the classes can be called the positive class and the other
the negative class. If you have more than two classes, the currently interesting class
can be the positive one, and all the other classes combined make up the negative one.
The following numbers can be found using these two classes:

• True positive (TP): The number of correctly classified positive examples.

• True negative (TN): The number of correctly classified negative examples.

• False positive (FP): The number of examples classified as positive, despite being
negative.

• False negative (FN): The number of examples classified as negative, despite being
positive.

The simplest evaluation metric is accuracy, which can be calculated using the following
equation:

Accuracy =
Number of correct predictions

Number of total predictions
=

TP + TN

TP + TN + FP + FN
. (2.1)

This means that accuracy is the fraction of correctly classified examples. However,
accuracy is not a good metric if the test dataset is imbalanced. For example, an
accuracy of 0.95 can be achieved by a model that always predicts class A if 95% of
the examples belong to class A and 5% belong to class B. Despite its high accuracy,
it is not a good model since it never predicts class B. Because of this, other metrics
are often preferred when the test dataset is imbalanced, such as precision, recall, and
F1-score.

Precision measures how many of the positive predictions were correctly said to be so
and is defined as:

Precision =
TP

TP + FP
. (2.2)

On the other hand, recall calculates what fraction of the actual positive class was
correctly classified, and the equation for this score is:

Recall =
TP

TP + FN
. (2.3)

F1-score is the harmonic mean of the precision and recall, which is given by:

F1 = 2 · Precision · Recall
Precision + Recall

. (2.4)

These metrics will output a number in the range [0, 1] where 0 is the worst possible score
and 1 is the best. They can also be provided as a number between 0 and 100 instead.
Each of these metrics can be computed for only one class, meaning that you compute
the F1-score of the negative class and the F1-score of the positive class separately,
or an average can be found. Two different averages often used are micro and macro
average. Macro average will first calculate each class’s metric (for example recall) and

11

average the results. In contrast, micro average calculates the total number of TP, FN,
and FP for all classes before using those numbers to calculate the metric [59].

Sometimes it can be interesting to visualize the results from classification tasks for
easier comparison. One possible tool is a confusion matrix. This is illustrated in
Figure 2.5a for a binary classification problem. Each row represents an actual class,
and each column a predicted class [23, p. 91]. The top left corner shows the TN, the
top right corner the FP, the bottom left corner the FN, and the bottom right corner
the TP. The classification is better the higher the numbers are along the diagonal,
which is illustrated by a darker color in the figure. If the matrix is normalized along
the rows, as seen in Figure 2.5b, you can read the fraction of correctly and incorrectly
classified negative examples in the top row and the misclassified and correctly classified
positive examples in the bottom row. This can be helpful if one is interested in the
predictive power of a given class, especially if the dataset is imbalanced.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

88 211

215 486

100

150

200

250

300

350

400

450

(a) Example of a confusion matrix.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.29 0.71

0.31 0.69

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

(b) A normalized confusion matrix.

Figure 2.5: Illustration of an example confusion matrix.

2.9 Sentiment Analysis

As explained by Tsytsarau and Palpanas [63], SA is an NLP task where the goal is to
predict a document’s sentiment. A document is defined as a piece of text in natural
language with one or more topics. A topic can, for example, be an event or a person
in the document. A sentiment can then be said to be an opinion or attitude directed
at the topic. Often the document’s sentiment is decided by scoring the sentiment
polarity, which corresponds to evaluating how positive or negative the text is. SA
can be considered a binary classification problem where the two possible outputs are
positive or negative. In some cases, it is also possible to include additional classes, such
as neutral. Sentiment predictions can also be made on a numerical scale, in which case
the regression problem can be transformed into a classification problem by mapping
certain intervals to distinct labels.

12

SA can be done on different levels, and Medhat et al. [42] explain document-level,
sentence-level, and aspect-level SA. Document-level SA aims to predict the overall
sentiment polarity of the document. This can be challenging as one text might con-
tain multiple opposing sentiments, making it hard to classify as positive or negative.
Sentence-level SA is similar to document-level SA. It finds the sentiment of a sentence,
which can be treated as a small document. Sentences can also contain conflicting
sentiments, although not as often as longer documents. When performing aspect-level
SA, sometimes called aspect-based SA, a document’s aspects/topics are first identified
before the sentiment directed at each aspect is predicted. This task is more complex
since all aspects must first be correctly identified, and the sentiment polarity must
then be found for each aspect [26].

2.10 Text Representations

When solving NLP tasks, which is any task involving text written in natural language,
ML models face one challenge: They take numbers or vectors as input, not words.
Therefore documents must be vectorized before being passed into an ML model, mean-
ing that each word in the document must somehow be turned into a number in a vector
or possibly a full vector. This section will first present how the text should be trans-
formed before being vectorized. Afterward, three different methods for vectorization
will be explained.

2.10.1 Text Preprocessing

It is often desirable to normalize a text before vectorization [4, p. 72]. During normaliz-
ation, one might remove punctuation and make all letters lowercase. Other techniques
used for normalization include stop word removal, stemming, and lemmatization. Stop
word removal removes words such as “the”, “or”, and “an”, as they occur in many
texts but have little importance. Stemming uses rules to turn a string into a smal-
ler substring, for example, by removing the “ly”-ending of adverbs. Lemmatization
changes words in a similar manner but uses a dictionary instead of rules. An advantage
of this preprocessing is that the use of vectorization techniques improves the sparsity.
The dimension of the vectors will be smaller because their size depends on the number
of unique words in the corpus (a corpus is the collection of all documents).

2.10.2 Bag-of-Words - Frequency Vector

As explained in Bengfort et al. [4, p. 55-58], the bag-of-words (BoW) technique is a
set of methods that turn documents into vectors in a way that does not maintain the
word order. They start by creating a vector of the same size as the number of unique
words in the corpus, so each index in the vector corresponds to a word. How the
number at a given index is determined varies, but making a vector representing the

13

frequency of each word in the document is a simple possibility. Then, the vector for
one document is created by counting the number of occurrences of each word in the
document and saving that in the corresponding index. An example of this for a corpus
of two documents can be seen in Figure 2.6.

I love the movie
Harry Potter.

Harry Potter is the
best!

Twilight is the
worst movie

1 1 2 1 2 2

lo
vei th
e

m
ov

ie
ha

rry

po
tte

r
1

is

1

be
st

0

tw
ilig

ht

0

w
or

st
Figure 2.6: An example of BoW, where the vector is calculated for the left document.

2.10.3 TF-IDF

Term frequency-inverse document frequency (TF-IDF) is another type of BoW. Beng-
fort et al. [4, p. 62-23] explain that TF-IDF will give a higher value to a word frequently
occurring in the document. However, the value will decrease if many other documents
in the corpus also contain that word. This way, words that are not special for the
document are given less importance when the vector is created. This technique will
be better than the previously explained frequency vector in many situations since it
considers the corpus’ context. For example, suppose book reviews were to be classi-
fied as either positive or negative. Then, words like “author”, “plot”, etc., which will
occur in many reviews regardless of their sentiment, are given a lower value, despite
appearing in the review itself. Figure 2.7 shows an example of using TF-IDF on one
document in a corpus containing two documents. TF-IDF can be defined as:

TF − IDF (t, d) = TF (t, d) · IDF (t) = (1 + log ft,d) · log(1 +
N

nt

) (2.5)

where t is a term/word, d is the document for which the vector is calculated, ft,d
is the term frequency defined as ft,d = number of occurrences of t in d

number of words in d
, N is the number of

documents, and nt is the number of occurrences of t in all documents.

14

0

tw
ilig

ht

w
or

st

I love the movie
Harry Potter.

Harry Potter is the
best!

Twilight is the
worst movie

-0.02 -0.02 0.06 -0.01 0.08 0.08

lo
vei th
e

m
ov

ie

ha
rry

po
tte

r

-0.01

is

-0.02

be
st

0

Figure 2.7: An example of TF-IDF, where the vector is calculated for the left docu-
ment.

2.10.4 WordPiece Model

The wordpiece model is another way to transform documents into a vector. The idea is
that each word in the text is split into wordpieces existing in a limited vocabulary [68].
This way, any word can be turned into numbers, as unknown words are split into smal-
ler pieces. For example, “Today is a lovely day” could be turned into the wordpieces
“To ##day is a love ##ly day”, where ## represents that the wordpiece is not the
beginning of the original word. Here, the word Today did not exist in the vocabulary
and was therefore split into two smaller existing wordpieces. Each wordpiece has a
corresponding value in the dictionary, so an example of the final vector could look like
this: [9438, 24696, 105, 1002, 3390, 1024, 372].

2.11 Language Models

A language model aims to estimate the distribution of words in natural language. This
means that they predict the probability that a sequence of words, such as a document,
is valid [53]. This can be calculated using the following equation:

p(x) =
n∏

i=1

p(wn|w1, ..., wn−1). (2.6)

Here, wi is word i in a sequence x that consists of n words. Radford et al. [53] also
state that language models should be able to adapt to various tasks, meaning that they
must compute p(output|input, task). Language models can also be used to predict the
next word in a sequence by considering possible sequences and choosing the one with
the highest probability.

15

A simple language model is the n-gram model. Bengfort et al. [4, p. 132-143] describes
how this model works. The value n can be any positive integer, and the simplest
models, named unigram models, will use n = 1. In this case, the probability of the
next word is independent of the previous words, so when generating text, the next
word in the sequence is found by choosing wi such that p(wi) is maximized. If n = 2,
it is called a bigram model, and wi is instead chosen to maximize p(wi|wi−1). In
simpler terms, the next word depends on the previous. An illustration of how a sliding
window is used to identify all bigrams in a text is shown in Figure 2.8. This process
counts all bigrams and finds the frequency at which wi follows wi−1. These frequencies
can then be used to calculate the probabilities. It is also possible to use trigrams,
where n = 3, or even higher values of n. However, the models become more complex
as n increases. One problem with n-gram models is their short memory, meaning
that when they perform language modeling tasks, they can only rely on n words at
a given time, which typically does not correspond to the whole text. In recent years
more complex models such as RNNs and transformer-based language models have been
more successful in language modeling tasks, and one of the reasons for this is a longer
memory. The following sections will provide the necessary information about these
models.

The other day I was hiking in the mountains when I saw a mountain lion

The other day I was hiking in the mountains when I saw a mountain lion

The other day I was hiking in the mountains when I saw a mountain lion

The other day I was hiking in the mountains when I saw a mountain lion

Figure 2.8: Illustration of how a bigram model identifies pairs of words.

2.12 Recurrent Neural Networks

A NN where the output at time step t is sent as input to the same network at time
step t + 1 is called a recurrent NN (RNN) [54, p. 729]. Figure 2.9 illustrates what
this process would look like over time. In text analysis, a time step corresponds to
passing one word as input to the network. To perform classification, the output from
the hidden layers is sent to a final output layer which provides the probability of a
text belonging to a given class.

Because NNs use numerical representations, the text must first be vectorized [31]. A
separate vector is created for each word. These vectors are then sent as inputs to
the RNN, and one word is passed as input at each time step. Due to this, all words
in the text can be passed to the network in the original order, no matter the text’s
size. This means that an RNN has a longer memory than n-gram models. Also, the
fact that RNNs take word ordering into account is an improvement over BoW models.
For example, the phrase “not angry” could appear negative if the order was lost,
showing that it is beneficial to keep it. Despite these improvements, RNNs still have
limited long-term memory because they suffer from the vanishing/exploding gradient

16

problem during training [15]. In recent years, other models building on RNNs, such
as LSTM [27] and GRU [13], have been proposed to mitigate this problem. Another
issue with RNNs is that they can not work in parallel, which limits the model’s speed.

ht-1 ht ht+1

xt-1 xt xt+1

ot-1 ot ot+1

ot-1 ot ot+1ot-2

Figure 2.9: Illustration of an RNN where each block corresponds to a time step. The
input, output, and the hidden state at time t is given by xt, ot, and ht respectively.

2.13 Transformers

Vaswani et al. [64] introduced the transformer architecture in 2017. It provided a
new way to solve language modeling tasks previously solved by more complex RNNs
or convolutional NNs (CNNs). Transformers rely only on the attention mechanism,
and by using parallelization, they achieved state-of-the-art (SOTA) results on text
translation with a lower training cost than previously used models. This section starts
by explaining the attention mechanism before describing the transformer architecture.
Afterward, the BERT model and a few variations of it will be detailed.

2.13.1 Attention

Bahdanau et al. [1] proposed the attention mechanism in 2014. Intuitively, attention
lets the model focus more on important words in the input when processing text. Self-
attention was first used in 2016 by Cheng et al. [12]. It is different from attention
because attention learns alignments between decoding states and encoded memories,
but self-attention has memory and attention within an encoder or decoder (more details
will be provided about encoders and decoders in Section 2.13.2). Figure 2.10 shows as
example of self-attention when a model is reading “I would like to eat the ice cream
before it melts”. When the word “it” is being read, much attention is put on the words
“ice” and “cream” because they are strongly related to “it”. The word “to” is less
related to “it”, and is therefore not given as much attention.

17

I would like to eat the ice cream before it melts

I would like to eat the ice cream before it melts

…

I would like to eat the ice cream before it melts

I would like to eat the ice cream before it melts

Figure 2.10: An example of self-attention. The red word is the one currently focused
on, while the purple ones show how strong the memory activation of each previous
word is.

Vaswani et al. [64] introduced the transformer using self-attention. Specifically, scaled
dot-product attention was used, which is calculated using the following equation:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V, (2.7)

where Q, K and V are queries, keys and values respectively. The matrices Q and
K are of dimension dk, and V is a matrix of dimension dv. Figure 2.11e visualizes
this equation. The output from the softmax function can be thought of as a weight
multiplied by V to decide what part of V is the most important.

The paper also proposed using multi-head attention, a technique where h layers, called
heads, of scaled dot-product attention are computed in parallel. Figure 2.11d illus-
trates this. In this architecture, Q, K, and V are linearly projected using different
linear projections for each of the h layers. The original dimension of Q, K, and V
are kept, so scaled dot-product attention can be performed on the output of each of
the h linear projections. This results in h attention matrices, meaning they must be
concatenated to one matrix that is afterward projected to give the final results. The
following equation summarizes this:

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O, (2.8)

where
headi = Attention(QWQ

i , KWK
i , V W V

i).

WQ
i ,WK

i ,W V
i andWO are the linear projection matrices. The advantage of multi-head

attention is that the model can use the information found in different representation
subspaces at different positions.

18

2.13.2 The Transformer Architecture

Figure 2.11a shows the transformer architecture created by Vaswani et al. [64]. En-
coding is executed on the right side of the figure, and decoding is on the left. An
input embedding, which is a vectorized version of the input, is created and added to a
positional encoding that says something about the position of the words. This ensures
that the final embedding will not be the same if the same word appears in different
places in a sentence.

Encoder

Encoder

N

Positional
encoding

Input
embedding

Inputs

Decoder

Decoder

Positional
encoding

Output
embedding

Outputs (shifted right)

N

Linear

Softmax

Output
probabilities

(a) The transformer architecture.

Multi-head
attention

Add & Norm

Feed forward

Add & Norm

(b) The encoder.

Masked multi-
head attention

Add & Norm

Multi-head
attention

Add & Norm

Feed forward

Add & Norm

(c) The decoder.

LinearLinear LinearLinear LinearLinear

Scaled dot-roduct attention
Scaled dot-product attention h

Concat

Linear

V K Q

(d) A multi-head attention block.

MatMul

Scale

Mask (opt.)

SoftMax

MatMul

Q K V

(e) Scaled dot-
product attention.

Figure 2.11: The transformer architecture and its parts as presented in [64].

19

In Figure 2.11b, the encoder architecture can be seen. Multi-head attention is per-
formed on the encoder’s input xe as explained in Section 2.13.1. The result is ad-
ded to xe and normalized, meaning that the first “Add & Norm”-block’s output is
ye = LayerNorm(xe+MultiHead(xe)). This is passed to a fully connected feed-forward
network before the network’s output is added to its input and normalized. In other
words, an encoder’s output is given by LayerNorm(ye + FeedForward(ye)). A trans-
former consists of N encoders where one encoder’s output is sent as an input to the
next. The final encoder’s output is passed as input to all decoders.

The decoder architecture can be seen in Figure 2.11c. The first decoder receives a
sum of the previous output values (as an embedding) and a positional encoding. From
now on, this input is called xd. First, masked multi-head attention, which means
that the future words in the sequence are hidden from the decoder, is performed on
xd before addition and normalization. yd = LayerNorm(xd +MultiHead(xd)) is then
the output from the first “Add & Norm”-block. Afterward, yd is passed as Q to
the next multi-head attention layer, while the final encoder provides V and K. The
input to the decoder’s final layer, the feed-forward network, is then given by zd =
LayerNorm(yd+MultiHead(yd, K, V)). Finally, the output from one decoder, which is
passed as input to the next decoder, can be denoted LayerNorm(zd+FeedForward(zd)).

After the final decoder, the output is passed through a linear layer before a softmax
layer is used to output a final vector. This vector’s dimension corresponds to the
number of possible classes, and each index contains the probability of the corresponding
class being the correct answer. The final answer will be the class with the highest
probability of being correct.

2.13.3 BERT

Devlin et al. [17] proposed a language model named BERT (Bidirectional Encoder
Representations from Transformers) in 2018. This model is illustrated in Figure 2.12.
It consists of encoders and can be used for various NLP tasks. Two models of differ-
ent sizes were created: BERTbase had 12 encoders and 110 million parameters, while
BERTlarge consisted of 24 encoders and 340 million parameters. The model takes one
or two texts as input, with a maximum of 512 tokens. When BERT is being discussed,
this paper will refer to one of these input texts as a sentence. A sequence refers to
the entire input, which is either one or two sentences. For example, when perform-
ing question answering, sentence one could be a question, and sentence two a context
containing the answer.

