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Abstract

The following thesis was written as part of the Digital Wheelchair Project. Which is a cross-
sectional study aiming to create a wearable device for manual wheelchair users. With the capability
to objectively track physical activity and estimate energy expenditure to empower them to lead
more active lifestyles. This thesis used system identification and numerical optimization to find a
mathematical model for heart rate dynamics as a response to propelling in a wheelchair at known
speed and incline. Thereafter, an attempt was made to find correlations between demographic
variables of the participants and the parameters of the identified models as an initial step towards
individualisation of the models.

Sammendrag

Denne oppgaven ble skrevet som del av ”the Digital Wheelchair Project”. Dette er en tverrfag-
lig studie med m̊al om å utvikle en smartklokke for rullestolbrukere. Den skal kunne objektivt
gjenkjenne fysisk aktivitet og estimere energiforbruk som et hjelpemiddel for å øke den fysiske akt-
iviteten i dagliglivet deres. Oppgaven har brukt systemidentifikasjon og numerisk optimering til å
identifisere matematiske modeller for pulsdynamikk som en respons til å rulle en rullestol ved kjent
hastighet og stigning. Deretter ble det forsøkt å finne korrelasjoner mellom ulike demographiske
variable og de estimerte parameterne i modellene som et initiellt steg mot individualisering av en
slik model.
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1 Introduction

This thesis was written as part of the Digital Wheelchair (DigiW) project. A cross-sectional
study with the long term goal of developing a wearable device to promote physical activity (PA)
amongst manual wheelchair-users (MWU). The project was motivated by comparative inactivity
to the general population, the subsequent risk of life-style diseases (Weil et al., 2002) and the low
performance of existing wearable devices for this population (Moreno et al., 2020).

1.1 Background & Motivation

Physical Activity (PA) is defined as any ”any bodily movement produced by skeletal muscle that
substantially increases energy expenditure” (Kesaniemi et al., 2001) and it is closely linked to
both mental and physical health. A systematic review found that adults with higher levels of PA
have lower all-cause mortality, and incidences of lifestyle diseases such as cardiovascular diseases,
obesity, diabetes and certain forms of cancer (Kesaniemi et al., 2001). Moreover, increased PA also
reduces symptoms of both depression and anxiety (Paluska and Schwenk, 2000).

The World Health Organization estimated in 2010 that about 1% of the world’s total population,
which was roughly 65 million people at the time, were in need of wheelchairs (Organization, n.d.).
Due to wheelchair-user’s (WCU) limited mobility and movement options individuals in wheelchair
are prone to living sedentary lifestyles, with lower levels of PA than the general population (Collins
et al., 2010; Warms et al., 2008). It is important to consider the heterogeneity of WCU and the vast
differences between their lifestyle possibilities and choices due to different underlying conditions.
However, on a general basis, movement and muscle involvement is mainly limited to the upper-body
for these individuals. In addition to fewer muscles involved in daily life, muscles in the upper body
are smaller and thus expend less energy. Consequently, WCU experience a lower metabolic-rate
during activity, but also a lower resting metabolic rate (RMR), which in sedentary AB contribute
upwards of 80% of the total daily energy expenditure (EE). (Nightingale et al., 2017) Especially,
with regards to the obesity-risk, the lower metabolic rate and energy-expenditure poses an issue for
WCU. This also invalidates methods used to convert PA into EE in AB-individuals (Nightingale
et al., 2017). As a consequence of WCUs overall lower levels of PA, WCUs have a higher probability
of experiencing the aforementioned negative effects of limited PA. They are more than three times
as likely to suffer from chronic-diseases, such as those mentioned earlier (Tsang et al., 2017). A
cross-sectional study performed in Netherlands also found individuals with mobility impairments to
have 10 year lower life-expectancy than able-bodied (AB). It is important to account for risk factors
in their underlying diseases, however, the study found that six of the years could be explained by
lifestyle differences due to limited mobility (I.M. et al., 2011).

Measurement methods with the capacity of accurately measuring the EE, such as indirect calori-
metri or doubly-labelled water, are too expensive and impractical for use in free-living situations
outside a laboratory (Nightingale et al., 2017). On the other hand there exists a range of wearable
devices today that perform well for the ambulatory population, however their accuracy in estimat-
ing EE for WCU is significantly lower and are generally not suitable for this purpose (Tsang et al.,
2017).

The combination of everything described above is what motivated the DigiW project. The devel-
opment of algorithms that can accurately and objectively track PA and measure EE in WCU based
on multiple sensors on the wheelchair itself and the user empowering them to lead more physically
active lives.

1.2 Data Collection

This section presents the data collection process as it has been conducted at NTNU Research Cen-
ter for Elite Sports (Gran̊asen Toppidrettssenter) in Trondheim, Norway. Researchers from the
DigiW project were responsible for the experimental design, participant recruitment and execu-
tion of the experiments. Both healthy able-bodied (AB) participants and manual wheelcahir-users
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(MWU) have participated in the study so far, their demographic is presented further in Section
1.2.1. The conducted experiments were standardized indoor experiments of wheelchair propul-
sion on a motorized treadmill with fixed inclines and speeds. The experiment was designed to
gather physiological information about the participants at rest, and during wheelchair propulsion
of submaximal and maximal efforts, a detailed description of the setup and procedure is provided in
Section 1.2.2. Since the experiments were part of a bigger project with multiple research-directions
a wide range of sensors were combined in the data-collection, information on relevant equipment
and sensors can be found in Section 1.2.3.

1.2.1 Participants

As of 18.12.22, there were 40 participants in the study. 20 of whom are healthy able-bodied parti-
cipants (AB) that serve as a control group. The remaining 20 participants are manual wheelchair-
users (MWU), MWU are a subsection of WCU who manually propel their own wheelchair. The
research in this paper is based on data collected from all the 20 AB-participants and the 6 first
MWU-participants. The demographic of the study is shown in Table 1.

Table 1: Summary of the characteristics of the participants

Group Gender Number Age Body Mass Height Body mass index (BMI)
(kg) (cm) (kg/m2)

AB
Male 11 33± 11 81.9± 11.2 183.5± 8.2 24.3± 2.3
Female 9 34± 11 67.0± 7.9 167.3± 5.3 24.0± 2.6
Total 20 33± 11 75.2± 11.4 176.2± 9.9 24.2± 2.4

MWU
Male 5 38± 16 80.0± 17.2 180.8± 12.5 24.3± 3.7
Female 1 23± 0 58.9± 0 156± 0 24.2± 0
Total 6 35.5± 17 76.5± 17.6 176.7± 15.1 24.3± 3.3

Special consideration had to be taken to the heterogeneity of the MWU-group in the study.
Although, this might not be reflected in their demographic, there are large variances in body-
composition and function within this group. They have a variety of types and severities of motor-
and sensory-dysfunction. Three participants suffer from spinal cord injuries (SCI), whereas the
remaining three suffer from syndromes affecting the nervous system and/or connective tissue in
the body, such as Cerebral Palsy (CP) and Ehlers Danlos (EDS) (Disease Control and Preven-
tion, 2022; NHS, 2022). None of the participants have amputations or missing limbs. Different
injuries/syndromes cause vastly different degrees of function-levels, and the same syndrome may
also embody itself completely differently in two individuals. This lead to the participants having
different degrees of dependence on their wheelchair (and other aids) in their daily life and thereby
different prerequisites when performing the experiment. Heterogeneity in the MWU-group must
be considered in the analysis of the data and interpretation of the results.
This study includes the data collected from 20 AB who serve as the control group in the full pro-
ject and 6 MWU. The AB participants have no specified previous experience with wheelchair-use.
Inclusion of the 6 MWU was chosen despite the lack of complete data for the entire MWU-group
due to a desire to investigate the generalizability of results from AB to MWU.

1.2.2 Experiments

All participants, both the control group consisting of AB, and the MWU, have contributed with
testing on three separate days. The most important aspect to ensure consistency between test
days is the physical state of the participant, a range of requirements were enforced to ensure this.
Therefore, there was a minimum period of 24-hours between each test day, for proper recovery. All
test days for each individual participant were completed within a span of three weeks, so that the
participant had similar physical fitness on all test days. Sessions were scheduled at the same time
of the day, to reduce the variability in the diurnal rhythm (Khemila et al., 2022). Moreover, the
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Table 2: The speeds and inclines for three testing days with different incline [%] and speed [km/h]
on the treadmill.

