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Preface

This master’s thesis was written as the finalization of my studies within Cybernetics
and Robotics, specializing in Biomedical Cybernetics at NTNU. The thesis was written
as part of the Digital Wheelchair project and as a continuation of the project thesis on the
same topic. I was fortunate enough to be included as a team member and was allowed to
participate in several aspects of the project. I have learned a lot from seeing various project
stages, this included interaction with participants, participating in the data collection, and
eventually using the data for analysis. This has provided valuable insights into the pro-
cesses and difficulties of interdisciplinary projects.

My supervisors and the project coordinators have given me the independence to ex-
plore the data, techniques and technologies according to my interests. This contributed
greatly to my motivation and gave me a sense of connection and commitment to the project.
Although the work on the thesis has been frustrating and challenging at times, it has felt
gratifying and meaningful to work on a problem with important real-life applications.
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Abstract

Prior studies have found suitable models of heart rate and energy expenditure as re-
sponses to exercise. This master’s thesis aimed to identify mathematical models of heart
rate and energy expenditure as responses to wheelchair propulsion at known speeds and
inclines. Different models were simulated using numerical integrators. Model parame-
ters were identified through optimization to capture the trend of the heart rate and energy
expenditure measurements collected through the Digital Wheelchair project. The aim of
the thesis was to investigate possible correlations between identified parameters from fit-
ting the model and demographic parameters. No correlations of significance were found
among the parameters or the demographic variables. Several cross-validation scenarios
were explored to test the model performance on unseen data. Averaging and linear regres-
sion methods were implemented to predict the parameters of the models, and promising
results were found. The findings presented in this thesis are valuable tools for decision-
making regarding the future directions of the Digital Wheelchair project and experiment
design considerations.
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Sammendrag

Tidligere studier har funnet passende modeller for puls og energiforbruk som responser
til aktivitet. Denne masteroppgaven har forsøkt å finne matematiske modeller for både
puls og energiforbruk som responser av rullestolkjøring ved kjente hastigheter og stign-
ingsgrader. Ulike modeller ble simulert ved bruk av numeriske integratorer. Model-
lenes parametere ble identifisert ved hjelp av optimering til å følge trendene i puls- og
energiforbruks-målinger samlet i Digital Wheelchair-prosjektet. Målet med masteropp-
gaven var å undersøke mulige korrelasjoner mellom de identifiserte modell-parameterne
og demografiske parametere. Det ble ikke identifisert noen slike korreasjoner med sig-
nifikans. Flere ulike kryssvaliderings metoder ble utforsket for å teste modellens ytelse på
usett data. Ved test på usett data ble parameterne estimert ved bruk av gjennomsnitt og
lineærregresjon, dette viste lovende resultater. Resultatene fra denne oppgaven er viktige
verktøy for avgjørelser om veien videre i Digital Wheelchair-prosjektet.

iv



Table of Contents

Preface i

Acknowledgements ii

Abstract iii

Sammendrag iv

List of Tables viii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Background & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Problem Description and Objectives . . . . . . . . . . . . . . . . . . . . 5
1.4 Scope and Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Background 8
2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Structural Identifiability . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Taylor Series Expansion . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . 10
2.1.4 Simulation and Discretization . . . . . . . . . . . . . . . . . . . 10
2.1.5 Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . 11
2.1.6 Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . 11

v



2.1.7 Least Squares Estimation . . . . . . . . . . . . . . . . . . . . . . 12
2.1.8 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.9 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.10 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Biological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Heart Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Energy Expenditure . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Heart Rate and Energy Expenditure Relationship . . . . . . . . . 20
2.2.4 International Physical Activity Questionnaire . . . . . . . . . . . 20

3 Method of Exploration and Preliminary Results 22
3.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Heart Rate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Energy Expenditure Data . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Simulations and Optimization . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Separation of Days . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Heart Rate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Second-Order Nonlinear Model . . . . . . . . . . . . . . . . . . 28
3.3.2 First-Order Nonlinear Model . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Handling Noise During Rest Periods . . . . . . . . . . . . . . . . 31
3.3.4 Zakynthinaki Model . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.5 Mazzoleni Model . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.6 Cheng and Paradiso Model . . . . . . . . . . . . . . . . . . . . . 36

3.4 Energy Expenditure Models . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.1 Averaging on Gender . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Results 60
4.1 Separation of Days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Prediction Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Averaging on Gender . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Discussion 69
5.1 Models and Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Non-convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Discretization and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



5.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.1 Extension to Daily Life . . . . . . . . . . . . . . . . . . . . . . . 72
5.6.2 Size of Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6.3 Simplifications and Data Preprocessing . . . . . . . . . . . . . . 73

5.7 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Conclusion 75

Bibliography 77

Appendix 82
A Non-cropped Plots . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



List of Tables

1.1 Summary of the characteristics of the participants . . . . . . . . . . . . . 3
1.2 Speeds and inclines in experiments . . . . . . . . . . . . . . . . . . . . . 5

3.1 Parameters from Mazzoleni . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Ranges in cycling vs. propulsion . . . . . . . . . . . . . . . . . . . . . . 36

viii



List of Figures

1.1 Timeline of test day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Desynchronization of input and HR-signal . . . . . . . . . . . . . . . . . 26
3.4 Common vs. separate parameters . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Violin plot of fit with common vs. separate parameters . . . . . . . . . . 28
3.6 Example of second-order nonlinear model . . . . . . . . . . . . . . . . . 29
3.7 Parameter-distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.8 MSE variation with grid-search over parameter initializations . . . . . . . 30
3.9 MSE with different input polynomials . . . . . . . . . . . . . . . . . . . 31
3.10 Removed rest periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.11 Examples of Zakhyntinaki models . . . . . . . . . . . . . . . . . . . . . 34
3.12 Examples of Mazzoleni models . . . . . . . . . . . . . . . . . . . . . . . 37
3.13 Examples of (f3, g1) Cheng and Paradiso model . . . . . . . . . . . . . . 39
3.14 Example of (f2, g1) Cheng and Paradiso model . . . . . . . . . . . . . . 41
3.15 Example of (f1, g1) Cheng and Paradiso model . . . . . . . . . . . . . . 41
3.16 Examples of (f3, g2) Cheng and Paradiso model . . . . . . . . . . . . . . 42
3.17 Example of (f2, g2) Cheng and Paradiso model . . . . . . . . . . . . . . 44
3.18 Example of (f1, g2) Cheng and Paradiso model . . . . . . . . . . . . . . 45
3.19 Violin plot of MSE for Cheng and Paradiso versions . . . . . . . . . . . . 45
3.20 Bar plot of MSE for Cheng and Paradiso versions . . . . . . . . . . . . . 46
3.21 Violin plot of MSE with different initializations . . . . . . . . . . . . . . 46
3.22 Examples of Cheng and Paradiso with the Mazzoleni input polynomial . . 47
3.23 Violin plot of MSE Cheng and Paradiso with different versions of input . 48
3.24 Example of improper decrease with the Cheng and Paradiso model . . . . 48
3.25 Example of reinclusion of rest samples . . . . . . . . . . . . . . . . . . . 49
3.26 Example of (f1, g1) Cheng and Paradiso on EE data . . . . . . . . . . . . 50
3.27 Scatterplots of parameters against demographic variables, HR . . . . . . 51

ix



3.28 Heatmap of correlations between parameters and demographic variables,
HR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.29 Scatterplot of parameters against demographic variables, EE . . . . . . . 53
3.30 Heatmap of correlations between parameters and demographic variables, EE 54
3.31 Heatmap of correlations between HR- and EE-parameters . . . . . . . . . 54
3.32 Scatterplot of eigenvalues against demographic variables, HR . . . . . . . 56
3.33 Scatterplot of eigenvalues against demographic variables, EE . . . . . . . 57
3.34 Scatterplot of the EE and HR eigenvalues . . . . . . . . . . . . . . . . . 58
3.35 Heatmap of correlation between the eigenvalues for the HR and EE . . . . 58

4.1 Example of optimal simulation with the best model of HR and EE together 61
4.2 Scatterplot of MSE of EE against HR . . . . . . . . . . . . . . . . . . . 62
4.3 Simulation with gender averaged parameters and optimized parameters . . 63
4.4 MSE with gender averaged parameters . . . . . . . . . . . . . . . . . . . 63
4.5 Examples linear regression on HR data . . . . . . . . . . . . . . . . . . . 64
4.6 Examples of linear regression on EE data . . . . . . . . . . . . . . . . . 65
4.7 Linear regression coefficients, HR . . . . . . . . . . . . . . . . . . . . . 66
4.8 Linear regression coefficients, EE . . . . . . . . . . . . . . . . . . . . . 67
4.9 MSE with linear regression . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Non-cropped version of the eigenvalues with outliers . . . . . . . . . . . 82
6.2 Non-cropped version of the scatterplot of HR- against EE MSE with outliers 83
6.3 Non-cropped MSE of simulations with optimal and parameters predicted

for day 3 with linear regression . . . . . . . . . . . . . . . . . . . . . . . 83

x



Abbreviations

DigiW Digital Wheelchair Project
WCU Wheelchair Users
AB Able-Bodied
PA Physical Activity
HR Heart Rate
EE Energy Expenditure
REE Resting Energy Expenditure
AEE Active Energy Expenditure
bpm beats per minute
CO Cardiac Output
SV Stroke Volume
EDV End-diastolic Volume
ESV End-systolic Volume
IPAQ Inernational Physical Activity Questionaire
BFGS Broyden-Fletcher-Goldfarb-Shanno
DE Differential Equations

xi



1
Introduction

This thesis was written as part of the Digital Wheelchair project (DigiW) and as an exten-
sion to the project thesis on the same topic. DigiW aims to develop a wearable device that
can track physical activity and energy expenditure in wheelchair users (WCU) more ac-
curately than existing devices to promote a healthier lifestyle among this group. This aim
was motivated by WCU’s generally sedentary lifestyles and the inaccuracy of the existing
wearable devices for this demographic group (Moreno et al., 2020). The problems due to
inactivity are first and foremost problematic for the individual, as they may suffer from a
range of lifestyle diseases, mental health issues, and early death. Still, it is also difficult
for society as a whole (Weil et al., 2002).

This master’s thesis is based on the project thesis on the same topic. Hence, the fol-
lowing sections have been copied directly from the project thesis with minor rephrasing
or spelling corrections. A description of the general work and findings of the project will
follow in Chapter 2.

• Background & Motivation

• Data Collection

• Equipment

• Numerical Optimization

• Least Squares Estimation

• Correlation Analysis

• Fourier Transform

• International Physical Activity Questionaire

1



1 Introduction 1.1 Background & Motivation

1.1 Background & Motivation

Physical Activity (PA) is defined as ”any bodily movement produced by skeletal muscle
that substantially increases energy expenditure” (Kesaniemi et al., 2001). It is closely
linked to both mental and physical health. A systematic review found that adults with
higher levels of PA have lower all-cause mortality and lower incidences of lifestyle dis-
eases such as cardiovascular diseases, obesity, diabetes, and certain forms of cancer (Ke-
saniemi et al., 2001). Moreover, increased PA reduces symptoms of depression and anxiety
(Paluska and Schwenk, 2000). Although PA and energy expenditure (EE) are related, they
play slightly different bodily roles. PA levels are directly linked to the prevention of heart
diseases. EE levels are essential concerning its interplay with energy intake, an intake
above the expenditure may lead to obesity and further obesity-related issues described
above.

The World Health Organization estimated in 2010 that about 1% of the world’s total
population, roughly 65 million people at the time, needed wheelchairs (WHO, 2010). Due
to WCU’s limited mobility and movement options, these individuals are prone to living
sedentary lifestyles, with lower levels of PA than the general population (Collins et al.,
2010; Warms et al., 2008). As a consequence of WCU’s overall lower levels of PA, WCU
have a higher probability of experiencing the aforementioned adverse effects of limited
PA. They are more than three times as likely to suffer from chronic diseases, such as those
mentioned earlier (Tsang et al., 2017). A cross-sectional study in the Netherlands also
found individuals with mobility impairments to have ten years lower life expectancy than
able-bodied (AB). It is essential to account for risk factors in their underlying diseases.
However, the study found that lifestyle differences could explain six years due to lim-
ited mobility (I.M. et al., 2011). The heterogeneity of WCU and the differences between
their lifestyle possibilities due to different underlying conditions complicate generaliza-
tions within this group. However, on a general basis, movement and muscle involvement
is mainly limited to the upper body for these individuals. In addition to fewer muscles
involved in daily life, muscles in the upper body are smaller and thus expend less energy.
Consequently, WCU experience a lower metabolic rate during activity but also a lower
resting metabolic rate, in sedentary AB individuals the resting metabolic rate contributes
upwards of 80% of the total daily EE (Nightingale et al., 2017). Especially concerning the
obesity risk, the lower metabolic rate and EE pose an issue for WCU.

Measurement methods that can accurately measure the EE, such as indirect calorime-
try or doubly-labeled water, are too expensive and impractical for free-living situations
outside a laboratory (Nightingale et al., 2017). On the other hand, a range of wearable de-
vices today perform well in estimating EE for the ambulatory population. However, their
accuracy in estimating EE for WCU is significantly lower and generally unsuitable (Tsang
et al., 2017).

The combination of everything described above motivated the DigiW project and shaped
the aim of developing algorithms that can accurately and objectively track PA and estimate
EE in WCU based on multiple sensors to empower the user to lead a more physically active
lifestyle.

2



1 Introduction 1.2 Data collection

1.2 Data collection
This section presents the data collection process conducted at NTNU Research Center for
Elite Sports (Granåsen Toppidrettssenter) in Trondheim, Norway, during the fall of 2022.
Researchers from the DigiW project were responsible for the experimental design, par-
ticipant recruitment, and execution of the experiments. Both healthy AB participants and
WCU participated in the study, and their demographic is presented further in Section 1.2.1.
The conducted experiments were standardized indoor experiments of wheelchair propul-
sion on a motorized treadmill with fixed inclines and speeds, AB and WCU followed the
same setup. The experiment was designed to gather physiological information about the
participants at rest and during wheelchair propulsion of submaximal and maximal efforts.
Section 1.2.2 provides a detailed description of the setup and procedure. Since the ex-
periments were part of a larger project with multiple research directions, a wide range
of sensors were combined in the data collection, information on relevant equipment and
sensors can be found in Section 1.2.3.

1.2.1 Participants
Forty participants in total contributed to the data collection. Of these, 20 AB participants
made up the control group. The other 20 participants were manual WCU, these are WCU
who use their upper body for mobility in daily life. Table 1.1 shows the demographic
characteristics of the participants.