Before a sequence is passed to BERT, special tokens are added to it, and the sequence
is tokenized and embedded. Two special tokens are used. The first is a classification
token noted [CLS], which is added to the beginning of the sequence, and the second
token [SEP] is added to the end of each sentence. Afterward, wordpiece tokenization
is performed, which results in a vector of numbers as explained in Section 2.10.4. This
vector is added to a position embedding, similar to that described in Section 2.13.2, and
a segment embedding, a vector added to distinguish the two sentences. An example
of BERT’s input embedding is shown in Figure 2.13.

20

Classification

Encoder

Encoder

Encoder

EW 0 Ew 1 Ew 2 Ew 3 Ew n-3 Ew n-2 Ew n-1 EW n

Figure 2.12: The BERT architecture as explained in [17]. The input is embeddings
as shown in Figure 2.13. The main part of the BERT model is the 12 or 24 encoder
layers that result in a set of output vectors. The first vector (pink) corresponds to
the input [CLS] token and is used for classification tasks, while the other (turquoise)
vectors are used for token-level tasks.

E[CLS] Eis Eto E##day Ea Elove E##ly Eday? E[SEP] Etoday Eis Egreat E[SEP]

EA EA EA EA EA EA EA EA EA EB EB EB EB

Ew 0 Ew 1 Ew 2 Ew 3 Ew 4 Ew 5 Ew 6 Ew 7 Ew 8 Ew 9 Ew 10 Ew 11 Ew 12

[CLS] is to ##day a love ##ly day? [SEP] today is great [SEP]

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

Figure 2.13: An example of the input embeddings sent as input to the BERT model.
On top is the individual tokens before they are embedded. The top pink rectangle is
the word embeddings, the middle pink is the sentence embeddings, and the bottom
pink rectangle is the position embeddings. The green rectangle is the final embedding
used by BERT.

21

BERT performs training in two stages. First, pre-training is done on a large corpus of
texts, giving the model a good general understanding of language. During this stage,
two techniques are used. The first is masked learning, where some of the words in the
input are hidden before being passed into the model, which then attempts to predict
them. This makes the model bidirectional because it uses words both to the right
and left of the masked word to predict it. The second technique for pre-training is
next sentence prediction. The input sequence is given two sentences, and the model
attempts to predict if the second sentence follows the first one. The data used by
Devlin et al. for pre-training BERT was the BooksCorpus [73] and English Wikipedia.

After pre-training, labeled data is used to fine-tune the model for a specific task, called
a downstream task. This process is relatively quick compared to the pre-training.
Input-output pairs are handed to the model, and the model parameters are fine-tuned
end-to-end by comparing the output generated by the model to the actual values.
The input and output format depends on the task, but at most two sentences can
be provided as input. For a question answering task, where the first sentence is the
question and the second is a text containing the answer, an example sequence can look
like this:

[CLS] How many Harry Potter stories exist? [SEP] Throughout the years, J.K.
Rowling has written many books about the Harry Potter universe, and the main
series consists of seven books. [SEP]

Document-level SA is another task that would have a different input. Then, the first
sentence would be the document to classify, and the second sentence would be empty.
An example looks like this:

[CLS] Although I really like paint-and-sip, last week’s event was just not that
joyful. [SEP]

After these sequences are embedded, they are passed through the BERT model.

BERT outputs one vector for each input token. These can be used to make the fi-
nal predictions. How predictions are performed depends on the task. A token-level
task, such as question answering, is solved by sending the necessary BERT outputs
into separate task-specific output layers, but the exact architecture is task-dependent.
Classification tasks like document level SA are solved by sending the output corres-
ponding to the [CLS] token into a final output layer. This layer performs classification.
All of BERT’s output vectors are illustrated in Figure 2.12. After predictions, fine-
tuning is executed by comparing the model’s answers to the correct ones. Based on
this, all parameters in the model are updated.

2.13.4 Multilingual BERT

Devlin et al. [17] also created mBERT, which is a multilingual BERTbase model. It
was pre-trained on texts in 104 languages, two of which were Norwegian Bokmål and
Nynorsk [6]. Wikipedia articles in all of the languages were used to pre-train the
model. Besides the training dataset, mBERT is the same as the original BERTbase

model detailed above.

22

2.13.5 NB-BERT

After the introduction of BERT, it has been shown that BERT models pre-trained on
specific languages or topics achieve higher scores than general BERT models [34], [35],
[37], [60]. One model created for Norwegian is NB-BERT, created by Kummervold et
al. [34] at the National Library of Norway in 2021. They first created a dataset for pre-
training, which they named the Colossal Norwegian Corpus. This dataset contained
texts from books, newspapers, Wikipedia, and more, most of which were in Norwegian
Bokmål and Nynorsk. Kummervold et al. initialized the model with mBERT’s weights
and continued the pre-training using the created corpus. Pre-training was necessary
to adapt the model to Norwegian texts.

2.13.6 NorBERT

Kutuzov et al. [35] also proposed a Norwegian BERT model in 2021 called NorBERT.
Norwegian news and Wikipedia articles in both Bokmål and Nynorsk were used for
pre-training. NorBERT has a larger vocabulary than NB-BERT, meaning that tokens
used by NorBERT better resemble the actual Norwegian words. An example provided
by Kutuzov et al. shows that NB-BERT’s tokenization splits “kvinnefotballen” into “k
##vinne ##fo ##t ##ball ##en”, and NorBERT splits it into “kvinne ##fotball
##en”. The same model size as BERTbase was used.

2.13.7 DistilBERT

Although the BERT models perform well on various NLP tasks, one drawback is their
large size, which causes predictions to be relatively time-consuming, and computations
require a substantial memory capacity. To reduce these issues, Sanh et al. [55] cre-
ated a distilled BERT called DistilBERT in 2020. Knowledge distillation is a process
where a smaller student model, in this case DistilBERT, learns to replicate a teacher
model’s behavior, which in this paper was BERTbase. So instead of simply learning
the correct class label, it tries to give the same probability to example data as the
teacher would. To reduce the model size, DistilBERT removed half of the layers, de-
creasing the size from 12 to 6, and the parameter size from 110 million to 66 million.
The distillation process was performed as part of the pre-training stage of the model,
meaning that DistilBERT is a general language model that can be further fine-tuned
for specific tasks. Sanh et al. also created a multilingual DistilBERT model, which for
the remainder of this paper will be called DistilmBERT.

23

2.13.8 Strengths and Weaknesses of Transformer-Based Lan-
guage Models

One of the benefits of transformer-based language models like BERT is their adaptabil-
ity to various NLP tasks. BERT only requires fine-tuning to learn specific tasks, which
is faster than the pre-training phase [17]. This is advantageous in two ways. First,
learning a new task could be less time-consuming than training a complex RNN or
CNN from scratch, plus parallelization can further reduce the training time. Second,
transformer-based models require fewer labeled training examples, which is beneficial
as real-world data is often unlabeled. Additionally, these models achieve SOTA scores
on multiple tasks, outperforming the previously used methods. Despite these benefits,
it should be noted that pre-training these models is quite energy- and time-consuming,
making it less ideal to pre-train new models from scratch. Furthermore, due to the
millions or billions of parameters, making predictions with these models takes longer
than previously used methods like TF-IDF.

2.14 Methods for Handling Missing Labels

Real-world data is often unlabeled. However, the ML models discussed above require
labeled data to learn the tasks to perform. If the dataset is large, labeling all examples
manually is time-consuming, and other methods might be preferred. Two such meth-
ods are transfer learning (TL) and active learning (AL), which are explained below.

2.14.1 Transfer Learning

If the data is unlabeled, one possible method of labeling is TL. Before discussing TL,
the term domain must be explained. According to Pan and Yang [50], a domain D
is characterized by a feature space X and a probability distribution P (X), meaning
that it can be represented as D = {X , P (X)}. Two domains can be distinct if the
texts are written in different languages or if the content concerns different topics or
themes. When solving an ML task, the common approach is to use labeled data
from the target domain DT to learn how to solve a task T . Tasks can be sentiment
analysis, question answering, or any other ML task. The solution is a function fT ,
which approximates the actual distribution of answers. However, if there is no labeled
data available from DT to learn fT , one could instead attempt to use a source domain
DS to approximate fT . If the source and target domains are similar, it is still possible
to achieve satisfactory results without any labeled data from the target domain. TL
refers to the use of knowledge from one domain to make predictions in another. For
instance, if there is no labeled dataset for sentiment analysis of movie reviews, but
a labeled dataset exists for hotel reviews, TL can be used. Since both domains may
share some words or phrases used to express sentiment, fmovie can be approximated
by training on labeled data from Dhotel.

24

2.14.2 Active Learning

AL is a technique used in ML to save time when creating labeled data, which is
explained by Settles [56]. Instead of labeling the entire dataset manually, this is
only done to a fraction of the examples, and the remaining are labeled by an ML
model. The idea is to train the model on the “best” examples to minimize the number
of training examples needed to achieve a good performance. Figure 2.14 illustrates
the AL process. Initially, a small dataset is labeled and used to train the model.
Then, the trained model automatically predicts the labels of the remaining examples.
A few automatically labeled examples are selected for manual labeling. One way
to choose these samples is through uncertainty sampling, where the examples whose
labels the model was least certain of are selected. In a binary classification task,
this means selecting the examples where the probability of the label is closest to 0.5.
These manually labeled examples can then be added to the set of previously labeled
examples, and the model is trained again. This loop continues until you decide to stop.
At this point, a final prediction will be performed on the data that has not yet been
manually labeled. The method explained here, where the model makes predictions on
all unlabeled data before deciding which examples to label manually, is named pool-
based AL. AL results in a fully labeled dataset, although not all labels will be correct
since many were created using an ML model, not through manual labeling.

Small labeled
dataset

Train model on the
labeled dataset

Make prediciton on the
non-labeled dataset

Choose the "best" N
examples to label

manually

Label the N examples
and save them so they
can be used for training

Final labeled
dataset

Figure 2.14: An illustration of the AL workflow.

25

26

Chapter 3

Related Work

When deciding on which methods to try for the experiments and discussing the results
of those experiments, it will be beneficial to have insight into previous work in the
field to get an idea of possible solutions and challenges. This section will start by
examining previous work on TF-IDF and BERT, before a few papers focusing on TL
and AL will be mentioned.

3.1 TF-IDF for Sentiment Analysis

Before transformers were used for SA, TF-IDF in combination with ML models was
frequently used. In 2019 Avinash and Sivasankar [41] compared TF-IDF and another
vectorization method named Doc2Vec in combination with six different ML models:
logistic regression, SVM using RBF or a linear kernel, KNN, decision tree, and Na-
ive Bayes. As this thesis only uses TF-IDF, the results from Doc2Vec will not be
mentioned. The models were trained and tested on five datasets of reviews for SA.
Table 3.1 summarizes the datasets and the best scores achieved. SVM with an RBF
kernel achieved the highest accuracy on three datasets, and logistic regression did best
on the remaining two.

Experiments have also been conducted on Norwegian SA using TF-IDF. In 2019 Liu et
al. [39] performed SA on NoReC. They tried TF-IDF and two other features, but the
other features will not be mentioned here as they are irrelevant to the thesis. TF-IDF
was combined with Naive Bayes, logistic regression, SVM, and a NN for predictions.
SVM performed the best and achieved the highest area under the ROC curve with
a score of 0.8310. This metric gives a score between 0 and 1, and a higher score is
better. The next best model was logistic regression, which performed slightly worse,
and the NN and Naive Bayes achieved the lowest scores.

27

Table 3.1: Results found by Avinash and Sivasankar [41] on five different datasets. LR
means logistic regression, and the parenthesis behind SVM indicates which kernel was
used.

Dataset Description Best
model

Best
model’s
accuracy

Small movie review data-
set [40]

1500 labeled movie reviews
from IMDb.

LR 83.428

Sentiment labeled sen-
tences data set [32]

2000 reviews were used from
a dataset of reviews from
imdb.com, yelp.com, and
amazon.com.

SVM
(RBF)

82.350

Polarity dataset v2.0 [51] 200 movie reviews were ex-
tracted from the full data-
set.

SVM
(RBF)

98.887

Sentence polarity dataset
v1.0 [52]

10662 labeled sentences
from rottentomatoes.com.

SVM
(RBF)

82.820

Large movie review data-
set [40]

50000 labeled movie reviews
from IMDb.

LR 88.460

3.2 BERT for Sentiment Analysis

Since the creation of BERT, many experiments have been conducted using various
model versions. This section will show some of the results and essential findings from
the experiments. Even though document-level SA is the most relevant task for this
thesis, some examples of more complex types of SA will also be presented, as much of
the research in recent years after the release of BERT has been focused on this, and
one part of those tasks is also sentiment analysis.

3.2.1 BERT for Sentiment Analysis in Norwegian

When Kutuzov et al. [35] created NorBERT, they tested the model on various NLP
tasks, including SA. Both fine-grained SA (which tries to model the fact that sentiment
is directed at entities [48]) and document-level SA were performed. The dataset used
for both tasks was NoReCfine [48]. However, it had to be altered before document-
level SA could be performed. Kutuzov et al. [35] created NoReCsentence, an aggregated
version of NoReCfine where each document consisted of one sentence with only one
polarity. On this dataset, NorBERT achieved a macro F1-score of 77.1. They also
tested NB-BERT on the same dataset and found that using this model resulted in a
higher F1-score of 83.9. In fine-grained SA, the F1-score was calculated for identifying
the sentiment holder, target, etc., and it was found that NorBERT outperformed NB-
BERT on all scores.

28

Kummervold et al. [34] also tested NB-BERT and NorBERT on the NoReCsentence

dataset and got the macro F1-scores 86.4 and 81.7 respectively. There was some
difference in the results, but they both suggest that NB-BERT is a better model for
document-level SA. The differences between [34] and [35]’s results could be due to
having selected different examples for training and testing.

Both Kutuzov et al. [35] and Kummervold et al. [34] tested the performance of mBERT
on NoReCsentence, and it achieved an F1-score of 67.7 and 69.7 respectively. In both
experiments, mBERT performed significantly worse than NB-BERT and NorBERT.
Nonetheless, the scores indicate that the task has to some extent been learned. Ku-
tuzov et al. also tested mBERT on fine-grained SA, where NB-BERT and NorBERT
outperformed mBERT on all F1-scores calculated.

3.2.2 BERT for Sentiment Analysis in Finance

BERT has also been used for SA in finance. Sousa et al. [60] used BERTbase for
SA of stock news gathered from various sources such as the New York Times and
CNBC. Manual data labeling was performed before fine-tuning of BERT could be done.
BERT was compared to multiple ML models, specifically SVM, Naive Bayes, and a
CNN. They tried both BoW and TF-IDF as vectorization methods for Naive Bayes
and SVM. The input to the CNN was word embeddings obtained from fastText [10].
BERT achieved an F1-score of 0.725, outperforming the second-best model, the SVM
combined with BoW, by 0.124 points.

Since research has shown that language models pre-trained on a specific domain per-
form better than general language models [3], [37], Yang et al. [69] created a BERTbase

model pre-trained on financial data named FinBERT. Analyst reports, corporation
reports, and transcripts from conference calls were used for training. Another step
towards creating a more task-specific model was to make a new vocabulary named
FinVocab. They created FinBERT with the original BERT vocabulary, cased and
uncased, and FinBERT with FinVocab, cased and uncased. These four models and
the original BERT model were tested on three financial datasets for SA, and it was
found that all FinBERT models outperformed the original BERT, and the best model
was the uncased FinBERT using FinVocab.

In 2020 Mishev et al. [43] compared multiple methods for SA in finance. Among the
methods tested were TF-IDF and pre-trained transformer-based models. The models
were evaluated on a dataset containing 1093 positive and 1093 negative sentences.
TF-IDF was followed by SVM, a dense layer, or an XGB classifier, and SVM achieved
the highest score with an F1-score of 0.836. Among the transformer-based models,
BERT, FinBERT, BARTlarge [38], and more were tried. All provided better results
than TF-IDF, in the range [0.862, 0.947], and BARTlarge was the best. Some other
scores worth noting are BERTbase cased which scored 0.890, BERTlarge cased with
0.928, and FinBERT with an F1-score of 0.893. The paper also pointed out that
financial data can have a different vocabulary than other data, so models adapted to
this domain will, in many cases, be the best solution.

29

3.2.3 Distilled Models

In recent years distilled language models have been created to save time and computing
resources when performing NLP tasks. This section will present the results from
two papers comparing distilled language models to their larger counterparts. One
paper compared DistilBERT to BERTbase, while the other compared DistilmBERT to
mBERT and a couple of other multilingual models. Although they were tested on
multiple NLP tasks, this section will focus on results on SA tasks, as they are most
relevant for this paper.

When Sanh et al. [55] created DistilBERT, they tested the model on various tasks and
compared it to BERTbase. They first performed a comparison on the GLUE bench-
mark [66], which is a collection of various NLP tasks, one of which is SA. The SA
task uses the SST-2 corpus [58] of movie reviews for evaluation. On this task, Distil-
BERT achieved a score of 91.3%, 1.4% below the larger BERTbase. DistilBERT was
also tested on other downstream tasks, one of which was SA of the IMDb dataset [40].
On that dataset, DistilBERT got an accuracy of 92.82%, 0.64% lower than BERTbase.
Sanh et al. also looked at the inference time on the GLUE task STS-B and found that
DistilBERT was almost 40% faster than BERTbase.

In 2020 Kittask et al. [30] examined the performance of four multilingual language
models on Estonian NLP tasks. The models used were mBERT, DistilmBERT, XLM-
100 [36] and XLM-RoBERTa [16]. The Estonian Valence corpus [49], which contains
4088 labeled paragraphs from the newspaper Postimees Daily, was used for SA. Two
different sequence lengths of 128 and 512 tokens were tried. When the sequence length
was 128, DistilmBERT had an accuracy of 65.95%, and mBERT had an accuracy of
70.23%. When the sequence length was increased to 512, they scored 66.95% and
69.52%, respectively. This means that mBERT outperformed the distilled model in
both cases. Kittask et al. also found that both XLM models achieved higher accuracies
than mBERT.

