
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Emilie Lia-Rognli and Sigrun Asheim Nummedal

Sheep and Predator Interactions: An
Investigation into the Behavioural
Patterns of Sheep during Attacks and
the Feasibility of Predictive Modelling
using GPS Data

Master’s thesis in Informatics
Supervisor:  Svein-Olaf Hvasshovd
June 2023





Emilie Lia-Rognli and Sigrun Asheim Nummedal

Sheep and Predator Interactions: An
Investigation into the Behavioural
Patterns of Sheep during Attacks and
the Feasibility of Predictive Modelling
using GPS Data

Master’s thesis in Informatics
Supervisor:  Svein-Olaf Hvasshovd
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract

Predator attacks pose a significant challenge for sheep farmers in Norway, resulting
in annual livestock losses and financial losses. This master thesis explored the
feasibility of detecting predator attacks by analysing the sheep’s movement patterns
and behaviour. The aim was to enhance livestock management and prevent injuries
and fatalities among sheep caused by predators. The GPS collars attached to
the sheep enable a deeper insight into the sheep’s trajectory and behaviour. The
research in this thesis was conducted with the unsupervised machine learning
models K-means and DBSCAN and the supervised machine learning model Random
Forest Classifier, along with statistical analysis. The study used data collected from
electronic GPS collars used by sheep located in Meråker, Norway, from 2015-2021,
along with information from 235 assumable predator attacks during the same
period. The first K-means model identified four distinct activity periods throughout
the day, utilising the time of the day and the velocity of the sheep. The second
K-means model and DBSCAN used the sheep’s velocity, altitude and trajectory angle
and deduced little to no correlation between behaviour and attacks. The supervised
model, Random Forest Classifier, failed to accurately distinguish between attack
occurrences and when there had been no attack, yielding unsatisfactory results.
Consequently, the collected data proved insufficient for detecting the presence of
predators. Nonetheless, the statistical analysis supported several theories related
to everyday sheep behaviour, contributing valuable insights to existing research.
The study observed that flocks exhibit antipredatory behaviour, a new contribution
to current research on the topic. This thesis demonstrated the need for further
research in predicting predator attacks based on sheep behaviour and movement
and the need to collect data of better quality. While some analyses did not produce
definitive results, they lay the groundwork for future research in the study of sheep
and predator attacks using machine learning. In the future, this could improve the
well-being of sheep in outfield pastures.
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Sammendrag

Rovdyrangrep utgjør en betydelig utfordring for sauebønder i Norge, med årlige
tap av besetninger som har store økonomiske konsekvenser. Denne masterop-
pgaven har utforsket muligheten for å oppdage rovdyrangrep ved å analysere
bevegelsesmønstre og atferden til sauer. Målet var å forbedre husdyrforvaltningen
og forebygge skader og tap av sau forårsaket av rovdyr. GPS-halsbånd festet til
sauene gir en dypere innsikt i hvordan de beveger seg og oppfører seg. Masterop-
pgaven ble utført ved bruk av to ikke-veiledet maskinlæringsmodeller K-means
og DBSCAN og en veiledet maskinlæringsmodell Random Forest Classifier, samt
bruk av statistisk analyse. Data fra sau lokalisert i Meråker 2015-2021 ble brukt
sammen med informasjon fra 235 antatte rovdyrangrep fra samme periode. Ulike
variabler ble brukt i analysen basert på de spesifikke målene. Den første K-means-
modellen identifiserte fire distinkte aktivitetsperioder gjennom dagen, ved å bruke
tid på dagen og sauens hastighet. Den andre K-means-modellen og DBSCAN brukte
sauens hastighet, høyde og banevinkel og fant liten til ingen korrelasjon mellom at-
ferdsmønster og rovdyrangrep. Den veiledede modellen, Random Forest Classifier,
klarte ikke å skille mellom datapunkter med angrep og uten angrep. De innsamlede
dataene viste seg å være utilstrekkelige for å oppdage rovdyr i nærheten av sau.
Den statistiske analysen derimot støttet flere teorier knyttet til daglig saueatferd,
og bidro med verdifull innsikt til eksisterende forskning. Analysen viste også at
sauer i flokk viser antipredatorisk atferd som er et betydelig tillegg til dagens for-
skning på emnet. Denne oppgaven demonstrerte behovet for ytterligere forskning
på å detektere rovdyrangrep basert på sauens atferd og bevegelse. Selv om noen
av analysene ikke ga avgjørende resultater, legger de grunnlaget for fremtidig
forskning knyttet til rovdyrangrep og saueatferd sammen med maskinlæring. Dette
kan i fremtiden hjelpe til en bedre velferd blant sauer på utmarksbeite.
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Chapter 1

Introduction

1.1 Motivation

Around 2 million sheep are sent annually to outfield pastures in Norway [1]. The
sheep usually graze for around 12 weeks, from mid-June to September, depending
on location and climate. During this period, sheep are exposed to various risks,
including predators, illness and accidents. Although farmers must check on their
sheep regularly, these animals are often left unsupervised for a significant amount
of time.

In 2020, approximately 100,000 sheep and lambs did not return after the grazing
season in Norway, whereas 15,000 of these were confirmed killed by protected
predators [2]. In 2022 the number was 16,000, and the government compensated
NOK 45 million to affected sheep farmers for their loss [3]. The government only
compensates for the sheep that, with certainty, are killed by predators. However,
determining the exact cause of a sheep’s death can be difficult, and predators often
injure sheep without killing them, leading to infections and other injuries that
may require euthanasia. Therefore, the reported numbers may not fully reflect
the extent of the issue. The risk of predators affects the welfare of the sheep on
outfield pastures, and there is a need for measures to mitigate the problem. Several
governmental measures have been implemented to enhance the welfare of sheep
in open pastures, such as fences and minimising the grazing period to reduce the
time predators can attack.

The use of electronic Global Positioning System (GPS) collars on sheep is a com-
monly used measure by most farmers in Norway. The technology allows farmers
to monitor the location of their flock and receive alerts when a sheep has been
inactive for a prolonged period. Despite the cost, many farmers have found that the
benefits of using GPS transmitters outweigh the expenses, as it helps reduce the
number of lost or injured sheep. These GPS collars could be improved to identify
any unusual behaviour in sheep that might indicate the presence of a predator.
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Over several years, farmers have employed GPS collars, which results in a large
amount of data that may be used to analyse sheep behaviour further. In addition,
several documented predator attacks have occurred during these years in the
sheep’s grazing area. Combining the data gives the ability to learn more about how
sheep respond when interacting with predators and determine whether this may be
detected technologically. Any abnormal behaviour can be found using knowledge
of the sheep’s regular habits, behaviours, and reactions. Analysing this data type
might lead to developing new technology or upgrading the GPS collars to detect
predators.

1.2 Project description

The Norwegian University of Science and Technology (NTNU) gave this thesis. The
GPS data from sheep collected during the project has been provided in collaboration
with the Norwegian Institute for Nature Research (NIBIO). The data was collected
from a farmer in Meråker, Trøndelag, between 2015 and 2021. In addition, data
on predator attacks from the same years in Meråker have been obtained from a
public database Rovbase, provided by the Norwegian Environment Agency [4].

The thesis aims to investigate the feasibility of detecting predator attacks on sheep
by analysing their movement pattern and behaviour. Furthermore, an important
objective of this study is to thoroughly investigate the quality of the sheep data
and the data sourced from Rovbase to propose recommendations for future data
collection initiatives.

The existing theories have indicated that sheep exhibit certain general behaviour
and diurnal activity patterns. Moreover, they display various types of antipredatory
behaviours that differ from everyday behaviour. This thesis will leverage and
apply the literature and research on these behaviours to data-driven methods.
Statistical and machine learning techniques will be applied to analyse the data
and to determine if there is a correlation between sheep’s movement patterns
and potential threats or attacks. Unsupervised machine learning will be utilised to
investigate diurnal behaviour and possible correlation between the behavioural
features and attacks. Supervised machine learning will be applied to investigate
the feasibility of detecting predator attacks based on sheep’s movements.

1.3 Contributions

The findings obtained from this research have the potential to facilitate the enhance-
ment of GPS collars or the development of new technologies that can effectively
identify and assist sheep requiring assistance. This would improve livestock man-
agement practices, resulting in enhanced welfare for the sheep and potential
economic benefits for the Norwegian government and farmers. Additionally, the
findings can serve as a fundamental basis for further in-depth analysis. They can
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provide valuable insights on how additional research can be conducted to validate
and substantiate the results presented in this thesis.

1.4 Stakeholders

The Norwegian government provides millions of NOK in compensation to farmers
each year due to losses in sheep caused by predators. In 2022, the amount was
NOK 45 million. Hence, it is in the government’s interest to obtain more research
and development of new technology to reduce these losses and save money.

Sheep farmers are also interested in caring for their livestock, and predator attacks
cause them stress and affect their finances. New technology and research could
mitigate the damage caused by predators and ensure better welfare for the sheep
by detecting illnesses or other stress factors earlier.

NIBIO has been analysing sheep behaviour, particularly related to stress and
behavioural changes caused by injuries and illnesses on pastures. They have also
published articles containing observations of antipredatory behaviour. This thesis’s
results can help substantiate NIBIO’s observations with data-driven methods and
findings.





Chapter 2

Theory: Sheep and Predators

To properly analyse the data available, it is crucial to have a thorough understanding
of the sheep, including their movement patterns and behaviours and the reasons
behind them. Understanding how predators attack and the different types that
exist is also a vital part of the domain. This chapter provides information on the
various breeds of sheep, their typical behaviours in outfield pastures, and their
diurnal activity. Additionally, the protected predators in Norway will be described.
Lastly, the antipredatory behaviour of sheep will be covered.

2.1 Ethological and Behavioural Theory

2.1.1 Sheep Breeds

Sheep were among the first animals to be domesticated and have long played a
significant role in the human diet. In South Europe and Asia, sheep have been kept
as livestock since 5,000 BC, and in Norway since 3,000 BC. Sheep have been raised
worldwide in various climatic conditions, leading to the development of numerous
breeds, each with a distinct appearance and personality [5]. Breeds are frequently
divided into two groups: heavy breeds and light breeds. The heavy breeds’ large
size and weight result from their breeding for milk, meat, and wool. Because they
have lost some instincts and characteristics, these breeds depend more on humans
for survival. Contrarily, lighter breeds are more similar to wild sheep. They are
leaner, thinner, and run faster [5, 6].

The Norwegian Meat and Poultry Research Centre (Animalia) provides national
livestock control and is the basis for sheep breeding work in Norway [7]. In 2020,
more than 50% of all ewes in Norway were registered in Animalia. According to
the registry, there are two prevalent breeds, Norwegian White Sheep (NKS), and
Spæl, which represent 77% of all registered ewes. Together with Norwegian Fur
Sheep and Old Norwegian Sheep, these four breeds represent about 90% of all
ewes.
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NKS is a heavy breed with good fertility, meat and wool qualities [8]. In contrast
to lighter breeds, which typically have one lamb, a NKS ewe frequently has two
to three lambs. The NKS-ewes has lost some maternal instincts and other char-
acteristics while on pastures, leaving them more depend on people for survival
than lighter breeds. NKS rarely travel in flocks on pastures; instead, they split into
smaller groups composed of a ewe and her lambs. Furthermore, NKS are typically
quiet and tame rather than alert [1].

Spæl is the second largest breed in Norway, with 19% of all sheep in Animalia [7].
They have good mothering qualities, milk capacity, and little trouble giving birth.
On pasture, the sheep graze in large flocks. This is an advantage in herding and
protects sheep more against predators, as it is harder for predators to choose prey.
They are also faster and more alert than heavier breeds [1, 5].

Old Norwegian Sheep and Norwegian Fur Sheep are the third and fourth largest
breeds, categorised as light. Old Norwegian Sheep are the breed most similar to the
original and very first sheep in Norway. They are independent, vigilant, and have
even better maternity instincts than other light breeds [9]. Lastly, the Norwegian
Fur Sheep is also common in Norway and are bred for their smooth and evenly
coloured fur and share instincts with other light breeds [8]. Other typical breeds
in Norway are Blæset, Texel and Svartfjes [7].

2.1.2 Sheep on Outfield Pastures

Farmers send sheep to graze in outfield pastures to let the lambs grow big. The
grazing season usually lasts 12 weeks, from mid-June to mid-September, but can
vary based on environmental factors [10]. The ewes and their lambs are the ones
on outfield pastures, whereas grown rams usually graze in infield pastures closer to
the farm. During the summer, the flock roams freely on the outfield pastures before
eventually returning to their home farm [1]. While most sheep find their way back
independently, some may require assistance from the farmer for collection.

Habitat and Home Range

An animal’s territory can be described as an area they protect by fighting with others
of their kind [11]. This is especially true for predators. Sheep, unlike predators,
are not territorial animals as they do not actively guard their resources but rather
establish a home range. The sheep are usually sent to the same pasture each year,
familiarising them with the terrain and habitat. As the lambs follow their mothers,
the sheep are prevented from spreading out, allowing more efficient supervision
by the farmer. In addition, it is typical for daughters to graze in the same place as
their mothers did the previous year. Furthermore, farmers typically select ewes
and lambs that have remained within the grazing area for the previous year [10].
This way, the flock becomes more and more certain of their home range in the
outfield pastures each year [1]. The home range can be up to tens of km2 in size,
and the primary resources as food, water and escape terrain are found there [5,
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12]. Sheep typically disperse over a wider area while they graze, but when they
move between different areas within their home range, they tend to travel in fixed
routes following each other [5].

Flocking

The sheep usually travel within the pastures in family groups or social groups.
These groups often consist of 8–10 sheep and lambs. However, this number variate
according to the different breed. Lighter breeds like Spæl often stay together in
larger family groups or flocks. In contrast, NKS and medium to heavy breeds
frequently separate into smaller family groups, or only one ewe and her lambs.
This behaviour has been bred because sheep use more pasture when they scatter.
However, this makes it harder for the farmer to herd sheep [1, 5].

Seasonal Changes

During the grazing season, the climate and the quality of the pastures changes. As
a result, sheep alter their diet and habits based on factors such as topography and
vegetation, which greatly influence their grazing locations. Outfield pastures in
Norway can roughly be divided into mountain pastures, forest pastures, heather
pastures and beach meadows, where mountain pastures are most used. The habitat
choice for sheep will vary depending on the pasture type [5]. A study by Østereng
[13] observed a herd in Knutshøi in Innlandet during the grazing season in moun-
tain pastures in 2003. According to this study and a study by Warren and Mysterud
[14], pasture use changed from open grass habitat to a more closed bush habitat
towards the end of the season. The sheep in Knutshøi were also found at lower
altitudes as the season went on. However, there was a slight increase in altitude at
the start of the season and then a drop after the middle of July.

Sheep exhibit varying activity levels throughout the grazing season. A study con-
ducted by Tømmerberg [15] in 1979 and 1980 focused on sheep of the NKS breed
on outfield pastures. The research revealed that sheep increased their grazing
duration from around 10 hours in the early summer to over 11 hours in the late
season, indicating heightened activity. Conversely, the sheep exhibited greater
inactivity during the nights later in the season, potentially attributed to longer and
darker nights. Another noteworthy observation by Tømmeberg was that, as the
season progressed, the sheep started moving to higher elevations earlier in the
day. This behaviour was attributed to changes in daylight, as the days grew shorter
with earlier darkness.

