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Abstract

Distributed Optical Fibre Sensors (DOFS) are an emerging technology for in-situ struc-
tural and environmental monitoring. Optical Fibre Sensing provides high-resolution
strain and temperature measurements over long distances and with minimal intrusion
to the surroundings. Temporal Convolutional Networks (TCN) are a novel type of Arti-
ficial Neural Network architecture that has been proven to outperform LSTM and other
earlier algorithms in tasks involving sequential data types. Recent work has demon-
strated that TCN can be successfully utilised for the classification of acoustic frequencies
using DOFS strain measurements on both free Optical Fibre (OF) and on OF attached
to solid structures. This thesis explores the capabilities of DOFS and TCN further,
applying them for sound source localisation in a real subsea environment.

Current investigation develops a set of categorical and regression TCN models for clas-
sification and continuous value predictions of the distance and direction of an acoustic
source relative to the location of the DOFS. The TCN models were trained using subsea
DOFS strain measurements collected in a local harbour field experiment. For this data
collection in real-life conditions, a test setup was created allowing for the controlled po-
sitioning of a submerged buzzer device serving as the acoustic source. The buzzer was
placed at horizontal distances between 1 and 3 m in a 120° sector horizontally relative
to two vertically suspended DOFS, with measurements taken using Optical Backscatter
Reflectometry (OBR) while the buzzer was active. Investigations into the TCN model
stability and the effect of sample size and pre-filtering of the strain measurements on
model performance were also performed.

The results show that TCN classification models are able to classify the position of the
acoustic source correctly. For TCN regression models, the predictions have too large
a variance to be practically usable. Both model types are stable for varying dataset
sequences and initial parameters, with no significant performance differences for models
predicting one or both position parameters. It is further shown that any pre-filtering
beyond a slight reduction in strain value peaks leads to reduced performance, indicating
that pre-filtering leads to a loss of vital information.

As this is the first known use of the TCN approach for DOFS data analysation outside a
controlled lab environment, issues regarding the use of reference measurements needed
for strain extraction were revealed. Significantly revised or completely new practices
for recording reference measurements are likely necessary if similar subsea monitoring
approaches are to be employed going forward.





Sammendrag

Distribuerte Optiske Fibersensorer (DOFS) tilbyr høyoppløselige tøynings- og temperat-
urmålinger med lang rekkevidde og som har en minimal innvirkning på måleobjektene,
og derfor i økende grad benyttes for måling av både konstruksjoner og omgivelser. Tem-
porale Konvolusjonsnettverk (TCN) er en relativt nyutviklet struktur for kunstige nev-
rale nettverk som har vist seg å overgå LSTM og andre kjente algoritmer i oppgaver
som tar for seg analysering av sekvensiell data. Det er tidligere vist at TCN kan brukes
til klassifisering av akustiske frekvenser ved hjelp av tøyningsmålinger fra både fritthen-
gende DOFS og DOFS integrert i objekter. Denne oppgaven utforsker potensialet til
DOFS og TCN videre ved å anvende dem for lokalisering av lydkilder i et realistisk
undervannsmiljø.

Det ble utviklet et sett med TCN-baserte kategoriske og regresjonsmodeller for hhv.
klassifisering og prediksjon av kontinuerlige verdier for posisjonen til en akustisk kilde
i form av avstand og retning. TCN-modellene ble trent ved hjelp av tøyningsmålinger
samlet inn av DOFS under vann i et eksperiment i den lokale småbåthavna. For denne
in-situ datainnsamlingen ble det laget et testoppsett som tillot kontrollert posisjonering
av en nedsenket summer som fungerte som den akustiske kilden. Summeren ble plassert
på avstander mellom 1 og 3 m i en 120° sektor horisontalt relativt til to vertikale DOFS,
med målinger tatt av DOFSene ved hjelp av Optisk Tilbakereflektometri (OBR) mens
summeren var aktiv. Stabilitetsverifisering av TCN-modellene ble også utført, samt
undersøkelser av effekten et varierende antall datapunkter og forfiltrering av målingene
brukt til trening hadde på modellenes ytelse.

Resultatene viser at TCN-baserte klassifiseringsmodeller klarer å klassifisere den ak-
ustiske kildens posisjonen til en tilfredsstillende grad, mens predikasjonene til de TCN-
baserte regresjonsmodellene alle har for stor spredning i verdier til å være praktisk
anvendbare. Begge modelltypene er stabile for et varierende antall datapunkter brukt
i trening og for variasjoner i de initielle modellparameterene, med kun små ytelsesfor-
skjeller mellom modeller som forutsier en av eller begge posisjonsparametrene. Det vises
videre at enhver forfiltrering utover demping av de aller største tøyningsverdiene fører
til redusert ytelse, noe som indikerer at forfiltrering fører til tap av vital informasjon.

Dette er den første kjente bruken av TCN-baserte modeller for predikasjon av lydkilde-
posisjon utenfor et kontrollert labmiljø. Det ble avdekket problemer tilknyttet bruken
av referansemålingene nødvendig for beregning av tøyningsverdier. Større endringer
eller nye metoder er nødvendig dersom lignende arbeid skal gjennomføres i fremtiden.
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Chapter 1.

Introduction to DOFS, ANNs
and SELD

In the following chapter, the concepts behind Artificial Neural Networks (ANNs) and
Sound Event Localisation and Detection (SELD) are introduced and put in context
with Distributed Optical Fibre Sensing (DOFS). Parts of the ANN and DOFS sections
are reworked from the project thesis [1]. The use of DOFS is a promising technology
for structural health monitoring and surveillance, among which is threat detection, a
topic of increasing importance, illustrated by recent events such as the Nord Stream
I sabotage [2]. Several works have shown that DOFS technologies can be utilised for
event detection, classification, and localisation along linear structures. Improved struc-
tural monitoring, and surveillance of its surroundings, allow for valuable insights into
structural health, lowered false nuisance alarm rates and earlier detection of potential
threats or failures. This thesis aims to further expand on the knowledge in this field
by investigating how an Artificial Neural Network can be combined with DOFS data to
locate acoustic sources in a subsea fluid environment.

1.1. Problem Description
Current work on the use of Optical Fiber Sensors (OFS) for acoustic event localisation is
mainly focused on acoustic source localisation along linear structures. Determining the
distance and direction of acoustic event arrival from the source is necessary to localise
an acoustic source in 3D space. Earlier work has been done on estimating the distance
between the optical fibre sensor and acoustic source, such as by Landrø et al. [3]. These
methods rely on DOFS technologies with sampling rates in hundreds of hertz, at the
cost of lower spatial resolution. The high sampling rate is not insignificant, as this
allows for the sampling of higher frequencies in line with the Nyquist-Shannon sampling
theorem, facilitating the direct use of classical analytical and numerical methods for
data analysation. For the detection of more localised sources, DOFS with higher spatial
resolutions are likely needed. Technologies such as Optical Backscatter Reflectometry
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(OBR) offer this but at the cost of significantly lower sampling rates. For a typical OBR
measurement, the sampling rate is 0.1 Hz, i.e. ca. one sample for every 10 seconds. The
low sampling rate excludes the possibility of localising acoustic sources with frequencies
above this threshold with classical analytical and numerical methods. Therefore, it is
suspected that deeper pattern extraction and recognition methods are needed to analyse
the high-resolution but low sampling rate OBR measurements.

This master thesis investigates whether it is possible to locate acoustic sources with
frequencies in the hundreds of hertz using DOFS measurements performed with OBR,
which has a sampling rate of 0.1 Hz, when deep learning models are used for data
processing and predictions on experimental data collected in real-life conditions.

1.2. Background
1.2.1. Distributed Optical Fibre Sensors (DOFS)
In the following sections, Distributed Optical Fibre Sensors (DOFS) are explained. The
structure and functioning of optical fibres is briefly described, followed by an introduc-
tion to the use of optical fibres for structural monitoring applications and a description
of relevant measurement technologies.

Distributed Optical Fibre Sensors are a subset of Optical Fibre Sensors (OFS) used
for distributed strain and temperature measurements. Distributed strain measurements
mean that a DOFS can function as a quasi-continuous strain gauge with up to several
kilometres of measuring range, depending on the technology used. The small size of
optical fibres, combined with their ability to function both as sensors and signal car-
riers, means that DOFS has become a highly relevant technology for measuring large
structures with minimal intrusion. These properties have led to extensive utilisation
of DOFS for structural health monitoring and surveillance, e.g. for threat detection of
pipelines [4] and impact detection of composite pressure vessels [5]. Additionally, several
recent investigations have demonstrated the use of existing subsea optical fibre networks
for environmental sensing, such as earthquake monitoring [6] and the work on whale,
ship and storm tracking by Landrø et al. [3].

Optical Fibres (OF)

An Optical Fiber (OF) typically consists of three parts, as illustrated in Figure 1.1. The
central core transmits the optical signal. Surrounding the core is a primary layer called
cladding, which has a different refractive index than the core. The difference in refractive
index enables to keep of the optical signal inside the core due to the phenomena described
by Snell’s law (Equation 1.1). Here n1 and n2 are the refractive indices of the core and
cladding respectively, while θ1 and θ2 are the resulting input and output angles of a
light beam travelling through the material transition interface. By altering the relative
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Figure 1.1.: Illustration of the cross-section of a typical single-mode optical fibre

refractive index of the core and the cladding, the input and output angles of a beam
hitting the material interface must also change. For a certain ratio between the refractive
indices, the beam is reflected inside the core instead of leaving into the cladding at certain
incident angles. To protect the surface of the cladding from mechanical damage, a layer
called coating surrounds the cladding. This mechanical protection enables it to handle
otherwise very brittle glass fibres and extends the strain range it can be subjected to
while monitoring, preventing fracturing at low strains.

n1sinθ1 = n2sinθ2 (1.1)

Optical fibre cores and claddings are typically made of silica glass, but studies in recent
years have looked into the use of polymer-based OFs. According to Peters [7], polymer-
based OF increases strains to failure compared to the traditional silica-based OF, as well
as allowing for easier tailoring of the behaviour of polymer-based OF when subjected
to varying external factors. Unlike silica glass, polymers can however not be considered
inert in all environments, making the silica-based OF superior, and sometimes the only
option for harsh measurement conditions. It is also pointed out that a silica glass core is
generally more homogenous than its polymer version, reducing the need for calibration
and tailoring of equipment based on the specific fibre being used. Higher fragility of
silica glass OF does however means that protection against mechanical damage is needed.
Therefore, In addition to coating, an outer polymer layer called a jacket is often added
for cases where the OF is handled roughly or directly exposed to external factors.

An important classification of OF is done based on the size of the core. Those with
smaller diameter cores are typically referred to as single-mode optical fibres, as the
small cross-sectional size only allows for a single beam of light to travel through it at
any given time without interference. OFs with sufficiently increased diameter can allow
for several beams of light to travel through simultaneously and are thus referred to as
multimodal optical fibres. Multimodal optical fibres however display increased noise and
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a decreased range and are therefore generally reserved for shorter measurement ranges.
This thesis focuses on utilising single-mode optical fibres for distributed strain sensing.