Day 1 Day 2 Day 3
Incline (0.5) (2.5) (5.0)

Men Women Men Women Men Women

Stage 1 4 3 3 2 2 1

Stage 2 6 5 4 3 3 2

Stage 3 8 7 5 4 4 3

participants were asked to arrive at the test in a 2-hour fasted state, and without having performed
high-intensity training in the last 24 hours.

On the first test day, general demographic information about the participant was collected. This
included height, body-mass, gender and specifics about their disability, such as its severity and
ASIA score (Kirshblum et al., 2011). Participants answered the International Physical Activity
Questionnaire (IPAQ) (IPAQ, 2004) to assess physical activity. A DXA-scan was also performed
of the MWU participants at St.Olav’s Hospital on a separate occasion.

Each test day proceeded as shown in Figure 1. All days started with standard physiological
measurements at rest. This involved a 10-minute resting period in which the patient laid down,
and sequentially another 10-minute rest in an upright sitting position.

Figure 1: Timeline of a single testing day, note that the incline and the speeds of the interval
stages vary from day to day

Figure 2: Visualisation of experimental setup of wheelchair attached to a rig on the treadmill.
Figure taken from (Cappozzo, 2022)
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After the resting measurements the participant sat in the wheelchair. For each test day, the tread-
mill was fixed to one of the following inclines: 0.5, 2.5 or 5.0%, each of which had a corresponding
set of speeds the participant was asked to propel at. Combinations of incline and speed for each
day can be found in Table 2. Which order the participant performed the different incline-speed
combination was randomly determined. The participants performed a five minute warm-up and
habituation on the treadmill at a chosen speed to familiarize themselves with the setup. The
participant was instructed to aim for a rating of perceived exertion (RPE) of 7-9 on the Borg
scale (Borg, 1982) after this phase. After this, the participant performed the three submax inter-
val stages, hereafter simply referred to as stages. These were four minute intervals, not intended
to push the participant beyond their maximal respiratory- or musculatory capacities. A resting
period of two-three minutes between each stage was enforced. The speeds are given by Table
2. If a participant at anytime was unable to keep up with the set speed, the stage was stopped
immediately. For the experiment day where the incline is set to 2.5%, an incremental test followed
the three interval stages. This test was intended to test the participant’s maximal capacity. The
speed increased every minute until the participant reached failure, then the speed was reduced to
that before the last increase and the participant continued until exhaustion.

1.2.3 Equipment

The setup is shown in Figure 2. Either a standard wheelchair or the participant’s own, in the
case of MWU, was used. The wheelchair was attached to a rig on the treadmill which allowed for
smooth movement along the rails of the treadmill and prohibited sideways drifting.
The HR was measured by a Polar chest strap, connected to Polar M400 HR monitor watch (Polar
Electro Oy, Finland). EE was measured by Vyntus ergospirometer (Vyntus CPX, Vyaire, Medical
GmbH, Germany) connected to the participant through a fitted face mask. Blood pressure was
measured after each of the initial rest periods and blood lactate was measured from ear-lobe
after each stage. Moreover, Qualisys motion capture system was used for motion capturing, and
accelerometers and inertial measurement units (IMUs) were attached to the wheelchair, the data
collected by these instruments are used in other parts of the project and are not included in the
scope of this thesis.

1.3 Research Objectives

The research in this project aimed to find a dynamical model structure to track and estimate HR
during wheelchair propulsion. The goal was to find out under which conditions and assumptions
the model works. Previous attempts at this have been focused on finding models for interval stages
in isolation (Cappozzo, 2022), in this thesis the aim was to find a model that can describe all stages
and test days by the same structure and parameters. The motivation behind this was the thought
that each individual might inhibit a fixed set of parameters that describe their response to input
of given intensities, which can then be used in non-standardized settings.
Subsequently, the aim was to find out how much information this model structure may provide on
the correlations among relevant estimated parameters. Lastly, some evaluations had to be made
on how confident we can be about the knowledge we may extract from the model structure. The
research was limited to the controlled case with the speed and incline of propulsion as known
variables.
The thesis was written from a control engineering perspective and the mathematical models were
found through numerical optimization of systems described through differential equations. Beyond
the scope of this project, the models found here can be used to further make models of the EE
and find correlations of the parameters between the two.

Primary objective:
Identify model structures for estimating the HR when wheeling at a known speed and incline.
Secondary objectives:
Analyse the goodness of fit and generalizability of the identified models and parameters.
Analyse the possibilities for individualizing the models by investigating the correlations.
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Table 3: MET values

Intensity Values [METs]

Walking 3.3
Moderate PA 4.0
Vigorous PA 8.0

2 Theory

2.1 Biological background

Due to the nature of the experiments this thesis is based on, a certain level of knowledge of the
physiological concepts relating to PA and HR is required. The necessary biological concepts for
understanding the methods and results in this thesis are presented in the following sections.

2.1.1 Heart rate dynamics

Heart rate (HR) is typically measured in beats per minute (bpm). During exercise the body has an
increased circulatory demand, thereby the HR increases to meet the demands of the body during
activity (Patel, 2022). The dynamics of this HR-increase, and subsequent -decrease, is dependent
upon a range of physiological factors. These are environmental factors, such as temperature,
altitude, and physiological factors such as age, physical fitness, nutrition among several others
(Zakynthinaki, 2015). For exercise of constant sub-maximal intensity the HR remains at a constant
rate which is obtained after a certain time. However, for higher intensity levels the HR may never
reach a steady state and rather experience a slower increase after some time (Zakynthinaki, 2015).

In previous parts of the DigiW project the stages of the experiments have been looked at in
isolation and attempted to be fit with linear first order models. The conclusion from these were
that a first order model was not sufficient in explaining the kinetics of the HR and that an integrator
should be included in the model to achieve better fit (Cappozzo, 2022). Therefore, development
of a dynamical model to capture the dynamics of HR during PA have been investigated in the
following thesis.

2.1.2 IPAQ

International Physical Activity Questionnaire (IPAQ) is a questionnaire developed for evaluation
of physical activity (PA) in adults in the age range 15-69 years. IPAQ is a self-report survey
where the participant reports minutes of physical activity within an average week. Activity is
categorized into three intensity-levels: walking, moderate and vigorous. The participant separates
active minutes throughout their week into each respective category. All domains of activity count
towards the reported time, for instance domestic, work- and transport-related activities within the
same intensity level will contribute equally to the total. The intensity levels however, are weighted
by their energy requirements in terms of METS, which are multiples of the resting metabolic rate
and when multiplied by duration of activity in minutes result in a score given in MET-minutes. A
value in MET-minutes may be converted to kilocalories through the following formula:

kcal = MET −min (weight [kg] /60 [kg]) (1)

The values used for MET in this thesis are shown in table 3 and have been derived from the IPAQ
reliability study (IPAQ, 2004).

The total MET score, reported as a median for each participant is thereby calculated by equation
2, where the number of minutes performed at each level; walking (W), moderate PA (M) and
vigorous PA (V), is multiplied by the number of days the participant performs the amount of
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minutes at the given level per week.

METtotal = 3.3 minW daysW + 4.0 minM daysM + 8.0 minV daysV (2)

It should be noted that only bouts of duration longer than 10 minutes are recorded in the survey,
as this is the required length for receiving health benefits from the effort (IPAQ, 2004).

2.2 System identification

System identification is the use of data to develop models for a given system. The model is then a
simplified version of the actual system, in order to be a viable model it should adequately mimic the
essential features of the data. Models consist of two parts: structure and parameters. The model-
structures considered in this thesis are presented below. Numerical optimisation, as presented in
Section 2.3 was used as a method of estimating the parameters.

2.2.1 First order model

A linear, time-invariant and driven first order model is given in the following equation (Andresen
et al., 2016):

ẋ(t) = f(x, u, t) = αx(t) + βu(t) (3)

Relating this to the physiological case regarded in this thesis, it may be translated to the following:

ḢR(t) = αHR(t) + βu(t) (4)

Thereby, the derivative of the heart rate, is related to the heart rate and an input, u, by the
constant parameters α and β. In the discrete case a general first order model can be formulated
as in equation 5 where k is a discrete time-step.

x[k + 1] = αx[k] + βu[k] (5)

The above functions are examples of linear models, however, by making one of the terms nonlinear,
for example by squaring or adding a geometric term, the model becomes nonlinear.

