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Abstract

The interactions between magnons and phonons, which are fundamental excitations in magnetically
ordered materials, have been the subject of intense investigation. It has been found that these inter-
actions can give rise to magnon-polarons that can modify the system’s topology, leading to intriguing
transport phenomena. In this study, our focus is on examining magnons, phonons, and their interac-
tions in a two-dimensional (2D) ferromagnetic (FM) honeycomb layer. A comprehensive topological
analysis of the interacting bands is conducted, considering various magnetization directions. The in-
teractions stem from different sources, including magnetic anisotropy and the in-plane Dzyaloshinskii-
Moriya interaction (DMI), with the latter arising from mirror symmetry breaking.

The findings of this study reveal that the interactions between magnons and phonons have notable
effects on the system’s topology when the magnetization is perpendicular to the lattice plane and the
initial magnon bands possess nontrivial topology. Specifically, the interactions induce Berry curvature
at the avoided crossings between magnon and phonon bands, leading to a weak renormalization of the
thermal Hall conductivity and the spin Nernst coefficient. On the other hand, when the magnetiza-
tion lies in the plane and the initial bands are topologically trivial, the magnon-phonon interactions
arising from anisotropy and in-plane nearest neighbour DMI result in a vanishing Berry curvature.
However, the in-plane next-nearest neighbour DMI induces Berry curvature at the anticrossing re-
gions. In this scenario, the transport properties are influenced by the magnetization direction within
the plane. Particularly, a nonzero conductivity is observed in the x̂-direction, while the ŷ-direction
exhibits a vanishing conductivity due to the balanced distribution of Berry curvature, resulting in
topologically trivial magnon-polaron bands. In contrast, a nonzero spin Nernst coefficient is observed
in all magnetization directions examined.
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Oppsummering

Mye forskning har hatt til hensikt å undersøke vekselvirkningene mellom magnoner og fononer, som
utgjør fundamentale eksitasjoner i magnetisk ordnede materialer. Forskningsfunnene tyder på at
disse vekselvirkningene kan danne magnon-polaroner, som i sin tur kan påvirke systemets topologi
og føre til interessante transportfenomener. I denne studien er fokuset rettet mot undersøkelsen
av magnoner, fononer og deres samspill i et todimensjonalt ferromagnetisk honeycombgitter. En
grundig topologisk analyse av de interagerende båndene utføres med varierende magnetiseringsret-
ninger tatt i betraktning. Vekselvirkningene har ulike kilder, inkludert magnetisk anisotropi og den
planære Dzyaloshinskii-Moriya-vekselvirkningen, der sistnevnte oppstår som følge av symmetribrytelse
av speilrefleksjonssymmetri.

Resultatene av denne studien avdekker at vekselvirkningene mellom magnoner og fononer har bety-
delige effekter på systemets topologi når magnetiseringen står vinkelrett på gitterplanet og de op-
prinnelige magnonbåndene har en ikke-triviell topologi. Spesifikt fører disse vekselvirkningene til
uvikling av Berry-kurvatur ved unngåtte kryssinger mellom magnon- og fononbånd, som resulterer
i en svak endring av den termiske Hall-konduktiviteten og spinn-Nernst-koeffisienten. Når magne-
tiseringen derimot ligger i gitterplanet og de opprinnelige båndene har en triviell topologi, fører de
magnon-fonon vekselvirkningene som oppstår fra anisotropi og den planære Dzyaloshinskii-Moriya-
vekselvirkningen for nærmeste naboer til en forsvinnende Berry-kurvatur. Imidlertid induserer den
planære Dzyaloshinskii-Moriya-vekselvirkningen for nest nærmeste naboer Berry-kurvatur ved om-
råder med antikryssinger. I dette tilfelle påvirkes transportegenskapene av magnetiseringsretningen i
gitterplanet. Spesielt observeres en ikke-null konduktivitet i x̂-retningen, mens ŷ-retningen viser en
forsvinnende konduktivitet på grunn av en balansert fordeling av Berry-kurvatur, noe som resulterer i
topologisk trivielle magnon-polaronbånd. Til forskjell observeres en ikke-null spinn-Nernst-koeffisient
i alle undersøkte magnetiseringsretninger.
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CHAPTER 1

Introduction

Phonons and magnons have been extensively studied since their discovery and are well-established
concepts in the field of condensed matter physics. Phonons describe the collective modes of lattice
vibrations and are useful in understanding thermal properties such as specific heat capacity and
thermal conductivity in materials [1–3]. On the other hand, magnons are associated with deviations
from the magnetic ordering in a material and provide a valuable model for, among other things,
temperature-dependent magnetization in ferro- and antiferromagnetic materials at low temperatures
[3, 4].

In the wake of the isolation of graphene in 2004 [5], a new class of 2D physics has emerged, presenting
unique properties that require a revision of existing theories for crystalline systems with infinitesimal
thickness [6]. While several models for 3D materials can also be applied to 2D materials, the latter
have flexural out-of-plane vibration modes with a quadratic dispersion instead of the linear relation
predicted by 3D models, as established in the theory of elasticity [6, 7]. In magnetic systems, the
Mermin-Wagner theorem postulates that two-dimensional isotropic materials with only short-range
interactions cannot have magnetic ordering at nonzero temperatures [8]. Nonetheless, magnetic or-
dering can be achieved by introducing anisotropy into the system [6, 9]. Van der Waals magnets
(vdW magnets), which consists of covalently bonded layers and possess intrinsic magnetocrystalline
anisotropy, provide an excellent platform for exploring magnetically ordered materials in the 2D limit
[10]. Recent studies have provided evidence for magnetic ordering in 2D sheets derived from van der
Waals materials, such as in the chromium trihalide CrI3 [6, 10, 11]. As two-dimensional vdW magnets
are sensitive to external stimuli such as electric fields, strain, and proximity effects, they are potential
candidates to be used in spintronics devices such as sensors and memory [9, 11].

After the discovery of two-dimensional magnets, much attention has been focused on identifying and
investigating materials that display topological spin excitations [12–14]. Such materials are character-
ized by unique edge modes that are resistant to external disturbances [15], making them particularly
promising for potential use in dissipationless spintronics [13, 16]. Furthermore, topological materials
are likely to exhibit Hall effects, including the magnon-mediated thermal Hall effect and spin Nernst
effect, which may be present in topological magnon insulators [16]. These transport phenomena are
significant because they provide a means of examining and comprehending the low-energy excitations
of the materials [17]. Indeed, thermal Hall effects attributed to magnons and phonons, which can also
display topological excitations, have been demonstrated [18, 19].

A polaron is a quasiparticle that emerges from the interaction of a charged particle with the lattice
of a material [3]. Similarly, magnons and phonons can also be coupled in a way that gives rise to
a hybridized magnon-polaron state. Recent studies have shown that this coupling exists in various
materials, including bcc Fe [20], the insulating ferrimagnet yttrium iron garnet [21] and the antiferro-
magnetic monolayer FePSe3 [22]. Understanding how stable magnons and phonons interact to affect
the properties of solids is of great interest. Particularly, spin-lattice coupling plays a crucial role in
comprehending the phonon-driven spin-Seebeck effect, the coupling between ferromagnetic and ferro-
electric order parameters in multiferroic materials, and also enables the exploration of new concepts in
spin-calorics [23, 24]. Additionally, the interaction can shed light on effects such as magnetostriction,
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INTRODUCTION

spin damping and magnon transport [25].

Much research has been devoted to investigating how the interaction between magnons and phonons
can either produce nontrivial topological bands from trivial magnon and phonon bands, or strengthen
the already existing topology. This is because Berry curvature, which is essential in displaying non-
trivial topological bands, can be generated at the gap openings between magnon and phonon branches
in the presence of interactions [18, 26]. The resulting Berry curvature contributes to the thermal
Hall and spin Nernst effect. Studies have been conducted on two-dimensional square, honeycomb,
triangular, and kagome lattices with different magnetic orderings [18, 19, 22, 26–29]. Moreover, it
has been demonstrated that topological magnon-polaron bands can arise in the presence of magnetic
interactions such as dipolar interaction [30], Dzyaloshinskii-Moriya interaction [18, 26, 28], magnetic
anisotropy [27, 29], Heisenberg exchange interaction [19] and Kitaev interaction [22]. Due to the small
wavelengths achievable in the hybridized magnon-phonon system, which can be as small as the atomic
unit cell, it holds promising potential for applications in compact topological devices [22].

This thesis aims to develop a microscopic theory for spin-waves and lattice vibrations, as well as their
interactions, in two-dimensional magnetic systems. The initial part of the thesis is a review of prior
work on the square and honeycomb lattices, examining both ferro- and antiferromagnetic ordering of
the spins. Chapter 2 and 3 introduce phonons and magnons, respectively, and provide a calculation
of their dispersion. In Chapter 4, these two systems are combined to investigate the hybrid magnon-
phonon energy spectrum and compare with previous results. The latter part of the thesis focuses on
the ferromagnetic honeycomb lattice, specifically modifying the magnon dispersion for an arbitrary
direction of the magnetization and exploring the effects of various magnetic exchange interactions in
Chapter 6. Chapter 7 examines the magnetoelastic energy spectrum, where the hybridization arises
from both magnetic anisotropy and Dzyaloshinskii-Moriya interaction, with a focus on the topological
aspects of the bands introduced in Chapter 5. The results are compared for various magnetization
directions and coupling terms, and a discussion of the thermal Hall conductivity and the spin Nernst
coefficient in the different systems is given. Finally, Chapter 8 summarizes the findings of the thesis.

Some sections of this thesis are included to enhance the understanding of the underlying theory and
may not have a direct impact on the final results. Furthermore, this thesis is a continuation of the
specialization project report, which is concluded by the first part of the thesis. However, it should be
noted that certain sections might have been revised in the final thesis.
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Microscopic Theory of Magnons, Phonons,
and Their Interactions: An Introduction
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CHAPTER 2

Phonons

To analyze the properties of a solid, it is essential to establish its geometric structure, which is known
as the crystal lattice. The crystal lattice consists of arrays of lattice sites where the atoms lie when
the specimen is in its ground state. This is a simplified picture as a real material can have impurities,
vacant sites and grain boundaries [2]. A crystal is divided into geometrically identical unit cells that
are connected through discrete translations, giving rise to the complete crystal structure. The position
R of each unit cell is

R = n1a1 + n2a2 + n3a3,

where {n1, n2, n3} are integer numbers and {a1,a2,a3} are the primitive lattice vectors. When a
crystal lattice’s unit cell contains multiple atoms, the organization of these atoms is determined by a
group of vectors called the basis [2]. These vectors indicate the locations of each atom within the unit
cell.

Atoms within lattices experience vibrations around their equilibrium positions due to thermal energy.
The opposing forces that maintain the lattice structure originate from the chemical bonds between
the atoms [31]. To establish a mathematical model for lattice dynamics, it is advantageous to replace
the individual particle model with a collective model. This is appropriate because when a single
atom is perturbed from its ground state, the energy quickly spreads throughout the lattice through
interactions between the atoms, resulting in collective vibrations [31]. Within this description, it
is possible to quantize the lattice vibrations, resulting in the emergence of fundamental excitations
known as phonons. From this perspective, the lattice can be seen as a volume containing a ’gas’
of phonons [2]. Phonons exhibit similar quantum behaviour to other particles, but the concept of
assigning a conventional mass to phonons is not applicable [32]. The classical counterpart of phonons
is represented by normal modes, which are single-frequency oscillations and form the basis for lattice
vibrations.

In 1907, Einstein was the pioneer in introducing the concept of quantized lattice vibrations when he
calculated the specific heat capacity in diamond [1]. The term ’phonon’ was coined by J. Frenkel in
1932, drawing inspiration from the photon [32]. The word ’phonon’ originates from the ancient Greek
word for sound, highlighting the association with sound waves.