3.3 Label Generation

This section will examine some previous work for generating labels. Since the experi-
ments performed during this thesis utilized both TL and AL, work involving both of
these techniques will be mentioned.

3.3.1 Transfer Learning

In 2019 Myagmar et al. [45] looked into the performance of two transformer-based
models for SA on the Amazon review dataset [9], one of which was BERT. The dataset
contains reviews in five categories, and the models were trained on one category and
performed prediction on all the others. This resulted in 20 cross-domain SA tasks.

30

BERT was compared to several baseline models that were previously shown to give
good results, which were based on CNNs, adversarial networks, or attention networks.
With an average accuracy of 92.61%, BERT outperformed the baseline models on all
tasks. However, it is worth noting that the other transformer-based model tested here,
a model trained on English text named XLNet [70], outperformed BERT on all tasks,
showing that there have been further advancements in the field of language models
after the creation of BERT. In 2020 Du et al. [19] also used BERT for cross-domain
SA on the Amazon review dataset. They tested the original BERT and compared it
to four other BERT models whose cross-domain capabilities they had tried to improve
using new techniques. They found that the changes did increase the score when the
models were tested, showing that simply training BERT on one domain and testing it
in another will not provide optimal results.

Although TL could provide satisfactory results, certain issues might hinder perform-
ance. Al-Moslmi et al. [44] performed a literature review focused on previous work in
the field of cross-domain SA. It pointed to some critical challenges one might face when
performing TL with insufficient training in the target domain. Specifically, four prob-
lems were mentioned. The first one, sparsity, occurs when essential words or phrases
often occur in the target domain but rarely in the source domain. Secondly, polysemy
is the issue where the meaning of a word might change from one domain to another.
Feature divergence is the third problem, where the features a model learns for a source
domain do not perform well on the target domain. Finally, polarity divergence is the
term for words with one sentiment in the source domain and another in the target
domain.

3.3.2 Active Learning

AL has been used successfully in the past. Hoi et al. [28] proposed a method for pool-
based AL where multiple examples were chosen for manual labeling at every iteration.
They pointed out that by selecting more than one example at each iteration, several
similar and possibly identical examples might be chosen, causing some of the training
to be redundant. To mitigate this problem they used the Fisher information matrix,
which represents the uncertainty of the classification model. Their goal was to choose
examples that minimized the Fisher information, and this method was combined with
a logistic regression model. The method was compared to two other models, logistic
regression and SVM, that chose the next examples to label based on the uncertainty
of the current label. They were tested on three text classification datasets with a total
of 27 classes, and the proposed model outperformed the others on 23 classes.

The issue pointed out by Hoi et al. [28], that many emails chosen for manual labeling
might be similar, has also been examined by others. Farquhar et al. [20] mentions that
when AL is performed, only some of the examples are labeled manually, and these
examples might not match the distribution of the original dataset. As explained in
the paper, this leads to a sampling bias which causes an error when optimizing the
model during training, as the training objective is wrong. This is also related to the
issue of overfitting. Since only a fraction of the data is used to train the model before

31

labeling, the model might not be able to generalize what it learns to the rest of the
dataset because it might look too different. Chen et al. [11] and Wang et al. [67]
both considered the issue of overfitting in their work. Chen et al. found that some
examples hurt the performance of the AL process and suggested that those examples
caused the model to overfit more than others. Wang et al. pointed to overfitting being
an even more significant problem if there are initially very few labeled samples, and
they looked into using a pseudo-validation dataset to mitigate this problem.

Another possible issue with AL is the cold-start problem. When performing AL,
we often start with no labeled data and no appropriate model to help decide which
examples to label first. Zhang et al. [72] summarized some possible methods previously
used. Random sampling is the most common, and given a large dataset, it should keep
the original label distribution. A second way to get a better starting point is by using
TL and starting by using a model trained on another dataset for labeling.

Yuan et al. [71] focuses on AL with transformer-based models. They specify that
with today’s transformers, training on thousands of examples is not desirable because
it requires too much computational resources. They highlight the findings of Guo
et al. [25] that confidence scores (the output probabilities) in today’s NNs are not
particularly precise. Therefore, instead of using the normal uncertainty from a model,
Yuan et al. utilized the masked language modeling loss from a pre-trained BERTmodel
to mitigate the cold-start problem. That loss is used to help choose the examples to
label first. Yuan et al. also take into consideration that the examples chosen should be
representative of the whole dataset, and uses clustering to avoid labeling too similar
example texts.

32

Chapter 4

Data

For the experiments conducted here, two datasets were used. The first dataset is
the NoReC dataset created by Velldal et al. [65] in 2018, whereas the second dataset
consists of emails from customers sent to Sparebank 1 SMN. This section will provide
an overview of the original datasets and the final datasets after preprocessing was
performed. The preprocessing will be further outlined in Section 5.

4.1 The NoReC Dataset

The NoReC dataset [65] consists of Norwegian reviews, each with a score from 1–6.
It is publicly available and can be downloaded from Github1. [65] and [46] explain
that two versions of the NoReC dataset have been made, the first containing 35,000
reviews and the second containing an additional 8425 reviews. Therefore, the current
dataset contains more than 43,000 reviews, each belonging to one of the following
categories: screen, music, literature, products, games, restaurants, stage, sports, or
miscellaneous. When the dataset was downloaded, it was already split into three
datasets: one training, validation, and test dataset. The distribution of scores in these
three datasets can be seen in Figure 4.1.

To match the purpose of this thesis, the scores were converted into 0 for negative
and 1 for positive or neutral reviews. For the rest of this paper, positive and neutral
examples belong to the same class, called the positive class. Four NoReC datasets were
created: Two training datasets, one validation dataset, and a test dataset, all of which
have been summarized in Table 4.1. Since Sparebank 1 SMN was primarily interested
in finding negative texts, and the purpose of the NoReC dataset was to get insight into
a similar problem with an openly available dataset, reviews labeled as 3 or 4 were set
as 1 for positive. These reviews will probably contain positive and negative sentiments
and can therefore be considered neutral. As the NoReC dataset contains relatively few
reviews with a score of 1 or 2, the datasets were originally highly imbalanced. Since
training on an imbalanced dataset could make the models bad at detecting the minority

1https://github.com/ltgoslo/norec

33

https://github.com/ltgoslo/norec

class, in this case the negative class, it was decided that the training dataset should
be balanced. Therefore 2000 negative and 2000 positive examples were extracted
from the training dataset and combined into the final training dataset NoReCtrain full.
An additional balanced training dataset named NoReCtrain no neutral, where the neutral
reviews were dropped, was also created. The distribution of scores in the balanced
training datasets can be seen in Figure 4.2. The validation and test datasets remained
unchanged and imbalanced to reflect the real-world data better.

1 2 3 4 5 6
Score

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge

Distribution of Scores in the NoReC Dataset
Train
Validation
Test

Figure 4.1: Bar chart illustrating the distribution of scores in the three NoReC datasets
before they were converted to 0 or 1.

Table 4.1: Overview of the NoReC datasets used for this task. The columns named
#1 and #0 show the number of positive and negative examples in the datasets.

Dataset name #1 #0 Description
NoReCtrain full 2000 2000 Label 0 corresponds to 1 or 2 in the original

dataset, and 1 indicates a score of 3–6. This
dataset is for training language models.

NoReCtrain no neutral 2000 2000 Label 0 corresponds to 1 or 2 in the original
dataset, while 1 indicates a score of 5 or 6.
The “neutral” reviews were dropped. This
dataset is for training language models.

NoReCval 4084 276 This dataset is used for hyper-parameter tun-
ing of the BERT models.

NoReCtest 4081 270 This dataset is used for testing the model after
training is performed and will be used to de-
cide which model performs best.

34

1 2 3 4 5 6
Label

0

10

20

30

40

Pe
rc

en
ta

ge

(a) NoReCtrain full

1 2 3 4 5 6
Label

0

10

20

30

40

Pe
rc

en
ta

ge

(b) NoReCtrain no neutral

Figure 4.2: Bar charts illustrating the distribution of scores before turning all scores
to 0 or 1 in the two balanced NoReC training datasets.

4.2 The SMN Dataset

A dataset of emails sent from customers to Sparebank 1 SMN was provided for this
thesis. Due to privacy reasons, the dataset is not publicly available. However, this
section will explain the dataset’s features relevant to the assignment, show example
data, and highlight some important statistics regarding the final dataset.

Here, only the columns relevant to this task will be explained. Table 4.2 gives a
quick summary of the three columns used. Two columns were used to filter irrelevant
emails from the dataset during preprocessing, namely sender domain and subject.
sender domain is one of a limited list of common email domains used by customers
(such as @gmail.com and @hotmail.com). When the dataset was provided, all emails
from other domains had already been removed, ensuring that, for example, emails from
other employees at the bank were not added to the dataset. How these two columns
were utilized for further preprocessing will be explained in more detail in Section 5.2.2.

Table 4.2: An overview of the columns from the Sparebank 1 SMN dataset used during
this project.

Column Description
description Contains the raw HTML email sent to Sparebank 1 SMN.
sender domain States the sender’s email domain, such as @gmail.com. It is

used to separate customer emails from forms being filled out by
customers.

subject The subject of the email. If a form was filled out, the customer
could choose between a set of predefined subjects, such as “kort
og betaling” (card and payment). Used during preprocessing.

35

The most interesting column was the description, which contains the text to classify.
The descriptions were initially formatted as HTML, and an example description can
be seen in Appendix A. As HTML is not useful for the model, the emails themselves
had to be extracted from the description. One description could also contain multiple
emails going back and forth between the customer and an employee at the bank.
However, neither the HTML format nor the extracted texts offered a consistent way
to separate the emails. Nonetheless, the first email from each description had to be
extracted since it was from a customer, and how this problem was solved is explained
in Section 5.2.2. Some additional preprocessing is also detailed, resulting in a dataset
consisting of single emails sent from customers to the bank. For the remainder of
this thesis, an email is a single email of pure text extracted from the HTML, while
a description is the raw HTML. Since the emails are not publicly available, example
emails can not be provided. However, a word cloud consisting of the most common
words in the emails, after stop word removal and stemming, is shown in Figure 4.3 to
give an idea of common topics. It should also be mentioned that some emails were
written in English.

Figure 4.3: Word cloud of the customer emails in the SMN dataset.

Two other things worth noting about the description column are that the content is
all uppercase letters and that, due to privacy concerns, some information was removed
before the data was provided. Specifically, names were replaced with [PERSON],
email addresses with [EPOST], and all numbers with more than three digits were
replaced with [SIFFER]. [PERSON] has, in some cases, also replaced words other than
names, such as HILSEN (BEST REGARDS), and which words have been replaced is
unpredictable. Section 7.4 will discuss how this might have affected the results.

To perform SA on the dataset, labels are needed for training and evaluation. These
labels were not present in the dataset, and had to be created. The process used to
label the dataset for SA is detailed in Section 5.3, but some statistics about the final
dataset after labeling, from now on called the SMN dataset, is presented here. The
dataset contains 12490 emails, of which 400 were used for label generation. 2191 of the

36

remaining 12090 examples were labeled as negative, and the other 9899 examples were
labeled positive. The SMN dataset was then split into a training, validation, and test
dataset from now on named SMNtrain, SMNval, and SMNtest, respectively. 80% of the
emails were extracted for training, and many positive emails in the training dataset
were removed to balance it. The remaining 20% of emails was again split in two, and
80% was used for SMNtest and the rest for SMNval. These datasets were stratified,
meaning the proportion of positive and negative emails is the same in both datasets.
All datasets are summarized in Table 4.3 and Figure 4.4.

Table 4.3: Overview of the SMN datasets used for this task. The columns named #1
and #0 show the number of positive and negative examples in the datasets.

Dataset name #1 #0 Description
SMNtrain 1753 1753 This dataset is for training language mod-

els, and because the dataset originally con-
tained more positive than negative emails, it
has been balanced.

SMNval 396 88 Dataset used to evaluate at which epoch the
BERT models perform best.

SMNtest 1584 350 Dataset used for the final evaluation of which
model is the best.

Train Validation Test
0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

50.0

18.2 18.1

50.0

81.8 81.9
Percentage of Each Label in the SMN Datasets

Negative
Positive

Figure 4.4: A visualization of how many percent of the emails in SMNtrain, SMNval,
and SMNtest belongs to the positive and the negative class.

37

38

Chapter 5

Method

In Section 1.2, the research questions were defined as follows:

RQ1 What are the state-of-the-art techniques for sentiment analysis in Norwe-
gian?

RQ2 Can active learning be used to create sentiment labels on customer emails?
RQ3 How do different transformer-based language models compare to each

other when used to solve sentiment analysis tasks? And how do
transformer-based language models compare to previously used methods
for sentiment analysis?

This section will explain the method and experiments used to answer RQ2 and RQ3.
RQ1 will not be mentioned since it was researched through a literature study, not
experimentation. First, the tools and libraries used for this project will be presented.
Afterward, the preprocessing of the datasets will be explained, followed by detailed
descriptions of how the experiments related to RQ2 and RQ3 were executed. The
code written for this thesis can be found on Github1.

5.1 Tools and Libraries

Python was used for these experiments, as it provides many packages for working with
ML. Hugging Face [29] is a resource that was also used much. It provides datasets and
language models for NLP tasks, including the BERT models used during this project.
The website also shows code examples for how to work with the libraries and resources
they provide. An overview of all libraries used during this project is given in Table 5.1.

1https://github.com/Karolill/master thesis/tree/main
2https://beautiful-soup-4.readthedocs.io/en/latest/
3https://huggingface.co/docs/datasets/index
4https://huggingface.co/docs/evaluate/index
5https://matplotlib.org/
6https://www.nltk.org/

39

https://github.com/Karolill/master_thesis/tree/main
https://beautiful-soup-4.readthedocs.io/en/latest/
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/evaluate/index
https://matplotlib.org/
https://www.nltk.org/

Table 5.1: The Python libraries used for the experiments. General information about
the library and specific use cases for this project are provided.

Library Information
BeautifulSoup2 For extracting text from HTML. Here as part of the prepro-

cessing.
datasets3 Hugging Face library used for loading datasets from the Hug-

ging Face hub or local files, and creating a format that can be
used when training BERT models.

evaluate4 Hugging Face library that provides multiple evaluation metrics
such as F1-score, precision and more.

matplotlib5 This is for visualizing data and was used to plot results.
nltk6 Natural language toolkit is a library that has methods for

working with natural language and supports Norwegian. It
was used for preprocessing of text.

numpy7 For working with arrays and computation.
pandas8 A python library that often uses DataFrames for storing and

working with datasets.
re9 Library for using regular expressions. Here used for prepro-

cessing of data.
scikit-learn10 A library for ML tasks. It is used here to create various

baseline models, parameter tuning, and calculate test scores.
It is also used to create confusion matrices. It is often called
sklearn.

torch11 Pytorch is necessary for the transformers library to work and
to run code on GPU.

transformers12 Hugging Face library for loading and training pre-trained mod-
els such as BERT. It is also used for tokenizing data.

5.2 Preprocessing

Before the datasets could be used for SA, preprocessing had to be executed. Since the
datasets were provided in different formats, the process differed for them. This section
will first explain the preprocessing performed on the NoReC dataset before the same
is done for the SMN dataset.

7https://numpy.org/
8https://pandas.pydata.org/
9https://docs.python.org/3/library/re.html

10https://scikit-learn.org/stable/
11https://pytorch.org/
12https://huggingface.co/docs/transformers/index

40

https://numpy.org/
https://pandas.pydata.org/
https://docs.python.org/3/library/re.html
https://scikit-learn.org/stable/
https://pytorch.org/
https://huggingface.co/docs/transformers/index

5.2.1 The NoReC Dataset

As mentioned in Section 4.1, the NoReC dataset was fetched from Github. The texts
did not require any preprocessing, but they had to be matched to a score saved in
a separate JSON file containing metadata. When this was done, the scores were
converted to either positive (1) or negative (0), as explained in Section 4.1. The texts
and corresponding sentiment could then be converted to a pandas DataFrame, which
was saved in a CSV file to make it easily accessible for other parts of the code.

5.2.2 The SMN Dataset

The description column in the SMN dataset that would be used for SA contained emails
in an HTML format which could not be passed to the language models. Therefore,
preprocessing was performed, and Figure 5.1 summarizes the steps.

Remove
unwanted emails

from an online
form with a

specific subject

Remove all HTML

Remove
previously sent
emails in the

description, keep
only the most

recent

If the email was
from a form,

remove the parts
that were not free

text

Remove emails
with fewer than 30

characters and
duplicates

Figure 5.1: The preprocessing steps performed on the SMN dataset.

The first step was to remove possibly unwanted rows. After looking at the data, it was
found that if the email was created through an online form, which could be seen by
the sender domain column, and contained a specific subject, the description mainly
consisted of answers to yes/no or multiple-choice questions, and little to no free text.
Therefore these rows were dropped from the dataset.

The next step was to extract the emails from the HTML in the descriptions. This
was quickly done using BeautifulSoup. As mentioned in Section 4.2, one description
might contain multiple emails in a conversation, so they had to be split. Since neither
the HTML nor the text within it seemed to have a consistent way to separate the
emails, a few phrases in the text were chosen to split on. These were typical phrases
found between separate emails, such as “FROM:”, “SUBJECT:”, “SENT FROM MY
IPHONE”, or similar phrases in both Norwegian and English. Only the first email in
each description was kept since it was the new email, and older ones could exist in a
different row in the dataset.

Still, some emails contained unnecessary text, which was removed. First phrases such
as “MED VENNLIG HILSEN” (best regards) were removed as they say little about the
sentiment and are ofte written due to habit. Second, if the text “SKJEMATITTEL”
was present in the email, it was a form containing some but not only free text. In this
case, the free text messages had to be extracted, which was done by identifying which
strings surrounded them, and afterward removing the unnecessary text based on this.
There seemed to be three possible surrounding strings based on which form was being
filled out, which made it straightforward to write the code for the extraction.

