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Abstract

Proximity effects from interfacing superconductors with other materials is an active field
of research. Quantum effects occurring in such interfaces are of interest both from a
theoretical perspective of understanding fundamental physics and for application in the
field of quantum information. In the last two decades, particular interest has been found
in proximity effects from combining ferromagnets with superconductors. Whereas a con-
ventional superconductor contains singlet Cooper pairs, the combination of conventional
superconductors and ferromagnets also induces spin-triplet Cooper pairs. Since these
triplets can carry spin polarization they are highly relevant for the field of spintronics.

In this thesis, quasiclassical theory was used to perform an analytical and numeri-
cal study of proximity effects caused by supercurrents in combination with a spin-orbit
coupled interface. Singlet supercurrents, triplet supercurrents, and spin supercurrents
were created using conventional singlet superconductors in combination with spin-active
interfaces. A normal metal was attached to the current-carrying material, separated by
a thin layer of spin-orbit coupled material. Induced magnetization in the normal metal
was studied.

We have found that the angle between the spin-active interface magnetization and
the attached normal metal affects the induced magnetization. Moreover, we found that
the different currents depend differently on this angle. By this, we found induced mag-
netization that can be used to distinguish singlet, triplet, and spin currents.
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Sammendrag

Proksimitetseffekt fra å sammenkoble superledere med andre materialer er et aktivt
forskningsfelt. Kvanteeffekter som oppst̊ar i slike grensesjikt er interessante b̊ade fra
et rent teoretisk perspektiv for å forst̊a fundamental fysikk, og fra et praktisk perspek-
tiv for anvendelser innen kvanteinformasjon. De siste to ti̊arene har proksimitetseffekter
fra kombinasjoner av superledere og ferromagneter vakt stor interesse. I en vanlig su-
perleder er Cooper-parene koblet sammen i singlet spinnpar, men i koblingene mellom
superledere og ferromagneter kan ogs̊a triplet Cooper-par oppst̊a. At disse triplettene er
spin-polariserte gjør de relevante for spintronikkanvendelser.

I denne oppgaven er kvasiklassisk teori brukt til å studere proksimitetseffekter fra
superstrømmer i kombinasjon med spinn-bane koblede grensesjikt. Dette er studert b̊ade
numerisk og analytisk. Singlett-, triplett- og spinn-strøm settes opp ved bruk av kon-
vensjonelle singlett superledere i kombinajson med spinn-aktive grensesjikt. Et normalt
metall festes til det strømførende materialet, separert med et tynt lag med spinn-bane
kobling materiale. Indusert magnetisering i det normale ble studert.

Det ble funnet at vinkelen mellom magnetiseringene i de spin-aktive grensesjiktene og
det tilkoblede normale metallet p̊avirker magnetiseringen i det normale metallet. Videre
kan den induserte magnetiseringen brukes til å skille mellom singlett-, triplett- og spinn-
strøm.
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Chapter 1

Introduction

When Heike Kamerlingh Onnes cooled down mercury to 4.2 K in 1911 [1–3], nobody
had predicted that the resistivity would abruptly drop to zero. At that time, the theo-
retical framework required to understand this quantum mechanical phenomenon known
as the superconducting phase had not yet been established. It was not until 1957, after
significant progress had been made in the field of quantum mechanics, that the first mi-
croscopic theory of superconductivity was developed by J. Bardeen, L. Cooper, and J.
R. Schrieffer [4]. In this theory, an attractive force between electrons is introduced, most
commonly through a phonon-mediated interaction. At low enough temperatures, this
interaction pairs electrons together in so-called Cooper pairs. These pairs are protected
against scattering by an energy gap, allowing a current to flow without resistance.

The absence of electrical resistance is an intriguing property of the superconducting
phase. A perhaps even more characteristic trait of the phase is the Meissner effect,
which describes the expulsion of magnetic fields from the interior of a superconductor [5].
Furthermore, the proximity effect adds another fascinating aspect to superconductivity
by describing how Cooper pairs from the superconductor can leak through to adjacent
materials. Interfacing superconductors with other materials allows for the emergence of
new quantum effects that arise from the combined interaction of both materials, rather
than from either material alone.

Over the past two decades, proximity effects from combining ferromagnets (F) and
superconductors (S) have captured the attention and interest of physicists. This might
at first seem strange since ferromagnetism and superconductivity are thought of as com-
peting phenomena that do not exist together. In a conventional superconductor, the
electrons are paired in a spin-singlet state. The exchange field of the ferromagnet, which
tries to align the spins, thus effectively splits up the electron pair and makes the sin-
glet Cooper pair short-ranged in the ferromagnet. The reason these S/F interfaces were
thought to be interesting was that several works predicted that these interfaces cause
triplet Cooper pairs to arise [6–9]. The triplet that is spin-neutral in the exchange-field
orientation is, for the same reason as for the singlet, short-ranged in a ferromagnet. How-
ever, the triplets with spins aligned in the exchange field direction are long-ranged as
they are not subjected to the spin-splitting effect of the exchange field. In a ferromagnet
with a constant exchange field in proximity to a conventional singlet superconductor, it
is the spin-neutral short-ranged triplet Cooper pair that is induced. However, ferromag-
netic multilayers with varying exchange fields can create a triplet in one thin region that
is long-ranged in the next region where the exchange field is rotated [10–13]. The first
experimental evidence of the triplet pairing from superconductor-ferromagnet proximity
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CHAPTER 1. INTRODUCTION

effect was found in 2006 by R.S. Keizer et al. [14]. Since then several experimental
works have found supporting results [15–18]. More theoretical work has also been done
on ferromagnetic-superconductor proximity effects [18–22]. Bergeret et al. [6] showed
that the triplet Cooper pairs they predicted at S/F interfaces are odd in frequency. Such
odd-frequency states were first suggested by Berezinskii [23], and physicists have taken
an interest in studying properties and signatures of such odd-frequency states [7, 11, 24,
25].

These triplet Cooper pairs can be spin-polarized which makes them an intriguing sub-
ject for spintronics. Spintronics, short for spin electronics, is a field of study that focuses
on utilizing the intrinsic spin of electrons, in addition to their charge, for information
processing and storage. As supercurrents are dissipationless, the field of superconducting
spintronics is of great interest for creating energy-efficient spintronic devices [26].

One method of theoretically investigating proximity effects is using the quasiclassical
theory [27, 28]. The key assumption in quasiclassical approximation is that the Fermi
wavelength is the smallest length scale of the system, or equivalently that the Fermi
energy is the largest energy. In the quasiclassical theory, it is assumed that the Green
function, describing both particles, holes, and Cooper pairs, is sharply peaked at the
Fermi momentum. Since the Fermi wavelength is small, the Green function will thereby
be rapidly oscillating and therefore have large derivatives that are difficult to handle. By
integrating out the Fermi momentum one manages to integrate out this rapidly oscillating
part and is instead left with a slowly varying wavefunction that contains the information
about the physical observables. Further simplification can be made by assuming that
the system is diffusive, as done by Usadel [29]. Within the quasiclassical theory and the
diffusive regime, transport equations and boundary conditions can be derived and used
to study proximity effects. This is the method we use in this thesis and a brief discussion
of the theory will be given before the proximity effects are investigated.

In 2022 J. Linder and M. Amundsen derived quasiclassical boundary conditions for
interfaces where a thin layer of a spin-orbit coupling material has been added [30]. They
predict that through such an interface, a singlet supercurrent can induce triplet Cooper
pairs in the neighboring material, which results in an induced magnetization. In this
thesis, we expand this study to involve the creation of the supercurrent. Spin-active
interfaces can be used to facilitate the creation of triplet charge current and spin cur-
rents [31–33]. The aim of this study is to discover experimental signatures capable of
distinguishing the above-mentioned currents, hoping that it one day could be utilized for
spintronic devices.

1.1 Structure

The first part of the thesis establishes the theoretical framework needed to study prox-
imity effects in the diffusive quasiclassical theory. This includes presenting the equations
of motion, the bulk superconductor solution, the observables of interest, and boundary
conditions. As this part was thoroughly discussed in the specialization project, the details
of the derivations are left out and only the most important parts are presented here.

In the next part, the particular system we study is presented. Thereafter we include an
analytical and numerical study of the supercurrent-induced proximity effects at spin-orbit
coupled interfaces and present the results.

The final summarizes the main results and discusses potential further work.
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1.2. NOTATION

1.2 Notation

To keep the notation and calculation simple we use natural units ℏ = c = kB = 1.
In this thesis, we will use 2× 2, 4× 4, and 8× 8 matrices. To be able to distinguish

them we write

• M for 2× 2 matrices,

• M̂ for 4× 4 matrices,

• M̌ for 8× 8 matrices.

Sometimes matrices of different sizes are used in the same equation. In such cases, it
should be understood that the matrix of smaller dimension is implicitly a tensor product
with the identity matrix meaning that ǍB̂ = Ǎ(1⊗ B̂).

The Pauli matrices are denoted with τx, τy and τz and since they are commonly used
they will be written without underline

τx =

(
0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
. (1.1)

We also write the vector of Pauli matrices τ = (τx, τy, τz). Further, we define the
following 4× 4 matrices

τ̂i =

(
τi 0
0 τ ∗i

)
, (1.2)

and

ρ̂1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , ρ̂2 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 , ρ̂3 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (1.3)

The following notation will be used for commutators and anticommutators

[A,B] = AB −BA, (1.4)

{A,B} = AB +BA. (1.5)

For convenience, we define electron operators in Nambu ⊗ spin space

ψ =


ψ↑
ψ↓

ψ†
↑

ψ†
↓

 , ψ† =
(
ψ†
↑ ψ†

↓ ψ↑ ψ↓

)
, (1.6)

where ψσ, ψ
†
σ are annihilation and creation operators for an electron with spin σ.

The operation which will be referred to as tilde-conjugation is defined as complex
conjugating and inverting the energy E → −E.

F̃ (E) = F (−E)∗. (1.7)

3
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Chapter 2

Quasiclassical Theory

Quasiclassical theory is a much used method of studying multilayered systems of super-
conductors, normal metals, half metals, insulators and ferromagnets [28, 34]. The theory
is developed by Eilenberger [27] and by Larkin and Ovchinnikov [35].

This chapter presents the kinetic equation, relevant boundary conditions, bulk su-
perconductor solution and observables in the quasiclassical theory. Finally, the Riccati
parameterization is presented, which is a practical parameterization for numerically solv-
ing the Usadel equation. Much of the theory up until the Riccati parametrization is based
on the specialization project from the previous semester. Therefore, many of the details
will be left out from the main part of this thesis. Some of the more detailed calculations
can be found in the appendix, and much of the content can also be found in the master’s
thesis by Morten [36], Fyhn [37] and Amundsen [38] and in the works of Kamenev [39],
Kita [40] Gor’kov [41] and Chandrasekhar [28].

2.1 System Hamiltonian

The very first step of finding an equation of motion is to set up the relevant Hamiltonian.
Here this includes a kinetic term, H0, a impurity scattering interaction Himp, a BCS
interaction term, Hint, and a ferromagnetic term HFM. The BCS term is found by includ-
ing an attractive force between electrons of opposite spin and performing a mean-field
approximation. For a thorough explanation of the BCS theory we refer to chapters 8 and
9 in the book by T. Kita [40]. At first we allow the terms to be time-dependent and the
total Hamiltonian can be written in terms of the second quantized electron annihilation
and creation operators, ψσ and ψ†

σ, as

H(t) =H0(t) +Hint(t) +Himp(t) +HFM(t),

H0(t) =

∫
dr
∑
σ

ψ†
σ(r, t)

[
− 1

2m

(
∇r − ieA(r, t)

)2
+ eφ(r, t)− µ

]
ψσ(r, t),

Hint(t) =− λ

∫
dr
[
∆∗(r, t)ψ↓(r, t)ψ↑(r, t) + ∆(r, t)ψ†

↑(r, t)ψ
†
↓(r, t)

]
,

Himp(t) =

∫
dr
∑
σ

ψ†
σ(r, t)Vimp(r, t)ψσ(r, t),

HFM(t) =−
∫

dr
∑
σσ′

ψ†
σ(r, t)h · τ σσ′ψσ′(r, t).

(2.1)

5



CHAPTER 2. QUASICLASSICAL THEORY

The subscript σ refers to the spin of the electron, m is the electron mass, A is the elec-
tromagnetic vector potential, φ is the electromagnetic scalar potential, µ is the chemical
potential and h is the exchange field. Vimp is the impurity potential which plays a central
role in allowing us to assume that the wavefunction is isotropic. The superconducting
order parameter is defined as ∆(r) = ⟨ψ↑(r, t)ψ↓(r, t)⟩.

2.2 Equation of motion

The Heisenberg equation of motion for an operator a reads

i∂ta = [a,H]. (2.2)

This can be used to find the equation of motion for the electron creation and annihilation
operators

i∂tψσ(r, t) = −[ 1
2m

(∇r − ieA)2 + eφ− µ]ψσ

+∆(r, t)(δσ↑ψ
†
↓(r, t)− δσ↓ψ

†
↓(r, t))

+ Vimpψσ(r, t)−
∑
σ′

[h · τ ]ψσ′(r, t),
(2.3)

where δσσ′ is the Kronecker delta. In Nambu ⊗ spin space, this can be written compactly
in 4× 4 matrix notation using the spinors ψ = (ψ↑, ψ↓, ψ

†
↑, ψ

†
↓)

i∂tρ̂3ψ(r, t) = Ĥ(r, t)ψ(r, t), (2.4)

where Ĥ is defined as

Ĥ = ξ̂ + ∆̂ + Vimp1̂− M̂,

ξ̂ = − 1
2m

(∇− ieAρ̂3)
2 + eφ1̂− µ1̂,

∆̂ =


0 0 0 ∆
0 0 −∆ 0
0 ∆∗ 0 0

−∆∗ 0 0 0

 ,

M̂ = h · τ .

(2.5)

Green functions

Moving forward we introduce a powerful and much used tool in studying quantum me-
chanical systems, the Green function. Further, we introduce the Keldysh Green function
[42], which is commonly used to study non-equilibrium systems. A more thorough dis-
cussion of the Keldysh formalism is found in the book by A. Kamenev chapters 2 and 9
[39].

First, the 2 × 2 retarded, GR, advanced, GA, and Keldysh, GK , Green functions are
defined as well as the anomalous Green functions F . For this, we use the 4-vector notation
x = (r, t).

6



2.2. EQUATION OF MOTION

GR
σσ′(x1, x2) = −iΘ(t1 − t2) ⟨{ψσ(x1), ψ

†
σ′(x2)}⟩ , (2.6)

GA
σσ′(x1, x2) = iΘ(t2 − t1) ⟨{ψσ(x1), ψ

†
σ′(x2)}⟩ , (2.7)

GK
σσ′(x1, x2) = −i ⟨[ψσ(x1), ψ

†
σ′(x2)]⟩ , (2.8)

FR
σσ′(x1, x2) = −iΘ(t1 − t2) ⟨{ψσ(x1), ψσ′(x2)}⟩ , (2.9)

FA
σσ′(x1, x2) = iΘ(t2 − t1) ⟨{ψσ(x1), ψσ′(x2))}⟩ , (2.10)

FK
σσ′(x1, x2) = −i ⟨[ψσ(1), ψσ′(x2)]⟩ , (2.11)

where Θ is the unit step function. We can group these together and define the 4 × 4
Green functions

ĜR/A(x1, x2) =

(
GR/A(x1, x2) FR/A(x1, x2)

(FR/A(x1, x2))
∗ (GR/A(x1, x2))

∗

)
, (2.12)

ĜK(x1, x2) =

(
GK(x1, x2) FK(x1, x2)

−(FK(x1, x2))
∗ −(GK(x1, x2))

∗

)
. (2.13)

Finally, we also define the 8 × 8 Green function which contains all the above Green
functions

Ǧ =

(
ĜR ĜK

0 ĜA

)
. (2.14)

By using the equation of motion for the creation and annihilation operators the equa-
tion of motion for the 8× 8 Green function can be found to be

i∂t1 ρ̂3Ǧ(x1, x2) = δ(x1 − x2) + ρ̂3Ĥ(x1)ρ̂3Ǧ(x1, x2), (2.15)

−i∂t2Ǧ(x1, x2)ρ̂3 = δ(x1 − x2) + Ǧ(x1, x2)Ĥ
†(x2), (2.16)

where δ(x) is the Dirac delta function. We subtract the left-handed Equation (2.15) from
the right-handed Equation (2.16), which gets rid of the δ-function

(
i∂t1 ρ̂3 − ρ̂3Ĥ(x1)ρ̂3

)
Ǧ(x1, x2)− Ǧ(x1, x2)

(
− i∂t2 ρ̂3 − Ĥ†(x2)

)
= 0. (2.17)

The effect of the impurity potential can be regarded using a self-energy as shown in
Appendix B.1. Equation (2.17) can then be written as

(
i∂t1 ρ̂3 − ρ̂3Ĥ0(x1)ρ̂3

)
Ǧ(x1, x2)−

∫
dx3Σ̂(x1, x3)Ǧ(x3, x2)

− Ǧ(x1, x2)
(
− i∂t2 ρ̂3 − Ĥ0

†
(x2)

)
+

∫
dx3Ǧ(x1, x3)Σ̂(x3, x2) = 0,

(2.18)

where H0 is the Hamiltonian without the impurity potential, and Σ is the impurity self
energy. Notice that

ρ̂3Ĥ0ρ̂3 = ξ̂ − ∆̂ + Ŝ − M̂, (2.19)

7



CHAPTER 2. QUASICLASSICAL THEORY

so the two ρ̂3 matrices only change the ∆̂ into −∆̂ whereas the other block diagonal terms
stay unchanged. Equation (2.18) can be written as

0 = i∂t1 ρ̂3Ǧ(x1, x2) + i∂t2Ǧ(x1, x2)ρ̂3

− ξ̂(x1)Ǧ(x1, x2) + Ǧ(x1, x2)ξ̂
∗(x2)

− Ŝ(x1)Ǧ(x1, x2) + Ǧ(x1, x2)Ŝ(x2)

+ M̂(x1)Ǧ(x1, x2) + Ǧ(x1, x2)M̂(x2)

+ ∆̂(x1)Ǧ(x1, x2) + Ǧ(x1, x2)∆(x2)

−
∫

dx3Σ̂(x1, x3)Ǧ(x3, x2)−
∫

dx3Ǧ(x1, x3)Σ̂(x3, x2).