Phonons can be divided into two categories based on the atomic motion within the lattice: acoustic
and optical [2]. Optical phonons are present in lattices with multiple atoms in the basis and exhibit
asymmetric motion among the atoms. In the case of an ionic crystal, the asymmetry creates an electric
dipole moment that can interact with the electromagnetic field, hence the name "optical". On the other
hand, acoustic phonons involve symmetric atomic motion. In the case of longitudinal vibrations and
in the limit of long wavelengths, acoustic phonons correspond to sound waves. The total number of
eigenmodes, or branches, in a lattice depends on the number of atoms in the basis and the number
of dimensions in which the atoms can move. In a lattice with a r-atomic basis and atoms capable
of moving in d dimensions, there are a total of dr branches. Among these branches, d correspond to
acoustic phonons while the remaining dr − d are optical phonons [3].

5



PHONONS

2.1. Classical equation of motion
In order to determine the lattice dynamics, it is theoretically necessary to account for both the effects
of the nuclei and the electrons. However, due to the much slower movement of the nuclei compared to
the electrons, an approximation can be made by considering the electrons to be in their ground state
for every nuclear position [2, 4]. This approximation, known as the adiabatic approximation, allows
us to focus solely on the motion of the nuclei or ions in the following calculations.

Furthermore, we adopt the Born-von Karman model and impose a periodic boundary condition on
the wavefunctions. This assumption is based on the idea that the bulk properties of the material
remain unaffected by the chosen boundary condition [4]. The periodic boundary condition restricts
the wavevector to certain allowed values, and the number of allowed values within the primitive cell of
the reciprocal lattice is equal to the number of unit cells in the crystal. In the limit of a large sample,
the wavevector can be considered approximately continuous.

Let us consider a lattice consisting of ions, with Nuc unit cells. The equilibrium position for each ion
is given by Riα = Ri +Rα, where Ri is a vector pointing to a reference point inside the ith unit cell,
and Rα is the vector pointing to the αth ion within the unit cell. For a lattice with an r-atomic basis,
the indices can take values i = 1, . . . , Nuc and α = 1, . . . , r. The instantaneous position vector of an
ion is denoted as riα(t) = Riα + uiα(t), where uiα(t) represents the displacement of the ion at time
t. The Hamiltonian, which represents the total energy of the ions as a function of their positions and
momenta, can be expressed as follows [33]

H = T + V =
∑
i,α

 p2iα
2Mα

+
∑
j,β

j,β ̸=i,α

V (riα − rjβ)

 ,
where Mα is the mass of the αth ion in the unit cell. Classically, the momentum is given by piα =
ṙiαMα = u̇iαMα where the dot denotes the time-derivative. As small vibrations of the ions are
expected, |uiα| << a (where a is the lattice constant), we can Taylor expand the potential V (riα−rjβ)
around the equilibrium position Riα −Rjβ. The expansion is done as [2]

∑
j,β

j,β ̸=i,α

V (riα − rjβ) ≈
∑
j,β

j,β ̸=i,α

(
V (Riα −Rjβ) +

∑
µ

∂V

∂Riαµ
uiαµ + 1

2
∑
µ,ν

∂2V

∂Riαµ∂Rjβν
uiαµujβν

)
.

The index µ = x, y, . . . denotes the spatial components of the vectors in d−dimensions and the first
and second derivatives of the potential are evaluated at equilibrium. The termination of higher order
terms in the expansion of the potential is called the harmonic approximation [31]. The first term
yields a constant contribution and can be discarded in the following. The second term is the force on
the iαth ion that, by definition, is zero in equilibrium. We are left with the last term which may be
written compactly as

1
2
∑
i,α,µ
j,β,ν

∂2V

∂Riαµ∂Rjβν
uiαµujβν = 1

2
∑
i,α,µ
j,β,ν

Φαβ
µν (Rj −Ri)uiαµujβν .

The coefficient Φαβ
µν (Rj − Ri) is the force coefficient between the iαth ion in the µth direction due

to a displacement of the jβth ion in the νth direction. Note that we included the i = j and α = β
term in the summation, which introduces self-force coefficients that will be further explained below.
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2.1. Classical equation of motion

Due to translational invariance, the force coefficients depend only on the relative distance between the
unit cells. Moreover, the second derivatives are symmetric under an interchange of indices and satisfy
Φαβ
µν (Rj −Ri) = Φβα

νµ (Ri −Rj). With these modifications, the Hamiltonian may be written

H = 1
2
∑
i,α,µ

Mαu̇
2
iαµ + 1

2
∑
i,α,µ
j,β,ν

Φαβ
µν (Rj −Ri)uiαµujβν . (2.1)

From Newton’s equation, the equation of motion is [31]

Mαüiαµ = − ∂V

∂uiαµ
= −

∑
j,β,ν

Φαβ
µν (Rj −Ri)ujβν , (2.2)

for each iαµ set of indices, making a total of drNuc equations. The harmonic nature of the equation
motivates the search for harmonic plane wave solutions. We use the ansatz

uiαµ(t) =
1√
Mα

cαµei(q·Riα−ωt),

where cαµ is the amplitude, q is the wavevector in reciprocal space and ω is a frequency. By substituting
the given expression into the equation of motion, it results in the following

−
√
Mαω

2cαµei(q·Riα−ωt) = −
∑
j,β,ν

Φαβ
µν (Rj −Ri)

1√
Mβ

cβνei(q·Rjβ−ωt)

=⇒ ω2cαµ =
∑
j,β,ν

1√
MαMβ

Φαβ
µν (Rj −Rj)eiq·(Rjβ−Riα)cβν .

Let us denote the relative distance between the unit cells by ∆uc = Rj −Ri and ∆ = Rjβ −Riα as
the vector between two ions. Changing the summation index from j to ∆uc and defining Dαβ

µν (∆uc) =
(MαMβ)−

1
2Φαβ

µν (∆uc), the equation of motion may be written [31]

ω2cαµ =
∑
β,ν

cβν
∑
∆uc

Dαβ
µν (∆uc)eiq·∆

=⇒ ω2cαµ =
∑
β,ν

Dαβ
µν (q)cβν , Dαβ

µν (q) =
∑
∆uc

Dαβ
µν (∆uc)eiq·∆,

=⇒
∑
β,ν

[
Dαβ

µν (q)− ω2δα,βδµ,ν
]
cβν = 0.

(2.3)

The number of drNuc equations is now reduced to a set of dr equations. Writing the equation in
matrix form, the system of equations has nontrivial solutions if and only if ω2 satisfies the equation
[34]

det
(
D(q)− ω2I

)
= 0. (2.4)

D(q) is the dynamical matrix with dimensions dr × dr, I is the identity matrix with the same di-
mensions and the notation det(·) indicates the determinant of the matrix. The dynamical matrix is
Hermitian. This can be shown by noting that D(∆uc) is a real symmetric matrix and that taking the
transpose of the neighbouring vector ∆ yields a sign change such that

(Dαβ
µν (q))† =

∑
∆uc

(Dαβ
µν (∆uc))†(e−iq·∆)∗ =

∑
∆uc

Dαβ
µν (∆uc)eiq·∆ = Dαβ

µν (q).

7



PHONONS

In general, a n×n Hermitian matrix has n orthonormal eigenvectors and is always diagonalizable by an
unitary matrix [34]. Equation (2.4) is an eigenvalue problem with solutions ω2

λ(q), λ = 1, . . . , dr, and
each eigenvalue has a corresponding eigenvector cλ(q). The frequency ωλ(q) is called the dispersion
for eigenmode λ. The normalized eigenvectors are denoted by êλ(q) and the unitary matrix that
diagonalizes D(q) is on the form Uph(q) = [ê1(q), . . . , êdr(q)] where each êλ(q) is a column vector.
The normalized eigenvectors are orthonormal and fulfill the relation

êλ∗(q) · êλ′(q) =
∑
α,µ

eλ∗αµ(q)eλ
′

αµ(q) = δλ,λ′ ,

or in matrix notation U †
ph(q)Uph(q) = I.

(2.5)

Note that the number of different ωλ(q) is drNuc since there are dr eigenvalues of the dynamical
matrix and the wavevector can take Nuc values in the Brillouin zone. This is equal to the number of
internal degrees of freedom in the crystal.

2.2. Derivation of the quantized phonon Hamiltonian
The goal is to represent the harmonic Hamiltonian, as shown in equation (2.1), using bosonic op-
erators, effectively quantizing the Hamiltonian. By denoting Qλ(q, t) as the normal coordinate, the
displacement can be expressed as a linear combination of the eigenvectors on the form [31]

uiαµ(t) =
1√

NucMα

∑
q,λ

Qλ(q, t)eλαµ(q)eiq·Riα , (2.6)

where the temporal part of the normal coordinate is e−iωλ(q)t. The inverse relation can be found by
noting that

∑
λM

− 1
2

α Qλ(q, t)eλαµ(q) = uqαµ(t) is the spatial Fourier-transformed of uiαµ(t). In matrix
notation, this equation translates to diag(1/

√
Mα)UQ(q, t) = uq(t), where diag(·) denotes a diagonal

matrix and the matrix elements 1/
√
Mα correspond to the components of uq which belongs to the

αth ion in the unit cell. The inverse relation is then

Q(q, t) = U †diag(
√
Mα)uq(t),

=⇒ Qλ(q, t) =
∑
α,µ

M
1
2
α e

λ∗
αµ(q)ũqαµ(t) =

1√
Nuc

∑
i,α,µ

M
1
2
α e

λ∗
αµ(q)uiαµ(t)e−iq·Riα .

The displacement in real space, uiαµ(t), is a real quantity. This leads to the following restrictions for
the normal coordinates and eigenvectors [31]

eλ∗αµ(q) = eλαµ(−q), Q∗
λ(q, t) = Qλ(−q, t). (2.7)

These relations will be useful later on. Inserting the expression for uiαµ(t), equation (2.6), the first
term in the harmonic Hamiltonian transforms to

1
2
∑
i,α,µ

Mαu
2
iαµ(t) =

1
2
∑
i,α,µ

1
Nuc

∑
q,q′

λ,λ′

Q̇λ(q, t)Q̇λ′(q′, t)eλαµ(q)eλ
′

αµ(q′)ei(q+q
′)·Riα .

With the help of the relation
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2.2. Derivation of the quantized phonon Hamiltonian

1
Nuc

∑
i

eiq·Ri = δ(q), (2.8)

a delta function appears, δ(q + q′), which in combination with equation (2.7), yields

1
2
∑
α,µ

∑
q,λ,λ′

Q̇λ(q, t)Q̇∗
λ′(q, t)eλαµ(q)eλ

′∗
αµ (q)

=1
2
∑
q,λ,λ′

Q̇λ(q, t)Q̇∗
λ′(q, t)δλ,λ′ = 1

2
∑
q,λ

Q̇λ(q, t)Q̇∗
λ(q, t),

where we also used the orthonormality relation of the eigenvectors. In a similar fashion, the second
term in the harmonic Hamiltonian transforms to

1
2
∑
i,α,µ
j,β,ν

Φαβ
µν (∆uc)uiαµ(t)ujβν(t)

=1
2
∑
i,α,µ
j,β,ν

Φαβ
µν (∆uc)

1
Nuc

∑
q,q′

λ,λ′

1√
MαMβ

Qλ(q, t)Qλ′(q′, t)eλαµ(q)eλ
′

βν(q′)ei(q·Riα+q′·Rjβ)

=1
2
∑
q,q′

λ,λ′

∑
α,µ
β,ν

{
1
Nuc

∑
i

ei(q+q′)·Ri

}
Qλ(q, t)Qλ′(q′, t)eλαµ(q)eλ

′

βν(q′)
∑
∆uc

Dαβ
µν (∆uc)ei(q·Rα+q′·(Rβ+∆uc))

=1
2
∑
q,λ,λ′

∑
α,µ
β,ν

Qλ(q, t)Q∗
λ′(q, t)eλαµ(q)eλ

′

βν(−q)Dαβ
µν (−q).

The summation variables over the unit cells were changed from (i, j) to (i,∆uc) in order to employ
relation (2.8). To move forward, note that the eigenvectors solve the equation of motion, equation
(2.3). This can be combined with the time-reversal symmetry of the dispersion, ωλ(q) = ωλ(−q) [31],
such that the following useful relation appears∑

β,ν

Dαβ
µν (−q)eλ

′

βν(−q) = ω2
λ′(−q)eλ

′
αµ(−q) = ω2

λ′(q)eλ
′∗

αµ (q).