Optical Fibres (OF) for Sensing Applications

Optical Fiber Sensors (OFS) can be used for measuring strain or temperature, charac-
terising external objects or events. These measurements are based on variations in how
the optical signal is altered as it passes through the sensing region. OFS are commonly
divided into two exclusive categories depending on their measurement principle [8]. Ex-
trinsic OFS uses external components inserted in series, where the external components
are the actual sensing component altering the optical signal, while the optical fibre
serves as the signal carrier. Intrinsic OFS removes the need for external components.
Instead, it measures variations in how the optical signal is altered as it passes through
the sensing region due to refraction properties in the optical fibre itself. Some intrinsic
OFS technologies use specially modified optical fibres, such as Fiber Bragg Gratings
(FBG) [9], in order to create identifiable reflections of the optical signal. FBG allows
for tailoring the alteration of the optical signal and the position of these alterations to
the specific task at hand, but limits the sensing region to the positions at which these
modifications are made. For sensing over larger regions, other technologies are utilising
inherent variations in the refractive index and light scattering in the optical fibre. These
technologies are referred to as Distributed Optical Fiber Sensors (DOFS), as the whole
length of the fibre can be used as a sensor instead of the sensing region being limited to
specific points.

The variations in refractive index and light scattering utilised by DOFS technologies
occur due to small, random defects such as variations in density, foreign particles such
as dust and changes in the material structure throughout the optical fibre. Additionally,
reflections are created in the optical fibre when larger changes in refractive index occur,
such as when a splice in the OF (i.e. a welded fusion joint in glass) is misaligned or
due to cracks in the core. The result of these effects causes alterations in the phase,
frequency and intensity of the optical signal, and are known as the optical scattering
effects.

Measurement Technologies

To perform measurements with OFS, a known optical signal is sent through the OF from
one end. For interferometer-based technologies, the optical signal is then measured at
the other end of the fibre. As an alternative, interrogator-based technologies only require
access to one end as they measure backscatter, which are the parts of the optical signal
reflected back due to the previously discussed scattering effects. Technologies such as
Optical Time-Domain Reflectometers (OTDR) measure the travel time of single optical
pulses. In contrast, Optical Frequency-Domain Reflectometers (OFDR) utilise optical
signals in the form of sweeps over several frequencies, applying Fourier transform and
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frequency-based measurement techniques on the measured backscatter to establish the
distance to different events along the fibre.

1.2.2. Deep Learning (DL) for Data Analysis
In the following sections, an introduction to Machine Learning (ML) focusing on ANNs
for sequential data analysis is given.

Machine learning algorithms have been utilised for data analysis tasks such as image
recognition for several years already. However, projects such as ChatGPT [10] or Google
Bard [11] have increased the availability of ML to the masses, increasing their popularity
and enabling their possibilities to new groups of users. These projects demonstrate
how powerful machine learning algorithms have become with the development in recent
years, with the ability to handle increasingly complex tasks and problems. This is partly
because, unlike traditional analytical and numerical methods, ML-based methods do not
require extensive detailed knowledge of all causal mechanisms involved in the modelled
phenomena to accurately produce the desired predictions. Instead, ML leverages large
datasets combined with statistical methods to discover patterns in the data for the
prediction of corresponding outputs [12]. The discovery of underlying patterns and the
adaption of the model to them is known as training of the model, or that the model is
learning. If the correct output of the data points in the set used for training is known,
the process is referred to as supervised learning. In that case, the training typically
attempts to minimise the discrepancy between the model prediction for given data
points and their known true labels. For cases where the data is not labelled, i.e. when
the true output is unknown, unsupervised learning is performed. Training of the model
then aims at minimising a defined loss function serving as a score of model performance.

This thesis uses supervised learning of Temporal Convolutional Networks (TCN) for
data analysis. TCN is a new set of Artificial Neural Network (ANN) architectures first
proposed by Lea et al. in 2017 [13]. It has been proven to outperform Long Short-
Term Memory (LSTM) and other previously used models for analysation of sequential
datasets. This performance advantage makes TCN also interesting for application in
tasks involving DOFS data. The application of TCN on DOFS data has been previously
demonstrated in the project thesis by the author of this master thesis [1]. There, it
was shown that a TCN could successfully classify acoustic disturbances on two tubular
structures for frequencies up to hundreds of Hertz, using DOFS measurements with a
sampling rate of 0.1 Hz.

Artificial Neural Networks (ANN)

Deep Learning (DL) is a subset of Machine Learning (ML) methods that cover models
created to find deeper patterns in data. Unlike traditional ML, DL models are created
so that no prior feature extraction is necessary. Instead, DL models learn to extract
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relevant features from the raw data during training, a concept known as feature training.
This is possible due to its use of complex Artificial Neural Networks (ANN), which are a
subset of ML models that, as the name suggests, are built to resemble how the neurons
in the human brain are connected and work [14].

Figure 1.2.: Example of a generic,
fully connected feed-forward ANN
structure. Adapted from [1].

An ANN consists of nodes, each computing a
weighted sum of a specified set of inputs and an
extra value known as a bias, with both the weights
and the bias specific to each node. The structure
of ANN nodes depends on the model architecture
being used, but generally, the nodes are structured
in sequential layers as described in Figure 1.2.
Each node in a given layer takes the outputs of the
previous layer as its inputs and outputs the result
of its calculation to the next layer. Which nodes
are used as inputs from a previous layer depends
on the architecture in question and are referred to
as its connections. Standard terminology further
refers to the first layer as the input layer and the
last layer as the output layer of the model. The
structure of the input layer of a model is determ-
ined by the structure of the data it should analyse.
Similarly, the number of nodes in the output layer
corresponds to the number of output parameters the model should return. ANN models
used for DL have several layers between these input and output layers, referred to as hid-
den layers, as the values here are not immediately accessible outside the model. These
hidden layers enable the model to learn ’deeper’ features from the raw training data, as
the combination of several hidden layers and their connections to previous layers allows
the model to recognise complex patterns in the given input. Traditional ANNs follow
this pattern of feeding the outputs of the prior layer as inputs in the next sequentially
and are known as feed-forward neural networks.

Common Model Architectures

As previously discussed, the structuring of and connections between the nodes of an
ANN model, known as the model architecture, decides its behaviour and capabilities.
While numerous architectures exist, there are two main categories that define how a
model handles feature extraction. Convolutional Neural Networks (CNNs) cover archi-
tectures commonly used for image recognition and similar types of pattern recognition
[14, pp. 296–329]. To achieve this, CNNs have at least one hidden layer that performs
convolutions on its inputs in place of the weighted summation normally used. The size
of these convolutions is typically defined by a kernel size, with the resulting convolution
termed a kernel or a filter. Each node can have a stack of these kernels, all with different
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values. Kernels are then applied to all input values, resulting in a scaling of the number
of inputs by the number of kernels in each node, with each kernel allowing for the node
to extract a different feature from its input data. Before passing values to the next
layer, a weighted sum of these scaled inputs is computed and normalised as for other
ANN nodes.

While CNNs were developed to recognise visual patterns, Recurrent Neural Networks
(RNNs) were developed to recognise patterns in sequential data of varying lengths [14,
pp. 333–336]. In its simplest form, this is done by adding feedback loops between layers
of a traditional feed-forward neural network, allowing the result of previous calculations
to influence the next. The feedback loop is often added as a hidden state vector, serving
as the ’memory’ of the model, keeping it between steps in the input sequence. The
Recurrent part of the RNN name further points to how it handles inputs of varying
lengths. This is done by duplicating the network structure with all its weight and biases
to match the input sequence length, unravelling the feedback loops into a structure that
instead feeds the output from one step into the next.

Current Research in Optical Fibre Sensing (OFS) and Deep Learning (DL)

There is a large use of DOFS for infrastructure monitoring, with several recent works
utilising ML and DL-based approaches for the processing of DOFS data [4], [15]–[19].
These generally aim at developing systems for threat detection where disturbances,
i.e. events along the optical fibre or structure, are detected, classified and located by
analysation of DOFS data using DL-based approaches to give early warnings of potential
threats and other problems. For pipelines, Peng et al. [20] have demonstrated how
DOFS sensing systems can be extended to include the detection of pipe degradations
such as corrosion. Huynh et al. [21] have developed a system for leak detection in
addition to external intrusion events. Zhongqi et al. [22] developed a framework based
on CNN and LSTM for intrusion detection on a high-speed railway using an optical
fibre cable buried between two tracks. This method of utilising an external optical fibre
cable as the DOFS for surveillance has also been demonstrated in several other works
[23]–[25]. Similar to the railway system by Zhongqu et al., Khan et al. [26] proposed a
system for tracking vehicle movements on roads, using a Generative Adversarial Network
(GAN) for denoising the DOFS measurement data.

The use of optical fibres and DL-based processing for structural monitoring on a smaller
scale has also been demonstrated, such as a CNN-based machine learning framework
by Li et al. [27] for monitoring lithium-ion batteries using optical fibres with Fiber
Bragg Gratings (FBG). Similar work has been done by Dhanalakshmi et al. [28] for
temperature monitoring of solar photovoltaic panels using FBG for measurements and
random forest regressor modelling for analysation. Zhuang et al. [29] demonstrated
the use of embedded FBG and various ML models for small-scale impact monitoring in
helmets to give early detection of concussive events.
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In addition to the investigations demonstrating practical applications of DL-based mod-
elling combined with DOFS measurements, several works address the requirement of
processing large training datasets that affect most DL-based approaches. Shiloh et al.
[30] propose using a secondary GAN to generate additional training data from a smaller
labelled dataset. Shi et al. [31] utilised Transfer Learning to reduce the dataset need.
Here, the ANN model is pre-trained with a more general, but still similar, dataset. The
pre-trained model can then be further specialised to the specific use case afterwards
with a specialised dataset, reducing the size requirement of the dataset specialised to
the particular application. They demonstrated that by freezing the parameters in the
first layers after pre-training using the bigger general dataset, the model could quickly
be specialised by training on the smaller specialised dataset. Further performance im-
provements have also been shown in the work by Shi et al. [32], implementing a Support
Vector Machine (SVM), an ML classification method, as the final layer in a CNN model
to improve the overall model performance. Bublin [33] took this a step further, com-
bining DL models with classical machine learning and knowledge-based approaches to
improve the overall model performance. Finally, some works have demonstrated the use
of DL for pre-processing before applying traditional knowledge-based methods, such as
the investigation by Liehr et al. [34] using CNNs for real-time denoising of long-distance
strain measurements using DOFS.

1.2.3. Sound Event Localisation and Detection (SELD)
Sound Event Localisation and Detection (SELD) covers methods and systems that aim
to establish the location and active time of one or more acoustic sources, referred to
as monophonic and polyphonic systems respectively [35]. This is done by dividing the
process into two parts. Sound Event Detection (SED) aims at identifying the temporal
location of acoustic events, e.g. by determining start and stop times. Localisation is
typically done by establishing the Direction of Arrival (DOA) to identify the spatial
location of the acoustic source of interest. Monitoring systems can additionally include
classifying the acoustic event as a part of their operation. Which of these are implemen-
ted in the resulting system depends on the use case. For example, voice assistants (e.g.
Google Assistant or Alexia) require SED to detect prompts for which to generate re-
sponses, while surveillance systems can benefit from both SED, DOA and classification
for identifying potential threats.

The methods used by SELD systems to detect acoustic signals depend on the specific use
case but typically include some form of an acoustic sensor array. While SED in principle
only requires a single acoustic sensor, a larger set of sensors is needed for DOA. For
360° localisation in the horizontal plane, full azimuth arrays are needed, with additional
sensors necessary to detect elevation and distance to obtain a full three-dimensional DOA
system. The type of sensor also depends on the use case, with microphones typically used
for SELD in the air. For SELD in solid materials, Surface Acoustic Wave (SAW) sensors
can be used to detect the propagation of acoustic waves along the material surface. In
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water and other liquids, hydrophones or other piezoelectric sensors are typically needed.
Data from acoustic sensors is then analysed to perform classification, DOA or SED
estimations using machine learning or knowledge-based mathematical, statistical and
analytical methods such as the MUSIC or Approximate Maximum Likelihood (AML)
algorithms.