Table 1.1: Summary of the characteristics of the participants

Group Gender Number Age Body Mass Height Body mass index
(kg) (cm) (kg/m2)

AB
Male 11 33± 11 81.9± 11.2 183.5± 8.2 24.3± 2.3

Female 9 34± 11 67.0± 7.9 167.3± 5.3 24.0± 2.6
Total 20 33± 11 75.2± 11.4 176.2± 9.9 24.2± 2.4

WCU
Male 11 40.5± 12.4 82.3± 14.7 180.8± 8.5 25.0± 3.4

Female 9 34± 12.1 67.2± 21.3 162.7± 8.0 25.3± 7.2
Total 20 37.6± 12.4 75.5± 19.1 172.7± 12.3 25.1± 5.3

Attention must be brought to the heterogeneity of the WCU group. They exhibited
significant variances in body composition and function. They had a variety of types and
severities of motor- and sensory-dysfunction. Ten participants had spinal cord injuries
(SCI). The remaining ten had syndromes affecting the nervous system and connective
tissue in the body. All fell within one of the following: Cerebral Palsy (CP) (Vitrikas
et al., 2020), Ehlers Danlos (EDS) (NHS, 2022), Central Nervous System (CSN) Vasculi-
tis (Brigham and Hospital, 2022), Ataxia (Tallksen and Dietrichs, 2014), chondromalacia
(Randsborg, 2020), and spina bifida (Solheim, 2022). None of the participants had am-
putations or missing limbs. The range of injuries and syndromes corresponded to varying
levels of function in the WCU group. It should be noted that the same injury or syndrome
may affect two individuals differently. The participants in the WCU group had different
levels of dependence on wheelchairs and other aids in their daily lives, which may have

3



1 Introduction 1.2.2 Experimental Setup

led to differences in experience with wheelchair propulsion. Some participants depended
entirely on their chairs, and some only used them as support. During the data analysis and
interpretation of the results of this thesis, the described heterogeneity in the WCU group
must be kept in mind and accounted for. The AB participants had no experience with
wheelchair propulsion before the experiment.

1.2.2 Experimental Setup
All participants, both the control group consisting of AB and the WCU, contributed to test-
ing on three separate days. The most important aspect of ensuring consistency between
test days is the physical state of the participant. A range of requirements were enforced
to ensure this. Therefore, there was a minimum period of 24 hours between each test day
for proper recovery. All test days for each participant were completed within three weeks
so that the participant had similar physical fitness on all test days. Sessions were sched-
uled at the same time of the day to reduce the variability in the diurnal rhythm (Khemila
et al., 2022). Moreover, the participants were asked to arrive at the test in a 2-hour fasted
state and without having performed high-intensity training in the last 24 hours. General
demographic information about the participant was collected on the first test day. This
included height, body mass, gender and specifics about their disability, such as its severity
and ASIA score (Kirshblum et al., 2011). Participants answered the International Physical
Activity Questionnaire (IPAQ) (IPAQ, 2004) to assess physical activity.

Each test day proceeded as shown in Figure 1.1. All days started with standard physi-
ological measurements at rest. This involved a 10-minute rest period in which the patient
laid down and sequentially another 10-minute rest in an upright sitting position.

Figure 1.1: Timeline of a single test day. Mainly the interval stages are considered in this thesis,
note that their incline and speeds vary from day to day. Figure by Julia K. Baumgart.

After the measurements at rest, the participant sat in the wheelchair. For each test day,
the treadmill was fixed to one of the following inclines: 0.5, 2.5, or 5.0%, each with a
corresponding set of speeds the participant was asked to propel at. The order in which the
participant performed each day was randomly determined. Combinations of incline and
speed for each day can be found in Table 1.2. The participants performed a five-minute
warm-up and habituation on the treadmill at a chosen speed to familiarize themselves with
the setup. The participant was instructed to aim for a rating of perceived exertion of 7-9
on the Borg scale (Borg, 1982) for the warm-up. After this, the participant performed the

4



1 Introduction 1.2.3 Equipment

Figure 1.2: Visualisation of the experimental setup with a wheelchair attached to a rig on the tread-
mill. Figure by Julia K. Baumgart.

Table 1.2: Speeds and inclines for three test days with different inclines [%] and speeds [km/h] on
the treadmill.

Day 1 Day 2 Day 3
Incline (0.5) (2.5) (5.0)

Men Women Men Women Men Women

Stage 1 4 3 3 2 2 1

Stage 2 6 5 4 3 3 2

Stage 3 8 7 5 4 4 3

three sub-max interval stages, hereafter simply called stages. These four-minute intervals
were not intended to push the participant beyond their maximal respiratory or musculatory
capacities. A rest period of two-three minutes between each stage was enforced. The
speeds are given by Table 1.2. If a participant at any time was unable to keep up with the
set speed, the stage was stopped immediately. For the experiment day where the incline
was 2.5%, an incremental test followed the three interval stages. This test was intended to
test the participants’ maximal capacity.

1.2.3 Equipment
The setup is shown in Figure 1.2. Either a standard wheelchair or the participant’s own, in
the case of WCU, was used. Heart Rate (HR) was measured by a Polar chest strap, con-
nected to a Polar M400 HR monitor watch (Polar Electro Oy, Finland). EE was measured
by a Vyntus ergospirometer (Vyntus CPX, Vyaire, Medical GmbH, Germany) connected
to the participant through a fitted face mask.

1.3 Problem Description and Objectives
Existing literature (Schrack et al. (2014), Chessex et al. (1981)) and research in other
parts of the project have found correlations between the steady state level reached by HR
and that reached by the EE. There is a known relationship between how much these two
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physiological parameters rise in response to general activity and to wheelchair propulsion
in particular. The HR is important in itself as it is an important indicator of PA, but as
has been seen it can also be used to estimate EE. Only regarding the steady state and the
relation between HR and EE in the steady state would be naive, as this is not how the
body works. Therefore the kinetics, i.e. the dynamics between each steady state, should
be investigated. This thesis aimed to investigate whether correlations could be found in the
kinetics of HR and EE as well. The aim was to find models that could describe the kinetics
of the HR and EE in more detail and investigate whether there are still correlations between
the two properties. There are many existing HR and EE models, but most are specific to
the type of exercise and validated on a small test set. Therefore, their applicability to
wheelchair propulsion must be evaluated, and if not satisfactory, adaptation should be
considered.
Primary Objective:

• Identify how well new model structures fit compared to the existing ones in literature
with regard to HR and EE when performing wheelchair propulsion at known speed
and incline. If there is a better fit, why?

Secondary Objectives:

• Analyze the models’ goodness of fit to known data, as well as the fit when estimating
unseen data.

• Investigate if there are correlations between the models derived for EE and HR.

• Investigate whether the models create groupings based on demographic variables
allowing for the development of individualized models.

1.4 Scope and Delimitations
The scope of this thesis is limited to the data collected through the DigiW project. It
includes data from all 40 participants that participated in the collection. Although the
collection process was quite extensive, the thesis is limited by the fact that it only contains
data from 40 participants, of whom only 20 are WCU. The data is only from the controlled
stage of the collection process. Therefore, there is no data stemming from ”free-living”
situations. It should also be reiterated how diverse the bodies and functioning of the WCU
are, and it is unlikely that the small group sample in this thesis can span and capture the
diversity in this group.

1.5 Structure of the Report
In the project thesis leading up to this master’s thesis, most effort was put into prepro-
cessing the data. This consisted of cleaning and adaptation to appropriate formats. The
end-point of the project thesis was that models with adequate performance were found, but
issues were raised with regard to the identifiability of these and a better fit to the data was
desired. The master thesis is an extension of the findings in the project. Further models
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have been tested for the HR and their use has been extended to EE as well. The new mod-
els have been tested on unseen data and investigated for correlations.
The report will first present the essential knowledge to understand the methods and results
of the thesis. This includes mathematical background and the necessary biological and
physiological concepts.

Since the thesis was performed as an exploratory data analysis, it followed a somewhat
iterative process where design choices were based on the preliminary results. Therefore
the report will be structured such that the method and results are presented simultaneously
to build reasoning and understanding of what has been done and why. After this, a more
concise review of the results will be provided and a general discussion of the results as a
whole will follow before the conclusion of the findings.
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2
Theoretical Background

2.1 Mathematical Background

2.1.1 Structural Identifiability
Structural global identifiability has been defined by Walter (1982) as in Definition 1.

Definition 1. The model M(θ) is structurally globally identifiable if, and only if, all its
parameters, θi, are structurally globally identifiable. The parameter θi is structurally
globally identifiable for the input class u if, and only if, for almost any θ ∈ R one has

θ̂ ∈ R

ŷ(θ̂, t) ≡ y(θ, t)∀t ∈ R,∀u ∈ U

}
⇒ θ̂i = θi. (2.1)

If a model structure does not have global identifiability, then different parameter values
will represent the measurements equally well, regardless of the quality of the measure-
ments (Walter, 1982). Equation 2.2 shows a non-linear time-dependent model structure
for which the parameters θ are unknown. The variables x,u and y in Equation 2.2 are the
vectors of state, input, and output respectively, and f and g the functions relating them.
The model is globally identifiable if only one set of parameters describes the observed dy-
namics, as presented in Definition 1. Investigating the identifiability of models in this form
is not trivial, but a series expansion or a linearization may be used. A linearized model
may, given the conditions in Chapman et al. (2003), provide information about the iden-
tifiability of the original model, but the non-linear model should be investigated directly
(Bellu et al., 2007).

ẋ = f(x,u, θ, t)

y = g(x,u, θ, t)
(2.2)

In terms of a linear time-invariant system, or a linearized version of a non-linear sys-
tem, of differential equations (DE) given on the state-space form as given by the model
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M(θ, t) in Equation 2.3 described in the time-domain. Where x,u and y are vectors of
state, input, and output respectively. The conditions for structural global identifiability are
satisfied if it is possible to determine the unknown parameters in the matrices A, B, C,
and D. Given the assumption that the data is noise-free and continuous (Chapman et al.,
2003).

ẋ(t) = A(θ)x(t) +B(θ)u(t)

y(t) = C(θ)x(t) +D(θ)u(t)
(2.3)

In the linear time-invariant case described above, for the model M(θ, t), the transfer matrix
can be described as in Equation 2.4 in the frequency (s) domain.

M(θ, s) = C(θ)[sI−A(θ)]−1B(θ) +D(θ) (2.4)

From this, it can be seen that the model is structurally globally identifiable if, and only
if, Equation 2.5 holds since this shows that the parameters, θ, are uniquely identifiable
(Walter, 1982).

M(θ̂, s) = M(θ, s) =⇒ θ̂ = θ (2.5)

Global identifiability is necessary for parameter estimation. Results may still be ob-
tained without global identifiability, but these results are meaningless. Local identifiability
is a less strict version where the parameters are identifiable within a small region of pos-
sible values. This type of identifiability may provide valuable results, but it will not give
the same certainty as global identifiability. Convex models are globally identifiable. Non-
convex models, on the other hand, may have several local minima and thereby be locally
identifiable. Local identifiability is a prerequisite for global identifiability (Walter, 1982).

Identifiability is a commonly discussed issue in medical and biological systems be-
cause they are complex, and there are limited measurement possibilities. Deriving iden-
tifiability properties in complex non-linear systems can be tedious and, in some cases
impossible. DAISY is a toolbox that simplifies this and is built on top of the toolbox
REDUCE. DAISY can handle non-linear models with polynomials and rational functions.
However, it does not handle exponential and trigonometric expressions (Bellu et al., 2023).

2.1.2 Taylor Series Expansion
The Taylor polynomial of order n as given in Equation 2.6, provides an approximation of
the function f in the point a, given that the function is n-times differentiable in the point
a.

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + ...+

fn(a)

n!
(x− a)n (2.6)

The number n denotes the order of the Taylor series expansion. In the case where a =
0, the expansion is called a Maclaurin Series. Linear approximations, often denoted as
linearizations of non-linear functions, can be found through their first-order Taylor series
expansions. With n = 1, Equation 2.6 gives the linearization of the function f about
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a (Galtung, 2023). With regard to multivariate functions, the partial derivatives of each
variable must be summed. The first-degree expansion for the point (x, y) around (a, b)
will be as given in Equation 2.7.

f(x) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) (2.7)

2.1.3 Eigenvalues and Eigenvectors
Given a set of ordinary DE on the general form as given in Equation 2.1.3 where x and u
are the state- and input-vectors and A, B are matrices.

ẋ = Ax+Bu (2.8)

The eigenvalues can be found by solving Equation 2.9, the λs are the eigenvalues of the
system.

det(A− λI) = 0 (2.9)

The corresponding eigenvectors to each eigenvalue are the solutions to Equation 2.10.

(A− λi)vi = 0 (2.10)

The eigenvectors of a system represent the directions of change from an equilibrium point,
and the corresponding eigenvalue is the magnitude of the change in that direction.

To find the eigenvalues of a system, the functions must be linear in terms of x so that
A is clearly defined. Otherwise, A can be linearized by taking the partial derivatives as
given in Equation 2.11 with the states, x1, x2, . . . , xn, and system equations labeled as f .
The more negative the real part of the eigenvalue, the quicker the system will approach a
steady-state solution (Hildrum, 2023).

Alin =
[

∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]
(2.11)

2.1.4 Simulation and Discretization
This thesis simulates dynamic models described by sets of DE. The models are described
through continuous-time functions. Simulations of such models require their numerical so-
lutions, these can be found with numerical integrators. The simplest numerical integration
scheme is Euler’s method, in which the next step yn+1 of function f(y, t) is computed
from Equation 2.12 (Egeland and Gravdahl, 2002). Euler’s method is a one-step-ahead
predictor of order one. Where yn is the current value and h is the step length of the pre-
diction.

yn+1 = yn + hf(yn, tn) (2.12)

The region of stability with Euler’s method can be found through investigation of the
scalar test system given by Equation 2.13. The derivation of this can be found in Egeland
and Gravdahl (2002) on page 521.

h ≤ − 2

λ
(2.13)
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2.1.5 Numerical Optimization
Numerical optimization methods are used to minimize or maximize some objective func-
tion, f , all these methods can be generalized as trying to find the variables, x, that satisfy
the Equation 2.14 where c are constraints given as equalities, ϵ and inequalities, I .

.
x : min

x∈Rn
f(x) s.t. ci(x) = 0, i ∈ ε

ci(x) > 0, i ∈ I
(2.14)

Gradient-based optimization methods update the variables step-wise along the gradient of
the objective function until a solution satisfying the requirements is found. Such methods
often use many iterations to converge, hence the development of Newton methods. New-
ton methods consider not only the gradient but also the Hessian when making updates, the
algorithms take more informed steps toward the minimum and converge in fewer iterations.

Another group of optimization methods are the quasi-Newton methods. These methods
are less computationally expensive variants of the aforementioned Newton methods. The
quasi-Newton methods use an approximation of the Hessian instead of the actual Hessian
(Nocedal and Wright, 2006). As a general rule, these methods make the variable update,
xk to xk+1, according to the formula described in equation 2.15, where αk is a step-length
that satisfies the Wolfe-conditions and Bk is a non-singular approximation of the Hessian
(Hauser, 2005). The function f(x) must be twice differentiable and convex.

xk+1 = xk + αk(−B−1
k ∇f(xk)) (2.15)

Broyden–Fletcher–Goldfarb–Shanno Algorithm

One of the quasi-Newton methods is the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method, in which Bk is not recomputed at every iteration, but rather updated by account-
ing for the curvature in the previous iteration (Nocedal and Wright, 2006). Following the
derivation given in Nocedal and Wright (2006) on page 137. Bk can be found through
equation 2.16 where sk is the displacement, sk = xk+1 − xk, and yk the change of the
gradients, yk = ∇fk+1 −∇fk.