(2.20)

Wigner transformations

In the interest of being able to apply the quasiclassical approximation, the mixed repre-
sentation is introduced and Wigner transformation is performed on Equation (2.20). The
mixed representation refers to changing from the individual particle coordinates x1 and x2
to the center of mass coordinate X = 1

2
(x1 + x2) and the relative coordinate x = x1 − x2.

The Wigner transformation is defined as a Fourier transform over the relative coordinate
such that the Wigner transform of a function A(x1, x2) is

A(X, p) ≡
∫

dxe−ipxA(x1, x2). (2.21)

We also define the Wigner transform of a convolution, which sometimes is referred to
as a “star product” as

A⊗B(X, p) ≡
∫

d(x1 − x3)e
−ip(x1−x3)

∫
dx2A(x1, x2)B(x2, x3)

= ei(∂XA
∂pB−∂XB

∂pA )/2A(X, p)B(X, p).

(2.22)

The second line in the expression above is a convenient way of writing the “star product”.
A derivation of the second line expression is included in Appendix A.1. Moreover, we
define the commutator/anticommutator notation of star products[

A ,⊗B
]
= A⊗B(X, p)−B ⊗ A(X, p),{

A ,⊗B
}
= A⊗B(X, p) +B ⊗ A(X, p).

(2.23)

The details of the transformation of Equation (2.20) can be found in Appendix A.3
The transformed equation, often referred to as the Gorkov equation [43] reads

− ie
2m

{
Aρ̂3 ,⊗∇RǦ

}
+ p

m
· ∇̄Ǧ+

[
Eρ̂3 − e2

2m
A2 − eφ+ M̂ + ∆̂− Σ̂ ,⊗ Ǧ

]
= 0, (2.24)

where ∇̄Ǧ = ∇RǦ− ie[Aρ̂3, Ǧ].

2.3 Quasiclassical Approximation

As Equation (2.24) is expressed with the relative momentum p we can now apply the
quasiclassical approximation. The central assumption in the quasiclassical approximation

8



2.4. DIFFUSIVE LIMIT AND USADEL EQUATION

is that the Fermi wavelength λF is the shortest length scale in our system and that every
other length, l, in our system is much larger λF ≪ l. This is equivalent to saying that
the Fermi energy, EF in our system is much larger than all other energies and energy
fluctuations. We assume that both the length scales of derivatives and eA are large
compared to λF . By this assumption we remove all ∇, and A terms from the Equation
(2.24), except those who are accompanied by p, which can be large.

In addition to removing gradients, we will in this study assume that the system is
stationary and remove time derivatives. Removing the time derivatives and gradients
gives [

A ,⊗B
]
= [A,B], (2.25){

A ,⊗B
}
= {A,B}. (2.26)

By these approximations, Equation (2.24) simplifies to

p · e
m
[Aρ̂3, Ǧ] +

p

m
· ∇RǦ+ [Eρ̂3 − eφ+ M̂ + ∆̂− Σ̂, Ǧ] = 0. (2.27)

In the quasiclassical approximation, we also assume that the Green function is strongly
peaked around the Fermi level. The reason for this assumption is that inside the Fermi-sea
the states are mostly filled at low temperatures. Because of the Pauli principle electrons
cannot be scattered into an already occupied state, and hence they will not give consid-
erable contributions to kinetics. Above the Fermi-level states are mostly unoccupied, so
there are no electrons to be scattered, hence no contributions will come from such states
either. By this reasoning, the quasiclassical Green function is defined as

ǧ(pF , E) =
i

π

∫ ∞

−∞
dξpǦ(p, E), (2.28)

where ξp = p2

2m
. This quasiclassical Green function keeps the angular dependency of pF

but the magnitude of p is integrated out. It should be commented that the integral
is diverging, a problem that could be solved as done by Eilenberger by using a special
integration contour, or by Serene and Rainer [44] by introducing a cut-off frequency.

We now integrate Equation (2.27) and we say that Ǧ is so strongly peaked around
pF that we also can say that p = pF inside the integral and hence move the pF outside
the integral. This gives us the equation which in the literature often is referred to as the
Eilenberger equation [27]

pF

m
· ∇̄ǧ + [Eρ̂3 − eφ+ M̂ + ∆̂− Σ̂, ǧ] = 0. (2.29)

Further restrictions can be put on the quasiclassical Green function by introducing
the normalization condition

ǧǧ = 1. (2.30)

Although there are different ways to normalize the Green function, this is the most
common normalization and is thoroughly discussed in [45].

2.4 Diffusive limit and Usadel Equation

The next and important step is assuming the system to be diffusive. This means that
we are in the region where the Green function has been scattered enough to consider the

9



CHAPTER 2. QUASICLASSICAL THEORY

wavefunction to be isotropic. We expand the Green function in the spherical harmonics
and keep only the s- and p-wave part [41]

ĝ ≈ ĝs + eF · ĝp. (2.31)

From impurity averaging it can also be shown that the quasiclassical self-energy in
the self-consistent Born approximation can in the diffusive limit be written as

σ ≈ − i

2τ
ǧs, (2.32)

where τ is the relaxation time. This is shown in appendix B.2.
By using this and the normalization condition it can be found that the quasiclassical

equation of motion can, in the diffusive limit, be written as

D∇̄(ǧs∇ǧs) + i[Eρ̂3 − eφ+ M̂ +∆, ǧs] = 0, (2.33)

where D = 1
3
τvF and vF is the Fermi velocity. This is the commonly named Usadel

equation [29]. Moving on we remove the s-subscript for simplicity of notation.

2.5 Bulk superconductor solution

Assuming that the system is in equilibrium we only need to find a solution for the retarded
Green function, since it can be found from the definition that

ĝA = −ρ̂3ĝRρ̂3, (2.34)

and in equilibrium we have the fluctuation-dissipation relation [46]

ĝK = (ĝR(E)− ĝA(E)) tanh(E/2T ). (2.35)

It can be shown, as in [28] that the bulk superconductor solution to the Usadel
equation is

ĝR =

(
sgn(E)√
E2 − |∆|2

Θ(E2 − |∆|2)− i√
|∆|2 − E2

Θ(|∆|2 − E2)

)
(ρ̂3E + ∆̂). (2.36)

The solution has the shape

ĝ =


g 0 0 f
0 g −f 0

0 −f̃ −g̃ 0

f̃ 0 0 −g̃

 =

(
g f

−f̃ −g̃

)
, (2.37)

where the tilde-notation means g̃(E) = g(−E)∗.
This bulk conventional superconductor solution only contains singlet Cooper pairs.

With triplet Cooper pairs present, f and g will change form, and can also include diagonal
elements. In these cases, the structure of the last matrix in Equation (2.37) will remain
intact. It should here also be mentioned that the superconductor can have a phase. A
physical observable is never dependent on a phase, however, a phase difference can affect
the physics. In case of a phase, ϕ, we would simply add a phase factor eiϕ to f and

e−iϕ to f̃ . Notice that in a singlet superconductor, the tilde conjugated anomalous Green

function satisfy f̃ = −fe−2iϕ.
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ĝL ĝR

z

Figure 2.1: A illustration of interfaces between two materials. The z-axis is defined to
be orthogonal to the interface.

2.6 Singlet-triplet decomposition

In this thesis, we study systems where not only the conventional singlet Cooper pairs
are present but also triplet pairing. As it will later prove to be convenient, the d-vector
notation is introduced. This singlet-triplet decomposition looks like

f = (fs + d · τ )iτy =
(
−dx + idy fs + dz
−fs + dz dx + idy

)
. (2.38)

This decomposition is discussed in more detail in other works [47, 48]. The triplets are
defined such that dz = (|↑↓⟩ + |↓↑⟩)z where the z-subscript indicates that ↑ is chosen to
align with the positive z-direction. Similarly dx = (|↑↓⟩+|↓↑⟩)x and dy = (|↑↓⟩+|↓↑⟩)y. So
the di-component correspond to the spin-neutral triplet in the i-directions. As discussed
in the paper by H. Giil and J. Linder [11] this d-vector usually behaves oppositely from
the singlet under tilde conjugation d̃ = d, or with a phase involved, d̃ = de−2iϕ. How the
components behave under tilde conjugation will be a central part of the discussion later
in this thesis.

2.7 Boundary conditions

In the previous section we found the equation of motion. To solve the system, the
differential equation needs to be accompanied by a set of boundary conditions. The
system, which will be studied in this thesis, includes different types of interfaces. In the
following section, we discuss the boundary conditions from each of the interface types.
The simplest and most used boundary condition is the Kuprianov-Lukichev boundary
conditions [49]. For the study later on, this will be used when we look at a singlet
charge current created by a normal Josephson junction. Further, we will discuss the spin-
active boundaries that we will be used to create triplet charge currents and spin currents.
Lastly, we discuss the Rashba spin-orbit coupling boundaries which is a cornerstone of
this thesis. These will be used between the current-carrying material and a normal metal
to get experimental signatures in the normal metal induced by the supercurrents.

Figure 2.1 describes the general system for which the boundary conditions are set up.
Presenting the boundary conditions here we assume that we have an interface normal in
the z-direction. We call the material to the “left” L, and the material to the “right” R.
We will mark the left and right Green functions by an R or L subscript that should not
be confused with the superscript R used previously for the marking the retarded Green
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CHAPTER 2. QUASICLASSICAL THEORY

functions. In general, the boundary conditions are written on the form

ĝL∂zĝL = Î , (2.39)

where Î is the matrix current that takes into account both transmission and reflection
at the interface [50]. All the boundary conditions presented below are presented for the
derivative of the left side Green function ∂zĝL. Finding the boundary condition for the
right side Green function can be done by simply interchanging L and R and changing
sign on the right-hand side terms.

2.7.1 Kuprianov-Lukichev boundary conditions

The Kuprianov-Lukichev boundary condition [49] is the simplest quasiclassical boundary
condition that considers only spin-independent tunneling between the materials. These
boundary conditions read

ĝL∂zĝL = ΩL[ĝL, ĝR], (2.40)

where ΩL is a material-specific constant that depends on the ratio between the bulk
resistance of the two sides of the interface and the length of the left material.

2.7.2 Spin-active boundary conditions

For the purpose of creating triplet currents, spin-active interfaces will be used. Spin-active
boundary conditions is a term used for boundary conditions where strongly spin-polarized
magnetic materials are involved. These materials could be either strongly spin-polarized
magnetic insulators or half-metallic ferromagnets. In this work we will consider interfaces
where a half-metallic ferromagnet is introduced between two materials, one of which will
be a superconductor and the other a ferromagnet or a normal metal. Triplets can then
be induced from spin-mixing caused by reflective scattering of the wavefunction and by
spin-dependent transmission probabilities.

The boundary conditions for spin-active tunneling interface to the first order of tunnel-
ing probabilities and spin-mixing angles, described in [31] will be used. In these boundary
conditions, three more terms than the normal Kuprianov-Lukichev term are included. A
derivation of these boundary conditions is found in [51] and the boundary conditions read

ĝL∂zĝL = G0[ĝL, ĝR] +G1[ĝL, m̂ĝRm̂] +GMR + [ĝL, {ĝR, m̂}]− iGφ[ĝL, m̂]. (2.41)

We recognize the G0 term as the Kuprianov-Lukichev term. GMR is a magnetoresis-
tive term and G1 is a de-pairing term which both originate from having spin-dependent
tunneling probabilities. We define polarization as

P =
T↑ − T↓
T↑ + T↓

, (2.42)

where T↑, T↓ is the transmission probability for spin up and spin down respectively. The
expressions for G1 and GMR read

G1/G0 =
1−

√
1− P 2

1 +
√
1− P 2

, GMR/G0 =
P

1 +
√
1− P 2

. (2.43)
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ǧL ǧR

z

y

L

Figure 2.2: The general system for which the spin-orbit coupling boundary conditions
are derived, the system is considered to be narrow in the x-direction such that the Green
function has no x-dependency.

Further, the Gφ term takes into account spin-dependent scattering at the interface,
and more about this spin-mixing scattering can be read in [52]. Gφ depends on the spin-
mixing angles φ which is the spin-dependent scattering phase shift. It should here be
noted that P and Gφ really are a sum over scattering channels, but here it is assumed
that the scattering channels are equal such that the summation can be removed.

2.7.3 Spin-orbit coupling boundary conditions

Another type of interface can be made by including a thin region of a spin-orbit coupling
material. In the paper by J. Linder and M. Amundsen [30], they derived quasiclassical
boundary conditions for such interfaces where the gradient parallel to the interface is taken
into account. The type of boundaries described by these boundary conditions is shown
in Figure 2.2, where the left side Green functions are allowed to have a y-dependency. A
Rashba spin-orbit coupling interaction was used in the interface and both tunneling and
reflection terms were considered.

Since a couple of smaller errors, were found in the paper, the derivation of these
boundary conditions is also included in Appendix C. If we assume that the right side
Green function has no y-dependency the boundary conditions reads

DǧL∂zǧL =T 2
0 [ǧL, ǧR] + T 2

1 p
2
F [ǧL, τ̂ ∥ǧRτ̂ ∥]−mDT1T0[ǧL, {τ̂∥,x, ǧR∂yǧR}]

−Ddα2[ρ̂x, ǧLρ̂xǧL]−Ddα2[ρ̂y, ǧLρ̂yǧL].
(2.44)

In the equation above T0, T1 are diagonal and off-diagonal elements of the tunneling
matrix, α is the strength of the spin-orbit coupling interaction, and d is the thickness of
the spin-orbit coupling material.

2.8 Observables

As mentioned we will be looking at how charge currents and spin currents affect the
magnetization induced through the spin-orbit coupled interface. To do so we need to
know what the expressions for magnetization and currents look like in the quasiclassical
theory. Thus, in this section, the quasiclassical expressions for the magnetization, spin
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and charge currents are presented. To simplify the analytical study later on we also take
the time to present the observables expressed in the singlet-triplet decomposition in the
weak proximity regime. Again, the detailed derivation of these expressions was presented
in the specialization project and is left out, but the final expressions are presented.

2.8.1 Currents

The quasiclassical expression for current can be found by using the continuity equation
∂tρ+∇ · J = 0, where J is the current of a quantity and ρ is the corresponding density.

For charge, we have that the charge density can be written as ρ = e ⟨ψ†ρ̂3ψ⟩, and
for spin the spin density can be written as ⟨ψ† 1

2
ρ̂3τψ⟩. By using the equation of motion

for the creation and annihilation operator and writing the expression in terms of the
quasiclassical Green function we get the charge current expression

J =
eN0D

4

∫
dETr

[
ρ̂3ǧ∇̄ǧ)K

]
. (2.45)

The spin current is similar, we just have to add the 1
2
τ in front of the ρ̂3.

As mentioned we are interested in writing the expressions in terms of the singlet-triplet
decomposition terms fs and d. By linearizing, assuming ĝ = ρ̂3 + f̂ and only keeping
the first order in f̂ , using the relation ĝA = −ρ̂3(ĝR)†ρ̂3 and that we in equilibrium have
ĝK = (ĝR − ĝA) tanh(βE

2
), we get the following expressions for the current J and spin

current Js

J = J0

∫ ∞

0

dE

∆0

tanh(βE
2
)Re
(
[fs∇f̃s − dz∇d̃z − dx∇d̃x − dy∇d̃y]− [ ˜. . .]