ML Methods

According to a review on sound source localisation methods by Desai and Mehend-
ale [35], the use of Deep Learning (DL) and Artificial Neural Networks (ANN) is an
emerging and promising approach to accomplish SELD. DL-based SELD methods do
not require detailed mathematical and statistical models about investigated phenomena
to perform DOA and SED estimations. As Desai and Mehendale further point out,
DL-based methods reduce the need for pre-processing, such as feature extraction and
denoising. But they also discuss that most DL systems developed are more sensitive to
environmental changes, such as noise images, than knowledge-based methods.

Gurirguis et al. [36] developed the SELD-TCN model architecture, claiming it to be
the first use of the Temporal Convolutional Network (TCN) ANN structure for SELD
applications, in place of CNN and RNN structures typically used in similar earlier invest-
igations. This model has further been improved on by Song et al. [37], who discovered
that decoupling the training of the SED and DOA parts of the model individually im-
proves the overall model performance. These preceding works have demonstrated that
TCN-based ANNs are a promising approach for achieving efficient SELD systems.

DOFS for Acoustic Source Localisation

In addition to DL-based methods, there are several other threat detection systems for
linear infrastructure monitoring utilising classical statistical or analytical methods for
processing of DOFS data [20]. The detection systems are, in practice, all SELD systems
with the DOFS functioning as a SAW detector for measuring acoustic waves in the form
of vibrations in the structure itself or in nearby vicinity through ground vibrations.

Recent works by Landrø and Bouffaut et al. [3], [38], along with similar work by Rivet et
al. [39], have demonstrated the use of unused optical fibres in subsea cables, also known
as dark fibres, as DOFS for tracking whales and ships. Both projects convert measured
strains to acoustic pressure waves, the frequencies of which are then analysed to establish
position and velocity using classical numerical methods. Their results demonstrate the
potential of using DOFS for subsea SELD applications.
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1.3. Scope
This project aims to establish whether Deep Learning in the form of Artificial Neural
Network models can be utilised to localise acoustic sources in a subsea environment,
specifically estimating the distance to the source and the direction of arrival in the
horizontal plane. The investigation is limited to source localisation and does not include
event detection. Further, this project investigates how data pre-filtering, sample sizes
and the number of output nodes affect the performance of these ANNs.

The data used for these investigations is recorded from a field experiment using Optical
Backscatter Reflectometry (OBR) equipment from Luna Technologies in the form of
sets of quasi-continuous strain measurements along the DOFS.

The ANN models trained are categorical and regression models, all with a structure
based on Temporal Convolutional Networks (TCN). Two hyperparameter sets were de-
veloped to assess the robustness and reliability of categorical and regression model res-
ults. TCN models were not further optimised as this was considered not to bring addi-
tional insight related to the main goals of this project, as such optimisation is specific
to each problem and highly resource-intensive.
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1.4. Structure
This thesis investigates the TCN model performance for acoustic source localisation.
The work progresses from data collection through preprocessing and model training to
the final result analysis and evaluation. For this, the thesis is structured as follows.

chapter 2 covers the materials and methods used, as well as the description of specific
implementation for each part.

Distributed optical fiber sensors (DOFS) are explained, including the pro-
cedures for measurement and strain extraction. Problems related to measure-
ment noise and filtering are discussed.

Temporal Convolutional Networks (TCN) and its specific architecture and
operation is covered. The process of hyperparameter optimisation, training,
post-processing and evaluation is explained. An overview of the infrastructure
and the process used for model development and training is also presented.

Experimental setup describes the setup used for data collection, including struc-
tural parts, the acoustic source and the two DOFS used. The location of and
procedure for data collection are also described.

chapter 3 presents the results from analysing DOFS data with final TCN models and
the studies related to sample size and filtering.

chapter 4 discusses the results in the context of the project objectives.

Finally, an overall conclusion is presented in chapter 5, along with thoughts and
suggestions on further work in chapter 6 to expand the knowledge on TCN and
DOFS for the localisation of acoustic sources.





Chapter 2.

Materials and Methods

2.1. Distributed Optical Fiber Sensors (DOFS)

2.1.1. Optical Backscatter Reflectometry (OBR) and Optical
Fibre (OF)

Optical Backscatter Reflectometry (OBR) is an interrogator-based measurement tech-
nique for DOFS, which utilises Rayleigh Backscatter for measuring pertubation in the
optical fibre [41], a phenomenon which arises when the inhomogenities in the fibre core
that scatter the optical signal back are smaller than the wavelength of the signal. Due
to Rayleigh Backscattering being an elastic scattering phenomenon, meaning that no
energy is drained from the optical signal due to scattering, the frequency of the optical
signal is not altered [42, p. 215]. OBR utilises an implementation of Optical Frequency-
Domain Reflectometry (OFDR) for its measurements, with an additional polarisation
of the optical signal for improved accuracy.

The interrogator device used for data collection is the OBR 4600, produced by Luna

Table 2.1.: Spesifications for the SMB-E1550H optical fiber used in the experiment
[40].

Parameter Value
Core diameter 6.5 µm
Cladding diameter 125 ± 2 µm
Coating diameter 155 ± 15 µm
Jacket diameter ∼ 2 mm
Central wavelength 1550 nm
Attenuation ≤ 0.7 dB/km
Operating temperature −65 to 300 °C
Short-term bend radius ≥ 10 mm
Long-term bend radius ≥ 17 mm
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Table 2.2.: Selected parameters for the Luna Inc. OBR 4600 interrogator device,
adapted from [43].

Parameter Value Explanation

Max range 2 km Maximum measurement dis-
tance

Standard range 70 m Typical measurement dis-
tance

Sampling resolution (70 m) 20 µm Precision of data points in
70m range

Dead zone 2x resolution Area behind each sampling
point where no measure-
ments can be performed

Spatial resolution ±1.0 cm Precision of location meas-
urements

Temperature resolution ±0.1°C Precision of temperature
measurements

Strain resolution ±1.0 µϵ Precision of strain measure-
ments

Avg. scan time (70 m) 9.7 s Typical time to scan a 70m
long DOFS

Technologies. Table 2.2 lists relevant parameters for the capabilities of this device, along
with characteristic values and short explanations. Specifications for the Optical Fibre
used as DOFS is given in Table 2.7. The results in the project thesis [1] found that
using a free jacketed optical fibre as the DOFS for frequency classification resulted in
the highest performing Artificial Neural Network (ANN) models, and it was therefore
decided to use jacketed OF for the experiment in this thesis.

2.1.2. Measurement Procedure
The OBR 4600 interrogator is controlled from a PC using the software OBR v3.13.0 from
Luna Technologies, which stores the recorded measurements as proprietary binary .obr-
files. Figure 2.1 shows the interface of the program used for controlling measurements,
while Table 2.3 gives an overview of the parameters for controlling the optical signal.

For each specific measurement, a reference measurement has to be performed while
the DOFS are in their non-excited state. While recording the reference, none of the



2.1. Distributed Optical Fiber Sensors (DOFS) 15

Figure 2.1.: OBR v3.13.0 interface for controlling the OBR 4600 interrogator.

Figure 2.2.: Overview of OBR measurement procedure.

events one wishes to measure the effect of should be present and influencing the DOFS.
Reference defines the unaffected state of the DOFS, and is later used to calculate strains.
Measurement traces are then recorded while the DOFS are submitted to the different
desired events, i.e. measurement states. The recording of measurement traces was
automated using a Python script. Figure 2.2 gives an overview of the complete process
for taking measurements with the OBR.

2.1.3. Strain-Extraction in Data Pre-Processing
The recorded measurement traces in the form of .obr-files are analysed using a second
software from Luna Technologies, OBR Desktop v3.13.0. An overview of the interface
used is shown in Figure 2.3. For each DOFS, the corresponding reference trace is loaded.
Measurement files are individually loaded, calculating strains for each measurement
state using the parameter values defined in Table 2.3 and exporting the output as CSV
files. Note that the sensing range and midpoint location are specific to each DOFS and
were therefore set to their respective value in Table 2.7. The strain extraction process
was automated with a Python script similar to that for the measurement procedure.
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Table 2.3.: Parameters for measurements and strain calculations using the OBR 4600
device and accompanying software.

Measurement

Parameter Value Explanation

Center Wavelength 1550.65 nm Center wavelength of the optical signal

Wavelength Range 21.20 nm Width of the wavelength range of the optical
signal

Gain ∼ 24 dB Intensity of the optical signal

Strain extraction

Gauge length 10 mm Width of each virtual strain gauge where strain
is averaged over

Sensor spacing 5 mm Spacing between the centers of virtual strain
gauges

Sensing range - Width around the sensing midpoint for which
strains are calculated

Sensing midpoint - Midpoint for strain calculation region
Note: The value of sensing range and midpoint are dependent on the specific DOFS

being used and can be found in Table 2.7.
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Figure 2.3.: OBR Desktop v3.13.0 interface for strain extraction.

Figure 2.4 gives an overview of the overall procedure used for strain extraction.

As all measurements were taken in the span of a few hours per session, with a refer-
ence measurement for each new position, temperature changes were assumed to have a
negligible effect on the strain output, and were therefore not taken into account in the
strain extraction process.

2.1.4. Methods for Analysation
Extracted quasi-continuous strains along the fibre allow for the use of DOFS as an
alternative to strain gauges, a use case demonstrated in several works, e.g. Wang et
al.[44]–[47]. Further, combining DOFS strain data with detailed positioning for each
DOFS allows to create detailed maps of the structure. As an example, Sæter et al.
[5] demonstrated how the strain measurements from DOFS embedded in a composite
pressure vessel were used to create relatively detailed maps of the impact damage in the
structure. On a much larger scale, the application of SELD methods on DOFS data was
used to track whales, ships, storms and earthquakes in [3][38].

As presented in Section 1.2.2, several Machine Learning-based (ML) approaches have



18 Chapter 2. Materials and Methods

Figure 2.4.: Overview of the OBR strain extraction procedure.

been developed for the analysation and use with DOFS data replacing knowledge-based
analytical and numerical methods. While some ML approaches, such as in the work by
Chen and Xu [25], depend on filtering and denoising similar to the classical methods, it
has been shown that ML methods typically can be utilised without the need for noise
removal in pre-processing. In the master thesis of Usenco [48], it was shown how the
ML algorithms classified several different sources of acoustic disturbances by analysing
the raw, un-filtered DOFS strain data. The reduced number of steps in pre-processing
due to the inclusion of denoising as a part of feature extraction is an advantage for ML
methods. By creating models that are able to extract information from noisy data, the
problem of information loss as discussed in Section 2.1.5 is addressed as the model in
practice ignores the parts of the data that only contains noise, rather than having to
removing them manually.

2.1.5. The Problem of Measurement Noise
Wang et al.[44] address noise-related problems of strain measurements in transition
regions, where the fibre ingresses and egresses from a solid structure. An easy solution
to noisy measurements is to manually remove outliers and significantly noisy regions.
While this has been proven as a viable solution for basic analysation of DOFS strain
measurements, there is the obvious risk of removing useful information along with the
outliers. As Wang et al. further discuss, an alternative is to develop specific filtering
to deal with the noise in DOFS measurements. This does, however, contain the risk of
removing useful information from the data when filtering.