41

Ultimately, emails with fewer than 30 characters and duplicate emails were deleted.
Short emails were deleted as they were partially the results of an imperfect prepro-
cessing and could, for example, consist of only a date or some other phrase indicating
that there was no interesting text in the email. Duplicates were removed since the lan-
guage models must see a variety of texts during training, not the same text repeatedly.
That could cause overfitting, which is unwanted. This concluded the preprocessing,
and AL could then be performed on the emails.

5.3 Research Question 2 - Active Learning

After the emails in the SMN dataset were correctly formatted, labels had to be set.
For this purpose, AL was performed because it would be very time-consuming to label
all texts manually.

The AL process resembled the method detailed in Section 2.14.2, but the start differed.
First, an NB-BERT model already trained on the NoReC dataset was used as a start-
ing point, meaning that TL was used in an attempt to achieve better results faster.
Afterward, AL was performed the following way: First, predictions were made using
the NB-BERT model mentioned above. Then the 50 most uncertain examples were
corrected manually and added to the training dataset. This dataset was used for train-
ing the model for three epochs, so it was ready for another round of predictions. This
was repeated until 300 examples had been labeled and used for training. At this point,
it was decided to label 100 examples in each round for another two rounds. Manually
labeled texts were always added to the dataset of previously manually labeled emails.
In total, 500 examples were manually labeled. However, after some inspection, it was
found that the predictions made by the model trained on 400 examples seemed better
than those created by the model trained on 500 examples. Therefore, the predictions
made by the model trained on 400 examples were used as the final predictions.

To be consistent during labeling, it was attempted to follow some general guidelines for
what label to set. Emails that were negative for the bank would be labeled as negative.
This could, for example, be if the customer wanted to end part of or the whole customer
relationship. Emails indicating poor customer service were also marked as negative.
This included emails where it seemed like the customer had been waiting longer than
expected for an answer, indications of too little information being provided to the
customer, or clear expressions of unsatisfactory behavior from the bank. Otherwise,
if emails seemed neutral or positive, just asked a question, or if the customer was not
pleased with something unrelated to the bank, it was marked as positive.

When the labels were decided, the 50 most certain and uncertain positive emails and
the 50 most certain and uncertain negative emails were sent to employees at Sparebank
1 SMN to get feedback on the quality of the AL process. When the employees corrected
the labels, they only looked at the sentiment, not the email’s effect on the bank. So a
neutral email where a customer wanted to end their insurance would have been labeled
negative during the AL process, but it was said to be positive by the SMN employees.
There were 11 cases where examples would have been labeled as negative during the

42

AL process, but the employees meant they should be positive. It was decided to
override the employees’ decision on these examples, as it would be beneficial to know
when an email negatively impacts the bank and because it was necessary to evaluate
the AL process properly.

It was attempted to add the 200 corrected examples to the 400 previously used training
examples created during the AL process and do one more round of training. However,
it was observed that this caused almost no emails to be labeled as negative, meaning
that the labeled dataset was worse than the one trained on 400 examples and corrected
by the Sparebank 1 SMN employees. Due to this observation, it was decided to use
the dataset trained on 400 examples as the final SMN dataset. This is the dataset
detailed in Section 4.2.

5.4 Research Question 3 - Language Models

To answer RQ3, a set of baseline models and four BERT models were trained and
evaluated on the NoReC and SMN datasets. Formally, the problem this experiment
attempts to solve can be defined as:

f(x|θ) = y ∈ [0, 1] (5.1)

where x is an input text, θ is a set of parameter values, and f is either a BERT model
or a baseline model. The closer y is to 0, the more negative x is, and the closer it is
to 1, the more positive it is.

Section 5.4.1 will explain how multiple baseline models were created and tested before
a final one was chosen to compare to the BERT models. Afterward, Section 5.4.2 will
detail the creation of the BERT models. Finally, the utility of incorporating these
models at Sparebank 1 SMN was qualitatively evaluated, and how this was done will
be explained in Section 5.4.3.

5.4.1 Baseline Models

To get an idea of how well the BERT models should be able to perform, baseline models
were created for comparison. The overall architecture of the baseline models can be
seen in Figure 5.2. The text is normalized, TD-IDF is performed, and classification is
executed using an ML model. The method to create baseline models was the same on
the SMN and NoReC datasets, and for the NoReC dataset, both NoReCtrain full and
NoReCtrain no neutral were used (separately) to train the baseline models to examine
what dataset resulted in the best performance.

The process of creating a baseline model starts with a dataset of texts in natural lan-
guage. The dataset is first normalized, as this is necessary to do before passing the
text to TF-IDF to achieve better performance. The normalization process starts by
making all letters lowercase before removing non-letter characters. This means only

43

the lowercase letters a–̊a and spaces were left in the texts. Multiple spaces in a row
were turned into a single space, as multiple spaces after each other do not express sen-
timent. To remove stop words, nltk.corpus.stopwords.words(‘norwegian’) was
used, which provided a list of Norwegian stop words to remove from the texts. Finally,
stemming was performed using the nltk NorwegianStemmer object. The resulting
output was the normalized text which could be sent to TF-IDF. The preprocessing
steps are also listed and illustrated with an example in Figure 5.3.

TF-IDFNormalizationInput
texts ML model Output label

Normalized

texts

Figure 5.2: The general architecture of the baseline models. Input texts is a list of
strings in natural language (the raw text). Each row in the pink matrix is a TF-IDF
vector that can be passed to an ML model for classification.

Make letters
lowercase

This is a
great

example
text!

this is a
great

example
text!

Remove all
non-letter
characters

and multiple
spaces in a

row

Remove stop
words

this is a
great

example
text great

example
text

Figure 5.3: The normalization process for the baseline models, including an example.

As ML models can not take text as input for a classification task, feature extraction was
performed. Since, as explained in Section 2.10.3, TF-IDF assigns more weight to words
characteristic of a document than a frequency vector does, this method was utilized for
the baseline model. The resulting vector was passed into the ML models. The models
used were SVM, logistic regression, and KNN. They were imported from scikit-learn

through the objects SVC, LogisticRegression, and KNeighborsClassifier respect-
ively. For each model, a grid search was performed for hyper-parameter tuning, using
the sklearn GridSearchCV object to find the best parameters. Which parameters
were tuned and which parameter values were tried for each model can be seen in
Table 5.2. Finally, each model could be trained with the optimal parameters found
by the grid search, which can be seen in Table 5.3, and the final models were used for
predictions.

After predictions were made, the sklearn classification report() function calcu-
lated each model’s precision, recall, and F1-score, making them easy to compare. In
this project, several metrics are relevant. Therefore, using a function that returns all
of them is practical. However, the most important feature, that will be given the most
weight when evaluating the results, is the F1-score of the negative class. It is the most
important score because it indicates the model’s ability to predict the negative class

44

correctly, and it is more important for the bank to discover negative emails than posit-
ive ones. The precision of the negative class will also impact what model is considered
the best, as it states how many positive examples are misclassified as negative, and for
the bank, having many emails marked as negative when they are positive is also not
desirable. In addition to the metrics, confusion matrices were created using sklearn

to visualize the results. In all confusion matrices made during this project, the rows
were normalized due to the datasets’ class imbalance, and normalization made it easier
to compare the performance on the two classes. In the end, the best-performing model
on NoReCtest and the best model tested on SMNtest were chosen as the baselines to
compare to the BERT models trained on their respective datasets.

Table 5.2: A list of all ML models trained and the hyper-parameters tuned during the
grid search for the best baseline models. LR is logistic regression.

Model Parameter Values tried Parameter description
SVM C 0.01, 0.1, 1, 10, 100,

1000
Decides how much error is accep-
ted and affects the margin size.

gamma 0.01, 0.1, 1, 10, 100,
1000

Decides the reach of the data
points and affects the decision
boundary.

LR C 0.001, 0.01, 0.1, 1,
10, 100

Decides how much error is accep-
ted.

penalty ‘l2’, None Penalization strategy for models
with many parameters.

solver ‘lbfgs’, ‘newton-cg’,
‘sag’

Algorithm to use in the optimiz-
ation problem.

KNN leaf size 5, 10, 30, 50 Minimum number of data points
in a leaf. Its impact depends
on another automatically chosen
parameter named algorithm.

n neighbors 5, 10, 20 The number of neighbors to use
when making decisions.

weights ‘uniform’, ‘distance’ Weight function used during pre-
diction.

Table 5.3: The best model parameters found through a grid search for the best baseline
models. LR is logistic regression, F is NoReCtrain full, and N is NoReCtrain no neutral.

Model Parameter F N SMNtrain

SVM C 10 1000 1
gamma 0.1 0.01 1

LR C 0.001 100 1
penalty None None ‘l2’
solver ‘lbfgs’ ‘sag’ ‘lbfgs’

KNN leaf size 5 5 5
n neighbors 20 20 20
weights ‘uniform’ ‘distance’ ‘distance’

45

5.4.2 BERT Models

For this task, four different BERT models were fine-tuned and used for classification.
To achieve as high scores as possible, parameter tuning was first performed on all
models using the training dataset for training and the validation dataset for validation.
Afterward, each of the four models with the highest score on the validation dataset (one
NB-BERT model, one NorBERT model, one mBERT model, and one DistilmBERT
model) was tested on the test dataset. These results were used to compare the four
BERT models. Figure 5.4 illustrates this process, and a simple overview of the BERT
models’ architecture is shown in Figure 5.5. This section will mainly focus on the
parameter tuning process and the specific libraries, classes, functions, and models
used for the BERT models, many of which come from Hugging Face.

Full dataset

Train dataset

Validation dataset

Test dataset

Model training

Find the best
parameters for each

BERT model

Test the best of each
BERT model

Figure 5.4: The workflow to create and find the best BERT model for SA.

BERTTokenizerInput
text

Sequence
classification

layer

Probabilities
for each

label

Figure 5.5: Architecture of the BERT model for one input text. The input is
a text in natural language, the pink vectors are input ids, attention mask and
token type ids, and the purple vector is used for classification.

Since two NoReC datasets, NoReCtrain full and NoReCtrain no neutral, were created, the
first decision that had to be made when training the models on this dataset was which
training dataset to use. By comparing two NorBERT models that were trained with
the same parameters, where the only difference was the training dataset used, it was
found that training on NoReCtrain no neutral resulted in higher F1-scores, indicating a
higher predictive ability. These results are available in Appendix B. Also, since the
bank is primarily interested in negative cases, disregarding the neutral ones for training
might provide better insight into the problem. Due to this, the BERT models were
trained on NoReCtrain no neutral. In the case of the SMN dataset, only one training
dataset was created, so naturally, SMNtrain had to be used for training.

46

After the dataset was chosen, the texts had to be tokenized. As mentioned in Sec-
tion 2.13.3, BERT uses wordpiece encoding for this. Tokenization is easily performed
using the AutoTokenizer.from pretrained() function from the transformers lib-
rary. This function loads the correct tokenizer from the model being used, which
results in three vectors for each input text, namely input ids, attention mask and
token type ids [24]. input ids is the vector created by wordpiece tokenization ex-
plained in Section 2.13.3, attention mask is a vector of 0s or 1s, where 0 indicates
that a token should be ignored, and token type ids correspond to the segment em-
bedding. Since BERT only takes one input sentence for classification, all numbers will
be 0 in token type ids for this task. Since more than one text is processed at a given
time, the tokenizer will output three matrices instead of vectors, where one row in a
matrix corresponds to one input text. These matrices can then be sent to a BERT
model.

During these experiments, four BERT models were used for the classification tasks,
namely NB-BERT13, NorBERT14, mBERT15 and DistilmBERT16. Table 5.4 summar-
izes the models’ specifications. The parameter sizes vary depending on the imple-
mentation, meaning they might differ from those listed in Section 2.13. The para-
meter size of NorBERT and NB-BERT is similar to that of BERTbase and BERTlarge

mentioned in Section 2.13.3. However, as stated in DistilmBERT’s model card on Hug-
ging Face [18], the multilingual models utilized here are larger than the English models
discussed in Sections 2.13.3 and 2.13.7. All BERT models were easily loaded from Hug-
ging Face using the transformers library’s AutoModelForSequenceClassification.
from pretrained() function. Both during training and testing, the BERT models
output a set of vectors, but as mentioned in Section 2.13.3, only the first vector is
passed to the classification layer for prediction.

Table 5.4: Overview of the specifications of the four BERT models used during the
experiments. The size is the number of parameters.

Model Base/Large Cased/Uncased Size Layers Sources
NB-BERT Large Uncased 340M 24 [34], [47]
NorBERT Base Cased 110M 12 [35]
mBERT Base Cased 177M 12 [7], [18]

DistilmBERT Base Cased 134M 6 [18]

The linear classification layer creates a matrix consisting of one row per input text[8].
A row contains logits, which could look like the following: [-1.5607, 1.6123] [2]. Each
index in the row corresponds to one of the possible output labels, which is 0 or 1 in
this task. The logits are normalized so that the numbers represent probabilities of
a given class being correct, such as: [0.0402, 0.9598]. In this example, the second
number indicates a 95.98% probability that the input text was positive. Finally, the
model outputs the most likely label and the probability of that label being correct.

13https://huggingface.co/NbAiLab/nb-bert-large
14https://huggingface.co/ltg/norbert2
15https://huggingface.co/bert-base-multilingual-cased
16https://huggingface.co/distilbert-base-multilingual-cased

47

https://huggingface.co/NbAiLab/nb-bert-large
https://huggingface.co/ltg/norbert2
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/distilbert-base-multilingual-cased

When training a model, the input texts are passed through the model as explained
above, and the model is updated based on the results. Model training utilizes the
Trainer object from the transformers library. It takes multiple parameters as in-
put, including what model, training and validation dataset, and evaluation metric
to use. Additionally, it takes as input a TrainingArguments object, which spe-
cifies the training parameters. Some parameters were kept the same for all mod-
els. evaluation strategy was set to ‘epoch’ because it was interesting to know
at which epoch the models performed the best. This ensures that predictions on
the validation dataset are performed after each epoch and that the scores are saved.
load best model at end had to be set to True to ensure that the final model saved
was the one from the best epoch. Finally, metric for best model was chosen, and
it was set to the F1-score of the negative class, as this project focuses on detecting
negative texts.

TrainingArguments also had a set of input parameters that were tuned to achieve
as good results as possible. On the NoReC dataset, it was decided to tune the num-
ber of training epochs, the learning rate, the warmup ratio, and the optimizer. If
the optimizer was ‘adamw hf’, an additional parameter specifying the weight decay
was also tuned. All parameters tried can be seen in Table 5.5. Which parameters
to tune and which values to try were partially decided based on previous work on
similar tasks [17], [34]. A grid search was performed using these parameters. In total
this corresponds to 48 models being trained on NoReCtrain no neutral and evaluated on
NoReCval for 5 epochs. The script for the grid search also created and saved all scores
and plots necessary to compare the models so this data could be easily accessed later.
All models trained during the grid search were temporarily saved, although irrelevant
models eventually had to be deleted due to limited memory. To ensure that the best
of each BERT model would be easy to load and reuse, these four models trained on
the NoReC dataset were saved to Hugging Face17 18 19 20. Since performing the grid
search and testing on a CPU would be very time-consuming, NTNUs GPU cluster
IDUN [57] was used. The runtime for a grid search on one BERT model was between
5 hours and 17 minutes, and 1 day, 6 hours, and 12 minutes, depending on the model
size.

Table 5.5: Overview of which BERT models and parameter values were tested during
the grid search. Each model tried all combinations of parameters. weight decay was
only tuned for the optimizer ‘adamw hf’.

Model Parameters Parameter values

NB-BERT
NorBERT
mBERT

DistilmBERT

num train epochs

learning rate

warmup ratio

optim

weight decay

1, 2, 3, 4, 5
2e-5, 3e-5, 4e-5, 5e-5

0, 0.01, 0.1
‘adamw hf’, ‘adafactor’

0, 0.01, 0.1

17https://huggingface.co/karolill/norbert LR5e-05 WR0 OPTIMadamw hf WD0.01
18https://huggingface.co/karolill/nb-bert LR5e-05 WR0.1 OPTIMadamw hf WD0
19https://huggingface.co/karolill/mbert LR3e-05 WR0.1 OPTIMadamw hf WD0.1
20https://huggingface.co/karolill/distilmbert LR3e-05 WR0.1 OPTIMadamw hf WD0.01

48

https://huggingface.co/karolill/norbert_LR5e-05_WR0_OPTIMadamw_hf_WD0.01
https://huggingface.co/karolill/nb-bert_LR5e-05_WR0.1_OPTIMadamw_hf_WD0
https://huggingface.co/karolill/mbert_LR3e-05_WR0.1_OPTIMadamw_hf_WD0.1
https://huggingface.co/karolill/distilmbert_LR3e-05_WR0.1_OPTIMadamw_hf_WD0.01

The hyper-parameter tuning on the SMN dataset differed from that explained above
for the NoReC dataset because the data could not be transferred to IDUN. Due to
this, parameter tuning had to be performed on a CPU. Since the extensive grid search
would be too time-consuming to run on a CPU, only the number of epochs was tuned.
For each of the four BERT models, the hyper-parameters that lead to the best results
on NoReCval were used, and the model was trained for five epochs on SMNtrain. After
each epoch, the model was tested on SMNval, and in the end, the model from the best
epoch was chosen for further testing.

Each of the four BERT models that received the highest F1-score on NoReCval and
SMNval were then tested on NoReCtest and SMNtest respectively. This was done
since, as mentioned in Section 2.6, having a separate test set helps gain object-
ive results. The same architecture explained above was used to make predictions
on the test dataset. The transformers pipeline() function was used to tokenize
the data and pass it through the model to receive the predicted labels. Afterward,
sklearn.metrics.classification report() was used to see the results of the eval-
uation metrics, and confusion matrices were plotted.