2.1.3 Diurnal Activity

The amount and type of activity can define the diurnal activity of animals through-
out the day. During the day, sheep spend most of their daylight hours grazing and
chewing cud [5, 16]. They can spend 7-11 hours grazing and 5-9 hours ruminating



depending on the need for food [5]. The sheep are most active during the mid-
morning and late evening, making these the activity peaks during the day [5, 14].
The first day’s grazing period starts at dawn and lasts until midday. After this, the
sheep will lie idle for some hours to ruminate when the temperatures and the sun
peak [16]. Ruminating is an essential process, as it extracts more nutrients before
it is passed to further digestion. After chewing cud, the second grazing session will
resume in the mid-afternoon. Towards the night, the grazing decreases, and the
herd will often seek higher altitudes and move up in the terrain. In the morning,
the sheep will seek lower altitudes again to start their first grazing period [5].

During the day, the sheep will move differently. Østereng [13] observed that the
sheep used the lowest altitudes at midday and the highest at night. Additionally,
the study by Warren and Mysterud [14] demonstrated that the flock’s migration
from its starting place was slope-directed. In the late afternoon, the movement
changed direction to an upward slope. The sheep also used an increasingly steeper
slope from noon to midnight and decreased steepness from midnight to noon [13].
The reason for moving to higher ground could be to provide better visibility and
may help detect predators.

In addition to using ethological theory and empirical findings, a study by Salvesen
[17] used data-driven verification to identify four typical activity phases. The data
used were collected from several GPS collars from two different farms in Norway,
and the four characteristic activity periods were determined by a K-means machine
learning model. The periods were: 1) the first grazing period (04:30-10:30), 2) the
moderate period (10:30-16:30), 3) the second grazing period (16:30-22:30), and
4) the resting period (22:30-04:30). Salvesen’s results is coherent with ethological
theory and other observations.

2.2 Predators’ Impact on Norway’s Sheep Industry

In recent years, various steps have been taken to reduce the harm caused by
predators. These measures include installing fences, using GPS monitoring, and
minimising the duration of time that sheep spend on outfield pastures. Despite
efforts to reduce sheep losses, thousands are still injured and killed yearly. This
negatively impacts the welfare of the sheep and the economy of the farmers and
government.

Farmers can request financial compensation from the government for the lost sheep.
However, the damage must be proven to have been caused by a protected predator
to receive it. As documentation of an attack can be difficult, the number of killed
sheep may be higher than reported, and farmers may have been undercompensated.
Table 2.1 shows the predators that caused casualties in sheep in 2022, which led
to compensation to farmers.
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Table 2.1: Number of sheep injured or killed by predators that resulted in com-
pensation to farmers in 2022. The numbers are taken from Rovbase [3].

Predator Sheep Lamb Total Percentage
Wolverine 1468 12299 13767 41.5%
Lynx 968 7301 8269 25.0%
Golden eagle 5 3573 3578 10.8%
Bear 1629 1483 3112 9.4%
Unknown protected predator 574 2266 2840 8.6%
Wolf 320 1244 1564 4.7%
Total 4964 28166 33130 100.0%

2.2.1 Protected Predators

The main predator that preys on sheep on pastures is the wolverine. Wolverines
were responsible for 41.5% sheep losses in 2022, whereas most were lambs. Wolver-
ines have a huge home range and roam a lot of ground. It is capable of moving huge
and whole prey over several kilometres. Furthermore, the wolverine reserves food
for subsequent use [18]. The lynx also killed mainly lambs. Sheep are significant
prey for the lynx, but they primarily consume deer. It does not hoard after a hunt
but prefers to devour the prey immediately [19]. Whereas lynx and wolverine hunt
alone, golden eagles hunt in pairs and attack from above, descending quickly and
capturing the prey with their talons [20]. Due to its size, it mostly kills lambs. The
brown bear eats largely plant-based, but if given the chance, it will feed upon sheep
as well [21]. The bear accounted for 9.4% of all sheep losses, evenly distributed
between lambs and adult sheep.

Lastly, the wolf was responsible for 4.7% of the total loss. Wolves hunt in packs and
typically target large ungulates such as moose, but they also prey on sheep when
the opportunity arises. Their tendency to kill as much as possible stems from the
need to ensure future food availability. This behaviour, among others, has made
wolves unpopular among Norwegian farmers [22]. In Viken, the county with the
highest wolf density, wolves were responsible for 43.0% of sheep losses in 2021
[3, 23].

8.6% of the sheep losses in 2022 were due to unknown protected predators and
could be either wolverine, lynx, golden eagle, bear or wolf.

2.3 Antipredatory Behaviour

Domestic sheep have developed various behavioural responses to prevent predator
detection or capture, commonly known as antipredatory behaviour. Such responses
can be vigilance, flocking and flight to cover, and the chosen response is dependent
on the risk of predation [24]. Vigilance and flight distance are affected by the
animal’s threat assessment and are influenced by the environment, age, sex and



previous experiences with potential predators. Furthermore, research has shown
distinctions in reactivity among different sheep breeds and changes in the diurnal
activity when predators are present.

2.3.1 Variations Among Breeds

Different sheep breeds show differences in fear reactions [25]. Research has ob-
served that lighter breeds display stronger antipredatory reactions than heavier
breeds. In the study by Hansen et al. [26], various breeds were tested for anti-
predatory behaviour towards seven stimulus regimes over two years. The Old
Norwegian Sheep was significantly distinguished from other breeds, showing the
longest recovery time, the longest flight distance and the tightest flocking beha-
viour regardless of the type of stimulus regime. The modern Spæl was ranked
number two. Both are lighter breeds. The Norwegian Fur sheep, also a light breed,
showed the most offensive behaviour response towards simulated predators [26].

Hansen et al. [27] conducted a similar test, dividing the sheep breeds into lighter,
medium and heavier breeds. The study found that the lighter breeds were the ones
that showed the most antipredatory behaviour, followed by the medium breeds
and, lastly, the heavier breeds. The sheep responded differently to the simulated
carnivores: the lighter breeds fled promptly, the medium breeds stopped briefly
before fleeing, and the heavy breeds frequently approached the carnivore out of
curiosity. Hence, the study concluded that heavier breeds are more vulnerable to
predator attacks. A study by Landa et al. [28] also concluded that the heavier Dala
sheep breed was at a higher risk for predation from wolverine than lighter breeds.

2.3.2 Flocking

Flocking is also one behavioural response towards predatory. A cohesive group of
sheep, a herd or flock, are better at detecting predators and reducing the predator
risk [29]. An analysis done by King et al. [30] showed that sheep are strongly
attracted to the centre of the flock under threat. The herd and its movement can
also affect the behaviour of carnivores, making them more or less present. In a
study of Kinka et al. [31] in North America, it was observed that the likelihood
of detecting a large predator like a bear or wolf around sheep was reduced if the
sheep were in a large flock, meaning the herd temporally displaces the predators.

2.3.3 Diurnal Activity

Studies have shown that the presence of predators can impact the daily behaviour
of sheep in numerous ways. A study by Evans et al. [32] utilised GPS data from
sheep in Australia and observed that they increased their daily distance travelled
during periods when a wild dog was present [32]. Additionally, the sheep were
more active during night hours than normal if predators were present.
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2.3.4 Choice of Habitat

The choice of habitat also has an impact on how vulnerable sheep are to predation.
Østereng [13] observed that sheep tended to be prone to wolverine depredation in
bushy areas and during the evening compared to other times of day and in other
habitats.

2.4 Other Factors Affecting Sheep Behaviour

Multiple factors not caused by predators can affect the sheep’s behaviours to differ
from their normal movement during the day. Altering in movement patterns may
be caused by illness, injury, terrain, weather conditions and other stressors like
humans or dogs.

In 2020, approximately 85,000 sheep were lost due to causes unrelated to predators
during the grazing season. This could have been due to parasite infestation, ticks,
accidents or other diseases [2]. When sheep get sick while on outfield pastures,
they may fall behind the flock, become lethargic, have less energy and generally
move more slowly than when healthy.

Weather conditions have an impact on how the sheep behave and move. Cold
or wet weather and/or rainy or foggy conditions significantly reduce the herd’s
overall activity [14]. This yields higher temperatures as well [5, 33]. The sheep
will usually travel to higher grounds if the weather is good, but they will stay on
lower grounds to find shelter if the weather is bad. The sheep will remain more still
during rainy or warm weather and will roam farther in cold and dry weather [5].
Regarding temperature, the sheep prefer moderate temperatures around 10-15
degrees [16, 17].

In the study by Salvesen [17], digital threshold markers of atypical sheep movement
on outfield pastures were found using machine learning on GPS data from collars.
Salvesen proposed some threshold markers that suggested abnormalities and could
further indicate that the sheep may have a problem. Each of the three variables,
temperature, altitude, and velocity, got a threshold, and Salvesen concluded that
irregularities should be found by viewing the thresholds in relation to each other.





Chapter 3

Theory: Machine Learning

This chapter will describe the fundamental principles of machine learning, followed
by an explanation of the three learning algorithms utilised in the analysis.

3.1 Machine Learning

Machine learning is a broad field of concepts and definitions, but it comes down
to the questions of constructing computer programs that automatically improve
with experience [34]. This can be done without explicitly coding these programs.
Machine learning separates itself from traditional programming by not using the
computer to get output, but using it to create a new program, also called a model.
This is visualised in Figure 3.1. The built program can be used to make necessary
decisions and give expected outputs from new inputs [35].

Figure 3.1: Machine learning paradigm. Machine learning models are created as
output by the computer and can be further used in decision-making. Reprinted
from Practical Machine Learning with Python (p.6), by D. Sarkar, 2018, Springer.
Copyright 2018 by Springer.
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More formally, Tom Mitchell has made a definition often used to describe machine
learning:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E [34, p.4].

The computer program mentioned in the definition can also be called a learning
algorithm, which is a program that is trained and optimised using machine learning.
There are different types of learning methods which make use of various learning
algorithms. This thesis has applied two types of learning methods; supervised
and unsupervised learning, utilising the learning algorithms K-means, Density-
Based Spatial Clustering of Applications with Noise (DBSCAN), and Random Forest
Classifier (RFC), further described below.

3.2 Unsupervised Machine Learning

Unsupervised machine learning means that there is no human guidance involved
in the learning process. As presented in Figure 3.1, the output provided to the
computer is optional, meaning it is possible to leave out the output and only
provide input data to the model. This is called unsupervised learning and aims to
learn patterns and relationships within the data without providing output labels.
Predictions are not the goal of unsupervised models, but rather extracting useful
information [35].

Unsupervised machine learning can be divided into multiple tasks. However, clus-
tering is the task used in this thesis and will be explained further. The basic strategy
shared by all clustering techniques is the calculation of similarities followed by
using the results to group the data samples [36]. Clustering algorithms extract
meaningful information from data and find relationships among the features. The
data with some similarity are put into the same group, called clusters. The al-
gorithms are not trained or given any knowledge regarding the data features or
associations beforehand, hence the name unsupervised machine learning [35].

3.2.1 K-means

K-means is a partition-based cluster method. It is a simple algorithm capable of
clustering quickly and effectively [37]. The algorithm tries to find the centre of
each cluster and assign each sample to the closest cluster by a distance metric.
These centres are called centroids, and the number of centroids is decided when
initialising the algorithm. To find the distance between the samples the Euclidean
distance metric is used seen in Equation 3.1.

d(x i , c j) =
q

(x i − c j,x)2 + (yi − c j,y)2 (3.1)
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x i and yi are the values of the variables for the i-th data point, c j,x and c j,y are the
values of the variables for the j-th cluster centroid, and d(x i , c j) is the Euclidean
distance between the i-th data point and the j-th cluster centroid. The algorithm
runs in iterations by choosing centroids for each cluster and assigning each sample
to the cluster with the closest centroid using the Euclidean distance metric. The
K-means algorithm can be described as follow:

1. Select k samples as centroids representing one cluster each.
2. Assign each sample to the cluster with the closest centroid.
3. Re-initialise the centroids by finding the average distance of all samples in

the cluster.
4. The second and third step runs in iteration until the centroids no longer

change position.

The algorithm’s step-by-step process can be viewed in Figure 3.2. In the top left
image, the centroids are initialised. On the top right, each sample is assigned a
cluster. The centroids are updated in the centre-left, and on the right, they are
reassigned to a cluster. The algorithm runs another iteration in the last row, finding
a solution.

Figure 3.2: The K-means algorithm finds a close to optimal solution in three
iterations. Reprinted from Hands-On Machine Learning with Scikit-Learn, Keras,
and TensorFlow by A. Géron, 2019, O’Reilly. Copyright 2019 by O’Reilly.



The K-means algorithm is guaranteed to converge to a finite number, and that
number is usually pretty small. However, it may not converge to the right solution,
but to a local optimum. This may depend on the centroid initialisation. Because of
this, it is necessary to run the algorithm several times with different initialisation of
the centroids to avoid sub-optimal solutions. K-means uses a performance metric
called inertia (3.2) to find the optimal solution. The following formula gives inertia:

iner t ia =
n
∑

i=1

k
∑

j=1

d(x i , c j)
2 · 1c j = Ci (3.2)

n is the number of data points, k is the number of clusters, and d(x i , c j) is the
Euclidean distance between data point x i and cluster centroid c j. The inertia is
determined by calculating the distance between each data point and its centroid.
The algorithm keeps the model with the lowest inertia, indicating that the data
points within each cluster are closer to their respective cluster centroids [37].

The number of clusters must be manually set before running the K-means algorithm.
In some cases, the number of clusters can be determined by looking at the data
plotted in a graph. As an example, one can see in Figure 3.2 that the samples form
five areas which can be set as the number of appropriate clusters. However, it is
not always easy to determine the number of clusters by only looking at the data.
Nonetheless, there are many techniques to determine the number of clusters, and
one of them is called the Elbow method [35, 37].

Elbow Method

The Elbow method uses the performance metric inertia of K-means to find the most
suitable number of clusters. The inertia is plotted as a function of the number of
clusters k. The curve of the graph will then often consist of a drop called the elbow
point. This is the drop where k higher than the elbow means a small decrease in
inertia score, and k smaller than the elbow means a dramatic increase in inertia
score. This point can be used as a suitable number of clusters. An adequate model
has low inertia and a low number of clusters k. However, this is a trade-off because
as k increase, inertia decreases. More techniques can be used to find the number
of clusters and need to be adjusted based on the specific data and goal of the task
[37].

3.2.2 DBSCAN

DBSCAN is also a clustering algorithm defining clusters as continuous high-density
regions. The algorithm is based on the concept of density: data points located in
high-density regions are considered part of a cluster, while those in low-density
regions are considered noise. DBSCAN can detect any number of clusters of any
shape and is robust to outliers. However, if the density varies significantly between
the clusters, it might not be able to capture every cluster adequately [37].
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In Figure 3.3, one can see how the outcome of the two algorithms K-means and
DBSCAN would be on the same data set where both has detected three different
clusters. As the figures illustrate, the K-means algorithm assumes that clusters
are spherical and have the same size. DBSCAN, on the other hand, can detect
clusters of any shape and size. Another important factor is that DBSCAN can detect
the outliers and not assign them to the clusters. This can be validated in Figure
3.3b where the outliers are the samples coloured purple outside and in between
the circles. Compared to Figure 3.3a, the K-means algorithm has assigned each
outlier to the different clusters. This is an example of a data set where DBSCAN
would perform better than K-means. However, the two algorithms are suitable for
different types of data depending on the goal of the task.