The models developed in this thesis only take a series of strain values as input, and
does not specifically consider the spatial position of these, as they were the same for
each measured value across all measurements. Removing outliers was therefore not
considered a feasible option, as this would shift the overall signal and not just dampen
any outliers, potentially removing useful measurement data. Instead, Gaussian filters
with different sigma values were added to the data loading stage in the pipeline as an
attempt to remove potential outliers. A Gaussian filter calculates a weighted average for
a range of values to either side of the current value being calculated, with the weights
being the value at the Gaussian curve with standard deviation σ and centred on the
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current value. As a result, any outliers in the form of spikes in sequential data will be
dampened without shifting the remaining strain signal.

A frequency band filter was also implemented to investigate whether specific frequency
ranges contained vital information used by the models for predictions, similar to the
Gaussian filter. For the band filter, the spatial strain measurement was first converted
to the frequency domain using a Fast Fourier Transformation (FFT). A low-pass and a
high-pass filter was then applied to remove spatial frequencies outside the defined band
before the remaining signal was converted back to the spatial domain by using an inverse
FFT. The result is a sinus wave approximation of the original signal, but only containing
frequencies within the defined frequency band. It should be noted that the frequencies
here are spatial frequencies, where the inverse of the spatial sampling resolution rs of
the equipment, defined in Table 2.3, is defined as the sampling rate fs, fs = 1

rs
. Because

of this, the frequency values do not directly translate to temporal frequencies, but must
rather be seen as a scaled version, with values ranging from 0 to the highest detectable
spatial frequency possible when applying the FFT on the discrete spatial signal, i.e. the
strain measurement.

The effect of both the Gaussian and the band filter is illustrated in Figure 2.5, where
a randomly selected DOFS strain measurement is plotted along with the same signal
treated either with Gaussian filters with different sigma values or band filters for different
frequency bands.



20 Chapter 2. Materials and Methods

Figure 2.5.: Plot of a randomly selected strain measurement where Gaussian and band
filters with different parameters are applied.
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2.2. Temporal Convolutional Networks

Figure 2.6.: Illustration of connections between layers of nodes in a simple TCN struc-
ture with kernel size 3. The number below each hidden layer denotes the amount of
dilation for the respective layer. Adapted from [49].

Temporal Convolutional Networks (TCN) are a set of ANN architectures that com-
bine the principles from Recursive Neural Networks (RNN) and Convolutional Neural
Networks (CNN) to achieve deeper pattern recognition on sequential data. However,
rather than utilising feedback connections to recognise patterns like typical RNNs, each
quantity is input in parallel as separate neurons in the input layer. This allows for
parallel processing of each quantity rather than keeping the model waiting for previous
quantities to finish processing before it can continue with the next. As a result, TCN
has been proven to outperform other, more traditional ANNs for temporal, spatial and
other sequential types of data [50].

An illustration of a simple TCN structure can be seen in Figure 2.6. The structure of the
model is as follows. (1) Input layer with size equal to the largest entry of the dataset.
(2) Convolutions occur through several hidden layers, with each neuron containing a set
of filters and each filter being a kernel of a given size for feature extraction from previous
layers. (3) For each convolution layer, dilation is increased, meaning a given number
of nodes are skipped between each connected node in the previous layer. Typically
these dilations are a power of 2, increasing incrementally for each layer. As a result,
the number of neurons in each layer and the number of connections between layers are
constant, but with an increasing spacing between each connected node to a given node
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in the next layer. For connections that reach outside the length of the previous layer
as the dilation increases, the input value of this connection is set to zero, allowing for
inputs of varying lengths. Sequential duplicates of dilation layers, termed additional
stacks, can be added to increase the receptive field of the model further. (4) The final
dense layer serves as the output of the model.

The aforementioned receptive field of a TCN model describes how ’far’ an output node of
the TCN block in the model is able to ’see’, i.e. the number of time steps or neighbouring
input nodes that affect the value of the specific output node. In order for the model
to see the whole input data series, the receptive field must be at least equal to the size
of the largest sequence in the data set to be analysed. Equation 2.1, adapted from the
Python Library keras-tcn [51], shows how to calculate the receptive field Rfield of a TCN
block. Here, Ksize denotes the kernel size of the model, Nstack the number of dilation
stacks and di the dilation of layer i in D, the set of all dilation layers in one stack.

Rfield = 1 + 2 · (Ksize − 1) · Nstack ·
∑

i

di ∀ i ∈ D (2.1)

2.2.1. Hyperparameters
Hyperparameters are non-trainable parameters of an ANN model that are used for de-
fining its overall structure and behaviour [14]. Unlike other model parameters, such
as the weight and bias parameters for each node, hyperparameters are not defined as
trainable and are kept constant during the training process of the model. They are
instead optimised in a pre-training process, where different hyperparameter values are
tested to find the optimal parameter set for the specific application. Hyperparameter
values are determined by monitoring the performance of a test model as they are ad-
justed, selecting the one that results in the highest performance. For sets of several
different hyperparameters, grid searches are typically performed. Sets of values for each
hyperparameter to be optimised are defined, and models are then tested using different
combinations of these sets, again selecting the set that results in the highest-performing
test model.

The values of some hyperparameters are in practice given by the task, such as the
number of input and output nodes, which are determined by the size of the input data
series and the number of outputs needed, respectively. Others have a range of possible
values, where the specific choice of value typically affects model performance to some
degree. For models relying on feature extraction from the input data, such as the TCN,
hyperparameters related to generalisation can have a significant effect on performance.
The generalisation of a model refers to its ability to perform well on new data, i.e.
data that was not part of the training process. For a TCN, this is mostly related to
how deep the pattern recognition and feature extraction from the input is. Too low
generalisation means an overly detailed feature extraction, where the model interprets
occasional noise in the data as valid inputs. As a result, the model would be overfitted to
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the training data. This is indicated by lower performance in validation tasks, despite the
training performance likely being higher compared to models with higher generalisation
levels. In the opposite case, an overly generalised model means the feature extraction
is not detailed enough, resulting in a model that is underfitted, not able to distinguish
important features in the data, and thus has an overall lower performance. For TCN,
the main hyperparameters affecting the model generalisation level are:

• filters affect the number of unique features a model is able to extract;

• kernel size controls the size of local patterns the model is able to detect;

• dilations are the biggest contributor to the receptive field of the model and a
measure of how much of the input data series can affect a given data point;

• dropout rate allows for increasing the generalisation of the model by ignoring the
output of randomly selected nodes.

In the project thesis [1], three hyperparameter sets were established for a similar prob-
lem, each with the basis in the recommendations and standard values from the doc-
umentation in the Python library Keras-TCN [51]. These hyperparameter sets aimed
for (i) reduced computational cost, (ii) low generalisation, and (iii) high training effort,
respectively. Testing of models using these three sets showed relatively equal perform-
ance, with only minor differences in overall accuracy and loss values. This demonstrates
that the model architecture used is robust with respect to the selection of, and small
changes in, hyperparameters. As the architectures used in this thesis are similar to
that of the project thesis, it is assumed that the observed robustness is transferrable.
It was therefore decided to only develop one hyperparameter set for each of the model
types in this thesis, freeing computational resources for other tests. An overview of all
hyperparameters defined, along with a short explanation and the values used is listed
in Table 2.4.

2.2.2. Activation Functions
In addition to the weighted summation and normalisation of the inputs of a given node,
activation functions are used to scale the output of the node. No scaling is equal to
using the Identity function (Equation 2.2), but due to the exploding and vanishing
gradient problems related to training, as discussed in the master thesis of Usenco [48],
the output is typically normalized before it is passed on. For filtering out negative
values, the Rectifying Linear Unit (ReLU) function presented in Equation 2.3 can be
used. The Logistic (Equation 2.4) and Tanh functions (Equation 2.5) scale the output
to (0, 1) and (−1, 1) respectively, both weighting the scaled value towards the ends of
their respective intervals due to the inherent nature of their sigmoid shape. Figure 2.7
shows how the aforementioned activation functions perform in the argument interval
(−10, 10).
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Table 2.4.: Overview of TCN hyperparameters for the categorisation (Cat) and regres-
sion (Reg) models respectively. Reworked from [1].
Name Explanation Value

Model hyperparameters Cat Reg
Classes Number of output nodes in the final dense

layer
9 (3) 2 (1)

Filters Number of filters in each node, each calculating
a differently weighted sum between the values
from its input nodes

64 64

Kernel size Number of input nodes for each filter 3 5
Dilations The spacing between input nodes from the pre-

vious layer
1,2,4,8

16,32,64
1,2,4,8

Dropout rate Chance of a weight of an input being perman-
ently set to zero, in practice ignoring the value
of the input

0.2 0.1

Stacks Number of repeated sets of dilation layers 1 1
Algorithm hyperparameters

Epochs Number of runs through the entire training
dataset

30 50

Batch size Number of data points to simultaneously cal-
culate while training, the average of which is
used for adjusting the model parameters

3 3

Learning rate Determines the initial ’step size’ in the direc-
tion that improves model performance

0.0003 0.0003

Constant epochs The number of epochs to train with the initial
learning rate before starting exponential decay

5 5

Decay rate Determines the rate of exponential decay from
the initial learning rate after the number of
constant epochs has been reached

0.4 0.4

Validation split The fraction of the training data points re-
served for validation in each epoch

0.2 0.2
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Figure 2.7.: Common activation functions used in ANN nodes, plotted for the argument
interval (−10, 10).

Identity(x) = x ∈ (−∞, ∞) (2.2)

ReLU(x) =
0 if x ≤ 0

x if x > 0
= max(0, x) ∈ [0, ∞) (2.3)

σ(x) = 1
1 + e−x

∈ (0, 1) (2.4)

Tanh(x) = ex − e−x

ex + e−x
∈ (−1, 1) (2.5)

Output Scaling

It can further be noted that the output dense layer nodes are typically scaled using
separate activation functions. As classification tasks are represented by one-hot labels,
where the correct category is marked with value 1 while the rest are set to 0, a softmax
function (Equation 2.6) is generally applied. This scales each output zi of n nodes in
the output layer such that the sum of all outputs equals 1. The scaled output values
then represent how ’sure’ the model is (resembling probability) that a given data point
belongs in each corresponding category. For regression problems, the choice of output
activation function varies more, depending on the range and type of values the model
should predict.
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Figure 2.8.: Overview of data pipeline used for DOFS strain data analysis. Elements
marked grey are related to data pre-processing, blue for elements related to TCN model
development and red for post-processing. Reworked from [1].

softmax(zi) = ezi∑n
j ezj

∀i ∈ [1, n] (2.6)

2.2.3. Data Pipeline
Figure 2.8 gives an overview of the whole data pipeline as designed and used in the
work of this thesis. After data collection was completed, strains were extracted from
the raw data as described in Section 2.1.3. The individual CSV files of strains were then
loaded and normalised using absolute max scaling as shown in Equation 2.7, where ϵi are
individual strain values, ϵ̃i normalised strain values and |ϵ|max is the maximum absolute
value in the set of all strain values D for each measurement. The normalised strain
values were then merged into two new datasets, one for each DOFS, each set containing
all strain measurements for their respective DOFS. The two datasets were then saved
as new CSV files, with one row per measurement. This archiving allowed for faster
loading of datasets and corresponding labels during the training and validation process
of the models. Simultaneously, separate label files were created containing the labels for
each of the datasets, i.e. the distance and circumferential position of the acoustic source
for each measurement, with one label set per row corresponding to the strain values in
the same row of the dataset CSV file. For the investigation on the effect of input data
pre-filtering on model performance, either the Gaussian or Band filter was applied as
described in Section 2.1.5 during dataset loading.