5.4.3 Qualitative Evaluation of the Model’s Utility

As a final step in the evaluation process, the employees at Sparebank 1 SMN would
evaluate the utility of incorporating a language model that predicts sentiment in their
workplace. Seventy-four new and recently received emails were provided from the
bank in the same format as the original dataset. These emails were preprocessed
as explained in Section 5.2.2, and predictions were performed using the model that
achieved the best results on SMNtest. Afterward, the emails were sent to employees at
Sparebank 1 SMN, who looked at them and assessed if the sentiment of an email and
how confident the model is about its predictions could help prioritize cases. Written
feedback about their findings was provided when they were done. Another employee
checked how many of the examples had been labeled correctly.

49

50

Chapter 6

Results

This section will present the results achieved by the various models. First, Section 6.1
will show the results achieved from the experiments related to RQ2 before Section 6.2
presents the results related to RQ3.

6.1 Research Question 2 - Active Learning

As mentioned in Section 5.3, employees at Sparebank 1 SMN corrected 200 of the
labels created by the AL process. Of the 100 emails labeled positive, 94% were correct.
Also, 61% of the 100 negatively labeled emails were initially correct, but after some
sentiment labels were updated, 72% were correct.

6.2 Research Question 3 - Language Models

Once the baseline and BERT models completed their predictions, various metrics and
confusion matrices were computed to show their capabilities. This section will display
these findings, starting with the results on the NoReC dataset, followed by the scores
attained on the SMN dataset.

6.2.1 NoReC Dataset

As mentioned in Section 5.4.1, a few different baseline models were attempted to ensure
that the final baseline model that would be compared to BERT was of decent quality.
First, the results from the six baseline models will be presented, and a final baseline
model will be chosen. Afterward, the results from the BERT models are shown and
compared to each other and the final baseline model.

51

Baseline

The result of the baseline models when tested on NoReCtest can be seen in Table 6.1 and
Figure 6.1. Table 6.1 shows the results from the classification report() function
for each model. Figure 6.1 shows the normalized confusion matrices for the predictions
made by each model.

As stated in Section 5.4.1, the most important metric for this project is the F1-score for
the negative class, as the final goal for the SMN dataset is to find negative texts, and
it is desirable to treat the NoReC dataset the same way. The second most important
metric is the precision of the negative class. Based on these metrics, the best baseline
model that will later be compared to the BERT models is the SVM model trained
on NoReCtrain no neutral, which had the highest F1-score and precision on the negative
class with scores of 0.21 and 0.12 respectively. Also, it can be seen from the confusion
matrices that of all models that correctly classified 90% of the negative class, the SVM
trained on NoReCtrain no neutral performed best on the positive class. From now on, this
model will be referred to as BaselineNoReC.

Table 6.1: The results from the classification report() function on the six possible
baseline models tested on NoReCtest. LR is logistic regression, F is NoReCtrain full, N
is NoReCtrain no neutral, A is accuracy, P is precision, and R is recall. Precision, recall,
and F1-score are provided for the negative (0) and positive (1) classes. The best score
in each column is marked in bold.

Model Dataset A P 0 P 1 R 0 R 1 F1 0 F1 1
SVM F 0.44 0.09 0.98 0.89 0.41 0.17 0.58
LR F 0.50 0.10 0.99 0.90 0.47 0.18 0.64
KNN F 0.46 0.08 0.96 0.69 0.44 0.14 0.61
SVM N 0.57 0.12 0.99 0.90 0.55 0.21 0.70
LR N 0.56 0.11 0.99 0.90 0.54 0.20 0.70
KNN N 0.64 0.10 0.96 0.57 0.65 0.16 0.77

52

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.89 0.11

0.59 0.41

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Confusion matrix for the best SVM
model trained on NoReCtrain full.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.9 0.1

0.53 0.47

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Confusion matrix for the best logistic re-
gression model trained on NoReCtrain full.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.69 0.31

0.56 0.44

0.35

0.40

0.45

0.50

0.55

0.60

0.65

(c) Confusion matrix for the best KNN
model trained on NoReCtrain full.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.9 0.096

0.45 0.55

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Confusion matrix for the best SVM
model trained on NoReCtrain no neutral.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.9 0.1

0.46 0.54

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) Confusion matrix for the best lo-
gistic regression model trained on
NoReCtrain no neutral.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.57 0.43

0.35 0.65

0.35

0.40

0.45

0.50

0.55

0.60

0.65

(f) Confusion matrix for the best KNN
model trained on NoReCtrain no neutral.

Figure 6.1: Confusion matrices with normalized rows generated from predictions on
NoReCtest. Different ML models were used in combination with TF-IDF.

53

BERT

As mentioned in Section 5.4.2, a grid search was first performed to tune the hyper-
parameters of the four BERT models. The resulting models, from each combination
of parameters, were evaluated on NoReCval. Figure 6.2 shows the four BERT models’
highest F1-score and which parameter values were used to achieve the score. All results
from the grid search can be seen in Appendix C. The highest scores achieved by any
fine-tuned NB-BERT, NorBERT, mBERT, and DistilmBERT model on the validation
dataset were 0.41523, 0.27024, 0.19266, and 0.16384, respectively. Another interesting
observation is that the hyper-parameter tuning does not appear to have affected the
results much on mBERT and DistilmBERT, considering all graphs (including those
in Appendix C) are relatively similar and flat. However, NB-BERT and NorBERT’s
performance seems to depend more on the hyper-parameter tuning.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.41523 with optimizer adamw_0 on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0.1

(a) The best result achieved when fine-
tuning NB-BERT was 0.41523.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.27024 with optimizer adamw_0.01 on epoch 3
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0

(b) The best result achieved when fine-
tuning NorBERT was 0.27024.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.19266 with optimizer adamw_0.1 on epoch 2
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0.1

(c) The best result achieved when fine-
tuning mBERT was 0.19266.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.16384 with optimizer adamw_0.01 on epoch 4
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0.1

(d) The best result achieved when fine-
tuning DistilmBERT was 0.16384.

Figure 6.2: These plots show the F1-scores achieved on the negative class during the
grid search. The highest score in each plot is the highest F1-score achieved by any
fine-tuned version of the respective BERT model on NoReCval. The text above each
plot shows what parameters were used, where the notation “optimizer adamw 0.01”
or similar states that the optimizer was adamw hf with a weight decay of 0.01.

54

The fine-tuned BERTmodel of each type that achieved the best scores on the validation
dataset was tested on NoReCtest. The results from these predictions can be seen in
Table 6.2 and Figure 6.3. As mentioned earlier, the F1-score and precision of the
negative class are the most important metrics for this task. Based on these metrics
and the confusion matrices, it seems reasonable to say that NB-BERT is the best
model for the NoReC dataset, as it achieved the highest F1-score and precision on
the negative class. Even though NorBERT identifies more negative texts, it can not
be said to be the best model because of how many positive texts are misclassified.
BaselineNoReC was also better at finding negative texts than NB-BERT was, but due
to how many positive ones BaselineNoReC predicted to be negative, NB-BERT still
seems to be the best. Another noteworthy result is that BaselineNoReC outperformed
both multilingual BERT models.

Table 6.2: The results from the classification report() function on the predictions
made by the BERT models on NoReCtest. The best score of each column is marked in
bold. A is accuracy, P is precision, and R is recall. Precision, recall, and F1-score are
provided for the negative (0) and positive (1) classes.

Model A P 0 P 1 R 0 R 1 F1 0 F1 1
NB-BERT 0.86 0.27 0.99 0.80 0.86 0.41 0.92
NorBERT 0.67 0.15 0.99 0.92 0.65 0.26 0.79
mBERT 0.54 0.10 0.98 0.83 0.52 0.18 0.68

DistilmBERT 0.39 0.09 0.98 0.90 0.36 0.16 0.53

Since it can also be interesting to know which models perform predictions faster, the
predictions on NoReCtest were timed. These results can be seen in Table 6.3. Since the
predictions using BERT models were run on a GPU on IDUN, these times can not be
compared to the time spent by BaselineNoReC, as that was run on a CPU. DistilmBERT
was the fastest of the BERT models, and NB-BERT was the slowest. BaselineNoReC

was faster than all BERT models, despite running on a CPU. When comparing the
runtimes to the model sizes, one can see that the BERTlarge model (NB-BERT) is
slower than all BERTbase models (the other BERT models). Also, mBERT is larger
and slower than DistilmBERT, and NorBERT is smaller and slower than both of them.
This indicates that the time somewhat correlates to the size, although the NorBERT
model is an exception when compared to mBERT and DistilmBERT.

Table 6.3: The rounded time in seconds spent on prediction of the NoReCtest dataset.
The BERT models were run on GPU, while BaselineNoReC was run on CPU. The
models’ sizes are also listed. For BERT models, it is the number of parameters, and
for the baseline it is the number of support vectors, as the runtime is dependent on
that number.

Model BaselineNoReC NB-BERT NorBERT mBERT DistilmBERT
Time[s] 25 137 61 56 55
Size 2825 340 million 110 million 177 million 134 million

55

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.8 0.2

0.14 0.86

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) NB-BERT

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.92 0.078

0.35 0.65

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) NorBERT

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.83 0.17

0.48 0.52

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) mBERT

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.9 0.1

0.64 0.36

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) DistilmBERT

Figure 6.3: These confusion matrices visualize the results on NoReCtest by the different
BERT models. The rows of the matrices are normalized.

56

6.2.2 SMN Dataset

This section will start by presenting the scores achieved by the baseline and BERT
models on the SMN dataset. Then the feedback from the Sparebank 1 SMN employees
regarding the utility of incorporating SA in the business will be stated.

Baseline

Table 6.4 and Figure 6.4 show the results of the three baseline models. As mentioned
earlier, the most important metrics are the F1-score and precision of the negative class.
Based on the models’ results on these metrics, the best baseline model is the SVM,
which was slightly better than logistic regression. From now on, This SVM model
will be called BaselineSMN, and it will be compared to the BERT models. It should
be noted that logistic regression had very similar scores to the SVM and identified
slightly more negative emails than the SVM, which can be seen from the value in the
top left corner of the confusion matrix where it scored higher.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.79 0.21

0.16 0.84

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Confusion matrix for the best SVM
model trained on SMNtrain.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.8 0.2

0.17 0.83

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Confusion matrix for the best logistic re-
gression model trained on SMNtrain.

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.73 0.27

0.25 0.75

0.3

0.4

0.5

0.6

0.7

(c) Confusion matrix for the best KNN
model trained on SMNtrain.

Figure 6.4: Confusion matrices with normalized rows generated from predictions on
SMNtest. Different ML models were used in combination with TF-IDF.

57

Table 6.4: The results from the classification report() function on the three
possible baseline models tested on SMNtest. LR is logistic regression, A is accuracy,
P is precision, and R is recall. Precision, recall, and F1-score are provided for the
positive (1) and negative (0) classes. The best score in each column is marked in bold.

Model A P 0 P 1 R 0 R 1 F1 0 F1 1
SVM 0.83 0.52 0.95 0.79 0.84 0.63 0.89
LR 0.82 0.51 0.95 0.80 0.83 0.62 0.89
KNN 0.74 0.39 0.93 0.73 0.75 0.51 0.83

BERT

As mentioned in Section 5.4.2, the only hyper-parameter tuned on the SMN dataset
was the number of epochs for each model. Figure 6.5 shows the four models’ perform-
ance when they were tested on SMNval after each epoch. NB-BERT performed best
after epoch two, NorBERT after epoch five, mBERT after five, and DistilmBERT after
three epochs. These models from the best epochs were then used for predictions on
SMNtest. An interesting observation in the plot is NB-BERT’s learning curve, which
drops to zero on epoch three. Since the plot shows the F1-score on the negative class,
this indicates that all (or at least almost all) negative examples have been labeled as
positive. Also, if one calculates the F1-score of the negative class if every email is
labeled as negative, that would be just below 0.31, which is approximately the value
NB-BERT scored on epoch two, meaning that NB-BERT might simply be classifying
everything as negative at that epoch. Based on these observations, the model training
of NB-BERT failed.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.66368 with model norbert on epoch 5
nb-bert
norbert
mbert
distilmbert

F1-scores for each BERT model

Figure 6.5: The score of all four BERT models on SMNval after each epoch.

58

The resulting scores from the BERT models tested on SMNtest can be seen in Table 6.5
and Figure 6.6. NorBERT scored best when it was tested, which can be seen by the
confusion matrices, where it had the highest number of true positive labels, and it
was only beaten by NB-BERT on the true negatives. Apart from the precision of the
positive class and the recall of the negative class NorBERT also scored highest on all
metrics calculated. NB-BERT was best at predicting negative examples. However,
since it classified all except for two examples as negative, which was seen by looking
at the labeled examples, it can not be said to have any predictive ability. Therefore,
this model is the worst tested on SMNtest. When comparing the BERT models to
BaselineSMN, NorBERT achieved higher scores on the most important metrics (the
F1-score and precision of the negative class), while the other BERT models did not.

Table 6.5: The results from the classification report() function when the BERT
models were tested on SMNtest. A is accuracy, P is precision, and R is recall. Precision,
recall, and F1-score are provided for the positive (1) and negative (0) classes. The best
score in each column is marked in bold.

Model A P 0 P 1 R 0 R 1 F1 0 F1 1
NB-BERT 0.18 0.18 1.00 1.00 0.00 0.31 0.00
NorBERT 0.84 0.54 0.96 0.85 0.84 0.66 0.90
mBERT 0.80 0.47 0.95 0.79 0.81 0.59 0.87

DistilmBERT 0.81 0.48 0.96 0.84 0.80 0.61 0.87

The time was also checked when making predictions on SMNtest. The runtimes are
presented in Table 6.6. These times are not comparable to the ones found for predic-
tions on NoReCtest as that code ran on GPU while the predictions of SMNtest were per-
formed on CPU. Predictions on SMNtest would run faster than predictions on NoReCtest

if they were run on the same computer since the average email was shorter than the
reviews in the NoReC dataset. Since both predictions with BaselineSMN and the BERT
models were performed on a CPU, these times can be compared. BaselineSMN is much
faster than all BERT models, and among the BERT models, DistilmBERT was the
fastest and NB-BERT the slowest. Like the NoReC dataset results, the SMN data-
set also shows a correlation between prediction time and model size. Unlike the run
times on NoReCtest, NorBERT was faster than mBERT when performing predictions
on SMNtest.

Table 6.6: Time in seconds spent on prediction on SMNtest when using CPU. The
models’ sizes are also listed. For BERT models, it is the number of parameters, and
for the baseline it is the number of support vectors, as the runtime is dependent on
that number.

Model BaselineSMN NB-BERT NorBERT mBERT DistilmBERT
Time[s] 0.95 317.11 107.82 189.49 81.06
Size 3119 340 million 110 million 177 million 134 million

59

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

1 0

1 0.0013

0.0

0.2

0.4

0.6

0.8

1.0

(a) NB-BERT

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.85 0.15

0.16 0.84

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) NorBERT

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.79 0.21

0.19 0.81

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) mBERT

Negative Positive
Predicted label

Negative

Positive

Tr
ue

 la
be

l

0.84 0.16

0.2 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) DistilmBERT

Figure 6.6: These confusion matrices visualize the results on SMNtest by the different
BERT models. The rows of the matrices are normalized.

6.2.3 Qualitative Evaluation of the Model’s Utility

Finally, the results on the small dataset of recently received emails will be presented.
When the bank employee checked the labels, it was found that 87% of the emails
predicted to be negative were true negative, and 87% of the positively labeled examples
were true positive. When it comes to prioritizing emails, the employees found that a
system that helps prioritize cases could be helpful. However, negative emails are not
the only ones that should be prioritized. It could also be beneficial to quickly answer
positive emails that provide a sales opportunity for the bank.

60

Chapter 7

Discussion

This section will discuss the findings from the results and examine if they were as
expected based on the related work listed in Section 3. The first three sections will
discuss the research questions defined in Section 1.2 before the final section will con-
sider other challenges.

7.1 State-of-the-Art Techniques for Sentiment Ana-

lysis in Norwegian

As stated in Section 1.2, the first research question is “What are the state-of-the-
art techniques for sentiment analysis in Norwegian?”. This was explored through a
literature study, resulting in two Norwegian BERT models, namely NB-BERT and
NorBERT, and two multilingual models later being used for SA to answer the other
research questions. As shown in Section 3, previously performed experiments show
that these models typically outperform older methods used for SA, such as TF-IDF,
RNNs, and CNNs. Although newer models have achieved higher scores than BERT
on various tasks, including SA, these models are not trained specifically on Norwegian
text. For example, XLNet and XLM-RoBERTa have achieved higher scores than
BERT on SA tasks, but they are English and multilingual, respectively. Since, as seen
in Section 3, domain-specific models tend to be better, NB-BERT and NorBERT will
often still be the best models for SA of Norwegian text, since they are trained on the
Norwegian domain. The findings related toRQ3, which will be further discussed later,
also support this theory. It was found that NorBERT outperformed the multilingual
models on both classification tasks performed, while NB-BERT outperformed them on
one.

61

7.2 Active Learning for Customer Emails

The second research question was “Can active learning be used to create sentiment
labels on customer emails?”. AL was performed on the SMN dataset to examine this,
and SMN employees checked the labels. This section will first discuss if the AL process
gave the expected results and how the resulting labels might have affected the final
score from the models tested on SMNtest. Then, possible weaknesses or issues with the
process will be discussed, including the use of TL as a starting point for AL. Finally,
the difference between what emails were labeled as negative during the AL process
and the correction by the SMN employees will be considered.

As stated in Section 6.1, 94% of the positive and 72% of the negative labels were
correct. The result on the positively labeled examples is good, and although there is
still room for improvement, this is sufficient for further testing on SA. However, quite
a lot of the examples labeled as negative were positive. This could negatively affect
the other experiments performed on the dataset, as it is harder to evaluate the models’
performance on an SA task when the labels in SMNtest are inaccurate. Specifically,
the score achieved does not state the models’ ability to predict an email’s sentiment,
as the labels themselves do not accurately state the sentiment.