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

yky
T
k

yTk sk
(2.16)

The initial B0 can be set as an approximation of the Hessian, another arbitrary matrix,
such as the identity, or a scale-reflecting multiple of it (Nocedal and Wright, 2006). The
method known as Limited Memory BFGS-B is commonly used in programming cases
with bounds on the variables (Zhu et al., 1997).

2.1.6 Mean Squared Error
The Mean Squared Error (MSE) is a measure of the error in a statistical model and is used
for evaluating performance. The formula for MSE is given by Equation 2.17 where n is
the number of data points, Yi, and Ŷi are the predicted points. The squared error is the
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sum of the squared distances between the actual data points and the predicted points. They
are squared so that the sign of the errors do not cancel each other. Furthermore, it makes
points farther away give a greater impact on the error. The MSE is the mean of this sum,
the mean is useful when comparing sets of different sizes.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (2.17)

FIT is another measure of performance, the formula is given in equation 2.18. The
metric is given as a percentage, and the higher it is, the better the fit. It may have a
negative number (Walpole et al., 2016).

FIT = 100

(
1−

√∑
i(yi − ŷi)2√∑

i(yi −
1
n

∑
i yi)

2

)
(2.18)

2.1.7 Least Squares Estimation
Least squares is a widely used estimator for parameter identification. It attempts to identify
the most probable values for the parameters. In the least squares case this is defined as the
value that makes the residuals as small as possible (Sorenson, 1970). Mathematically, it
can be formulated through equation 2.19, where (xi, yi) are the points in the actual dataset,
f(x, θ) is the function whose characteristics are defined by the parameters θ and n is the
number of data points (Marquardt, 1963).

θ̂LS = argmin

n∑
i=1

(yi − f̂(xi; θ))
2 (2.19)

2.1.8 Linear Regression
Linear regression is an extension of the least squares algorithm, that fits a linear model
through a dataset my minimizing the sum of squares. The model is a linear combination
of all the selected features in the dataset, as given in Equation 2.20. In Equation 2.20 xi

are the features, bi are the coefficients of each feature and ŷ is the predicted output (Su
et al., 2012). The coefficient of a feature can be regarded as a weight that indicates its
importance in determining the output.

ŷ = b0 + b1x1 + b2x2 + ...+ bkxk (2.20)

2.1.9 Correlation Analysis
Correlation coefficients are measures of the degree of linear association between two vari-
ables (Walpole et al. (2016), p. 451). The correlation between variables is their covariance,
standardized by their standard deviations. The Pearson correlation coefficient between
variables x and y is given in equation 2.21.

r =
Sxy√
SxxSyy

(2.21)
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In which Sxy , Sxx, and Syy each are measures of the variability of each variable.
The variabilities are defined in Equation 2.22, with x and y being the average of the two
variables, x, y (Walpole et al., 2016).

Sxx =

n∑
i=1

(xi − x)2

Syy =

n∑
i=1

(yi − y)2

Sxy =

n∑
i=1

(xi − x)(yi − y)

(2.22)

When the correlation coefficient is positive it signifies a linear relationship between
the variables, where an increase in one corresponds to a rise in the other. Negative corre-
lations are the opposite. Correlation coefficients are in the range -1 to 1, where each of the
extremes represents entirely negative- and positive correlations, respectively.

2.1.10 Fourier Transform
The Fourier transform transforms a signal from the time domain into the frequency do-
main. The magnitude at each frequency represents the presence of that frequency in the
original signal. One may change the original signal by removing specific frequencies in
the transformed signal. A signal expressed as a function of frequencies, s, is denoted as
f̂(s) and may be defined through the Fourier transform given in Equation 2.23 where i is
the imaginary unit (Osgood (2007), p. 76).

f̂(s) =

∫ ∞

−∞
e−2πistf(t)dt (2.23)

For this thesis, this transform may be helpful to remove the higher order frequencies as a
method for removing rapidly fluctuating noise in the signal.

2.2 Biological Background
This section covers the underlying biological and physiological concepts for the thesis.
The main focus is on HR and EE dynamics and the principles behind this as well as a
review of some of the pre-existing models of HR and EE found in the literature.

2.2.1 Heart Rate
HR is defined as the frequency of the heartbeat and is measured in the number of beats per
minute (bpm). It is considered one of the simplest and most informative cardiovascular
parameters (Zakynthinaki and Stirling (2003), p.75). The heart is responsible for several
essential processes within the body. First and foremost it is responsible for pumping blood
through arteries and veins, transporting several substances in the body. These are oxygen,
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carbon dioxide, nutrients, waste products, hormones, and the constituents of the immune
system (Støylen, 2021). With each contraction, the heart pumps oxygenated blood to the
body’s organs through the arteries. Simultaneously, oxygen-depleted blood is returned to
the heart through the veins and pumped back to the lungs to get reoxygenated.

Movement and exercise increase the metabolic demands and thereby the demand for
oxygen in the muscles. Oxygen is required for the metabolic processes in the muscles to
work over time. Therefore the heart is needed to transport more oxygenated blood, which
requires increased cardiac output (CO) in the heart. The CO is increased in two ways: an
increase in HR and an increase in stroke volume (SV). The stroke volume is the volume of
blood pumped per heartbeat (Zakynthinaki and Stirling (2003), p.75) measured in ml. SV
can be measured in the difference in the heart’s volume at the end of contraction (systole)
and relaxation (diastole). This is given in Equation 2.24, where EDV is the end-diastolic
volume and ESV is the end-systolic volume. The SV and HR together determine CO,
which as shown in Equation 2.25, is the product of the two. As the heart is a muscle,
regular training of the muscle will alter its properties such as its EDV, resulting in changes
in the SV and HR. The heart’s response to exercise depends on the level of cardiovascular
conditioning (Støylen, 2021). The heart’s response also depends on the intensity and type
of activity as the muscles in use and the intensity at which they are used will yield different
demands for oxygen. Moreover, the HR depends on various factors such as temperature,
nutrition, age, and so on (Zakynthinaki, 2015).

SV [ml] = EDV [ml]− ESV [ml] (2.24)

CO[l/min] = SV [l]×HR[1/min] (2.25)

Maximum HR (HRmax) is the highest possible HR a person may achieve, and it may
be achieved by exerting effort to exhaustion. This value stays relatively constant within in-
dividuals but has a slight decrease for all with aging, and it may also decrease in individuals
who perform excessive amounts of endurance training (Zakynthinaki and Stirling (2003),
p.75). The resting HR, denoted as HRmin, is more malleable and depends on the car-
diac chamber size, which is enlarged by cardiovascular conditioning (Zakynthinaki et al.,
2011). Moreover, on a general basis, the HR will tend to be overall lower, even during ex-
ercise, as fitness levels are increased, and will respond quicker to demand-reuquirements
with increased fitness (Zakynthinaki and Stirling (2003), p.75).

HR increases to the required demand quickly due to neural inputs in the sympathetic
and parasympathetic nervous systems and stays somewhat constant at the demanded value.
However, as an exercise of constant intensity is performed over time, the demand increases
and the HR will continue to rise again, this is known as the slow component or cardiac drift.
The slow component is rooted in more complex physiological principles and stems from
a combination of neurological and hormonal effects (Cheng et al., 2007). There are natu-
ral nonlinear fluctuations in the HR that are persistent both in activity and rest. Although
not completely insignificant themselves, the oscillations move about a smooth curve that
describes the most significant response pattern. The nonlinearities are likely a result of a
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combination of physiological factors: ectopic beats and abnormal breathing, and measure-
ment noise (Zakynthinaki and Stirling, 2007).

Several models for the dynamic fluctuations of HR as a response to exercise have
been developed, these include regression models, Hammerstein-Wiener models, models
developed using artificial neural networks, and DE. The aim was to find a model with a
physiological basis with explainable parameters, the specific DE-models explored in this
thesis are presented below.

Results from Project Thesis

In the project thesis, some simple models were simulated and optimized on a subset of the
total dataset from the experiment used here. Specifics around the subset and its contents
are described in detail in the project thesis. The initial results from the experimentation
showed that it was essential to incorporate both speed and incline of propulsion for the
model to achieve adequate performance. I was also found that the relationship between
the input and the resulting HR was nonlinear. In conclusion, a second-order model with
nonlinear input terms achieved the best fit to the data averaged over all participants, and
the resulting model is shown in Equation 2.26.

ẋ1(t) = α1x1(t) + x2(t)

ẋ2(t) = α2x2(t) + βu1(t)u
2
2(t)

y(t) = x1(t)

(2.26)

A first-order model with a similar input relation showed similar performance when it
came to how well it fit the data. This model was given as shown in Equation 2.27.

ẋ(t) = −αx(t) + βu1(t)u
2
2(t)

y(t) = x(t)
(2.27)

These two models achieved similar overall performance, but both their performances
were varying for different participants. It was also prevalent that the models showed better
results on the second day than on the first and third. This was likely due to the fact that
this day had an intermediate incline in comparison to the others. Thereby, a least squares
model would be optimized by overestimating the first day and underestimating the last,
resultingly achieving the best fit for the intermediate day. The aim of the project thesis
was also to find some correlation between the optimized parameters and the demographic
variables, however, with both the final models no significant correlations were found. An
issue identified with the second-order model was that the parameters α1 and α2 often
achieved the same estimation in the optimization. This indicates that the model might not
be globally identifiable (Tenold, 2022).

Cheng and Paradiso

The most general model based on DE was first developed by Cheng et al. (2007) who
articulated several alternative versions of it. All the different versions can be represented
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by Equation 2.28 where the functions f and g vary between the versions. The a-s are
the parameters and u, y are the input and output. The key idea behind the model as it is
given in equation 2.28 is that it has two states where each relates to a component in the HR
dynamic. The first state, x1, is a feedforward mechanism describing the fast HR dynamics.
The other, x2, is a feedback mechanism that describes the more slow-acting effects present
in the body. Thereby, the model is closely linked to the biological principles governing the
body as they were described in Section 2.2.1. The slow component, x2 can be interpreted
as a dynamic disturbance on the other component (Cheng et al., 2007).

ẋ1(t) = −a1x1(t) + a2x2(t) + f(u(t))

ẋ2(t) = −a4x2(t) + g(x1(t), x2(t))

y(t) = x1(t)

(2.28)

The first version, from Cheng et al. (2007), used the f3-function as given in Equation
2.31 to describe the relationship between the input and the HR. Equation 2.32 was also
used in this model and was aimed at describing the slow recovery phase after termination
of activity (Cheng et al., 2007). The model was developed from an experiment performed
by five healthy male subjects who performed walking on a treadmill for 15 minutes at
5, 6, and 7 km/h, the execution of each of the speeds was distributed over three separate
sessions. A common set of parameters were estimated for each participant through the
Levenberger-Marquardt method (Gavin, 2022). The results showed that the simulated re-
sponses, using individualized parameters, corresponded well to the actual recorded HR
values from the experiments. However, they identified limitations with their model’s abil-
ity to capture the higher intensities included in their study (Cheng et al., 2007), these
intensities may be regarded as moderate intensities in daily life.

f1(u(t)) = a2u
2(t) (2.29)

f2(u(t)) = a6u
2(t) (2.30)

f3(u(t)) =
a2u

2(t)

1 + exp(−u(t) + a3)
, a2 = 1 (2.31)

In the following year, Cheng et al. (2008) used a simplified version of this model in a
similar study of six subjects performing 15-minute walking bouts at the same speeds. This
simplified version used the relationship described by Equation 2.30 and 2.33. The authors
did not present any reasoning for this simplification. In addition, they attempted to find a
common parameter set as opposed to the individual parameters identified in the previous
version. This was done by simultaneously estimating the parameters of all exercise ses-
sions for all participants as a multiple-input multiple-output system. They concluded that
their model was useful for examining responses during exercise, but once again made the
point that the higher intensities were not captured and suggested a higher-order dynamic
to account for this.
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g1(x1(t), x2(t)) = a4tanh(x2(t)) + a5x1(t) (2.32)

g2(x1(t), x2(t)) =
a4x1(t)

1 + e−(x1(t)−a5)
(2.33)

The difference between the implementations given by equations 2.29 and 2.30 is whether
or not the quadratic input term is multiplied by a separate scaling parameter or one that ex-
ists in the other equations. The latter version with a separate parameter shown in equation
2.30 was adapted by Paradiso et al. (2013) based on ergometer cycling at fixed cadence and
different loads. The parameters in the model were tuned by hand, based on the response
from three participants, the performance of the resulting model was not detailed, only its
performance when used in combination with a controller was visually evaluated.

Stirling and Zakynthinaki

The set of DE given in Equation 2.34 originates from Stirling et al. (2008) and describes the
HR as a dynamical system where the rate of change of the HR depends on HR, the intensity
of exercise, I , and time (Zakynthinaki, 2015). The three terms explain the kinetics in
different ranges; around HRmin, HRmax, and around the current circulatory demand,
D. The parameters A, B, C, and E control the resulting response and may be seen as
indicators of physical condition. The paper Stirling et al. (2008) was based on exercising
at fixed speeds, and only one participant contributed to the dataset. The participant ran five
bouts of 16000 meters, all at different speeds in the range of 13 to 18 km/h.

ḢR(HR, v, t) = Afmin(HR,B)fmax(HR,C)fD(HR, v, t, E)

v̇ = I(t)
(2.34)

fmin = [HR−HRmin]
B (2.35)

fmax = [HRmax −HR]C (2.36)

fD = [D(v, t)−HR]E (2.37)

Parameter A is an indicator of the time taken to reach steady state, parameters B and C
control the speed of the dynamics around HRmin and HRmax respectively. At constant
intensities, the demand only depends on time and the equations become uncoupled. The
authors concluded that the model provided a good fit with the same set of optimized pa-
rameters for all the intensities by only changing the value of the demand. Thus concluding
that the parameters are indicators of the person’s fitness and not the intensity. However,
they do point out that the model does not work for very high-intensity exercise as the de-
mand then cannot be approximated to a constant as these are time-dependent. They also
enunciated the fact that the model does not necessarily translate well to estimating energy
expenditure, especially at high intensities.
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Zakhynthinaki

The set of coupled DE suggested by Zakynthinaki (2015) is based on, but more complex
than the ones previously given by Stirling et al. (2008). This study included two partici-
pants running at constant intensity and 0% incline. It is based on models relating to the
HRmax and HRmin and links an intensity function to the blood lactate. Lactate in the
blood is a by-product of metabolism, its concentration increases with exercise (Wasser-
man et al., 1986). The functions are based on the principle that HRmax, HRmin (the
resting HR), and HRD (the demanded HR with respect to the current intensity) are possi-
ble equilibria, and the response of the HR to exercise is based on the distance from these
equilibria.