ε̃i = εi

|ε|max
∀ i ∈ S (2.7)

As all Machine Learning methods leverage statistics in order to learn features in datasets,
creating separate datasets for use in training and validation of a model is essential to
ensure that the model predictions are statistically sound. A model will inevitably be
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biased towards correct predictions for data points used in training to improve the general
prediction capabilities of the model. Using the same data points for validating the model
would therefore not give insight into how good the generalisation of the model is, but
rather just show how well the model has been trained to predict the labels for these
exact data points. Instead, a set of new data points that the model has not seen during
training, i.e. that have not been used to alter the model parameters during training
and thus how it makes predictions, is needed to measure the generalisation ability of
the model. For this reason, most supervised ANN model developments use a standard
80/20 split of data, with 80% being used for training the model, while the remaining
20% is reserved for validation of the model performance in between and after training.

Training and validation datasets were assigned by first loading the CSV files containing
the relevant data points and corresponding labels as Pandas Dataframe-objects. To
ensure balanced datasets, unique label sets based on distance and/or circumferential
position were created, and data points were then sorted according to the set matching
their respective labels. Using the sampling feature in Pandas, a given number of data
points were then sampled from each label set and assigned to either the training or
validation dataset, along with their corresponding labels. These were then shuffled
before returning them as Numpy arrays for use in the training and validation of the
models as described in the following sections.

In order to ensure repeatability of the results, and to reduce the chance of the sampling
procedure resulting in a dataset that accidentally results in a high-performing model,
identical static seeds are used for controlling sampling and shuffling of all datasets. The
exception is for statistical analysis runs, where random seeds are used in order to ensure
the obtained results are statistically sound and not just a one-off due to ’luck’ when
splitting the datasets.

2.2.4. Training
During training, loss functions are used for performance evaluation of the model, re-
turning lower values (approaching zero) for increasing model performance. Training a
model can therefore be viewed as a minimisation problem of its loss function, where
trainable weight and bias parameters of the model are adjusted to approach this min-
imum. For classification models using supervised training, Categorical Cross Entropy
(CCE) (Equation 2.8) is typically used, giving the sum of the logarithm of the model
prediction yi for all correct labels ŷi. This allows for the loss function to take the model
’confidence’ into account, as the loss value will be lower the closer the predicted value
is to 100% for the correct category, rewarding the model for increased confidence in
correct predictions, and not only for making correct predictions. For regression models
predicting one or more continuous values, Mean Square Error (Equation 2.9) is typically
utilised, which encourages the model to reduce squared difference between the predicted
and true values. In Equations 2.8 and 2.9, i refers to the entry, n to the total number
of labels, y to the predicted label, and ŷ to the true label of the respective entry.
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CCE = −
n∑
i

ŷi · log(yi) ∀ i ∈ [1, n] (2.8)

MSE =
∑n

i (yi − ŷi)2

n
∀ i ∈ [1, n] (2.9)

In order to train a model, the defined loss function such as is used to evaluate the current
performance on a batch of training data. The size of this batch is a hyperparameter
that is typically set so that an average of the model performance on the individual data
points in the batch is used, avoiding the problem of overfitting to single data points.
Adjustments are then made to model parameters, finding the direction of change for
each trainable parameter that improves the average performance on the batch through
a process known as gradient descent. The hyperparameter learning rate controls the
’step’ the model takes in the direction found. The adjustment made is proportional
to the learning rate, with a larger value allowing for larger ’steps’. While a large step
size allows for initially fast improvements, it also increases the risk of overshooting
the set of optimal parameters. At the same time, setting a small learning rate results
in slow convergence and increased computational cost. To combat this, a common
approach is therefore to have an initially larger step size and gradually reduce it as
performance improves in order to locate the optimal set of trained parameters more
accurately. Additionally, controlling the number of epochs, i.e. the number of iterations
through the entire training dataset, is also necessary to find the optimal parameters
without overfitting the model, a problem discussed previously in Section 2.2.1. For
training the models in this thesis, exponential decay was used, which exponentially
reduces the learning rate for each completed epoch, starting after a certain number of
epochs where the initial learning rate was held constant. The decay of the learning rate
rl was calculated using Equation 2.10, where rl,init is the initial learning rate, rd is the
decay rate and e is the number of the current epoch.

rl = rl,init · exp (−rd · e) (2.10)

For training the TCN models, hyperparameters and the model definitions were loaded in
and passed on to the relevant model structure. The associated sampled training dataset
was then passed to a custom training function for the model object, which defined and
activated the appropriate performance measuring functions and learning rate scheduler
for the given model type, as covered earlier in this section. The model was then trained
for a given number of epochs. For each epoch, supervised training of the model was
performed using 80% of the training dataset. The remaining 20% fraction of the training
dataset was then used for validation of the model performance at the end of the epoch
and the results were added to the model history before continuing to the next epoch.
After the last epoch was completed, the trained model and its history were returned for
further analysation and validation.
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(a) Low-performing (b) High-performing

Figure 2.9.: Confusion Matrices for two arbitrary categorical models, one low- and
one high-performing, predicting data labels in classes a, b and c. Note the high-valued
diagonal in the high-performing model.

2.2.5. Evaluation of Trained Models
In post-processing, the TCN models were validated with new sets of data that had
not been used for training. For this, a standard 80/20 split of the dataset was used,
thus reserving a random selection of 20% of the data points for validation for each of
the unique labels in the dataset. From resulting model task predictions, accuracy for
classification models was calculated as Categorical Accuracy, as given by Equation 2.11.
As accuracy is a measure of overall performance, it does not provide insight into how
the model performs in each category. Therefore, a Confusion Matrix (CM) was also
generated from the model predictions. In a CM, each row corresponds to the true labels
of the data, while the columns correspond to labels predicted by the model. As a result,
correct predictions result in values on the diagonal of the matrix, while off-diagonal
values represent incorrect predictions. From this, it can be revealed if there are specific
labels the models struggle with categorising or if there is higher confusion between one
or more subsets of labels. Figure 2.9 shows examples for two arbitrary models, where
one is predicting labels randomly while the other is making correct predictions for most
of the true labels.

Categorical Accuracy = Number of correct predictions
Total number of predictions (2.11)

For regression models, there is no universal intuitive metric such as the accuracy is
for categorical models, as the question is not if the prediction is correct or not, but
rather how close the prediction is to the true value. As for a categorical model, single
predictions are generally not interesting when validating a regression model. Validation
aims at investigating whether a model has been able to properly generalise features and
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Figure 2.10.: Example boxplot with an explanation of elements of interest.

trends in a dataset. Unfortunately, there is no universal way to intuitively visualise
regression model predictions for easy comparison of different models. One alternative
is to use a scatter plot to show the values of individual output values. Points are then
plotted, with their coordinates being the true and predicted value for each data point.
As a result, the distance between the point and the 45° line between the two axes (true,
predicted) represents the model performance for that point, with higher performance
for shorter distances from the diagonal line. This is, however, a metric that is hard
to quantify in an intuitive way and therefore more suited as a method to qualitatively
compare the relative performance of several models. Due to this, a box plot was instead
created from the results of each regression model. This gave both a known and intuitive
visualisation of the distribution of model predictions, as well as quantitive values of this
distribution for comparison of several regression models. For each model, since both the
distance and angle parameters were one of three discrete values, it was decided to use
one set of box plots per parameter. Each set consists of three box plots to show the
distribution of the predicted values for their respective true value.

Figure 2.10 shows an example boxplot, marking different elements of interest. A box
plot, also known as a box-and-whisker plot, is a visualisation method that displays the
first and third quartile (Q1 and Q3) of a set of data as the sides of a box, with a centre
line marking the median value. Further, whiskers in the form of thin lines extend out
from each side of the box, typically marking the minimum and maximum values in the
data. In the plots used in this thesis, the whiskers are extended to a length of 1.5 times
the Interquartile Range (IQR), which is defined as IQR = Q3 − Q1 and represents the
middle 50% of the data. This allows for the visualisation of statistical dispersion of the
data, i.e. how spread out the data points are, instead of only showing the total range of
predicted values. Values outside the range of the whiskers are considered outliers and
therefore marked using small circular markers, as they are significantly higher or lower
than the rest of the predictions. Box plots with either whiskers of different lengths or a
median line that is not centred in the box, show that the data is skewed in the direction
of shorter lengths. The size of the box and the length of the whiskers increases with
increasing dispersion and variability in the data.
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Figure 2.11.: Overview of workflow for the IDUN cluster [52] used for the development
of TCN models.

2.2.6. Infrastructure and Workflow
The cluster computer Idun [52] at NTNU (Norwegian University of Science and Tech-
nology) was used for computationally heavy tasks of training and validating the TCN
models. Early testing revealed that while training and validating the models were signi-
ficantly faster on the cluster compared to when running the code locally. A significant
amount of time was still spent on loading and compiling relevant libraries. A workflow
was therefore developed to optimize the process and even better utilise the cluster, as
illustrated in Figure 2.11. Python libraries and packages used for the development of
TCN models are listed in Table 2.6.

All code was developed locally and synced to a directory on the cluster computer using
a private GitHub repository [53]. Hyperparameter sets for the models were defined in
separate JSON files. Top-level input parameters for each model such as the dataset to
be used, number of samples, version number, number of outputs etc. were defined in
another JSON file serving as the ’model job’ file. This allowed for creating a general
Python script which then loaded one or more input parameter sets consisting of hyper-
parameters and a model JSON file to configure the exact architecture and behaviour
of a specific model, along with the dataset to be used. After training and validation,
plots were generated and synced back to the local computer using the same GitHub
repository.

2.2.7. Final ANN Model Structures used for Analysis
As both categorical and regression models were used, two TCN model architectures
were developed, as shown in Figure 2.12. These are relatively similar, with the main
differences in the output layer. As discussed in Section 2.2.1, the number of output
nodes is determined by the number of categories or the number of continuous values to
predict. Additionally, the activation functions used in the output layer depend on the
model type, with the softmax function (Equation 2.6) being used for categorical models,
and the identity linear activation function (Equation 2.2) for regression models. For
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(a) Categorical model (b) Regression model

Figure 2.12.: Overall architecture of ANN models.

training, Categorical Cross-entropy (Equation 2.8) was used for evaluating categorical
models, while regression models were evaluated using the Mean Square Error function
(Equation 2.9). The hyperparameter sets used are previously given in Table 2.4, while
an overview of the final models developed is given in Table 2.5.

2.2.8. Post-processing
In post-processing, the history output from the trained model is used for plotting the
evolution of loss and accuracy of the model during training. The trained models are
also run with the set of validation data, and predicted labels generated by the model
are subsequently compared to true labels of the validation dataset. This enables the
generation of confusion matrices for further analysis.



2.2. Temporal Convolutional Networks 33

Table 2.5.: Overview of final models used for producing the results presented in this
thesis, each assigned a unique identifier, with their respective model type, the dataset
used for training and their output parameters listed.

Model ID Type Dataset Predicting

CH-F Categorical Helical Distance, Sector

CH-D Categorical Helical Distance

CH-S Categorical Helical Sector

CS-F Categorical Straight Distance, Sector

CS-D Categorical Straight Distance

CS-S Categorical Straight Sector

RH-F Regression Helical Distance, Sector

RH-D Regression Helical Distance

RH-S Regression Helical Sector

RS-F Regression Straight Distance, Sector

RS-D Regression Straight Distance

RS-S Regression Straight Sector
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Table 2.6.: Python packages and their use in the work of this thesis
Package Version Use

keras 2.6.0 High-level neural network API for deep
learning tasks.

keras-tcn[51] 3.5.0 Provides the TCN (Temporal Convolu-
tional Network) layer for sequence mod-
elling tasks using Keras.

matplotlib 3.7.0 Plotting library for creating visualiza-
tions.

numpy 1.20.3 Fundamental package for numerical com-
puting.

pandas 1.2.4 Data manipulation and analysis library,
particularly useful for working with struc-
tured data.

sklearn 0.0 Library for generation and plotting of
confusion matrices.

scipy 1.6.3 Library for scientific and technical com-
puting. Used for filtering of data.

tensorflow 2.6.0 Open-source machine learning framework
for building and training various models,
here serving as the back-end for keras.