2.2.2 Second order model

A second order model includes the 2nd order derivative in the description of the system, such
models can always be written as a set of first order equations as is done when rearranging equation
6 into the set given in equations 7 and 8.

ẍ(t) = f(ẋ, x, u, t) = α1ẋ(t) + α2x(t) + βu(t) (6)

ẋ1(t) = x2 (7)

ẋ2(t) = α1x1(t) + α2x2(t) + βu(t) (8)

This is again a linear, driven model. In general, second order models may have more intricate
functions and relations than shown here. The set of equations can be discretized by the same
method as was done for the first order system.

2.3 Numerical optimization

Numerical optimization methods are used to minimize or maximize some objective-function, all
these methods can be generalised as trying to find the variables, x, that satisfy the following
equation

x : min
x∈Rn

f(x) s.t. ci(x) = 0, i ∈ ε

ci(x) > 0, i ∈ I
(9)
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Gradient-based optimization methods update the variables step-wise along the gradient of the ob-
jective function until a solution that satisfies the requirements is found. Such methods often use
many iterations to converge, hence the development of Newton methods. Newton methods con-
sider not only the gradient, but also the Hessian when making updates, this causes the algorithm
to take better steps towards the minimum and thus converges in fewer iterations. A more complex
group of optimization methods are the quasi-Newton methods. These methods are less computa-
tionally expensive variants of the aforementioned Newton-methods, which consider the Hessian of
the objective function. The quasi-Newton methods use an approximation of the Hessian instead
(Nocedal and Wright, 2006). As a general rule these methods makes the variable update, xk to
xk+1, according to the formula described in equation 10, where αk is a step-length that satisfies
the Wolfe-conditions and Bk is a non-singular approximation of the Hessian (Hauser, 2005).

xk+1 = xk + αk(−B−1
k ∇f(xk)) (10)

The function f(x) however must be twice differentiable and convex.

2.3.1 Broyden–Fletcher–Goldfarb–Shanno algorithm

One of the quasi-Newton methods is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, in
which Bk is not recomputed at every iteration, but rather updated by accounting for the curvature
in the previous iteration (Nocedal and Wright, 2006). Following the derivation given in Nocedal
and Wright, 2006 on page 137, Bk can be found through equation 11.

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

yky
T
k

yTk sk
(11)

The initial B0 can be set as an approximation of the Hessian or another arbitrary matrix, such as
the identity, or a scale-reflecting multiple of it (Nocedal and Wright, 2006). The method known as
Limited Memory BFGS-B is commonly used in programming cases with bounds on the variables
(Zhu et al., 1997).

2.4 Least squares estimation

Least squares is a widely used estimator for parameter identification. It attempts to identify the
most probable values for the parameters, which is defined as the value that makes the residuals
as small as possible (Sorenson, 1970). Mathematically, it can be formulated through equation
12, where xi are the points in the actual dataset, f(x, θ) is the function which characteristics are
defined by the parameters θ.

θ̂LS = argmin

n∑
i=1

(yi − f̂(xi; θ))
2 (12)

where i is the number of data points.

2.5 Measurements of performance

2.5.1 Coefficient of determination: R2

R2, defined as coefficient of determination, is a measure of goodness-of-fit of a model to a dataset.
It is based on the mean squared error (MSE) of the model. The MSE is the square of the residuals,
that is the distance between the actual data points and the points predicted by the model. Its
formula is given in equation 13, where n is the number of data points, yi, ŷi are the models’
predictions and y is the average of the datapoints. Thus, R2 is given by formula 14.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (13)
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R2 = 1−
∑n

i=1(yi − ŷ)2∑n
i=1(yi − y)2

(14)

A high R2 indicates a good fit, the lower the value is the worse is the model in explaining the
variance in the data. An R2 close to or below 0 shows little to no statistical significance. When
working with behavioural data however it is common to accept a much lower value than most other
cases due to human errors (Walpole et al., 2016).

FIT is another way of presenting the coefficient of determination. Essentialy, the metric is the
same as R2, but given as a percentage and the higher it is the better is the fit, it may have a
negative number.

2.6 Fourier transform

The Fourier transform transforms a signal in the regular time-domain into the frequency-domain.
The magnitude at each frequency represents the presence of that frequency in the original signal.
One may change the original signal by removing certain frequencies in the transformed signal. A
signal expressed as a function of frequencies, s is denoted as f̂(s) may be defined through the
Fourier transform given in equation 15 where i is the imaginary unit (Osgood, 2007, p. 76).

f̂(s) =

∫ ∞

−∞
e−2πistf(t)dt (15)

For the purpose of this thesis this transform may be useful to remove the higher order frequencies
as a method for removing rapidly fluctuating noise in the signal.

2.7 Correlation analysis

Correlation coefficients are measures of the degree of linear association between two variables
(Walpole et al., 2016, p. 451). Essentially the correlation between variables is their covariance,
standardized by their standard deviations. The Pearson correlation coefficient between variables
x and y is given in equation 16.

r =
Sxy√
SxxSyy

(16)

In which Sxy, Sxx and Syy each are measures of the variability of each variable, defined as shown
below, with x and y being the average of the two variables, (Walpole et al., 2016)

Sxx =

n∑
i=1

(xi − x)2

Syy =

n∑
i=1

(yi − y)2

Sxy =

n∑
i=1

(xi − x)(yi − y)

When the correlation-coefficient is positive it means that there is a linear relationship between the
variables, where an increase in one corresponds to an increase in the other. Negative correlations are
the opposite, where an increase in one variable corresponds to a decrease in the other. Correlation-
coefficients are in the range -1 to 1, where each of the extremes represent fully negative- and positive
correlations respectively.
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3 Method

3.1 Pre-processing and Data cleaning

This thesis was based on data collected through different sensor and devices in the DigiW-project,
as explained in the section 1.2.3. More specifically the analysis in this thesis used the continuous HR
signals from the experiments, in combination with demographic information about each participant.
Thereby, the thesis was based on several timeseries-data over periods upwards of 2 hours. In order
for the data to be useful, quite a bit of pre-processing and data cleaning was needed. A significant
part of the project was spent handling this aspect. Several different methods for structuring and
imputing the data were attempted in order to create a pre-processing pipeline for all participants
that conserved all biological properties of the data.

The data-collection process in itself was standardized for all participants. However, there are always
challenges with adhering to a standardized protocol when it comes to experiments performed by
human individuals. Figures 3 and 4 show the raw HR signals from one participant over two full
experiment days. The plot shows some of the variances that may occur during the experiment.
The most apparent divergence from standard procedure here is the rest-length between periods,
which is seen in figure 3 where the rest between the first and second stage is significantly longer
than that between the second and third. Figure 4 shows a participant unable to complete the
last stage and therefore terminating it early, this is another case of the general experiment-design
which is often diverged from. These are the two most common cases needed to account for in the
processing and the analysis of the data. This experiment in particular is incredibly vulnerable to
human efforts affecting the data since the participant are asked to physically exert themselves and
certain tasks have to be performed in a physically exerted state.

Figure 3: Raw HR signal from one experiment day from polar sensor located around a participant’s
chest with annotations indicating rest-periods

The experiments were performed as part of a large interdisciplinary study which is the reason for
the large amount of different sensors and data collected in the experiment. This lead to some
of the issues with divergences from the standardized time-intervals as large amounts of sensors
heightens the need for prolonged rest in order to fix a sensor. However, the main challenge with
this accumulation of sensors was that their data needed to be synchronized. No standardized and
synchronized timestamps existed to indicate when stages started and stopped for all participants
and these varied greatly due to human variances in the experiments, as was displayed in figures
3 and 4. Therefore start- and stop-times had to be interpreted from the recorded signals and
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Figure 4: Raw continuous HR signal from polar sensor located on the participant’s chest.

the manually recorded timestamps per day. For the purpose of this thesis, the HR data needed
synchronization to an input-signal which was done through synchronizing with the aforementioned
manually recorded timestamps.

Another result of the multiple uses of the data was that the data recorded over a longer timeframe
than needed for the scope of this thesis. Before the interval stages, and after some of them, there
are long periods of recorded data that we did not want to include in the following analysis. These
sections of the timeseries were used to determine a median of the HR to represent the resting
HR. After using these sections for that purpose, everything up until the end of the warm-up was
removed, as well as everything after 120 seconds after the last stage.