ḢR (HR,HR0, λ, v, t) = fminfmaxfD

v̇ = I(t)
(2.38)

fmax(HR) = −
{
1− e−(HR−HRmax

α1
)2
}

(2.39)

fmin(HR) =

{
1− e−(

HR−HRmin
α2

)2
}

(2.40)

fD(HR, v, λ, t) = −α(HR− (HR0 + α3L(λ, t)+

(HRmin −HRr+α5L(λ, t))e
−α4

HRmax−HRmin
HR0−HRmin

t2
))

(2.41)

HRmin is dependent on the parameter λ, but this was omitted from the equations for
simplicity. I(t) is a measure of the intensity, it is 0 in cases with constant speed, and L is
given by 2.42 during the on-transient, which is what will be considered in this thesis.

L(λ, t) = Lv(λ, v)Lon(t) (2.42)

Where Lv(λ, v), the velocity-induced lactate, is given in Equation 2.43 and Lon(t) is the
time-dependent accumulation of the blood lactate given in Equation 2.44.

Lv(λ, v) = Lbasal + (Lmax − Lbasal)e
(α6(v−vmax) (2.43)

Lon(t) = 1− e(−t/α7) (2.44)

There are altogether 8 α-parameters in the model when only considering the on-
transient. Zakynthinaki (2015) estimated these through trial and error. The resulting pa-
rameters were found to be α = 0.08, α = 0.08, α1 = alpha2 = 10, α3 = 4, α4 = 0.003,
α5 = 4, α6 = 0.5 and α7 = 420. The remaining parameter λ was found by minimizing an
appropriate cost function. The authors consider λ to be an indication of the cardiovascular
condition of the subject (Zakynthinaki, 2015).

Mazzoleni

Mazzoleni et al. (2016) wrote a paper where they tried modeling HR when cycling (Maz-
zoleni et al., 2016). The proposed model used a set of DE based on the work developed
by Stirling and Zakhyntiaky but with the additional aim of capturing dynamics of the HR

18



2 Theoretical Background 2.2.2 Energy Expenditure

related to varying exercise intensities. The model is given in Equation 2.45, where u1 was
the power and u2 cadence with regards to cycling. Four healthy male subjects participated
in the study, they each performed nine 3-minute bouts of varying intensities. The power
was in the range [100− 150]W and the cadence in the range [60− 100]rpm.

ẋ(t) = A(x(t)− xmin)
α)(xmax − x(t))β(d(t)− x(t))

ḋ(t) = B(xmin + c1u1 + c2u2 + c3u
2
1 + c4u

2
2 + c5u1u2 − d(t))

y(t) = x(t)

(2.45)

In Equation 2.45 x is the heart rate, d a demand governed by the input polynomial,
c1u1 + c2u2 + c3u

2
1 + c4u

2
2 + c5u1u2. A,B, α, β and c1 to c5 were personalized param-

eters relating to the physiology and fitness of the participant, they were optimized using a
genetic algorithm (Mazzoleni et al., 2016).

2.2.2 Energy Expenditure
EE can be calculated through direct calorimeters which is an enclosed room equipped
to measure the biological heat released by the body (Hackney, 2016). Alternatively, it
is estimated indirectly from gas exchange measurements by means of a facemask that
the participant wears and that is connected to an ergospirometer (Mtaweh et al., 2018;
Hackney, 2016). As direct calorimetry is often both ineffective and impractical, indirect
calorimetry is more often used in laboratory settings (Hackney, 2016). Indirect calorimetry
is based on a list of assumptions which can be found in Mtaweh et al. (2018). The specific
method used for indirect calorimetry in this data collection is known as an open-circuit
method, where the flow of air inspired and expired by the participant is measured. From
these measurements, EE can be calculated through the formula in Equation 2.46, whose
derivation can be found in Weir (1949). V̇ O2 is the volume of oxygen breathed in per
minute, and V̇ CO2 is the volume of carbon dioxide breathed out per minute.

EE[Kcal/min] = 3.941V̇ O2[L/min] + 1.106V̇ CO2[L/min] (2.46)

Total EE is composed of resting energy expenditure (REE), activity-induced energy
expenditure (AEE), and the thermic effect of food. Since the participants had not con-
sumed food at least 2 hours before testing, the contribution of thermic effect is negligible
and it is the first two components that will be contribute to the EE estimated in the current
study. Resting EE has been found to typically be slightly higher than 1kcal/min (Fruin
and Rankin, 2004). Lower total EE compared to energy intake in the form of food will
lead to obesity. As discussed earlier WCU are more prone to this due to their sedentary
lifestyles and smaller body mass causing lower total EE in general.

Stirling et al. (2005) described the kinetics of V̇ O2 to be divided into three phases of
increase at the onset of exercise and since V̇ O2 is so closely linked to EE through Equation
2.46 the same phases can be generalized to EE as well. The first phase is when the rise is
due to increased CO (which must be a result of either change in SV or HR) and changes
in the lungs’ gas stores. Phase 2 is an exponential rise to a steady state, which will happen
after approximately 3 minutes when the intensity is below the aerobic threshold. After
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reaching the steady state, phase 3, the proceeding response depends on the intensity. At
sub-maximal intensities, one may see what has been termed the V̇ O2-drift. This is a slow
increase with low magnitude seen in prolonged sub-maximal exercise, the reasons for why
this occurs are somewhat uncertain, but it is believed that it is a combination of an increase
in ventilation, levels of catecholamines, and thermo regulation (Zakynthinaki and Stirling
(2003), p.82). At exercises above the aerobic threshold, there will also be a slow drift
upwards, but of higher magnitude, this is called the ’slow component’. Similarly, as for the
drift, the underlying mechanisms for this rise are unknown, but the main speculation is that
there is an alteration in the types of activated muscle-fibers, or shifts in body temperature,
or a shift in the metabolic substrate (Zakynthinaki and Stirling (2003), p.81).

2.2.3 Heart Rate and Energy Expenditure Relationship
The relationship between EE and HR is not trivial although there are certain well-established
connections between the two. And the kinetics that describe one, can with simple modifi-
cations also explain the other (Zakynthinaki and Stirling, 2007).

V̇ O2 = HR× SV × aV Od
2 (2.47)

The relationship between HR and V̇ O2 is given in Equation 2.47 and V̇ O2 is as known
closely linked to EE. However, both SV and aV Od

2 (the difference in O2 concentrations
in the blood) are variables of intensity and duration of exercise as well as the individual’s
overall fitness level (Zakynthinaki and Stirling (2003), p.75).

HR monitoring is a useful tool in the context of EE estimation. As discussed in the
above section, direct and indirect calculations of EE are both tedious and impractical in
free-living situations, especially the daily-life. HR monitoring is a more convenient, less
expensive, and more flexible way of obtaining objective measurements on PA (Hills et al.,
2014). Often, an estimate of EE is calculated based on an assumption of a linear rela-
tionship between HR and oxygen uptake, with a basis in Equation 2.47. This relationship
is subject to huge inter-individual differences but has been found to be consistent within
individuals in activities of varying intensity and function, and the relationship may be
established through tests. The inter-individual differences are claimed to be a result of
mainly movement-effectiveness, age, sex, and fitness level (Hills et al., 2014).

Despite the previous claim of this linear relationship having small variance within
individuals, there are limitations. The regression lines do not convert between activities
and also not between upper- and lower-body exercises. There does also not seem to be a
clear relation when it comes to rest situations (Hills et al., 2014).

2.2.4 International Physical Activity Questionnaire
International Physical Activity Questionnaire (IPAQ) is a questionnaire developed for eval-
uation of physical activity (PA) in adults in the age range 15-69 years. IPAQ is a self-report
survey where the participant reports minutes of physical activity within an average week.
Activity is categorized into three intensity-levels: walking, moderate and vigorous. The
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participant separates active minutes throughout their week into each respective category.
All domains of activity count towards the reported time, activities within the same inten-
sity level, for instance domestic, work- and transport-related, will contribute equally to
the total. The activities are summed to a total, and the total scores separate participants
into three categories: low, moderate, and high. It should be noted that only bouts of du-
ration longer than 10 minutes are recorded in the survey, as this is the required length for
receiving health benefits from the effort. Further detail can be found in IPAQ (2004).
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3
Method of Exploration and
Preliminary Results

3.1 Data Preprocessing

Large parts of the pipeline for preprocessing the data were developed in the project thesis.
A thorough description of the underlying theory and reasoning behind design choices can
be found in the project thesis. As new data was collected after the finalization of the project
thesis and received at the start of the master’s thesis, the pipeline needed reworking and
revision. Therefore it will be described here as well. The project thesis only dealt with HR
data, additionally the master’s included data on EE, which also required preprocessing,
this process will be described in this section.

3.1.1 Heart Rate Data

The need for data cleaning of the HR data was extensively discussed in the project thesis
and can be reviewed there. The key takeaways were that although the experimental design
was standardized with the same speed-incline combinations for all female/male partici-
pants as per Section 1.2.2, there were often deviations from the protocol.

The HR sensor had a tendency to lose proper contact with the skin causing single
missing data points or periods of missing data points. It was decided that the mode of
the signal was the most representative for the HRmin. To preserve biological validity,
the missing data was imputed by the mode of the remaining signal. The mode was then
subtracted from the entire signal. Hence the baseline was set to 0 bpm. The subtraction of
the mode made the signal artificially low, the values in bpm can be regarded as the beats
per minute above the minimum. Although, this made the data seem unnatural, which will
be obvious in the coming plots, setting the baseline to 0 gave a greater opportunity for
comparison between participants as they hold the same baseline.
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Smoothing

A Fourier transform was used to smooth the HR signal since it as described, had significant
oscillations. In Section 2.2.1 it was described how these oscillations might have physio-
logical significance. Regardless, they were insignificant in the grand scheme and over the
large time periods intended for the use of these results. Therefore, it was decided that re-
moving them through a low-pass filtering method would retain the representativity of the
signal.

Examples of smoothed signals and the resulting optimized models are shown in Fig-
ures 3.1. These figures display four different levels of smoothing that were tested, the
lower the level, the fewer frequencies were filtered out. The smoothed signal together
with the original shows that there was an undesired degree of information loss in the fil-
tering process. The loss of information is prevalent even in the second lowest degree of
smoothing as seen in Figure 3.1c. This especially goes for the cases where a steady state
was reached. The smoothed signal modeled this as a single oscillation, and thereby it did
not establish a steady state in the same sense as the raw signal. This would have become
more apparent had the active periods been longer. The simulations plotted in Figure 3.1
originate from one of the models from the project thesis as given in equation 2.27 and
were optimized based on the smoothed signals. From the plots, it is clear that different
smoothing levels yielded different sets of parameters. The simulations did not reach a
steady state, in any of the cases except for the lowest smoothing level, whereas the raw
data clearly shows a steady state in almost all stages.

The lowest viable value for smoothing is shown in 3.1d. With such a low level of
smoothing, the smoothed data and the corresponding simulations reached a steady state,
but in this case, the oscillations from the raw data became quite apparent. There was a
difficult trade-off between removing the oscillations and keeping the general trends of the
data, no good level was found that managed this trade-off well spanning all participants.
The lowest level of smoothing was chosen moving forward.

3.1.2 Energy Expenditure Data

As described in Section 1.2.3 the data used for EE calculation was collected by a Vyn-
tus ergospirometer which measured both V O2 and V CO2. EE estimates were calculated
through the formula in Equation 2.46 based on these two measurements. The ergospirom-
eter had a sampling rate of 1/10s. The sampling rate was 1/10 of that of the HR sensor
and thus measurements had different timestamps and were not aligned timewise. Other
researchers involved in the project cut the data and saved them in separate MATLAB files,
one per stage. This cut was based on manually recorded timestamps, and the resulting
sections only included the active periods within each stage. The different stages then had
to be pieced together in alignment with the HR data based on timestamps. The time be-
tween stages was imputed with 0 and therefore all participants have 0 Kcal/min between
the active stage. This is not physiologically viable as the body will still expend energy at
rest. Missing data within the active periods were imputed with ’forwardfill’.
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(a) Smoothing with a level of 0.2 (b) Smoothing with a level of 0.9

(c) Smoothing with a level of 0.05 (d) Smoothing with a level of 0.02

Figure 3.1: Raw data plotted together with different levels of smoothing. The simulation is of the
model in Equation 2.27 based on the optimal parameters from the smoothed signal and the speed
and incline of the treadmill. The mode has been subtracted from the HR.
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3.1.3 Input Data
There was no recorded signal from the treadmill used in the experiments with information
of its speed and incline which in principle meant there was no direct input signal. In the-
ory, the input signal could be generated directly based on the experimental setup described
in Subsection 1.2.2 as this was meant to be standardized and identical for all participants.
However, this was not possible due to significant deviations from the protocol in many of
the days. Examples of such deviations were that the HR sensor did not record the signals
and modifications had to be made between stages yielding a longer rest period, that the
participant was not able to start the wrist-mounted watch at the start of the stage and the
stage was restarted, or that a participant was not able to complete a stage and ending pre-
maturely.

The input signal had to be synthetically generated from the aforementioned times-
tamps. The timestamps were recorded manually by the lab assistants and only indicated
the start and stop of each stage. Input signals were generated based on these, under the
assumption that the speed and incline of the treadmill followed the experimental setup
as it was described in Section 1.2.2. Pre-existing Python code was used to generate the
input signal for the new data that was received, an example of the generated input signal
is shown in Figure 3.2. Two inputs were generated, such that the speed and incline were
separate input signals. Thereafter the input signals and HR were plotted together and were
manually inspected for synchronicity for all participants. Based on the theory described
in Subsection 2.2.1 it was expected that the HR should rise instantly as or shortly after
the input was applied. As can be seen in the cases displayed in Figure 3.3, the results

Figure 3.2: Example of input signal for one participant based on manually recorded timestamps.
There are two separate signals, one is the speed of the treadmill in km/h and the other is the incline
in %. Figure from Tenold (2022).

were not always as expected. The start and stop times were recorded manually, and some
human errors had been made causing desynchronicity between the generated input and
the HR-data as well as uncommunicated design-choices. Since no more data was to be
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collected, the choice was made to fix these issues in postprocessing of the signals. This
was done to a large extent through close communication with the lab-assistants who had
more information about the course of each day. Some changes were made directly in the
recorded timestamps, and other changes were made in the code that processed the signals.

(a) Circle shows the last stage was performed
twice. Only the second was recorded in the times-
tamps. The first was manually cut.

(b) Third stage on day two not performed. The
circle shows HR from the incremental test, which
should be excluded, signal was cut manually.

(c) Mistake in the timestamp, causing the gener-
ated input to overlap in the circle. Fixed directly in
the dataset saved locally.

(d) Long period of missing data. An hour was
manually added to all timestamps after sensor
restart. Fixed directly in data and saved locally.

Figure 3.3: HR signal (with the mode subtracted) from four participants and the corresponding
generated input. Shows desynchronization between the generated input and the raw HR signal, the
mode has been subtracted from the HR.