By using this relation, we are left with

1
2
∑
q,λ,λ′

ω2
λ′(q)Qλ(q, t)Q∗

λ′(q, t)
∑
α,µ

eλαµ(q)eλ
′∗

αµ (q) =
1
2
∑
q,λ

ω2
λ(q)Qλ(q, t)Q∗

λ(q, t).

Thus, in terms of the normal coordinate, the total Hamiltonian is on the the simple form

H = 1
2
∑
q,λ

(
Q̇2

λ(q, t) + ω2
λ(q)Q2

λ(q, t)
)
,

and the corresponding Lagrangian is

L = T − V = 1
2
∑
q,λ

(
Q̇2

λ(q, t)− ω2
λ(q)Q2

λ(q, t)
)
.

The Hamiltonian may be expressed in terms of canonical variables. The canonical momentum is easily
verified to be

9
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Pλ(q, t) =
∂L

∂Q̇λ(q, t)
= Q̇∗

λ(q, t) =
∑
i,α,µ

1√
NucMα

eλαµ(q)piαµ(t)eiq·Riα .

From the theory of quantummechanics, the canonical variables should satisfy the commutation relation
[uiαµ, pjβν ] = iℏδi,jδα,βδµ,ν [35]. We verify that Qλ(q) and Pλ(q) are canonical variables by computing
the commutator. The time-dependency is suppressed for compact notation.

[Qλ(q), Pλ′(q′)] = 1
Nuc

∑
i,α,µ
j,β,ν

√
Mα

Mβ
eλ∗αµ(q)eλ

′

βν(q′)[uiαµ, pjβν ]ei(q
′·Rjβ−q·Riα)

= iℏ
Nuc

∑
i,α,µ

eλ∗αµ(q)eλ
′

αµ(q′)ei(q
′−q)·Riα

=iℏδ(q − q′)
∑
α,µ

eλ∗αµ(q)eλ
′

αµ(q) = iℏδ(q − q′)δλ,λ′ .

The Hamiltonian is now reduced to a set of drNuc uncoupled harmonic oscillators [31]

H = 1
2
∑
q,λ

(
P 2
λ (q) + ω2

λ(q)Q2
λ(q)

)
.

The quantization procedure for harmonic oscillators is well known. By introducing the creation and
annihilation operators c†λ(q) and cλ(q), defined by

cλ(q) =
1√

2ℏωλ(q)
(ωλ(q)Qλ(q) + iP ∗

λ (q)) , c†λ(q) =
1√

2ℏωλ(q)
(ωλ(q)Q∗

λ(q)− iPλ(q)) ,

we may compute the quantity c†λ(q)cλ(q)

c†λ(q)cλ(q) =
1

2ℏωλ(q)
[
ω2
λ(q)Q2

λ(q) + P 2
λ (q) + iωλ(q) (Q∗

λ(q)P ∗
λ (q)− Pλ(q)Qλ(q))

]
= Hλ(q)
ℏωλ(q)

+ i
2ℏ (Pλ(−q)Qλ(−q)− Pλ(q)Qλ(q))−

1
2

=⇒ Hλ(q) =ℏωλ(q)
(
c†λ(q)cλ(q) +

1
2

)
+ iωλ(q)

2 (Pλ(q)Qλ(q)− Pλ(−q)Qλ(−q)) ,

where H =
∑

q,λHλ(q). The summation over q is symmetric, which means that there is a −q for every
q, so the last term vanishes. We are then left with the phonon Hamiltonian [31]

H =
∑
q,λ

ℏωλ(q)
(
c†λ(q)cλ(q) +

1
2

)
. (2.9)

The operator n̂λ(q) = c†λ(q)cλ(q) is commonly referred to as the number operator. It possesses the
property of counting the number of phonon excitations in mode λ, corresponding to a specific q value
[35]. Each mode is associated with an energy ελ(q) = ℏωλ(q), where ω2

λ(q) are the eigenvalues of
the dynamical matrix and represents the phonon energy spectrum. The total energy in the crystal
resulting from lattice vibrations, for a given q, is determined by summing the product of the number
of phonons in a mode and the energy of that mode across all modes. In this picture, the many-particle
state can be represented in the occupation number basis as |n(q)⟩ = |n1(q), . . . , nλ(q), . . .⟩, where
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2.3. Calculation of phonon dispersion

nλ(q) denotes the number of particles in mode λ [35]. The creation operator c†λ(q) adds a particle
to mode λ, while the annihilation operator removes a particle from the same mode. Expressing the
Hamiltonian in this manner is commonly known as the second quantized formalism.

Depending on the nature of the creation and annihilation operators, the particles can either be
bosons or fermions following Bose-Einstein or Fermi-Dirac statistics. In the case of phonon exci-
tations, they are found to exhibit bosonic behaviour as the operators satisfy the commutation relation
[cλ(q), c†λ′(q′)] = δ(q − q′)δλ,λ′ . This implies that each state in the lattice vibration spectrum can ac-
commodate an arbitrary number of phonons, and the phonon occupation in each mode is determined
by the system’s energy [31]. The commutation relation can be verified by

[cλ(q), c†λ′(q′)] =
1

2ℏ
√
ωλ(q)ωλ′(q′)

(−iωλ(q)[Qλ(q), Pλ′(q′)] + iωλ′(q′)[P ∗
λ (q), Q∗

λ′(q′)])

= 1

2ℏ
√
ωλ(q)ωλ′(q′)

(ωλ(q)ℏδ(q − q′)δλ,λ′ + ωλ′(q′)ℏδ(q − q′)δλ,λ′) = δ(q − q′)δλ,λ′ .

For later use, it is useful to write the ionic displacement uiαµ in terms of the bosonic operators. This
is done by observing that

Qλ(q) =
√

ℏ
2ωλ(q)

(cλ(q) + c†λ(−q)),

such that

uiαµ =
∑
q,λ

√
ℏ

2NucMαωλ(q)
(cλ(q) + c†λ(−q))e

λ
αµ(q)eiq·Riα , (2.10)

from the definition of the displacement in equation (2.6). By reinstating the temporal dependency,
the bosonic operators behave as cλ(q, t) = cλ(q, 0)e−iωλ(q)t.

2.3. Calculation of phonon dispersion
As discussed in section 2.1, calculating the phonon eigenmodes involves analyzing the lattice geometry
and finding the eigenvalues of the dynamical matrix. In this study, our objective is to determine the
phonon dispersion in two-dimensional square and honeycomb lattices. In these lattices, the ions are
free to move in three dimensions, namely the x, y and z directions, while the lattice itself lies in the
xy-plane. We include interactions up to third nearest neighbours, which is shown to yield accurate
results in the honeycomb lattice [36], and consider limitations set by the symmetry of the lattice.
For the sake of notation, we let Φαβ

µν (∆uc) → Φαβ
µν (∆), knowing that ∆ is the vector connecting the

neighbouring ions. This clarifies which pair of ions the force coefficient is associated with. In this
notation, the elements in the dynamical matrix are

Dαβ
µν (q) =

∑
∆uc

1√
MαMβ

Φαβ
µν (∆)eiq·∆. (2.11)

The lattice sheet has infinitesimal translational symmetry, for instance under the transformation
uiαµ → uiαµ + aµ. It follows that [37]
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∑
j,β

Φαβ
µν (∆) = 0, (2.12)

which is referred to as the stability condition. This can be seen by inserting the expression in the
equation of motion (equation (2.2))

Mαüiαµ = −
∑
j,β,ν

Φαβ
µν (∆)(ujβν + aν)

=⇒
∑
ν

aν

∑
j,β

Φαβ
µν (∆)

 = 0

=⇒
∑
j,β

Φαβ
µν (∆) = 0,

since the size of aν is arbitrary. The stability condition is used to find expressions for the self-force
coefficients, the force coefficients where Φαα

µν (∆ = 0).

In addition, the lattice sheet has a mirror symmetry under z → −z [37]. The energy should be invariant
under this transformation. Investigating the lattice deviation coupling terms in the Hamiltonian,
equation (2.1), it implies that there can be no coupling between the in-plane and out-of-plane modes.
As an example, Φαβ

zx (∆) → Φαβ
−zx(∆) = −Φαβ

zx (∆), so in order for the energy terms to be invariant, all
Φαβ
zx (∆) coefficients must be zero. This applies for all pairs of indices {µ, z} where µ = x, y. Therefore,

the phonon eigenmodes can either exist purely within the plane or extend out of the plane.

2.3.1. Square lattice
Considering a monoatomic square lattice, with a single atom in the basis, the (α, β) indices vanish.
The square lattice is shown in Figure 2.1a where the primitive lattice vectors, with length a, coincide
with δ1 and δ2 in the figure. We expect to find three acoustic branches, one for each spatial dimension.
Each ion has four nearest neighbours, four next-nearest neighbours and four third nearest neighbours.
The vectors ∆ connecting to the first, second and third nearest neighbours are labeled by

1st : δ1(3) = ±ax̂, δ2(4) = ±aŷ,
2nd : τ 1(3) = ±a(x̂+ ŷ), τ 2(4) = ±a(−x̂+ ŷ), (2.13)
3rd : υ1(3) = ±2ax̂, υ2(4) = ±2aŷ,

and visualized in Figure 2.1a. The reciprocal lattice vectors b1 = (2π/a)q̂x and b2 = (2π/a)q̂y
span the reciprocal lattice. This is illustrated in Figure 2.1b where also the first Brillouin zone and
the symmetry points are shown. The symmetry points are given by Γ = (0, 0), X = (π/a, 0) and
M = (π/a, π/a).

Due to the mirror symmetry z → −z, the dynamical matrix D(q) can be written on the form

D(q) =

Dxx(q) Dxy(q) 0
Dyx(q) Dyy(q) 0

0 0 Dzz(q)

 ,
in the basis [x, y, z]T .
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(a) (b)

Figure 2.1.: The square lattice is illustrated in Figure 2.1a where the vectors to the first δ, second
τ and third υ nearest neighbours are also shown. The first Brillouin zone, the marked green area,
is visualized in Figure 2.1b, along with the symmetry points and the reciprocal lattice vectors.

Symmetry conditions are utilized to determine the independent force coefficients up to third nearest
neighbours. First, a gentle reminder that the force coefficients are symmetric with respect to an
interchange of indices, Φµν(∆) = Φνµ(−∆). The square lattice possesses σx and σy mirror symmetries.
This implies that the lattice remains unchanged under transformations of (x, y) → (−x, y) and (x, y) →
(x,−y), respectively. Consequently, it follows that Φµν(∆) = −Φµν(σx∆) for µ ̸= ν, and Φµν(∆) =
Φµν(σx∆) for µ = ν. The same applies to σy. As a result, all Φxy(∆) values are zero except when ∆
belongs to the set {τ 1, τ 2, τ 3, τ 4}.

Furthermore, the square lattice also exhibits a four fold rotational symmetry, denoted asR4, around the
z-axis. The lattice can be rotated by an angle of φ = ±π/2 through transformations of (x, y) → (−y, x)
and (x, y) → (y,−x). Therefore, we have the relations Φxx(∆) = Φyy(R4∆) and the same holds
true for interchanging x and y. Additionally, the force coefficients Φzz(∆) = Φzz(R4∆) satisfy the
rotational symmetry. When combined with the mirror symmetries, we find that Φxx(τ i) = Φyy(τ j)
for all i, j = 1, 2, 3, 4. Consequently, there are nine independent force coefficients, which are denoted
by

γ1 = Φxx(δ1), γ2 = Φyy(δ1), γz = Φzz(δ1),
ρ1 = Φxy(τ 1), ρ2 = Φxx(τ 1), ρz = Φzz(τ 1),
η1 = Φxx(υ1), η2 = Φyy(υ1), ηz = Φzz(υ1).