3.1.1 Missing data

The HR data used in this thesis stemmed from a Polar HR sensor, detailed in Section 1.2.3. The
participant had this mounted around their chest throughout the entire duration of each day, for
consistency og measurements. However, there were still some challenges with the signal obtained
from the HR sensor, that required handling in pre-processing of the data.

The main issue was the general noisiness of the HR signal. This was a result of the underlying
challenges of this type of measurement. Measurements of physiological factors through skin, and
tissue tends to be erroneous as several varying factors between individuals affect the measurements.
Movement and sweat which may vary throughout the experiment impact the sensor and create
noise. This makes it hard to interpret the signal and correctly determine true value. Examples of
the raw signals are shown in figures 3 and 4. The noise is particularly apparent before the warm-up
where the participant is at rest. Ideally, the HR-signal should be constant and representative of
the resting-HR within this time frame. As can be seen from the figures, the HR oscillates within
a range of about 10 bpm and has additional large erroneous spikes. This had to be carefully
considered whenever making choices on how to deal with this data.

The HR monitor had a tendency to fall-out during the experiment meaning that it had periods
where it did not record any measurements. This happened in single sample instances, examples of
which is displayed as zero-values in figures 4, but there were also minute-long periods where the
HR monitor did not collect measurements, as displayed in figure 5. Initially the missing values
were simply imputed with the next valid value, which worked well for the cases where individual
samples were missing. However, when there were periods lasting several minutes without any
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recorded data, this method potentially altered the signal greatly in a wrong direction, due to the
added issue of noisiness in the data. The resulting method used for imputation of these values was
then to impute the missing values with the mode of the remaining signal. The mode was chosen as
the imputation value, instead of the mean as this is a more accurate representation of the resting
HR, due to the fact that the participants were in activity for large portions of the recorded signal.

The sensors were particularly susceptible to missing values when the participant transitioned
between different sections of the experiment. The transition between the rest periods and activity
on the treadmill was the most crucial as this might be included in the partition of the signal we
wished to use. There were also vulnerable periods at the beginning and end of the experiment
days, but these were simply disregarded.

Figure 5: Raw HR signal from one full experiment day for one participant displaying long periods
of missing records.

3.1.2 Smoothing

Due to the high variability in the HR-signal, which was seen previously to oscillate rapidly even
in steady state. An attempt was made to smooth the signal, in hope that it could produce better
fits of the model. This smoothing was performed using a Fourier transform, as described in the
theory. After the Fourier transform, the higher frequencies were removed from the signal in order
to capture the bigger tendencies of the signal. Figure 6 shows the resulting smoothed signal by use
of a Fourier transform. The issue with this, is that the dynamics of the HR is indeed quite rapid
by nature and thus in removing the noise, we also removed some of the naturally fast dynamics of
the HR. A trade-off had to be made between the two.

3.1.3 Input construction

The aim was to find a model that predicts the HR based on an input, thereby a signal for the
input had to be constructed. The generation of the input signal was based on manually recorded
values of the start- and stop-times of each stage. The inputs were generated in two variants which
both try to emulate intensity, one where the input is simulated as a combination of the speed and
incline of the treadmill and one where these are given as two different parameters. This is shown
in Figure 7 and 8 respectively. Both input-types were used in the system identification. We aimed
to see which one could better explain the dynamics of the data and give a better model fit and
also see what the model can tell us about the importance of the two factors in prediction of HR.
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Figure 6: Raw HR data and data smoothed with Fourier transform. Data stems from one full
experiment day for one participant. ’th’ is the threshold used to determine which frequencies to
remove from the signal

3.2 System identification

3.2.1 Data organization

As described in the test protocol in the introduction, each participant conducted a total of 9 stages
distributed over three test days, where each day was dedicated to a set incline on the treadmill.
As these stages, and the rest-periods between them were the targets of the analysis in this thesis,
everything else was removed from the raw data. The separate days were concatenated to form
one continuous signal to use in the system identification process. The previous attempts at trying
to find models and model-parameters, have looked at one stage in isolation, the goal here was
to see if one set of parameters could work well to represent all stages and days simultaneously.
Thereby, every time an individual is active due to a known input it will show a response defined
by a fixed set of parameters. So, it should be possible to individually decide a set of parameters,
for which the persons HR always will follow based on input. The resulting dataset that was used
in analysis takes on the general shape that is shown in figure 9, which shows the specific case for
one participant.

As specified before, the mode of the measurements was removed from each experiment-day. This
was done as a regularization-measure so that the resting-HR of each participant, which may be
regarded as an offset, does not impact the resulting parameters from the identification. Con-
sequently, what is from now on labeled as HR in the plots is actually the HR but subtracted its
mode. This explains why the HR seems to be below biologically viable values.
From figure 9 one can clearly see the nine stages as the impulses with heightened HR. The first
three correspond to the first test day with incline 0.5 %, the next three impulses stem from the
second day with incline at 2.5%, note that the incremental stage at the end of this test day has
been removed, the last three pulses are from the third day with incline 5.0%. Speeds of each stage
on each day can be found in table 2. It should be noted that even though participants performed
the respective days in a randomized order, for simplicity they have all been concatenated in the
order given above, irrespective of the order they were performed by the participant.
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Figure 7: Input signal constructed as a single source based on a combination of speed and incline of
the treadmill. The y-axis gives the magnitude of the input and has no direct physical interpretation
in terms of units.

3.2.2 Cost function

We applied system identification methods to identify the parameters of the potential model struc-
ture. The parameters were found by employing numerical optimization on a cost-function. A
least-squares estimation approach was selected. The motivation behind this identification was that
we think every participant has a set response to input. Thereby, the cost-function we seek to
minimize is defined by equation 17 where the indexes 1, 2 and 3 correspond to the three test days.
The cost of each test day is given by the summed square of residuals as show in equation 18

Cost =

3∑
j=1

costj (17)

costj =

n∑
i=1

(yi − ŷi)
2 (18)

3.3 Numerical optimization

Numerical optimization, more specifically L-BFGS-B method was used to find a minimum in the
cost function given above. The cost function was a least squares measure of a model with a set of
parameter’s fit to the data. Thus the algorithm seeked to find the parameters which minimizes the
sum of squares between the data points and the points predicted with the set parameters based
on the specific model. The optimization was bounded in the sense that we need the parameters to
be in the range [0, 1] in order to ensure stability in the discretized system (Andresen et al., 2016,
p.531).
From hereon, to simplify notation, the HR will be denoted as x, the constructed single-input as
simply u and incline and speed as u1 and u2 respectively. When the input is denoted as a vector
u it is to signify that both the single input and the separated has been used in that setting.
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Figure 8: Input signal constructed as two separate sources, one is the speed [km/h] and the other
is the incline [%] of the treadmill

3.4 Model structures

Several different model structures were implemented and fit to the data as in the process explained
above. The following subchapters provide the discretized formulas for each of the implemented
model structures.

3.4.1 First order linear model

As described in the theory, with the start of the PA, HR will increase from resting state and reach
a constant value thereafter, this concept is visualised by the HR signal from one participant over
one stage in figure 10. A first order linear model defined in the following is selected as a candidate
structure.

x[k + 1] =α[k] + βu[k] (19)

x[k + 1] =α[k] + β1u1[k] + β2u2[k] (20)

where x[k] is the HR at timestep k, and α and β are the target parameters to be identified
by minimizing the cost-function described in 17. The input u was implemented either as the
constructed single source input or the speed and incline as separate inputs, u1 and u2, in the
second case both β1 and β2 are identified.

3.4.2 First order nonlinear models

Several first order nonlinear model structures were also investigated. The main focus was at
attempting to square the input. In the case with the input modelled as a single source, it was
squared as in equation 21

x[k + 1] = α[k] + βu[k]2 (21)

In the cases where the input is separated into incline (u1) and speed (u2), the model given in 22
was implemented.

x[k + 1] = α[k] + βu1[k]u2[k]
2 (22)
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Figure 9: Concatenated HR of all test days for a single participant. Missing signals were imputed
with the mode, and the mode has been subtracted from all points.