)
, (2.46)

Jsx = Js0

∫ ∞

0

dE

∆0

tanh(βE
2
)Im([dy∇d̃z − dz∇d̃y] + [ ˜. . .]), (2.47)

Jsy = Js0

∫ ∞

0

dE

∆0

tanh(βE
2
)Im([dz∇d̃x − dx∇d̃z] + [ ˜. . .]), (2.48)

Jsz = Js0

∫ ∞

0

dE

∆0

tanh(βE
2
)Im([dx∇d̃y − dy∇d̃x] + [ ˜. . .]), (2.49)

where J0 = 2eN0D∆0 and Js0 = N0D∆0. We have written the integral in terms of the
dimensionless variable E/∆0, where ∆0 = ∆(T = 0) is the zero temperature energy gap.
This means that J/J0 is also a dimensionless variable which is practical for the numerical
study. To arrive at these equations we have also used that∫ ∞

−∞
dEf(E)∗ = −

∫ ∞

−∞
dEf̃(E). (2.50)

In the following sections, we will separate the part of the charge current carried by
the singlet and the triplet components. We define the current component carried by the
different components as

Jfs = J0

∫ ∞

0

dE

∆0

tanh(βE
2
)Re
(
[fs∇f̃s]− [ ˜. . .]

)
, (2.51)

Jdi = −J0
∫ ∞

0

dE

∆0

tanh(βE
2
)Re
(
[di∇d̃i]− [ ˜. . .]

)
, (2.52)

where Jfs is the charge current carried by the singlet component and Jdi is carried by
the di component.
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2.8.2 Magnetization

It can be shown that the quasiclassical expression for magnetization reads

M =
µ0

8

∫
dETr(τ̂ ĝK). (2.53)

It should be mentioned that this expression does not take into account the contribution
from the Fermi sea, such that a ferromagnetic exchange field will not be captured by this
expression.

Once more we want to express the magnetization in terms of the singlet-triplet de-
composed components. This can be done similarly to the current, by using the expression
for ĝA and the equilibrium expression for ĝK . This time there will be no first-order con-
tribution so we have to take into account the normalization condition, (ĝR)2 = 1, to
find the normalized expression for g and g̃. By this method, it can be found that the
magnetization, to the second order in f , reads

Mx =M0

∫ ∞

0

dE

∆0

tanh(βE
2
)Re(d̃xfs − dxf̃s), (2.54)

My =M0

∫ ∞

0

dE

∆0

tanh(βE
2
)Re(d̃yfs − dyf̃s), (2.55)

Mz =M0

∫ ∞

0

dE

∆0

tanh(βE
2
)Re(d̃zfs − dzf̃s), (2.56)

where M0 = µ0∆0.

2.9 Riccati parametrization

One way of parametrizing the Green function is the Riccati parametrization [53, 54]. The
Riccati parametrization is advantageous for numerical computation because the param-
eters are bounded between 0 and 1. For the purpose of studying systems numerically we
will here go through the derivation of the Riccati parametrized Usadel equation as well
as the Riccati parametrized boundary equation.

First of all the parameters need to be defined. N and γ are defined as follows

ĝ =

(
N(1 + γγ̃) 2Nγ

−Ñ γ̃ −Ñ(1 + γ̃γ)

)
. (2.57)

N and γ are 2 × 2 matrices, but for the purpose of keeping the expressions tidier, the
underline notation is dropped for these matrices. By the normalization condition it is
seen that N = (1− γγ̃)−1 and Ñ = (1− γ̃γ)−1.

A couple of useful identities can be found

Nγ = γÑ, Ñ γ̃ = γ̃N. (2.58)

Notice also that this gives
γγ̃ = 1−N−1. (2.59)

When writing the Usadel equation and the boundary conditions in this parametriza-
tion, we will have to consider derivatives. To simplify the notation we therefore introduce
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γ′ = ∂zγ. The following way of writing derivatives will also be useful

∂zN = N(γ′γ̃ + γγ̃′)N, (2.60)

∂zÑ = Ñ(γ̃′γ + γ̃γ′)Ñ , (2.61)

∂z(Nγ) = N(γ′ + γγ̃′γ)Ñ , (2.62)

∂z(Ñ γ̃) = Ñ(γ̃′ + γ̃γ′γ̃)N, (2.63)

(2.64)

all of which can be found by using the identities above.
The derivation of the Riccati parametrized Usadel equation and the Kuprianov-

Lukichev boundary condition is thoroughly described in the paper by Jacobsen et al.
[54]. To separate out the ∂2zγ term from the Usadel equation, which is a 4 × 4 matrix
equation, we take the upper-right 2×2 matrix minus the upper-left 2×2 matrix multiplied
by γ. Thereafter we multily with 1

2
N−1 from the left. This means writing

1
2
N−1([. . . ]12 − [. . . ]11γ), (2.65)

where [. . . ] is the full matrix equation and the subscript indicates block matrix. For the
boundary condition, ∂zγ is found by the same procedure. The Riccati parameterized
Usadel equation for a ferromagnet reads

∂2zγ = −2iEγ − ih · (τγ − γτ ∗)− 2γ′Ñ γ̃γ′, (2.66)

where for a normal metal, the only adjustment needed is to set h = 0. Further, it can be
shown that the Riccati parameterized bulk superconductor solution is

γBCS =

(
0 b
−b 0

)
, (2.67)

where

b =

{
∆

E+i
√
∆2−E2 for|E| > ∆,

∆sgn(E)

|E|+
√
E2−∆2 for|E| < ∆.

(2.68)

2.9.1 Riccati parametrization of boundary conditions

Before starting on the Riccati parametrizing of the specific boundary conditions we note
that many of the terms, both in the spin-orbit coupling and spin-active boundary condi-
tions, have the same form. Here a practical method for Riccati parametrizing this type
of term is presented in order to simplify the calculation in the two following sections.

Several of the terms take the form

[ĝL, Û ], (2.69)

where Û is a matrix whose exact form depends on the specific boundary conditions. In
general, we write Û as

Û =

(
Û11 Û12

Û21 Û22

)
. (2.70)

It can be found that the procedure described by Equation (2.65) performed to the left
side of the boundary conditions g∂zg gives

1

2
N−1

L

(
[ĝL∂zĝL]12 − [ĝL∂zĝL]11γL

)
= ∂zγL, (2.71)
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as seen in [54].
This is the left-hand side of the Riccati parameterized boundary conditions. For the

complete boundary conditions, we also have to do the same on the right-hand side. This
means we need to take 1

2
N−1

L ([. . . ]12 − [. . . ]11γL) of every term on the right-hand side of
the boundary conditions. Thus we start by finding a procedure for all terms that come
in the form of Equation (2.69).

1

2
N−1

L

(
[ĝL, Û ]

1,2 − [ĝL, Û ]
1,1γL

)
=

1

2
N−1

L

(
g
L
Û12 + f

L
Û22 − Û11fL

+ Û12g̃L − (g
L
Û11 + f

L
Û21 − Û11gL + Û12f̃L

)γL
)
.

(2.72)
As a next step, every term with the same 2 × 2 Ûij matrix is put together and we

insert f = 2Nγ and g = 2N − 1. The Û11 terms can be written as

1
2
N−1

L (−Û11fL
− g

L
Û11γL + Û11gLγL)

= 1
2
N−1

L (−Û112NLγL − (2NL − 1)Û11γL + Û11(2NL − 1)γL)

= −Û11γL.

(2.73)

In the same manner the Û12 terms become

1
2
N−1

L

(
g
L
Û12 + Û12g̃L − Û12f̃L

γL
)

= 1
2
N−1

L

(
(2NL − 1)Û12 + Û12(2ÑL − 1)− Û122ÑLγ̃LγL

)
= Û12.

(2.74)

The Û21 term should also be written in terms of γ as

1
2
N−1

L (−f
L
Û21γL)

= −γLÛ21γL.
(2.75)

And finally the Û22 term can be written as

1
2
N−1

L (f
L
Û)

= γLÛ22.
(2.76)

Putting everything together we get

1

2
N−1

L

(
[ĝL, Û ]

1,2 − [ĝL, Û ]
1,1γL

)
= −Û11γL + Û12 − γLÛ21γL + γLÛ22. (2.77)

We note that this also can be used for the Kuprianov-Lukichev boundary conditions,
where we would use Û = ΩĝR. From this, and using the identities in Equation (2.58) and
(2.59), the Kuprianov-Lukichev boundary conditions can be found to be

∂zγL = Ω(1− γLγ̃R)NR(γR − γL), (2.78)

∂zγR = Ω(1− γRγ̃L)NL(γL − γR). (2.79)

(2.80)

In the following, both the spin-orbit coupled and spin-active boundary conditions
will be written in the Riccati parameterized form using the method described here. In
the following derivation, the underline notation of the 2 × 2 Greens function g and f is
removed to keep the calculation tidier.

17



CHAPTER 2. QUASICLASSICAL THEORY

Riccati parametrization of the SOC boundary conditions

We now look into the Riccati parametrization of spin-orbit coupled boundary conditions
given in Equation (2.44), where we do the same to every term on the right-hand side as
we did to the left-hand side in Equation (2.71) The first term is simply the Kuprianov-
Lukichev boundary term. The rest of the terms we go through one by one.

The first term is 2
3
T 2
1 p

2
F [ĝL, τ̂ ∥ĝRτ̂ ∥], for which we define the matrix

Û (1) = τ̂ ∥ĝRτ̂ ∥ =

(
τxgLτx −τxfLτ ∗x
τ ∗x f̃Lτx −τ ∗x g̃Lτ ∗x

)
+

(
τygLτy −τyfLτ ∗y
τ ∗y f̃Lτy −τ ∗y g̃Lτ ∗y

)
, (2.81)

where we leave out the prefactor 2
3
T 2
1 p

2
F . Thus the contribution from this term will

according to Equation (2.77) be

1

2
N−1

L

(
[ĝL,

2

3
T 2
1 p

2
F [ĝL, τ̂ ∥ĝRτ̂ ∥]]

1,2 − [ĝL,
2

3
T 2
1 p

2
F [ĝL, τ̂ ∥ĝRτ̂ ∥]]

1,1γL
)

=
[
− (τxgLτx + τygLτy)γL − τxfLτ

∗
x − τyfLτ

∗
y − γL(τ

∗
x f̃Lτx + τ ∗y f̃Lτy)γL

+ γL(−τ ∗x g̃Lτ ∗x − τ ∗y g̃Lτ
∗
y )
]
.

(2.82)

We insert f = 2Nγ and g = (2N − 1) get

[−τxNLτxγL + γL − τxNLγLτ
∗
x − γLτ

∗
xÑLγ̃LτxγL − γLτ

∗
xÑLτ

∗
x

− τyNLτyγL + γL − τyNLγLτ
∗
y − γLτ

∗
y ÑLγ̃LτyγL − γLτ

∗
y ÑLτ

∗
y ].

(2.83)

From the second term we define

Û (2) ={τ̂∥,x, ĝR∂yĝR}

=

(
τx[gRg

′
R − fRf̃

′
R] τx[gRf

′
R − fRg̃

′
R]

−τ ∗x [f̃Rg′R + g̃Rf̃
′
R] −τx[−f̃Rf ′

R + g̃Rg̃
′
R]

)
+

(
[gRg

′
R − fRf̃

′
R]τx −[gRf

′
R − fRg̃

′
R]τ

∗
x

[f̃Rg
′
R + g̃Rf̃

′
R]τx −[−f̃Rf ′

R + g̃Rg̃
′
R]τ

∗
x

)
,

(2.84)

which gives us the contribution to the right-hand side[
− (τx[gRg

′
R − fRf̃

′
R] + [gRg

′
R − fRf̃

′
R]τx)γR

+ τx[gRf
′
R − fRg̃

′
R]− [gRf

′
R − fRg̃

′
R]τ

∗
x

− γR(−τ ∗x [f̃Rg′R + g̃Rf̃
′
R] + [f̃Rg

′
R + g̃Rf̃

′
R]τx)γR

γR(−τx[−f̃Rf ′
R + g̃Rg̃

′
R]− [−f̃Rf ′

R + g̃Rg̃
′
R]τ

∗
x)
]
.

(2.85)

Using Equation (2.63) and (2.64) we see that we may write the following

[gRg
′
R − fRf̃

′
R] = NR[γ

′
Rγ̃R − γRγ̃

′
R]NR,

[gRf
′
R − fRg̃

′
R] = NR[γ

′
R − γRγ̃

′
RγR]ÑR.

(2.86)

Thus the contribution to the right-hand side of the Riccati parametrized boundary
conditions can be written as

τx2NR[γ
′
R − γRγ̃

′
RγR]ÑR − 2NR[γ

′
R − γRγ̃

′
RγR]

− γLτ
∗
x2ÑR[γ̃

′
RγR − γ̃Rγ

′
R]− γL2ÑR[γ̃

′
RγR − γ̃Rγ

′
R]ÑRτ

∗
x

− τx2NR[γ
′
Rγ̃R − γRγ̃R]NRγL − 2NR[γ

′
Rγ̃R − γRγ̃R]NRτxγL

+ γLτ
∗
x2ÑR[γ̃

′
R − γ̃Rγ

′
Rγ̃R]NRγL − γL2ÑR[γ̃

′
R − γ̃Rγ

′
Rγ̃R]NRτxγL.

(2.87)
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The third and fourth terms in Equation (2.44) do not have the shape as in Equation
(2.77), so we have to treat them differently. The two terms do, however, have the same
shape as each other. Therefore we only have to do the calculation once by performing
the parametrization procedure on

[ρ̂i, ĝLρ̂iĝL]. (2.88)

First, we write out gLρ̂igL

gLρ̂igL =

(
gLτigL + fLτ

∗
i f̃L gLτifL + fLτ

∗
i g̃L

−f̃LτigL − g̃Lτ
∗
i f̃L −f̃LτifL − g̃Lτ

∗
i g̃L

)
. (2.89)

The upper left component of the whole expression then reads

[ρ̂i, ĝLρ̂iĝL]
(1,1) = τigLτigL + τifLτ

∗
i f̃L − gLτigLτi − fLτ

∗
i f̃Lτi, (2.90)

and the upper right part reads

[ρ̂i, ĝLρ̂iĝL]
(1,2) = τigLτifL + τifLτ

∗
i g̃L + gLτifLτ

∗
i + fLτ

∗
i g̃Lτ

∗
i . (2.91)

We write g and f in terms of the Riccati parametrized expressions and get that the
contribution from these terms to the right-hand side is

1
2
N−1

L

[
τi(2NL − 1)τi2NLγL + τi2NLγLτ

∗
i (2ÑL − 1) + (2NL − 1)τi2NLγLτ

∗
i

+ 2NLγLτ
∗
i (2ÑL − 1)τ ∗i − [τi(2NL − 1)τi(2NL − 1) + τi2NLγLτ

∗
i 2ÑLγ̃L

− (2NL − 1)τi(2NL − 1)σ9− 2NLγLτ
∗
i 2ÑLγ̃L]γL

]
= −2γL + 2τiNLγLτ

∗
i + 2γLτ

∗
i ÑLτ

∗
i + 2τiNLτiγL + 2γLτ

∗
i ÑLγ̃LτiγL.

(2.92)

Putting all of the terms together we get the complete Riccati parametrized spin-orbit
coupled boundary conditions

∂zγL =2T0(1− γLγ̃R)NR(γR − γL)

+ 22
3
T 2
1 p

2
F

(
− τxNLτxγL + γL − τxNLγLτ

∗
x − γLτ

∗
xÑLγ̃LτxγL − γLτ

∗
xÑLτ

∗
x

− τyNLτyγL + γL − τyNLγLτ
∗
y − γLτ

∗
y ÑLγ̃LτyγL − γLτ

∗
y ÑLτ

∗
y

)
−mDT1T0

(
+ τx2NR[γ

′
R − γRγ̃

′
RγR]ÑR − 2NR[γ

′
R − γRγ̃

′
RγR]

− γLτ
∗
x2ÑR[γ̃

′
RγR − γ̃Rγ

′
R]− γL2ÑR[γ̃

′
RγR − γ̃Rγ

′
R]ÑRτ

∗
x

− τx2NR[γ
′
Rγ̃R − γRγ̃R]NRγL − 2NR[γ

′
Rγ̃R − γRγ̃R]NRτxγL

+ γLτ
∗
x2ÑR[γ̃

′
R − γ̃Rγ

′
Rγ̃R]NRγL − γL2ÑR[γ̃

′
R − γ̃Rγ

′
Rγ̃R]NRτxγL

)
−Ddα2

(
− 2γL + 2τxNLγLτ

∗
x + 2γLτ

∗
xÑLτ

∗
x + 2τxNLτxγL + 2γLτ

∗
xÑLγ̃LτxγL

)
−Ddα2

(
− 2γL + 2τyNLγLτ

∗
y + 2γLτ

∗
y ÑLτ

∗
y + 2τyNLτyγL + 2γLτ

∗
y ÑLγ̃LτyγL

)
.