In conclusion, lots of manual data manipulation and participant-specific adaptation had
to be made for the signals from the sensors and the generated input signal to be synchro-
nized for all participants. The generated input signals were used in various combinations
as inputs to the different models tested with the incline as u1 and the speed as u2.
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3.2 Simulations and Optimization

3.2.1 Method
As in the project thesis, the models were discretized using Euler’s method described in
Section 2.1.4 with h = 1. The optimal parameters per participant were found through
optimization algorithms. The ’minimize’-function from the Scipy Optimize module was
used with the ’BFGS’ method, the underlying theory behind this was elaborated in Chap-
ter 2.1.5. The optimization was set to find the parameters that minimized the squared error
between the simulation and the processed data. A general introduction to the least squares
approach is given in 2.1.7.

Some alterations were made to the process in the project thesis. A closer investigation
of the results from the project showed that there were often peaks at the start of each
simulation. This stemmed from the initialization of the state to the first HR measurement.
The general noisyness of this data caused an initial peak in many cases. Therefore the
simulations were instead set to start at the baseline, HRmin = 0.

3.2.2 Separation of Days
The project thesis found that the models, presented in Equations 2.26 and 2.27 often per-
formed better on the day with intermediate incline (2.5%) as compared to the higher and
lower inclines. This raised the question of whether it was actually viable to estimate a
common set of parameters for all three days. Therefore the estimation was split so that
the optimization predicted a set of parameters for each day separately. This was done be-
fore any other further investigation and therefore it was performed on the models from the
project thesis, the version in Equation 2.27 was used.

(a) Common parameters for all days (b) Separate parameters for each day

Figure 3.4: Example of the difference in the resulting optimization and simulation with the model
in Equation 2.27 when the model had common and separate parameters for each day.

From Figure 3.4 it became apparent that the optimal parameters were different for the
different inclines. There was in this case especially distinct differences in the time-constant
which can be seen to increase for each day. Figure 3.5 shows the difference in the fit of
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the models when the parameters were common for all days and separate. The higher the
fit the better, and although there was a bigger variance, it is clear that the fit to the data was
better when the parameters were optimized per day separately. Consequently, the decision
was made to optimize the parameters separately for each day.

Figure 3.5: Violin plot of the fit with separate parameters and a common set.

3.3 Heart Rate Models

3.3.1 Second-Order Nonlinear Model

The endpoint of the project thesis was presented in Chapter 2. The project thesis found
the model presented in Equation 2.26 to perform best, an example is shown in Figure 3.6
where the parameters were optimized individually per day. The start of the master thesis
consisted of doing the most basic next steps presented in the thesis, namely investigation
of the identifiability. The project thesis discovered that some of the parameters often ended
up with the same values, which indicates that the model was non-identifiable. By plotting
the distribution of the parameters that was obtained, the indications of non-identifiability
were strengthened. Figure 3.7 shows a representative set of optimized parameters. The
parameters were both optimized for each day individually and for all days together in a
common set. The plot shows that the two α’s are opposites. In almost all cases one of
them is high and the other is low, indicating that they have the same effect on the model
and cannot be distinguished from each other.

An attempt to get a better understanding of the identifiability was made by running a
grid search over the initial points of the parameters. This showed that the parameters ended
up with different optimal parameters when the optimization was started with different
initial parameters. Figure 3.8 shows the MSE of the different optimizations in the grid
search. Had the model been globally optimizable, the initialization should have given the
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Figure 3.6: Example of the performance of the second-order nonlinear model as given in Equation
2.26 and parameters optimized per day. The mode has been subtracted from the HR.

Figure 3.7: Distribution of the optimized parameters for participant 34. One set of parameters opti-
mized per day in isolation (marked by their incline) and one set optimized for all days simultaneously
(marked ’All’).
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same optimized parameters and consequently the same MSE, Figure 3.8 shows that this
was not the case. This finding showed that the model was not globally identifiable.

Figure 3.8: MSE variation with grid-search over parameter initializations.

As it was also valuable to know whether the model was locally identifiable, the DAISY
software was used as described in Chapter 2. The output from DAISY showed that the
model that was found in the project thesis was only locally identifiable. This explains why
the parameter estimations gave similar values in many cases. Although, the results with
this model were quite good, non-global identifiability makes it undesirable. Hence, the
choice was made to try more models.

3.3.2 First-Order Nonlinear Model
Since the second-order model found in the project thesis was not globallly identifiable, it
was valuable to test the identifiability of the first-order nonlinear model that proved simi-
lar results in the project thesis. The first-order nonlinear model is shown in Equation 2.27.
The result from this model in DAISY showed that the model was globally identifiable. An
example of the resulting simulation is shown in Figure 3.4b.

Some experiments were also made with the relationship to the input. This relationship
can be denoted as the function f(u1, u2), where u1 was the incline and u2 the speed. In
the project thesis, the relationship with the input was described by Equation 3.1.

f(u1, u2) = βu1u
2
2 (3.1)

However, it was apparent from the plots that this f did not necessarily describe the
relationship between the input and output sufficiently. This was manifested in the steady-
state gain of the models usually not being aligned with the steady-state values of the raw
data. The functions given in Equations 3.2, 3.3 and 3.4 were all tested without achieving
better fit to the data.

f(u1, u2) = βu2
1u

2
2 (3.2)

f(u1, u2) = βu12u
2
2 (3.3)
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f(u1, u2) = β2u1u
2
2 (3.4)

Another issue with all of these input functions was that they were not generalizable out-
side of these controlled experiments. The speed was multiplied by the incline in all of the
versions, resulting in 0 input at 0% incline. This was clearly not physiologically correct,
as the body would still exert effort at 0 % incline causing the HR to increase. Hence, there
was a need to have the incline and speed as separate terms in the models. The functions
presented in Equations 3.5 were attempted without getting better results. Since the func-
tions introduced more parameters, the identifiability was again checked through DAISY
which concluded it was still globally identifiable. There was a limited improvement with
the different polynomials as can be seen in Figure 3.9.

f(u1, u2) = β1u1 + β2u2 + β3u1u
2
2 (3.5)

Figure 3.9: MSE with different input polynomials, their label corresponds to the equation numbers.

3.3.3 Handling Noise During Rest Periods
Through the work with the first-order nonlinear model, which was described above, it
became obvious that the noise between the active periods affected the performance and
evaluation of the model to a large extent. Two different approaches to handling this were
attempted, the first was the inclusion of a weight matrix, and the second was to remove
the signal in the rest periods in their entirety. These are both described in the following
sections.

Weight Matrix

The decision was made to try total and partial exclusion of the rest periods from the cost.
It was not desirable for the model to try to fit the significant levels of noise present during
most rest periods, and it influenced the results to a large extent. To limit this, a weight
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matrix was implemented in the cost function. The weight matrix ensured that the square
of the residuals in the rest periods did not affect the total cost. Essentially, this resulted
in a diagonal square-matrix of size n × n where n was the number of timestamps in the
signal, with 1’s on the diagonal under the active periods and a gain-value, g ∈ [0, 1] in the
rest periods. Thereby the general least squares formula was adapted to the formula shown
in Equation 3.6.

θ̂LS = argmin

n∑
i=1

(yi − f̂(xi; θ))W (yi − f̂(xi; θ))
T (3.6)

Where W is the weight matrix on the form as explained above and shown in Equation
3.7. Some attempts were made with different values for g, but the choice landed on having
g = 0 as this gave the best results.

W =



1 0 0 . . . . . . . . . 0
0 1 0 . . . . . . . . . 0
...

. . .
...

0 . . . 0 g 0 . . . 0
...

. . .
...

0 . . . . . . 0 g 0 . . . 0
0 . . . 0 1 0 . . . 0
...

. . .
...

0 . . . 0 1


(3.7)

Eliminating Rest Periods

Another alternative to the weight matrix was to eliminate the signal in the rest periods
entirely. The signal in the rest periods was swapped for the mode of the signal, when the
mode was subtracted the values during the rest ended up being 0. This was a violation
of the physiological principles behind the data, however, it puts all the participants at the
same baseline and thereby it can be regarded as a regularization method.

The result of removing the rest periods was that the smoothing was no longer needed
for good results. Thereby, this was eliminated. However, removing the rest was not enough
to provide good results in itself. When not using the weight matrix, the models got way
too fast in the decrease. This was an expected result as the data now has an incredibly
rapid decrease. Also, the data after the end of the activity was missing for the EE due to
factors described in Subsection 3.1.2 and thereby it would not be helpful to include it in the
HR. However, this is not physiologically correct and therefore, the weight matrix should
be used in combination with the rest-removal in order for the model to work optimally and
be most true to the biology. In summary, the simulations and optimizations from hereon
onwards consisted of the raw data with the rest periods set to the 0 bpm baseline and a
weight matrix added to the cost function. The performance differences were insignificant,
however, as this method was more true to the end goals it was chosen to be used forwards.
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Figure 3.10: Example of resulting simulation of the first-order nonlinear model when the rest peri-
ods were eliminated from the signal.

3.3.4 Zakynthinaki Model
Seeing as the first-order nonlinear model did not give as good results as desired, even with
the added weight matrix and removed rest periods. The next step was to implement models
from existing literature on HR. The initial method was the one presented in Zakynthinaki
(2015), it was implemented in the discretized version of the Equations 2.38, given through
Euler with h = 1. The model had a total of 9 parameters and was not globally identifiable.
Zakynthinaki (2015) presented the values found for their subjects and these were used in
an initial implementation, the values are presented in Section 2.2.1. The model included
a term decided by the intensity of the activity, I(t). Since the intensity was constant per
stage this could be set to 0. HRmin was set equal to the mode of the signal and HRmax

was given as the value that the participant themselves had submitted. As a first attempt,
the speed was given directly as an input by itself, v = u2. Although the mode had been
subtracted from the HR for better results, it was reincluded here in order for the HR to be
within a normal range due to the complexity of the model.

An example of the result from one participant is shown in Figure 3.11a. There was an
insignificant increase in the simulated HR. The participants in Zakynthinaki (2015) ran,
and the maximum speed was set to vmax = 20km/h, the HR increase was modeled based
on the difference between the running speed and its maximum. In the DigiW data col-
lection, wheelchairs were propelled at much lower speeds than participants ran at and the
vmax should arguably be much lower than 20km/h for the HR to get significant increases.
The only increase in the simulation seemed to originate from the lactate accumulation over
time, Equation 2.44. In order to get a proper increase in the simulation, the speed was mul-
tiplied by increasingly larger values. When setting v = 3u2 there was a peak at the third
stage of the first day. This was then because the v had exceeded the value for vmax, this is
shown in Figure 3.11b.
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(a) Example of the Zakynthinaki model with v = u2 (b) Example of the Zakynthinaki model with v = 3u2

(c) Example of the Zakynthinaki model with v as in
Equation 3.8

Figure 3.11: Examples of the Zakhyntinaki model simulated with the optimized parameters, but
with different input polynomials.
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Table 3.1: Table of the parameters as they were given in Mazzoleni et al. (2016)

Parameter Fixed value
A 1× 10−6
B 7× 10−3
α 1.1
β 1.5
c1 2× 10−1
c2 1× 10−1
c3 1× 10−3
c4 2× 10−3
c5 9× 10−4

A range of different polynomials combining the two inputs u1 and u2 and adjustments
to the vmax were tried, including nonlinearities of the inputs such as squaring and trigono-
metric functions. No viable results were obtained. The most promising was obtained
through the use of trigonometric functions, where an attempt was made to approximate
the vertical speed as in Equation 3.8 together with vmax = 7. This version gave the result
shown in Figure 3.11c. The results were not representative of the HR.

v = 100 sin (atan(u1/100)×
√
u2 (3.8)

An attempt was made to normalize all physical values in the Equations 2.38 by scaling
them within the range [0, 1], but this did not provide better results. Subtracting the mode
again did not help the simulation either. No matter how the ’velocity’ was calculated or
what the maximum ’velocity’ was set to there were no viable or useable results produced
with this model. The responses became too intense after exceeding the maximum, and was
not sensitive at all below the threshold, after a lot of fiddling around with different values
no balance was found between the two. The model was disregarded.

3.3.5 Mazzoleni Model
Another model, as presented in Chapter 2, was attempted. The model given in Equation
2.45 was implemented in its Euler-discretized version with h = 1. The model had many
parameters and was not globally identifiable when estimating all. However, through the
stability analysis of their eigenvalues as presented in Mazzoleni et al. (2016), some of the
parameters could be fixed, and the rest were fixed to the values experimentally found in
Mazzoleni et al. (2016). Hence, the model was initially implemented with the parameters
set as in Table 3.1.

Mazzoleni et al. (2016) developed the model with a basis in cycling, and their inputs
were given as the power and cadence of the cycling movement. These can be compared to
the incline and speed of wheelchair propulsion. As one of them says something about the
muscle power and the other about the frequency required. However, these features have
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Table 3.2: Difference in the ranges between the experiments in the paper by Mazzoleni et al. (2016)
and the experimental setup of the DigiW-project.

Measurement Range
Power [50, 200]
Incline [0.5, 5]

Cadence [50, 100]
Speed [1, 8]

different magnitudes and so the propulsion features were scaled in order to lie within the
range Mazzoleni et al. (2016). reported for power and cadence. The scaling was done
according to Table 3.2. An offset was added to the HR for it to be within the normal
working ranges of the function, therefore the baseline was at 60 bpm. A scaling was also
added so that the data would span normal ranges. Initial results are shown in Figure 3.12a.
The dynamics in the simulation were too slow and the model did not reach the desired
values.

Mazzoleni et al. (2016) reported that the parameters α and β were the least varying
between their participants (Mazzoleni et al., 2016). However, since these to a large extent
decide the speed of the dynamics, attempts were made to optimize these parameters. The
result from having β as an optimizable parameter is shown in Figure 3.12b. There was
not much difference, and the dynamics did not speed up. Therefore these parameters were
again kept constant and parameter B was optimized with the same method as previously
described. The result is shown in Figure 3.12c. The speed of the kinetics looked better with
B optimized, however, the gains were similar for all stages and therefore the coefficients
on the inputs were also chosen as optimizable parameters. The result can be seen in Figure
3.12c. Even with the optimization of these parameters as well and fiddling around with
some other options, there was not found a combination that made the model work well in
representing the HR, and this model too was disregarded.

3.3.6 Cheng and Paradiso Model
The general DE model developed by Cheng and Paradiso as described in Chapter 2 was
similar to the second-order nonlinear model that was found to work best in the project the-
sis. However, their versions had some additional nonlinearities. As described in Chapter
2 there were several iterations to their models. The versions varied in the implementations
of an f -, and a g-function. In their papers, three combinations of functions were explored,
but their suggested functions opened up for six different combinations, all of which were
explored here. For clarity, this model’s section has been separated into a list with all the
combinations. The items in the list were labeled with the version of the f - and g-function,
on the form fi, gj where i ∈ [1, 3] and j ∈ [1, 2]. In the summarizing and comparative
plots, the different versions are labeled through the same format, but without the number i
and j subscripted.