Figure 10: HR-signal from one stage for one participant showing similar response to a first order
system

3.4.3 Second order linear model

As an attempt to include the slower cardiac increase that was explained in the theory and is
visualised in figure 11, second order models were fit to the data. These were implemented as
described by the following equations.

x1[k + 1] =α1x1[k] + x2[k] (23)

x2[k + 1] =α2x2[k] + βu[k] (24)

3.4.4 Second order nonlinear models

For the second order models, the nonlinear model structures given below were implemented, where
u1 is the incline and u2 is the speed.
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Figure 11: HR-signal from one stage for one participant showing similar response to a second order
system with integrating effect

x1[k + 1] =α1x1[k] + x2[k] (25)

x2[k + 1] =α2x2[k] + βu[k]2 (26)

x1[k + 1] =α1x1[k] + x2[k] (27)

x2[k + 1] =α2x2[k] + βu1[k]u2[k]
2 (28)
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4 Results

In this section results with regards to simulating different model structures, identification and
correlations among parameters and participants’ personal characteristics are reported.

4.1 First order linear model

Data collected from one specific participant is used to visualize the performance of different model
structures in tracking HR dynamics. The participant was chosen based on goodness of HR-data.

Figure 12 shows the result of the first order model identification given by equation 3 where the input
was modeled as a single source. The simulation in figure 12a was performed with the parameters
estimated from the raw HR data. The simulation in figure 12b is the output from the simulation
with the raw HR-data as input, but the parameters used in the simulation were found through
minimization of the cost-function with a smoothed version of the HR-signal. The difference between
the two versions is that 12b has longer time-constants. Both of the models grossly over-estimate on
all stages of the first experiment day, and underestimate by a similar amount on the three stages
of the third day.

The average of each estimated parameter, the average fit and the standard deviation of each of
these are given in table 4 and 5.

(a) Model fit to raw HR-signal (b) Model fit to smoothed HR-signal

Figure 12: First order linear model fit to one participant for an entire experiment day

(a) First order linear model fit to raw data (b) First order linear model fit to smoothed data

Figure 13: Heatmap of correlations between demographic variables and parameters obtained for
the first order linear models

Correlation coefficients were calculated, as by formula given in the theory, and displayed in correla-
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tion heatmaps. Figure 13 shows a heatmap of the correlation-coefficients between the demographic
variables and the parameters obtained by the first order linear model identification. IPAQ and
gender are not included here as they are categorical values. The parameters correlate with them-
selves to a large extent as can be seen by their high absolute values, and so does certain of the
demographic variables with each other, such as weight and height. The strongest correlations
between demographic variables and parameters are found in the model derived from the smoothed
data. β has correlation-coefficients of -0.49 and -0.45 with weight and height respectively as seen
in figure 13b.

Each participant has a numerical IPAQ-score and a categorical IPAQ-score. The MWU only have
categorical scores, and are all within the same category, therefore correlations with IPAQ have
only been calculated for AB. The correlation-coefficient between the parameters and IPAQ-score
can be found in table 6, which shows a nonsignificant correlation between the two for this model.

Figure 14 shows the simulated response for a linear first order model where the input was given as
the speed and incline separately. Compared to when the input was a single value the model follows
the raw data more closely. Although some overestimation for the first day and underestimation of
the last day still persists, this offset is reduced. The performance is reflected in the fit statistics
presented in table 4 and 5. When comparing the model generated from the smoothed signals
to that based on the raw there is a much larger difference here than in the previous case. The
smoothed data yields a higher α indicating a longer time constant. The parameters and fit are
similar for AB- and MWU-group. The heatmaps 15a and 15b show the correlation-coefficients

(a) Fit to raw data (b) Fit to smoothed data

Figure 14: First order linear models based on separated input, fit to one participant over all
experiment days

(a) First order linear model fit to raw data (b) First order linear model fit to smoothed data

Figure 15: Heatmap of correlations between demographic variables and parameters obtained for
the first order linear models with separated input
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for this model. Generally there are higher coefficients here than in the previous model, indicating
better correlations. Again, the height and weight stand out as the parameters with the highest
coefficients. In this case they have non-insignificant correlations with α- and both the β-parameters.

In order to see if the parameters could be used to individualize the HR predictions, correlation
analysis has been employed and results has been shown in three dimensional plots. These plots were
separated by gender and parameters were plotted against age, height and body-mass to find any
potential correlations. Figure 16 shows the parameters obtained from this system identification
plotted against different demographic variables for each of the participants; gender, age, body-
mass and height. Supporting what was seen in the heatmap in figure 15a some correlation can be
detected between the height and the obtained parameters in 16c and 16c.

4.1.1 First order nonlinear model

The nonlinear model based on a single input was implemented as shown in equation 21, the
simulation results can be found in figure 17. This model shows the same over- and underestimation
tendencies that were prevalent in the first order linear model. And in this model where the input
was squared this tendency was enhanced further and yields an even lower fit, regardless of whether
the model was optimized on the raw or smoothed data. This is shown in table 4 and 5. The
parameters for AB and MWU are similar and yield equally low fit. Figure 18 shows that there are
no significant correlations from this model.

The model implemented as in equation 22 yields the performance shown in figures 19a and 19b.
The parameters and fit statistics are presented in table 4 and 5, these are similar to what was
obtained in the first order linear model with separated input. From the raw data there are no
significant correlations seen in figure 20a, however the results from the smoothed data in 20b show
correlations between the parameters and the participant’s weight and height. Table 6 shows that
here is a small negative correlation between the IPAQ and the α-parameter.

Figure 21 shows the corresponding three-dimensional plot of the nonlinear first order model. These
plots supports the correlations seen in the heatmap, and moreover exposes gendered groupings
which gives rise to possibilities of splitting the parameters into gendered ranges. As can be seen from
21c and 21b especially, the female participants generally have higher β than the male participants.

4.1.2 Second order linear model

The second order model was implemented as described in equation 6. Figure 22 shows the sim-
ulations obtained with these models, table 4 and 5 shows the corresponding parameters and fit
statistics. Figure 22b shows the same tendencies as in the first order linear model with the same
single input source, where there was overestimation on the first day and underestimation on the
last. Tables 4 and 5 reiterates that the fit of this model is the lowest obtained so far.

Similarly to the first order model, the fit was significantly increased when speed and incline are
used as separate inputs. The performance is shown in figure 24 and the fit statistics are presented
in table 4 and 5. The dynamics of the model obtained from the raw signals are, as shown in figure
24, much faster than the dynamics stemming from the smoothed signal, which can be seen in figure
24b.

Figure 26 shows the parameters plotted against the demographic properties. The parameters from
the smoothed model were used since these had the best fit to the data as can be seen by the
difference in 5 and 4. What is apparent from these plots is that the αs are high for all participants,
except two outliers and the βs are small for all except the same two outliers. No correlations are
found between the variables and there are no apparent groupings either.
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(a) Age vs. α vs. β1 (b) Body-mass vs. α vs. β1

(c) Height vs α vs. β1 (d) Age vs. α vs. β2

(e) Body-mass vs. α vs. β2 (f) Height vs α vs. β2

Figure 16: Parameters obtained from the first order linear model, with separated input when fit
to the smoothed data, plotted against characteristics of each participant
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(a) Fit to raw data (b) Fit to smoothed data

Figure 17: First order nonlinear model, with single input fit to a participant over all days

(a) Model parameters fit to raw data (b) Model parameters fit to smooth data

Figure 18: Heatmap of correlations between demographic variables and parameters obtained from
the first order nonlinear model with single input

4.1.3 Second order nonlinear model

The results from the implementation given in 7 are shown in figure 27 and parameters and fit
statistics are found in table 4 and 5. Once again the model with single input has an inadequate
performance and in this case shows consistent underestimation. The correlations for this model
found in figures 28 are not representative due to the low fit of the model.

The results from implementation of a second order nonlinear model with separated input, as given
in equation 8 are shown in figure 29 and the tables 4 and 5. The fit achieved here is similar to that
achieved by the first order nonlinear with separated input as described earlier. The parameters
obtained from the model based on smoothed data, show moderate correlations between the weight
and all the parameters, these are given in Figure 30 and table 6. The three dimensional plots of
parameters in Figure 31 show no apparent gendered groupings.