(2.93)

Riccati parametrization of the spin active boundary conditions

Now we find the Riccati parameterized boundary conditions for the spin-active interfaces
given in Equation (2.41). All the terms in this boundary condition are on form as in
Equation (2.69). As for the spin-orbit coupling boundary conditions the first term is
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simply the Kuprianov-Lukichev term. The rest we go through one term at a time starting
with the G1 term. Here we define

U1 = m̂ĝRm̂ =

(
m · τgRm · τ m · τfRm · τ ∗

−m · τ ∗f̃Rm · τ −m · τ ∗g̃Rm · τ ∗

)
, (2.94)

which gives the contribution to the right-hand side

−m · τgRmτγL +mτfRmτ ∗ + γLmτ ∗f̃RmτγL − γLmτ ∗g̃Rmτ ∗. (2.95)

By inserting the f = 2Nγ and g = 2N − 1 and using the useful identities this can be
written as

m · τNRγRm · τ ∗ − γLm · τ ∗ÑRγ̃Rmτ ∗ +m2γL

−m · τ ÑRm · τγL + γLm · τ ∗ÑRγ̃m · τγL.
(2.96)

For the second term, we define the U -matrix

UMR = {ĝR, m̂} =

(
gRm · τ +m · τgR fRm · τ ∗ +m · τfR

−f̃Rm · τ −m · τ ∗f̃R −g̃Rm · τ ∗ −m · τ ∗g̃R

)
, (2.97)

which gives the contribution to the right-hand side

− (gRm · τ +m · τgR)γL
+ fRm · τ ∗ +m · τfR
− γL(−f̃Rm · τ −m · τ ∗f̃R)γL

+ γL(−g̃Rm · τ ∗ −m · τ ∗g̃R).

(2.98)

Written only in terms of the Riccati parameters this reads

NRγRmτ ∗ +m · τNRγR − γL[ÑRm · τ ∗ +m · τ ∗ÑR −m · τ ∗]

− [NRm · τ −m · τ +m · τNR]γL − γL[ÑRγ̃Rm · τ +mτ ∗ÑRγ̃R]γL
(2.99)

For the third term, the U -matrix is simply

Uϕ = m̂, (2.100)

which gives the contribution
−m · τγL + γLm · τ ∗. (2.101)

The total Riccati parameterized spin-active boundary conditions thus read

∂zγL =G0(1− γLγ̃R)NR(γR − γL)

+G1

(
m · τNRγRm · τ ∗ − γLm · τ ∗ÑRγ̃Rmτ ∗ +m2γL

−m · τ ÑRm · τγL + γLm · τ ∗ÑRγ̃m · τγL
)

+GMR

(
NRγRmτ ∗ +m · τNRγR − γL[ÑRm · τ ∗ +m · τ ∗ÑR −m · τ ∗]

− [NRm · τ −m · τ +m · τNR]γL − γL[ÑRγ̃Rm · τ +mτ ∗ÑRγ̃R]γL
)

+ iGϕ

(
−m · τγL + γLm · τ ∗).

(2.102)
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Chapter 3

Supercurrents and Induced
Magnetization

In this chapter, we will investigate how we can use spin-active boundaries to create spin
and charge currents and how they in turn can induce a magnetization in a normal metal
through a spin-orbit coupling interface. The three different cases, singlet current, triplet
charge current, and spin current are considered. First, the setup and numerical methods
are discussed. Next, an analytical study of the system is presented, where the linearized
boundary conditions are used to make predictions of what should be expected in the
numerical study. Finally, the numerical results are presented.

3.1 Setup

The system we are studying is illustrated in Figure 3.1. The region in which the super-
currents will flow is drawn to the left and will therefore be referred to as (L). Similarly,
the region where induced magnetization will be studied is drawn to the right and is called
(R). In this study we let the region (R) be a normal metal, and (L) will either be a nor-
mal metal or a ferromagnet depending on the situation. The z position at which (R) is
connected to (L) is called z0. In most situations, we use z0 = l/2, and it will be speci-
fied when other values are used. The grey region between (L) and (R) is the spin-orbit
coupled material, for which the spin-orbit coupled boundary conditions will be used. At
z = 0 and z = l, conventional BCS superconductors, S1 and S2, are attached to the
(L) material. These superconductors are the sources for Cooper pairs in the rest of the
system. Between (L) and the superconductor spin-active interfaces are introduced and
are marked as grey regions in the figure. The interface magnetizations in the spin-active
interfaces are called m1 and m2.

To create the singlet charge current, the interface magnetizations are switched off
m1 = m2 = 0, which is equivalent to using the regular Kuprianov-Lukichev boundary
conditions. Furthermore, (L) is a normal metal in the singlet current case. As the
superconductors S1 and S2 only contain singlet Cooper pairs, no triplets will be induced
in (L) in this scenario. We want a supercurrent to flow through the (L) region. This is
achieved by applying a phase difference, ϕ, between S1 and S2.

To create the triplet charge currents and the spin current, the interface magnetizations
are switched on. The triplet charge current is created in the same way as in the singlet
case, by applying a phase difference. As we will see later, a spin current can be created
without applying a phase difference.
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(L)

(R)

y

z

l

S2

S1

m2

m1

z0

l

Figure 3.1: The system in which supercurrents and induced magnetization are inves-
tigated. The material to the left, (L), is the material in which the supercurrent will
flow. This material will be either a ferromagnet or a normal metal. To get the currents
flowing, two conventional superconductors are connected to (L), and a phase difference
between them is applied. In between the superconductors and (L) spin active interfaces
are included in the purpose of creating triplet Cooper pairs and thereby also triplet su-
percurrents. A normal metal, (R), is connected to (L) through a spin-orbit coupling
interface. This material borders to vacuum at y = l.

For the purpose of discovering effects caused solely by triplets, a ferromagnetic ex-
change field is included in the material (L). Because of the exchange field, the singlet
becomes short-ranged and dies out rapidly in the (L) region. In an experimental setup,
it would be of importance to separate the magnetization from an exchange field and the
magnetization induced by supercurrents. Therefore the exchange field is modeled to be
spatially varying in (L) such that it is zero in the middle region, but large at the sides.
In practice, this can be realized by attaching thin ferromagnetic regions with a strong
exchange field right next to the superconductors and then having a long normal metal
region separating the ferromagnets. In this way, the singlets and short-range triplets are
filtered out by the thin, strongly polarized ferromagnetic regions, whereas the long-range
triplets remain and can propagate through the normal metal. More specifically, it is
the triplet component that is spin-neutral in the exchange field orientation d||h that is
short-ranged, and the others are long-ranged.

As we will discuss in the following analytical study, the difference between the dz
and dy component is quite insignificant in the spin-orbit coupled interface, it is the dx
component that is by far the most relevant. Therefore, we focus most of the discussion
on the case where the interface magnetizations lie in the xy-plane, and the exchange
field points in the z-direction, h = (0, 0, h(z)). We do, however, include rotation of both
m1 and m2 with an angle α around the z-axis, and the angle between m1 and m2

which we call θ. These angles are illustrated in Figure 3.2. We also note here that the
directions chosen are advantageous for an experimental setup, as rotating the interface
magnetizations in plane is a simpler task than driving them out of the xy-plane.

We also remark that rotating both interface magnetizations, m1 and m2, by an angle
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Figure 3.2: The figure shows the definition of the angles α and θ. α is defined as the
angle between the x-axis and the interface magnetization of in the first interface m1. θ
is the angle between the two interface magnetizations.
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50
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h/

Figure 3.3: The figure shows the exchange field function h(z) which is applied to the left
material (L) in the triplet current cases.

α is equivalent to rotating material (L) around the z-axis. If we consider (L) to be an
unknown material, α dependent signatures can thus be utilized to determine the current
in the unknown material, given that measurements in different attachment angles are
possible.

We note that we have mainly focused on discovering in which situations induced
magnetization occurs, not on the strength of a realistic magnetization, which would
require using physically realistic parameters. As we can not guarantee that all pa-
rameters are realistic, we do also not draw conclusions about the strength of the in-
duced magnetization, only about the possible existence of the magnetizations. In the
numerical study, we have used the following spin-orbit coupled interface parameters
T 2
0 = 0.2, 2

3
T 2
1 p

2
F = mDT1T2 = Ddα = 0.1. As in the paper by Ouasso et al. [32],

we set P = 0.12 and Gϕ = 0.3G0 whenever the interface is described by non-zero values
for these parameters. However, to be able to create pure charge currents we also use
P = 0 or Gϕ = 0. The interface magnetization strength we use is m = |m1| = |m2| = 10,
and the spin-independent tunneling G0 = 1. Furthermore, a combination of the length
of material (L), l, that is short enough to preserve some of the triplets, and strength of
h that is strong enough to remove the singlet, had to be found. Setting the length of
material l to eight times the bulk superconducting coherence length l = 8ξs = 8

√
D/∆0,

and h(z) as in Figure 3.3 was found to work well. Note here that in the setup in Figure
3.1, the axes are defined differently than in section 2.7.3, however, the only difference is
changing the τ ∥.

23



CHAPTER 3. SUPERCURRENTS AND INDUCED MAGNETIZATION

3.1.1 Numerical method

Both sides of the interface are affected by each other. However, here it is assumed that
the proximity effect is weak and that it is sufficient to consider the proximity effect to
go one way. This means that the effect (L) has on S1 and S2 is neglected, and only the
effect from the superconductor on the material (L) is considered. The superconductors
are thus assumed to be the bulk superconductors all the way to the spin-active interfaces.
The bulk superconductor Green function can by this assumption be used directly in the
boundary conditions used to solve system (L). Similarly, the effect from (R) on (L) is
neglected, and the solution for system (L) at z = z0 is used directly into the spin-orbit
coupled boundary conditions for (R). Furthermore, the materials are individually modeled
as one-dimensional, meaning that material (L) is extended in the z-direction and (R) in
the y-direction.

The system which has to be solved is now a one-dimensional Usadel equation. This is
a second-order differential equation for two variables γ and γ̃, and to solve it numerically
we rewrite it as four first-order differential equations writing

γ′

γ′′

γ̃′

γ̃′′

 = f


γ
γ′

γ̃
γ̃′

 , (3.1)

where f() is a function that returns the derivative of the input. The function will thus
return γ′ as the derivative for γ and use the Riccati parameterized Usadel equation to find
the derivative of γ′, and similarly for γ̃. Thus we have a system of 16 complex differential
equations, four elements in each of the matrices γ, γ′, γ̃, and γ̃′. The boundary conditions
give restrictions to γ′ and γ̃′ on each side of the material.

To solve the system we have used the boundary value problem solver from SciPy [55].
To stabilize the solver, the real and imaginary parts are split such that the 16 complex
equations become 32 real ones. To increase numerical stability an inelastic scattering is
also included by adding a small imaginary component to the energy, which here is set
to δ = 0.01 as used in [32]. This imaginary component is often referred to as the Dynes
parameter and has also been found to exist experimentally [56]. Shortly explained, it
has the effect of broadening the peaks of the Green functions that occur at E = 0 and
E = ∆.

As mentioned, the interface magnetizations are rotated in the xy-plane in the triplet
cases. To save computation time, the Usadel equation only has to be solved once in
material (L) for one given θ and one given set of interface parameters. The angle α can
simply be taken into account by rotating the triplet components dx,L and dy,L, such that

dx,L(α) = dx,L(0) cos(α) + dy,L(0) sin(α),

dy,L(α) = −dx,L(0) sin(α) + dy,L(0) cos(α).
(3.2)

This means that instead of solving the system in (L) for every α, we solve it once and then
rotate the solution to proceed to study the material (R). For the material (R), however,
the Usadel equation needs to be solved separately for every value of α.

To verify our numerical method we have tested it on some known cases. We notice
that the singlet current behaves as expected in a Josephson junction [57, 58]. We also
see that our conclusion for the induced magnetization from a singlet charge current is the
same as in the paper by J. Linder and M. Amundsen [30]. Also for the rest of the cases,
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the numerical results seem to be supported by the analytical study. Another sanity check
is to see that the physical observables are not dependent on the value of the individual
phases in S1 and S2, only the phase difference between them. It was therefore tested and
seen that currents and magnetization were unchanged under addition of the same phase
to both of the superconductors. Additionally, it was seen that the current in material (L)
was conserved throughout the material both in the singlet and the triplet case as should
be expected in an equilibrium system.

The code used for the numerical study can be found on GitHub [59].

3.2 A brief analytical study

To get an idea of what to expect from the numerical study, we start by analyzing the
system using the linearized boundary conditions, as well as the magnetization and current
expressions. We will see that there is a clear relation between singlet charge current, Jfs ,
and induced magnetization in the x-direction, Mx. A similar relation also exists between
a triplet charge current carried by the dx triplet, Jdx , and Mx.

In the weak proximity regime, we assume that the quasiclassical Green function is
close to the normal metal solution, ĝN = ρ̂3, but with a small superconducting part, f̂ ,
induced by the proximity superconductors. We thereby assume that we can use the weak
proximity solution ĝ ≈ ρ̂3 + f̂ . Using the singlet-triplet decomposition, the spin-orbit
coupled boundary conditions can be written as follows keeping only the terms of the first
order in f̂ .

∂yfs,R =−mDT1T2(∂zdx,L)− 2(T 2
0 − 22

3
T 2
1 p

2
F )(fs,L − fs,R) (3.3)

∂ydz,R =− (8Ddα− 2T 2
0 + 42

3
T 2
1 p

2
F )dz,R − 2dz,L(T

2
0 + 22

3
T 2
1 p

2
F ) (3.4)

∂ydx,R =− 4(∂zfs,L)mDT1T2 − (42
3
T 2
1 p

2
F + 4Ddα− 2T 2

0 )dx,R − 2dx,LT
2
0 (3.5)

∂ydy,R =− (42
3
T 2
1 p

2
F + 4Ddα− 2T 2

0 )dy,R − 2T 2
0 dy,L (3.6)

From this, we see that there is a link between fs,R and ∂zdx,L and the other way
around between dx,R and ∂zfs,L. Whereas, to the first order, dy,R can only be induced by
dy,L and dz,R only by dz,L.

Furthermore, we can use the solution to the linearized Usadel equation in a normal
metal

fs = Ase
−ky +Bse

ky,

dx = Axe
−ky +Bxe

ky,
(3.7)

where k =
√

−2iE/D and As, Ax, Bs, and Bs are constants that have to be determined
using the boundary conditions. If we assume that l = ∞, the B factors have to be zero
in order to avoid blowing up the function. This gives fs,R ∝ ∂yfs,R and dR ∝ ∂ydR. In
the following, we will use these proportionalities to investigate the connection between
the different currents and the induced magnetization.

3.2.1 Singlet current

We start by discussing the singlet charge current case. In this scenario, there are no
triplet components present in (L). Thus there is no induced dy or dz on the right side of
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the interface. Furthermore, there is no dx and thus no ∂zdx on the left side. Thus from
Equation (3.3) and Equation (3.5) we see that

fs,R ∝ fs,L, (3.8)

dx,R ∝ ∂zfs,L. (3.9)

Note that the tilde-conjugated components have the same proportionality between the
left and right sides. Thus we can see that

fs,L∂zf̃s,L − f̃s,L∂zfs ∝ fs,Rd̃x,R − f̃s,Rdx,R. (3.10)

From Equation (2.51) and Equation (2.54) we see that the real part of the left side in the
expression above is exactly what occurs in the expression for a singlet current in material
(L), Jfs . We also see that the real part of the right side in the expression is exactly what
occurs in the induced magnetization expression Mx.

Thus from the analytical expression, we conclude that there is a clear connection
between induced magnetization and the singlet charge current. We note, however, that
fs,L∂zf̃s,L − f̃s,L∂zfs,L and fs,Rd̃x,R − f̃s,Rdx,R might not have the same phase, such that
the real part of these expressions might not be directly proportional.

3.2.2 Triplet charge current

Next, considering triplet charge currents we see that Jdy and Jdz , which contain varying
dy and dz components in (L), do not induce a singlet in (R), at least to the first order
in f . We can thus conclude that Jdy and Jdz induce no magnetization in (R). For the
last type of triplet charge current, Jdx the same argumentation as for the singlet charge
current applies. The difference is that in this case we have

dx,R ∝ dx,L, (3.11)

fs,R ∝ ∂zdx,L. (3.12)

This gives

dx,L∂zd̃x,L − d̃x,L∂zdx ∝ fs,Rd̃x,R − f̃s,Rdx,R. (3.13)

The left side of this expression occurs in Jdx and the right side in Mx. So seemingly Jdx
and Jfs induces the same magnetization.

A triplet charge current does, however, not have to be carried by a pure dx, dy, or dz.
In general, we can have an arbitrary d-vector carrying the pure charge current. Keeping
to the situation where the triplet vector d points in the xy-plane, we would get a current
carried partially by dx and partially by dy. In this case, the part carried by dx seems to
induce a singlet component in (R), whereas the dy part induces a dy in (R) as well. By
this, a magnetization in the y-direction would also be induced. Thus we see that with
a triplet charge current, magnetization can also be induced in more than one direction.
This is contrary to the singlet charge current. Because of the similarities of the dz and dy
boundary conditions, we also note that we expect also a magnetization in the z-direction
from a current carried partially by dz, partially by dx.
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3.2.3 Spin current

As mentioned, magnetization induced by a spin current will also be explored. From
section 2.8 we see that there is no dx component involved in the x-polarized current Jsx .
From this spin current, no singlet can be induced in (R), and thus also no magnetization.
Both for the y-polarized spin current, Jsy , and the z-polarized spin current Jsz , a dx
component is involved. Since the dy and dz components are treated similarly by the spin-
orbit coupled interface, we settle for only studying Jsz . Assumingly, Jsy would induce a
rotated, but similar magnetization.