It is worth discussing possible reasons why the AL process did not improve beyond
the abovementioned results. As mentioned in Section 5.3, further training in the AL
process decreased the model’s ability to predict the sentiment correctly, instead of
improving it which would have been the expected outcome. Section 3.3.2 listed some
possible reasons for this issue, namely overfitting, the cold-start problem (starting with
no labeled data), and the fact that the output probabilities might not accurately state
the probability of a label being correct. It was attempted to mitigate the cold-start
problem through TL, and even if it did not have the desired effect, it would not cause
the model to perform worse with time; it would just give a poor starting point. Looking
at the negatively labeled emails after training on 600 examples, overfitting seems to
be the most likely cause of the problem. Of 164 negatively labeled examples, 130 were
related to insurance or interests. This could indicate that the model overfitted to the
belief that only emails about these subjects could be negative. Another possibility is
that inconsistent labeling in the manual labeling process caused the issues. Despite the
difficulty in labeling certain emails, from the observations mentioned earlier, this does
not appear to be the determining factor in the model’s decreased performance. Based
on these findings, a promising way to improve the AL process would be to choose
examples that are not too similar to manually label at each round. This would cause
the training examples to better represent the whole dataset.

TL was used to mitigate the cold-start problem so that even the first labeled examples
were helpful to the model. A few possible issues regarding this approach should be
mentioned. First, as seen in Section 6.2.1, the NB-BERT model trained on NoReCtrain

only predicted 80% of the negative texts correctly, meaning that even in the same
domain, it would not be a perfect starting point. However, as this is a TL task and the
model was used in a different domain, with a different style of writing and other topics,
the expected starting point would be even worse. One issue seen when using TL that

62

would not have occurred if the first examples to label had been chosen randomly is that
the first labeled examples did not represent the distribution. Randomly selecting a set
of examples will typically lead to a good representation of the underlying distribution,
meaning that the labeled texts represent all emails well. However, throughout the AL
process, it was experienced that most emails in one round of labeling were similar in
either topic or structure. Hence, the distribution of emails was not well represented.
This means that TL could lead to a worse starting point. A glance at the emails labeled
in the first round revealed that they were relatively short and similar in structure but
with different topics, indicating that the emails did not properly represent the whole
corpus. As with overfitting in general, incorporating methods to ensure that also the
first examples to label represent the underlying distribution of emails would likely
improve the results.

Finally, some will be said about the disagreement regarding what emails were con-
sidered negative when the AL process was performed and when SMN employees cor-
rected the dataset. One could argue that changing the results provided by the SMN
employees is not optimal, but in this case, it was necessary to evaluate the AL process.
As mentioned in Section 5.3, emails written in a positive or neutral tone that neg-
atively impacted the bank were labeled negative during the AL process and positive
when corrected by the SMN employees. To properly evaluate the AL process, the final
dataset had to be assessed using the same criteria used during labeling. That said,
it was still valuable to get insight from SMN employees, as some emails were difficult
to label. In those cases hearing from a professional is helpful. Whether or not emails
written in a positive tone with a negative impact on the bank should be labeled as
negative can be further discussed in the future. Nonetheless, it is still possible to
evaluate the results from the AL process, as done in Section 6.1.

7.3 Comparison of Models for Sentiment Analysis

“How do different transformer-based language models compare to each other when used
to solve sentiment analysis tasks? And how do transformer-based language models
compare to previously used methods for sentiment analysis?” was the final research
question. This section will start by discussing the first part of the research question
before the second part will be examined. Since two datasets were used for experi-
mentation, the following paragraphs will mention both. Finally, this section will try
to answer what model should be used for the tasks performed.

7.3.1 Comparison of the Transformer-Based Models

First, the BERT models’ performance on the NoReC dataset will be discussed. NB-
BERT performed the best, as it was the only model which could decently predict
the positive reviews. NorBERT was the second-best model, followed by mBERT and
DistilmBERT, which achieved the lowest score. This order matched what could be
expected based on previous work in the field, mentioned in Sections 3.2.1 and 3.2.3,

63

which had similar findings. Nonetheless, it was surprising that their F1-scores were so
low and that the three worst models struggled as much as they did with the prediction
of positive texts. When Kutuzov et al. [35] and Kummervold et al. [34] performed
their experiments, the Norwegian models achieved macro F1-scores in the range 0.771–
0.864, but the highest macro F1-score on NoReCtest was 0.665 by NB-BERT. There are
a few possible reasons for these differences. First, their experiments used NoReCsentence

instead of the original dataset. Unlike NoReCsentence, the NoReC dataset used here
consists of longer texts, some of which contain conflicting sentiments. Some reviews
also contain objective information that indicates a sentiment, although it does not
affect the label, such as the plot of a movie. Second, reviews considered neutral with a
score of 3 or 4 were labeled as positive. However, in many cases, these contain a mix of
positive and negative sentiments, not only neutral sentiment, making them harder to
classify. Lastly, it was observed that some texts consisted of two or more reviews with
different scores. It is unknown how frequently this issue appeared, but it makes sense
that the models would struggle to make predictions in the cases where it happened.

Next, the models’ performance on the SMN dataset will be considered. As expected,
NorBERT outperformed the multilingual models. DistilmBERT achieved a higher
score than mBERT, which might be surprising since this is typically not seen in pre-
vious work. However, the biggest surprise is the poor performance of NB-BERT since
previous work in the field suggested that it should have achieved the highest score. The
model classified all except for two examples as negative. This matches the observations
noted in Section 6.2.2, which stated that the model’s F1-score on the validation data-
set could have been a result of labeling nearly all examples as negative. One possible
reason this model performed so poorly is the use of the F1-score of the negative class
for evaluation when choosing the best model. One could try to change the evaluation
metric, but it does not seem ideal since it worked well for the other models. Another
possibility for mitigating this issue is hyper-parameter optimization, which can affect
the results by providing a better starting point. Since NB-BERT performs worse after
epoch one than the other models tested on SMNval, it is plausible that the starting
point was unfortunate, so finding a better starting point would impact the results. It
was also seen that NB-BERT’s performance on NoReCval to a large degree depended
on the hyper-parameters. Therefore, it is likely that hyper-parameter tuning would
impact the results on the SMN dataset as well. However, further experimentation
would have to be performed to be sure.

When the BERT models’ prediction times were measured, the time was expected to
correlate with the number of parameters. This was observed when using NB-BERT
since it was both the largest and slowest model. However, it was surprising that
NorBERT was not the fastest BERT model on either dataset, considering it was the
smallest. Other architectural differences could be why the BERTbase models’ prediction
times did not correlate with the number of parameters. For example, as mentioned in
Section 5.4.2, DistilmBERT has half as many layers as NorBERT and mBERT, which
is a possible reason why DistilmBERT is faster than NorBERT, despite having more
parameters. As for why mBERT is larger than NorBERT and makes predictions faster
than NorBERT on the NoReC dataset, it is difficult to say without more information.

64

7.3.2 Transformer-Based Models vs. Previously Used Meth-
ods

To answer how transformer-based models compare to previously used methods, it is
beneficial first to discuss the performance of all baseline models tried here. As seen
in Section 6.2.1 and 6.2.2, using TF-IDF in combination with SVM resulted in the
highest F1-score and precision of the negative class, outperforming TD-IDF combined
with KNN or logistic regression. This matched the expectations based on previous
work explained in Section 3.1 by Avinash and Sivasankar [41] and Liu et al. [39]. It
is also worth noting that the SOTA models before the creation of the transformer
architecture were not TF-IDF combined with ML models but rather models based on
RNNs or CNNs taking other word or sentence vectors as input. Knowing this, one
can conclude that there might be models not based on transformers that could have
outperformed the baseline models.

On the NoReC dataset, NB-BERT and NorBERT scored higher than BaselineNoReC,
while DistilmBERT and mBERT did not. As noted in Section 3.2.2, Mishev et al. [43]
showed that TF-IDF combined with SVM can achieve scores close to that of BERTbase,
as using TF-IDF resulted in an F1-score of 0.836, only 0.054 points below BERT. Also,
as stated in Section 3.2.1, Kummervold et al. [34] and Kutuzov et al. [35] showed that
multilingual BERT models tend to do worse than monolingual models. Based on these
observations, it is unsurprising that a good TF-IDF model can achieve a higher score
than a multilingual BERT model. The fact that NB-BERT and NorBERT outperform
BaselineNoReC also matches previous work in the field. Similar results were seen on
the SMN dataset, and the scores achieved by NorBERT, mBERT, and DistilmBERT
match the expectations just described. However, NB-BERT performed worse than all
other models, but its poor performance was discussed earlier and will not be repeated
here.

7.3.3 What Model is the Best?

Finally, when discussing the performance of various models for SA in Norwegian, a
few words should be said about what model is the best and should be used for future
work. The answer depends on the task to solve. If correct predictions are critical,
using NorBERT or NB-BERT will be the best option. Despite NB-BERT’s low score
on the SMN dataset, hyper-parameter tuning would likely improve the results, possibly
making it the best model for achieving a high F1-score. If a somewhat worse accuracy
or F1-score is acceptable, or if time is limited, using TF-IDF in combination with SVM
is a better solution, as the results are not much worse, but the computations require
less time and resources. In the experiments performed here, good performance is more
important than speed, and NB-BERT or NorBERT is therefore preferred.

65

7.4 Challenges

Throughout the work of this thesis, other challenges not directly connected to the
research questions were also faced. They might still be interesting to discuss so that
possible future work related to this project can improve the process or solve the issues.
This section will start by explaining problems with the preprocessing of the SMN
dataset and what impact that could have had on later work before discussing how
various limitations of the experiments affected the results.

When preprocessing the SMN dataset, a few challenges had to be overcome. First,
it was difficult to properly split the emails when the description contained multiple
emails going back and forth. As explained in Section 5.2.2, this was done by splitting
on common phrases typically found at the end of emails or between two emails in the
description. Although observations indicate that this approach was successful most
of the time, there exist cases where the end of emails is removed due to the split or
where two emails were not split, causing the final text to consist of two or more emails.
If the end of an email is removed, text containing sentiment might be gone, making
predictions harder. And if the split was unsuccessful, leaving more than one email in
the text, the model might be confused by the sentiment in the second email, which
should have been removed. Another issue with the preprocessing was that a limit was
set for how long an email had to be before it was added to the dataset. This was done
because it was observed that some short emails were empty, only contained a date, or
otherwise suggested issues with preprocessing. Due to this, models were not trained
or evaluated on short emails such as “Ok” or similar, although they are likely to exist
in the original dataset. Despite this, the models might have learned how to label these
emails based on longer emails containing the same words. Therefore, if short emails
occur in a new dataset, the models might be able to label them correctly. Nonetheless,
it would be better if no limit had to be set and all emails were used for training and
testing, but only if the shorter emails were formatted correctly.

Another part of the preprocessing performed before access was given to the dataset also
affected the results. Section 5.2.2 mentions that names were replaced with [PERSON],
emails with [EPOST], and numbers with more than three digits with [SIFFER]. There
did not appear to be problems with [EPOST] and [SIFFER]. However, there were
some issues with [PERSON], which had replaced words other than people’s names. For
example, the name of months and places, but also other seemingly random words such
as “millioner” (millions) or “mulige” (possible) were replaced. Note that the example
words used here could be wrong as the underlying word had to be guessed based on the
context. In certain emails, such a significant portion of the content is replaced with
[PERSON] that it may even become challenging for humans to comprehend. However,
observations suggest that in most cases it is possible for a person to guess the hidden
word based on the context. Nonetheless, words containing sentiment might have been
hidden, negatively impacting the model training and predictions.

Some limitations also affected the results and should therefore be mentioned. First, the
lack of access to a GPU when working on the SMN dataset was an issue. The data could
not be moved to IDUN, meaning the experiments had to be run on CPU. This greatly

66

limited the speed at which the code could run. Combined with a second limitation, the
time available for experimentation, it was impossible to tune the BERT models’ hyper-
parameters on SMNtrain. As mentioned earlier, no hyper-parameter tuning is probably
why NB-BERT performed so poorly on SMNtest, so its score likely could have been
improved by hyper-parameter tuning. And because previous work and results on the
NoReC dataset have found that NB-BERT tends to work best on SA tasks, the best
score on SMNtest by any model might have been improved through hyper-parameter
tuning. The time limitation also affected the results of the AL process, as attempts to
improve the results could have been made if more time had been available.

67

68

Chapter 8

Conclusion and Future Work

This thesis has explored the use of transformer-based language models for SA. First, a
literature study was performed to find the SOTA models for SA in Norwegian. These
models were then used to perform SA on two Norwegian datasets; a dataset of reviews
named NoReC and a dataset of emails provided by Sparebank 1 SMN. The datasets
were preprocessed as necessary before they were used for model training and prediction.
As a part of the preprocessing of the SMN dataset, the thesis also explored AL as a
method for labeling to reduce the cost of manual label generation. In the following
section, a summarizing answer will be provided to each research question before the
final section provides possible ideas for future work.

8.1 Conclusion

At the beginning of this project, three research questions were defined. They specified
what the thesis would explore and guided which experiments were performed.

RQ1 - What are the state-of-the-art techniques for sentiment analysis in
Norwegian?

After reading previously written articles regarding SA, it became clear that the in-
troduction of transformers in 2017 led to a new model type that outperformed the
previously used ML models and deep NNs on many tasks, including SA. One type of
transformer-based model that has excelled on SA tasks is BERT, first introduced in
2018. Afterward, many BERT models were created and trained on varying languages
and domains. Two Norwegian BERT models exist, namely NB-BERT and NorBERT,
but multilingual models such as mBERT and DistilmBERT, which are partially trained
on Norwegian text, are also available. However, the monolingual models adapted to a
specific language tend to achieve better results.

69

RQ2 - Can active learning be used to create sentiment labels on customer
emails?

AL was performed using an NB-BERT model fine-tuned on the NoReC dataset as
a starting point, followed by multiple rounds of manual labeling. In the end, 400
emails were manually labeled and used to fine-tune the BERT model, which labeled
the remaining dataset. Employees at Sparebank 1 SMN evaluated parts of the labels
and found that 92% of the positive labels were correct, but this was only the case for
72% of the negatively labeled examples. These findings suggest that AL can be used
for labeling. However, there is room for improvement. The incorrect labels could have
affected the results on RQ3, as the related experiments relied on the labeled SMN
dataset.

RQ3 - How do different transformer-based language models compare to
each other when used to solve sentiment analysis tasks? And how do
transformer-based language models compare to previously used methods
for sentiment analysis?

These two questions were answered by training and making predictions on the NoReC
and SMN datasets. On the NoReC dataset, NB-BERT achieved the highest score,
followed by NorBERT, mBERT, and DistilmBERT. This order also corresponded well
with previous work in the field. The experiments conducted on the SMN dataset found
that NorBERT outperformed all others, while mBERT and DistilmBERT also showed
decent results. However, NB-BERT classified almost every example as negative, in-
dicating issues that did not occur when training the others, such as a poor choice of
hyper-parameters or overfitting. The previously much used method TF-IDF combined
with SVM was used as a baseline model and compared to all BERT models. NB-
BERT and NorBERT performed better than TF-IDF on the NoReC dataset, while
only NorBERT outperformed TF-IDF on the SMN dataset. Another aspect worth
noting is the time spent on predictions. It was found that TF-IDF was much faster
than all BERT models, and larger models are generally slower.

8.2 Future Work

Due to the limited time frame of the project, the experiments conducted were con-
strained in scope. As a result, there is room for further improvements in the experi-
ments, which will be discussed below.

8.2.1 Improving the Active Learning Process

As the results from the AL process were not as good as desired, future work should
examine possibilities to improve the process. As mentioned in Section 7.2, the most
likely reason for the poor results was overfitting, meaning that methods to mitigate
overfitting should be tested. One possible approach is to do as Hoi et al. [28] and use

70

the Fisher information matrix when determining which examples to label. Another
possibility is to use clustering. Then, examples far from each other should be chosen
to label so that examples representing the entire dataset are used for training.

8.2.2 Testing More Model Versions

It would be good to tune the hyper-parameters of the BERT models on the SMN
dataset, as this can improve the results. To do this, finding a way to run the code on
GPU would be beneficial, since this would significantly reduce the time needed for the
hyper-parameter tuning. It can also be interesting to examine what hyper-parameters
have the most significant effect on the final results. If they are found, more care can
be taken to tune them properly, and less time has to be spent on hyper-parameters
with little impact on the results.

In recent years, there has been a significant increase in the creation of new models.
While not all of them are trained on the Norwegian language, models that achieve good
scores on Norwegian tasks are occasionally released. Therefore, it is advantageous to
keep an eye open for new models in the future and test them on relevant tasks so that
their potential can be determined.

8.2.3 Reducing Errors from Preprocessing

In the future, some effort should be spent on improving the preprocessing for better
results. As noted in Section 7.4, splitting multiple emails found in one description
was a challenge. Examining if there exists a better and more consistent way to split
emails could improve the results, as the current splits sometimes fail. Models can
be confused if two emails are in the provided description or if a part of the email
containing sentiment is removed because it is split too early. Also, since the string
[PERSON] replaced many words that should have been kept, further work to identify
people’s names should be done to mitigate this problem.

8.2.4 Creating a Larger Dataset

Collecting a larger dataset of emails might also have certain benefits. It could improve
model training since the BERT models are expected to learn more when trained on
more examples. Showing the models more example data could also decrease the risk
of overfitting. Furthermore, having a larger dataset would also result in a larger
validation dataset, which can better represent all emails. The validation dataset plays
an important role in selecting the final model, and using a dataset that does not
represent the actual emails might lead to wrong decisions being made. As a result, a
better model could be available, but it might not be discovered during the validation
process.

71

8.2.5 Sentiment Analysis from a Business Perspective

Finally, the business aspect of the applications should also receive some focus in the
future. One thing that needs to be examined from a business perspective is how many
negative and positive examples can be misclassified. If it is acceptable that many
positive emails are misclassified as negative, more negative emails will be detected.
However, depending on the use case for the SA, this might cause more work for em-
ployees. Also, before a model can be chosen, it should be investigated how the SA will
be used and whether runtime is essential for the application. For example, if real-time
SA should be performed, choosing a faster model is more important than selecting one
with a slightly higher accuracy.