1. f3,g1 The first version tested is given in its continuous versions in Equation 3.9, the
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(a) All values as given in Table 3.1. (b) β optimized

(c) B optimized (d) B, c3 and c4 optimized

Figure 3.12: Examples of different combinations of optimizable parameters of the Mazzoleni model,
values as given in Table 3.1.

37



3 Method of Exploration and Preliminary Results 3.3.6 Cheng and Paradiso Model

discretization was done by Euler with h = 1.

ẋ1(t) = −a1x1(t) + a2x2(t) +
a2u

2(t)

1 + e−u(t)+a3

ẋ2(t) = −a4x2(t) + a4tanh(x2(t)) + a5x1(t)

y(t) = x1(t)

(3.9)

Initially, the input was given as only the speed of the treadmill, u = u2, similar to
the implementation in the original version of the model in Cheng et al. (2007), an
example of the result is shown in Figure 3.13a. The figure shows that the model
captures the essence of the HR data better than the two previous models. Attempts
were further made to see if introducing higher complexity in the input and incor-
porating the incline could give better results. An initial attempt used the nonlinear
relationship with the input that was found in the project thesis, u = u1u

2
2. This gave

highly unstable results and thereby, a gain of 1/10 had to be added to the input to
limit the response. The result is shown in Figure 3.13b, which shows that the results
did not improve from the result in Figure 3.13a.

Since the relationship between input and output is already squared due to Equa-
tion 2.31 this caused unnecessarily high order and hence, a last attempt to set u =√
u1 u2 (without the 1/10 gain-factor) is shown in Figure 3.13c. The overall per-

formance of the versions was evaluated visually, and the last one was determined to
achieve the best fit overall.

Investigation of the identifiability of this model with DAISY required an approxi-
mation of the model to a polynomial form. The approximation was done through a
third order Taylor-expansion as explained in Chapter 2 and series-representations.
The system essentially has two equilibrium points, which are the resting HR and the
maximum HR. The resting HR is the one of these that is most useful in our case as
this is the area where the participants will approach and spend the most time at or
around. From physiology, it is known that the kinetics in moving from the resting
HR can yield information on the physical fitness of the individual. Therefore this
equilibrium was chosen to approximate around. Since the resting HR was subtracted
from the data, this is essentially the same as approximating around x1 = 0, which
from the equations also requires x2 = 0.

The approximation of Equation 3.9 is shown below, for simplicity the time depen-
dence of the states has been excluded from the derivation. In the first function the
term a2u

2

1+e−u+a3
needed expansion. The term had both u and a3 in the exponential,

and therefore the exponential would not be eliminated when performing a Taylor-
expansion around u = 0. The essential issue was for the function to be interpretable
DAISY, which means the function must be a polynomial. Therefore it was chosen
to do a 3rd order series expansion of just the exponential term for the most accurate
representation in polynomial form. The expansion is given in Equation 3.10. With
regard to the second function, the term a4tanh(x2) was the only one that needed to
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(a) u = u2

(b) u = u1u2
2

(c) u =
√
u1 u2

Figure 3.13: Examples of the (f3, g1) Cheng and Paradiso model with different input.
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be considered, the third-order Maclaurin expansion of this term around x2 = 0 is
shown in Equation 3.11.

e−u+a3 ≈ a3 − u+
(a3 − u)2

2!
+

(a3 − u)3

3!
(3.10)

a4tanh(x2) ≈ a4tanh(x2)
∣∣
x2=0

+
∂

∂x2
a4tanh(x2)

∣∣
x2=0

x2

+
∂2

∂2x2

a4tanh(x2)

2!

∣∣
x2=0

x2
2 +

∂3

∂3x2

a4tanh(x2)

3!

∣∣
x2=0

x3
2

= a4sech
2(0)x2 +

a4sech
2(0)

2!
x2
2

− 2a4
3!

(−2sech2(0)tanh2(0) + sech4(0))x3
2

= a4x2 −
2a4
3!

x3
2

(3.11)

The cancellations follow from tanh2(0) = 0 and sech2(0) = sech4(0) = 1. In-
serting this into the original model gives Equation 3.12. According to DAISY, this
model was globally identifiable.

ẋ1 ≈ −a1x1 + a2x2 +
a2u

2

(1 + a3 − u+ (a3−u)2

2! + (a3−u)3

3! )

ẋ2 ≈ −2a4
3!

x3
2 + a5x1

y = x1

(3.12)

2. f2,g1 Thereafter, the later version of the f -function, developed in Cheng et al.
(2008), was implemented. In their version, a2 was fixed to one, in this case, it
was chosen to be an optimizable variable, the resulting model is given in Equation
3.13.

ẋ1(t) = −a1x1(t) + a2x2(t) + a6u
2(t)

ẋ2(t) = −a4x2(t) + a4tanh(x2(t)) + a5x1(t)

y(t) = x1(t)

(3.13)

An example of the results obtained with this model is shown in Figure 3.14, where
u =

√
u1 u2.

The adaptation of this model to a DAISY-compatible polynomial follows the same
derivation as the previous model, the resulting model is given in Equation 3.14.
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Figure 3.14: Example of the results from (f2, g1) Cheng and Paradiso and u =
√
u1 u2

ẋ1 = −a1x1 + a2x2 + a6u
2

ẋ2 ≈ −2a4
3!

x3
2 + a5x1

y = x1

(3.14)

The identifiability found through the DAISY established that the model was not
identifiable.

Figure 3.15: Example of the results from the (f1, g1) Cheng and Paradiso with and u =
√
u1 u2

3. f1,g1 The last combination with g1 that was tested was the version where the input
was affected by the same paremeter as the slow component, x2. This version is
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given explicitly in Equation 3.15. An example of its performance is shown in Figure
3.15.

ẋ1(t) = −a1x1(t) + a2x2(t) + a2u
2(t)

ẋ2(t) = −a4x2(t) + a4tanh(x2(t)) + a5x1(t)

y(t) = x1(t)

(3.15)

The adaptation of this model to a DAISY-compatible polynomial structure only re-
quired expansion of the trigonometric tanh(x2), the derivation of this is shown in
Equation 3.11 and the resulting model is given in Equation 3.16.

ẋ1 = −a1x1 + a2x2 + a2u
2

ẋ2 ≈ −2a4
3!

x3
2 + a5x1

y = x1

(3.16)

Equation 3.16 was tested for its identifiability in DAISY which labeled it as globally
identifiable.

4. f3,g2 All the different versions of the f -function were then tested with the other
version of the g-function presented in Section 2 in Equation 2.33. The results of
these models are shown in Figures 3.16, 3.17 and 3.18.

Figure 3.16: Examples of results from the (f3, g2) Cheng and Paradiso model with u =
√
u1 u2.

The continuous version of the first combination using f3 and g2 is given in Equa-
tion 3.17 and corresponding results from optimization and simulation are shown in
Figure 3.16.
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ẋ1(t) = −a1x1(t) + a2x2(t) +
a2u

2
2(t)

1 + e−u(t)+a3

ẋ2(t) = −a4x2(t) +
a4x1(t)

1 + e−(x1(t)−a5)

y(t) = x1(t)

(3.17)

The DAISY-expansion of this version around x1, u = 0 with the same assumptions
as earlier gave Equation 3.19. The exponential term in a4x1

1+e−(x1−a5) needed expan-
sion in this case, this was done based on the same argumentation as given for the
expansion of the other exponential. The third order series expansion is given in
Equation 3.18 and the resulting model is given in Equation 3.19

e−x1+a3 ≈ a5 − x1 +
(a5 − x1)

2

2!
+

(a5 − x1)
3

3!
(3.18)

ẋ1 ≈ −a1x1 + a2x2 +
a2u

2

1 + a3 − u+ (a3−u)2

2! + (a3−u)3

3!

ẋ2 ≈ −a4x2 + a5x1 +
a4x1

1 + a5 − x1 +
(a5−x1)2

2! + (a5−x1)3

3!

y = x1

(3.19)

The approximated version was tested with the DAISY software which determined it
to be globally identifiable.

5. f2,g2 Thereafter the simpler version with f2, shown in Equation 3.20, was tested.

x1(t) = −a1x1(t) + a2x2(t) + a6u
2
2(t)

x2(t) = −a4x2(t) +
a4x1(t)

1 + e−(x1(t)−a5)

y(t) = x1(t)

(3.20)

This version of the model underestimated the values for all participants and all
stages. The least amount of underestimation is shown in Figure 3.17 which dis-
plays large differences between the steady-state of the raw data and the HR. In this
version, there were very small variances between the different optimized models.

The DAISY-approximation is given in Equation 3.21, DAISY determined that it was
globally identifiable.

ẋ1 = −a1x1 + a2x2 + a6u
2
2

ẋ2 ≈ −a4x2 +
a4x1

1 + a5 − x1 +
(a5−x1)2

2! + (a5−x1)3

3!

y = x1

(3.21)
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Figure 3.17: Example of the results from the (f2, g2) Cheng and Paradiso model with u =
√
u1 u2.

6. f1,g2 The last combination of the different functions is given in Equation 3.22 and
results are shown in Figure 3.18. Figure 3.18a displays an example of where the
model is able to find parameters that make the fit good, whereas Figure 3.18b dis-
plays an example where the estimate ends up very far from the raw data. In this
particular case, the optimization ended up with returning the initialization of the
parameters as the optimal parameters as well.

x1(t) = −a1x1(t) + a2x2(t) + a2u
2
2(t)

x2(t) = −a4x2(t) +
a4x1(t)

1 + e−(x1(t)−a5)

y(t) = x1(t)

(3.22)

The DAISY-approximation is given in Equation 3.23 and DAISY determined it to
be globally identifiable.

ẋ1 = −a1x1 + a2x2 + a2u
2
2

ẋ2 ≈ −a4x2 +
a4x1

1 + a5 − x1 +
(a5−x1)2

2! + (a5−x1)3

3!

y = x1

(3.23)

All models showed varying degrees of fit to the raw HR data. Their performance was
evaluated with the MSE as explained in Chapter 2. Figure 3.19 shows the comparison of
the performances measured by the MSE, it shows large differences in the performances of
the different models. Figure 3.20 shows the distribution of the MSE between the different
days for each of the models. It is clear that the fit is generally better on the second day.
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(a) Example with high fit (b) Parameters optimized to initialization

Figure 3.18: Examples of results obtained by the (f1, g2) Cheng and Paradiso model with u =√
u1 u2.

The models with g2 in combination with f1 and f2 had the highest average MSE and also
the highest standard deviation. This might indicate that the models did not fit well for our
purpose. As can be seen in Figure 3.18a however, the models were capable of a good fit,
at least for some participants. And the large standard deviations indicated that they some-
times got a good fit, and other times get a really poor fit as can be seen in Figures 3.18b.
This issue might be fixed by better initialization of the parameters. Investigation of the op-
timized parameters of these models revealed that they often defaulted at the initializations,
causing low fit levels.

Figure 3.19: Violin plots of the MSE of all the Cheng and Paradiso models, u =
√
u1 u2.

Due to the observation about the initializations, the model with f1 and g2 were op-
timized again for all participants, with initial parameters similar to the successful cases
from the previous optimization. The result on the MSE and STD can be seen in Figures
3.21, the MSE clearly improved with a different initialization. Since these models were
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Figure 3.20: Comparison of the average MSE of all the Cheng and Paradiso models with u =√
u1 u2, evaluated per day.

calculated to be globally identifiable by DAISY this should not happen, as all initialization
should find the global optimum. Regardless, many optimizations ended up at the initial-
ization and the fit was still worse than the remaining models on average.

Figure 3.21: Violin plot of the MSE between different parameter initializations of the (f1, g2) Cheng
and Paradiso models with u =

√
u1 u2.

From this, it can be concluded that the three functions with the g1-function worked the
best. Only f3 and f1 made the models globally identifiable. Since the version with f1 con-
tained one less parameter, and we want the model as simple as possible it was decided to
progress with this one, since their results were otherwise similar. Further experimentation
with the input was performed to see if an even better performance could be achieved.
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Mazzoleni Input Polynomial

The input polynomial as given in Equation 2.45 from Mazzoleni et al. (2016) was used as
input to the model from Cheng and Paradiso as this polynomial seemed to be representative
of the loads. The polynomial is given in Equation 3.24, the values of c1 to c5 are given in
Table 3.1, they had to be scaled by a factor of 10 to make an impact.

umaz = c1u1(t) + c2u2(t) + c3u
2
1(t) + c4u

2
2(t) + c5u1u2(t) (3.24)

The result is shown in Figure 3.22a. The performance was similar to what was previously
achieved with the same model. The complexity of the polynomial overcomplicated the
relationship to the input. Since there was already a squaring of the input in the original
equation the polynomial introduces a cubing of the input terms. Therefore, the cubing was
eliminated from the function by taking the root of the polynomial and it gave a similar fit
as shown in Figure 3.22a. The fit of the three versions is compared in Figure 3.23 which
clearly displays an improvement for each iteration.

(a) Input as in Equation 3.24 (b) Input as the root of Equation 3.24

Figure 3.22: Examples of the (f1, g1) Cheng and Paradiso model, with the polynomial input from
Mazzoleni and its root.

After this, the conclusion was that the f1, g1 Cheng and Paradiso model with the square
root of the Mazzoleni-polynomial as the input. The final equation can then be written as
in Equation 3.25 with the Mazzoleni-polynomial input as u.

ẋ1(t) = −a1x1(t) + a2x2(t) + a2(c1u1(t) + c2u2(t) + c3u
2
1(t) + c4u

2
2(t) + c5u1u2(t))

ẋ2(t) = −a4x2(t) + a4tanh(x2(t)) + a5x1(t)

y(t) = x1(t)

(3.25)

Reinclusion of Rest Period

The issue with the concluded model was that the parameter of the tanh(x2)-term was not
optimized properly since the rest had been excluded from the cost. An example is shown
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Figure 3.23: Comparison of MSE on the same (f1, g1) Cheng and Paradiso model with inputs
generated differently. 1: u =

√
u1 u2, 2: u = 3.24, 3: u =

√
3.24 .

in Figure 3.24. Thereby the optimized parameters sometimes made the model reincrease
in the rest period instead of having the desired saturation effect on the decrease. Although
this was not the primary objective, a model that was also representative of the response
during rest would be preferable. Therefore, the initial 50 rest samples were reincluded
into the signal and the weight matrix in the hope that they would positively impact the
simulation during rest. An example of the result is shown in Figure 3.25, the rest signals
were incredibly noisy and their reinclusion decreased the performance, the option was
disregarded once again.

Figure 3.24: Example of the (f1, g1) Cheng and Paradiso model not decreasing properly during rest.
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Figure 3.25: Example of the (f1, g1) Cheng and Paradiso model with the first 50 rest samples
included.

Addition of Synthetic Rest Samples

Additional synthetic data was instead added to the rest periods in order to see if they
would eventually decrease. This was not the case, in fact, some of them became unstable
and increased beyond physiological bounds. Since the weight matrix eliminated the cost
during rest, this would not be punished. No association was found between the cases where
this happened, but it was most common for the incline of 5.0%.

3.4 Energy Expenditure Models
The EE data was loaded and pieced together as described above in Section 3.1.2. The HR
data had to be downsampled so that the EE and HR could be compared. This was done by
using only every tenth sample in the HR signal.