The stability condition, equation (2.12), yields

Φxx(0) = Φyy(0) = −2(γ1 + γ2 + 2ρ2 + η1 + η2),
Φzz(0) = −4(γz + ρz + ηz),

and Φxy(0) = Φyx(0) = 0. To compute the matrix elements in the dynamical matrix, we employ
equation (2.11), and find
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Dxx(q) =
[
Φxx(0) + Φxx(δ1)(eiq·δ1 + eiq·δ3) + Φxx(δ2)(eiq·δ2 + eiq·δ4) + Φxx(τ 1)(eiq·τ1+

eiq·τ2 + eiq·τ3 + eiq·τ4) + Φxx(υ1)(eiq·υ1 + eiq·υ3) + Φxx(υ2)(eiq·υ2 + eiq·υ4)
]
/M

= 2
M

[γ1(cos(qxa)− 1) + γ2(cos(qya)− 1) + 2ρ2(cos(qxa) cos(qya)− 1)+

2η1(cos2(qxa)− 1) + 2η2(cos2(qya)− 1)].

The same expression is obtained for Dyy(q) where γ1 ↔ γ2 and η1 ↔ η2. Next, the Dxy(q) matrix
element is given by

Dxy(q) =
[
Φxy(τ 1)(eiq·τ1 + eiq·τ3) + Φxx(τ 2)(eiq·τ2 + eiq·τ4)

]
/M

= −4ρ1
M

sin(qxa) sin(qya).

By noting that Φxy(τ i) = Φyx(τ i), we can establish that Dyx(q) = Dxy(q). The remaining out-of-
plane matrix element is

Dzz(q) = [2γz(cos(qxa) + cos(qya)− 2) + 4ρz(cos(qxa) cos(qya)− 1)+

4ηz(cos2(qxa) + cos2(qya)− 2)
]
/M.

We can directly identify that the out-of-plane eigenvalue is ωZA =
√
Dzz(q), and its corresponding

eigenvector is êZA = [0, 0, 1]T . By renaming the in-plane matrix elements as A = Dxx(q), B = Dxy(q)
and C = Dyy(q), we obtain the in-plane eigenvalues

ωTA = 1√
2
(A+ C − D)1/2,

ωLA = 1√
2
(A+ C +D)1/2,

D =
√
(A− C)2 + 4B2,

and the corresponding eigenvectors are

êTA = 1√
(A− C −D)2 + 4B2

[A− C −D, 2B, 0]T ,

êLA = 1√
(A− C +D)2 + 4B2

[A− C +D, 2B, 0]T .

By examining the dispersion along the symmetry line Γ → X, where qy = 0, the eigenfrequencies
simplify to ωLA =

√
Dxx(q) and ωTA =

√
Dyy(q), and the eigenvectors are êLA = [1, 0, 0]T and

êTA = [0, 1, 0]T . Therefore, the LA mode exhibits Longitudinal oscillations, while the TA mode
exhibits Transverse oscillations, which explains their respective names. The ZA branch indicates that
it corresponds to the out-of-plane mode. All of these branches are classified as Acoustic branches
since their frequencies approach zero at the Γ-point, indicating their association with acoustic waves
in the material.
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It is widely known that in 2D crystals, the out-of-plane vibrations (flexural modes) exhibit a quadratic
dispersion law in the long wavelength limit [6, 38]. This behaviour emerges due to the rotational and
reflection symmetry of the crystal plane, which is distinct from the linear dispersion observed among
transverse and longitudinal in-plane phonons [38]. The quadratic dispersion is a consequence of the
zero Young modulus of the lattice sheet, indicating the absence of regular phonons propagating in this
flexible medium and the presence of flexural waves instead [7]. This unique quadratic dispersion has
notable consequences, such as the divergence of the number of phonons at nonzero temperatures in the
long-wavelength limit [6]. However, the behaviour of 2D materials is influenced by their surroundings,
including the substrate they are placed on, which dampens the oscillations and causes the dispersion
to become increasingly linear with an increase in the number of layers [6]. Expanding the out-of-plane
frequency around the Γ−point using a Taylor series, we obtain the lowest-order dependence on q

ωZA(q) ≈

√
−(γz + 2ρz + 4ηz)

M
|q|a.

The condition of a quadratic dispersion can be enforced by tuning the out-of-plane force coefficients
such that the linear term vanishes.

Figure 2.2 illustrates the dimensionless dispersion plotted along the symmetry lines Γ → X, X →M
and M → Γ within the Brillouin zone. The dispersion is presented in units of

√
|γ1|/M with the

following toy parameters as force coefficients

Γ X M Γ
0.0

0.5

1.0

1.5

2.0

2.5

ω
√

M
|γ1|

Figure 2.2.: The three acoustic branches of the phonon dispersion in a square lattice, longitudinal
(LA), transverse (TA) and out-of-plane (ZA), are shown along the symmetry lines of the Brillouin
zone. The frequency is given in units of

√
|γ1|/M and the values of the force coefficients are given

in equation (2.14).
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ρ1 = ρ2 = γ1/4, γz = γ1/10,
γ2 = η2 = 0, ρz = γ1/20, (2.14)
η1 = γ1/10, ηz = −γ1/20,

where γ1 = −|γ1| is a negative quantity. Note that ηz is positive in order to satisfy the requirement
of a quadratic dispersion for the out-of-plane phonon mode. The degeneracy observed among the
in-plane branches at theM point is a result of the preservation of reflection and rotational symmetries
in the system.

The initial calculations were performed using a basic spring force model that considers only directional
forces. The details and outcomes of these calculations can be found in Appendix A.1. The result
obtained in this section are more comprehensive and reduce to the spring force model as a special
case when certain conditions are met, specifically γ2 = 0, ρ1 = ρ2, and the absence of third neighbour
interactions. The dispersion is also depicted in the appendix, utilizing force coefficients that are
approximately consistent with the values mentioned in this section.

2.3.2. Honeycomb lattice
The honeycomb lattice being examined consists of identical ions and can be divided into two sublat-
tices: A and B. In other words, it has a two-atomic basis. The structure of the honeycomb lattice is
depicted in Figure 2.3a. The primitive lattice vectors coincide with τA

1 and τA
3 in the figure and have

a length of a = a0
√
3, where a0 represents the interatomic distance. We expect to find three acous-

tic and three optical branches. Each ion has three nearest neighbours, six next-nearest neighbours
and three third nearest neighbours. The vectors ∆ connecting to the first, second and third nearest
neighbours are labeled by

1st : δA1 = a√
3
ŷ, δA2 = −a

(1
2 x̂+ 1

2
√
3
ŷ

)
, δA3 = a

(1
2 x̂− 1

2
√
3
ŷ

)
,

2nd : τA
1(4) = ±ax̂, τA

2(5) = ±a
(
1
2 x̂+

√
3
2 ŷ

)
, τA

3(6) = ±a
(
−1
2 x̂+

√
3
2 ŷ

)
,

3rd : υA
1 = − 2a√

3
ŷ, υA

2 = a

(
x̂+ 1√

3
ŷ

)
, υA

3 = a

(
−x̂+ 1√

3
ŷ

)
,

(2.15)

and illustrated in Figure 2.3a. Note that the above-mentioned vectors are based on sublattice A.
Similarly, δBi , τB

i and υB
i are the neighbouring vectors based on sublattice B. The first and third

nearest neighbouring vectors satisfy δBi = −δAi and υB
i = −υA

i for i = 1, 2, 3, while the second
neighbouring vectors are equal for both sublattices.

The reciprocal lattice is spanned by the reciprocal lattice vectors b1 = 2π√
3a(

√
3q̂x+q̂y) and b2 = 4π√

3a q̂y,
which can be seen in Figure 2.3b. It is worth noting that the reciprocal lattice itself forms a honeycomb
lattice. The highlighted green region in the figure represents the Wigner-Seitz-cell, which is the
primitive reciprocal cell and serves as the first Brillouin zone. Additionally, the symmetry points
Γ = (0, 0), M = (0, 2π√

3a), K = (2π3a ,
2π√
3a) and K

′ = (4π3a , 0) are frequently referred to in the text.

The dynamical matrix D(q) may be written as

D(q) =
[
Din-plane(q) 0

0 Dout-of-plane(q)

]
,
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2.3. Calculation of phonon dispersion

(a) (b)

Figure 2.3.: Figure 2.3a illustrates the geometry of the honeycomb lattice where the A(B) atoms
constituting the two-atomic basis are marked in red (blue). The vectors to the first δA, second τA

and third υA nearest neighbours based on sublattice A are also shown. The first Brillouin zone is
visualized in Figure 2.3b, along with the symmetry points and the reciprocal lattice vectors. Figure
2.3a is inspired by Ref. [37].

in the basis [xA, yA, xB, yB, zA, zB]T . Din-plane(q) is a 4 × 4 matrix which can further be separated
into four matrices

Din-plane(q) =
∣∣∣∣∣DAA(q) DAB(q)
DBA(q) DBB(q)

∣∣∣∣∣ ,
where each Dαβ(q) has four entries Dαβ

µν (q) for µ, ν ∈ {x, y}. Dout-of-plane(q) is a 2 × 2 matrix with
entries Dαβ

zz for α, β ∈ {A,B}.

Symmetry considerations

The lattice exhibits sublattice symmetry due to its composition of identical ions, where both sublattices
share the same next-nearest neighbour vectors. As a result, all force coefficients between A-A ions,
ΦAA, are equal to those between B-B ions, ΦBB. To easily exploit the rotational and mirror symmetries
of the lattice, it is convenient to change basis. By introducing the chiral basis

ξ = x+ iy, η = x− iy,

we ensure that rotating the lattice sheet by an angle φ around the z−axis does not result in a mixing
of the new coordinates. They transform as ξ → ξeiφ and η → ηe−iφ. The force coefficients in the new
basis can be expressed in terms of the old ones via [37]

Φξξ = (Φxx − Φyy − iΦxy − iΦyx)/4,
Φηη = (Φxx − Φyy + iΦxy + iΦyx)/4,
Φξη = (Φxx +Φyy + iΦxy − iΦyx)/4,
Φηξ = (Φxx +Φyy − iΦxy + iΦyx)/4.
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With the new chiral basis, the application of the C3 symmetry under 3-fold rotations R3 around the
z−axis becomes straightforward. The force coefficients undergo the following transformation [37]

Φαβ
ξξ (R3∆) = Φαβ

ξξ (∆)e+i2π/3,

Φαβ
ηη (R3∆) = Φαβ

ηη (∆)e−i2π/3,
(2.16)

while the force coefficients with different {ξ, η} or out-of-plane coordinates {z, z} are equal to one an-
other. These relations connect the force coefficients for the neighbouring ions {δA1 , δA2 , δA3 }, {τA

1 , τ
A
3 , τ

A
5 },

{τA
2 , τ

A
4 , τ

A
6 } and {υA

1 ,υ
A
2 ,υ

A
3 } together. For instance, we have ΦAB

ξξ (δA1 ) = ΦAB
ξξ (δA2 )e+i2π/3 =

ΦAB
ξξ (δA3 )e−i2π/3.

In addition to the rotational symmetry, the lattice has σx mirror symmetry, resulting in the following
relations [37]

Φαβ
µν (∆) = Φαβ

µ̄ν̄ (σx∆), (2.17)

with ξ̄ = η, η̄ = ξ and z̄ = z. Moreover, as we require a real potential, the relation

Φαβ
µν (∆) = Φαβ∗

µ̄ν̄ (∆) (2.18)

must be met. The symmetry conditions yield nine independent force coefficients denoted by

γ1 = ΦAB
ξξ (δA1 ), γ2 = ΦAB

ξη (δA1 ), γz = ΦAB
zz (δA1 ),

ρ1 = ΦAA
ξξ (τA

1 ), ρ2 = ΦAA
ξη (τA

1 ), ρz = ΦAA
zz (τA

1 ), (2.19)
η1 = ΦAB

ξξ (υA
1 ), η2 = ΦAB

ξη (υA
1 ), ηz = ΦAB

zz (υA
1 ).