72

Bibliography

[1] D. Bahdanau, K. Cho and Y. Bengio, Neural Machine Translation by Jointly
Learning to Align and Translate, May 2016. doi: 10 .48550/arXiv .1409 .0473.
[Online]. Available: http://arxiv.org/abs/1409.0473 (visited on 20th Jan. 2023).

[2] Behind the pipeline. [Online]. Available: https://huggingface.co/course/chapter2/
2?fw=pt#behind-the-pipeline (visited on 22nd Mar. 2023).

[3] I. Beltagy, K. Lo and A. Cohan, “SciBERT: A Pretrained Language Model for
Scientific Text”, in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), Hong Kong, China: Association
for Computational Linguistics, Nov. 2019, pp. 3615–3620. doi: 10.18653/v1/D19-
1371. [Online]. Available: https://aclanthology.org/D19-1371 (visited on 20th Jan.
2023).

[4] B. Bengfort, R. Bilbro and T. Ojeda, Applied Text Analysis with Python. O’Reilly
Media, 2018.

[5] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimiza-
tion”, en, Journal of machine learning research, vol. 13, no. 2, 2012.

[6] BERT, original-date: 2018-10-25T22:57:34Z, 2019. [Online]. Available: https://
github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/
multilingual.md (visited on 20th Jan. 2023).

[7] Bert-base-multilingual-cased · Hugging Face, Nov. 2022. [Online]. Available: https:
//huggingface.co/bert-base-multilingual-cased (visited on 20th Mar. 2023).

[8] BertForSequenceClassification. [Online]. Available: https://huggingface.co/docs/
transformers/model doc/bert#transformers.BertForSequenceClassification (visited
on 22nd Mar. 2023).

[9] J. Blitzer, M. Dredze and F. Pereira, “Biographies, Bollywood, Boom-boxes and
Blenders: Domain Adaptation for Sentiment Classification”, in Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, Prague,
Czech Republic: Association for Computational Linguistics, Jun. 2007, pp. 440–
447. [Online]. Available: https://aclanthology.org/P07-1056 (visited on 20th Jan.
2023).

73

https://doi.org/10.48550/arXiv.1409.0473
http://arxiv.org/abs/1409.0473
https://huggingface.co/course/chapter2/2?fw=pt#behind-the-pipeline
https://huggingface.co/course/chapter2/2?fw=pt#behind-the-pipeline
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://aclanthology.org/D19-1371
https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/multilingual.md
https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/multilingual.md
https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/multilingual.md
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
https://aclanthology.org/P07-1056

[10] P. Bojanowski, E. Grave, A. Joulin and T. Mikolov, “Enriching Word Vectors
with Subword Information”, Transactions of the Association for Computational
Linguistics, vol. 5, pp. 135–146, Jun. 2017, issn: 2307-387X. doi: 10 . 1162 /
tacl a 00051. [Online]. Available: https://doi.org/10.1162/tacl a 00051 (visited
on 24th Apr. 2023).

[11] J. Chen, A. Schein, L. Ungar and M. Palmer, “An Empirical Study of the Beha-
vior of Active Learning for Word Sense Disambiguation”, in Proceedings of the
Human Language Technology Conference of the NAACL, Main Conference, New
York City, USA: Association for Computational Linguistics, Jun. 2006, pp. 120–
127. [Online]. Available: https://aclanthology.org/N06-1016 (visited on 27th Apr.
2023).

[12] J. Cheng, L. Dong and M. Lapata, Long Short-Term Memory-Networks for Ma-
chine Reading, Sep. 2016. doi: 10.48550/arXiv.1601.06733. [Online]. Available:
http://arxiv.org/abs/1601.06733 (visited on 20th Jan. 2023).

[13] K. Cho, B. van Merrienboer, C. Gulcehre et al., Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation, Sep. 2014. [On-
line]. Available: http://arxiv.org/abs/1406.1078 (visited on 17th Apr. 2023).

[14] P. Christen, Data Matching, en. Springer Berlin, Heidelberg, 2012. [Online].
Available: https://link.springer.com/book/10.1007/978- 3- 642- 31164- 2 (vis-
ited on 20th Jan. 2023).

[15] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling, Dec. 2014. doi: 10.48550/
arXiv.1412.3555. [Online]. Available: http://arxiv.org/abs/1412.3555 (visited on
20th Jan. 2023).

[16] A. Conneau, K. Khandelwal, N. Goyal et al., Unsupervised Cross-lingual Repres-
entation Learning at Scale, Apr. 2020. doi: 10.48550/arXiv.1911.02116. [Online].
Available: http://arxiv.org/abs/1911.02116 (visited on 24th Apr. 2023).

[17] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding, May 2019. doi: 10 .
48550/arXiv.1810.04805. [Online]. Available: http://arxiv.org/abs/1810.04805
(visited on 19th Jan. 2023).

[18] Distilbert-base-multilingual-cased · Hugging Face, Nov. 2022. [Online]. Available:
https://huggingface.co/distilbert-base-multilingual-cased (visited on 20th Mar.
2023).

[19] C. Du, H. Sun, J. Wang, Q. Qi and J. Liao, “Adversarial and Domain-Aware
BERT for Cross-Domain Sentiment Analysis”, in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online: Association for
Computational Linguistics, Jul. 2020, pp. 4019–4028. doi: 10.18653/v1/2020.acl-
main.370. [Online]. Available: https://aclanthology.org/2020.acl-main.370 (visited
on 14th May 2023).

[20] S. Farquhar, Y. Gal and T. Rainforth, On Statistical Bias In Active Learning:
How and When To Fix It, May 2021. doi: 10.48550/arXiv.2101.11665. [Online].
Available: http://arxiv.org/abs/2101.11665 (visited on 27th Apr. 2023).

74

https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://aclanthology.org/N06-1016
https://doi.org/10.48550/arXiv.1601.06733
http://arxiv.org/abs/1601.06733
http://arxiv.org/abs/1406.1078
https://link.springer.com/book/10.1007/978-3-642-31164-2
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.48550/arXiv.1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.48550/arXiv.1911.02116
http://arxiv.org/abs/1911.02116
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
http://arxiv.org/abs/1810.04805
https://huggingface.co/distilbert-base-multilingual-cased
https://doi.org/10.18653/v1/2020.acl-main.370
https://doi.org/10.18653/v1/2020.acl-main.370
https://aclanthology.org/2020.acl-main.370
https://doi.org/10.48550/arXiv.2101.11665
http://arxiv.org/abs/2101.11665

[21] A. Fernández, S. Garćıa, M. Galar, R. C. Prati, B. Krawczyk and F. Herrera,
Learning from Imbalanced Data Sets, en. Cham: Springer International Publish-
ing, 2018, isbn: 978-3-319-98074-4. doi: 10.1007/978-3-319-98074-4. [Online].
Available: http :// link . springer .com/10.1007/978- 3- 319- 98074- 4 (visited on
15th Apr. 2023).

[22] D. Geebelen, J. A. K. Suykens and J. Vandewalle, “Reducing the Number of
Support Vectors of SVM Classifiers Using the Smoothed Separable Case Ap-
proximation”, IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 4, pp. 682–688, Apr. 2012, Conference Name: IEEE Transactions on
Neural Networks and Learning Systems, issn: 2162-2388. doi: 10.1109/TNNLS.
2012.2186314.

[23] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-
Flow : Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly
Media, 2019, vol. 2, isbn: 978-1-4920-3264-9. (visited on 15th Apr. 2023).

[24] Glossary. [Online]. Available: https://huggingface.co/docs/transformers/glossary
(visited on 2nd May 2023).

[25] C. Guo, G. Pleiss, Y. Sun and K. Q. Weinberger, On Calibration of Modern
Neural Networks, Aug. 2017. [Online]. Available: http://arxiv.org/abs/1706.04599
(visited on 27th Apr. 2023).

[26] M. Hoang, O. A. Bihorac and J. Rouces, “Aspect-Based Sentiment Analysis
using BERT”, in Proceedings of the 22nd Nordic Conference on Computational
Linguistics, Turku, Finland: Linköping University Electronic Press, Sep. 2019,
pp. 187–196. [Online]. Available: https://aclanthology.org/W19-6120 (visited on
20th Jan. 2023).

[27] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural Compu-
tation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735.

[28] S. C. H. Hoi, R. Jin and M. R. Lyu, “Large-scale text categorization by batch
mode active learning”, en, in Proceedings of the 15th international conference
on World Wide Web, Edinburgh Scotland: ACM, May 2006, pp. 633–642, isbn:
978-1-59593-323-2. doi: 10.1145/1135777.1135870. [Online]. Available: https :
//dl.acm.org/doi/10.1145/1135777.1135870 (visited on 8th May 2023).

[29] Hugging Face – The AI community building the future. [Online]. Available: https:
//huggingface.co/ (visited on 2nd May 2023).

[30] C. Kittask, K. Milintsevich and K. Sirts, Evaluating Multilingual BERT for Es-
tonian, en. IOS Press, Sep. 2020, isbn: 978-1-64368-117-7.

[31] S. Kostadinov, Recurrent Neural Networks with Python Quick Start Guide : Se-
quential Learning and Language Modeling with TensorFlow, English. Birming-
ham, UK: Packt Publishing, 2018, isbn: 978-1-78913-233-5. [Online]. Available:
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1950552&
site=ehost-live&scope=site (visited on 21st Jan. 2023).

75

https://doi.org/10.1007/978-3-319-98074-4
http://link.springer.com/10.1007/978-3-319-98074-4
https://doi.org/10.1109/TNNLS.2012.2186314
https://doi.org/10.1109/TNNLS.2012.2186314
https://huggingface.co/docs/transformers/glossary
http://arxiv.org/abs/1706.04599
https://aclanthology.org/W19-6120
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/1135777.1135870
https://dl.acm.org/doi/10.1145/1135777.1135870
https://dl.acm.org/doi/10.1145/1135777.1135870
https://huggingface.co/
https://huggingface.co/
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1950552&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1950552&site=ehost-live&scope=site

[32] D. Kotzias, M. Denil, N. de Freitas and P. Smyth, “From Group to Individual
Labels Using Deep Features”, in Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, ser. KDD ’15, New
York, NY, USA: Association for Computing Machinery, Aug. 2015, pp. 597–606,
isbn: 978-1-4503-3664-2. doi: 10 . 1145/2783258 .2783380. [Online]. Available:
https://dl.acm.org/doi/10.1145/2783258.2783380 (visited on 15th May 2023).

[33] M. Kuhn and K. Johnson, Applied Predictive Modeling, English, 1st ed. 2013,
Corr. 2nd printing 2018 edition. New York: Springer, May 2013, isbn: 978-1-
4614-6849-3. [Online]. Available: https://link.springer.com/book/10.1007/978-1-
4614-6849-3.

[34] P. E. Kummervold, J. De la Rosa, F. Wetjen and S. A. Brygfjeld, “Opera-
tionalizing a National Digital Library: The Case for a Norwegian Transformer
Model”, in Proceedings of the 23rd Nordic Conference on Computational Lin-
guistics (NoDaLiDa), Reykjavik, Iceland (Online): Linköping University Elec-
tronic Press, Sweden, May 2021, pp. 20–29. [Online]. Available: https://aclanthology.
org/2021.nodalida-main.3 (visited on 20th Jan. 2023).

[35] A. Kutuzov, J. Barnes, E. Velldal, L. Øvrelid and S. Oepen, Large-Scale Con-
textualised Language Modelling for Norwegian, Apr. 2021. doi: 10.48550/arXiv.
2104.06546. [Online]. Available: http://arxiv .org/abs/2104.06546 (visited on
20th Jan. 2023).

[36] G. Lample and A. Conneau, Cross-lingual Language Model Pretraining, Jan.
2019. doi: 10.48550/arXiv.1901.07291. [Online]. Available: http://arxiv.org/abs/
1901.07291 (visited on 24th Apr. 2023).

[37] J. Lee, W. Yoon, S. Kim et al., “BioBERT: A pre-trained biomedical language
representation model for biomedical text mining”, Bioinformatics, vol. 36, no. 4,
pp. 1234–1240, Feb. 2020, issn: 1367-4803. doi: 10.1093/bioinformatics/btz682.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btz682 (visited on
20th Jan. 2023).

[38] M. Lewis, Y. Liu, N. Goyal et al., BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Translation, and Comprehension,
Oct. 2019. doi: 10.48550/arXiv.1910.13461. [Online]. Available: http://arxiv.
org/abs/1910.13461 (visited on 24th Apr. 2023).

[39] P. Liu, C. Marco and J. A. Gulla, “Semi-supervised Sentiment Analysis for
Under-resourced Languages with a Sentiment Lexicon”, en, in INRA@ RecSys,
2019, pp. 12–17.

[40] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng and C. Potts, “Learning
Word Vectors for Sentiment Analysis”, in Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Techno-
logies, Portland, Oregon, USA: Association for Computational Linguistics, Jun.
2011, pp. 142–150. [Online]. Available: https://aclanthology.org/P11-1015 (vis-
ited on 24th Apr. 2023).

[41] A. Madasu and S. E, A Study of Feature Extraction techniques for Sentiment
Analysis, Jun. 2019. [Online]. Available: http://arxiv.org/abs/1906.01573 (visited
on 14th May 2023).

76

https://doi.org/10.1145/2783258.2783380
https://dl.acm.org/doi/10.1145/2783258.2783380
https://link.springer.com/book/10.1007/978-1-4614-6849-3
https://link.springer.com/book/10.1007/978-1-4614-6849-3
https://aclanthology.org/2021.nodalida-main.3
https://aclanthology.org/2021.nodalida-main.3
https://doi.org/10.48550/arXiv.2104.06546
https://doi.org/10.48550/arXiv.2104.06546
http://arxiv.org/abs/2104.06546
https://doi.org/10.48550/arXiv.1901.07291
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.48550/arXiv.1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://aclanthology.org/P11-1015
http://arxiv.org/abs/1906.01573

[42] W. Medhat, A. Hassan and H. Korashy, “Sentiment analysis algorithms and ap-
plications: A survey”, en, Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1093–
1113, Dec. 2014, issn: 2090-4479. doi: 10.1016/j .asej .2014.04.011. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2090447914000550
(visited on 20th Jan. 2023).

[43] K. Mishev, A. Gjorgjevikj, I. Vodenska, L. T. Chitkushev and D. Trajanov,
“Evaluation of Sentiment Analysis in Finance: From Lexicons to Transformers”,
IEEE Access, vol. 8, pp. 131 662–131 682, 2020, Conference Name: IEEE Access,
issn: 2169-3536. doi: 10.1109/ACCESS.2020.3009626.

[44] T. Al-Moslmi, N. Omar, S. Abdullah and M. Albared, “Approaches to Cross-
Domain Sentiment Analysis: A Systematic Literature Review”, IEEE Access,
vol. 5, pp. 16 173–16 192, 2017, Conference Name: IEEE Access, issn: 2169-3536.
doi: 10.1109/ACCESS.2017.2690342.

[45] B. Myagmar, J. Li and S. Kimura, “Cross-Domain Sentiment Classification
With Bidirectional Contextualized Transformer Language Models”, IEEE Ac-
cess, vol. 7, pp. 163 219–163 230, 2019, Conference Name: IEEE Access, issn:
2169-3536. doi: 10.1109/ACCESS.2019.2952360.

[46] NoReC: The Norwegian Review Corpus, original-date: 2017-09-25T06:34:21Z,
Nov. 2022. [Online]. Available: https : //github . com/ ltgoslo/norec (visited on
3rd Mar. 2023).

[47] Norwegian Transformer Model, original-date: 2020-09-17T08:18:48Z, Mar. 2023.
[Online]. Available: https://github.com/NbAiLab/notram (visited on 20th Mar.
2023).

[48] L. Øvrelid, P. Mæhlum, J. Barnes and E. Velldal, “A Fine-grained Sentiment
Dataset for Norwegian”, English, in Proceedings of the Twelfth Language Re-
sources and Evaluation Conference, Marseille, France: European Language Re-
sources Association, May 2020, pp. 5025–5033, isbn: 979-10-95546-34-4. [Online].
Available: https://aclanthology.org/2020.lrec-1.618 (visited on 23rd Apr. 2023).

[49] H. Pajupuu, R. Altrov and J. Pajupuu, “Identifying Polarity in Different Text
Types”, Folklore: Electronic Journal of Folklore, vol. 64, pp. 125–142, Jun. 2016.
doi: 10.7592/FEJF2016.64.polarity.

[50] S. J. Pan and Q. Yang, “A Survey on Transfer Learning”, IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2010,
Conference Name: IEEE Transactions on Knowledge and Data Engineering, issn:
1558-2191. doi: 10.1109/TKDE.2009.191.

[51] B. Pang and L. Lee, “A Sentimental Education: Sentiment Analysis Using Sub-
jectivity Summarization Based on Minimum Cuts”, in Proceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics (ACL-04),
Barcelona, Spain, Jul. 2004, pp. 271–278. doi: 10.3115/1218955.1218990. [On-
line]. Available: https://aclanthology.org/P04-1035 (visited on 15th May 2023).

77

https://doi.org/10.1016/j.asej.2014.04.011
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://doi.org/10.1109/ACCESS.2020.3009626
https://doi.org/10.1109/ACCESS.2017.2690342
https://doi.org/10.1109/ACCESS.2019.2952360
https://github.com/ltgoslo/norec
https://github.com/NbAiLab/notram
https://aclanthology.org/2020.lrec-1.618
https://doi.org/10.7592/FEJF2016.64.polarity
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.3115/1218955.1218990
https://aclanthology.org/P04-1035

[52] B. Pang and L. Lee, “Seeing Stars: Exploiting Class Relationships for Sentiment
Categorization with Respect to Rating Scales”, in Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), Ann Arbor,
Michigan: Association for Computational Linguistics, Jun. 2005, pp. 115–124.
doi: 10.3115/1219840.1219855. [Online]. Available: https://aclanthology.org/
P05-1015 (visited on 15th May 2023).