(a) K-means clustering. (b) DBSCAN clustering.

Figure 3.3: Differences in how the K-means and DBSCAN algorithm clusters on
the same data set.

DBSCAN does not require predetermining the number of clusters beforehand as in
K-means. Instead, DBSCAN uses two parameters to define a neighbourhood around
each point: ε (epsilon) and min_samples. As with K-means, Euclidean distance can
be used as the distance metric. ε determines the maximum distance a point can be
from its nearest neighbours and still be considered a part of the same cluster. This
area of samples is called the ε-neighbourhood of the sample. A sample needs to
have a certain amount of other samples in its ε-neighbourhood to become a core
instance, which is the samples positioned in the dense areas. min_samples is the
other parameter of the DBSCAN instance that defines how many other samples
must be in the ε-neighbourhood for the current sample to become a core instance.
Described in another way, this value is the fewest number of samples required to
form a cluster [37, 38]. The DBSCAN algorithm explained in simple terms:

1. Find each sample’s ε-neighbourhood by counting the number of sample
located within ε from it.

2. The sample becomes a core instance if it has min_samples or more samples
in its ε-neighbourhood.



3. All samples in a neighbourhood of a core sample are assigned the same
cluster.

4. All samples not in a neighbourhood of a core sample or in a core sample
itself are outliers.

5. Recursively, the clusters are expanded by doing calculations of the neigh-
bourhood for every neighbouring sample.

The set values for the parameters of the DBSCAN instance, ε and min_samples,
have a huge impact on the result of the algorithm. The parameters are normally
set using domain knowledge about the data set and the preferred result regarding
the number of clusters and outliers. However, selecting these parameters may be
difficult.

Elbow Method

The Elbow method can be used to determine ε. This is done by calculating the
average distance between every sample of the data and its min_samples-nearest
neighbours and then sorting the results in descending order. The elbow curve can
be determined by the results plotted in a graph called a k-dist graph [37, 38].

3.3 Supervised Machine Learning

Supervised machine learning involves using a training set that includes labelled
desired solutions, hence the name "supervised." A model is trained to make pre-
dictions or decisions based on input data and the corresponding output labels.
The goal is to train the algorithm to learn the relationship between the input and
output data to predict the output for new, unseen data accurately.

There are several supervised machine learning algorithms designed for different
problems. This thesis needs a classifier, meaning an algorithm that classifies a data
set by giving each sample a predicted label, and RFC was chosen as an appropriate
algorithm.

3.3.1 Random Forest Classifier

RFC is an ensemble learning algorithm and is one of the most powerful algorithms
available today despite its simplicity [37]. It uses ensemble learning by generating
and combining multiple models, Decision Trees, to improve the performance of the
overall model [39]. A group of predictors is called an ensemble making the RFC
an ensemble of Decision Trees [37]. To understand how the RFC algorithm works,
one must first understand the fundamental component of the RFC: Decision Trees.

A Decision Tree is a graph consisting of nodes and edges in the form of a tree, as
seen in Figure 3.4. Decision Trees classify instances by sorting them down the tree
from the root to some leaf node, which provides the classification of the instance
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[34]. Each node specifies some test for an attribute or feature, and the branches
descending from that node correspond to a possible value the node can take. An
instance is classified by going from the root node to the leaf node, moving down
through the tree, and taking actions corresponding to that instance.

Figure 3.4: A Decision Tree representation. An example is classified by sorting
it through the tree to the appropriate leaf node, then returning the classification
associated with this leaf. In this case, the output can be either attack or no attack.

The RFC consists of a collection of individual Decision Trees where each tree
predicates an output. The output of the RFC is determined by aggregating the
output of the individual Decision Trees. The class with the most votes becomes
the prediction of the model. The voting classifier is a popular ensemble method
combining multiple weak classifiers to form a strong classifier. Interestingly, this
approach has been shown to achieve often a higher precision than the best predictor
in the ensemble. Even if each classifier may be a weak learner, meaning that
it performs slightly better than random guessing, the ensemble can still be a
strong learner capable of achieving high accuracy. This is provided that there is an
adequate number of weak learners and that they are sufficiently diverse. One way
to get diverse learners is to use the same training algorithm for every predictor
and train them on different random subsets of the training set with replacement .
This is called bootstrap aggregating [37]. The RFC algorithm works as follows:

1. Split the data into training and testing sets.
2. Randomly select a subset of the training data.
3. Randomly select a subset of the input features.
4. Build a Decision Tree using the selected data and features.
5. Repeat steps 1-3 to build a collection of Decision Trees. This makes up the

forest.
6. To make a prediction for a new input, aggregate the outputs of every Decision

Tree and assign the classification that wins the majority vote.



The flow of the RFC is depicted in Figure 3.5.

Figure 3.5: The flow chart of a RFC. Different random subsets of the training data
train the diverse predictors. The sample is given the predictors, and a prediction
for each Decision tree is the output. In the end, all the predictions are aggregated,
and the majority vote becomes the prediction of the RFC

RFC models are generally considered black box models, meaning it is difficult to
understand how and why the model arrived at its predictions [37]. However, it is
possible to check their calculations used to make predictions and measure each
feature’s relative importance [37].

Overfitting and Underfitting

In the original paper on Random Forest by Breiman [40], the problem of overfitting
is discussed. Overfitting is the case when the built model is so specific to the training
data that it fails to make any generalisation over other subsets of the data [35].
When the model overfits, it finds specific patterns in the data. As a result, the
model perfectly matches the training data but fails to perform well with untrained
data. On the contrary, a model may underfit. That is when the model fails to
learn anything about the data, its underlying patterns, and relationships [35].
The algorithm can neither model the training data nor generalise to new data. As
known, RFC are built upon several individual Decision Trees and they are prone
to overfitting [37]. The RFC algorithm is proposed to address this problem and
is more accurate and robust. Using a random subset of the features and training
data to construct each decision tree, RFC helps reduce the risk of overfitting and
improve the model’s generalisation performance [40].
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3.3.2 Performance Measures

Various performance measures can be used to evaluate the performance of a su-
pervised machine learning model. These include cross-validation, recall, precision,
accuracy, F1-score and Area Under Curve (AUC) score.

Cross-validation

Cross-validation is a way to evaluate a model [37]. It is a technique used to assess
the model’s generalisation ability on unseen data by partitioning the data set
into subsets and iteratively using them for training and testing the model. Cross-
validation gives a more robust and reliable estimate of the model’s performance
and aids in model selection and parameter tuning.

Confusion Matrix

Another way to evaluate a binary classifier is to use a confusion matrix that
compares predictions with actual targets [37]. It contains the number of true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).
A confusion matrix will also provide more concise metrics like accuracy, precision,
recall and F1-score. Precision is the ratio of true positives to all positives and is
shown in Equation 3.3.

Precision=
T P

T P + F P
(3.3)

Recall, also known as the sensitivity or true positive rate, is the ratio of positive
instances correctly detected by the classifier (Equation 3.4).

Recal l =
T P

T P + FN
(3.4)

F1-score is obtained by combining precision and recall into a single metric as seen
in Equation 3.5. It is a simple way to compare two classifiers [37]. It is a harmonic
mean of precision and recall, which gives more weight to lower values. Thus, a
classifier can only achieve a high F1-score if both recall and precision are high.

F1= 2 ·
precision · recal l
precision+ recal l

(3.5)

AUC Score

The Receiver Operating Characteristic (ROC) curve is a commonly used perform-
ance measure for binary classifiers as it offers a more nuanced evaluation compared
to traditional accuracy metrics. It compares the true positive rate against the false
positive rate at different thresholds and the AUC provides an overall evaluation



of the model’s ability to distinguish between positive and negative instances. A
perfect classifier would have an AUC score of 1, while a purely random classifier
would have a score of 0.5. When the score is less than 0.5, the model performs
worse than random guessing and misclassifies the positive and negative classes.
Figure 3.6 provides an example of a ROC curve [37].

Figure 3.6: An example of a ROC curve. The dotted line represents the ROC
curve of a completely random classifier. An effective classifier remains as far to the
top-left and away from that line as feasible. Reprinted from Hands-On Machine
Learning with Scikit-Learn, Keras, and TensorFlow by A. Géron, 2019, O’Reilly.
Copyright 2019 by O’Reilly.



Chapter 4

Method

This chapter covers the methodology for understanding, preparing, and analysing
data. A Exploratory Data Analysis (EDA) have also been conducted to identify any
necessary preparations before the analysis and are presented below.

4.1 CRISP-DM

CRoss Industry Standard Process for Data Mining (CRISP-DM), a thoroughly docu-
mented and tested industry standard process for data mining and analytics projects,
provides a robust framework for conducting research in machine learning and
data analytics [35, 41]. This methodology offers a structured approach, ensuring
credibility and reliability in the research conducted. This thesis has applied ma-
chine learning and statistical analysis, where iterative and adaptive approaches
are often required. The flexibility of CRISP-DM enables adaptation to emerging
insights, knowledge, or findings, making it a suitable choice for the project.

The CRISP-DM work method comprises six phases that follow an agile and iterative
approach. These steps may be repeated or adjusted as more knowledge is gained.
An overview of the six steps involved in the CRISP-DM follows below:

1. Business understanding: Understanding the business context, the environment
of the given problem, the business objectives, and the data mining goals are the
main focus of the initial phase of CRISP-DM. This phase aims to truly understand
the problem and how data science might be used to solve it. It’s critical to gain a
thorough understanding of the problem and insights into the domain. This includes
acquiring domain knowledge relevant to available data and knowing the existing
solutions to the problem and what needs improvement. Establishing a strong
business understanding will also be crucial in later analysis. To conduct a thorough
deductive analysis in this thesis, the theory surrounding Norway’s sheep farming
industry and the well-being of sheep on outfield pastures have been explored. This
also included understanding predators and the frequency of sheep attacks.
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2. Data understanding: The second phase builds on the previous phase’s ground-
work by concentrating more on the data and how to find, gather, and analyse it
to support the objectives. Furthermore, a major part is investigating the available
data and understanding the attributes. Along with describing and analysing the
data, this also entails visualising it, detecting relationships between the features,
and verifying the quality of the data. Neglecting this phase can have a cascading
adverse effect later and should therefore be thoroughly done [35]. This thesis aims
to analyse and comprehend data gathered from a sheep farmer and data related
to predator attacks in the surrounding region.

3. Data preparation: This phase is the most time-consuming and is estimated to
take up to 80% of the project’s time [41]. The final data is prepared for use in
machine learning algorithms and statistical analysis. Included steps are selecting
features, cleaning the data, constructing the data, integrating the data and format-
ting the data. The occurrence of errors, anomalies, and missing values must be
examined and managed. Furthermore, new features may be generated, and the
most relevant features are selected for usage in the models.

4. Modelling: Different models are created, experimented with, and adjusted in
the modelling phase. The data cleaned and organised in the previous stage will be
utilised as input for the models. The model’s performance will be evaluated based
on business objectives and success criteria. It is important to achieve a satisfactory
level of performance based on domain knowledge. This may require going back and
repeating previous steps. This thesis aims to identify patterns in sheep behaviour
through clustering algorithms and investigate the possibility of predicting predator
attacks using a classifier algorithm.

5. Evaluation: In the fifth phase, it’s crucial to assess the final models and the
presented results for their applicability to the problem and business objectives.
The entire process should be reviewed and evaluated, and recommendations for
further work should be made. It is important to consider whether refining the
business understanding or objective is necessary and suggest modifications in
subsequent iterations if needed. This thesis aims to provide research based on data
that supports previous studies on sheep behaviour during predator attacks. It also
aims to substantiate future research working on improving livestock management.

6. Deployment: Preparing the models for deployment is necessary to complete the
process. This involves creating a comprehensive report on the project, presenting
the findings and major insights. Additionally, proposing a maintenance and monit-
oring plan for future needs is recommended. This thesis will test the feasibility of
implementing machine learning models and adding to existing research. Thus, the
deployment phase will be omitted.
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4.2 Tools and Libraries

The programming language used for coding was Python [42]. To handle the data,
the library Pandas was used [43]. Pandas is a data analysis and manipulation tool
built on Python. Pandas help display data in a readable and useful manner and are
well-suited for working with data sets. The data set is represented in a DataFrame
object with rows and columns containing the information. The plots in the thesis
are made with the data visualisation libraries Matplotlib, Plotly and Seaborn [44–
46]. To build the machine learning models, the open source library Scikit-learn
was used [38]. The EDA, data cleaning, feature engineering and machine learning
code files can be found in a GitHub repository with a link in Appendix A.

4.3 Data Understanding

Data understanding is the second step in the CRISP-DM method. It includes a
brief data description analysis which is the first initial analysis of the data [35].
Subsequently, an EDA will be conducted where the goal is to explore. Two sets of
data were collected for this project, and will be discussed in detail below.

4.3.1 Data Description

Sheep Data from Meråker

The sheep data from Meråker is obtained from one farmer from 2015 to 2021,
during the grazing period of the sheep. The major part of the sheep was of the
breed NKS, while the remaining was Svartfjes. Each row in the data set repres-
ents the geographic location of an individual sheep at a specific moment. The
original data set contained nine columns and 463,758 rows. The columns, also
called features, are described in Table 4.1. The most important features are the
geographical coordinates, st_x and st_y, and date_time. The sheep’s identification
number, individual, and source_id refer to the same individual. Additionally, the
data set includes the sheep owner’s name and identification number.

Table 4.1: Column description of the raw sheep data.

Column name Data type Description

source_id int Identification number of the GPS collar.

individual int Identification number of the sheep.

date_time date time The date and time of the sample.

st_x float Longitude position of the sheep.

st_y float Latitude position of the sheep.

name string Name of the owner.

owner_id int Owner identification number.



Distributed over the years, 744 sheep wore a GPS collar. The number of rows in
the data and the number of sheep wearing a GPS collar each year can be seen in
Table 4.2. Some individuals were present in several of the years. The data from
Meråker will be referred to as sheep data in the thesis.

Table 4.2: The initial data size and the number of sheep each year.

Year Number of Rows Number of Sheep

2015 33226 106

2016 60957 103

2017 47117 102

2018 45249 98

2019 61952 109

2020 69559 105

2021 145698 121

Total 463758 744

Predator Data from Rovbase

Rovbase is a national database that contains geographical records of observations
and attacks on livestock caused by predators in Norway and Sweden [4]. The
predators include bears, wolverines, wolfs, lynxes and golden eagles. The data
in Rovbase are based on information and tips from local people in addition to
systematic fieldworker registrations and laboratory analyses of sample discoveries.

Certain criteria were applied to extract necessary information from Rovbase. The
data had to meet the following requirements: it should be an attack record, not an
observation, from 2015 to 2021, and from the geographical location of Meråker.
The extracted raw data contained 379 rows and 27 columns. It was in a convoluted
state, with six different geographical coordinate systems and a lot of interpretation
by the submitter of the attack. Nine columns were deemed relevant and used
further in the project. They are described in Table 4.3. Throughout the thesis,
Rovbase data and predator data will be used interchangeably when referring to
this data.