The model that was deemed to be the best on the HR as shown in Equation 3.25 was
attempted, as from the theory it is know that the two can be explained by the same models.
The result is shown in Figure 3.26 which shows that the model fits the EE data as well as
it does the HR. Therefore, further exploration of this model was continued with respect to
the EE and the downsampled HR signal.

3.5 Correlations

3.5.1 Parameters
Scatterplots of the optimized parameters against demographic variables were generated in
order to see if there were any correlations or groupings with respect to the different param-
eters obtained in the model. Figure 3.27 shows that the parameters were to a large extent

49



3 Method of Exploration and Preliminary Results 3.5.1 Parameters

Figure 3.26: Example of the (f1, g1) Cheng and Paradiso model on EE data.

within the same range, except for a small number of outliers. The scatter points were col-
ored according to their demographic group with regard to gender and whether they were in
the AB- or WCU-group. There were no visible groupings with regard to these parameters.

Since correlations may be hard to distinguish visually, correlation coefficients were
calculated between the parameters and demographic variables. Figure 3.28 is a heatmap
of these correlations. The scale shows the color mapping to the strength of the correlation.
There was a strong negative correlation between parameters a4 and a5 and a strong posi-
tive correlation between a1 and a2. There was a positive correlation between the MSE and
the incline, indicating that there was a higher MSE for higher inclines. This relationship
has been evident in earlier results. The strongest correlation between the parameters and
the demographic variables was between a2 and age. Except for this, there were only in-
significant correlations.

The same plots were generated for the parameters obtained in the EE model and are
shown in Figure 3.29. There were a few distinct outliers in these plots that make it hard
to investigate these plots, but there appear to be no significant groupings here either. The
correlations were also calculated for these parameters and the resulting heatmap is shown
in Figure 3.30. It shows strong positive and negative correlations between the parameters.
There was a perfect negative correlation between a2 and a4, these were also strongly
correlated with the MSE. There were no significant correlations between the parameters
and the demographic variables.

In line with the aim of the thesis, to find a correlation in the kinetics of the HR and
the EE, correlations were calculated between the parameters of the EE and HR models as
well. The resulting heatmaps are shown in Figure 3.31. There were, as previously seen,
significant correlations among the parameters obtained in one model, but there was no
significance between the models.
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(a) a1, a2, against height (b) a4, a5, against height

(c) a1, a2, against body mass (d) a4, a5, against body mass

(e) a1, a2, against age (f) a4, a5, against age

Figure 3.27: Scatterplots of the optimized HR parameters from the model in Equation 3.25, against
demographic variables.
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Figure 3.28: Heatmap of the correlations for parameters for HR from the model in Equation 3.25
against demographic variables.

3.5.2 Eigenvalues

As there were no indications of significant correlations or grouping on the parameters
individually, the eigenvalues were investigated. The eigenvector of a system represents the
direction of change and the eigenvalue describes the magnitude of the same change, this
concept is described more thoroughly in Chapter 2. In order to find the eigenvalues, the
A-matrix of the model was necessary. Therefore the model was linearized with respect to
the states. Linearization was done through the first-order Taylor expansion, the resulting
model is given in Equation 3.26. It should be noted that parameter a4 was eliminated from
the model with the linearization.

ẋ1 = a1x1 + a2x2 + a2u
2
2

ẋ2 = a5x1

y = x1

(3.26)

A =

[
∂a1x1+a2x2+a2u

2
2

∂x1

∂a1x1+a2x2+a2u
2
2

∂x2
∂a5x1

∂x1

∂a5x1

∂x2

]
=

[
−a1 a2
a5 0

]
(3.27)

From the A-matrix the eigenvalues of the system were determined by finding the values
for which det(A− λI) = 0.
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(a) a1, a2, against height (b) a4, a5, against height

(c) a1, a2, against body mass (d) a4, a5, against height

(e) a1, a2, against age (f) a4, a5, against age for

Figure 3.29: Scatterplot of parameters for EE from the model in Equation 3.25 against demographic
variables.
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Figure 3.30: Heatmap of the correlations for the parameters for EE from the model in Equation 3.25
against demographic variables.

Figure 3.31: Heatmap of the correlations between the parameters obtained for the HR and EE from
the model in Equation 3.25.

54



3 Method of Exploration and Preliminary Results 3.6 Testing

det(A− λI) = 0

det(

[
−a1 1
a5 0

]
−

[
λ 0
0 λ

]
) = 0[

−a1 − λ 1
a5 −λ

]
= 0

(−a1 − λ)(−λ)− a5 = 0

(3.28)

Thereby, the eigenvalues were given by λ1,2 = −a1±
√
a1

2+4a2a5

2 . The more negative
the eigenvalue is, the quicker it will approach a steady state solution, which in this case
translates to a high a1 and a low a5. Physiologically, speed-up kinetic relates to better
fitness.

The eigenvalues were plotted against each other and the other demographic variables
and are shown in Figure 3.32 for the HR eigenvalues and Figure 3.33 for the EE eigenval-
ues. Figure 3.32 shows no apparent correlations in any plots. Once again, some outliers
made it hard to inspect the plots in Figure 3.33 for groupings, but no groupings were seen
here either.

To see if there could be any trends between the eigenvalues, these were plotted in
Figure 3.34. Outliers were cropped from the plot, but these are shown together with the
rest in Figure 6.1, which can be found in the Appendix. The eigenvalues were generally
very small. The only apparent trend was that the female participants typically had a bigger
spread in the eigenvalue for the HR, whereas all the male participants had low values for
this. No trend was seen with regard to the IPAQ categories.

Correlation coefficients were calculated between the eigenvalues and demographic
variables and shown in Figure 3.35. There was a slight positive correlation between the
eigenvalue of the HR and that of the EE. The most significant correlation is between the
MSE and eigenvalue for the EE. This makes sense since a strong correlation was found
between the MSE and parameters.

3.6 Testing

3.6.1 Averaging on Gender

As groupings were found between the genders and the steady state values, there was the
expectancy that this could be found in the kinetics as well. Therefore an averaging of
the parameters grouped by gender was made based on the ’leave-one-out’-priniciple. For
each participant, the average was calculated based on the remaining participants of the
same gender, and the model was simulated based on the averaged parameters. For three
participants, the optimized values were such that the EE simulations became unstable.
Therefore, these were excluded from the averages.
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(a) Eigenvalues against age (b) Eigenvalues against body mass

(c) Eigenvalues against height

Figure 3.32: Scatterplot of the eigenvalues against demographic variables, for HR.
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(a) Eigenvalues against age (b) Eigenvalues against body mass

(c) Eigenvalues against height

Figure 3.33: Scatterplot of the eigenvalues against demographic variables, for EE.
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Figure 3.34: Scatterplot of the EE eigenvalues against HR eigenvalues. Triangles indicate a high
IPAQ score and circles indicate moderate IPAQ score.

Figure 3.35: Heatmap of the correlation between the eigenvalues for the HR and EE and the demo-
graphic variables.
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3.6.2 Linear Regression
Another expectancy was that, based on some data from one participant, one could predict
the parameters of their kinetics at unseen intensities. A linear regression model was set
up using Python’s ’Scikit-learn’. The data was randomly separated into a 70:30 train:test
partition. The features in the regression were: ID, age, body mass, height, gender, and
ability level (whether they were a wheelchair user), all the optimized parameters obtained
for the 0.5 % incline day, and all the optimized parameters for the 2.5% incline day. The
output was the parameters for the 5.0% incline day. No regularization or normalization
was implemented with regard to the parameters and their sizes. Binary encoding of the
gender and ability level was implemented.
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4
Results

This chapter will present overall results from the experimentation more concisely and
coherently. Since most of the results obtained underway were introduced in Chapter 3,
plots and sections from that chapter will be referred to here.

4.1 Separation of Days
The fit to the data was significantly improved when the data was optimized for each day
separately as compared to a common set of parameters for all days. Performance improve-
ment was visually and statistically evaluated in Figure 3.5. Since each day had a set and
constant incline, the separation of days was equivalent to a separation of inclines. Al-
though the model performed better when the parameters were optimized for each incline
separately, little correlation was found between the model parameters, a1 to a5, and the
incline. This is shown in Figure 3.28. There was a slight negative correlation between
incline and a1 and a2, indicating that these decreased as the incline increased. There was,
however a strong positive correlation between the MSE and the incline, indicating higher
errors for the higher inclines. This was confirmed by visual inspections of the simulations
with the raw data, which often showed that the model could not capture the trends in the
data for the incline 5.0% day.

4.2 Models
Several models were attempted and described in Chapter 3, the preliminary results from
these experimentations were presented in that chapter. There were significant differences
in their performances. Some of the models, such as those based on equations from Maz-
zoleni and Zakhyntinaki, could never get an adequate representation of the data. As de-
scribed, a choice was made to explore one of them further. This model was presented
in Equation 3.15. The choice of this particular model was based on the low number of
parameters and the good fit to the dataset as was shown in 3.19 and that the model was
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global identifiability as verified by DAISY. Further experimentation was done with the in-
put polynomial, and it was found that using the input polynomial as it was presented in
Mazzoleni et al. (2016) gave the best results, as was shown in Figure 3.23. The final model
is given in Equation 3.25. Based on the theoretical relationships between HR and EE, the
model was then attempted on the corresponding EE data, and it proved to provide a good
fit here too. Figure 4.1 shows optimal simulations with the model that was decided on for
both HR and EE together. The model follows the general trajectory of HR and EE, but
there were variances in how well the model performed for different participants.

Figure 4.1: Example of optimal simulation of HR and EE together based on the model determined
to be the best, given in Equation 3.25.

Despite the generally satisfying fit to the data, no significant correlations were found
between the obtained parameters or their corresponding eigenvalues and the demographic
variables. This was shown with scatterplots in Figures 3.27, 3.29, 3.32 and 3.33 and evalu-
ated further through calculations of their correlation coefficients as shown in Figures 3.28,
3.30, 3.35. In some of the scatterplots, there were some signs of groupings. These were
from the natural groups in the demographic parameters (i.e. males generally being taller
than women). The strongest correlation was found between a5 and age in the HR. There
was a weak positive correlation between the eigenvalue of the HR and the eigenvalue of
the EE, however, the correlation between the eigenvalue and the ID was stronger. Since
this is not significant, the correlation between the eigenvalues may also be regarded as not
significant. Except for this, the only strong correlations were those between the parame-
ters within the same model, showing that they depended on each other. Examples of this
are shown in Figure 3.28 and 3.30. Figures 3.34 and 3.35 show that there was a weak
correlation between the eigenvalue of the HR and that of the EE, but this was not as strong
as expected.

Figure 4.2 shows a scatterplot of the MSE from the HR and EE optimizations. Fig-
ure 4.2 was cropped to get a clear view, as some outliers distorted the interpretability. The
uncropped plot can be found in the Appendix in Figure 6.2. There were no apparent group-
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ings here, but the male AB participants generally had a higher MSE on the EE simulation
than the rest.

Figure 4.2: The MSE of EE and HR plotted against each other. Triangles and circles represent high
and moderate IPAQ scores, respectively.

4.3 Prediction Possibilities

4.3.1 Averaging on Gender

Testing was done to see whether the model with its optimized parameters was suited for
predicting parameters on unseen cases. As described in Chapter 3, the parameters were
averaged based on gender. Figure 4.3 shows the resulting simulations for one participant.
The figure shows that the predicted parameters were pretty close to the optimal. Although
the differences seem small, the steady-state errors for the HR were, on average, 5 bpm
wrong. As for the EE, if the first day was disregarded, the error was about 0.5 Kcal/min.
These numbers may not seem significantly large, but seen in the aspect of estimating over
an entire day, these errors accumulate to a significant amount. The exception was for the
EE simulation on the first day. There was a considerable overestimation on this day. This
might result from some of the EE optimization going unstable due to the optimization
going outside of the stability region as it was defined in Equation 2.13 and that these in-
fluenced the average.

Figures 4.4b and 4.4a show the distribution of the MSE when using the averaged pa-
rameters compared to the optimal. The result of the averaging on the HR was similar to
what was achieved with the optimal. The MSE for the EE, on the other hand, was much
worse. This was likely due to the first day making large overestimates for the first day for
all participants as was also seen in Figure 4.3.
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Figure 4.3: Plot showing the difference in the resulting simulation of HR and EE when using gender
averaged parameters and optimized parameters.

(a) HR (b) EE

Figure 4.4: Violin plots of the MSE of simulations with optimal and gender averaged parameters.
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4.3.2 Linear Regression
A linear regression model was established to predict the parameters on the third day based
on results from the first two days. The resulting model could make predictions within
an acceptable range of error. However, similarly, as for the gender averaged simulations,
the errors should be seen in the light of a longer time horizon. Figure 4.5 displays two
examples of performances with the linear regression model. The regression’s estimated
values were almost equal to the optimal for the participant in Figure 4.5a, whereas the
estimates were very poor for the case in Figure 4.5b. The resulting simulation predicted
the HR to increase over 200 bpm above the resting HR, which is virtually impossible from
a biological perspective. In other words, this particular case was flawed, but it was the
only inadequate case out of all the tests.

(a) Example with high fit (b) Example with low fit

Figure 4.5: Examples of the difference in the resulting HR simulations when using linear regression
to predict the parameters for day 3 (5.0% incline) and the optimal simulation.

The linear regression was fit to the EE data as well, the unstable cases were eliminated
from the dataset. Figure 4.6a again shows that the model could make good predictions,
but there were also poor cases, as shown in Figure 4.6b. The worst case shows an offset of
about 5 Kcal/min, a large amount over time but not biologically unviable.

The learned coefficients for the linear regression on the HR are shown in the plots in
Figure 4.7. The demographic variables had little to no impact on the output estimation.
The only case where it played a part was in the prediction of a1 and a5, but the coeffi-
cient here barely contributed compared to some of the others. This is reasonable as little
correlation was found between these, as stated earlier. The parameter that stood out was
a2, which had large coefficients both on the 0.5% and 2.5% incline day. An interesting
aspect is that it contributes to the prediction of all parameters, more than these parameters
do themselves, but also that its effect is in different directions for each day. The learned
coefficients for the linear regression on the EE are shown in the plots in Figure 4.8. As
for the HR case, parameter a2 was also here the most important for the prediction of all
parameters. Notice the vastly different dimensions on the y-axis in Figure 4.8.
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(a) Example with high fit (b) Example with low fit

Figure 4.6: Examples of the difference in the resulting EE simulations when using linear regression
to predict the parameters for day 3 (5.0% incline) and the optimal simulation.