[53] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei and I. Sutskever, “Language
Models are Unsupervised Multitask Learners”, OpenAI blog, vol. 1, no. 8, p. 9,
2019.

[54] S. Russell and P. Norvig, Artificial Intelligence : A Modern Approach (Prentice
Hall series in artificial intelligence), 3rd, global edition. Pearson, 2016, isbn:
1-292-15396-2.

[55] V. Sanh, L. Debut, J. Chaumond and T. Wolf, DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter, Feb. 2020. doi: 10.48550/arXiv.
1910.01108. [Online]. Available: http://arxiv .org/abs/1910.01108 (visited on
24th Jan. 2023).

[56] B. Settles, “Active Learning Literature Survey”, en, University of Wisconsin-
Madison Department of Computer Sciences, Technical Report, 2009, Accepted:
2012-03-15T17:23:56Z. [Online]. Available: https://minds.wisconsin.edu/handle/
1793/60660 (visited on 21st Jan. 2023).

[57] M. Själander, M. Jahre, G. Tufte and N. Reissmann, EPIC: An Energy-Efficient,
High-Performance GPGPU Computing Research Infrastructure, Feb. 2022. doi:
10.48550/arXiv.1912.05848. [Online]. Available: http://arxiv.org/abs/1912.05848
(visited on 9th May 2023).

[58] R. Socher, A. Perelygin, J. Wu et al., “Recursive Deep Models for Semantic
Compositionality Over a Sentiment Treebank”, in Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language Processing, Seattle, Washing-
ton, USA: Association for Computational Linguistics, Oct. 2013, pp. 1631–1642.
[Online]. Available: https ://aclanthology.org/D13- 1170 (visited on 24th Apr.
2023).

[59] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for
classification tasks”, en, Information Processing & Management, vol. 45, no. 4,
pp. 427–437, Jul. 2009, issn: 0306-4573. doi: 10.1016/j.ipm.2009.03.002. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0306457309000259
(visited on 13th Apr. 2023).

[60] M. G. Sousa, K. Sakiyama, L. d. S. Rodrigues, P. H. Moraes, E. R. Fernandes and
E. T. Matsubara, “BERT for Stock Market Sentiment Analysis”, in 2019 IEEE
31st International Conference on Tools with Artificial Intelligence (ICTAI), ISSN:
2375-0197, Nov. 2019, pp. 1597–1601. doi: 10.1109/ICTAI.2019.00231.

[61] J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor and J. Vandewalle,
Least Squares Support Vector Machines, English. River Edge, NJ: World Sci-
entific Publishing Company, Nov. 2002, isbn: 981-238-151-1.

78

https://doi.org/10.3115/1219840.1219855
https://aclanthology.org/P05-1015
https://aclanthology.org/P05-1015
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
http://arxiv.org/abs/1910.01108
https://minds.wisconsin.edu/handle/1793/60660
https://minds.wisconsin.edu/handle/1793/60660
https://doi.org/10.48550/arXiv.1912.05848
http://arxiv.org/abs/1912.05848
https://aclanthology.org/D13-1170
https://doi.org/10.1016/j.ipm.2009.03.002
https://www.sciencedirect.com/science/article/pii/S0306457309000259
https://doi.org/10.1109/ICTAI.2019.00231

[62] Thomas H. Davenport, Jim Guszcza, Tim Smith and Ben Stiller, Analytics and
AI-driven enterprises thrive in the Age of With, en, Jul. 2019. [Online]. Available:
https : / /www2 . deloitte . com/us / en / insights / topics / analytics / insight - driven -
organization.html (visited on 1st Jun. 2023).

[63] M. Tsytsarau and T. Palpanas, “Survey on mining subjective data on the web”,
en, Data Mining and Knowledge Discovery, vol. 24, no. 3, pp. 478–514, May
2012, issn: 1573-756X. doi: 10.1007/s10618-011-0238-6. [Online]. Available:
https://doi.org/10.1007/s10618-011-0238-6 (visited on 21st Jan. 2023).

[64] A. Vaswani, N. Shazeer, N. Parmar et al., Attention Is All You Need, Dec. 2017.
doi: 10.48550/arXiv.1706.03762. [Online]. Available: http://arxiv.org/abs/1706.
03762 (visited on 21st Jan. 2023).

[65] E. Velldal, L. Øvrelid, E. A. Bergem, C. Stadsnes, S. Touileb and F. Jørgensen,
“NoReC: The Norwegian Review Corpus”, in Proceedings of the Eleventh In-
ternational Conference on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan: European Language Resources Association (ELRA), May 2018.
[Online]. Available: https://aclanthology.org/L18-1661 (visited on 3rd Mar. 2023).

[66] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy and S. R. Bowman, GLUE:
A Multi-Task Benchmark and Analysis Platform for Natural Language Under-
standing, Feb. 2019. doi: 10.48550/arXiv.1804.07461. [Online]. Available: http:
//arxiv.org/abs/1804.07461 (visited on 24th Apr. 2023).

[67] Z. Wang, S. Yan and C. Zhang, “Active learning with adaptive regulariza-
tion”, en, Pattern Recognition, Semi-Supervised Learning for Visual Content
Analysis and Understanding, vol. 44, no. 10, pp. 2375–2383, Oct. 2011, issn:
0031-3203. doi: 10 . 1016 / j . patcog . 2011 . 03 . 008. [Online]. Available: https :
/ /www . sciencedirect . com/science/article /pii /S0031320311000938 (visited on
27th Apr. 2023).

[68] Y. Wu, M. Schuster, Z. Chen et al., Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation, Oct. 2016. doi:
10.48550/arXiv.1609.08144. [Online]. Available: http://arxiv.org/abs/1609.08144
(visited on 21st Jan. 2023).

[69] Y. Yang, M. C. S. UY and A. Huang, FinBERT: A Pretrained Language Model
for Financial Communications, Jul. 2020. doi: 10 . 48550 / arXiv . 2006 . 08097.
[Online]. Available: http://arxiv.org/abs/2006.08097 (visited on 21st Jan. 2023).

[70] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov and Q. V. Le, XLNet:
Generalized Autoregressive Pretraining for Language Understanding, Jan. 2020.
doi: 10.48550/arXiv.1906.08237. [Online]. Available: http://arxiv.org/abs/1906.
08237 (visited on 21st Jan. 2023).

[71] M. Yuan, H.-T. Lin and J. Boyd-Graber, Cold-start Active Learning through
Self-supervised Language Modeling, Oct. 2020. [Online]. Available: http://arxiv.
org/abs/2010.09535 (visited on 27th Apr. 2023).

[72] Z. Zhang, E. Strubell and E. Hovy, A Survey of Active Learning for Natural
Language Processing, Feb. 2023. [Online]. Available: http://arxiv.org/abs/2210.
10109 (visited on 27th Apr. 2023).

79

https://www2.deloitte.com/us/en/insights/topics/analytics/insight-driven-organization.html
https://www2.deloitte.com/us/en/insights/topics/analytics/insight-driven-organization.html
https://doi.org/10.1007/s10618-011-0238-6
https://doi.org/10.1007/s10618-011-0238-6
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://aclanthology.org/L18-1661
https://doi.org/10.48550/arXiv.1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
https://doi.org/10.1016/j.patcog.2011.03.008
https://www.sciencedirect.com/science/article/pii/S0031320311000938
https://www.sciencedirect.com/science/article/pii/S0031320311000938
https://doi.org/10.48550/arXiv.1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.48550/arXiv.2006.08097
http://arxiv.org/abs/2006.08097
https://doi.org/10.48550/arXiv.1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/2010.09535
http://arxiv.org/abs/2010.09535
http://arxiv.org/abs/2210.10109
http://arxiv.org/abs/2210.10109

[73] Y. Zhu, R. Kiros, R. Zemel et al., Aligning Books and Movies: Towards Story-
like Visual Explanations by Watching Movies and Reading Books, Jun. 2015. doi:
10.48550/arXiv.1506.06724. [Online]. Available: http://arxiv.org/abs/1506.06724
(visited on 21st Jan. 2023).

80

https://doi.org/10.48550/arXiv.1506.06724
http://arxiv.org/abs/1506.06724

Appendix A

Example Description

This appendix shows an example of what the HTML in the original SMN dataset’s
description field might look like. However, it is a made-up example, not an actual
received email, and is only added here to give an idea of the format. The format also
varies between different emails.

<HTML>

<HEAD>

\R\N<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="TEXT/HTML;

CHARSET=UTF-8">↪→

</HEAD>

<BODY DIR="AUTO">

THIS IS THE BEGINNING OF THE EMAIL SENT FROM A CUSTOMER.

<DIV>
</DIV>

<DIV>

THEN THERE MIGHT BE ANOTHER PARAGRAPH OR SOMETHING.

<DIV>
</DIV>

<DIV>

BEFORE THEY SAY BEST REGARDS ME. AND THEN THERE IS

SOME MORE HTML.↪→

<!--\R\N\N\T{FONT-FAMILY:"CAMBRIA MATH"}\R\N\N\T

{FONT-FAMILY:CALIBRI}\R\NP.MSONORMAL,LI.MSON

ORMAL, DIV.MSONORMAL\R\N\T{MARGIN:0CM;\R\N\T

FONT-SIZE:11.0PT;\R\N\TFONT-FAMILY:"CALIBRI"

,SANS-SERIF}\R\NSPAN.EPOSTSTIL17\R\N\T{FONT-

FAMILY:"CALIBRI",SANS-SERIF;\R\N\TCOLOR:WIND

OWTEXT}\R\N.MSOCHPDEFAULT\R\N\T{FONT-FAMILY:

"CALIBRI",SANS-SERIF}\R\NWORDSECTION1\R\N\T{

MARGIN:70.85PT 70.85PT 70.85PT 70.85PT}\R\ND

IV.WORDSECTION1\R\N\T{}\R\N-->

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

\R\N

</DIV>

<DIV CLASS="WORDSECTION1">

81

<P CLASS="MSONORMAL">

THIS IS THE BEGINNING OF AN EMAIL SENT FROM

SOMEONE IN SPAREBANK 1.↪→

</P>

<P CLASS="MSONORMAL">&NBSP;</P>

<P CLASS="MSONORMAL">&NBSP;</P>

<P CLASS="MSONORMAL">

THIS IS MORE OF THE SAME EMAIL. THIS IS ALSO THE

EMAIL THE CUSTOMER IS ANSWERING. AND IT CAN BE

SEVERAL MESSEGES GOING BACK AND FORTH LIKE

THIS, EVEN THOUGH THIS EXAMPLE ONLY INCLUDES

ONE FROM SPAREBANK 1 AND ONE FROM A CUSTOMER.

↪→

↪→

↪→

↪→

&NBSP;

</P>

</DIV>

</DIV>

</BODY>

</HTML>

82

Appendix B

NoReCtrain full vs.
NoReCtrain no neutral

The table below shows the scores achieved by training two similar NorBERT mod-
els on the two different datasets NoReCtrain full and NoReCtrain no neutral. The hyper-
parameters used were the same for both models. This was done to decide which NoReC
dataset should be used for training.

Table B.1: The results from the classification report() function on NoReCtest

when using two different training datasets. F is NoReCtrain full, N is NoReCtrain no neutral,
A is accuracy, P is precision, and R is recall. Precision, recall, and F1-score are
provided for the negative (0) and positive (1) classes. The best score in each column
is marked in bold.

Dataset A P 0 P 1 R 0 R 1 F1 0 F1 1
F 0.45 0.09 0.99 0.91 0.42 0.17 0.59
N 0.66 0.14 0.99 0.93 0.64 0.25 0.78

83

84

Appendix C

Results on NoReCval by the BERT
Models

This appendix shows the performance of the various BERT models evaluated on
NoReCval during parameter tuning. The figures show the F1-score on the negative
class when evaluating the models on the dataset. All figures show the score of four
different fine-tuned versions of the BERT models, where each version used a different
combination of parameters. The highest score in each figure is specified above the
graph in the figure.

85

C.1 NB-BERT

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.33977 with optimizer adamw_0.1 on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.32397 with optimizer adamw_0 on epoch 3
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.33846 with optimizer adamw_0 on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Highest score=0.30823 with optimizer adamw_0 on epoch 1

adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.35991 with optimizer adamw_0.1 on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.3163 with optimizer adamw_0 on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.25856 with optimizer adamw_0.1 on epoch 5
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.36157 with optimizer adamw_0.1 on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0.01

86

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Highest score=0.28037 with optimizer adamw_0.01 on epoch 1

adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.32094 with optimizer adamw_0 on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.27817 with optimizer adamw_0 on epoch 4
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.41523 with optimizer adamw_0 on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0.1

Figure C.1: Results on the validation dataset from the fine-tuning of NB-BERT.

87

C.2 NorBERT

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.24739 with optimizer adamw_0.1 on epoch 4
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.25047 with optimizer adamw_0.01 on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.25865 with optimizer adamw_0.01 on epoch 3
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Highest score=0.23007 with optimizer adamw_0.1 on epoch 3

adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.26673 with optimizer adamw_0.1 on epoch 3
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.2413 with optimizer adafactor on epoch 2
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.26764 with optimizer adamw_0.01 on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.24443 with optimizer adafactor on epoch 2
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0.01

88

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Highest score=0.25412 with optimizer adamw_0 on epoch 3

adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.27024 with optimizer adamw_0.01 on epoch 3
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.23471 with optimizer adafactor on epoch 2
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.26624 with optimizer adafactor on epoch 2
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0.1

Figure C.2: Results on the validation dataset from the fine-tuning of NorBERT.

89

C.3 mBERT

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.18907 with optimizer adafactor on epoch 3
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.18294 with optimizer adamw_0 on epoch 2
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.18364 with optimizer adafactor on epoch 2
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Highest score=0.17778 with optimizer adamw_0.01 on epoch 2

adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.1755 with optimizer adafactor on epoch 5
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.19266 with optimizer adamw_0.1 on epoch 2
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.18162 with optimizer adamw_0.1 on epoch 2
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.16452 with optimizer adamw_0.1 on epoch 2
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0.01

90

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Highest score=0.17084 with optimizer adafactor on epoch 5

adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.16706 with optimizer adafactor on epoch 3
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.1543 with optimizer adafactor on epoch 4
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.15856 with optimizer adamw_0 on epoch 5
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0.1

Figure C.3: Results on the validation dataset from the fine-tuning of mBERT.

91

C.4 DistilmBERT

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.15403 with optimizer adafactor on epoch 1
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.16092 with optimizer adafactor on epoch 4
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.16147 with optimizer adamw_0.01 on epoch 5
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=2e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Highest score=0.15314 with optimizer adamw_0 on epoch 5

adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.15352 with optimizer adamw_0.01 on epoch 5
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.16384 with optimizer adamw_0.01 on epoch 4
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=3e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.16216 with optimizer adamw_0 on epoch 3
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.15295 with optimizer adafactor on epoch 5
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0.01

92

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Highest score=0.16026 with optimizer adamw_0 on epoch 5

adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=4e-05 and WR=0.1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.15728 with optimizer adafactor on epoch 5
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.16061 with optimizer adamw_0 on epoch 3
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0.01

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Highest score=0.16166 with optimizer adamw_0.01 on epoch 5
adamw_hf, WD=0
adamw_hf, WD=0.01
adamw_hf, WD=0.1
adafactor

F1-score when LR=5e-05 and WR=0.1

Figure C.4: Results on the validation dataset from the fine-tuning of mBERT.

93

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Questions
	Approach
	Limitations
	Outline

	Background Theory
	Classification vs. Regression
	Logistic Regression
	K-Nearest Neighbor
	Neural Networks
	Support Vector Machine
	Train, Validation, and Test Datasets
	Hyper-Parameter Optimization
	Evaluation
	Sentiment Analysis
	Text Representations
	Text Preprocessing
	Bag-of-Words - Frequency Vector
	TF-IDF
	WordPiece Model

	Language Models
	Recurrent Neural Networks
	Transformers
	Attention
	The Transformer Architecture
	BERT
	Multilingual BERT
	NB-BERT
	NorBERT
	DistilBERT
	Strengths and Weaknesses of Transformer-Based Language Models

	Methods for Handling Missing Labels
	Transfer Learning
	Active Learning

	Related Work
	TF-IDF for Sentiment Analysis
	BERT for Sentiment Analysis
	BERT for Sentiment Analysis in Norwegian
	BERT for Sentiment Analysis in Finance
	Distilled Models

	Label Generation
	Transfer Learning
	Active Learning

	Data
	The NoReC Dataset
	The SMN Dataset

	Method
	Tools and Libraries
	Preprocessing
	The NoReC Dataset
	The SMN Dataset

	Research Question 2 - Active Learning
	Research Question 3 - Language Models
	Baseline Models
	BERT Models
	Qualitative Evaluation of the Model's Utility

	Results
	Research Question 2 - Active Learning
	Research Question 3 - Language Models
	NoReC Dataset
	SMN Dataset
	Qualitative Evaluation of the Model's Utility

	Discussion
	State-of-the-Art Techniques for Sentiment Analysis in Norwegian
	Active Learning for Customer Emails
	Comparison of Models for Sentiment Analysis
	Comparison of the Transformer-Based Models
	Transformer-Based Models vs. Previously Used Methods
	What Model is the Best?

	Challenges

	Conclusion and Future Work
	Conclusion
	Future Work
	Improving the Active Learning Process
	Testing More Model Versions
	Reducing Errors from Preprocessing
	Creating a Larger Dataset
	Sentiment Analysis from a Business Perspective

	Bibliography
	Example Description
	NoReCtrain_full vs. NoReCtrain_no_neutral
	Results on NoReCval by the BERT Models
	NB-BERT
	NorBERT
	mBERT
	DistilmBERT