4.3.2 Exploratory Data Analysis

During an EDA, the main objective is to explore and understand the data in
detail [35]. Some major tasks include exploring, describing and visualising the
data attributes, selecting the most important ones, and finding correlations and
associations. It is a more comprehensive analysis to gain a deeper insight into
the data sets, and helps to understand what needs to be done during the data
preparation
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Table 4.3: Column description of the raw predator data.

Column Name Data Type Description

Nord
(UTM33/SWEREF99 TM)

float GPS coordinate for latitude.

Øst
(UTM33/SWEREF99 TM)

float GPS coordinate for longitude.

RovbaseID string Identification number of the attack.

date_found date time Date when the submitter found the
injured or dead sheep.

date_from date time Date when the attack started.

date_to date time Date when the attack ended.

date_uncertain string Yes or no based on if the attack dates are
uncertain.

predator string The cause of the attack.

Sheep Data

All the data samples have been plotted in Figure 4.1. The outfield pastures can be
found in areas with the densest sample concentration. The red marker indicates
approximately where the farm in Meråker is located. Some samples are situated
far from Meråker, which can indicate GPS errors.

Figure 4.1: Map of all GPS locations of sheep from 2015 to 2021. The red marker
is the location of the farm.

To better understand the data, it was important to analyse the dates it represented.
The data should ideally have as many consecutive and cohesive dates as possible
for quality purposes. Figure 4.2 displays the dates included in the data set from
January through December. There are signals transmitted outside of the grazing



period for some years. However, there is a higher frequency of data samples for
all years from June to November. These dates are relevant in this thesis as they
correspond with the grazing season and potential predator attacks.
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2015
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ar

Figure 4.2: Dates of transmitted signals from the GPS collars worn by sheep from
January to December 2015 to 2021.

Additionally, the time stamps of the samples were analysed. Figure 4.3 shows the
number of time stamps grouped by hours in the entire data set. While the number
of samples varies by hour, there are some patterns in the time interval. Across
all data sets, the most frequent transmission times were at 02:00, 08:00, 14:00,
and 20:00, all 6 hours apart. The other hours have about the same number of
samples. Figure 4.4 displays the time stamps of one individual in 2021, visualising
a 4-hour time interval transmitted at 01:00, 05:00, 09:00, 13:00, 17:00 and 21:00.
In addition, there are occurrences of transmission on other times of the day. These
figures show that all hours are represented in the data set but with variations in
transmission frequency by year and individual.

A higher daily frequency of transmissions was observed at the beginning and end
of the grazing season. At the start, there may be more signals as the farmer checks
that the equipment is working and adjusts it to receive GPS coordinates. In the end,
there may be more signals as the farmer needs to keep track of the sheep’s location
more frequently for collection. It may be suggested to remove dates with a high
number of transmissions to avoid an imbalance in the number of transmissions
per date.
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Figure 4.3: Distribution of time stamps grouped by each hour for all sheep on all
data.
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Figure 4.4: Distribution of time stamps grouped by each hour for a single sheep
in 2021.



Predator Data

The data from Rovbase provides various details about attacks on sheep, including
the time, location, and type of predator involved. The predators responsible for
the attacks could be a wolverine, bear, wolf, red fox, lynx or golden eagle. If the
person reporting the attack were unsure of which predator was responsible, the
cause of the attack would be categorised as "unknown" or "unidentified protected
predator."

Figure 4.5: Locations of predator attacks from 2015 to 2021 in Meråker.

The map in Figure 4.5 illustrates the locations of predator attacks from 2015 to
2021, where one or multiple sheep were found injured or dead. The valley in the
lower region of Meråker has been the most frequent location for bear attacks, while
wolf attacks are more common in the higher terrain near the lakes. However, there
have been occurrences of attacks scattered throughout all of the sheep’s grazing
areas. Comparing this map to the map of sheep locations in Figure 4.1, it is evident
they walk in the same areas.

Table 4.4 show how many attacks each predator has been accounted for in Meråker.
The bear was responsible for most attacks making it the most lethal predator.
Wolves were the second most lethal predator, with 86 casualties.

The various attacks are also labelled with a date but without specific times. The
columns date_from and date_to indicate a range of possible dates for each attack.
The attacks varied greatly, some lasting for weeks or even months, while others
were brief, lasting only a day or two. Table 4.5 shows the duration of attacks.
On average, the attacks lasted for five days. Notably, it’s possible that the attack
happened on just one of the dates reported, as the exact date may be uncertain.
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Table 4.4: Reasons for sheep injury or mortality from 2015 to 2021.

Predator Attacks

Bear 174

Wolf 86

Unknown 80

Wolverine 21

Unknown protected predator 10

Golden Eagle 2

Red Fox 1

Lynx 1

Total 375

Additionally, several attacks were reported on the same day and approximately
at the same location. It is likely that these attacks were carried out by the same
predator. Since each row in the data set corresponds to a found sheep, the attacks
that occurred on the same day and location may be indicative of the same attack.

Table 4.5: The duration of attacks.

Duration in Days Number of Attacks
1 78
2 116
3 45
4 27
5 18
>6 94

The data set contains a feature that indicates the reliability of the attack dates.
72% of the attacks have a date range marked as certain, while the remaining 28%
are uncertain. This uncertainty affects the overall data quality, as almost one-third
of the attack dates are questionable. This must be considered when measuring the
quality of the analysis and models.

4.3.3 Data Quality Analysis

Recognising the data quality is the last step in the data understanding phase
[35]. Generally, there were not many missing values in the data from Meråker
and Rovbase. There were some inconsistencies regarding the GPS locations and
time stamps in the sheep data. Some GPS positions were erroneous, as they were
far from the normal grazing area. Understanding how sheep behave and move
between transmissions can be challenging due to the long intervals.



In the predator data, attacks occur across several days, making it challenging to
pinpoint the exact date of the attack. For instance, an attack that lasted three days
could have happened on only one of those days or a combination of them. Along
with the uncertainty of the attacks, each attack lacks a time stamp, which is a lack.
This presents a challenge when attempting to analyse sheep behaviour during
attacks, as the findings may be unreliable. However, the quality of the predator
data is acceptable and providing lots of information, but it may not fully align with
the objectives of this thesis.

Chapter 5 extensively discusses efforts to address the issues regarding data quality.



Chapter 5

Data Preparation

The data preparation process establishes the groundwork for statistical analysis
and machine learning and aims to address the issues found in the EDA. It plays a
vital role in determining the models’ performance and the analysis results’ accuracy.
After preparation, the data should be clean, new features should be added, and any
incorrect data points or formats should be fixed [35]. Each process step is explained,
starting with data wrangling, then feature engineering, attribute selection, and
scaling.

5.1 Data Wrangling

The key responsibilities of data wrangling involve rectifying missing or incorrect
data and identifying and resolving any inconsistencies or outliers [35].

5.1.1 Sheep Data

Each feature and sample of the sheep data were converted to its specific data format.
The missing individual IDs were found using their paired source ID from other
samples. Furthermore, the columns were assigned proper and understandable
names, and all duplicates were removed. Subsequently, the process of cleaning
and removing useless or erroneous samples began. It was advantageous to have as
many samples as possible for each individual to achieve the best results. Therefore,
keeping as much data as feasible was always attempted instead of deleting it.

Fix Erroneous Positions

The map in Figure 4.1 from the EDA shows that some samples are located far
from the outfield pastures surrounding the farm in Meråker. Additionally, a few
samples not included in the map were discovered thousands of kilometres away
from Meråker. It is likely that the GPS transmitter miscalculated the positions of
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these samples due to various factors such as a weak signal or low battery. The
obvious erroneous samples located more than 1,000 kilometres from Meråker were
removed. However, not all samples were as simple to distinguish between error
and abnormal behaviour. Since the project included the examination of abnormal
behaviour, it was crucial to avoid deleting too many data samples that may contain
such behaviour.

An article by Bjørneraas et al. [47] was used as inspiration and deemed a suitable
approach to remove erroneous samples. This article describes a method of screening
data sets containing GPS data without trading data accuracy for data loss.

Fixing the erroneous positions was done in two separate sessions. The first session’s
goal was to identify and correct samples that had a 100% chance of being a GPS
error. The code was iterated through one sample at a time, creating amovement
window. The movement window was defined as two data samples before and two
after the current sample, called x. Hence, the movement window consisted of five
samples. Further, the median of the latitudes and longitudes in the movement
window was calculated using the Haversine Formula, creating a new pair of latitude
and longitude. The Haversine formula can be seen in 5.1, and is an accurate way
to calculate the distances between two points on the surface of a sphere using the
latitude, φ1 and φ2, and longitude, λ1 and λ2, of the two points in radians [48].

d = 2r arcsin
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�

(5.1)

If sample x was located more than 100 kilometres from the median location of its
movement window, it was considered an error. The current sample’s latitude and
longitude were then replaced by the mean location of the sample before and after
itself.

The second session of the method was to detect and replace errors that were not
as significant. During the EDA, it was discovered that the sheep rarely travelled
more than a few hundred metres each hour, with a standard deviation of approx-
imately 900 metres. Using this knowledge, a threshold value of 15 kilometres was
established as the maximum distance a sheep could travel in one hour. Although it
was a high value, it was chosen to avoid the removal of data samples that could be
viewed as anomalous.

The same movement window found in the first session was used, but instead of
calculating the median, the mean position of the movement window was calculated.
If the distance from the current sample, x, to the mean position of the movement
window, was greater than 15 kilometres, the location of x was considered erroneous.
The current sample’s latitude and longitude were replaced by the mean location of
the sample before and after.
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A manual inspection was also conducted after the two sessions of the approach.
These were fixed in the same way as the other GPS errors. Approximately 7,000
rows were deleted from the data in this cleaning process.

Remove Samples on Infield Pastures

According to the farmer, the sheep are transported from the infield pastures close
to the farm to the outfield pastures in June. During September, all sheep should
have returned themselves or been collected by the farmer. However, sheep are sent
to pastures in flocks on different dates and return in small groups. This means that
the preferred dates in the data set are June to September, with a variation in date
for each individual. It was decided that samples dated outside of June-September
were not useful and therefore removed, as the goal was to observe the sheep during
their time on the outfield pasture.

Furthermore, it was desired to remove the remaining samples located on the farm.
This decision was made because sheep exhibit different behaviours when they are
free to roam on the outfield pastures as opposed to when they are within the fenced
areas of the infield pastures. Mixing samples from both areas could potentially
interfere with the accuracy of the analysis.

Removing the samples left on the infield pastures was a bit complex, as every
individual had different dates than when they were sent to the outfield pasture.
However, it was accomplished by identifying the farm’s centre as only one location
with a single latitude and longitude value. The infield pasture was defined as being
within 1.5 km of the centre, and the outfield pasture as anywhere else. The value
of 1.5 km was selected after manually looking over a map on which all the data
were plotted and defining main grazing areas. The date when the sheep moved 1.5
km from the farm was considered the date when it was sent to the outfield pasture.
Every data sample of that individual before this date was deleted. Subsequently,
every sample after the sheep returned to the farm was deleted. The code also
discovered that many sheep did not leave the farm during the summer. These
individuals were removed from the data set.

This method performed well on data from 2018 to 2021 but was ineffective from
2015 to 2017 due to differences in location. Figure 5.1a shows that the sheep
grazed closer to the farm in 2015-2017 compared to 2018-2021 seen in Figure
5.1b. From 2015 to 2017, too much data would be deleted by using this method.
Hence, a manual inspection was required. A start date of the grazing period was
chosen when the density around the farm decreased, meaning that most sheep
were in the outfields. Samples before this date were deleted. When the density
increased, the sheep returned to the farm, and subsequent samples of this date
were deleted. By doing it manually for three years, it was ensured that no usable
data was deleted. In total, approximately 100,000 samples were removed from
the whole data set.



(a) Map of sheep from 2015-2017. (b) Map of the sheep from 2018-2021.

Figure 5.1: The sheep data is divided into two sets and visualised on a map. The
red marker is approximately where the farm is located.

Individuals with Missing Dates and Time Stamps

The EDA discovered some individuals with missing dates, meaning no GPS trans-
missions during those days. Some individuals also had days with varying amounts
of transmission with undefined time intervals. Missing dates were considered a
problem as it would interfere with the results if there were large differences in
the size of data samples on different dates. To clean the data without deleting too
much, some criteria were defined. If any of the following criteria were met, the
individual was deleted from the data set:

• The individual had more than 10 missing dates randomly or subsequently in
the middle of the grazing period.
• The individual had less than 15 dates in total.

In addition, if a sheep had missing dates at the beginning or end of its data set,
the period until the missing date was deleted to keep most data continuous. After
the removal, some sheep still had scattered days missing, but keeping most of
the individuals was considered more crucial than missing a few dates. The data
analysis was not dependent on having 100% continuous data; hence, the missing
dates would not significantly affect the result. Approximately 95,000 rows were
deleted from the data set after this process.

Figure 4.3 showed that a significant portion of the dates had time stamps of 6-hour
intervals at 02:00, 08:00, 14:00 and 21:00. Apart from these times, the other
hours had nearly equal distribution. Changing the samples so that they were all
represented by the four different hours would not necessarily be a good idea,
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as the behaviour of the sheep at that precise moment could be significant when
examining diurnal activity. As a result, it was chosen to preserve the time stamps
despite slightly more unordered data in favour of more accurate data.

5.1.2 Predator Data

The data set from Rovbase contained fewer rows; thus, it was less complex to
clean. The columns were converted to the right format and given suitable names,
making them easier to work with. The location data were given in Universal
Transverse Mercator (UTM) coordinates. These coordinates were transformed into
latitude and longitude using an open Application Programming Interface (API)
from Geonorge [49, 50]. Having the coordinates as latitude and longitude was
preferable, as the charting tools used in this project only accept these values. The
API approved an array of UTM33 East and UTM33 West coordinates and returned
the corresponding values in latitude and longitude.

The data contained a date range for when the attack had happened, and an
attack could span over several days and weeks and be uncertain. This led to many
uncertainties in the data set, making it harder to analyse sheep behaviour during
attacks. To decrease the uncertainty, attacks spanning more than three days were
discarded. After cleaning, 235 assumable attacks remained from June through
September from 2015 to 2021.

5.2 Feature Engineering

Feature engineering is the process of generating new features based on existing
ones [35]. Different features were produced to be used further in machine learning
models and statistical analysis.

Temperature

The purpose of adding temperature was to see if there was a correlation between
the behaviour of the sheep and the temperature. To derive the new feature, Seklima,
a service by The Norwegian Centre of Climate, was used along with the sheep’s
time stamp and position [51]. An appropriate meteorological station in Meråker,
Vardetun, with an elevation of 169 Meter Above Mean Sea Levels (mamsls) was
chosen as it was the closest. A data set containing the temperature for every hour,
from June through September, for 2015 to 2021 was downloaded from Seklima.
Further, the weather and sheep data’s time stamps were matched and added.