The z-polarized spin current, Jsz is seen in Equation (2.49) to be dependent on the
imaginary part of the following expression

dx,L∂zd̃y,L − dy,L∂zd̃x,L + d̃x,L∂ydy,L − d̃y,L∂zdx,L. (3.14)

Notice that from the linearized spin-orbit coupled boundary conditions, it can be found
that

dy,L∂zd̃x,L ∝ dy,Rf̃s,R. (3.15)

Notice that the real part of the right side also occurs in the My expression. The relation
here is much less direct than in the charge current and Mx case. In the expression for
My, the term and the tilde-conjugated of the term are subtracted from each other, but in
the Js,z expression they are added together. Furthermore, My depends on the real part
of the expression whereas Jsz depends on the imaginary part. It does therefore seem like
a spin current does not have to induce a magnetization, although we do not rule out that
there can be some connection.

3.2.4 Linearized spin-active boundary conditions

Before the numerical study, we also look at the linearized spin-active boundary conditions
in order to understand how the currents are created. We linearize Equation (2.41) and
separate the parts for the singlet and triplets components. This gives the following
equations for the interface between (L) and S2

∂zfs,L =− 2m2(fs,L + fs,S2)G1 + 2G0fs,S2 − 2G0fs,L (3.16)

− 2Gϕ(dx,Lmx + dy,Lmy + dz,Lmz).

∂zdx,L =(−2m2G1 − 2G0)dx,L + (4idy,Lmz − 4idz,Lmy)GMR − (2Gϕ)fs,Lmx, (3.17)

∂zdy,L =(−2m2G1 − 2G0)dy,L + (4idz,Lmx − 4imzdx,L)GMR − (2Gϕ)fs,Lmy, (3.18)

∂zdz,L =(−2m2G1 − 2G0)dz,L + (4idx,Lmy − 4idy,Lmx)GMR − (2Gϕ)fs,Lmz, (3.19)

where only the singlet component of the S2 is included since we regard this as a conven-
tional singlet superconductor. The boundary condition for the S1 and (L) interface can
be found as described in section 2.8 with exchanging subscript and changing signs.

For studying the triplet scenarios, material (L) will be a ferromagnet. In the most
cases we study, the exchange field will be oriented in the z-direction which induces a dz
component in (L). As mentioned, this dz triplet will then be short-ranged, and thus we
focus this discussion on the dx and dy components induced by the spin-active boundary.

The terms that create the dx and dy triplets are the Gφ- and GMR-terms. If we only
have the Gϕ term, we see that the induced d is parallel to the interface magnetization.
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Figure 3.4: Figure (a) shows the current induced in material (L) as a function of the
phase difference between S1 and S2, ϕ. (b) shows the induced magnetization in (R),
right next to the interface spin-orbit coupled interface at y = 0.

If we however, turn off Gϕ but turn on GMR we see that d is orthogonal to the interface
magnetization, since dz will already be present because of the exchange field in (L).

If we thus let the interface magnetization be parallel and only include one of the terms
such that we have either Gϕ = 0 or P = 0, it closely resembles a conventional Josephson
junction [57], except that it is only the triplet and not the singlet that is long-ranged.
Applying a phase difference of the BCS superconductors S1 and S2, it is reasonable to
expect that in this case, we can create a pure triplet charge current in (L). In that case,
we are able to create only one long-ranged triplet component we know there can not be
any spin currents. When both Gϕ and GMR are present, or θ ̸= 0, we see that both dx
and dy will be created, and we might also find a spin current.

3.3 Numerical results

Having established some expectations from the analytical study, we proceed to the nu-
merical study. In the following, we study the singlet current, triplet charge current, and
spin current separately. We focus on the induced magnetization, and how it differs in the
three cases.

3.3.1 Singlet current

The proximity effects of the singlet supercurrent are explored by removing the interface
magnetizations and the exchange field in (L).

The current and magnetization as a function of ϕ is shown in Figure 3.4. The magne-
tization is evaluated at y = 0. As expected from the analytical study, no magnetization
was induced in the y- or z-direction. Furthermore, it is seen from the figure that the
induced Mx in (R) is proportional to the singlet current in (L). We remark that this
supports the finding in the paper by J. Linder and M. Amundsen [30], who found that
Mx ∝ J by using an effective model for the Green function in (L). In the effective model
in their paper, the absolute value of the singlet component is constant, but with a phase
eiJz, where J is the current. In their model, the derivative of the singlet component thus
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Figure 3.5: The figures (a) and (c) show the absolute value of the singlet component
and its derivative in material (L). Figures (b) and (d) show the absolute value of the
components fs(E/∆) and dx(E/∆) in material (R) as a function of ϕ for different energies,
E/∆. Figures (a) and (b) are found by using z0 = l/2, whereas (c) and (d) are from
using z0 = l/4.

vanishes if J = 0. As we also include the creation of the current in our model, we can
investigate this further. Inside a normal metal, we expect the Cooper pair wavefunc-
tion to decay when moving away from the superconductor. Therefore we expect a finite
derivative also when there is no current.

We ask the question, of whether the disappearance of the magnetization at J = 0 is
caused by the disappearance of the fs,R and dx,R components at ϕ = 0, π or by the tilde
properties of the triplet and singlet component. To investigate this the plots in Figure 3.5
was made. The first situation explored is when material (R) is connected to the middle
of material (L), z0 = l/2. It is seen from the figure that the singlet component, fs,L, is
zero at ϕ = π and the derivative, ∂zfs,L, is zero at ϕ = 0. The figure shows that this
also causes dx,R to vanish at ϕ = 0 and fs,R at ϕ = π. From this, it cannot be concluded
whether the tilde property itself could make the magnetization vanish.

Thus a new situation was explored, where z0 = l/4 so that the material (R) is no
longer connected to the middle of (L). From this the plots in Figure 3.5c and 3.5d were
made. It is seen that neither fs,L, nor ∂zfs,L vanishes at any ϕ. Therefore also dx,R
and fs,R is finite at every ϕ. It was checked and confirmed that the magnetization looks
exactly like Figure 3.4b, also for z0 = l/4. Thus we can conclude that it is the tilde
properties that cause the magnetization to vanish at ϕ = 0, π. The absence of induced
magnetization does not necessarily imply the absence of a triplet in (R).
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(a) (b) (c)

Figure 3.6: Contributions to the magnetization integral for different energies as a function
of phase difference ϕ and position in material (R), y. The energies that are evaluated are
E∆ = 0.01 in (a), E/∆ = 0.05 in (b) and E/∆ = 0.9 in (c).

Figure 3.7: The magnetization as a function of phase difference ϕ and position y in the
zero temperature case.

It was observed that the contribution to the magnetization, which is proportional to

Re{fs(E)d̃x(E)− f̃s(E)dx(E)}, (3.20)

oscillates as a function of y for some energies. This is contrary to the integrand of the
current, which does not vary with z. Figure 3.6 shows what the expression in Equation
(3.20) looks like for three different energies. Here it is seen that not only the size of
the integrand but also the shape depends on E. To understand why the magnetization
integrand is shifting sign as a function of y we explore how the fs and dx components
behave in a normal metal.

Again we turn to the linearized equation to gain insight, and we start with the solution
to the linearized Usadel equation in normal metal, given in Equation (3.7). As before we
assume l = ∞, such that the factors Bs and Bx have to be zero. Thus, the real part of k
damp out the Cooper pair wavefunctions in the normal metal. The imaginary part of k
will make the wavefunctions rotate in the complex plane as a function of y. Also notice
that k is invariant under tilde-conjugation k̃ = k. The tilde-conjugated components have
the same damping and the same rotation in the complex plane.

We now explore what happens to the expression in the magnetization, fsd̃x − f̃sdx.
Using the solution from Equation 3.7 we find that

fsd̃x − f̃sdx = (AsÃx − ÃsAx)e
−2ky. (3.21)
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Figure 3.8: The magnetization from using a phase difference ϕ = π/4 evaluated at y = l
as a function of temperature.

This expression rotates twice as fast in the complex plane as fs and dx. This rotation in
the complex plane means that the real part of this expression, which the magnetization
depends on, will oscillate. This explains why the magnetization integrand oscillates in
y and also why this oscillation is different for different energies as the wave number k
depends on the energy.

Performing the integral, however, shows that the magnetization does not change di-
rection with y, at least not on these length scales used here for T = 0. This is shown in
Figure 3.7.

The magnetization in Equation (2.54) has a factor tanh(βE/2) in the integrand.
Varying the temperature changes how

Re(fs(E)d̃x(E)− f̃s(E)dx(E)) (3.22)

are weighted with respect to energy. A relevant question to ask is therefore how the
temperature affects the magnetization. A quick temperature analysis was performed. To
do so a couple of remarks about temperature have to be made. Firstly, it has to be taken
into account that the energy gap changes with temperature. We chose the interpolation
formula used in [60, 61],

∆(T ) = ∆(0) tanh

(
1.74

√
Tc

T
− 1

)
, (3.23)

where Tc is the critical temperature. This formula should be valid for T ∈ (0, Tc). We
also use the relation between the zero temperature gap and the critical temperature,
∆0

Tc
= 1.76, as described in [62].
Figure 3.8 shows the magnetization evaluated at y = l as a function of temperature.

Even though the integrand has different signs at y = l, this graph shows that the sign of
Mx at y = l does not change.

3.3.2 Triplet charge current

In the following, the case with triplet charge current is explored and compared to the
case with singlet charge current. To reduce the number of parameters, this discussion
only considers zero temperature. A pure triplet charge current is created by having the
interface magnetizations to be parallel, as discussed in section 3.2. Moreover, we have to
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Figure 3.9: The absolute value of the triplet components evaluated for E/∆ = 0.14. The
figure shows that fs and dz are many orders of magnitude smaller than the dx component.
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Figure 3.10: The absolute value of the magnetization in material (R) induced by dx, dy,
and dz carried charge current. It is seen that it is only the dx carried charge current that
induces a magnetization.

set either the polarization or the spin-mixing angles to zero. We explore both of these
situations.

The first case explored is the zero polarization case, P = 0, but with finite spin-mixing
angles Gϕ ̸= 0. This is also explored by I. Gomperud and J. Linder [33], who show that
a pure finite charge current occurs for parallel interface magnetizations, whereas spin-
polarized currents are created for non-parallel interface magnetizations.

As discussed, we are interested in a situation where the singlet component is negligible
compared to the triplets in (L). Figure 3.9 shows that both fs and dz die out on a short
range into the material (L) when m1 = m2 = (m, 0, 0) and h(z) = (0, 0, h(z)). The
singlet and the dz triplet oscillate rapidly and decay quickly as should be expeccted [12,
13]. In the middle region, dz and fs are many orders of magnitude smaller than dx and
we conclude that the results from this section can be thought of as pure triplet effects.

The triplet charge current can be divided into the three components, Jdx , Jdy and
Jdz , which from section 3.2 are expected to give different results. The Jdx current is
created by using m1 = m2 = (m, 0, 0) and h = (0, 0, h(z)). In the same manner the
Jdy current is created by using m1 = m2 = (0,m, 0) and h = (0, 0, h(z)), and the Jdz
current is created with m1 = m2 = (0, 0,m) and h = (h(z), 0, 0). The absolute value of
the induced magnetization in (R), |M |, is plotted for the three different triplet cases as
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Figure 3.11: Charge current as a function of ϕ in material (L). The green line in (a)
shows the total current and the orange shows the singlet current. It is clear that the
singlet current is negligible compared to the triplet current. Figure (b) shows only the
dx carried component of the current as both the phase difference ϕ and interface angles
in the xy-plane, α are varied.
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Figure 3.12: The figure shows the induced magnetization in (L) in the triplet current
case where Gϕ = 0, P ̸= 0. Plot (a) is the induced mx, and (b) is the induced my.

a function of ϕ in Figure 3.10. In agreement with our prediction in section 3.2 we find
that only Jdx induces a magnetization in (R). The induced magnetization can thereby be
utilized to distinguish Jdx from the other triplet currents.

As mentioned, a triplet current does however not have to be carried by a pure dx, dy or
dz, but could just as well be carried by any d-triplet. Therefore, rotation of the interface
magnetization in xy-plane is investigated. We will look at the induced magnetization,
but first we consider the current. The current in material (L) is shown in Figure 3.11 as a
function of the phase difference ϕ. The current has the same form as the singlet current,
but this time it is carried by a triplet component.

As seen in section 3.2, the Gϕ-term creates a d-vector proportional to the interface
magnetization. At α = 0, the interface magnetizations are m1 = m2 = (m, 0, 0), so it is
natural that the charge current will only be carried by the dx triplet. As m1 and m2 are
rotated by an angle α in the xy-plane, so is the triplet vector d. The proportion of the
current carried by dx, as a function of α, is shown in Figure 3.11b.
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Figure 3.13: Plot of the absolute value of dx,L in subfigure (a) and ∂zdx,L in subfigure (b).
The absolute values are plotted as a function of z and ϕ and are evaluated at E/∆ = 0.14.

The induced magnetization in material (R) by the triplet current is plotted in Figure
3.12. As we have discussed in section 3.2 there should be a clear relation between Jdx
and Mx. Figure 3.12a confirms this resemblance, as the induced Mx has the same form
as Jdx in Figure 3.11.

The magnetization induced by the triplet current is clearly different from the singlet
case. First of all, the induced magnetization varies with α. What this means is that in
the singlet case, one would measure the same induced magnetization (in axes relative to
(R)), no matter in what direction (R) was connected to (L). However, in the triplet case,
the angle, at which (R) is connected to (L), makes a difference.

Other than the α-dependency, a new and significant signature arises in the triplet
case, namely a magnetization component in the y-direction, as seen in Figure 3.12b. In
the singlet case, only a Mx was induced. The induced My could therefore contribute
to distinguish singlet and triplet currents. From Figure 3.12 we also notice that My

has a different α-dependency than Mx. This can be explained by realizing that we
expect dx,L, and thus ∂zdx,L, to have a cos(α) dependency. This would, according to
the linearized spin-orbit coupled boundary conditions, give both dx,R and fs,R a cos(α)-
dependency. Thus, Mx, a product of dx,R and fs,R, naturally gets a cos2(α) dependency.
Furthermore, dy,L, and thus also dy,R, should be expected to have a sin(α) dependency.
The magnetization in the y-direction, a product of fs,R and dy,R should therefore have a
sin(α) cos(α) dependency.

Similarly as in the singlet case, we investigate whether the disappearance of the magne-
tization at ϕ = 0 and at ϕ = π can be explained by the tilde properties of the components.
The absolute value of dx,L and ∂zdx,L is shown as a function of z and ϕ in Figure 3.13. In
the middle of the material, at z = l/2 we observe the same as in the singlet case, dx,L = 0
for ϕ = π and ∂zdx,L = 0 for ϕ = 0. When adjusting z0 to l/4 in a similar manner as
in the singlet current case, a bit more caution has to be taken, since fs and dz become
larger towards the edges of (L). From Figure 3.9 we still see that there is a big difference
between the triplet of interest and the singlet. It is therefore clear that the potential
effects are caused by triplets and not the singlet. In our model, the exchange field is
finite at z = l/4 and is not really suitable for measuring magnetization at z0 = l/4, since
the exchange field itself would induce a magnetization in (R). However, the quasiclassical
model does not capture this magnetization induced by the exchange field, and thus our
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Figure 3.14: (a) is the absolute value of the fs component in (R) at y = 0 as a function
of α and ϕ. (b) is the absolute value of the dx component. This is from the case where
z0 = l/4 at E/∆ = 0.14.
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Figure 3.15: Figure (a) shows the current as a function of ϕ in material (L) in the case
of Gϕ = 0, P ̸= 0. The singlet current is zero, which means that the current is carried by
triplet components. Figure (b) shows how the dx carried current as a function of ϕ and
α.

model should hold for investigating the role of the tilde properties.

The dx and fs in (R) is plotted in Figure 3.14 for z0 = l/4. It was also observed that
at this value of z0 both the induced Mx and My look exactly the same as for z0 = l/2.
This leads to the same conclusion as in the singlet case, the magnetization at ϕ = 0, π
disappears because of the tilde properties of the component, not because of vanishing fs
and d.

To check the robustness of the results another parameter set is also investigated. The
interface magnetizations are kept parallel, however, the polarization is turned on, adding
the magnetoresistive and the depairing term. Instead, the spin-mixing is turned off. From
section 3.2 we see that the GMR term creates a triplet d orthogonal to the interface mag-
netization and to h. The current is shown in Figure 3.15 and the induced magnetization
in Figure 3.16 There is a π/2 shift in α compared to the P = 0 situation because the
induced triplet is orthogonal to the interface magnetization, instead of parallel. Other
than that, the form of the magnetization is similar and the conclusions from the P = 0
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Figure 3.16: The figure shows the induced magnetization in (L) in the triplet current
case where Gϕ = 0, P ̸= 0. Plot (a) is the induced Mx, and (b) is the induced My.

case hold.

The main results from the triplet case are that a pure Jdx can be distinguished from
a pure Jdy or Jdz , as the Jdx is the only one that induces magnetization. When a current
is carried partially by dx and partially by dy, as we got by varying α, we observed an
induced magnetization also in the y-direction. We note that, because of the similarities
in the boundary conditions for dy and dz, we expect a current carried partially by dz to
induce a magnetization in the z-direction. In the singlet case, only Mx can be induced,
and magnetization induced in other directions is thus a signature of triplet current.