By combining equation (2.17) and (2.18), we find the relation Φαβ
µν (∆) = Φαβ∗

µν (σx∆) [37]. Thus,
all force coefficients that belong to neighbouring ions with vectors parallel to the y−axis, which is
invariant under σx mirror symmetry, are real. This includes (γ1, γ2, γz, η1, η2, ηz). Moreover, ρz and
ρ1 are real since

ρz = ΦAA
zz (τA

1 ) = ΦAA∗
zz (τA

4 ) = ΦAA∗
zz (τA

1 ),
ρ1 = ΦAA

ξξ (τA
1 ) = ΦAA∗

ξξ (τA
4 ) = ΦAA∗

ξξ (τA
1 ),

where the symmetry by interchange of indices was used. However, ρ2 may be a complex quantity
[37]. This is in contrary to what Refs. [36, 39] claim, where they instead suggest that ρ1 is the only
complex parameter.

Out-of-plane modes

Utilizing the stability condition for the out-of-plane force coefficients, the self-force coefficients are
given by

ΦAA
zz (0) = ΦBB

zz (0) = −3γz − 6ρz − 3ηz,

and the matrix elements in Dout-of-plane(q) are
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DAA
zz (q) =

[
ΦAA
zz (0) + ΦAA

zz (τA
1 )
(
eiq·τA1 + eiq·τA2 + eiq·τA3 + eiq·τA4 + eiq·τA5 + eiq·τA6

)]
/M

=− 3γz + ηz
M

+ 2 ρz
M

[cos(qxa) + 2 cos(12qxa) cos(
√
3
2 qya)− 3],

DAB
zz (q) =

[
ΦAB
zz (δA1 )

(
eiq·δ

A
1 + eiq·δ

A
2 + eiq·δ

A
3
)
+ΦAB

zz (υA
1 )
(
eiq·υA

1 + eiq·υA
2 + eiq·υA

3
)]
/M

= γz
M

e
i√
3
qya[1 + 2 cos(12qxa)e

−i
√
3

2 qya] + ηz
M

e−i 2√
3
qya[1 + 2 cos(qxa)ei

√
3qya],

DBA
zz (q) =DAB∗

zz (q),
DBB

zz (q) =DAA
zz (q).

The eigenvalue problem to be solved is on the form

ω2 =
[
zA zB

] [DAA
zz (q) DAB

zz (q)
DAB∗

zz (q) DAA
zz (q)

] [
zA

zB

]
,

which yields the following eigenvalues

ωZO(q) =
√
DAA

zz (q) + |DAB
zz (q)|, ωZA(q) =

√
DAA

zz (q)− |DAB
zz (q)|,

with the corresponding eigenvectors

êZO(q) = 1√
2

[ |DAB
zz (q)|

DAB∗
zz (q)
1

]
, êZA(q) = 1√

2

[
− |DAB

zz (q)|
DAB∗

zz (q)
1

]
. (2.20)

In the vicinity of the Brillouin zone center, where DAB
zz takes negative values, the Acoustic branch

is characterized by symmetrical motion between the sublattices, while the Optical branch exhibits
asymmetrical motion. When q = 0, the out-of-plane acoustic mode corresponds to a translation
of the honeycomb layer perpendicular to the plane, whereas the optical mode involves out-of-phase
oscillations of neighbouring ions perpendicular to the lattice plane [6]. In this limit, the acoustic mode
has a zero energy or frequency since there are no lattice vibrations, whereas the optical mode possesses
a nonzero energy.

Expanding the out-of-plane eigenvalues around the Γ−point, we find

ωZO(q) ≈

√
−6(γz + ηz)

M
+ (γz − 6ρz + 4ηz)

8
√
−6(γz + ηz)M

(qa)2,

ωZA(q) ≈

√
−(14γz +

3
2ρz + ηz)
M

|q|a,

to lowest order in q. We observe that the ZA branch typically exhibits a linear dispersion, which
contradicts the expectations of elasticity theory, where a quadratic dispersion for the out-of-plane
modes is anticipated [7]. To address this inconsistency, one can modify the values of the out-of-plane
force coefficients to eliminate the linear term in the ZA branch.

In-plane modes

Proceeding in a similar fashion, the stability condition yields the following self-force coefficients
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ΦAA
ξη (0) = ΦAA

ηξ (0) = −3γ2 − 6Re (ρ2)− 3η2,

and ΦAA
ξξ (0) = ΦAA

ηη (0) = 0. The same expressions apply for the force coefficients at sublattice B.
Computing the matrix elements in DAA(q), we find

DAA
ξη (q) =

[
ΦAA
ξη (0) + ΦAA

ξη (τA
1 )(eiq·τ

A
1 + eiq·τA3 + eiq·τA5 ) + ΦAA

ξη (τA
4 )(eiq·τ

A
2 + eiq·τA4 + eiq·τA6 )

]
/M

=
[
ΦAA
ξη (0) + ρ2eiqxa(1 + 2 cos(

√
3
2 qya)e−i 32 qxa) + ρ∗2e−iqxa(1 + 2 cos(

√
3
2 qya)ei

3
2 qxa)

]
/M

=
[
−3(γ2 + η2)− 2Re

(
ρ2[3− eiqxa − 2 cos(

√
3
2 qya)e−

i
2 qxa]

)]
/M.

The calculation for DAA
ηξ (q) is similar with ΦAA

ηξ (τA
1 ) = ρ∗2 and ΦAA

ηξ (τA
4 ) = ρ2, which results in

DAA
ηξ (q) =

[
−3(γ2 + η2)− 2Re

(
ρ2[3− e−iqxa − 2 cos(

√
3
2 qya)e

i
2 qxa]

)]
/M.

Continuing, we investigate DAA
ξξ (q) and remember that ΦAA

ξξ (τA
1 ) = ΦAA

ξξ (τA
4 ) since ρ1 is real. We

obtain

DAA
ξξ (q) =

[
ΦAA
ξξ (τA

1 )(eiq·τ
A
1 + ei(q·τA3 + 2π

3 ) + ei(q·τA5 − 2π
3 ))

+ΦAA
ξξ (τA

4 )(eiq·τ
A
4 + ei(q·τA6 + 2π

3 ) + ei(q·τA2 − 2π
3 ))
]
/M

= 2ρ1
M

[
cos(qxa) + cos(12qxa−

2π
3 )ei

√
3
2 qya + cos(12qxa+

2π
3 )e−i

√
3

2 qya
]
.

The matrix element DAA
ηη (q) is calculated similarly, but the coefficients ΦAA

ηη (∆) transform oppositely
according to equation (2.16), which results in DAA

ηη (q) = DAA∗
ξξ (q). We turn our focus to the DAB(q)

matrix and compute

DAB
ξη (q) =

ΦAB
ξη (δA1 )
M

[eiq·δ
A
1 + eiq·δ

A
2 + eiq·δ

A
3 ] +

ΦAB
ξη (υA

1 )
M

[eiq·υA
1 + eiq·υA

2 + eiq·υA
3 ]

= γ2
M

e
i√
3
qya[1 + 2 cos(12qxa)e

−i
√
3

2 qya] + η2
M

e−i 2√
3
qya[1 + 2 cos(qxa)ei

√
3qya].

The presence of σx mirror symmetry leads to the equality of ΦAB
ηξ (δA1 ) = ΦAB

ξη (δA1 ) and ΦAB
ηξ (υA

1 ) =
ΦAB
ξη (υA

1 ). As a result, DAB
ηξ (q) = DAB

ξη (q). Additionally, we have

DAB
ξξ (q) =

ΦAB
ξξ (δA1 )
M

[eiq·δ
A
1 + ei(q·δ

A
2 + 2π

3 ) + ei(q·δ
A
3 − 2π

3 )] +
ΦAB
ξξ (υA

1 )
M

[eiq·υA
1 + ei(q·υA

2 + 2π
3 ) + ei(q·υA

3 − 2π
3 )]

= γ1
M

e
i√
3
qya[1 + 2 cos(12qxa−

2π
3 )e−i

√
3

2 qya] + η1
M

e−i 2√
3
qya[1 + 2 cos(qx +

2π
3 )ei

√
3qya],

DAB
ηη (q) = γ1

M
e

i√
3
qya[1 + 2 cos(12qxa+

2π
3 )e−i

√
3

2 qya] + η1
M

e−i 2√
3
qya[1 + 2 cos(qx −

2π
3 )ei

√
3qya].

In order to calculate the entries in DBA(q), we note that the neighbouring vectors ∆B of interest are
now δBi and υB

i for i = 1, 2, 3. The transformation of the force coefficients ΦBA
µν (∆B) is similar to
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that of ΦAB
µν (∆A). Moreover, γ1 = ΦAB

ξξ (δA1 ) = ΦBA
ξξ (δB1 ) and γ2 = ΦAB

ξη (δA1 ) = ΦBA
ξη (δB1 ) since γ2 is

real, and the same applies for η1 and η2. Thus, in computing DBA
µν (q), the only difference compared

to finding DAB
µν (q) is that the neighbouring vectors ∆B are directed oppositely as ∆A. By setting

q → −q in DAB
µν (q), we obtain the DBA

µν (q) elements. This results in the following relations

DBA
ξη (q) = DAB∗

ξη (q), DBA
ηξ (q) = DAB∗

ηξ (q),
DBA

ξξ (q) = DAB∗
ηη (q), DBA

ηη (q) = DAB∗
ξξ (q).

Furthermore, the DBB(q) matrix is equal to DAA(q) due to the sublattice symmetry. By renaming
the six unique matrix elements as

A = DAA
ξη (q), B = DAA

ηξ (q), C = DAA
ξξ (q),

D = DAB
ξη (q), E = DAB

ξξ (q), F = DAB
ηη (q),

the eigenvalue problem may be written in the following form

ω2 =
[
ξA ηA ξB ηB

] 
A C D E
C∗ B F D
D∗ F∗ A C
E∗ D∗ C∗ B



ηA

ξA

ηB

ξB

 .
The different ordering of the first vector is due to the hermitian conjugation where ξ̄A(B) = ηA(B).
The characteristic polynomial can be expressed as follows

λ4 +Aλ3 +Bλ2 + Cλ+D = 0, λ = ω2,

where the coefficients are determined by the matrix elements from the following formulas

A =− 2(A+ B),
B =A2 + 4AB + B2 − 2|C|2 − 2|D|2 − |E|2 − |F|2,
C =(A+ B)(−2AB + 2|C|2 + 2|D|2 + |E|2 + |F|2)− 4Re (CDE∗ + CD∗F) ,
D =AB(AB − 2|C|2 − |E|2 − |F|2) + 2(A+ B)(Re (CD∗F) + Re (CDE∗)) + |E|2|F|2 + |C|4

− |D|2(A2 + B2 + 2|C|2 − |D|2)− 2Re
(
D2E∗F∗

)
− 2Re

(
C2E∗F

)
.

The roots of the characteristic polynomial, and the eigenvalues of the matrix, are

ω2
LA = −A4 − ζ + 1

2

√
−4ζ2 − 2p1 +

p2
ζ
, ω2

TA = −A4 − ζ − 1
2

√
−4ζ2 − 2p1 +

p2
ζ
,

ω2
TO = −A4 + ζ + 1

2

√
−4ζ2 − 2p1 −

p2
ζ
, ω2

LO = −A4 + ζ − 1
2

√
−4ζ2 − 2p1 −

p2
ζ
,

(2.21)

where the new helping variables are defined as
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ζ = 1
2

√
−2p1

3 + 1
3(ξ +

p3
ξ
), ξ =

p4 +
√
p24 − 4p33
2


1
3

,

p1 =
8B − 3A2

8 , p2 =
A3 − 4AB + 8C

8 , (2.22)

p3 = B2 − 3AC + 12D, p4 = 2B3 − 9ABC + 27A2D + 27C2 − 72BD.