2.3. Experimental Setup 35

2.3. Experimental Setup
The setup used for data collection consisted of two jacketed Distributed Optical Fibre
Sensors (DOFS) which were connected to the OBR 4600 interrogator from Luna Techno-
logies and the free ends submerged vertically under water. Measurements of the DOFS
were recorded using an automated procedure as described in Section 2.1.2 while a sub-
merged buzzer device was activated at different circumferential positions and distances
near the DOFS. For this experiment, a linear, vertical DOFS and a helically-wrapped
vertical DOFS were used. The linear DOFS was intended for establishing distance to
the acoustic source, while the helically-wrapped DOFS was expected to work as a full
azimuth array, thus enabling the TCN models to perform Sound Event Localisation in
3D better than with the linear DOFS version.

2.3.1. Floating Structural Frame
For the design of the experimental setup, several requirements were set. The setup
had to provide (1) several possible positions for the acoustic source, where (2) both
distance and circumferential position relative to the DOFS were adjustable. These
two parameters (3) had to be individually adjustable. As the experiment was to take
place under water, (4) the support structure had to float, and be (5) modular for easy
transportation, assembling and disassembling between runs. It was further expected
that moving the DOFS could introduce changes in reflections and background noise
levels, complicating feature extraction for the model. Consequently, it was decided that
(6) the DOFS would be kept stationary, while only moving the acoustic source.

To fulfil these requirements, it was decided to create a structural frame, shown in Fig-
ure 2.13, consisting of three concentric half-circles made of floating foam tubes with
radii of 1, 2 and 3 meters. The DOFS were positioned at the centre, with the acoustic
source suspended at different positions on the half-circles. Hard plastic tubes were used
to keep the circular shape radially consistent. The plastic tubes were attached to the
central hub, spanning outwards at 0°, 60°, 120° and 180° angles. A 3D-printed centre
hub was used to connect the structural tubes at the centre, while the foam tubes were
attached to the structural tubes using strips. The resulting structure provided three
different distance options between the DOFS and the acoustic source. At each distance,
three circumferential positions at 30°, 90° and 150° were designed, for a total of 9 unique
positions for the acoustic source.



36 Chapter 2. Materials and Methods

Figure 2.13.: Experimental setup in water, where distance (r1, r2, r3) and sector (s1,
s2, s3) for individual positions for the acoustic source are marked.

2.3.2. DOFS Fixture

To ensure a controlled placement of two DOFS, a thin-walled tubular fixture was created
using a fine metal mesh, shown in Figure 2.14. The mesh was chosen as it allowed for
flexible positioning of the DOFS while sinking in water and allowing acoustic waves to
pass through. The mesh was further reinforced at the ends using a metal circle made
of a thicker wire, with a secondary wire spanning across both circles. The tube was
suspended at the centre of the floating structural frame using a thin polyester silk line,
with a heavy metal bolt hanging from the bottom of the mesh tube to keep it vertical
in the water. One linear and one helically-wrapped DOFS were attached to the tube as
described below. Both DOFS extended 300 mm beyond the end of the tubular fixture
to ensure that the sensing range was well out of the range of end reflection noise as
found by Usenco [48]. To avoid water intrusion affecting the optical signals, the optical
fibres were extended ∼ 2 m beyond the fixture before the connectors were spliced in,
ensuring they could be kept on dry land.

The initial mesh fixture was 2000 mm long, but it was shortened due to a change of
testing location leading to shallower water than first planned. Table 2.7 describes the
geometry of the fixture and the DOFS after this change. Figure 2.14 shows the final
mesh fixture with both DOFS attached.
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Figure 2.14.: Tubular mesh fixture with two jacketed DOFS attached.

Table 2.7.: Geometrical specifications of jacketed DOFS used in the experiment. The
sensing midpoint is the distance from the interrogator to the middle of the mesh tube
along the optical fibre.

Parameter Linear DOFS Helical DOFS
Sensing range 1000 mm 1500 mm
Sensing midpoint 39157 mm 51508 mm
Tube length n/a 1100 mm
Tube diameter n/a 145 mm
Pitch n/a 200 mm

Linear DOFS

A straight, linear DOFS with parameters as defined in Table 2.7 was prepared with an
FC connector spliced in at one end. It was positioned in the centre of the tubular mesh
fixture and attached to the straight metal wire in the centre at both ends of the mesh
using drops of epoxy glue. During attachment, it was ensured that there was enough
slack in the DOFS to avoid pre-tensioning, but not so much that it could come into
contact with the mesh sidewalls.

Helical DOFS

A helical DOFS with parameters as defined in Table 2.7 was prepared with an FC
connector spliced in at one end. Before positioning it on the tubular mesh fixture,
markings were made along the opposite sides of the fixture with a spacing of 200 mm
according to the pitch defined. The DOFS was then manually wrapped around the
fixture to achieve a helical shape, and attached to the mesh by using drops of epoxy
glue at the previously made markings.
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Figure 2.15.: Map showing location used for data collection. Adapted screenshot from
Norgeskart.no [54]

2.3.3. Acoustic Source

A CI26P-16T40-C-1X piezoelectric buzzer from Challenge Electronics with a central
frequency of 400 Hz was used as the acoustic source for the experiment, sending out
a continuous acoustic tone while activated. A pair of electrical wires were soldered to
the buzzer before it was placed in a 3D-printed casing and waterproofed using epoxy to
cover any seams and other openings.

As the buzzer is directional, it was suspended off the floating frame using two 3D-printed
hooks with some space in between. A weight was attached to the bottom of the casing
to keep the buzzer positioning vertical in the water. This setup ensured that the buzzer
was always pointed towards the centre of the DOFS mesh fixture in the centre of the
floating frame. While the measurements were being performed, the buzzer was powered
by a power supply at 14 V , controlled using a Buck converter connected to the wire pair
between the supply and buzzer.
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Figure 2.16.: Overview of the location used for data collection. The left picture is
taken on top of the shore, looking outwards, and the right picture is taken from the
pedestrian bridge with a wider perspective.

2.3.4. Data Collection Process
The location used for data collection, along with electricity for running the experiment,
was kindly provided from Trondhjems Seilforening [55] for two days, 03/05-23 and 05/05-
23. Figure 2.15 shows a map marking the location used. A floating dock was used as
the working platform and anchoring point for fixing the floating frame, located at the
end of a marina. The floating dock enabled a distance between the DOFS and the shore
of ∼ 3 m, with the latter built up of large natural rocks and slightly slanted backwards.
The surrounding area consisted of a breakwater opposite the setup, similar to the back
wall and in practice creating a wide canal. Figure 2.16 shows the frame with surrounding
elements marked. While the acoustic source ended up being pointed at the wall on the
shore, it was assumed that the uneven shape of rock faces, along with the natural sea
bottom, dispersed the sound waves enough that any reflection of acoustic waves would
have a negligible effect on the DOFS compared to the effect of direct acoustic waves
from the buzzer.

For each day, the frame was assembled, placed on the water and attached to the floating
dock using polyester silk lines and two pieces of hard plastic tubes to keep the floating
frame stationary. The tubular mesh fixture with the DOFS was suspended vertically
at the centre of the frame, while the acoustic source was suspended at the different
positions marked in Figure 2.13 for each of the measurement sets taken. The setup
was then dismantled at the end of each day, with the total time used for measurements
including setup, testing and dismantling being around 11 hours per day.

The first half of the first day was mainly used for initial testing of the setup, and for
shortening the DOFS mesh fixture as described in Section 2.3.2 due to a lower tide
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than originally expected from the tidal forecast. Sets of 50 measurement samples using
the linear DOFS were then taken from all positions except for r3s2 with the following
method. For each position, (1) the buzzer was moved into position and deactivated
before (2) a reference measurement was taken, consequently only measuring the effect
of the background noise. (3) The buzzer was then activated and confirmed working
before (4) continuously measuring 50 samples from the linear DOFS. (5) The buzzer
was again checked to ensure it was still activated at the end of the sample set before
moving to the next position. Due to limited time, measurements from position r3s2
were not taken on the first day.

On the second day, the measurement procedure from the first day was repeated, now
taking measurements using both the linear and helical DOFS. Reference measurements
were taken of both DOFS at each position before taking 50 and 100 measurement
samples for the linear and helical DOFS respectively. The exception was again for
position r3s2, for which 100 samples were taken for both DOFS to make up for the
lack of measurements from the first day for this position. The resulting total dataset
consisted of 100 repeated measurement samples for each DOFS at each of the nine
buzzer positions.

As the location was in a public area, there were other regular and sporadic activities
nearby that likely also added to the acoustic background affecting the measurements.
Some of these, such as activities around the sailboats being maintained on shore, ped-
estrian and cycling traffic on the bridge nearby, as well as trains passing on the bridge
a bit further away, were assumed to have a sufficiently smalltransient effect on the
measurements that the models themselves could filter it out during analysation. Bigger
disturbance events suspected to have a non-negligible impact on measurements were
logged and are listed in Table 2.8, along with comments on their suspected effect and
any measures taken to mitigate this.
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Table 2.8.: Log of disturbance events during acoustic experiments, with time stamp
and comments addressing the suspected effect on measurements, and eventual measures
taken to mitigate these.

Time Event Comment

3/5 11:50 Noisy work on a boat at the
same dock

Done between measurement sets, so there
is likely no measurable effect.

3/5 13:51 Jetski passing nearby Current measurement set was restarted.

3/5 14:20 Sensor fixture weight hit
bottom

Tubular fixture itself did not touch the
bottom, but might have moved a bit due
to the weight shifting. No measures were
taken, as a new reference is taken for each
set.

5/5 12:15 Use of angle grinder on the
boat in drydock next to
setup

Assumed to have a negligible effect.

5/5 13:15 Pause in measurements due
to work with a crane on the
dock

No measurements done, i.e. no con-
sequences.

5/5 14:00 Irregular, strong gusts of
wind

Continued through the rest of the day.
Assumed to have a negligible effect as the
setup did not move noticeably.

5/5 18:29 Increased strength of cur-
rents in water

Could affect the position of the buzzer
slightly, but are assumed to have negli-
gible effect.





Chapter 3.

Analysis of Experimental
Results

The model development and data analysis results from the acoustic experiments per-
formed are presented in the following sections. For each part, selected results are presen-
ted, along with objective analyses and comments on what can be directly observed from
the Figures and Tables presented. The remaining results not presented in the current
chapter can be found in Appendix A and B.