Altitude

Altitude was thought to be a desirable feature to have because it might reveal a lot
about the behaviour of the sheep. An open API provided by Geonorge was used
[52]. The request was very time-consuming and resource-demanding, resulting



in the need for some adjustments to make the code more effective. Threading
was implemented, and each thread submitted a request for 50 coordinates at a
time. Threading allows a single process to run concurrently. This means multiple
tasks can be executed at the same time, allowing for parallelism and improved
performance [53]. Using threading divided the time spent by six, as six threads
were implemented.

Velocity

The velocity was found between two samples by calculating the distance using
the Haversine formula in Equation 5.1 and the time difference between those
two samples. The velocity is given in metres per hour. It was deemed unnecessary
to include distance as a feature due to varying time intervals between samples.
Comparing distances travelled over different time periods, such as one hour versus
six hours, would not yield comparable results. Therefore, velocity was preferred.

Trajectory Angle

Generating the trajectory angle of the sheep would provide an additional indication
of how the sheep had been moving. It was found using the latitude and longitude
features. Each sample’s preceding, current, and following locations were used to
accomplish this. Two vectors were created from the two pathways that connect
the three locations. The dot product of the vectors was then used to calculate the
trajectory angle. However, when there was a significant change in direction, it was
preferable to obtain a higher number. As a result, an inverted angle was calculated.
The inverse angle of a trajectory can be seen in Figure 5.2.

Figure 5.2: Example from one individual. Inverse angle for two vectors obtained
from three GPS locations.
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Trigonometric Time

Comparing and analysing how sheep behaviour varied by season and day was also
desirable. Due to the linear nature of the numerical time, the hours of the day
are perceived one after the other. Because of this, a machine learning model will
consider the time range of 23:00 to 00:00 to be 23 hours apart when looking for
similarities, meaning that the two time stamps are unlikely to be grouped together.
Trigonometric time can be obtained using the sine and cosine functions, solving
the issue. The time stamp was converted to minutes based on how many minutes it
was placed from midnight. The sine and cosine values of minutes were calculated
using the formula in Equation 5.2 where x represents the number of minutes since
midnight and T represents the total number of minutes in a day.

sine_t ime = sin(2 ∗ pi ∗ x/T ) (5.2a)

cosine_t ime = cos(2 ∗ pi ∗ x/T ) (5.2b)

A 24-hour cycle can be obtained by charting the sine and cosine time in pairs, as
shown in Figure 5.3.

Figure 5.3: Trigonometric time represented by sine and cosine. It displays a
24-hour cycle where the top of the cycle represents midnight, and the bottom
represents noon. The chart is created using the first 2,000 samples of the data set.



5.3 Merging Sheep data and Predator Data

The requested data from Rovbase were intended for the supervised machine
learning analysis with the objective of predicting the presence of predators based
on sheep behaviour. To be able to use a supervised model and assess its predictive
ability, each sample of the sheep data had to be labelled with attack (1) or non-
attack (0) to indicate whether the sheep had been near an attack. This label was
added as a new attack feature on the sheep data. To determine whether the sample
was to be labelled 1, the following criteria had to be met:

• The date of the sample was within the range of the start date and the end
date of the attack.
• The sample was located in a radius of less than 1.5 km from the location of

the attack.

Different values were tested to find the appropriate radius size for analysis, as it
was necessary to have a certain number of positively labelled samples to ensure
accurate analysis. However, caution had to be taken to ensure the radius was not
too broad, as it would not have much impact on sheep behaviour if it were too far
from the attack. Conversely, a low radius would result in too few positive labels.
With the aforementioned criteria, 3,368 samples were labelled with 1, called attack
samples. Among these attack samples, there were 38 distinct attacks identified.
The rest, 236,114 samples, were labelled 0, hereby called non-attack samples.

5.4 Handling Imbalanced Data

Before implementing a supervised machine learning algorithm, handling imbal-
anced data is a critical step in preparing the data. A data set is considered to be
imbalanced when the majority of the samples come from one class [54]. After
merging the sheep and predator data, the attack to non-attack samples ratio was
1:70. This proposed a class imbalance problem as there were significantly fewer in-
stances of one class. Without a sufficiently large training set and enough examples
of both classification classes, a classifier may not generalise the characteristics of
the data. Due to the lack of a sufficient amount of attack samples, the model is
likely to overfit. To mitigate the issue of an imbalanced data set and hence minimise
the likelihood of overfitting, various methods can be used [54].

One common approach to mitigate class imbalance is sampling [54]. To obtain a
more evenly distributed allocation of examples in each class, the sampling methods
change the prior distribution of the training set of the majority and minority classes.
Three sampling methods were considered for the merged data set: undersampling,
oversampling, and a combination of these two. In undersampling, instances from
the majority class, the non-attack class, were removed. In contrast, oversampling
increases the number of minority instances, the attack class, by replicating them.
In the combination sampling method, the minority class was first oversampled
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and after undersampled. Synthetic Minority Oversampling TEchnique (SMOTE)
is a popular and more advanced oversampling method. For the minority class in
SMOTE, new, synthetic, non-duplicate samples were created and added to the data
set providing the algorithm with more attack instances to learn from [54].

All four techniques have been explored to address the imbalance problem. SMOTE
was deemed the best sampling technique for the data in this thesis and proved to
be the most effective compared to the other strategies. Thus, SMOTE was selected
to address the problem of an imbalanced data set.

5.5 Feature Scaling

Scaling and normalising data features is often necessary to keep machine learn-
ing algorithms from being biased. Models may be biased toward features with
particularly high magnitude values if raw values are used as input features. As it
was wanted to test various machine learning algorithms on the input features, it
was necessary to get the features on the same scale [35, 37]. Standardisation and
normalisation are two common ways of scaling features.

5.5.1 Standardisation

Standardising the features can give several benefits, such as improving the per-
formance of some machine learning algorithms, making it easier to compare the
relative importance of different features, and reducing the impact of outliers.
When the features are standardised, the mean values are subtracted, and the
resulting distribution is divided by the standard deviation to give it a unit variance.
Standardisation does not bind features to a specific range [37].

5.5.2 Normalisation

Normalisation involves shifting and scaling variables to a fixed range, typically
between 0 and 1. This decreases the impact of outliers and improves the perform-
ance of some models. Normalising the input data can improve the performance
of these algorithms by guaranteeing that each feature contributes equally to the
distance measure. This is crucial because elements with greater scales could affect
the distance measure more than smaller ones. The method involves taking each
data point and subtracting the feature’s minimum value, then dividing the result
by the range [37].

5.6 Attribute Selection

After cleaning and feature engineering, the relevant features were chosen for the
data sets. Each data set and their features are explained below.



5.6.1 Sheep Data

All the columns left of the sheep data can be seen in Table 5.1 along with a
description of each. These are the features that were used in the analysis. The data
set has a total of 239,444 rows.

Table 5.1: Column description of the sheep data.

Column Name Data Type Description

source_id int Identification number of the GPS collar.

individual int Identification number of the sheep.

date_time date time The date and time of the sample.

longitude float Longitude position of the sheep.

latitude float Latitude position of the sheep.

velocity float Velocity of the sheep from their prior location to the
current.

temperature float Temperature during the current position’s hour.

sin_time float Time represented trigonometric as sine.

cos_time float Time represented trigonometric as cosine.

angle float The trajectory angle of the sheep.

altitude float The altitude of the current position.

attack int Specifies if the sheep was 1.5 km in radius of an attack
on the current time. Either 1 or 0.

5.6.2 Predator Data

The data set from Rovbase contained 21 columns at first, and nine were considered
needed for further analysis. The columns kept from the data set, including the
new features generated, are described in Table 5.2. The data set has a total of 235
rows.

Table 5.2: Column description of the predator data.

Column Name Data Type Description

RovbaseID int Identification number of the attack.

date_from date The date when the attack was assumed started.

date_to date The date when the attack was assumed ended

predator string Type of predator involved in the attack.

latitude float Latitude position where the sheep was found.

longitude float Longitude position where the sheep was found.

altitude int Altitude where the sheep was found.
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Modelling

Three learning algorithms have been utilised in this thesis: DBSCAN, K-means, and
RFC. An iterative modelling phase has been conducted, adjusting hyperparameters
and features to optimise the models. Hyperparameters are parameters of learning
algorithms set before the learning process begins and can significantly impact
the performance of the models [37]. All models are trained on normalised and
standardised data and implemented using Scikit-learn machine learning algorithms.
The following section provides a detailed description of the model implementations
and optimisations.

6.1 K-means

Two versions of the K-means algorithm were developed, each with different hyper-
parameters, features, and objectives.

The first K-means model aimed to identify correlations between the sheep’s activity
and the time of the day. The selected features were velocity, sine time, and cosine
time. Sine time and cosine time represented the hour of the day and were needed to
see any diurnal patterns. Velocity is a way of interpreting the sheep’s activity level
during the day and was thus selected. The model’s task was to detect similarities
and relationships among these three features and then group them into clusters
based on these findings.

The objective of the second K-means model was to find relationships and similarities
between the behavioural features of the sheep without considering any features
regarding time. Velocity, trajectory angle, and altitude were chosen as behavioural
features because they provide information on how sheep move and behave. The
findings would be used to understand sheep’s behaviour and view them in relation
to predator attacks. The model’s results could also be used to substantiate theories
and other observations about sheep behaviour and movement patterns.
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Before implementing a K-means algorithm, it is necessary to determine the num-
ber of clusters. This is done by setting the K-means algorithm’s hyperparameter
n_cluster value. Choosing the right number of clusters affects the performance
of the model significantly. To determine n_cluster, the Elbow method was imple-
mented for both of the K-Means implementations. The elbow curve was four in
both cases as seen in Figure 6.1 and 6.2, indicating that the optimal number of
clusters was four.

Figure 6.1: Result of the Elbow method for K-means using the features velocity,
sine time and cosine time.

Figure 6.2: Result of the Elbow method for K-means using the three behavioural
features velocity, angle and altitude.
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6.2 DBSCAN

Similarly to the second implementation of K-means, the purpose of DBSCAN was to
discover correlations and similarities between sheep’s behavioural features without
considering any features related to time. Therefore, the three features, velocity,
angle, and altitude, were chosen. The clusters would differ from the clusters of
K-means as the DBSCAN algorithm can identify clusters of any shape and size and
detect outliers. The comparison of DBSCAN’s results with K-means’ results aimed
to either support K-means’ findings or provide new insights.

DBSCAN does not have a predetermined number of clusters but requires the
tuning of two hyperparameters: eps(ε) and min_samples. The optimisation of
the algorithm involved iterative tuning of these two hyperparameters, which
significantly impact the model’s outcomes and performance. min_samples was
initially defined as 1,000 based on the knowledge of the data at hand. The goal
was to avoid having numerous smaller clusters and too many outliers. eps(ε) was
set to be 0.02 by looking at the elbow point in the plotted k-dist graph seen in 6.3.

Figure 6.3: Result of the Elbow method for DBSCAN using the features velocity,
altitude, and trajectory angle.

The DBSCAN algorithm was repeatedly tested while the two hyperparameters
were adjusted. Table 6.1 contains an excerpt from the iterations, showing only the
iterations where eps(ε) was set to 0.02. By lowering or increasing ε, the number
of clusters got too high or too low. Setting min_samples to 1,000 resulted in too
many outliers, and setting it to 300 resulted in too few outliers. After numerous
iterations, it was decided to use min_samples = 400 and eps(ε) = 0.02 from



iteration four giving a satisfactory trade-off between the number of clusters and
the number of outliers. It produced a result of six clusters and 56,249 outliers.
It could look like iteration five was a good option, considering the low amount
of outliers; however, that resulted in one of the clusters containing more than
150,000 samples, meaning that the distribution of samples in the other clusters
were very poor.

Table 6.1: Six of the iterations ran with the DBSCAN algorithms. The hyperpara-
meters of iteration four resulted in the best performance of the model.

Iteration eps(ε) min_samples Clusters Number of Outliers
1 0.02 1000 4 196262
2 0.02 600 9 122760
3 0.02 500 7 84376
4 0.02 400 6 56249
5 0.02 300 4 33885

6.3 Random Forest Classifier

The RFC model aimed to detect nearby attacks by analysing the sheep’s movement.
The goal was to correctly label samples as non-attack (0) or attack (1) in the test
set. Hence, the attack feature was used as the output label. Moreover, the model
used velocity and trajectory angle as the only features to avoid leaking information
about the area or attacks. Including date, altitude, or GPS positions would have
made the model invalid by revealing information about the attacks.

Optimising the RFC was done by tuning the hyperparameters and addressing the
class imbalance problem. Additionally, it was necessary to decide how the training
and test sets would be divided, as the split had to be equal for all subsequent
iterations.

6.3.1 Determining Optimal Data Split

Cross-validation was used to determine the optimal split between the training and
test sets. It was found that there was no significant difference between an 80/20
split and a 90/10 split, but the latter was chosen as it was desirable to train on
as much data as possible. As the data used was imbalanced, the splitting of the
data was done in a stratified manner. Stratified sampling ensures that each class
in the target variable, attack and non-attack, is represented proportionally in the
training and testing sets.

6.3.2 Hyperparameter Tuning

In the process of tuning the hyperparameters to optimise the model’s performance,
several hyperparameters can be adjusted, but using them all is unnecessary. As the
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data is imbalanced, it is important to prevent the model from overfitting. Therefore,
the most relevant hyperparameters reducing the likelihood of overfitting selected
were n_estimators, max_depth, and class_weight.

n_estimators controls the number of trees built in the forest. By increasing the
number of trees, the model can learn from different parts of the data, reducing
overfitting. max_depth controls the maximum depth of each individual tree, redu-
cing the complexity of the model and preventing overfitting. Lastly, class_weight
adjusts the weights of the different classes in the imbalanced data set. By assigning
higher weights to the minority class, the model becomes more sensitive to pre-
dicting attack instances, leading it to prioritise and pay greater attention to this
class during the training process. Adding this hyperparameter will help reduce the
problem of an imbalanced class, as the minority class will be less underrepresented.

A grid search was carried out to identify the optimal value for these hyperpara-
meters. A grid search simply takes many potential values for each hyperparameter
and tries all possible combinations with other hyperparameters. The grid search
suggested these values:

• n_estimators: 100.
• max_depth: 100.
• class_weight: 0: 1, 1: 100.

A grid search is quite simple, but it suffers from one serious drawback; one should
manually inspect and supply the actual parameters [35]. Therefore, the hyper-
parameters were manually and empirically adjusted as well. The hyperparameters
were finally set as followed:

• n_estimators: 200.
• max_depth: 100.
• class_weight: balanced_subsamples.

The number of trees in the model, n_estimators, was chosen based on its impact
on computational time and performance. It was found that adding more trees did
not significantly improve the model’s performance but increased computational
time. Therefore, the value of 200 was determined to be sufficient for achieving
good results while maintaining computational efficiency. As for the max_depth,
the model showed lower performance with both higher and lower values, in-
dicating that a depth of 100 was the most optimal choice. class_weight were
set to balanced_subsamples as it was the best fit to balance the attack and non-
attack classes. balanced_subsamples calculates the weights based on the samples
represented for each tree grown [55].



6.3.3 Sampling Techniques

To mitigate the problem of an imbalanced data set, various sampling techniques
were tested using cross-validation. In Table 6.2, one can see how each method
was expected to perform in terms of accuracy, recall, precision, F1-score, and AUC
score.