3.3.3 Spin current

Using the parameters P = 0, Gϕ = 0.3 and orthogonal interface magnetizations, θ = π
2
,

induces a spin current in material (L). We will look at how the magnetization differs from
the charge current cases and discuss why the results are reasonable.

Firstly we explain the currents. The charge current shown in Figure 3.17 oscillates
as a function of ϕ with a period of π. This oscillation is twice as rapid as what we
observed in the previous cases. It is known that the second-order contribution of the
Josephson current is proportional to sin(2ϕ) [58]. In addition to the periodicity, the
order of magnitude of the total current J , which is much smaller than the maximum
of the individual components Jdx and Jdy in Figure 3.17b, also suggest that this charge
current is a second order effect.

We study Figure 3.17b further and notice that Jdx is small for α = 0. This can be
understood from the linearized spin-active boundary conditions in section 3.2. When
m1 = (m, 0, 0) and m2 = (0,m, 0) there is no dy induced at the z = 0 interface, and
no dx at the z = l interface (to the first order). Therefore the tilde symmetry, which is
attributed to dx at the z = 0 interface, stays unchanged through the material (L), even
though a phase difference is present between S1 and S2. The same argumentation applies
for dy and explains why there is no first-order contribution to neither Jdx nor Jdy at α = 0.
At α = π/4, however, both interface magnetizations contain both a x and a y component
so that both dx and dy are induced at both interfaces. Adding a phase difference does
therefore induce both Jdx and Jdy . An additional plot of Jdy is redundant since it is the
same as Jdx only shifted with α = π/2. We see from Figure 3.17b that Jdy and Jdx have
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(a) (b)

Figure 3.17: Charge currents from the spin current case. Figure (a) shows that the charge
current is small and oscillates as a function of ϕ with the period π. Figure (b) shows only
the dx component of the charge current plotted as a function of ϕ and α.

Figure 3.18: Spin current as a function ϕ.

the opposite sign and approximately cancel each other out, such that the total current
indeed should be the current in Figure 3.17a. The reason Jdy has the opposite sign from
Jdx is simply that when the x-components of the two interface magnetizations point in
the same direction, the y-components point in the opposite direction, which causes the
dy current to flow in the opposite direction.

Having explained the charge current, we move on to the spin current which is shown
in Figure 3.18. Notice that this current is shifted with ϕ = π/2 compared to the charge
currents in the charge current cases. To understand this we study the integrand of Jsz
from Equation (2.49)

dx,L∂zd̃y,L − dy,L∂zd̃x,L + d̃x,L∂ydy,L − d̃y,L∂zdx,L. (3.24)

For ϕ = 0, both triplets transform equally under tilde conjugation. Furthermore, we
expect the dx triplet to decay away from the z = 0 interface where it is induced, and
similarly, dy to decay away from the z = l interface. By this, we expect the derivatives,
∂zdx,L and ∂zdy,L, to have opposite signs. It follows that all the terms in Equation
(3.24) get the same sign. Thus it seems reasonable that the spin current we found
numerically in Figure 3.18 is finite at ϕ = 0. For ϕ = π/2, however, we expect dy and dx
to have the opposite tilde symmetry, such that we, for example, could have d̃y = −dy and
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Figure 3.19: Magnetization induced in the spin current scenario. Figure (a) shows the
x-component of the magnetization and (b) the y-component as a function of α and ϕ.

d̃x = dx. The same tilde properties will apply to the derivatives so that ∂zd̃y = −∂zdy
and ∂zd̃x = ∂zdx. With these tilde properties, we see that the terms in the Jsz integrand
cancel, and we get zero spin current for ϕ = π/2.

In the previous cases, we have observed that the magnetization has the same ϕ-
dependency as the current. However, in this case, the magnetization shown in Figure
3.19 is shifted by ϕ = π/2 compared to the spin current. We see, however, that the
proportionality between Mx and Jdx still holds. In this case, however, Mx and Jdx are
different in the way that they change sign as α is varied. The induced magnetization
in the y-direction, My, also differs from the charge current case. Here My is shifted by
α = π/4 compared to the triplet charge current case. The explanation for this shift can
again be found in the tilde properties of the dx and dy components. At ϕ = π/2 the
dy triplet should have the opposite tilde symmetry as the dx triplet and thus also ∂zdx.
Since fs inherits the tilde property from ∂zdx, this means that fs,R and dy,R will have
the opposite tilde symmetry as well, which is exactly what is needed to get an induced
My. This explains why we do get an induced My at ϕ = 0, even though there is no Mx.
Because My is shifted in α, no value of α gives zero induced magnetization, unlike in the
triplet charge current case.

We comment here, that due to time limitations, this set of spin current parameters
is the only tested thoroughly. We see that the spin current we got is symmetric with
respect to the phase difference ϕ, which makes it an exchange spin current. In the article
by Ouassou et al. [32] the difference between this exchange spin current and a spin current
which is antisymmetric with respect to ϕ, the polarization spin current, is discussed. The
polarization spin current is the polarized part of the charge current and it would also be
of interest to investigate magnetization induced by this type of spin current.
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Summary and Outlook

Our findings suggest that induced magnetization in a normal metal, facilitated by a spin-
orbit coupled interface, can serve as a signature of the spin-polarization of a supercurrent
in a neighboring material. The results are supported both by our analytical reasoning
and numerical study. In the case of a singlet supercurrent, we confirmed the emergence
of a magnetization in the x-direction, with the directions defined in Figure 3.1. A short
study of the temperature dependency shows that in the singlet case, the magnetization
simply seems to be decaying with increasing temperature.

Furthermore, we discovered that also a triplet charge current can induce magnetization
if it is carried, at least partially, by the dx triplet. The dx charge current alone induces
a Mx. However, together with another triplet, a magnetization can also be induced in
other directions. A triplet charge current only carried by dy or dz does not induce a
magnetization in the normal metal. With a rotation of the interface magnetizations in
the xy-plane, we were able to investigate the combination of a current carried by dx and
dy, which was seen to induce a magnetization in both x- and y-direction.

Also in the spin current scenario, we discovered induced magnetization. The spin
current we investigated was an exchange spin current, and we saw that it was a ϕ = π/2
offset between this spin current and the induced magnetization. The induced magnetiza-
tion in the spin current case differs from the charge current case. In particular, we saw
that Mx also changed sign with variation of α, which was not the case for the charge
currents. Furthermore, for ϕ = π/2 a magnetization either in the x-direction or in the
y-direction was present for all values of α.

We conclude that, when taking into account the α-dependency of induced magnetiza-
tion, the currents investigated have distinct signatures. This could provide a measurement
protocol to directly use the spin-polarization of the triplet Cooper pairs in supercurrents
to create a measurable spin signal in a dissipationless manner.

The study of the tilde properties shows that it is not only the presence of Cooper pairs
in the normal metal that is needed to create the magnetization. To induce a magnetization
the singlet and triplet also need to transform differently under tilde conjugation. For the
charge current cases, it follows that the magnetization is directly proportional to the
current, and not to the absolute value of the individual components.

In this thesis, we limited ourselves to studying induced magnetization. Further re-
search could also consider the density of states, to look for new signatures to distinguish
the different types of currents. We also note that in several cases we have triplet Cooper
pairs that do not contribute to the magnetization because they have the same tilde sym-
metry as the singlet. A deeper investigation of the tilde symmetries that occur in the
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CHAPTER 4. SUMMARY AND OUTLOOK

spin-orbit coupled interfaces could possibly provide new insight into fundamental physics.
We have only considered an exchange spin current, and for further studies, it would also
be interesting to investigate a polarization spin current.

Finally, we emphasize the importance of experimental validation of the results, as it
is highly desired to validate and strengthen the findings. We note that in order to make
quantitative predictions it is required an evaluation of what would be realistic values for
the parameters involved.
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Appendix A

Wigner Transformations

*These derivations are taken from the specialization project with only a few changes. It
is quite inspired by the master thesis by J. P. Morten [36], however, some part of that
calculation were found to be slightly incorrect and should be corrected here.

The Wigner transformation of the Gor’kov equation is presented, but first it is seen
how the Wigner transfromation of a convolution and a convolution with a gradient is
presented.

A.1 Wigner transform of a convolution

Here we show that

A⊗B(X, p) ≡
∫

dxe−ipx

∫
dx3A(x1, x3)B(x3, x2)

= e
i
2
(∂XA

∂pB−∂XB
∂pA )A(X, p)B(X, p),

(A.1)

where x = x1 − x2 and X = 1
2
(X1 + x2). We start off with the expression∫

dx

∫
dx3e

−ipxA(X + 1
2
x, x3)B(x3, X − 1

2
x), (A.2)

and we shift the integration variable x3 by an amount of X which gives us∫
dx

∫
dx3e

−ipxA(X + 1
2
x,X + x3)B(X + x3, X − 1

2
x). (A.3)

Further, we change integration variables to u = x3 +
1
2
x, and v = x3 − 1

2
x and note that

this transformation of variables has a Jacobi determinant equal to 1. We can thus write
our expression as∫

du

∫
dve−ip(u+v)A(X + 1

2
(u+ v), X + 1

2
(u− v))B(X + 1

2
(u− v), X − 1

2
(u− v)). (A.4)

Next, we Taylor expand the function A with respect to u and B with respect to v,

41



APPENDIX A. WIGNER TRANSFORMATIONS

and can, by following the steps below, arrive at the desired expression.

∫
du

∫
dve−ip(u+v)

∑
n=0

[un∂nu
n!

A(X +
1

2
(u+ v), X +

1

2
(u− v))

]∣∣∣
u=0

×
∑
m=0

[vm∂mv
m!

B(X +
1

2
(u− v), X − 1

2
(u− v))

]∣∣∣
v=0

=

∫
du

∫
dve−ip(u+v)

∑
n=0

[un∂nX
2nn!

A(X +
1

2
v,X +−1

2
v)
]

×
∑
m=0

[ vm∂mX
(−2)mm!

B(X +
1

2
u,X − 1

2
u)
]

=
∑
n=0

∑
m=0

[ ∂nX
2nn!

∫
dvvme−ipvA(X +

1

2
v,X +−1

2
v)
]

×
[ ∂mX
(−2)mm!

∫
duune−ipuB(X +

1

2
u,X − 1

2
u)
]

=
∑
n=0

∑
m=0

[ ∂nX
2nn!

∫
dv(i∂p)

me−ipvA(X +
1

2
v,X +−1

2
v)
]

×
[ ∂mX
(−2)mm!

∫
du(i∂p)

ne−ipuB(X +
1

2
u,X − 1

2
u)
]

=
∑
n=0

∑
m=0

[ ∂nX
2nn!

(i∂p)
mA(X, p)

][ ∂mX
(−2)mm!

(i∂p)
nB(X, p)

]
=e

i
2
(∂XA

∂pB−∂XB
∂pA )A(X, p)B(X, p).

(A.5)

A.2 Wigner transform of convolution with deriva-

tives

Here we calculate the Wigner transform of terms of the form

A(x1) · ∇r1B(x1, x2). (A.6)

Note that ∇r1 = (∇r1R)∇R + (∇r1r)∇r = 1
2
∇R + ∇r , so the Wigner transform of

Equation (A.6) can be written as

∫
dxA(X + 1

2
x) · (1

2
∇R +∇r)B(X + 1

2
x,X − 1

2
x). (A.7)

The ∇R term is trivial and by using the same procedure as for the non-derivative convo-
lution case we get

1
2

∫
dxA(X + 1

2
x) · ∇RB(X + 1

2
x,X − 1

2
x) = 1

2
A⊗∇RB(X, p). (A.8)
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The ∇r term, however, demands some more work, so we continue focusing on this term

∫
dxe−ipxA(X + 1

2
x) · 1

2
∇rB(X + 1

2
x,X − 1

2
x)

= 1
2

∫
dxe−ipx

∑
n=0

[xn∂nX
2nn!

A(X)
]
· ∇rB(X + 1

2
x,X − 1

2
x)

=
∑
n=0

1

2nn!
[∂nXA(X)]

∫
dxxne−ipx∇r

∫
dp′

(2π)4
eip

′xG(X, p′)

=
∑
n=0

in

2nn!
[∂nXA(X)]∂np

∫
dxe−ipx(ip′)

∫
dp′

(2π)4
eip

′xG(X, p′)

=
∑
n=0

ini

2nn!
[∂nXA(X)]∂np (pG(X, p))

=
∑
n=0

ini

2nn!
[∂nXA(X)]

[
n∇n−1

p (∂t)
nG(X, p) + p ∂npG(X, p)

]
.

(A.9)

The second term on the last line we can recognize as p (A⊗G(X, p)). However, we need
to look a bit closer at the first term.

At this point, we should remind ourselves that the Wigner transformation is really
performed for one coordinate at a time so that the Taylor expansion is really an expansion
in every one of the coordinates

∑
n =

∑
nx,ny ,nz ,nt

. This means that in the second line
below we are only changing the summation over the n for the spatial derivatives

∑
n=0

ini

2nn!
n∇n−1

p (∂t)
nG(X, p)∂nXA(X)

= −1
2

∑
n=0

in

2nn!
∇n

pG(X, p)∂
n
X∇R · A(X)

= −1
2
∇R ·A⊗G(X, p).

(A.10)

Thus the total expression reads

∫
dxA(x1) · ∇r1B(x1, x2) =

1
2
A⊗∇RB(X, p) + ip(A⊗B(X, p))

− 1
2
(∇R ·A)⊗B(X, p).

(A.11)

For the similar right-handed expression we keep in mind that ∇r2 = −∇r +
1
2
∇R and

that we also we get an extra (−1)n from the Taylor expansion so that we in total get

∫
dx∇r2B(x1, x2) ·A(x2) =

1
2
(∇RB(X, p))⊗A− ip(B(X, p)⊗A)

− 1
2
(∇RA)⊗B(X, p).

(A.12)
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A.3 Wigner transforming the Gor’kov equation

We start with the equation

0 = i∂t1 ρ̂3Ǧ(x1, x2) + i∂t2Ǧ(x1, x2)ρ̂3 (A.13a)

− ξ̂(x1)Ǧ(x1, x2) + Ǧ(x1, x2)ξ̂
∗(x2) (A.13b)

− Ŝ(x1)Ǧ(x1, x2) + Ǧ(x1, x2)Ŝ(x2) (A.13c)

+ M̂(x1)Ǧ(x1, x2) + Ǧ(x1, x2)M̂(x2) (A.13d)

+ ∆̂(x1)Ǧ(x1, x2) + Ǧ(x1, x2)∆(x2) (A.13e)

−
∫

dx3Σ̂(x1, x3)Ǧ(x3, x2) (A.13f)

−
∫

dx3Ǧ(x1, x3)Σ̂(x3, x2). (A.13g)

In the following, this equation is Wigner transformed term by term, starting with the
first term in Equation (A.13a)

i

∫
dx e−ipx∂t1 ρ̂3Ǧ(x1, x2)

= i

∫
dx e−ipx∂t1 ρ̂3

∫
dp′

(2π)4
eip

′xǦ(X, p′)

= i

∫
dx e−ipxρ̂3

∫
dp′

(2π)4

[
(∂t1e

ip′x)Ǧ(X, p′)− eip
′x∂t1Ǧ(X, p

′)
]

= i

∫
dx e−ipxρ̂3

∫
dp′

(2π)4

[
(−iE)eip′xǦ(X, p′)− 1

2
eip

′x∂T Ǧ(X, p
′)
]

= iρ̂3

∫
dp′

(2π)4
(2π)4δ4(p− p′)

[
(−iE)eip′xǦ(X, p′)− 1

2
eip

′x∂T Ǧ(X, p
′)
]

= ρ̂3EǦ(X, p) + iρ̂3∂T Ǧ(X, p).

(A.14)

Going to the fourth line we use that ∂t1Ǧ(X, p
′) = 1

2
∂T Ǧ(X, p

′), and that ∂t1e
ipx = ∂te

ipx.
For the first term to the second term in (A.13a) the difference is that the second includes
∂t2 instead of ∂t1 which can be written as ∂t2e

ipx = −∂teipx. The Wigner transform of
(A.13a) thus reads

i
[1
2
ρ̂3∂T Ǧ(X, p) + (−iE)ρ̂3Ǧ(X, p) +

1

2
∂T Ǧ(x1, x2)ρ̂3 − (−iE)Ǧ(x1, x2)ρ̂3

]
=
[
Eρ̂3 ,⊗G

]
.

(A.15)

Next, we perform the Wigner transformation on (A.13b). We start by writing out the
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term

−ξ̂(x1)Ǧ(x1, x2) + Ǧ(x1, x2)ξ̂(x2)

=
1

2m
(∇r1 − ieρ̂3A(x1))

2Ǧ(x1, x2)− (eφ(x1)− µ)Ǧ

− 1

2m
Ǧ(x1, x2)(∇r2 + ieρ̂3A(x2))

2 + Ǧ(x1, x2)(eφ(x2)− µ)

=
1

2m

(
∇2

r1
−∇2

r2

)
Ǧ(x1, x2)

− ie

2m

[
(∇r1 ·A(x1)ρ̂3)Ǧ(x1, x2) + Ǧ(x1, x2)(∇r2 ·A(x2)ρ̂3)

]
− ie

m

[
A(x1)ρ̂3(∇r1Ǧ(x1, x2)) + (∇r2Ǧ(x1, x2))A(x2)ρ̂3

]
− e2A2(x1)Ǧ(x1, x2) + e2A2(x2)Ǧ(x1, x2)

− eφ(x1)Ǧ(x1, x2) + eǦ(x1, x2)φ(x2).