3.1. Model Performances and Stability Study
Table 3.1 gives an overview of performances for all TCN models developed as specified
in Table 2.5, with their respective final validation accuracies (Equation 2.11) and loss
values (Equation 2.8-2.9) after all training epochs had been completed. Additionally,
the difference between the validation and training loss is listed for each model, giving
an indication of how well the model is generalised with respect to under-/overfitting.
The models were trained using their respective optimal hyperparameter sets on full 80%
training datasets as described in Section 2.2.7, with 30 epochs for all categorical models
and 50 epochs for all regression models to reach the final values listed.
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Table 3.1.: Overview of all TCN model performances after completing all training
epochs. The Loss difference column gives the absolute difference between the final
training and validation losses for each model

Model Validation
accuracy

Validation
loss Loss difference

CH-F 0.653 0.999 0.116
CH-D 0.750 0.629 0.042
CH-S 0.813 0.604 0.066
CS-F 0.764 0.882 0.022
CS-D 0.875 0.371 0.073
CS-S 0.778 0.632 0.083
RH-F - 0.471 0.069
RH-D - 0.494 0.010
RH-S - 0.438 0.125
RS-F - 0.479 0.063
RS-D - 0.452 0.073
RS-S - 0.485 0.021

3.1.1. Categorical Models
The results presented in Table 3.1 and Figure 3.2 show that all categorical models
generally perform similarly, with final accuracy scores reaching 70% to 80%. From
Figure 3.2 it can also be observed that the development of loss and accuracy scores
throughout the training epochs follows a similar pattern, albeit with varying start and
end values. An outlier here is the CH-F model, classifying both distance and sector
using the helical fibre data, which has the lowest validation accuracy of 65%, along with
the highest values for both validation loss and loss difference. This is reflected in the
loss curves in Figure 3.3b, showing that the validation loss curve stabilises around 1.0,
while the training curve flattens out at roughly 1.2.

Further, Model CS-D, predicting only distance categories using the straight fibre data,
has a significantly higher accuracy score compared to other categorical models. The loss
value is also the lowest out of all the classification models, although the loss difference
is in the higher range. Studying the detailed plot in Figure 3.3a reveals that higher loss
difference is a result of the training stopping at a seemingly local spike in training loss,
while the accuracy curves are following each other relatively closely between 0.8 and 0.9
for the converging part of the training region roughly from epoch 10.

Comparing the confusion matrices of the straight DOFS single-parameter models CS-D
(distance) and CS-S (sector) in Figure 3.1, a low amount of confusion can be observed
for both models due to low off-diagonal values. For CS-S, which only predicts the sector
for the source position, higher off-diagonal values can be observed compared to that
of CS-D. This is also reflected by the lower accuracy and higher loss values of CS-S in
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(a) CS-D (Distance) (b) CS-S (Sector)

Figure 3.1.: Confusion matrices for single-parameter classification models using
straight DOFS data. Rows are true labels, while columns are the same labels as pre-
dicted by the TCN models. Values are normalised for each row.

Table 3.1.

For the confusion matrices of full categorical models CH-F and CS-F in Figure 3.4,
the off-diagonal values of CH-F in 3.4a are relatively evenly distributed, indicating no
specific pattern to the confusion of this model. For CS-F in 3.4b, the off-diagonal values
are more concentrated around the categories at distance r3, indicating a higher confusion
for the model when the acoustic source is furthest away from the DOFS. Overall, for
individual acoustic source parameters (distance and sector) separately as well as in the
full combined model, straight DOFS models perform well, predicting the source location
on par or better compared to helical DOFS models.
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Figure 3.2.: Development of loss and accuracy values for categorical models predicting
the category of either one or both of the parameters distance and sector for the relative
position of the acoustic source.
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(a) CS-D (Distance, straight DOFS)

(b) CH-F (Full, helical DOFS)

Figure 3.3.: Development of training and validation performance for loss and accuracy
of selected categorical models
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(a) CH-F (Full, helical DOFS)

(b) CS-F (Full, straight DOFS)

Figure 3.4.: Confusion matrices for classification models predicting both distance and
sector of the acoustic source. Rows are true labels in the form of a unique combination
of distance and sector, while columns are labels as predicted by the TCN model. The
column labels were removed in order to fit the figures on one page, but the columns
(left-right) are equal and in the same order as the row labels (top-down). The values
are normalised for each row.
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3.1.2. Regression Models
Table 3.1 and the accompanying validation loss development graphs in Figure 3.6 show
that all 6 regression models have similar performance, with the loss curves generally
converging towards values in the range of 0.45 to 0.50. A more unstable behaviour
in early epochs can be observed for models predicting the direction of the acoustic
source position, namely RH-F, RS-F, RH-S and RS-S, but the performance of these
also stabilises in similar ranges to the two distance models towards higher epoch values.
Further, considering the boxplots for full (both distance and direction) models RH-F
and RS-F in Figure 3.5 show that while there is a visible difference between the median
values of prediction of different labels, the predictions overall span most of the range of
true values. Similar behaviour was found to be true also for the models only predicting
one parameter (distance or direction separately), as shown with the boxplots for the
remaining regression models in Figure 3.7.

(a) RH-F (Full, helical DOFS) (b) RS-F (Full, straight DOFS)

Figure 3.5.: Boxplots for regression models predicting both distance and sector. The
box covers values between the first and third quartile, with the whiskers marking the
range equal to 1.5 times the range of the box. Dots mark any predictions outside this
range.
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Figure 3.6.: Development of validation loss for regression models predicting either one
or both parameters distance and direction as scalar values for the varied position of the
acoustic source.
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(a) RH-S (Direction, helical DOFS) (b) RS-S (Direction, straight DOFS)

(c) RH-D (Distance, helical DOFS) (d) RS-D (Distance, straight DOFS)

Figure 3.7.: Boxplots for regression models predicting either distance or direction to
the acoustic source. The box covers values between the first and third quartile, with
the whiskers marking the range equal to 1.5 times the range of the box. Dots mark any
predictions outside this range.
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3.1.3. Effect of Sample Size on Model Performance
In Figure 3.8, model performance for categorical model CS-D (Figure 3.8a) and regres-
sion model RS-D (Figure 3.8b) for increasing sample sizes of training data are plotted.
For both models, an apparent performance plateau is reached at ca. 60 samples per
unique label, where both the accuracy and the loss curves flatten out with no visible
performance improvements for increasing the sample size beyond this point.

(a) Categorical model CS-D

(b) Regression model RS-D

Figure 3.8.: Model validation performances after training with varying sample size in
the training data set per unique label.

3.1.4. Statistical Analysis
Figure 3.9 shows the resulting mean value and ±1 standard deviation range for validation
loss and accuracy from 30 stochastically varied runs of the highest-performing categorical
model, CS-D. It can be observed that the standard deviation remains relatively constant
throughout the training process, with a slight reduction as the mean curves flatten out
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Figure 3.9.: Plots showing the mean and standard deviation values of validation loss
and accuracy for each epoch, calculated using values from 30 runs of the categorical
model CS-D in Table 2.5, using non-deterministic values for initialising weight and
biases, as well as for shuffling the datasets.

Figure 3.10.: Plot showing the mean and standard deviation values of validation loss
for each epoch, calculated using values from 30 runs of the regression model RS-D in
Table 2.5, using non-deterministic values for initialising weight and biases, as well as for
shuffling the datasets. Note that the graph is cut off at 1.0 to better show the values
for the later training stages.
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towards 0.35 for loss and 0.9 for accuracy. A similar trend can be observed for the
plot of statistical analysis of 50 stochastically varied runs of regression model RS-D
in Figure 3.10. While the standard deviation during initial training epochs is larger
than for the categorical model, a significant reduction can be observed as the mean loss
curve flattens towards 0.45. This indicates that the stability of the regression model is
comparable to that of the categorical model.

3.2. Effects of Data Pre-filtering
Figure 3.11 and Figure 3.12 show the model validation performance scores for the high-
performing CS-D model trained with pre-filtered DOFS strain data points. Figure 3.11
shows the result of applying a Gaussian filter with increasing sigma values on the strain
data. For sigma values up to 1.0, a performance comparable to or even slightly exceeding
that of the model trained using unfiltered data can be observed, followed by a decrease in
performance for increasing sigma values. A similar performance drop can be observed in
the plots in Figure 3.12, where different band filters were applied instead of the Gaussian
filter. The band filters had a spatial frequency range width of 1.0 1

m , but with increasing
centre value in the total frequency range from 0 to 4.9 1

m of the straight DOFS data
set. All band filters resulted in an observable performance decrease compared to the
unfiltered CS-D model. The reduction in model performance when using strain data
filtering indicates that DOFS strain data contains vital information for the investigated
acoustic events in a wide range of spatial frequencies.
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Figure 3.11.: Final validation loss and accuracy at last epoch for model CS-D using
strain data points run through a Gaussian filter with different sigma values prior to
TCN training and analysis.

Figure 3.12.: Final validation loss and accuracy at last epoch for model CS-D trained
using strain data points filtered for different spatial frequency bands. For each plotted
point, the model was trained using a spatial frequency band from 0.5 1

m below to 0.5 1
m

above the central frequency on the x-axis.
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3.3. Comparisons of Reference Measurements
As the reference measurements for both DOFS were all taken in the real-life noisy envir-
onment of the harbour, the effect each specific reference trace had on strain calculation
was investigated. For this, a random measurement was selected for each of the two
DOFS, and strains were then calculated with the different reference measurements us-
ing the procedure described in Section 2.1.3. Comparison matrices of the resulting plots
can be seen in Appendix C. For both the helical and straight DOFS in Figure C.1
and C.2, no reference results in equal strain plots. For both the Helical and Straight
DOFS, the references at positions r2s3 and r1s3 resulted in the most similar strain
plots, but there are still differences in the position and magnitude of their peaks due to
the difference in the noise affecting the two reference measurements.

This calculation exemplifies how reference measurements for acoustic field experiments
taken in noisy real-life conditions affect the final strain measurements. However, to be
able to accurately extract specific patterns in data, a reference measurement taken in
very quiet and stable conditions is highly desirable. This was unfortunately not achieved
in current set of experiments, and considerable reference-to-reference varability exists.



Chapter 4.

Discussion of the Results

4.1. Model Performance

4.1.1. Categorical Models
The loss and accuracy curves and confusion matrices presented in Section 3.1.1 indicate
that analysing DOFS strain data with categorical TCN models is a viable method for
the localisation of subsea acoustic sources. The results of repeated stochastic runs
of models CS-D in Figure 3.9 confirm that these results are not a one-off. There is
no large difference between the full models and those predicting only one parameter,
contradicting the recent findings of [37] where decoupling of prediction tasks with TCN
improved the overall model performances. The findings of the sample size investigation
shown in Figure 3.8a indicate that the performance plateau is reached at around 60
samples. This can further explain the lack of difference in performance between the full
and single-parameter TCN models, despite the full models having only a third of the
available number of samples per category to train on compared to the single-parameter
models, with 100 vs 300 samples per category, respectively.

Use of Helical vs Straight DOFS Data

Somewhat surprisingly, it was observed that categorical models trained using the straight
DOFS data are equally or higher performing than those trained using the helical DOFS
data. This is despite the straight DOFS with its inherent linear vertical shape being
assumed to be agnostic towards sector angle and work much better for distance pre-
dictions. As the helical DOFS is three-dimensional, it was assumed to allow for the
prediction of direction in addition to the distance similar to a traditional full azimuth
array. But while the straight DOFS in theory should act as a two-dimensional sensor,
it is in practice also three-dimensional as the slack applied in the fibre implemented
to avoid any pre-straining gives it a three-dimensional curved shape. This, combined
with it likely not being positioned exactly normal to the direction of the acoustic waves,
can perhaps explain why models using the straight DOFS data are comparably able to



58 Chapter 4. Discussion of the Results

predict the direction of the acoustic source as those utilizing helical DOFS data.

In the preceding project thesis [1] it was found that a free jacketed DOFS allowed for
TCN models to perform better frequency classification than when using DOFS attached
to a structure. As the helical DOFS for this experiment was attached to a tubular mesh
structure in order to maintain the helical shape, the mesh presence likely also has a
detrimental effect on the performance of CH-F and CH-D, similar to the effect found in
the project thesis.