With no oversampling, the accuracy was quite high, but this was expected since
most of the data was labelled 0. Consequently, evaluating the accuracy was not
enough to measure the performance of the models; the other performance measures
also needed to be considered. The method using oversampling and hyperparameter
tuning yielded the best results in recall, F1-score and AUC score. Hence, this method
provided the best performance and was applied when implementing the RFC.

Table 6.2: The cross-validation scores for the different methods. The oversampling
technique used was SMOTE, and the tuning was done with the hyperparameters
n_estimators = 200, max_depth = 100 and class_weight = balanced_subsamples.

Method Accuracy Precision Recall F1 AUC
No oversampling and tuning 0.9793 0.0152 0.0075 0.0101 0.5105
No oversampling and with tuning 0.9796 0.0159 0.0075 0.0102 0.5077
With oversampling and no tuning 0.8778 0.0133 0.1047 0.0237 0.5126
With oversampling and tuning 0.8777 0.0156 0.1231 0.0277 0.5135
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Results

The analysis and machine learning findings will be presented in the following
chapter. The behaviour of sheep, including diurnal and seasonal changes, has been
examined using traditional statistical analysis and clustering techniques utilising
DBSCAN and K-means. Furthermore, a comparison is given between the attack
and non-attack samples and an analysis of the behaviour of flocks during attacks.
Lastly, the results of the RFC are presented.

7.1 Result of the Statistical Analysis

After removing the incorrect positions and separating the dates when the sheep
were on the farm, it was easier to identify the distinct grazing areas on the map.
Figure 7.1 displays the complete data set indicating two main grazing areas, with
only some individuals or groups grazing in other areas.

Figure 7.1: Map of all sheep data samples from 2015 to 2021 after cleaning.
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7.1.1 Feature Correlation

The main objective of the statistical analysis was to study the behaviour of sheep.
To achieve this, specific features were selected for examination, such as the velocity
and trajectory angle of the sheep. Altitude and temperature were also important
factors considered in the analysis. These four features were used to describe how
sheep behave under different conditions. Additionally, the correlation between sine
time and cosine time with the behavioural features was investigated as they were
to be included in machine learning models. Lastly, the attack feature was added
as it would be used in the RFC and viewing its correlation with the behavioural
features was of interest.

Prior to further analysis, the correlation between the seven features was evaluated.
Feature correlation in a data set refers to the relationship between two or more
features, measured using a correlation coefficient. This coefficient quantifies the
strength and direction of the linear relationship between two variables. Figure 7.2
shows the correlation matrix of the seven features. All years’ data were used for
analysis, and all figures are based on this data unless otherwise is specified.

Figure 7.2: Matrix showing feature correlations with a representing correlation
coefficient. A number close to -1 or 1 indicates a high correlation.

A coefficient close to 1 or -1 indicates a strong correlation. When two features have
a high positive correlation, they indicate similar effects on the outcome variable.
Therefore, including both features in a model may not provide additional inform-
ation and may pose a challenge to certain machine learning models. Conversely,
when two features have a high negative correlation, they will likely have opposite
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effects on the outcome variable. Including both features in a model may cancel out
their effects. Features with low correlation may not be informative for predicting
the outcome variable. The figure’s diagonal, representing the correlation between
a feature and itself, displays a perfect positive correlation.

Overall, there is a low correlation between the features. However, the highest
correlation is observed between temperature and sine and cosine time, with values
of -0.37 and -0.41. Altitude and trajectory angle has a small negative correlation
of -0.16, indicating that they move in opposite directions. Additionally, there is a
small positive correlation of 0.16 between velocity and altitude, suggesting that an
increase in altitude leads to an increase in the velocity of the sheep and vice versa.

In Figure 7.3, the features are plotted against each other to display their correlations
visually. The diagonal displays a histogram of each feature and its distribution,
while the off-diagonal presents the scatter plots of the paired features.

Figure 7.3: Features plotted in pairs. Histogram of the feature distribution on the
diagonal and scatter plots of the paired features in the off-diagonal.



7.1.2 Descriptive Analysis

The values of the features are described in Table 7.1, without sine time and cosine
time. The table summarises the main characteristics of the data. The data’s mean,
standard deviation, minimum, maximum, and quartiles are shown for each feature.
The quartiles divide the data set into four equal parts. For the first quartile, 25%,
the value presented means that 25% of the samples fall below this value and 75%
are above it. The second quartile is the 50th percentile, which also represents the
median.

Table 7.1: Descriptive analysis of the features. For all tables, the altitude is in
mamsl, the velocity is in m/h, the temperature is in degrees Celsius, and the angle
is in inverse degrees.

Altitude Angle Velocity Temperature
Mean 504 97 98 14
Std 228 58 221 5
Min 89 0 0 -1
25% 310 42 14 10
50% 462 102 43 13
75% 728 152 113 17
Max 1163 180 14772 34

7.1.3 Temporal Analysis

It was desirable to analyse the changes in behaviour over time to see if there were
any patterns in the movement. The three behavioural features velocity, altitude
and angle were used for the temporal analysis along with the date time feature.
The temperature feature was excluded because observing changes in temperature
over time was not deemed pertinent to the objectives of this thesis.

Diurnal Behaviour

Examining diurnal changes could provide insight into the patterns and routines
of sheep over a 24-hour period. The time stamp part of the feature date time
was extracted and rounded off to the nearest hour. Firstly, Figure 7.4 depicts the
distribution of velocity during a day in a box plot. A box plot is a visual summary
of a data set that displays the distribution of values by dividing them into quartiles.
The box in the centre of the plot represents the middle 50% of the data, with a
line indicating the median value. The whiskers extending from the box show the
minimum and maximum values within 1.5 times the median. The green triangle
represents the mean of each box plot.

To gain a better understanding of the activity patterns throughout the day, the
data were divided into four groups. This approach allowed for the identification of
unique characteristics within each interval, as trying to represent all 24 hours at
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once was a bit cluttered due to inconsistent transmission across individuals and
years. The choice of dividing the day into four was based on the observation that
many individuals had a time interval of transmissions every six hours. Figure 7.4b
displays the velocity distribution separated into these six-hour intervals.

(a) Velocity during each hour of the day. (b) Velocity grouped by a 6-h time interval.

Figure 7.4: Distribution of velocity during the day.

Due to the broad range of velocities in the samples, a separate visualisation was
created to show the outliers. Figure 7.5a displays the outliers for each hour, while
Figure 7.5b presents the outliers for each time interval.

(a) Outliers of velocity during each hour of
the day.

(b) Outliers of velocity grouped by a 6-h time
interval.

Figure 7.5: Distribution of velocity with outliers during the day.



The same analysis was done with angle and altitude as well. Box plots in Figures
7.6a and 7.6b display the trajectory angle distribution during 24 hours and in six-
hour groups, respectively. Similarly, Figures 7.7a and 7.7b demonstrate the altitude
distribution during the day. The values of angle and altitude did not contain any
outliers.

(a) Angle during each hour of the day. (b) Angle grouped by a 6-h time interval.

Figure 7.6: Distribution of angle during the day.

(a) Altitude during each hour of the day. (b) Altitude grouped by a 6-h time interval.

Figure 7.7: Distribution of altitude during the day.

Seasonal Behaviour

The analysis of sheep behaviour has also included a study of seasonal changes in
the three features velocity, angle, and altitude. Figure 7.8 displays the different
features for all sheep from June 15 to September 1. Figure 7.8a indicates that
the mean velocity is relatively low throughout the season, with values mostly
below 100 m/h. Additionally, the standard deviation indicates the presence of
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many outliers during all periods of the season, especially towards the end. The
altitude seen in Figure 7.8b gradually increases during June and July and decreases
during August and September. The changes in trajectory angle shown in Figure
7.8c displays that the sheep’s trajectory angle is higher at the beginning and end
of the season than in the middle.

7.1.4 Behaviour During Attacks

For further analysis, it was desired to gain a more detailed understanding of the
sheep’s behaviour in the presence of predator attacks. The primary objective was
to identify potential differences in the behavioural features of the samples that
were close to attacks compared to samples that were not.

The data set was split into two groups: attack data and non-attack data. A descript-
ive analysis of the two data sets with the behavioural features can be seen in Table
7.2. The table gives an overall insight into the main differences and similarities
between the two data sets.

Table 7.2: Descriptive analysis of the behavioural features of the attack and
non-attack data

Altitude Angle Velocity

Attack
mean

401 103 77
Non-attack 505 97 98

Attack
std

203 56 125
Non-attack 58 222 5

Attack
min

185 0 0
Non-attack 89 0 0

Attack
25%

230 54 10
Non-attack 320 42 14

Attack
50%

335 113 31
Non-attack 465 102 43

Attack
75%

482 154 95
Non-attack 729 152 113

Attack
max

829 180 2338
Non-attack 1163 180 14772



(a) Seasonal changes in velocity.

(b) Seasonal changes in altitude.

(c) Seasonal changes in trajectory angle.

Figure 7.8: Behavioural changes throughout the grazing season.
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Flock Behaviour During Attacks

A new analysis was conducted on the data to better understand sheep behaviour
in the presence of predator attacks. The focus was on examining the behaviour of
sheep on the day before, during, and after each attack. The first step was identifying
the group of individuals within 1.5 km of each attack, called a flock. The velocity,
altitude, and angle for each individual of the corresponding flock were examined
on the day before, during, and after an attack. This was done for each attack and
combined into a new data set.

(a) Velocity without outliers.

(b) Velocity with outliers.

Figure 7.9: Velocity of a flock in a radius of 1.5 km of an attack on the day before,
during, and after the attack. The results represent the flocks of all attacks.



Figure 7.9a shows the velocity distribution of all sheep involved in attacks the
day before, during, and after the attacks. The outliers can be seen in Figure 7.9b.
Similar plots were created for trajectory angle seen in Figure 7.10 and altitude
seen in Figure 7.11. Angle and altitude had no outliers. The values of each feature
can also be found in tables in Appendix F.

Figure 7.10: Trajectory angle of several flocks of individuals on the day before,
during and after an attack.

Figure 7.11: Altitude of several flocks of individuals on the day before, during
and after an attack.
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Furthermore, Figure 7.12 represents the daily distance covered by the flocks. The
calculation of this distance solely considered the starting and ending locations
each day for each sheep within the flock. The result obtained was the straight-line
distance travelled within a day. Table 7.3 describes the values presented in the box
plots. Additionally, the table includes the distance travelled by each individual in
the entire data set, including non-attack samples, for comparison.

(a) Distance without outliers.

(b) Distance with outliers.

Figure 7.12: The distance travelled is measured from the first to the last location
of each day. The plots include the distance travelled on the day before, during and
after all attacks for the individuals near the attacks.



Table 7.3: The description of the distance travelled of several flocks of individuals
on the day before, during and after attacks, given in meters. The last column
represents the distance for each individual, every day, for the entire data set.

Before During After All Data
Mean 666 952 1511 648
Std 1128 1073 1422 893
Min 0 3 0 0
25% 114 180 177 84
50% 292 734 994 338
75% 717 1195 2536 827
Max 7965 5754 6114 15447

7.2 Results of the Machine Learning

The results of K-means, DBSCAN and RFC are presented below.

7.2.1 K-means

Two K-means models were developed employing different sets of features. The
first model used velocity, sine time, and cosine time. It aimed to investigate the
sheep’s activity patterns over a 24-hour cycle. The model’s results are presented in
Figure 7.13, which illustrates a three-dimensional scatter plot.

Figure 7.13: The clusters divide the 24-hour cycle into four periods based on the
amount of activity in each period. The values are normalised and standardised.
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The circle in the figure represents the day divided into four, where each colour
represents one cluster. The sine and cosine time pairs correspond to specific time
values. The time 00:00 is represented by the pair where sine is 0 and cosine is
1, situated at the bottom of the cycle, while midday at 12:00 is represented by
the pair where sine is 0 and cosine is -1 at the top of the cycle. The yellow cluster
corresponds to the period from 22:30 until 04:30, followed by the orange cluster,
which covers 04:30 until 10:30. The purple cluster represents the time range
from 10:30 to 16:30. The blue cluster represents the time from 16:30 to 22:30.
Additionally, Table 7.4 provides a description of the sheep’s behavioural features
in each cluster, including mean and standard deviation, expressed in the features’
original scale.

Table 7.4: Mean and standard deviation of the features velocity, angle and altitude
for the four clusters, including their representing time period.

Velocity Angle Altitude
Cluster Time Period Mean Std Mean Std Mean Std
0 (yellow) 22:30 - 04:30 57 163 99 57 522 240
1 (Orange) 04:30-10:30 118 202 95 58 502 221
2 (Purple) 10:30-16:30 102 249 97 58 486 217
3 (Blue) 16:30-22:30 113 252 96 58 504 233

The second K-means model utilised the features velocity, angle, and altitude and
aimed to cluster based on behavioural features. The outcome of the model is
presented as a three-dimensional scatter plot in Figure 7.14. Each cluster repres-
ents approximately 25% of the data set. Table 7.5 displays the mean and standard
deviation for each cluster’s values, the number of samples included in each cluster,
and the number of attack samples within each cluster. This information was col-
lected to detect whether there was a higher amount of attack samples in certain
clusters and to compare them to feature values.

Table 7.5: Mean and standard deviation of the features velocity, angle and altitude
for the four clusters.

Velocity Angle Altitude Characteristics
Cluster Mean Std mean Std Mean Std Size Attack Samples
0 (Red) 61 189 149 24 309 108 75160 1511
1 (Blue) 142 224 37 25 731 92 55255 358
2 (Purple) 127 231 139 27 725 100 53140 455
3 (Green) 74 236 45 29 332 109 55889 1062

The distribution of the three features in each cluster is further visualised using
box plots in Figure B.1 in Appendix B. The figures can be examined independently
or in combination to observe how each feature has been clustered. Additionally,
Figure C.1 in Appendix C highlights each cluster’s velocity and trajectory angle
outliers. No outliers in altitude were detected.



Figure 7.14: Three-dimensional scatter plot of the four clusters with the features
velocity, altitude and angle.

7.2.2 DBSCAN

A DBSCAN algorithm was utilised to create a model, employing the same features as
in the second K-means model: velocity, trajectory angle, and altitude. The DBSCAN
algorithm detected six clusters of varying sizes and identified 56,249 samples as
outliers, labelled -1, as seen in Table 7.6. Figure 7.15 displays the cluster results,
revealing that the clusters have different sizes. The largest cluster contains over
62,000 samples, and the smallest with only 499 samples. The identified outliers are
presented in Figure 7.16, demonstrating that they are distributed across the entire
plot and between the identified cluster regions. The distribution of the features
in each cluster can be seen in Appendix D, along with the outliers presented in
Appendix E.

Table 7.6: Mean value for each behavioural feature in the six clusters of the
DBSCAN result.

Velocity Angle Altitude Characteristics
Cluster Mean Std Mean Std Mean Std Size Attack Samples
0 (Blue 27 44 112 56 207 26 55793 1450
1 (Red) 70 80 102 59 401 47 61288 907
2 (Green) 109 105 82 61 775 53 62610 491
3 (Purple) 77 72 170 6 628 20 2463 12
4 (Orange) 95 78 22 2 643 11 542 1
5 (Turquoise) 72 62 177 2 527 12 499 4

-1 186 416 90 48 602 157 56249 521
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Figure 7.15: Three-dimensional scatter plot of the six clusters in DBSCAN with
the features velocity, altitude and trajectory angle.