The corresponding eigenvectors can be written in a non-normalized form as

eλ =
[
1 Gλ/Kλ Jλ/Kλ Lλ/Kλ

]T
, (2.23)

with the components in the eigenvector defined by

Gλ =(EF − D2)(B̄λD∗ − CE∗) + (ĀλD − C∗E)(ĀλB̄λ − |C|2),
Jλ =(ĀλD − C∗E)(CD∗ − B̄λF∗)− (B̄λD∗ − CE∗)(B̄λE − CD),
Kλ =(ĀλB̄λ − |C|2)(B̄λE − CD) + (CD∗ − B̄λF∗)(EF − D2),
Lλ =− (E∗Kλ +D∗Gλ + C∗Jλ)/B̄,

and we also defined Āλ = A − ω2
λ and B̄λ = B − ω2

λ. It is important to note that this expression is
not well-defined where the branches are degenerate. Moreover, the eigenvectors are written in terms
of the chiral basis, related to the Cartesian components by

xA

yA

xB

yB

 = 1
2P


ηA

ξA

ηB

ξB

 , P =


1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i

 .
Denoting the unitary matrix Uη,ξ

ph = [ê1η,ξ, . . . ]T as the matrix that diagonalizes the dynamical matrix
in the {η, ξ} chiral basis, the relation to the unitary matrix Ux,y

ph in the Cartesian basis is

Ux,y
ph = 1√

2
PUη,ξ

ph . (2.24)

It can be shown that (1/
√
2)P is in fact also an unitary matrix.

Phonon dispersion in graphene

Figure 2.4 displays the energy corresponding to each eigenfrequency, ℏω, for a graphene layer, measured
in electronvolts. The phonon dispersion is depicted along the symmetry lines Γ → M , M → K and
K → Γ of the Brillouin zone. The values of the force coefficients Φ/M are gathered from Ref. [36]
and takes the values

γ1 = −1.645, γ2 = −4.095, γz = −1.415,
ρ1 = 0.690, ρ2 = −0.209, ρz = 0.171, (2.25)
η1 = 0.375, η2 = −0.072, ηz = 0.085,
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in units of 105 cm−2. The values are given in spectroscopic units, related to the frequency through a
factor of 2πc where c is the speed of light. The dispersions shown in the figure align with findings from
more sophisticated approaches, such as density-functional perturbation theory [40], and experimental
measurements [41]. The specific values employed for the out-of-plane force coefficients were determined
through fitting with the Raman frequency and smallest elastic constant C44 [36], which may not
inherently fulfill the quadratic dispersion criterion. Nevertheless, it can be observed from the figure
that the dispersion is approximately quadratic. At the K symmetry point in graphene, both the
in-plane LA/LO branches and the out-of-plane ZA/ZO branches exhibit double degeneracy. Similarly,
at the Γ−point, the LO/TO branches also display double degeneracy. This degeneracy occurs due to
the preservation of C3,v symmetry in graphene at these points in the Brillouin zone. A splitting of
those modes would signify a breakdown of symmetry in the crystal [36]. An example of such splitting
can be observed in hexagonal boron nitride (h-BN), where the lattice exhibits sublattice asymmetry
[37].

Initially, the phonon dispersion was calculated using a spring force model. The calculations and
outcomes are described extensively in Appendix A.2. However, as the spring force model yielded
distinct results from previous studies [36, 37, 39], we adopted the method employed in those studies,
which takes into account interactions up to third nearest neighbours. The results obtained using
this method align with the findings of the spring force model when γ1 = −γ2, ρ1 = ρ2, and all
third-neighbour interactions are zero.

Γ M K Γ
0.00

0.05

0.10

0.15

0.20

ω
 (e

V)

Figure 2.4.: The six branches of the phonon dispersion in graphene are shown along the symmetry
lines of the Brillouin zone. The six branches are longitudinal acoustic (optical) [LA (LO)], transverse
acoustic (optical) [TA (TO)] and out-of-plane acoustic (optical) [ZA (ZO)]. The values of the force
coefficients are taken from Ref. [36].
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CHAPTER 3

Magnetism

In this chapter, we will delve into the diverse types of magnetism with a special focus on ferromagnetism
and antiferromagnetism. The fundamental concept of spin-waves and their corresponding magnons
will be qualitatively elaborated. Additionally, we will introduce several common magnetic interactions,
which will later be employed to calculate magnon dispersions in two-dimensional magnetic systems.

3.1. Magnetic materials
The magnetic moment of a free atom can have three sources, the angular momentum about the nucleus,
the spin of the atom and the change in orbital momentum when an external magnetic field is present
[3]. The magnetization m is defined as the magnetic moment µ per unit volume

m = lim
V→0

∑
V

µ

V
.

It is customary to distinguish between the main types of magnetism; diamagnetism, paramagnetism,
ferromagnetism and antiferromagnetism. There exist more variants such as ferrimagnetism and mag-
netic glass that are to some extent similar [42]. The different types of magnetism are classified by
how the magnetization of a material changes as a function of an external magnetic field B. The
susceptibility characterizes this behaviour and can be defined as [3]

χ = µ0m

B
,

where µ0 is the permeability in vacuum. Diamagnetic materials exhibit a magnetization field that is
directed oppositely to the external field, resulting in a negative susceptibility (χ < 0). In contrast,
paramagnetic materials have a positive susceptibility (χ > 0), leading to an enhancement of the
magnetic field inside the material due to the magnetization. Once the external magnetic field is
turned off, the magnetization vanishes for both dia- and paramagnetic materials due to the random
ordering of the magnetic moments, resulting in a net zero magnetic moment. These materials are
referred to as disordered states, which differs from the ordered ferro- and antiferromagnetic states. It
is important to note that the various types of magnetism represent different phases, and a material
can undergo a phase transition at a temperature specific to the material, causing it to change phases.

3.1.1. Ferromagnetism
Ferromagnetism is an ordered state where the magnetic moments are arranged such that a spontaneous
magnetization arises, called the saturation moment, even in the absence of an external field. Macro-
scopically, a ferromagnet is typically divided into smaller regions called domains [3]. Each domain has
their local magnetization saturated with different orientations. The regions are separated by finite
thick domain walls, where the magnetization direction changes gradually along the normal direction
of the domain wall. When an external magnetic field is applied, the increase in magnetization occurs
either by an increase in volume of domains with favourable orientations or by a rotation of the domain
magnetization towards alignment with the field [3]. The susceptibility of ferromagnetic materials is
typically a large positive value and is a complicated function of temperature and the external field
[42]. The susceptibility also depends on the history of the magnetization, and a hysteresis loop can be
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observed where the domain volumes and directions change continuously. This loop encompasses both
the maximum magnetization achieved by the sample under an applied field (total saturation magne-
tization) and the residual magnetization that remains once the external field is removed (remanent
magnetization).

As the temperature increases, thermal fluctuations become stronger, leading to a reduction in the
alignment of magnetic moments, and consequently, a decrease in magnetization. At the transition
temperature, TC , also known as the Curie temperature, the magnetization becomes zero, and the
system undergoes a phase transition to the paramagnetic phase. The ferromagnetic ↔ paramagnetic
transition is classified as a second-order phase transition, indicating that the order parameter, which
is a quantity that is nonzero in the ordered state, changes continuously at the transition temperature
[3]. For ferromagnetic materials, the magnetization serves as the order parameter. A second-order
transition typically indicates that there is a broken symmetry in the transition, where in the case of
spontaneous magnetization, the rotational invariance of the magnetic moments is broken [43].

3.1.2. Antiferromagnetism
In an antiferromagnet, the magnetic moments are arranged into two or more sublattices, with equal
magnitude and direction within each sublattice. Similar to diamagnetic and paramagnetic phases,
the net magnetization in an antiferromagnet is zero in the absence of an external field due to the
antialignment of magnetic moments between sublattices [42]. However, unlike diamagnetism and
paramagnetism, antiferromagnetism is an ordered phase with fixed direction of the average atomic
magnetic moments. The Néel temperature, TN , is the transition temperature for the antiferromagnetic
phase. The susceptibility is finite at zero temperature and increases with temperature until TN , where
it exhibits a cusp and then decreases into the paramagnetic phase [3]. Domain separation also occurs
in antiferromagnets, and the phase transition is of the second-order type. If the lattice can be split
into two sublattices A and B, where the magnetic moments within each sublattice are equal, then the
antiferromagnetic order parameter takes the form [44]

l = m̂A − m̂B

2 ,

called the Néel vector. The direction of magnetization of sublattice A is denoted by m̂A and similarly,
the direction of magnetization of sublattice B is denoted by m̂B. The unit length magnetization
direction is defined as m̂ =m/|m|.

3.1.3. Magnons
When an ordered ferromagnetic or antiferromagnetic material is disturbed from its ground state, the
magnetization direction at the lattice sites is modified, causing the perturbed magnetization to rotate
around the preferred ground state axis at a slight tilt. This rotation results in the precession of
magnetization at neighbouring sites, with the same frequency but different phases, due to magnetic
interactions. This chain of lattice sites, with a linearly varying precession phase, is referred to as a
spin-wave [45]. A spin-wave propagates through the material, carrying both energy and momentum,
and represents a deviation in the net magnetization.

The idea of spin-waves was initially proposed by Felix Bloch in 1930 as a means of computing the
temperature-dependent behaviour of ferromagnetic materials [46]. Bloch demonstrated that these
waves are made up of quantized modes called magnons [47], much like phonons represent the quantized
vibrations of the lattice. To consider magnons from a particle perspective, one could think of them
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as particles whose motion along the chain increases the probability of a spin flip in the corresponding
region [45].

The number of branches in the magnon dispersion in a magnetic lattice is determined by the sym-
metry of the lattice and the arrangement of magnetic atoms within it. Typically, in ferromagnetic
or antiferromagnetic systems, the number of branches equals the number of independent magnetic
atoms present in the magnetic unit cell. The magnetic unit cell is the smallest repeating unit of the
crystal structure containing one or more magnetic atoms. For instance, a ferromagnetic square lattice
with one magnetic atom per magnetic unit cell will have one branch in its magnon dispersion, while
an antiferromagnetic version of the same lattice with two magnetic atoms per magnetic unit cell will
have two branches. The ordered ferro- and antiferromagnetic states remain symmetric under rota-
tions around an axis parallel to the magnetization direction. More complex spin systems, such as a
spin spiral state, break additional symmetries and consequently have an increased number of magnon
branches [48].

3.2. Magnetic interactions
Collective (or cooperative) magnetism, such as ferro-, ferri-, and antiferromagnetism, is dependent
on interactions and cannot be explained without them. The most crucial interactions are known as
exchange interactions, which determine the magnetic properties of the material. We separate between
two cases, insulators and metals. In insulators, there are localized magnetic moments of a partially
filled shell, which are well described by the Heisenberg model. In metals or band magnets, the net
magnetization is produced by the conduction electrons, and the exchange interaction creates a spin-
dependent band shift, which favours one particular spin orientation. The Hubbard model is a simplified
but effective way to model this scenario [49].

We examine the fundamental physics of insulators and focus on the most influential interactions. Con-
trary to what one might expect, the main contributor to collective magnetism is not the magnetic
dipole-dipole interactions or spin-orbit coupling. Instead, the electrostatic electron-electron interac-
tion, in combination with the Pauli principle, is the most significant dynamic in magnetic materials.
This is a quantum mechanical effect known as the direct exchange interaction [4]. When localized
magnetic moments are separated by nonmagnetic ions, causing a large distance between the moments
and thus a weak direct exchange interaction, the exchange interaction can be transmitted through the
nonmagnetic ions. This is referred to as the superexchange interaction and is an indirect exchange
interaction [50]. In this case, the indirect exchange is the primary contributor to magnetism. Both
the direct and indirect exchange can be modeled using the Heisenberg exchange interaction.

3.2.1. Heisenberg exchange interaction
The direct exchange interaction can be illustrated by studying a system of two electrons with Coulomb
interactions and a spin-independent Hamiltonian. In this system, the spin angular momentum, denoted
by S, is measured in units of the reduced Planck constant ℏ. Electrons are spin-1/2 particles, meaning
that the eigenvalue of the squared spin S2 is S(S+1), with S = 1/2. Combining two electron spin-1/2
states, |ψ1⟩ and |ψ2⟩, results in either a singlet or a triplet state with spin S = 0 or S = 1, respectively
[4, 50]. Since electrons are fermionic particles, they obey the Pauli exclusion principle. Therefore,
the total wavefunction must be antisymmetric under an interchange of coordinates 1 ↔ 2. The spin
singlet state is antisymmetric and requires a symmetric orbital wavefunction, while the symmetric spin
triplet state requires an antisymmetric orbital wavefunction. The ground state energy in each state,
denoted as Es for the singlet and Et for the triplet, is a solution of the spin-independent Schrodinger
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equation and is distinct because the orbital wavefunctions are different [4]. The ground state is four-
fold degenerate when the electrons are far apart due to the different spin configurations. However,
bringing the electrons closer together breaks the degeneracy and allows for the construction of a spin
Hamiltonian that produces the correct eigenvalues. Furthermore, the eigenfunctions yield the spin of
the corresponding state. By using that the eigenvalue of S1 · S2 is

S1 · S2 =
1
2(S

2 − S2
1 − S2

2) =
S2

2 − 3
4 =

{
−3

4 if S=0 in singlet state
1
4 if S=1 in triplet state

,

the spin Hamiltonian [4, 50]

H = 1
4(Es + 3Et)− (Es − Et)S1 · S2,

yields the correct energies Es(t) in both cases. By omitting the first term which is simply a constant,
the spin Hamiltonian is

H = −JS1 · S2.