4.2 Model summary

Comparing all the attempted models, it is clear that the models that achieve the highest fit in
both the first and second order are the nonlinear models with separated input. Figure 32 shows
the two plotted together for comparison.
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(a) Fit to raw HR (b) Fit to smoothed HR

Figure 19: First order nonlinear model, with the input separated into two, fit to one participant
over all experiment days

(a) Model parameters fit to raw HR (b) Model parameters fit to smooth HR

Figure 20: Heatmap of correlations between demographic variables and parameters obtained from
the first order nonlinear model with separated input

(a) Age vs. α vs. β (b) Body-mass vs. α vs. β (c) Height vs α vs. β

Figure 21: Parameters of the first order nonlinear model with separated input based on the
smoothed data, plotted against physical properties of each participant
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(a) Fit to raw HR (b) Fit to smoothed HR

Figure 22: Second order linear model fit to one participant over all experiment days

(a) Model with single input, fit to raw data (b) Model with single input, fit to smooth data

Figure 23: Heatmap of correlations between demographic variables and parameters obtained from
a second order linear model

(a) Fit to raw data (b) Fit to smoothed data

Figure 24: Second order linear model, with input separated into two fit to one participant over all
experiment days
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(a) Model fit to raw data (b) Model fit to smooth data

Figure 25: Heatmap of correlations between demographic variables and parameters obtained from
a second order linear model with separate input

Table 4: Table of parameters and fit statistics for all models, with the optimization done on the
raw HR-signal. Separated into AB and MWU and averaged over all participants. Models marked
as ”sep”, is based on the separated input signal.

Group Order Model α1 ± σ α2 ± σ β ± σ β2 ± σ Fit ±σ [%]

AB

1

linear 0.97 ± 0.03 - 0.28 ± 0.16 - 26.38 ± 11.10
linear, sep 0.85 ± 0.04 - 0.84 ± 0.04 0.85 ± 0.04 34.76 ± 12.11
nonlinear 0.81 ± 0.22 - 0.20 ± 0.24 - 3.71 ± 11.12

nonlinear, sep 0.91 ± 0.18 - 0.10 ± 0.18 - 44.60 ± 14.50

2

linear 0.84 ± 0.22 0.89 ± 0.09 0.16 ± 0.21 - 22.97 ± 11.15
linear, sep 0.88 ± 0.11 0.88 ± 0.11 0.11 ± 0.26 0.12 ± 0.21 41.08 ±12.35
nonlinear 0.53 ± 0.27 0.53 ± 0.27 0.27 ± 0.17 - 0.15 ± 11.17

nonlinear, sep 0.69 ± 0.34 0.69 ± 0.34 0.2 ± 0.25 - 37.60 ± 12.24

MWu

1

linear 0.97 ± 0.01 - 0.23 ± 0.13 - 20.38±16.54
linear, sep 0.85 ± 0.03 - 0.85 ± 0.03 0.84 ± 0.04 33.13 ± 5.19
nonlinear 0.89 ± 0.23 - 0.07±0.14 - 4.2±17.81

nonlinear, sep 0.72±0.28 - 0.24±0.24 - 33.45±15.10

2

linear 0.88±0.12 0.88±0. 12 0.15±0.24 - 14.63±9.29
linear, sep 0.74 ± 0.12 0.74 ± 0.12 0.48 ± 0.32 0.37 ± 0.25 33.38±6.55
nonlinear 0.63±0.32 0.63 ± 0.32 0.15±0.14 - -0.81±20.08

nonlinear, sep 0.55±0.47 0.55±0.47 0.32±0.32 - 32.27±16.16

5 Discussion

5.1 Model performances

5.1.1 Input

dWhen using the single intensity-source as input, the models consistently overestimates the HR on
all the stages on the first experiment day and underestimated it for the stages on the third experi-
ment day. They often, but not always, achieve a better fit on the second day. This is probably due
to the intensity of this day being intermediate of the two others, when the optimization tries to
minimize the sum of squares a trade-off has to be made between over- and underestimation of the
first and third day respectively, which incidentally fits the intermediate intensity second day. The
reason for the poor performance might be that the constructed input is not representative of the
intensity as was the intention, there is an inverse relationship between the increase in this input
and the resulting increases in HR.
The models based on separated input consistently achieve better fit than the single input models
across all orders and groups. Consequently, these models will be the focus of the following dis-
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(a) Age vs. α1 vs. α2 (b) Age vs. β1 vs. β2

(c) Body-mass vs. α1 vs. α2 (d) Body-mass vs. β1 vs. β2

(e) Height vs. α1 vs. α2 (f) Height vs β1 vs. β2

Figure 26: Parameters of the second order linear model, with separated input, with separated
input, plotted against physical properties of each participant
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(a) Fit to raw HR-signal (b) Fit to smoothed HR-signal

Figure 27: Second order nonlinear models fit to one participant over all three experiment days

(a) Model fit to raw data (b) Model fit to smooth data

Figure 28: Heatmap of correlations between demographic variables and parameters obtained from
second order nonlinear model with single input

(a) Fit to raw HR-signal (b) Fit to smoothed HR-signal

Figure 29: Second order nonlinear model, based on separated input and fit to one participant over
all experiment days
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(a) Model fit to raw data (b) Modelfit to smooth data

Figure 30: Heatmap of correlations between demographic variables and parameters obtained from
second order nonlinear model with separated input

Table 5: Table of parameters and fit statistics for all models, with the optimization done on
the smoothed version of the HR-signal. Separated into AB and MWU and averaged over all
participants. Models marked as ”sep”, is based on the separated input signal.

Group Order Model α1 ± σ α2 ± σ β ± σ β2 ± σ Fit ±σ [%]

AB

1

linear 0.98 ± 0.01 - 0.17 ± 0.09 - 23.32±11.52
linear, sep 0.98 ± 0.01 - 0.11 ± 0.05 0.13 ± 0.06 45.53±10.87
nonlinear 0.98 ± 0.01 - 0.02 ± 0.01 - 6.15 ± 10.8

nonlinear, sep 0.98± 0.01 - 0.02 ± 0.01 - 46.1 ± 14.07

2

linear 0.95 ± 0.02 0.95 ± 0.02 0.03 ± 0.04 - 22.62 ± 10.50
linear, sep 0.92 ± 0.06 0.92 ± 0.06 0.04 ± 0.06 0.05 ± 0.05 39.71 ± 11.23
nonlinear 0.95 ± 0.02 0.95 ± 0.02 0.003 ± 0.003 - 2.11± 11.08

nonlinear, sep 0.89 ±0.14 0.89±0.14 0.03±0.06 - 40.33±13.35

MWU

1

linear 0.98 ± 0.01 - 0.17 ± 0.03 - 28.76 ± 12.36
linear, sep 0.98 ± 0.01 - 0.10 ± 0.03 0.12 ± 0.06 45.06±10.55
nonlinear 0.98 ± 0.01 - 0.02 ± 0.01 - -1.98 ± 17.9

nonlinear, sep 0.98± 0.01 - 0.02 ± 0.01 - 40.54± 19.50

2

linear 0.95 ± 0.02 0.95 ± 0.02 0.02 ± 0.02 - 15.311± 12.49
linear, sep 0.93 ± 0.04 0.93 ± 0.04 0.05 ± 0.07 0.02 ± 0.02 36.09 ± 6.24
nonlinear 0.65 ± 0.29 0.65 ± 0.29 0.13 ± 0.11 - -4.74 ± 19.08

nonlinear, sep 0.91±0.13 0.91±0.13 0.03 ±0.08 - 36.59±19.34

cussion. This insight is also helpful to understand which factors are necessary to derive from the
wheelchair in future work. When the wheelchair is in a free living situation and not on a treadmill,
gyroscopes and accelerometers can be used to derive information about speed and incline. Both of
which will be important in deciding the intensity of the activity performed and thereafter the HR
and EE. On a more general basis, the overall model performance might have been increased had
the input been constructed in another way or been based on other intensity indicators. Further
work might focus on what other parameters might be more representative as input.

5.1.2 Order

In general the first and second order models show similar fit to the raw data, with values ranging
from 36% to 46%. The standard deviations for the two are also of similar size. For the models
derived from the smoothed data however, the first order models achieve marginally better fit than
those of second order. The correlation-coefficient achieved with the best first order models are also
higher than the ones achieved through the second order models.