Figure 7.16: Three-dimensional scatter plot of the outliers in DBSCAN for the
features velocity, altitude and angle.



7.2.3 Random Forest Classifier

When implementing the RFC algorithm, the training data was oversampled using
SMOTE and the hyperparameters were set to the following as they were proved
to get the best results: n_estimators: 200, max_depth: 100 and class_weight:
balanced_subsamples. The features used to train the model were trajectory angle
and velocity, and the attack feature was used to train and measure the model’s
performance. In the model’s prediction process, the trajectory angle had a greater
impact on the predictions than velocity. The importance of the trajectory angle
was 55%, while the importance of velocity was 45%.

Confusion Matrix

In Figure 7.17, the model’s predictions are plotted in a confusion matrix. The
matrix provides information on the accuracy of the predictions, which are referred
to as labelling. 21,184 were correctly labelled as 0, known as true negatives (TN).
However, there were 2,422 samples that were predicted to be 1 but were actually
0, which are called false positives (FP). On the other hand, 306 samples that were
predicted to be 0 were actually 1, referred to as false negatives (FN). Lastly, 33
samples that were predicted to be 1 were correctly labelled, known as true positives
(TP). Overall, there were 2,708 incorrect predictions made.

Figure 7.17: Confusion matrix for the RFC and the predictions the RFC model
did.
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The performance of the model in predicting classes 0 and 1 is shown in Table 7.7.
The model’s overall accuracy was 88.61%. The model performed well in predicting
class 0. However, it struggled to identify samples that should have been labelled as
1. Out of 339 attack samples, it managed to classify 33, hence giving low precision
and recall.

Table 7.7: Precision, recall, and F1-score for the RFC model.

Class Precision Recall F1-score
0 0.986 0.897 0.940
1 0.013 0.097 0.024

Table 7.8 displays the mean values of the velocity and trajectory angle features
in the TP, FP, TN, and FN recognised by the model. These mean values are shown
in scaled values and in original scales. Additionally, Figure G.1 in Appendix G
visualises the same distribution.

Table 7.8: Confusion matrix’ mean values for standardised and normalised values
and on original scales.

Scaled values Original values
Confusion Matrix Velocity Angle Velocity Angle
True Positive (TP) 0.006 0.544 86 91
False Positive (FP) 0.007 0.566 107 102
True Negative (TN) 0.007 0.535 97 96
False Negative (FN) 0.005 0.558 76 100

AUC Score

The ROC curve is shown in Figure 7.18. The orange line shows how effectively the
trained RFC model distinguishes between classes 0 and 1. The orange line is very
close to the dashed baseline, giving a AUC score of 0.50.

Partial Dependence Plot

A Partial Dependence Plot (PDP) was used to explain how a particular feature
impacts the RFC model’s prediction while keeping the other features constant.
Examining the trajectory angle and velocity, PDP makes it possible to better under-
stand how they affect the model’s decision-making during predictions. Figure 7.19
displays the trajectory angle and velocity PDP. It indicates that when the velocity
is low, it has a strong positive correlation with the target variable (attack) as the
value is close to 1. The trajectory angle PDP is always below the value of 0.4.



Figure 7.18: The ROC curve for RFC model.

Figure 7.19: PDP for the features trajectory angle and velocity.



Chapter 8

Discussion

In the subsequent chapter, an in-depth examination of the results will be conducted.
Firstly, the statistical analysis will be expounded upon, followed by a discussion of
the machine learning results. Ultimately, the limitations of the data set that have
influenced the outcome will be outlined.

8.1 Statistical Analysis

8.1.1 Descriptive Analysis and Feature Correlation

Before running machine learning models and statistical analyses, it was crucial to
understand how the features correlate. The findings in Section 7.1.1 shows that
the strongest correlation exists between temperature and the sine and cosine time,
which is logical since the temperature is related to the time of day. Altitude has a
slight negative correlation with the trajectory angle and a slight positive correlation
with velocity. However, these correlations are not significant enough to affect the
analysis or machine learning models. To avoid redundancy, temperature, sine time,
and cosine time will not be used together in the analysis, as their correlation is
already evident. However, the remaining features can be used safely in the analysis
and models without any correlation issues.

8.1.2 Temporal Analysis

Diurnal Behaviour

When analysing the diurnal activity, the features velocity, trajectory angle, and
altitude were viewed in relation to the time of the day. Figure 7.4a show the
velocity per hour for all sheep, displaying waves with two peaks and two lows
during the day. This pattern is even more pronounced in Figure 7.4b, where the
day is divided into six-hour intervals. The sheep were more active during mid-
morning and evening, consistent with previous research. Warren and Mysterud
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[14] studied the activity patterns of sheep in their summer habitat in Norway and
found similar periods of activity. Furthermore, Aunsmo et al. [5] describes that the
longest periods for grazing and wandering are between 04:00 and 08:00 and in
the evening between 18:00 and 21:00. This is similar to the patterns found in this
analysis.

Aunsmo et al. [5] also describes that sheep seek higher elevations during the night
and lower elevations when the morning comes, which is supported by the data
presented in Figure 7.7b where the altitude is lower around 06:00 until 18:00.
However, in Figure 7.7a, the differences in altitude between each hour is not
as significant, as the data is from several years with different types of pastures,
resulting in varying elevations. Thus, Figure 7.7b gives a better interpretation of
the diurnal changes in altitude as the changes are clearer.

Regarding the trajectory angle, the variation is minor for each hour. However, as
seen in Figure 7.6a there is a lower angle in the early morning and evening. This
observation suggest that the sheep are moving in a straighter line during grazing
than in their resting period.

Seasonal Behaviour

According to observations by Østereng [13], there were changes in the activity
level of the sheep throughout the season, which also can be seen in the current
analysis. Figure 7.8a indicates a slight increase in velocity towards the end of
the season. Additionally, the standard deviation of velocity increased during this
period. Østereng’s observations also state that the sheep were more inactive during
the night, which could be why the change is low since it would potentially offset
the increase in activity during the day.

A marked increase in altitude is observed from June to mid-July, followed by a
gradual decline towards the end of the season, seen in Figure 7.8b. The sharp
incline in altitude can be attributed to the relocation of the sheep from the low-lying
farm or lower-laying pastures to the mountain pastures. This pattern is consistent
with the observations made by Warren and Mysterud [14], who noted that sheep
tend to increase in altitude at the beginning of the season and decrease after the
middle of July.

Observations from Figure 7.8c show that the trajectory angle of the sheep slightly
increase at the beginning and end of the season. This indicate that the sheep
are more active and restless upon their initial arrival at the pastures and when
preparing to return to the farm. Furthermore, the decrease in angle during the
middle of the grazing season may suggest that the sheep are more settled.

The observed diurnal and seasonal changes in sheep behaviour exhibit variations
attributed to differences in individual behaviour, pasture, and other factors that
vary each year. These variations have led to less significant patterns in their beha-
viour. Nevertheless, the analysis has identified some consistent patterns in sheep
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behaviour, contributing to research by refining theories and providing further
insight based on data-driven observations.

8.1.3 Behaviour During Attacks

Different methods were employed to determine sheep’s behavioural responses to
predators. For the first analysis, the data set was divided into two, one containing
the attack samples and the other containing the non-attack samples. Table 7.2
shows that the mean velocity of the attack samples is 77 m/h and 98 m/h for the
non-attacks. This indicates that the velocity is lower during attacks than otherwise.
This observation differs from other research, as Evans et al. [32] observed increased
velocity in sheep subjected to simulated attacks. However, in this study, the standard
deviation of velocity is much higher during attacks than non-attacks, which may
indicate no consistent activity level in response to predators. The variation in
behaviour suggests that sheep may respond differently to various predators or
that individual differences such as breed and other factors could influence their
response.

The analysis shows that the mean altitude is slightly lower during attacks, sug-
gesting that attacks may occur more often at lower altitudes. However, the high
standard deviation makes it difficult to draw any conclusions. The trajectory angle
remains consistent regardless of whether it is an attack or not.

Moreover, as the standard deviation for both velocity and altitude during attacks is
high, it indicates a significant variability in behaviour. This could imply inadequate
information or the absence of typical behaviour in response to predators. Addi-
tionally, most of the herd belonged to the heavy NKS breed, known for minimal
antipredatory behaviour, potentially explaining the lack of significant behavioural
changes during attacks [26, 27]. It is worth noting that the predator data quality
and imbalanced data set pose challenges in identifying distinct attack patterns.

Since no specific movement patterns were discovered and the results differ from
previous research, it is recommended that additional data collection and analysis
is conducted to validate the findings of this study.

8.1.4 Flock Analysis During Attacks

An additional analysis was conducted to identify changes in flock behaviour during
predator attacks. This was done because comparing the attack and non-attack
samples did not yield any significant results when looking at all individuals at once.
Hence, it could be worth analysing the behaviour of only the groups of individuals
affected by the attacks and their behaviour the day before and after the attacks.

Figure 7.9 reveals that the velocity of the flocks increased on the day of the attack
and even more the day after. Moreover, the outliers, seen in Figure 7.9b, are much
higher on the day during and after an attack. These results are consistent with
previous research indicating higher activity levels during attack [32]. Furthermore,



the fact that the velocity continued to increase the day after the attack suggests
that the sheep needed time to recover. These findings are compatible with the
observations made by Hansen et al. [26], who conducted tests on sheep to assess
their antipredatory behaviour and found that increased stress levels prolonged
their recovery to normal behaviour.

Furthermore, it can be observed from Figure 7.10 that the trajectory angle of the
flock has a slight increase on the day of the attack, implying that there are more
drastic changes in trajectory due to the flight response, which is a typical reaction
to predator attacks [24]. Figure 7.11 shows a decrease in mean altitude the day
following the attack. It may suggest that sheep are experiencing stress and moving
towards a safer environment like their farm. However, the exact reason for this
behavioural change cannot be definitively determined.

To acquire an even deeper insight, the distance travelled each day was estimated.
Instead of measuring the distance between each GPS location, which indicates
velocity, only the sheep’s start and end locations for each day were considered.
Subsequently, the distance between these two locations was calculated, providing
the distance travelled in a day in a straight line. This analysis was conducted to
determine whether there were any differences in the distance travelled by the
sheep on the days of attacks compared to other days, and indicate whether the
sheep travelled in more precise directions.

Figure 7.12 displays a drastic increase in distance on the day of the attack and
even more on the day after. Table 7.3 reports that the mean distance increased
from 600 mamsl on the day before to 1500 mamsl on the day after the attack.
These findings align with other research; Evans et al. [32] observed that sheep
increase their daily distance travelled when a predator is present. The mean for the
entire data set, 648 mamsl, is similar to the result from the day before the attacks,
which had a mean of 666 mamsl. This implies that the day preceding the attacks
exhibited typical behaviour, while the day during and after the attacks displayed
atypical behaviour.

The flock analysis produced a different result than comparing all attacks to all
non-attacks. This is because the analysis excluded irrelevant data, and focused
solely on the sheep involved the day before, during, and after each attack. By
excluding irrelevant data, the analysis became more targeted and allowed for
easier comparison between the different time periods surrounding the attacks. As
a result, the attack data accounted for over one-third of the remaining data set,
a significant increase from the original 1:70 ratio, and mitigated the problem of
imbalanced class.

Nevertheless, it is important to consider that the flock analysis calculations may
have generated a misleading outcome. Several attacks took place on the same day,
only varying slightly in location, which resulted in the extraction of the same flock
for multiple attack instances. Consequently, the data became duplicated for certain
attacks. Although there was uncertainty regarding whether these attacks were
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indeed the same, given the same day and location, they were treated as distinct
attacks. In future analysis, it could be beneficial to merge multiple attacks if it is
believed they are the same attack.

To the best of the authors’ knowledge, these observations in behaviour towards
predator attacks in Norway have not been previously substantiated by data, which
is a new contribution to this research area. Additionally, these data-driven find-
ings align with existing literature on predator-prey interactions, supporting the
ethological theory regarding sheep behaviour.

8.2 Machine Learning

8.2.1 K-means

Clustering Diurnal Behaviour

The first iteration of the K-means algorithm aimed to analyse the diurnal activity of
the sheep. The scatter plot in Figure 7.13 depicted that based on velocity, the day
could be segmented into four activity periods, each comprising six hours. Table 7.4
displays each period’s mean and standard deviation of velocity, angle, and altitude.
Based on the statistical analysis of diurnal activity and the aforementioned theory,
it can be deduced that the following information relates to the four periods.

22:30-04:30: This is the least active period, with a mean velocity of 57 m/h. During
this period, the sheep sleep and ruminate, requiring minimal activity. As previously
stated, sheep are drawn towards higher altitudes in the evening, reflected in the
high mean altitude of approximately 522 mamsl during this period.

04:30-10:30: The mean velocity has increased to 118 m/h, the highest of all
periods, indicating that sheep spend their time grazing and wandering. Sheep
are drawn towards lower altitudes during the morning, with a mean altitude of
approximately 502 mamsl.

10:30-16:30: The mean altitude decreases to 486 mamsls as sheep rest and ru-
minate after the morning grazing period. The mean velocity has decreased to 102
m/h. Some grazing and wandering still characterise this period.

16:30-22:30: Sheep begin to ascend to higher altitudes during the evening, with
a mean altitude of approximately 504 mamsl. This is also when the late evening
grazing period commences, with a mean velocity of 113 m/h. The sheep are grazing
and wandering before entering the next resting period.

Despite changes in velocity and altitude, the mean angle remains consistent across
all periods. These results suggest that the sheep exhibit very little variation in their
trajectory within each period. However, it is noteworthy that the resting period
between 22:30 and 04:30 has the highest mean value in angle. The other periods
have a lower angle, indicating that the sheep move more linearly during day time



and display more determination in their direction. The observed increase in angle
during nighttime could suggest that the sheep exhibit a more erratic pattern while
resting.

The results of the K-means analysis validate both earlier theories and the statistical
analysis findings, confirming the existence of a consistent diurnal activity pattern
[5, 14]. In addition, these findings are consistent with those reported by Salvesen
[17]. The same features were used for the sheep data, and the algorithm was
initialised in the same way as in Salvesen’s study. Only the input data sets were
sourced from different owners and areas. Despite these differences, the K-means
algorithm identified four clusters aligned with the same periods as in Salvesen’s
study. This substantiates the research on sheep’s diurnal activity using GPS data.

Clustering Behavioural Features

The second K-means model clustered data based on velocity, angle and altitude
without considering any temporal features. The resulting clusters were almost
equal in size, dividing the three-dimensional space into four distinct parts, as
shown in Figure 7.14. Each cluster’s number of attack samples and description
of the feature values, found in Table 7.5, were used to investigate any potential
correlation between behavioural features and attack occurrences. Two clusters
had higher numbers of attack samples, and they both had low mean velocities,
namely 61 m/h and 74 m/h, and altitudes of around 300 mamsl. This suggests a
possible correlation between low altitude, low velocity, and higher occurrences
of attacks. This substantiates the statistical analysis findings that showed attack
samples had a lower mean velocity than non-attack samples. In contrast, the
two remaining clusters had higher mean velocities, higher mean altitudes, and
fewer attack samples. The trajectory angle exhibited stable variation across all
clusters, suggesting that it does not correlate with the other features, including the
occurrence of attacks. This result yielded no additional insights beyond confirming
the findings obtained from the statistical analysis.