The exchange coupling coefficient J appears in the Hamiltonian, which can be extended to a system
with many particles by summing over all pairs of atoms located at sites i and j. The resulting
Hamiltonian is known as the Heisenberg Hamiltonian [4]

HHeis = −
∑
i,j

JijSi · Sj .

If J is positive, the Hamiltonian prefers parallel spins, while if it is negative, it prefers anti-parallel
spin alignment. As a result, this leads to ferro- and antiferromagnetism, respectively.

3.2.2. Zeeman coupling
The magnetic moment of atomic electrons in an external field is given by [3]

µ = −µB(gLL+ gSS),

where µB is the Bohr magneton, L and S represent the total (dimensionless) orbital and spin angular
momentum of the atomic electrons, and g is the Landé g-factor. Specifically, gL = 1 and gS is
approximately equal to 2. The induced magnetic moment, which arises in the presence of an external
field and is responsible for diamagnetism, is neglected in this case. This term is usually insignificant
and only becomes relevant when the electron shells are completely filled, resulting in a permanent
magnetic moment of zero [50].

The energy associated with a magnetic moment in an external magnetic field directed along the z−axis
is [35]

E = −µ ·B = µB(Lz + 2Sz)B0,

where B0 is the strength of the magnetic field and Lz (Sz) are the z−components of the orbital (spin)
angular momentum. Some textbooks use a different sign convention, where the energy is defined as
the negative of the expression above [49]. This convention suggests that the magnetic moments prefer
to align parallel with the magnetic field, rather than anti-parallel. For example, in this convention,
the state with Sz = +1/2 is energetically favourable instead of the Sz = −1/2 spin state. We will use
this convention in the following. The term that describes this energy shift is known as the Zeeman
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term and is responsible for the anomalous Zeeman effect, which is the splitting of the energy levels
based on the orbital and spin momenta, breaking the degeneracy [35].

For a many-particle system, the Zeeman term may be added to the Hamiltonian via [49]

HZ = −gJµBB0
∑
i

Siz ≡ −h
∑
i

Siz,

where the summation is over all lattice sites and gJ is the Landé g-factor associated with the total
angular momentum J = L + S. Moreover, we defined h = gJµBB0 as the effective strength of the
Zeeman coupling. If the localized moments consist solely of spin moments, the Landé g-factor is equal
to 2. Otherwise, its value is determined by the following expression

gJ = 1 + J(J + 1)− L(L+ 1) + S(S + 1)
2J(J + 1) ,

and Siz must be replaced with Jiz.

3.2.3. Dipole-dipole interaction
The interaction energy of two magnetic dipoles separated by the vector r is [50]

U = µ0
4π

1
r3

[µ1 · µ2 − 3(µ1 · r̂)(µ2 · r̂)] .

The energy can be estimated using the values µ1 = µ2 = µB and r = 2Å, assuming that all vectors
are aligned µ1 || µ2 || r. The resulting energy is approximately 1 × 10−24 J. Based on the thermal
energy kBT , the corresponding temperature is well below 1K [50]. This demonstrates that magnetic
dipole-dipole interactions do not play a major role in collective magnetism. The exchange interaction
between nearest neighbours is typically a thousand times stronger than the dipole-dipole coupling [4].

Disregarding the dipole-dipole interaction is a valid approximation only when the separation distance
is relatively small [49]. This is due to the fact that the direct exchange is a short-range interaction,
where its strength decreases exponentially with the separation distance in ferromagnetic insulators
[4]. On the other hand, the dipolar coupling strength decreases as the inverse cube of the separation
distance, making it comparable to the exchange interaction at larger distances.

Dipole-dipole interactions can give rise to novel long-range and direction-dependent phenomena.
Macroscopic domain formation, for instance, is primarily driven by dipolar coupling [4]. When do-
mains are formed, the dipolar energy of each spin is reduced due to the long-range interaction. As the
exchange interaction is a short-ranged interaction, only spins located close to the domain boundary will
experience unfavourable exchange interactions, competing with the dipolar energy reduction caused
by the formation of domains. Another example illustrating the influence of dipole-dipole interactions
is the partial demagnetization of an isotropic ferromagnet in its ground state, which deviates from the
completely ordered state and is attributed to the presence of these interactions [49].

3.2.4. Anisotropy
The Heisenberg Hamiltonian, which is completely isotropic, predicts that the magnetization will always
be zero in the absence of an external magnetic field if only the exchange term is considered [50].
However, real materials exhibit anisotropy and should be modeled accordingly. Magneto-crystalline
anisotropy, which arises from spin-orbit coupling between electrons, is a significant contribution to the
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anisotropy [50]. The preference of the spins to align with the crystallographic axes arises from the
fact that the spin-orbit coupling connects the spins to the electronic orbitals, which themselves are
correlated with the crystallographic axes.

To account for anisotropy in a material, it is necessary to take into account the material’s lattice
geometry. In many cases, adding the uniaxial anisotropy term to the Hamiltonian is sufficient, and
can be written mathematically as [49]

Hani = −
∑
i,j

KijSizSjz,

where Kij is the anisotropy constant between sites i and j and the preferred spin direction due to
anisotropy is along the z-axis. The diagonal terms in the summation, when i = j, are called the
single-ion anisotropy terms. One often speaks of easy and hard axes of magnetization, and as the
names suggest, give rise to a preferred and unpreferred axis of magnetization. To incorporate these
effects into the model, one can include the following terms in the Hamiltonian

Hani = −Keasy
∑
i

(Si · êeasy)2 +Khard
∑
i

(Si · êhard)2,

with the direction of the easy and hard axes given by the unit vectors êeasy and êhard.

3.2.5. Dzyaloshinskii–Moriya interaction
The Dzyaloshinskii-Moriya interaction (DMI) is a type of antisymmetric exchange interaction between
spins that may be included in the Hamiltonian depending on the lattice geometry. Dzyaloshinskii
demonstrated, through a phenomenological approach, that the weak ferromagnetic properties of α-
Fe2O3 perpendicular to the trigonal axis arise because the antiferromagnetic spin structure has the
same symmetry as a canted spin arrangement, while the free energy contains a term that favours
canted spins, which is the DMI term [51]. Moriya expanded the theory of superexchange interaction,
which was developed by Anderson [52], to incorporate the impact of spin-orbit coupling [53]. Using
perturbation theory, Moriya derived an expression for the DMI term.

To introduce the Dzyaloshinskii-Moriya interaction, it should be noted that it requires low crystal
symmetries, for instance a broken inversion symmetry, and that it is induced by spin-orbit coupling.
In the Heisenberg formalism, the DMI-term is usually written as [26, 54, 55]

HDMI = −
∑
i,j

Dij · [Si × Sj ].

The DM vector, Dij , determines the strength of the interaction and its direction is given by crystal
symmetry rules [53]. The interaction is proportional to the cross-product of neighbouring spins and
promotes perpendicular alignment between them. The energy is minimized when the spins lie in the
plane that is normal to the DM vector. This interaction competes with the direct Heisenberg exchange,
which prefers collinear alignment, and as a result, can cause the formation of chiral magnetic solitons,
such as skyrmions, and affect the behaviour of spin-waves [12].

3.3. Calculation of ferromagnetic magnon dispersion
Our objective is to calculate the ferromagnetic magnon dispersion in the two-dimensional square
and honeycomb lattices. We focus on a single ferromagnetic domain and exclude the consideration
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of domain walls. The lattices are assumed to lie in the xy−plane. For simplicity, we employ a
simplified model that incorporates only nearest-neighbour interactions for the Heisenberg exchange.
The Hamiltonian takes into account the magnetic anisotropy, the Dzyaloshinskii-Moriya interaction,
and the Zeeman term due to an external magnetic field B = B0ẑ. The Hamiltonian can be expressed
as

H = −
∑
<i,j>

JijSi · Sj − h
∑
i

Siz −Kz

∑
i

S2
iz −

∑
i,j

Dij · [Si × Sj ]. (3.1)

The notation
∑

<i,j> represents a summation over all pairs of nearest neighbours. The lattice possesses
a single-ion anisotropy with an easy axis, where Kz > 0 favours an out-of-plane orientation [28]. We
assume that the exchange coupling coefficients are equal for all pairs of neighbouring spins, denoted
as Jij = J . It is required that J > 0 to maintain ferromagnetic ordering. Both the Zeeman term and
anisotropy term promote an out-of-plane alignment, indicating an expected ferromagnetic ordering
along the z-axis. As the spin is measured in units of the Planck constant, the parameters J , h, Kz

and Dij are given in units of energy. The calculations include the DMI exclusively for the honeycomb
lattice, as the square lattice does not exhibit a broken inversion symmetry.

To obtain the magnon dispersion, it is advantageous to represent the Hamiltonian in the second
quantized form. This is achieved by employing the Holstein-Primakoff transformation, which converts
spin operators into bosonic creation and annihilation operators, and is on the form [56]

Si+ = Six + iSiy =
√
2S(1−

a†iai
2S )

1
2ai ≈

√
2Sai,

Si− = Six − iSiy =
√
2Sa†i (1−

a†iai
2S )

1
2 ≈

√
2Sa†i ,

Siz = S − a†iai.

(3.2)

We treat Siz differently because we anticipate that the ground state consists of spins aligned perfectly
along the z-axis. Any excitations created by a†iai would reduce Siz and disrupt the ferromagnetic
ordering. The approximations made in equation (3.2) is known as linear spin-wave theory and is
applicable for systems with nearly ordered spins, where neglecting cubic and higher-order terms in
boson operators is appropriate [33]. We employ this approximation in the subsequent calculations.

3.3.1. Square lattice
Starting from the Hamiltonian given in equation (3.1) without considering the DMI, the Heisenberg
exchange part can be written as [45]

HHeis = −J
∑
<i,j>

Si · Sj = −J
∑
<i,j>

[
SizSjz +

1
2(Si+Sj− + Si−Sj+)

]
.

Utilizing the Holstein-Primakoff transformation, the expression is further transformed to

HHeis = −JS
∑
<i,j>

[
S − (a†iai + a†jaj − a†iaj − a†jai)

]
.

Likewise, the terms related to anisotropy and Zeeman effects can be expressed as follows
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HZ = −h
∑
i

(S − a†iai),

Hani = −Kz

∑
i

(S − a†iai)(S − a†iai) = −Kz

∑
i

(S2 − 2Sa†iai + a†iaia
†
iai).

(3.3)

The fourth-order term can be rewritten as a†iaia
†
iai = a†ia

†
iaiai+ a†iai, which introduces an additional-

second order contribution [28, 57]. As a result, the total Hamiltonian up to second order in bosonic
operators is [45]

H =− J
∑
<i,j>

S2 − h
∑
i

S −Kz

∑
i

S2 + JS
∑
<i,j>

(a†iai + a†jaj − a†iaj − a†jai)

+ (h+ (2S − 1)Kz)
∑
i

a†iai.

The first three terms in the equation contribute a constant energy term that either raises or lowers
the energy spectrum. By adjusting the reference energy, we can neglect these terms. By interchanging
i↔ j in a†jaj and a†jai, the fourth term becomes

JS
∑
<i,j>

(a†iai + a†jaj − a†iaj − a†jai)

= 2JS
∑
<i,j>

(a†iai − a†iaj).