(A.16)

We Wigner transform each of the terms separately and start with the term∫
dx e−ipx(∇2

r1
−∇2

r2
)Ǧ(x1, x2)

=

∫
dx e−ipx2∇r∇R

∫
dp′

(2π)4
eip

′xǦ(X, p′)

= 2

∫
dx e−ipx

∫
dp′

(2π)4
eip

′xp′ · ∇RǦ(X, p
′)

= 2p · ∇RǦ(X, p).

(A.17)

For the term including ∇r1 ·A we argue as follows

∇r1 ·A(x1) = ((∇r1 · r)∇r + (∇r1 ·R)∇r) ·A(X + x/2)

= ∇r ·A(X + x/2) + 1
2
∇R ·A(X + x/2)

= ∇R ·A(X + x/2),

(A.18)

where we, in going to the last line, use that ∂yf(x+ y/2) = 1
2
∂xf(x+ y/2) which is seen

from the way the arguments occur in f . Now, we can also do the same for ∇r2 ·A(x2)

∇r2 ·A(x2) = ((∇r2 · r)∇r + (∇r2 ·R)∇r) · Avec(X − x/2)

= −∇r ·A(X − x/2) + 1
2
∇R ·A(X − x/2)

= ∇R ·A(X − x/2).

(A.19)

By this, we can see that the Wigner transform of the ∇ ·A terms can be written as
follows

−ie
2m

∫
dx
[
(∇r1 ·A(x1)ρ̂3)Ǧ(x1, x2) + Ǧ(x1, x2)∇r2 ·A(x2)ρ̂3

]
=

−ie
2m

{
∇R ·Aρ̂3 ,⊗ Ǧ

}
.

(A.20)

For the transform of the ∇Ǧ terms, Appendix A.2 is used and it can be seen that the
Wigner transform of the ∇Ǧ-terms becomes

− ie

m

∫
dx e−ipx[A(x1)ρ̂3 · ∇r1Ǧ(x1, x2) + (∇r2Ǧ(x1, x2)) ·A(x2)ρ̂3]

= − ie

2m

{
Aρ̂3 ,⊗∇RǦ

}
+

e

m
p
[
Aρ̂3 ,⊗ Ǧ

]
+

ie

2m

{
∇R ·Aρ̂3 ,⊗ Ǧ

}
.

(A.21)
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The transformation of the rest of the terms in Equation (A.16), the φ-term and the
µ-term, are straightforward, the same goes for the terms in (A.13c), (A.13d) and (A.13e).
Using ∇̄ such that ∇̄ǧ = ∇Rǧ− ie[Aρ̂3, ǧ], we can now write the whole Wigner transform
of Equation (2.18) as follows

− ie

2m

{
Aρ̂3 ,⊗ ∇RǦ

}
+

p

m
· ∇̄Ǧ

+

[
Eρ̂3 −

e2

2m
A2 − eφ− Ŝ + M̂ + ∆̂− Σ̂ ,⊗ Ǧ

]
= 0.

(A.22)
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Appendix B

Self-Energy

*This appendix is taken from sections in the specialization project, and only a few changes
have been made.

B.1 Introducing self-energy

To see how the self-energy can replace the potential in the equation of motion we start by
splitting the Hamiltonian into a non-impurity part and an impurity part. In this section
we will use Ĥ0 for the Hamiltonian including all other terms than the impurity potential,
it should not be confused with the H0 definition used earlier. The Hamiltonian is divided
into the two parts

Ĥ = Ĥ0 + Ĥimp,

Ĥ0 = ξ̂ + ∆̂ + Ŝ − M̂,

Ĥimp = Vimp.

(B.1)

Now we can define G0 to be the Green function for a system without Himp so that we
have (

i∂tρ̂3 − ρ̂3Ĥ0(r1)ρ̂3

)
Ǧ0(x1, x2) = δ(x1, x2). (B.2)

From the Dyson equation we get

G(x1, x2) = G0(x1, x2) +

∫
dx3

∫
dx4G0(x1, x3)Σ(x3, x4)G(x4, x2), (B.3)

where Σ is the one-particle irreducible self-energy. Now, we act on Equation (B.3) with
the operator (i∂t1 ρ̂3 − ρ̂3H0(x1)ρ̂3), which gives

(i∂t1 ρ̂3 − ρ̂3H0(1x)ρ̂3)G(x1, x2)

= (i∂t1 ρ̂3 − ρ̂3H0(x1)ρ̂3)G0(x1, x2)

+

∫
dx3

∫
dx4(i∂t1 ρ̂3 − ρ̂3H0(x1)ρ̂3)G0(x1, x3)Σ(x3, x4)G(x4, x2)

=⇒ (i∂t1 ρ̂3 − ρ̂3H0(x1)ρ̂3)G(x1, x2) = δ(x1, x2) +

∫
dx4Σ(x1, x4)G(x4, x2).

(B.4)

The same can be done for the left-handed equation. First, notice that the Dyson
equation also can be written as

Ǧ(x1, x2) = G0(x1, x2) +

∫
dx3

∫
dx4Ǧ(x1, x3)Σ̂(x3, x4)Ǧ0. (B.5)
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Acting from the right with the operator (i∂t2 −Ĥ0(2)) and using the left-handed equation
of motion for G0, G0(x1, x2)(i∂t2 − Ĥ(x2)) = δ(x1, x2) then gives

Ǧ(x1, x2)(i∂t2 − Ĥ0(x2)) = δ(x1, x2)

∫
dx3Ǧ(x1, x3)Σ̂(x3, x2). (B.6)

In effect, we see that the Vimp is removed from the H operator and instead a convo-
lution between the Green function and the self-energy has been added to the equation of
motion.

B.2 Diffusive quasiclassical self-energy

Impurity averaging

Before reaching the Usadel equation, approximations need to be applied to the self-energy
Σ. The self-consistent Born approximation will be used, and to do so impurity averaging
has to be discussed. The starting point is assuming that the impurity potential comes
from identical impurities spread around in the material. If we have a system with N
impurities located at positions R1,R2, ...RN , the impurity potential reads

Vimp(r) =
N∑
i=1

U(r −Ri), (B.7)

where U(r−R1) is the potential at position r from one impurity located at position R.
The position of the impurities will vary in different realizations of the system, and for the
calculation it is most meaningful to calculate the average over all possible realizations,
namely all possible positions ofR1, ...RN . We define the impurity average over a quantity
X as follows

⟨X⟩av ≡
∫

dR1

∫
dR2· · ·

∫
dRNX. (B.8)

To see how the self-energy can be approximated the first step is writing the Dyson equa-
tion for G expanded in powers of V and G0

G(x, x′) = G0(x, x
′) +

∫
d1G0(x, 1)V (1)G0(1, x

′)

+

∫
d1

∫
d2G0(x, 1)V (1)G0(1, 2)V (2)G0(2, x

′) + · · · .
(B.9)

The impurity average of this equation reads

⟨G(x, x′)⟩ = G0(x, x
′) +

∫
d1G0(x, 1) ⟨V (1)⟩G0(1, x

′)

+

∫
d1

∫
d2G0(x, 1) ⟨V (1)G0(1, 2)V (2)⟩G0(2, x

′) + · · · .
(B.10)

If we assume a uniform random distribution of impurities, the average over one impu-
rity potential is a constant, and we can freely define what to call zero energy by adjusting
the chemical potential, therefore we can set this average over one impurity to be zero∫

dR U(r −R) = const = 0. (B.11)
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The average over the entire impurity potential is thus also zero

⟨V ⟩av =
∫

dR1...

∫
dRN

N∑
i=1

U(r −Ri) = 0. (B.12)

From this, it is seen that the first term in Equation (B.10) disappear. Looking further
at the third term in Equation (B.10), we see that the sum can be split into one part
where i = j and one where i ̸= j. Rewriting by splitting the sum we get

⟨V (1)G0(1, 2)V (2)⟩

=
∑
i

∫
dR1...

∫
dRNU(r1 −Ri)G0(1, 2)U(r2 −Ri)

+
∑
i ̸=j

∫
dR1...

∫
dRNU(r1 −Ri)G0(1, 2)U(r2 −Rj)

=
∑
i

∫
dRiU(r1 −Ri)G0(1, 2)U(r2 −Ri)

∫
dR1...

∫
dRi−1

∫
dRi+1...

∫
dRN

+
∑
i ̸=j

(∫
dRiU(r1 −Ri)

)
G0(1, 2)

(∫
dRjU(r2 −Rj)

)
×
∫

dR1...

∫
dRi−1

∫
dRi+1...

∫
dRj−1

∫
dRj+1...

∫
dRN

=
∑
i

∫
dRiU(r1 −Ri)G0(1, 2)U(r2 −Rj)

∫
dR1...

∫
dRi−1

∫
dRi+1...

∫
dRN .

(B.13)
We can write the integrals that are contributing to the Green function diagrammatically,
by attributing one dotted line to every U(r−Ri), and when the i is equal j from another
factor U(r − Rj) the dotted lines are connected. If a line is not connected, the term
vanishes. This is seen in the equation above, when i ̸= j for all other j the term becomes
zero. We can now express the contributing terms in Equation (B.10) up to the fourth
order of V with diagrams as in Figure B.1.

Self-consistent Born approximation

In the Born-approximation one only includes the term of second order of V , which is only
the first diagram in Figure B.1,

⟨G(x, x′)⟩B = G0(x, x
′)

+

∫
d1

∫
d2G0(x, 1)

∫
dR1...

∫
dRN

×
N∑

i,j=1

U(r1 −Ri)G0(1, 2)U(r2 −Rj)G0(2, x
′),

(B.14)

where the subscript “B” stands for Born approximation. From Equation (B.14), it can
be seen that the self-energy is

ΣB(1, 2) =

∫
dR1...

∫
dRN

N∑
i,j=1

U(r1 −Ri)G0(1, 2)U(r2 −Rj), (B.15)
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(a) (b)

(c) (d)

(e) (f)

Figure B.1: Impurity scattering diagrams up to fourth order in V .

so that the impurity averaged Green’s function now can be written as

⟨G(x, x′)⟩B = G0(x, x
′) +

∫
d1

∫
d2G0(x, 1)ΣB(1, 2)G0(2, x

′). (B.16)

An improvement can be made by introducing the self-consistent Born approximation,
for which the equation for the approximated Green function, GSCB reads

⟨G(x, x′)⟩SCB = G0(x, x
′) +

∫
d1

∫
d2G0(x, 1) ⟨V (1) ⟨G(1, 2)⟩SCB V (2)⟩ ⟨G(2, x′)⟩SCB .

(B.17)
In this case, the self-energy reads

ΣSCB(1, 2) = ⟨V (1) ⟨G(1, 2)⟩SCB V (2)⟩ . (B.18)

Writing out GSCB it can be seen that the diagrams (a), (c) and (e) from Figure B.1 are
included.

Quasiclassical self-energy

The quasiclassical approximation should also be applied to the self-energy. We use the
self-energy in the self-consistent Born approximation from Equation (B.18). We also use
that we can write the impurity potential in terms of the Fourier transformed potential

V (r) =
∑
Ri

U(r −Ri) =
∑
Ri

∑
q

v(q)eiq·(r−Ri), (B.19)
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where v(q) is the Fourier transform of the real space potential U(r). We can then write
the self-energy as follows

Σ(x1, x2) =
∑
Ri

∑
q

eiq·(r1−Ri)G(x1, x2)
∑
Rj

∑
q′

eiq
′·(r2−Rj)

= Ni

∑
Ri

∑
q,q′

G(x1, x2)v(q)e
−i(q+q′)·Riv(q′)eiq·r1+iq′·r2

= Ni

∑
q

v(q)G(x1, x2)v(−q)eiq·r1−iq·r2

= ni

∫
dq

(2π)3
eiq·r1−iq·r2G(x1, x2)|v(q)|2,

(B.20)

where Ni is the number of impurities and ni is the impurity density. In going from the
first to the second line, we use that there is no contribution unless i = j. Assuming that
V (r) is real we conclude that v(−q) = v(q)∗. The next step is Wigner transforming Σ

Σ(X, p) =

∫
dr

∫
dt e−ip·reiEtni

∫
dq

(2π)3
|v(q)|2eiq·rG(x1, x2)

= ni

∫
dq

(2π)3
|v(q)|2G(X,E,p− q)

= ni

∫
dq

(2π)3
|v(p− q)|2G(X, q).

(B.21)

We use the approximation∫
dp

(2π)3
≈ N0

∫
dξp

∫
dΩp

4π
, (B.22)

where N0 is the density of states at the Fermi level, ξp = p2

2m
, and Ωp is the solid angle in

momentum space. Next we assume that |v(q − p)| depends weakly on ξp so that we can
write

σ̂(X, p) ≈ ni

∫
dΩp

4π
|v(p− qF )|2

∫
dξpG(X, q)

=
niπ

i

∫
dΩp

4π
|v(p− qF )|2ǧ(X,E, ǧF )

(B.23)

Here we follow the notation often used in the literature by writing σ instead of Σ to indi-
cate that we are expressing the self-energy in terms of the quasiclassical Green function.

Diffusive limit

For the quasiclassical self-energy we approximate that the main contribution comes from
the s-wave Green function ǧs. Using Equation (B.23) the relaxation-time τ can be defined

1

τ
= 2πniN0

∫
dΩp

4π
|v(q − p)|2, (B.24)

such that the self-energy can be written

σ(R, T,pF , E) ≈ − i

2τ
ǧs. (B.25)
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Appendix C

Spin-Orbit Coupling Boundary
Condition

*This derivation is copied from the specialization project and only a few changes have
been made. The derivation follows [30] closely.

To derive the boundary condition, the first step is setting up the Hamiltonian consist-
ing of interactions between the electrons on the left side of the barrier, the interactions
between the electrons at the right side, and the tunneling term where the electrons on
the right side interact with the electrons at the left side. We set up the Hamiltonian in
momentum space as follows

H = HL +HR +HT

HL =
∑

pp′σσ′

HL,σσ′(p,p′)a†pσap′,σ′

HR =
∑

pp′σσ′

HR,σσ′(p,p′)b†pσbp′,σ′

HT =
∑

pp′σσ′

[Tσσ′(p,p′)a†pσbp′σ′ + T ∗
σσ′(p,p′)b†p′σ′apσ].

(C.1)

Here a†, a are the creation and annihilation operator of electrons at the left side of the
interface, and b†, b are the creation and annihilation operators of electrons at the right
side of the interface.

We could include more terms to the left side and right side Hamiltonian HL and HR,
like the BCS interaction terms. However these terms will not contribute to the tunneling
current, therefore we leave them out. The tunneling Hamiltonian is here written in a
general manner, and we will keep it like this for the first part of the derivation. Later
on we will introduce the specific tunneling term that corresponds to Rashba spin-orbit
coupling.
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Equation of motion for creation and annihilation operators

The equation of motion for the field operators can be derived using the Heisenberg equa-
tion i∂ta = [H, a]

i∂tapσ =
∑
p′σ′

[HL,σσ′(p,p′)aσ′p′ + Tσσ′(p,p′)bp′σ′ ] ,

−i∂ta†−pσ =
∑
p′σ′

[
HL,σσ′(−p,−p′)a†−p′σ′ + T ∗

σσ′(−p,−p′)b†−p′σ′

]
,

i∂tbpσ =
∑
p′σ′

[HR,σσ′(p,p′) + T ∗
σ′σ(p

′,p)ap′σ′ ] ,

−i∂tb−pσ =
∑
p′σ′

[
HR,σσ′(−p,−p′)b†−p′σ′ + Tσ′σ(−p′,−p)a−p′σ′

]
.

(C.2)

Continuing in the same way as earlier, we switch to the spin ⊗ Nambu space notation
where

Ap =


ap↑
ap↓
a†−p↑
a†−p↓

 , (C.3)

and equivalently for Bp. We write down the equation of motion in this spin ⊗ Nambu
notation

iρ̂3∂tAp =
∑
p

[
ĤL(p,p

′)Ap′ + T̂ (p,p′)Bp′

]
, (C.4)

iρ̂3∂tBp =
∑
p

[
ĤR(p,p

′)Bp′ + ˆ̃T (p,p′)Ap′

]
, (C.5)

where

ĤL(R)(p,p
′) =

(
HL(R)(p,p

′) 0

0 HL(R)(−p,−p′)

)
, (C.6)

T̂ (p,p′) =

(
T̄ (p,p′) 0

0 T̄ ∗(p,p′)

)
. (C.7)

Defining more Green functions

To proceed we need to define some more Green functions. We will now introduce greater,
lesser and time-ordered Green functions. In addition we introduce the concept of con-
nected Green functions. These connected Green functions will be correlation functions
of one electron operator from the left side and one from the right side and they will be
called C instead of G, so it should be paid attention to the difference between C and G
in the calculation that follows. In addition we add a subscript R or L, for ”right” and
”left” which indicated which electron operator type we are using, or the order they are
in. The lesser Green functions are defined as

Ĉ<
L (p, t;p

′, t′) = i ⟨[[A†
p′(t

′)]T [Bp(t)]
T ]T ⟩ ,

Ĉ<
R (p, t;p

′, t′) = i ⟨[[B†
p′(t

′)]T [Ap(t)]
T ]T ⟩ ,

Ĝ<
L(p, t;p

′, t′) = i ⟨[[A†
p′(t

′)]T [Ap(t)]
T ]T ⟩ ,

Ĝ<
R(p, t;p

′, t′) = i ⟨[[B†
p′(t

′)]T [Bp(t)]
T ]T ⟩ .