The mesh will unavoidably create resistance and interference for acoustic waves passing
through towards the straight DOFS inside. This resistance could act as a filter on
acoustic waves in the water and thus altering the periodic waves from the acoustic
source. If this filtering affects the higher frequencies, it could have a performance-
increasing effect as it filters out noise similar to the Gaussian filter with the lowest
σ-values as shown in Figure 3.11.

The helical DOFS also allows for more data points along the tubular structure compared
to the straight fibre. This is because it is a physically longer fibre which should give the
models longer data sequences to base their predictions on. This will however inherently
also raise the total amount of noise in the measurements, potentially further decreasing
the performance of models trained with helical DOFS data. While time constraints
meant that this could not be investigated further in this thesis, training models using
data points of varying lengths could be performed to investigate how sequence length
affects model performance.

By analysing the confusion matrices for models CH-F and CS-F in Figure 3.4a and
Figure 3.4b respectively, off-diagonal cells are more populated for CH-F compared to
that of CS-F, reflecting the slightly lower performance of the CH-F model. It can further
be noted that CS-F has a higher local confusion between the sectors at the furthest (3 m)
distance. Given that this seemingly is a very localised effect, it could indicate that the
upper range limit of the method is reached.

Possible Performance Improvements

The investigation of the effect of sample size on model performance shows a clear plat-
eau being reached at approximately 60 training samples. It is therefore unlikely that
increasing the dataset further without also adding new positions would result in a mean-
ingful increase in model performance. Further model tuning is therefore likely needed
to increase model performance past 90%. It is however hard to know whether higher
performance is feasible without performing tests utilising the datasets specific to the
problem to be solved. Performance improvements could also require more extensive ar-
chitectural changes, such as the addition of a Support Vector Machine (SVM) as a final
layer as suggested by Shi et al. [32], or the use of raw OBR data to avoid information
loss in pre-processing completely.
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4.1.2. Regression Models
The consistent loss values and loss curves for the regression models, along with the
resulting curve of the repeated stochastic study in Figure 3.10, show that the TCN
regression model architecture used is stable. But as the loss values do not have any
practical interpretation other than as a metric to compare similar models, the box plots
were used to analyse the performance of each regression model further. As shown by the
boxplots in Figure 3.7 and 3.5, there is a trend showing an increase in the mean values
of predictions for increasing expected value for both predicted parameters, although
they are all skewed towards the middle values, 2 m and 90° respectively. However, as
the box and whiskers for each plot show, individual predictions are spread over a large
range. There is also no clear pattern in how these values are spread related to the
parameters, models or dataset used. This means that any individual prediction is not
reliable, and as the median values are all skewed toward the middle, taking an average
of several predictions for a single event would likely not give correct values either. As a
result, TCN regression models using DOFS strain data for acoustic source localization
are considered unusable in their current form, despite there being indications in the
mean value trends for each parameter that a regression TCN model could work.

Possible Performance Improvements

Similar to the categorical models, the sample size investigation shows that increasing the
sample size would likely not give any meaningful increase in performance, as performance
improvements stagnated past 60 samples. A larger change to the model architecture is
therefore likely required to achieve practically useful predictions. As regression models
predict continuous values, it is further suspected that the data set must be populated
with measurements from more acoustic source positions in order for the models to
develop a sufficient mapping between input and output values.

4.2. Effects of Filtering on Model Performance
The decreased model performance for both increasing sigma values in the Gaussian filter
and for higher spatial frequency band filtering, as shown in Figure 3.11 and Figure 3.12
respectively, indicates that the information the models utilise for predictions resides
in the strain-position patterns with lower frequencies. Unlike the original assumption
that any filtering would lead to an information loss, the small performance increase for
σ = 0.1 show that some prefiltering of the data can be advantageous. The low filter
value only removes the highest frequency spikes as shown in Figure 2.5 and indicates that
these generally can be considered outliers (i.e. actual noise) with low information value.
Similarly, the larger drop in performance past σ = 8.0 indicates that the Gaussian filter
then started removing frequencies containing information that significantly contributes
to the prediction ability of the model, resulting in much lower performance. A similar
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effect was observed for band filtering of bands with centre values 1.5 1
m and higher,

suggesting that sigma = 10.0 for a Gaussian filter filters out similar frequencies to the
band filter having a high-pass cut-off of 1.0. The consistently lower performance of the
TCN model with band filter is likely due to it filtering out both high and low frequencies,
unlike the Gaussian filter, which due to its function as a low-pass filter only filters out
higher frequencies. This further demonstrates that there is no one spatial frequency
range that contains all information needed, but that the models rather utilise patterns
from a broader spectrum of frequencies when calculating predictions for a certain data
point.

4.3. Potential Sources of Error

All measurements for one source position were taken before moving the acoustic source
to the next position. This means that any local effect could create a specific effect in
selected elements in measurement data, helping the model make correct predictions by
learning to detect this temporally transient pattern (e.g. due to passing boats) instead
of permanent ones related to distance and direction of the acoustic source. Given the
sample size needed, combined with the fact that moving the acoustic source between po-
sitions and taking reference measurements was a manual process, avoiding these patterns
emerging would have unfeasibly extended the duration of the data collection process for
this project. It is therefore likely that such alien patterns exist for some subsets of the
measurement data. Having less control over experimental conditions is a common chal-
lenge for measurements in real-life test setups. At the same time, chaos from real-life
events often makes field experiments more valuable compared to well-controlled labor-
atory conditions where such effects are impossible to duplicate. It is hoped and assumed
that patterns related to the distance and direction of the acoustic waves still are the
predominant features of the measurement set obtained for each position of the acoustic
source.

As the data collection spanned over several hours per session, having only one reference
measurement for the entire session was considered to increase the risk of local, periodic
acoustic events affecting the data. Having to take one reference measurement for each
measurement sample would however unfeasibly increased the time needed for collecting
a data set of the suspected needed size. The use of one reference measurement per
position was therefore chosen as a trade-off to avoid the effects of temporally transient
acoustic events while also streamlining the data collection process as much as possible
to maximise the data set size available for training. It is important to emphasize that
the sample size needed was unknown at the time of planning and execution, along with
the time for data collection being very limited.
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4.3.1. Impact of Noise in Reference Measurements
As discussed earlier, the reference measurement defines the stationary state of the op-
tical fibre. However, the reference measurements of all DOFS states were taken in the
noisy real-life environment of the harbour. This means that any noise in the reference
introduces patterns in the extracted data that would be unique to that reference and
consequently affect each buzzer position strain data that uses this reference. As the
vastly different strain plots in reference comparisons in Appendix C reveal, this is in-
deed the case. These unique patterns introduced by noisy reference data mean that
there is a risk of the models learning to recognize these noise effects instead of the
patterns related to the acoustic source and its position.

As an analogy, imagine tasking a system with sorting post-it notes based on
what is written on them. Instead, it sorts them by the colour of the note, as
it turns out that the text has been written on notes of different colours, with a
unique colour for each group. While the outcome might be correct, the system
has possibly never had to find a pattern in what is written on the notes. This
also means that if the colours were to change, the system would not be able
to sort them correctly anymore, despite all previous results indicating that it
is sorting them correctly.

This could explain the large performance difference between the categorical and regres-
sion models, as it is likely easier for the models to categorise different unique strain
patterns affected by noisy references than to predict continuous values from groups of
patterns that include many different noise references. The early convergence of models,
with no significant improvements or indications of overfitting as the number of epochs
increases further, could be a sign of this being the case. The models would here be
’stuck’ at these noise-affected patterns functioning as a local performance maximum,
making them unable to look for the global maximum related to the patterns created
by the acoustic source and its position. Low confusion of the categorical models does
however suggest that these noise patterns, if detected, are not fully dominating. But
whether the confusion is due to increased noise in individual measurements or if the
models are detecting patterns created by the acoustic source is however unclear and
would require further tests with new data.

The issue of reference measurements should be investigated further, e.g. by using one
common reference measurement or by using a running reference, meaning the previous
measurement is used as a reference for calculating strains in the next measurement.
With the tools and software available for this master’s thesis, doing this was considered
to unreasonably impact the other investigations performed within the time frame given.





Chapter 5.

Conclusions

This investigation was undertaken to explore the practical viability of using Temporal
Convolutional Network-based (TCN) machine learning analysis on Distributed Optical
Fibre Sensor (DOFS) strain data in order to locate acoustic sources in a real-life subsea
environment. The prototype task was to predict the distance and direction of a nearby
placed acoustic buzzer.

The results show that categorical TCN models are able to categorise DOFS strain data
with respect to the distance to and direction of the acoustic source in an underwater
environment, with the models reaching ca. 70−80% validation accuracies for both helical
and straight DOFS. The regression models also converge, but the resulting predictions
have too high a variance to provide practically usable predictions at their current state.
Unlike previous works, no significant difference in performance was found between the
models predicting both or only one positional parameter for either the categorical or
regression models.

Models using data generated from helically positioned DOFS measurements were found
to have slightly lower performance compared to the models using straight DOFS. It is
suspected that the tubular metal mesh structure used to achieve the helical shape of
the DOFS influences the measurements, similar to the findings in the preceding project
thesis.

Testing of models trained with different levels of pre-filtered data revealed that TCN
models perform best with unfiltered data and data filtered using Gaussian filters with
sigma-values up to σ = 0.1, backing up the hypothesis of filtering leading to inform-
ation loss, while Deep Learning-models are able to filter out this noise on their own
with minimal information loss. Using a band filter further revealed that there is no
smaller spatial frequency range containing all information needed for the model to make
predictions, but that TCN models rather rely on a larger range of spatial frequencies
for the extraction of relevant data and patterns in order to make predictions.

This was the first experiment outside a controlled lab environment, revealing signific-
ant problems related to the use of reference measurements. It was found that using
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several reference measurements taken in noisy environments introduces patterns in the
extracted strains, greatly affecting the ability of the model to extract relevant data and
consequently also lowering their final performance.



Chapter 6.

Future Work

The results presented have revealed a need to establish new methods for collecting
reference measurements used for strain extraction. For this, further investigation into
how noisy reference measurements affect the final strain measurements is likely needed.

As an alternative, an investigation into how TCN performs when the raw OBR meas-
urements are used instead of calculating strains is of interest. Not only would this likely
omit the problem of good reference measurements altogether by not having to extract
strains, but the calculation time needed in preprocessing would also decrease, in addition
to avoiding the inherent information loss of the strain extraction process.
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(a) CH-D

(b) CH-D (c) CH-S

(d) CH-S

Figure A.1.: Single-parameter models trained with helical DOFS dataset
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(a) Development plot

(b) Confusion matrix

Figure A.2.: CH-F
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(a) CS-D

(b) CS-D (c) CS-S

(d) CS-S

Figure A.3.: Single-parameter models trained with straight DOFS dataset
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(a) Development plot

(b) Confusion matrix

Figure A.4.: CS-F
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(a) RH-D

(b) RH-D (c) RH-S

(d) RH-S

Figure B.1.: Single-parameter models trained with helical DOFS dataset
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(a) Development plot

(b) Confusion matrix

Figure B.2.: RH-F
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(a) RS-D

(b) RS-D (c) RS-S

(d) RS-S

Figure B.3.: Single-parameter models trained with straight DOFS dataset
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(a) Development plot

(b) Confusion matrix

Figure B.4.: RS-F
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Figure C.1.: Helical DOFS references. For each reference, strains were extracted using
the same measurement file, showing the effect of noisy references on the resulting strain
values.
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Helical DOFS references (cont.)
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Figure C.2.: Straight DOFS references. For each reference, strains were extracted
using the same measurement file, showing the effect of noisy references on the resulting
strain values.
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Straight DOFS references (cont.)
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