Figure 4.9 shows the MSE of the simulation with the optimized parameters against
the parameters optimized with linear regression. The MSE on the HR was similar for the
regression as for the optimized, for the EE however the values were quite a bit larger. This
shows that although it may not be possible to find a model with one set of parameters that
represents all intensities equally well, the parameters could be predicted for new unseen
parameters. There were some outliers (two for the EE and one for the HR) here that were
removed from the dataset in order to make the plot readable. These are included in Figure
6.3 attached in the Appendix. The specific participants that received poor fit had some
discrepancies from the experiment protocol on the first days and therefore it is viable that
the third day does not let itself predict as easily.
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(a) a1

(b) a2

(c) a4

(d) a5

Figure 4.7: Learned HR linear regression coefficients for each feature per output parameter.
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(a) a1

(b) a2

(c) a4

(d) a5

Figure 4.8: Learned EE linear regression coefficients for each feature per output parameter. Notice
the differences in the scales on the y-axes.
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(a) HR (b) EE

Figure 4.9: MSE of simulations with optimal and parameters predicted for day 3 with linear regres-
sion.
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5
Discussion

5.1 Models and Correlations

In the project thesis, an attempt was made to create simple DE-models to describe the
dynamics of the HR. These attempts were somewhat successful, as was concluded in the
project. The aim of this thesis was to test if other pre-existing models could outperform
these with regard to fit to the data. In Chapter 3 and 4 it was shown that the performances
with these models were slightly better, but the achieved performances were far from the
performance the papers reported themselves, this section will discuss some of the possible
reasons for this.

The general trend among the existing models was that they performed better for the
first two experiment days than the last. Generally, they performed better on lower inclines
than higher ones. This might be because the highest incline was incredibly muscularly
fatiguing, especially for weaker individuals. As was described in Chapter 2, the response
of both HR and EE is dependent on the type of activity and the muscular demand of that
activity. This might be a significant aspect in explaining why the models were unable to
fit the data as well as they fit the data in the papers. None of the models were based on
wheeling, the experiments performed in the research consisted of either running, walking,
or ergometer cycling. These activities have very different muscle engagement compared
to wheelchair propulsion, and thereby it is natural that the models do not let themselves
translate well.

Although all stages were intended to be submaximal, it was apparent that the most
intense stage, and for some participants: several of the stages, were not submaximal. This
was either due to muscular- or respiratory/circulatory- limitations. This might then cause
new dimensions and aspects to the dynamics that the models could not capture. All of the
papers that presented these models based their models on experimental setups either of
constant training intensity or a much smaller range of intensities compared to ours. Only
the model developed in Zakynthinaki (2015) claimed to be representative of the dynamics

69



5 Discussion 5.2 Predictability

at anaerobic intensities, which some of the intensities in the setup arguably were. Hence
it is not unreasonable that the models could not capture the dynamics at these intensities.
In the literature reviewed in Chapter 2, most papers show worse performance for higher
intensities and Cheng et al. (2008) suggested that higher orders were needed for higher
intensities. It would be desirable to find a model with abilities to estimate all intensity
levels equally well, but the lower intensity levels are of higher importance as these make
up the majority of people’s daily life. Although the results from these models were not as
satisfactory as desired, they may still be valid within the lower intensities.

When evaluating the performance of the models compared to their performance in their
original papers, it is essential to remember the size and demographics of the different stud-
ies. The maximum number of participants in any of the other papers was six. Moreover, all
participants were healthy males in the age range 15-30. The expansion from experiments
with a homogenous group of under ten people to an incredibly diverse group of 40 is dras-
tic. Naturally, the performances reported in the literature could not be expected with such
a drastic increase in the number of participants and expansion of inclusion criteria. It is
also important to remember that when dealing with a large dataset, especially in biological
data, there will always be cases where the results are not satisfactory. Although cases with
poor fit levels have been found for the final model, this would likely happen for any model.
No matter how good the fit is, an equally good fit for all cases would be unrealistic, and
therefore a few outliers cannot be enough to disregard a model in its entirety. It is hard to
conclude whether the inadequate results from the model are caused by insufficient data or
unsuitable models.

No significant correlations were found between the parameters, eigenvalues, or demo-
graphic variables. Furthermore, no correlations were found between the parameters of the
HR and EE. This might mean that the kinetics cannot be described by the demographic
parameters, but it might also mean that the parameters achieved were not representative.
The dynamics are slower in less fit people, therefore it was expected to see correlations
with the demographic parameters to support this. It was also expected that there would be
an apparent difference in the parameters for the AB and WCU groups espectively. How-
ever, this was not seen. A reason for this might be that the kinetics of the HR in wheelchair
propulsion are actually more related to technique than to fit levels. Therefore, WCU who
are less fit than AB, may experience less fatigue than the AB due to better technique. This
might also be the reason why there were no significant correlations seen overall: that the
technique is so varied that their bodies respond differently irrespective of fit levels. Further
work on the project should look into the possibility for correlations between technique and
the parameters of the kinetics.

5.2 Predictability
The Figures 4.9 and 4.4 show that as compared to the optimized models, the MSE in-
creased for both the linear regression and the gender averaging. A worse fit for testing
compared to training is expected. However, it was unexpected that the fit of the EE de-
creased much more than that on the HR. As the EE varies within a much smaller range,
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both inter- and intraindividual it would be expected that this would let itself generalize
and predict more easily. The difference was especially apparent for the gender averaged
simulations. The reason for this might be the overestimation on the first day. The reason
for this overestimation was still unclear when this thesis was written, it might be a result
of instability in the numerical integrator, but this should be investigated further. It should
also be noted that the simulations might have achieved a similar fit if the average had been
taken over the entire dataset without separating by gender.

The heterogeneity of the WCU group has been reiterated before and has not been ac-
counted for underway in the processing of the data. The heterogeneity of the group may
make it harder to generalize findings and therefore may be a reason for poor results when
averaging over the genders. However, the scatterplot in Figure 4.2 does not show any dif-
ference in the fit between the AB and WCU so it is hard to argue that this is the reason
behind poor generalizations. When it comes to linear regression, the limited number of
WCU in the study made it impossible to include the disability as an feature. With a larger
dataset this could be tested.

Figures 4.5 and 4.6 show that prediction of the parameters at unseen intensities is vi-
able. However, the chosen model, linear regression works best with orthogonal features.
From the correlation plots in Figures 3.31 and 3.30 it is clear that this was not the case, as
there were significant correlations between the parameters that were used as features. a2
which was found to have the highest coefficient in the linear regression was also the param-
eter with the highest correlation to the other parameters, thus its calculated coefficient may
account for some of the contributions of the other parameters and thereby ends up unnat-
urally large. More complex machine learning methods for the predictions should be tested.

5.3 Non-convexity
The nonlinearity of the models made their identifiability complicated to calculate. There-
fore the DAISY-software, introduced in Chapter 2, was used for this purpose. Exponentials
and trigonometric expressions had to be approximated through expansions for DAISY. The
models tested by DAISY were then approximations of the actual models. As stated in
Chapter 2 the identifiability of the linearized or approximated models may not be extend-
able to the nonlinear model which should be investigated in itself.

DAISY found that the only non-globally identifiable model was the one given in Equa-
tion 3.13. However, some results indicated that the models that were labeled as globally
identifiable by DAISY may not be. The most important finding to support this was the fact
that different initializations gave different optimized parameters in some cases and that the
optimization sometimes ended up at the initialized values. Both of these are indicators of
non-identifiability or local identifiability. This issue was briefly discussed with the devel-
opers behind DAISY who agreed that there might be an underlying issue in their software
which ended up giving the wrong results. This should be investigated through other meth-
ods.
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On the other hand, it might be too strict to require global identifiability from the mod-
els. The optimized parameters were often within the same range as seen in the scatterplots
presented in Chapter 3. If the model has local identifiability it might be enough for further
work to use the model with the knowledge of which ranges the global optimum usually lie
within.

5.4 Discretization and Simulation
Euler’s method, as described in Chapter 2, was used for the discretization and simulation
of the models. This is regarded as the simplest numerical integrator and comes with some
disadvantages and limitations. One is that it has a small stability region, this region is given
in Equation 2.13. The step length was chosen as h = 1 and in the Scipy optimize module
it is not possible to put constraints other than individually on the optimizable parameters.
Therefore, it was not possible to constrain the eigenvalue within the stability region. This
is likely the reason why some of the simulations of the EE ended up becoming unstable.
Which further impacted the results when averaging over the genders. The choice of a more
advanced numerical integrator could allow for better simulations and larger regions for the
parameters.

5.5 Optimization Algorithm
The problem with non-identifiability might be solved to some extent by a better choice of
optimization. In many of the tested models, the parameters ended up with the initialized
parameters instead of an optimized set. This might be due to complexity and the fact that
there were too few iterations. Another reason might be the non-convexity, as was discussed
earlier, there are probably many local minima, and the chosen optimization method, BFGS,
does not handle non-convex functions as described in Chapter 2. An algorithm that can
handle non-convexity should be attempted. A third case is the noise, some cost functions
are better at dealing with noisy signals, such as Huber-loss, this should be considered to
improve the optimization.

5.6 Limitations

5.6.1 Extension to Daily Life

From theory and from previous findings in the project it is known that there is a rela-
tionship between HR and EE during activity, which is also what has been looked at here.
However, the relationship between the two is not prevalent in rest situations. AEE only
makes up about 15-30% of the total EE and therefore it is important to remember that the
results of this thesis do not necessarily extend to estimations of the total EE. Moreover,
the model is intended to work over longer time intervals than what they have been tested
on here. Resultingly, a small error will accumulate into significant errors over time. The
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models and their precision and fit should be evaluated with this in mind and the impor-
tance of small errors should be considered by professionals with more experience with the
implications.

It is important to note the limitation of the applicability as a result of the experimen-
tal setup. The part of the data that has been considered in this thesis is from the stages
where the exercise intensity is constant. The physiological responses from constant inten-
sity exercise are less complicated than non-constant intensities as this brings about further
nonlinearities in the HR and EE responses as well as couplings between other physiologi-
cal concepts (Zakynthinaki and Stirling, 2007). Although the results from this thesis may
not generalize to more complex exercise cases and free-living situations, they are an im-
portant step on the way there.

5.6.2 Size of Dataset
Although significantly larger than most of the existing literature on the topic of HR and
EE modeling, the size of the data collection is quite small. Especially with regard to
the diversity of the WCU group. The results cannot be regarded as representative of this
demographic group as a whole as the group size of 20 cannot capture the full picture of
the variances within this group. The validity of the results must be viewed in light of this
and the models should be validated with data from further data collections.

5.6.3 Simplifications and Data Preprocessing
The vast amounts of preprocessing and modification of data that was needed for the dataset
to be useable must be seen as a significant limitation to the validity and reproducibility of
the results. The issues with HR measurements are that the sensor must measure through
layers of skin and tissue and often end up noisy with missing data frames. Imputing and
smoothing of the data was used and might have affected the final results. Some sacri-
fices had to be made with regard to physiological interpretability and validity in order for
the data to be usable. This includes the removal of the rest periods and subtraction of
the mode. On the other hand, some opportunities for modeling such as neural networks
and Hammerstein-Wiener models were not explored in order to keep the physiological in-
terpretation somewhat intact. This however can and should be investigated further if the
results from the DE-models are not satisfying for further development.

5.7 Further Work
Due to the large uncertainties of what results the investigation in this thesis might provide,
iterative testing was done to see what could give the best possible models. Therefore, dif-
ferent methods were tried out in the initial stages, of which some choices were kept, and
some were disregarded. This was to a large extent done on the basis of results from the
initial stages and the project thesis together. Some of these aspects and techniques, such
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as the smoothing, should perhaps be reintroduced with the new models, but there was not
enough time to test this and it is left for future work.

On a more overall scale, the project’s future work may not prioritize the dynamics
of HR and EE due to unsatisfactory results. However, if the decision to proceed in this
direction is made, below is a list of some specific tasks to consider.

• Further investigations of the identifiability and its necessity

• Experimentation with optimization of the coefficients on the input

• More robust machine learning methods for the prediction that work better with code-
pendent factors

• Testing of the model on the incremental stages

• Testing other optimization algorithms

• Machine learning methods for prediction of EE parameters based on HR parameters

• Investigation of the underlying reason for overestimation on the first day of gender
averaged simulations

• Investigation of correlations between kinetics and technique

• Attempts at other forms of modeling, such as Hammerstein-Wiener or neural net-
works

The most important aspects named in the list are resolving the issues with the identifi-
ability and attempts at predicting the EE parameters based on the HR.
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Conclusion

The thesis aimed to investigate the fit of different models of HR and EE to data from
wheelchair propulsion at different combinations of known speeds and inclines. The thesis
also investigated whether there were correlations within and between the models. Further,
the thesis aimed to see whether these models could predict unseen data from an already
investigated individual or entirely new individuals based on correlations or groupings in
the demographic information.

Different models, some found in literature and two from the project thesis, were sim-
ulated, and their parameters were optimized based on HR data from the DigiW-project.
Several models showed promising results. The one given in Equation 3.25 was chosen
based on fit to the data, identifiability, and simplicity of the model. The model was then
simulated, and its parameters were optimized for the EE data stemming from the same
dataset. The optimization was done such that one set of parameters was estimated per day,
as this provided better results than what was achieved with a common set of parameters.
This indicated that it may not be possible to find one model with a common set of param-
eters that may work for all intensity levels.

The parameters obtained from the optimizations and the corresponding eigenvalues
were investigated for correlations and groupings with the demographic data. The only
significant correlation found was between parameter a2 and age in the HR model. Other
than that, nothing significant was found. Furthermore, the sets of parameters obtained for
the HR and those for EE were tested for correlations, but no correlations were found here
either. This indicated that knowledge of the parameters in the kinetics of the HR does
not extend to making predictions of the parameters in the kinetics of the EE for the same
individual. Simulations based on the average parameters per gender were performed to
see how well the model could fit unseen data of a participant only based on gender. This
result was slightly worse than the optimal, but promising regarding future work. Linear
regression was set to predict the parameters of an unseen intensity based on knowledge of
the parameters at other intensities. This provided promising results for predicting param-

75



6 Conclusion

eters at unseen intensities and should be investigated further.

One common model was found to provide an adequate fit to both the HR and EE data
when optimizing the parameters for each day individually. However, the fit was not as suit-
able as desired, and there might still exist models that can fit the data better that have not
yet been attempted. Based on the results presented in Chapter 3 and 4, it was not possible
to find significant correlations in the kinetics of HR and EE. Whether this lack of results is
an issue with the model or the data remains unknown. Regardless, some promising results
were found regarding the prediction of unseen data.

The work done in this thesis may help to determine the future directions of the DigiW-
project. The models found were adequate, but since correlations of significance were not
found, the models should either be looked at with different and more advanced methods,
or more models should be investigated. The expectation of finding correlations in the ki-
netics may be disregarded based on the results, and the focus could be moved out to the
already established correlations in the steady state.

76



Bibliography

Bellu, G., Saccomani, M.P., Audoly, S., D’Angiò, L., 2007. Daisy: A new software tool to
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Appendix

A Non-cropped Plots

Figure 6.1: Non-cropped version of the eigenvalues with outliers
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Figure 6.2: Non-cropped version of the scatterplot of HR- against EE MSE with outliers

(a) HR (b) EE

Figure 6.3: Non-cropped MSE of simulations with optimal and parameters predicted for day 3 with
linear regression
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