(C.8)
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In the same manner we define the greater Green functions

Ĉ>
L (p, t;p

′, t′) = i ⟨Bp(t)A
†
p′(t

′)⟩ ,
Ĉ>

R (p, t;p
′, t′) = i ⟨Ap(t)B

†
p′(t

′)⟩ ,
Ĝ>

L(p, t;p
′, t′) = i ⟨Ap(t)A

†
p′(t

′)⟩ ,
Ĝ>

R(p, t;p
′, t′) = i ⟨Bp(t)B

†
p′(t

′)⟩ .

(C.9)

We also define the Keldysh Green functions in the same manner

ĈK
L (p, t;p′, t) = −iρ̂3 ⟨[Bp(t), A

†
p′(t

′)]⟩ , (C.10)

also for the right side Green function and for the connected Green functions. Lastly, we
also define the time-ordered Green functions

ĈL(p, t;p
′, t′) = −iρ̂3 ⟨T Bp(t)A

†
p′(t

′)⟩
= −iρ̂3Θ(t− t′) ⟨Bp(t)A

†
p′(t

′)⟩+ iρ̂3 ⟨[[A†
p′(t

′)]T [Bp(t)]
T ]T ⟩ .

(C.11)

One should pay attention to that the lesser and greater Green functions are defined
without a ρ̂3 whereas the Keldysh Green functions and the time-ordered Green function
are defined with.

Tunneling current

To find the tunneling current we use J = e∂tNL = −e∂tNR, where NL and NR is the
number operator of the left and right side respectively. Notice that we have defined that
the direction of the current is from the left side toward the right side.

The number operator of left-side electrons reads

NL =
∑
ps

a†psaps. (C.12)

We use our equations of motion and we see that we can write it in terms of a trace over
the lesser connected Green function

⟨∂tNL⟩ = −
∑
pp′

Tr[T̂ (p,p′)Ĉ<
L (p

′, t;p, t)]. (C.13)

To evaluate this we will also need the time derivative of the connected time-ordered
Green function, which can be found to be

iρ̂3∂tĈL(p, t;p
′, t) =

∑
q

[ĤR(p, q)ĈL(q, t;p
′, t′) + ˆ̃T (p, q)ĜL]. (C.14)

This can be written as∑
q

[iρ̂3∂tδqp − ĤR(p, q)] =
∑
q

ˆ̃T (p, q)ĜL(q, r; q
′, t′), (C.15)

to which we can write the solution

Ĉ(p, t,p′, t′) =

∫
dt1
∑
qq′

Ĝ0,R(p, t; q, t1)
ˆ̃T (q, q′)ĜL(q

′, t1;p
′, t′). (C.16)
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Here Ĝ0,R refer to the solution of the system where HT is not included, that satisfies∑
q

[iρ̂3∂tδpq − ĤR(p, q)]Ĝ0,R(q, t;p
′, t′) = δ(t− t′)δpp′ . (C.17)

If we first deform this integral to the Keldysh contour we can use Langreth rules on
Equation (C.16). These rules are explained in the book by Haug and Jauho [63] and
state that if one have C =

∫
C
AB, where A,B and C are time-ordered Green functions

and the subscript C on the integral means it is over the Keldysh contour, one also have
C< =

∫
t
[ARB<+A<BA], where the integral is over the real time axis. One also has the

equivalent for the greater Green function. By these rules we get

ρ̂3Ĉ
<(p, t;p′, t) =

∫
dt1
∑
qq′

[ĜR
0,R(p, t; q, t1)

ˆ̃T (q, q′)ρ̂3Ĝ
<
L(q

′, t1;p
′, t′)

+ ρ̂3Ĝ
<
0,R(p, t; q, t1)

ˆ̃T (q, q′)ĜA
L(q

′, t1;p
′, t′)],

ρ̂3Ĉ
>(p, t;p′, t) =

∫
dt1
∑
qq′

[ĜR
0,R(p, t; q, t1)

ˆ̃T (q, q′)ρ̂3Ĝ
>
L(q

′, t1;p
′, t′)

+ ρ̂3Ĝ
>
0,R(p, t; q, t1)

ˆ̃T (q, q′)ĜA
L(q

′, t1;p
′, t′)].

(C.18)

Now we use the relation between the Keldysh, greater and lesser Green function

ĜK = ρ̂3(Ĝ
< + Ĝ>), (C.19)

and that for equal time we have Ĝ< = Ĝ> we can write Equation (C.13) as follows

⟨∂tNL⟩

= −1

2

∑
pp′qq′

∫
dt1Tr

[
ρ̂3

(
T̂ (p,p′)Ǧ0,R(p

′, t; q, t1)
ˆ̃T (q, q′)ǦL(q

′, t1;p, t)
)K]

.
(C.20)

In the same manner we can calculate ⟨∂tNR⟩ = ⟨∂t
∑

ps b
†
psbps⟩ by using the Green

functions defined on the right side of the barrier CR, GR. We get

⟨∂tNR⟩ = −1

2

∑
pp′qq′

∫
dt1Tr

{
ρ̂3

(
Ǧ0,L(p

′, t; q, t) ˆ̃T (q, q′)ǦR(q
′, t;p, t)T (p, p′)

)K}
.

(C.21)
We use the average of the two expressions we found above in the expression for the

tunneling current

⟨∂tN⟩ = 1
2
(⟨∂tNL⟩ − ⟨∂tNR⟩) . (C.22)

We Fourier transform the expression and assume that the flow is stationary so that we
can evaluate the expression at t = 0

⟨∂tN⟩ = 1

4

∑
pp′qq′

∫
dE

2π
Tr[ρ̂3

(
Ǧ0,L(p, q;E)T̂ (q, q

′)ǦR(q
′,p′;E) ˆ̃T (p′,p)]

)K
]

− 1

4

∑
pp′qq′

∫
dE

2π
Tr[ρ̂3

(
ˆ̃T (p′,p)Ǧ0,R(p, q;E)

ˆ̃T (q, q′)ǦL(q
′,p′;E)

)K
].

(C.23)
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From the current expression we have

J ∼
∫

dETr(ρ̂3Ǐ
K), (C.24)

where Î = Ǧ∇Ǧ is the current matrix. Next, we approximate Ǧ0 ≈ Ǧ, so that we can
write

Ǐ ∼
∑

pp′qq′

[ǦL, T̂ ǦR
ˆ̃T ] + Traceless terms (C.25)

where the traceless terms means terms where the Keldysh component of the 8×8 matrix
multiplied with the ρ̂3 matrix, is traceless.

Rashba spin orbit coupling.

Until now we have not specified what the tunneling terms look like. One can use different
tunneling terms where the simplest is just to let the T̂ = diag(T, T, T, T ). This would
give quite simple boundary conditions for the Green function namely the Kuprianov-
Lukiichev boundary conditions. Here we use a more complicated tunneling Hamiltonian
where Rashba spin-orbit coupling is present.

Following Linder and Amundsen we choose a tunneling term with a symmetrized
Rashba spin-orbit coupling term to ensure hermiticity. We define the tunneling Hamil-
tonian in real space as

HT =
∑
σσ′

∫
dr
[
a†σTσσ′(r)bσ′(r) + h.c.

]
, (C.26)

with
T (r) = T0(r∥) = T0δ(r⊥ −R0)− i{Tij(r∥)δ(r⊥ −R0)τj, ∂i}. (C.27)

Here r∥ is the part of r that is parallel with the interface, and r⊥ is the component of
r that is orthogonal to the interface. We have here used that the tunneling term only
appears at r⊥ = R0, meaning that we assume an infinitesimally thin layer of spin-orbit
coupling material between the superconductor and the other material.

We rewrite this tunneling Hamiltonian in terms of the Fourier-transformed fermionic
operator

HT =
∑
σσ′

∫
dr
∑
pp′

a†spe
−ip·rTσσ′(r)eip

′·rbσ′p′

=
∑
σσ′

a†σpTσσ′(p,p′)bσ′p′ where

Tσσ′(p,p′) =

∫
dre−ip·rTσσ′(r)eip

′·r

=

∫
dr∥[T0(r∥) + Tij(r∥)(pi + p′i)τσσ′,j]e

−(p−p′)·r∥ .

(C.28)

In the last line the T from above is inserted. Further, we approximate the interface to
be only one point.

T0(r∥) = δ(r∥)T0

Tij(r∥) = δ(r∥)Tij
(C.29)

where T0 and Tij are constants. This gives

Tσσ′(p,p′) = T0 + Tij(pi + p′i)τσσ′,j = T̃σσ′(p,p′). (C.30)
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Tunneling terms in the case of Rashba SOC

We now find the tunneling current terms by going to the continuum limit so that the
sum in Equation (C.25) can be expressed by integrals, and we perform the integration.
First, we write the T -term in a convenient notation

T̂ (p,p′) = T0 + (pi − p′i)Tij ρ̂3σ̂j = T0 + (pi − p′i)t̂i,

t̂i = Tij ρ̂3τ̂j.
(C.31)

Also here will use the quasiclassical approximation and write the integral in terms of the
quasiclassical Green function

ǧR/L(pF ,R = 0) =
1

2π

∫
dq

∫
dξpǦR/L(p, q). (C.32)

We start by looking at the integral∫
dp

∫
dp′

∫
dq

∫
dq′T̂ (p′,p)ǦR(p, q)

ˆ̃T (qq′)ǦL(q
′,p′). (C.33)

Using the dirty limit approximation writing ǧ = ǧs +pF · ǧp with ǧp = −τvF ǧs∇ǧs as we
got from the Usadel equation. Making use of the identity

∫
dΩ
4π
pF,ipF,j/p

2
F = 1

3
δij we can

write Equation (C.33)

T 2
0 ǧR,sǧL,s −mDT0ǧR,s∂iǧR,st̂iǧL,s −mDT0ǧR,st̂iǧL,s∂iǧL,s

−mDT0t̂iǧR,s∂iǧR,sǧL,s −mDT0t̂iǧR,sǧL,s∂iǧL,s +
2
3
p2
F t̂iǧR,st̂iǧL,s,

(C.34)

where D =
v2F τ

3
. Here the a factor 1/3 was missing from the last term in the paper by

Linder and Amundsen [30]. For Rashba spin-orbit coupling we have Tij = T1nkεkji. We
can write the whole tunneling term from Equation (C.25) by writing the commutator of
the terms that include ǧL,s,

DǧL,s∂zǧL,s = T 2
0 [ǧL,s, ǧR,s] +

2
3
T 2
1 p

2
F [ǧL,s, τ ∥ǧR,sτ ∥]

−mDT1T0[ǧL,s, {τ ∥, (ǧR,s∇ǧR,s)× ez}]
−mDT1T0[(ǧL,s∇ǧL,s)× ez, {τ ∥, ǧR,s}]
+ Traceless terms,

(C.35)

where ez is the unit vector in z-direction.
We do also want an expression DǧR,s∂zǧR,s, expressed by the opposite side Green

function. This can be found by noting in Equation (C.23) that ˆ̃T and ρ̂3 commute, so we
can also write the expression in Equation (C.25) as

Ǐ ∼
∑

pp′qq′

[ ˆ̃TǦLT̂ , ǦR] = −
∑

pp′qq′

[ǦR,
ˆ̃TǦLT̂ ]. (C.36)

Since ˆ̃T = T̂ we see that the only difference is that we have switched ǦL with ǦR and
gotten a minus sign. From this we conclude that we can write

DǧR,s∂zǧR,s = T 2
0 [ǧL,s, ǧR,s]− 2

3
T 2
1 p

2
F [ǧR,s, τ ∥ǧL,sτ ∥]

+mDT1T0[ǧR,s, {τ ∥, (ǧL,s∇ǧL,s)× ez}]
+mDT1T0[(ǧR,s∇ǧR,s)× ez, {τ ∥, ǧL,s}]
+ Traceless terms.

(C.37)

Moving forward, the s-subscript will be dropped.
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Terms from reflection at interface

In addition to the terms we already found we could also have some traceless terms in our
Ǐ, and we will find them now by looking at terms that originate from reflection at the
interface surface. This is found by integrating the Usadel equation over the interface, so
we start by reminding ourselves that the Usadel equation in normal metal reads

D∇̄(ǧ∇̄ǧ) + i[Eρ̂3, ǧ]. (C.38)

The spin orbit coupling is included in the ∇̄... = ∇... − i[Â, ...]. Here we have included
the ρ̂3 and e in the Â so that

Â = e

(
A 0
0 −A∗

)
, (C.39)

where A is upgraded to a matrix.
A broader discussion about the origin of the Rashba spin-orbit coupling and the

relevance it has in modern research can be found in the paper by Manchon et al. [64].
It can be shown that a Rashba Hamiltonian that breaks the inversion symmetry in z-
direction, as the interface in consideration here, can be written

HSOC = − α

m
(k × τ̂ ) · z, (C.40)

which be obtained by setting
A = eα(−τy, τx, 0). (C.41)

It should be noted here that in the derivation of the quasiclassical theory the Rashba
spin-orbit coupling by this argument could be introduced from the start, by upgrading
the A to a matrix as it is used here.

We integrate Equation (C.38) from z = −d to z = d. The spin-orbit coupling material
is assumed to be thin so that we can neglect spatial variations of ǧ in this region, therefore
the right side of the Usadel equation integrates to zero, and we get

(ǧ∂zǧ)|d − (ǧ∂zǧ)|−d − id∇ǧ[Â, ǧ]|d − iǧ[Â,∇ǧ]
− id[Â, ǧ∇ǧ]|d − d[Â, ǧ[Â, ǧ]]|d

= 0,

(C.42)

where we have also approximated the derivatives with their value at z = d. If we did not
have any spin-orbit coupling the (ǧ∂zǧ)|d would be equal to the tunneling current, thus
we can identify (ǧ∂zǧ)|−d as the contribution from the tunneling current ǏT . We can now
write

(ǧ∂zǧ)|d = ÎT + id∇ǧ[Â, ǧ]|d − 2idǧ∇ǧÂ|d
+ idǧÂ∇ǧ|d + idÂǧ∇ǧ|d + d[Â, ǧÂǧ]|d.

(C.43)

Now putting in our Â, and writing ǧ|−d = ǧL gives us

ǧR∂zǧR = ÎT + idα∂y[ρ̂x, ǧR]− 2idαǧR∂yǧRρ̂x + idαǧRρ̂x∂yǧR (C.44)

+ idαρ̂xǧR∂yǧR + dα2[ρ̂x, ǧRρ̂xǧR] + dα2[ρ̂y, ǧRρ̂yǧR], (C.45)

where we have defined ρ̂x = ρ̂3τ̂x, ρ̂y = ρ̂3τ̂y. Deriving the expression for ǧL∇ǧL is similar,
we just write the other terms evaluated at z = −d. In the paper by Linder and Amundsen,
the equation above had an extra constant term that should not be there.
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APPENDIX C. SPIN-ORBIT COUPLING BOUNDARY CONDITION

Final form of the boundary conditions

We conclude this section by writing out all the terms in the boundary condition including
the tunneling and the reflection terms

DǧL∂zǧL = T 2
0 [ǧL, ǧR] +

2
3
T 2
1 p

2
F [ǧL, τ̂ ∥ǧRτ̂ ∥]−mDT1T0[ǧL, {τ̂∥,x, ǧR∂yǧR}]

−mDT1T0[ǧL∂yǧL, {τ̂∥,x, ǧR}]− iDdα∂y[ρ̂x, ǧL]

+ 2iDdαǧL∂yǧLρ̂x − iDdαǧLρ̂x∂yǧL − iDdαρ̂xǧL∂yǧL

−Ddα2[ρ̂x, ǧLρ̂xǧL]−Ddα2[ρ̂y, ǧLρ̂yǧL],

(C.46)

DǧR∂zǧR = T 2
0 [ǧL, ǧR]− 2

3
T 2
1 p

2
F [ǧR, τ̂ ∥ǧLτ̂ ∥] +mDT1T0[ǧR, {τ̂∥,x, ǧL∂yǧL}]

+mDT1T0[ǧR∂yǧR, {τ̂∥,x, ǧL}] + iDdα∂y[ρ̂x, ǧR]

− 2iDdαǧR∂yǧRρ̂x + iDdαǧRρ̂x∂yǧR + iDdαρ̂xǧR∂yǧR

+Ddα2[ρ̂x, ǧRρ̂xǧR] +Ddα2[ρ̂y, ǧRρ̂yǧR].

(C.47)
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