8.2.2 DBSCAN

The outcome of DBSCAN showed six clusters of varying size and shape, with the
largest cluster containing over 62,000 samples and the smallest with only 499.
Similar to K-means, the DBSCAN results revealed that the cluster with the highest
number of attack samples also had the lowest mean velocity and lowest mean
altitude. This is consistent with the findings in the statistical analysis and K-means,
and indicates that attacks often occur at lower altitudes.

The outliers in Figure 7.16, comprising 56,240 samples, contained approximately
500 attack samples, no more than the other clusters of large size. This suggests that
no distinct behavioural patterns of sheep are associated with attacks because they
are present in every cluster independent of the altitude, velocity and angle. These
findings of K-means and DBSCAN substantiate the ones found when comparing
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attack and non-attack samples. However, the findings contradict the result of the
flock analysis, and existing literature, which states an increase in velocity during
attacks.

Notably, the analysis has generated varied outcomes, with some contradicting
existing literature while others aligning with it. The accuracy and reliability of the
attack data may have significantly impacted the analysis, making it difficult to draw
any conclusive findings regarding sheep behaviour during attacks. Consequently,
the findings are questionable and require further data of a better quality to draw
more accurate conclusions.

8.2.3 Random Forest Classifier

RFC aimed to predict whether or not an attack was present based on the behaviour
of the sheep. The features used were velocity, angle, and the attack feature as
output label. Figure 7.2 indicated a low correlation between all three features.
This suggests that the model may not have used the features effectively to make
accurate predictions, thus affecting the performance. This can also be seen in Table
7.8 as the RFC labelled samples of both low and high velocity as attack samples.
The result indicates that the model found no correlation, and in turn making it
hard to label correctly.

In the implementation phase, cross-validation of several techniques and tuning
was performed. Comparing the results from the cross-validation, which are shown
in Table 6.2, and the actual output and performance of the model seen in Table
7.7, the RFC was performing as expected even though it is not considered a good
result. The scores from the cross-validation are quite similar to the model’s actual
performance. This means the model was successful according to the cross-validation
results, but as the scores are relatively low, the model was not performing well in
correctly labelling the data yielding unsatisfactory results.

The RFC has an overall accuracy rate of 88.61%. It is worth noting that accuracy
alone may not provide sufficient insights into the model’s performance. In imbal-
anced data, a high accuracy score may be misleading, as the model could have
predicted all values as 0, rendering the accuracy metric inadequate. Therefore,
accuracy is not the most suitable metric when dealing with imbalanced data [37].
The model demonstrated a high F1-score when predicting class 0, but its perform-
ance in predicting class 1 was poor with a F1-score of 2.4%. Furthermore, the AUC
score of 0.5 indicated that the model’s performance was no better than random
guessing [37]. It is plausible that the 1 and 0 classes have been mislabelled by start,
as a result of bad data quality. This may have significantly impacted the model’s
ability to differentiate between the two classes. This factor could account for the
model’s poor AUC score.

The PDP provided some insight into how the RFC predicted. Two significant high
spikes at velocity 0.000 and velocity 0.0025 are seen in Figure 7.19. This indicates



when the velocity is low, the probability of an attack is high. This substantiates
the findings in the statistical analysis and the unsupervised models’ results. When
the velocity is above 0.005, the plot flattens out. This suggests that increasing the
velocity above this threshold may not significantly impact the probability of an
attack. However, the PDP for the trajectory angle is somewhat more complex to
interpret, as there are spikes everywhere. It appears that the prediction is affected
similarly regardless of the trajectory angle. Overall, the spiky PDP suggests that
the relationship between the input features and the output is not straightforward
and may require further investigation.

Although the RFC model did not produce satisfactory results in this study, it has
provided valuable insights into the limitations and challenges of predicting attacks
based on sheep behaviour. To the best of the authors’ knowledge, no other research
has looked into the use of machine learning to identify predator attacks based
on sheep movement in Norway. These findings can serve as a basis for further
exploration in this area of research.

8.2.4 Other Factor Affecting Sheep Behaviour

Sheep behaviour can be influenced by additional stressors, including the presence
of humans or dogs. Furthermore, factors such as weather conditions and illnesses
can also impact their behaviour, leading to altered movement patterns [2, 10].
These variables may have influenced the results, thereby making it challenging to
ascertain a consistent behavioural pattern during attacks. The sheep’s responses
can vary significantly under diverse circumstances, making it difficult to define a
standard or typical behaviour.

8.3 Limitations

8.3.1 Sheep Data

One limitation was the data collection process, as the sheep data was obtained
from only one farmer. It would have been more beneficial to collect data from a
larger number of farmers to increase the diversity and representativeness of the
data set, ultimately leading to more reliable and robust results.

Another limitation was related to the quantity and time frame of the data. The
current four or six-hour intervals between GPS signals provided limited information
on the sheep’s movement, resulting in incomplete or inaccurate representations of
their trajectories. Reducing the interval to one hour or less would have produced
more detailed and comprehensive data, allowing for a more precise analysis of
sheep movement.

Moreover, the lack of information regarding the sheep breed was a limitation.
The unique behaviours and characteristics associated with different sheep breeds



Chapter 8: Discussion 75

could have provided valuable insights into the observed patterns and helped in
understanding the behaviour of the sheep more comprehensively.

8.3.2 Predator Data

The accuracy and reliability of the gathered data were constrained by certain
factors. The exact location of the attack remained uncertain due to its reliance on
the location where the sheep were discovered, which may not necessarily indicate
the actual site of the attack. Furthermore, predators may have moved the prey,
thereby affecting the observed location. The absence of time stamps in the predator
data posed a challenge in determining the exact date of the attack. Additionally, the
attacks spanned over several days, making the dates uncertain. This has affected
the reliability of labelling the data. The limited amount of predator data made
it challenging to deduce anything from the data, highlighting the need for more
comprehensive data to improve the validity of the findings.

8.3.3 Imbalanced Data Set in Supervised Machine Learning

A major limitation of the RFC was the imbalance of classes in the data set, which
may have affected the accuracy of the findings. Despite attempts to mitigate the
imbalanced class problem through oversampling and tuning of hyperparameters,
the model still performed poorly. The performance of the RFC model raised concerns
regarding the suitability of the data for the intended purpose. One significant issue
was that a considerable amount of the data labelled as attack data might not
accurately represent instances of attacks. This was due to the lack of information
on the attacks explained in section 8.3.2. As a result, many data samples that
should have been labelled 0 might have been mislabelled as 1. This could also
happen the other way around as some attack dates were uncertain, meaning data
samples that should have been 1 were labelled as 0. This labelling issue could
significantly have impacted the RFC model’s ability to distinguish between the two
classes (attack and no attack), thus affecting its performance.





Chapter 9

Conclusion

9.1 Conclusion

This thesis has explored various techniques with different hypotheses and objectives.
However, the primary objective has been to detect whether sheep have a specific
behavioural pattern in response to predator attacks and to predict the occurrence of
attacks based on those behavioural patterns. To achieve this, it was first necessary
to investigate how the sheep behave normally, including analysis of both diurnal
and seasonal behavioural changes.

According to the analysis provided in Section 7.1, it was discovered that sheep
exhibit a diurnal pattern. It was observed that they display two peaks in velocity
throughout the day indicating two grazing periods. It was also observed that the
sheep seek higher altitudes in the evening and return to lower altitudes in the
morning. These findings are consistent with prior research on the diurnal activity
of sheep.

By the use of K-means, the results were further confirmed. The model clustered a
sheep’s day into four periods. The periods depicted two longer grazing periods in the
early morning and late evening and two resting periods in between. Significantly,
the outcomes of the K-means analysis exhibit remarkable similarity to those of a
previous study that combined velocity with sine and cosine functions, providing
further substantiation to the observed patterns.

The sheep exhibited some changes in their behaviour throughout the grazing
season, seen in Section 7.1.3. In particular, they shifted their altitude toward
heights at the beginning of the season and toward lower altitudes at the end. These
findings support the ethological theory about sheep. Further, it is theorised that
the sheep spend more time grazing later in the season, as evidenced by a slight
increase in velocity towards the end of the season.
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In Section 7.1.4, a comparison was made between the behaviour of sheep during
predator attacks and under no attacks. No definitive conclusions could be drawn
from the findings, emphasising the need for further research in this area.

Furthermore, a analysis the flock’s behaviour near attacks on the day before, during,
and after each attack was conducted. The flock analysis were more targeted by
excluding irrelevant data and thus allowing for easier comparison between the
time periods surround the attacks. The analysis revealed increased velocity and
distance covered on the day of the attack and the day after, which coincides with
existing theories. Additionally, there was a minor reduction in altitude the day after
the attack, indicating that the sheep may have sought more familiar areas closer
to their farm of origin. The angle of movement was also slightly lower on the day
after the attack, suggesting that the sheep were travelling in a more direct path,
further away from the attack. This analysis provides a new contribution to the
current research on the topic. As far as the authors know, this type of antipredatory
behaviour has never been confirmed in Norway through data.

Section 7.2.1 and Section 7.2.2 display the results of K-means and DBSCAN where
the purpose was to identify similarities between different features and determine
if there was a correlation between behaviour and attacks. However, the only
correlation found was that the clusters with the highest number of attack samples
had the lowest velocity and altitude. Despite this, there were also attack samples in
clusters with high velocity and high altitude, indicating that all types of behaviour
were present during attacks. This supports the findings of the statistical analysis. It
is difficult to draw definitive conclusions about sheep behaviour during attacks due
to limitations described in Section 8.3. It is probable that these factors have greatly
influenced the outcomes, which makes it difficult to come to definite conclusions.

The results of the RFC, as seen in Section 7.2.3, were unsatisfactory in the attempts
to predict predator attacks on unseen data. Previous analyses had shown little
to no correlation between these behavioural features, which was a poor starting
point for the classifier. The RFC’s performance in predicting attack instances was
subpar. Although the accuracy appeared high, it could not be used as a reliable
performance metric due to the data set’s imbalance. The limitations of the data
greatly affected the RFC’s performance, concluding that higher-quality data is
necessary to derive meaningful conclusions. Based on the data collected in this
thesis, it is not feasible to detect predator presence or predator attacks based on
sheep behaviour nor conclude something from the current results.

The statistical analysis conducted in this thesis sheds light on various theories
concerning sheep behaviour, with potential implications for future research. In
particular, the study has uncovered antipredatory behaviour by comparing sheep
behaviour in flocks on the day before, during, and after attacks. This approach has
not been previously applied and is therefore a new contribution to the research
field. The DBSCAN and K-means results showed limited feature correlation during
attacks, and the findings of RFC highlight the need for further research to predict
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predator attacks based on sheep movement. Despite this, the results from this thesis
provide valuable insight and information for future research where the ultimate
goal is better sheep welfare by reducing casualties. One way to achieve this is
by continuously doing more research and enhancing the current GPS collars or
developing new technologies to identify predators effectively and assist in livestock
management.

9.2 Future work

In-depth analysis of sheep behaviour during predator attacks could greatly benefit
from incorporating additional features beyond velocity and angle. A potential
feature to explore is the heart rate of sheep, which could indicate stress levels and
abnormal behaviour. This could help identify potential threats, attacks, or stressors.
This study was unable to examine the different strategies employed by various
sheep breeds to cope with predators due to data unavailability. Although previous
studies have explored breed-specific reactions to predators, these findings have
not been validated with empirical data.

Gathering data on predator trajectories would benefit future research, as it would
provide a better understanding of predator behaviour and how it may affect the
sheep. Obtaining more accurate information on when attacks occurred would
also be beneficial. Combining the movement patterns and trajectories of sheep
and predators could provide new and better insights into the sheep’s movement
towards predatory. This would remove uncertainty in the data, and the results of
both the statistical analysis and models would increase validity.

The result of the supervised machine learning was poor due to the limitations
of the data described in Section 8.3. To improve the performance of the RFC, it
is advised to generate features with greater correlation with the attack feature.
Additionally, exploring alternative machine learning approaches may yield better
results. Lastly, collecting and gathering more data from predator prone areas is
also recommended to address the limitation of the data set. This would improve
the performance of supervised machine learning algorithms by giving them more
training data.

Comparing all non-attack samples to attack samples did not provide much in-
formation on how the sheep behaved or reacted during attacks, as there were
too few instances of attack samples. However, looking at the flock related to each
attack and excluding other data samples provided a more reliable result. Therefore,
investigating how the sheep behave and react to predators in the context of a flock
rather than individually is recommended. A suggestion is to look into the flock
density of the individuals during attacks.

In conclusion, future research should address the limitations of imbalanced data,
explore alternative machine learning approaches, generate more relevant features,
and consider the collective behaviour of sheep in the context of predator attacks.
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Appendix A

Code

Link to GitHub repository: https://github.com/sigrunnu/sheep_n_predators.

All code used in the master thesis is included in the repository. The README.md
contains a short description of what is included in the code.
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Appendix B

K-means Box Plots without
Outliers
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(a) Distribution of velocity.

(b) Distribution of angle.

(c) Distribution of altitude.

Figure B.1: Results of K-means. Distribution of the feature values in each of the
four clusters.



Appendix C

K-means Box Plots with Outliers

(a) Distribution of velocity with outliers.

(b) Distribution of altitude with outliers.

Figure C.1: Distribution of the feature values in each of the four clusters.
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Appendix D

DBSCAN Box Plots without
Outliers
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(a) Distribution of velocity.

(b) Distribution of angle.

(c) Distribution of altitude.

Figure D.1: Distribution of the features in each of the six clusters. The values are
normalised and standardised.



Appendix E

DBSCAN Box Plots with Outliers

(a) Distribution of velocity with outliers.

(b) Distribution of altitude with outliers.

Figure E.1: Distribution of the features in each of the six clusters. The values are
normalised and standardised.
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Appendix F

Feature Description of Angle,
Velocity and Altitude the Day
Before, During, and After Attacks
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Before During After
Count 3124 8188 3354
Mean 107 131 152
Std 220 484 520
Min 0 0 0
25% 17 12 13
50% 56 49 49
75% 143 147 154
Max 4650 12973 12973

(a) Description of the velocity. Given in meter per hour.

Before During After
Count 3124 8188 3354
Mean 97 100 99
Std 59 57 57
Min 0 0 0
25% 40 49 46
50% 106 108 103
75% 153 152 154
Max 180 180 180

(b) Description of angle. Given in inverse degrees of the actual trajectory angle.

Before During After
Count 3124 8188 3354
Mean 476 499 478
Std 212 228 244
Min 180 93 93
25% 289 270 248
50% 416 448 384
75% 688 722 759
Max 822 893 861

(c) Description of altitude. Given in meter above sea level.

Table F.1: The description of the features of several flocks of individuals on the
day before, during and after attacks.



Appendix G

Distribution of Features in the
Predicted Classes of RFC

(a) Distribution of velocity.

(b) Distribution of trajectory angle.

Figure G.1: Distribution of the values in the confusion matrix for false negative,
false positive, true positive and true negative.
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