It is clear from the plots that the integrating effects that the second order models have is very
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(a) Age vs. α1 vs. α2 (b) Age vs. α1 vs. β

(c) Body-mass vs. α1 vs. β (d) Body-mass vs. α1 vs. α2

(e) Height vs. α2 vs. α1 (f) Height vs α1 vs. β

Figure 31: Parameters of the second order nonlinear model with separated input, based on
smoothed HR-signal, plotted against physical properties of each participant
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(a) Fit to raw HR-signal (b) Fit to smoothed HR-signal

Figure 32: First and second order nonlinear model, based on separated input and fit to one
participant over all experiment days. Plotted together for comparison.

small. The stages might not be long or intense enough for the participants to experience slow
cardiac drift (Zakynthinaki, 2015). Had the participants been asked to exert themselves over a
longer period, the second order models might have seen an increase in performance compared to
the first order due to the fact that they might then have had more of the slow cardiac drift.

Overall, the models do not fit the data too well. There is a trend that for the highest intensities,
and especially for the last stage on the third day the models underestimate the HR. First of all,
this is a huge contribution to the low fit of the models. This can be verified by looking at the
various plots where it is shown that the models perform very well for the lower intensities, but
underestimate at the highest intensities. This might hint that there is in fact no fixed set of
parameters for each individual, that they instead change when the intensity changes.

The parameters second order models consistently achieve the same parameter-values, for α1 and α2,
this can be seen through the correlation-coefficients having a value of 1 in the various heatmaps and
in the tables 4 and 5. Since there was no prior knowledge of the parameters, they were all initialized
to 0.5 which might be what caused this issue. It might also be a result of non-identifiability of
these two parameters, the identifyability was not checked beforehand. If this is the case, it makes it
impossible to estimate them uniquely from the given data (Guillaumea et al., 2019). Initialization
of alpha1 and alpha2 to slightly different values in the second order nonlinear was attempted and
gave slightly different results. This indicates that the problem is locally identifiable and should
therefore be investigated further.

5.1.3 Linearity

An issue with the linear models wass that the relationship between the increases in speed and
the corresponding increases in the HR was nonlinear. The increases in HR were equal or even
slightly bigger for the third day (5.0% incline), but this day had much lower speeds and much
lower increases in the speeds. Thereby, making it impossible for a linear model to account for
the increases in HR on the first day and last day with a linear model. Implementing nonlinearity
between input and HR better captured this dynamic, as is seen through the fit statistics in the
table 4 and 5. The nonlinear model identified here squared the speed and multiplies it by the
incline. This indicates that the HR-increase based on a speed increase is highly dependent on the
incline it is performed at and reinforces the need for a non-linear model.
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Table 6: IPAQ correlations between AB-participants and parameters of different models, averaged
over all AB participants

Model Linearity Input-type Data α1 α2 β1 β2

First order

Linear
Single

Raw 0.004 - 0.004 -
Smooth 0.023 - -0.13 -

Separated
Raw -0.11 - -0.11 -0.078

Smooth -0.18 - 0.12 -0.33

Nonlinear
Single

Raw 0.22 - -0.19 -
Smooth -0.17 - -0.051 -

Separated
Raw 0.22 - 0.019 -

Smooth - 0.27 - 0.051 -

Second order

Linear
Single

Raw -0.11 0.10 -0.09 -
Smooth -0.23 -0.23 0.1 -

Separated
Raw -0.16 -0.16 0.057 0.045

Smooth -0.21 -0.21 0.26 0.15

Nonlinear
Single

Raw -0.13 -0.22 0.18 -
Smooth 0.0 0.31 -0.30 -

Separated
Raw -0.09 -0.09 0.07 -

Smooth 0.31 0.31 -0.3 -

5.1.4 Smoothing

Overall the models that were generated from the smoothed data achieved better fit, this can be
seen through comparison of table 4 and 5, from the plots of the models it can also be seen that
they followed the shape of the HR to a better extent. The standard deviations were of similar
order. When basing the model on the smoothed data the residuals are a better estimate of the
lack-of-fit of the model. In the raw data, certain residuals will be large by virtue of the noise, and
not necessarily poor model performance. Thus, the numerical optimization might obtain better
models from less noisy data. Whereas the dynamics obtained from the raw signals often are too
fast compared to the actual, due to the influence of the noise. The resulting dynamics from the
smoothed data were naturally slower with longer time constants, as a consequence of the removal of
the fastest frequencies from the signal. The slower dynamics derived from these models were likely
more descriptive of the actual dynamics as they provided stronger correlations with the physical
characteristics as can be seen by comparing the heat-maps provided in the results.

It is arguable, however, that the smoothin-method did not preserve physiological properties. The
fluctuations in the HR signal may not only be due to noise, HR measured in bpm tends to have
non-stochastic spontaneous fluctuations that may have biological significance (Zakynthinaki, 2015).
Thus, removing them from the process may be problematic in terms of the physiological imple-
mentations.

5.1.5 Generalizability

The optimized parameters were similar between the AB group and the MWU group as can be seen
in tables 4 and 5. Moreover, in the cases where they are slightly different, they still lie within the
range of each others standard deviations. This indicates that there is a good possibility for general-
izing from AB-data to MWU-data. On the other hand, the models often had a worse performance
on the MWU and higher standard deviations compared to the AB, which is a reflection of the
heterogeneity of the group. Overall the standard deviations of the parameters were significantly
large, which reiterates the need for individualization of the models.
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5.2 Demographic correlations

The correlations found between the different demographic variables and the obtained parameters
can be classified as low to moderate. However, they do yield some possibilities for individualizing
the model based on weight and height. Especially, the first order models based on smoothed data
showed negative correlations around 0.5 between the body-mass, height and optimized parameters.
Several of the models, showed body-mass as negatively correlated with β. This indicates that the
higher the body mass is the lower will the steady-state gain from the input be.

The three-dimensional plots show that there are outlines of gender based clusters which may allow
for gendered grouping of the parameters. In the first order nonlinear model we saw that the women
generally had higher β than the male participants. This indicates that the input is more important
in determining their HR than it is for the male, giving them higher steady-state gain.

Some of the models showed a weak correlation between IPAQ value and the α parameter as can be
seen in 6. The correlation was in most cases negative, indicating a decrease in α with increase in
IPAQ-score. Consequently, the models showed that the higher the IPAQ score, indicating higher PA
levels in daily life, gave a higher time-constant and thereby slower increase of HR. The correlation
was not calculated between the MWU and IPAQ since the specific answers for this group were
not accessible. The only available information of the IPAQ-values was that all MWU fell into the
highest IPAQ-category, which was not useful for correlation calculations. On the other hand the
validity of IPAQ as a metric for scoring physical activity-levels for MWU has not been sufficiently
investigated in the existing literature. Thereby, using this for comparing AB and MWU in the
same manner, might not be appropriate regardless.

5.3 Challenges

There were many challenges with the data-collection, the main, as previously discussed being the
falling-out of sensors. Moreover, several different persons have been involved in the data-collection
and the standardization of procedure was not set from the start, causing discrepancies from the
current procedure. A lot of time and effort had to be put into making a pipeline from raw HR-signal
to a useful signal that worked for all participants. There were a lot of variances to account for and
special unforeseen cases. Another challenge was that the MWU data was recorded continuously
throughout the process of writing the thesis. Thereby, new special cases had to be accounted for
throughout rendering the previous pipeline insufficient. As of the finalization of the work on this
thesis, the pipeline is still not perfect. Therefore, many of the MWU participants data had to
be left out and there are still some participants where the resulting dataset is not perfectly put
together, which is likely the cause of the outliers seen in the results.

It is also valuable to highlight the challenges with constructing mathematical models on biological
features of humans. There exists huge biological variations between individuals, meaning that
there might not be a standard model that works for all. Moreover, the participants were all tested
in similar physical states as enforced by the requirements, a single individual’s dynamics might
vary with time of day, eating, stress and so on. There are many factors affecting each other in
the body creating complicated responses and abstracting to the level we have here might make
it difficult to capture the essential features. The measurements of all physiological aspects of the
processes happening inside the body is difficult, especially without invasive methods and sensor
measurements. Furthermore, the measurements are subject to noise due to the intrinsic properties
of measurement on the human body.

5.4 Further research

There is a huge potential for further research on the topics regarded in this thesis. A short list is
given below.
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• Using the identified models to further identify a model for the estimation of energy expendit-
ure for manual wheelchair users

• Attempt to identify a model where the dynamics change at a certain intensity level, either
in the from of a change of order, or another structure alteration.

• Implement of a model with different time-constants for the raise and fall of HR.

• Investigate the possibilities of developing online HR trackers and individualize the model
structures based on personal characteristics.

• Investigate the identifiability of the models.

• Investigate the performance of second order models with different parameter-initializations.
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6 Conclusion

This thesis investigated the development of mathematical models for estimating heart rate during
wheelchair propulsion. Speed and incline of the movement on the treadmill were defined as the
inputs to the dynamical system. System identification and numerical optimization were used to
find the best structure and the corresponding parameters.

Evaluating the estimation results indicates that both speed and incline is needed to generate
useful input to estimate heart rate. Moreover, there is a nonlinear relationship between the speed
and incline as input and the HR as output. The performance of the models did not increase
when extending them from the first to the second order. However, this might be a result of the
activity bouts being too short to generate slow-cardiac response or the intialization of parameters.
Smoothing the HR-signal provided models with better fit and showed stronger correlations with the
demographic information on the participants. It is important not to draw too strong conclusions
from this though, as some of the physiological aspects of HR were lost in the smoothing process.
The optimized parameters and fit showed that generalizability from AB to the more heterogenous
group of MWU is viable, despite slightly higher variation in the results. The correlations found
between parameters and demographic variables were not strong, but give some indications as to
which variables might be useful in an individualization of the model, these were: body-mass, height
and gender. Some correlations were shown with IPAQ factor, but no conclusions can be drawn
here with regards to the MWU-group as there was a lack of data in this respect.

In conclusion; although not perfect, a first order nonlinear model provided both the best fit, the
strongest correlations and the best opportunity of grouping based on gender.

34



References

Andresen, Trond, Jens G. Balchen and Bjarne A. Foss (2016). Reguleringsteknikk. Institutt for
teknisk kybernetikk.

Borg, G. A. (1982). ‘Psychophysical bases of perceived exertion’. In: Med Sci Sports Exerc 14.5,
pp. 377–81.

Cappozzo, Vittoria (2022). ‘Modeling and identification of heart rate and energy expenditure dy-
namics for manual wheelchair users’. Universita Degli Studi di Padova.

Collins, E. G. et al. (2010). ‘Energy Cost of Physical Activities in Persons with Spinal Cord Injury’.
In: 42, pp. 691–700.

Disease Control, Centers for and Prevention (2022). What is Cerebral Palsy?
Guillaumea, Joseph H.A. et al. (2019). ‘Introductory overview of identifiability analysis: A guide

to evaluating whether you have the right type of data for your modeling purpose’. In: Envir-
onmental Modelling Software 119, pp. 418–432.

Hauser, Raphael (2005). SECTION: CONTINUOUS OPTIMISATION, LECTURE 4: QUASI-
NEWTON METHODS. https://www.numerical.rl.ac.uk/people/nimg/oupartc/lectures/raphael/
lectures/lecture4.pdf.

I.M., Majer et al. (2011). ‘Mortality risk associated with disability: a population-based record
linkage study.’ In: Am J Public Health. 101, p. 12.

IPAQ, Research Committee (2004). Guidelines for Data Processing and Analysis of the Interna-
tional Physical Activity Questionnaire (IPAQ) - Short Form. https://www.physio-pedia.com/
images/c/c7/Quidelines for interpreting the IPAQ.pdf.

Kesaniemi, Y. Antero et al. (2001). ‘Dose-response issues concerning physical activity and health:
anb evidence-based symposium’. In.

Khemila, S. et al. (2022). ‘The effect of time of day and high intensity exercise on cognitive
performances of elite adolescent karate athletes’. In: 39.12. 10.1080/07420528.2022.2132165,
pp. 1542–1553.

Kirshblum, Steven C. et al. (2011). ‘Reference for the 2011 revision of the international stand-
ards for neurological classification of spinal cord injury’. In: 34.6, pp. 547–554. doi: 10.1179/
107902611X131860004202425.

Moreno, Daniel et al. (2020). ‘Validity of Caloric Expenditure Measured from a Wheelchair User
Smartwatch’. In: International Journal of Sports Medicine 41.08, pp. 505–511.

NHS (2022). Ehlers-Danlos syndromes.
Nightingale, T.E., P.C. Rouse and D. Thompson et al. (2017). ‘Measurement of Physical Activity

and Energy Expenditure in Wheelchair Users: Methods, Considerations and Future Directions.’
In: 3. https://doi.org/10.1186/s40798-017-0077-0, p. 10.

Nocedal, Jorge and Stephen J. Wright (2006). Numerical Optimization, Second Edition. Springer
Science+Business Media.

Organization, World Health (n.d.). Guidelines on the provision of Manual Wheelchairs in less
resourced settings. https://apps.who.int/iris/bitstream/handle/10665/205041/B4616.pdf?seq.

Osgood, Brad (2007). Lecture Notes for EE261 The Fourier Transform and its Applications. url:
https://see.stanford.edu,/materials/lsoftaee261/book-fall-07.pdf.

Paluska, S.A. and T.L. Schwenk (2000). ‘Physical activity and mental health: current concept’. In:
29. https://pubmed.ncbi.nlm.nih.gov/10739267/, pp. 167–180.

Patel, Parth N. (2022). ‘Physiology, Exercise’. In.
Sorenson, H. W. (1970). ‘Least-squares estimation: from Gauss to Kalman’. In: IEEE Spectrum

7.7, pp. 63–68. doi: 10.1109/MSPEC.1970.5213471.
Tsang, KaLai et al. (2017). ‘Validity of activity monitors in wheelchair users: A systematic review’.

In: 3. https://doi.org/10.1186/s40798-017-0077-0, p. 10.
Walpole, Ronald E. et al. (2016). Probability & Statistics for Engineers & Scientists. Pearson

Education Limited.
Warms, Catherine A., JoAnne D. Whitney and Basia Belza (2008). ‘Measurement and description

of physical activity in adult manual wheelchair users’. In: Disability and Health Journal 1.4,
pp. 236–244.

Weil, Evette et al. (2002). ‘Obesity among adults with disabling conditions’. In: Jama 288.10,
pp. 1265–1268.

Zakynthinaki, Maria S. (2015). ‘Modelling Heart Rate Kinetics’. In: PLoS ONE 10.4.

35

https://www.numerical.rl.ac.uk/people/nimg/oupartc/lectures/raphael/lectures/lecture4.pdf
https://www.numerical.rl.ac.uk/people/nimg/oupartc/lectures/raphael/lectures/lecture4.pdf
https://www.physio-pedia.com/images/c/c7/Quidelines_for_interpreting_the_IPAQ.pdf
https://www.physio-pedia.com/images/c/c7/Quidelines_for_interpreting_the_IPAQ.pdf
https://doi.org/10.1179/107902611X131860004202425
https://doi.org/10.1179/107902611X131860004202425
https://apps.who.int/iris/bitstream/handle/10665/205041/B4616.pdf?seq
https://see.stanford.edu,/materials/lsoftaee261/book-fall-07.pdf
https://doi.org/10.1109/MSPEC.1970.5213471


Zhu, Ciyou et al. (Dec. 1997). ‘Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale
Bound-Constrained Optimization’. In: ACM Trans. Math. Softw. 23.4, pp. 550–560. issn: 0098-
3500. doi: 10.1145/279232.279236. url: https://doi.org/10.1145/279232.279236.

36

https://doi.org/10.1145/279232.279236
https://doi.org/10.1145/279232.279236

	List of Figures
	List of Tables
	Introduction
	Background & Motivation
	Data Collection
	Participants
	Experiments
	Equipment

	Research Objectives

	Theory
	Biological background
	Heart rate dynamics
	IPAQ

	System identification
	First order model
	Second order model

	Numerical optimization
	Broyden–Fletcher–Goldfarb–Shanno algorithm

	Least squares estimation
	Measurements of performance
	Coefficient of determination: R2

	Fourier transform
	Correlation analysis

	Method
	Pre-processing and Data cleaning
	Missing data
	Smoothing
	Input construction

	System identification
	Data organization
	Cost function

	Numerical optimization
	Model structures
	First order linear model
	First order nonlinear models
	Second order linear model
	Second order nonlinear models


	Results
	First order linear model
	First order nonlinear model
	Second order linear model
	Second order nonlinear model

	Model summary

	Discussion
	Model performances
	Input
	Order
	Linearity
	Smoothing
	Generalizability

	Demographic correlations
	Challenges
	Further research

	Conclusion
	References