We transform the summation indices to < i, j >→ i, δ, where i spans the entire lattice and δ represents
the nearest neighbours. To avoid double counting, we divide by 2 to account for this [42]. Here,
δ = Rj −Ri belongs to the set {δ1, δ2, δ3, δ4}. In effect, this implies that

∑
<i,j>

→ 1
2
∑
i,δ

,

such that we are left with a Hamiltonian on the form

H = JS
∑
i,δ

(a†iai − a†iai+δ) + (h+ (2S − 1)Kz)
∑
i

a†iai

= (JSZ +∆)
∑
i

a†iai − JS
∑
i,δ

a†iai+δ.

Here, we used that
∑

i,δ a
†
iai = Z

∑
i a

†
iai with Z as the number of nearest neighbours, and we defined

∆ = h+ (2S − 1)Kz. Next, we introduce the Fourier-transformed operators

a†i =
1√
N

∑
k

a†ke
−ik·Ri , ai =

1√
N

∑
k

akeik·Ri , (3.4)

where k is the wavevector and N is the number of lattice sites. The operators a†k and ak are bosonic
operators in k−space that create or annihilate magnon excitations, the quantized spin-waves [45]. By
utilizing this expression, the first term transforms to
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∑
i

a†iai =
1
N

∑
i

∑
k,k′

a†kak′e
i(k′−k)·Ri =

∑
k,k′

a†k′akδ(k − k′) =
∑
k

a†kak,

with the help of relation (2.8). Similarly, the second term becomes

∑
i,δ

a†iai+δ =
1
N

∑
i,δ

∑
k,k′

a†kak′e
i(k′−k)·Rieik′·δ

=
∑
k,δ

a†kake
ik·δ =

∑
k

a†kakf(k),

where we defined the structure factor f(k) =
∑

δ eik·δ. Thus, the Hamiltonian is reduced to the simple
form [42]

H =
∑
k

[JS(Z − f(k)) + ∆]a†kak

=
∑
k

Eka
†
kak.

(3.5)

The energy of the magnons is denoted as Ek = ℏωk, where ωk represents the frequency, and its relation
to the wavevector is known as the magnon dispersion relation. In a square lattice, the structure factor
is given by

f(k) =
∑
δ

eik·δ = eik·δ1 + eik·δ2 + eik·δ3 + eik·δ4 = 2 cos(kxa) + 2 cos(kya),

with a as the lattice constant. The magnon dispersion is then

Γ X M Γ

∆
JS

3

5

7

9

E
JS

Figure 3.1.: Magnon dispersion in a ferromagnetic square lattice along the symmetry lines of the
Brillouin zone, in units of JS. The energy gap is ∆/JS = 1.
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Ek = JS [Z − 2 cos (kxa)− 2 cos (kya)] + ∆, (3.6)

with Z = 4 nearest neighbours and the energy gap ∆ is proportional to the magnetic field and
anisotropy. In the limit of large wavelengths, |k · δ| << 1, the approximation [33]

Z − f(k) ≈ Z − (Z − 1
2
∑
δ

(k · δ)2) = (ka)2,

is valid. Thus, the dispersion in this limit is given by

Ek ≈ JS(ka)2 +∆, (3.7)

and scales quadratically. The dispersion, measured in units of JS, is illustrated in Figure 3.1 along
the symmetry lines of the Brillouin zone where ∆ > 0. The presence of an energy gap ∆ results in an
elevation of the entire energy spectrum. This can be explained by the influence of the magnetic field
and anisotropy, which increases the energy required to excite magnons. In other words, it becomes
more energetically costly to deviate from the ferromagnetic ground state. Additionally, the global
minimum is situated at the Γ-point where k = 0. This corresponds to the uniform mode, where all
spins undergo precession with the same phase.

The angular momentum of a specific spin-wave with wavevector k can be determined by evaluating
the expectation value of Sz in the state a†k |0⟩. The z−component of the spin may be written as

Sz =
∑
i

Siz =
∑
i

(S − a†iai) = SN −
∑
k

a†kak,

such that the angular momentum is

⟨0| akSza†k |0⟩ = SN ⟨0| aka†k |0⟩ −
∑
k′

⟨0| aka†k′ak′a
†
k |0⟩

= SN ⟨0| aka†k |0⟩ −
∑
k′

⟨0| aka†k′(δ(k − k′) + a†kak′) |0⟩

= (SN − 1) ⟨0| aka†k |0⟩ = SN − 1.

(3.8)

Here we used that ak |0⟩ = 0 and the result is in units of ℏ. The generation of a single magnon causes
a reduction of the total angular momentum by ℏ. In a semiclassical view, flipping a single spin in a
ferromagnetic lattice with an ordered arrangement leads to an angular momentum of Sz = ℏS(N −2).
This implies that the creation of a single magnon, with S = 1/2, corresponds to the same angular
momentum as flipping a single spin [3]. Consequently, a magnon can be regarded as a collective
excitation where a single spin flip is spread out over multiple lattice sites, giving rise to a spin-wave.

3.3.2. Honeycomb lattice
In order to calculate the magnon dispersion in a honeycomb lattice, we utilize the Hamiltonian pre-
sented in equation (3.1), which includes the DMI. Specifically, we allow for a next-nearest neighbour
(NNN) DMI with an out-of-plane DM vector, as the midpoints of the second neighbouring bonds lack
inversion symmetry [47]. Inspired by the Haldane model in electronic systems, we express the DM
vector as Dij = Dnnn

z νij ẑ [12, 27, 55], where the Haldane sign is determined by νij = ±1 between
next-nearest neighbours that are oriented clockwise and counterclockwise to each other, as depicted
in Figure 3.2. Utilizing this expression, the DMI-part of the Hamiltonian is

34



3.3. Calculation of ferromagnetic magnon dispersion

Figure 3.2.: An illustration of how the Haldane sign can be either νij = +1 or νij = −1 between next-
nearest neighbours that are oriented clockwise or counterclockwise to each other. The illustration
draws inspiration from Ref. [12].

HDMI = −Dnnn
z

∑
<<i,j>>

νij ẑ · [Si × Sj ]

= −Dnnn
z

∑
<<i,j>>

νij(SixSjy − SiySjx) = iD
nnn
z

2
∑

<<i,j>>

νij(Si−Sj+ − Si+Sj−).
(3.9)

The honeycomb lattice, with a 2-atomic basis, is expected to exhibit two magnon branches. It is
beneficial to separate the lattice into two sublattices, A and B, each associated with spins SiA and
SiB, respectively, as well as the corresponding bosonic operators ai and bi. In order to avoid double
counting, the summation

∑
<i,j> is transformed into

∑
i,δA

, where i iterates over the sites in sublattice
A, and δA ∈ {δA1 , δA2 , δA3 } represents the vectors to the nearest neighbouring atoms based on sublattice
A [58]. Moreover, the summation involving pairs of next-nearest neighbours is transformed to [58]

∑
<<i,j>>

=
∑

<<i,j>>
i∈A

+
∑

<<i,j>>
i∈B

= 1
2
∑
i,τA
i∈A

+1
2
∑
i,τB
i∈B

,

where τA ∈ {τA
1 , τ

A
2 , τ

A
3 , τ

A
4 , τ

A
5 , τ

A
6 } are the vectors to the next-nearest neighbours based on sublat-

tice A and similarly are τB based on sublattice B. The Hamiltonian is split into the following

H =− J
∑
i,δA
i∈A

[SiAzSi+δA,Bz +
1
2(SiA+Si+δA,B− + SiA−Si+δA,B+)]− h

∑
i

i∈A

SiAz −Kz

∑
i

i∈A

S2
iAz

+ iD
nnn
z

4
∑
i,τA
i∈A

ντA(SiA−Si+τA,A+ − SiA+Si+τA,A−)− h
∑
i

i∈B

SiBz −Kz

∑
i

i∈B

S2
iBz

+ iD
nnn
z

4
∑
i,τB
i∈B

ντB (SiB−Si+τB ,B+ − SiB+Si+τB ,B−).

(3.10)
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The Haldane sign solely depends on the relative vector connecting the sites. Specifically, for the
summation over sublattice A or B, we have νij = ντA or νij = ντB , respectively. By employing the
Holstein-Primakoff transformation and disregarding the constants, we can express the Hamiltonian in
terms of bosonic operators as follows

H = JS
∑
i,δA
i∈A

(a†iai + b†i+δA
bi+δA − a†ibi+δA − b†i+δA

ai) + ∆
∑
i

i∈A

a†iai +∆
∑
i

i∈B

b†ibi

+ iD
nnn
z S

2
∑
i,τA
i∈A

ντA(a
†
iai+τA − a†i+τA

ai) + iD
nnn
z S

2
∑
i,τB
i∈B

ντB (b
†
ibi+τB − b†i+τB

bi).

By substituting the Fourier-transformed bosonic operators, where a normalization factor of
√
2/N

is included due to the summation being limited to a single sublattice, the non-DMI part of the
Hamiltonian becomes

Hnon-DMI = JS
∑
k

∑
δA

(a†kak + b†kbk − a†kbke
ik·δA − b†kake

−ik·δA) + ∆
∑
k

a†kak +∆
∑
k

b†kbk

=
∑
k

[
(JSZ +∆)(a†kak + b†kbk)− JSfδA(k)a

†
kbk − JSf∗δA(k)b

†
kak

]
,

where the structure factor is defined by fδA(k) =
∑

δA
eik·δA . Continuing, the DMI contribution to

the Hamiltonian for sublattice A becomes

HA
DMI =iD

nnn
z S

2
2
N

∑
i,τA
i∈A

∑
k,k′

ντA(a
†
kak′e

i(k′−k)·Rieik′·τA − a†kak′e
i(k′−k)·Rie−ik·τA)

=iD
nnn
z S

2
∑
k,τA

ντAa
†
kak2i sin(k · τA)

=
∑
k

SDτA(k)a
†
kak, DτA(k) = −Dnnn

z

∑
τA

ντA sin(k · τA).

The DMI contribution for sublattice B is found by switching A ↔ B and ak ↔ bk in the obtained
result for sublattice A. The entire Hamiltonian is then

H =
∑
k

[
(JSZ +∆+ SDτA(k))a

†
kak + (JSZ +∆+ SDτB (k))b

†
kbk

−JSfδA(k)a
†
kbk − JSf∗δA(k)b

†
kak

]
.

It can be easily be verified that DτA(k) = −DτB (k). This relationship holds because τA and τB

encompass the same vectors set, but the Haldane sign for sublattice B is the negative counterpart of
sublattice A. By exploiting this symmetry, the Hamiltonian simplifies to

H =
∑
k

ψ†
kHm(k)ψk, Hm(k) =

[
JSZ +∆+ SDτA(k) −JSfδA(k)

−JSf∗δA(k) JSZ +∆− SDτA(k)

]
, (3.11)

with ψk = [ak, bk]T as the basis. The eigenvalues are given by [55, 59]
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Figure 3.3.: Magnon dispersion in a ferromagnetic honeycomb lattice along the symmetry lines of
the Brillouin zone, in units of JS. The dispersion is shown with the energy gap ∆/JS = 1 both
with and without DMI present.

E±
k = JS

Z ±

√
D2

τA(k)
J2 + |fδA(k)|2

+∆, (3.12)

where Z = 3 and

fδA(k) = eik·δ
A
1 + eik·δ

A
2 + eik·δ

A
3

= e
i√
3
kya + 2 cos(12kxa)e

− i
2
√
3
kya,

=⇒ |fδA(k)|
2 = 1 + 4 cos(12kxa)

(
cos(12kxa) + cos(

√
3
2 kya)

)
,

DτA(k) = −Dnnn
z

(
sin(k · τA

1 )− sin(k · τA
2 ) + sin(k · τA

3 )− sin(k · τA
4 ) + sin(k · τA

5 )− sin(k · τA
6 )
)

= −2Dnnn
z

(
sin(kxa)− 2 sin(12kxa) cos(

√
3
2 kya)

)
.

(3.13)

The corresponding eigenvectors are

ê±(k) =

[
JfδA(k), DτA(k)∓

√
D2

τA(k) + J2|fδA(k)|2
]T

[
J2|fδA(k)|2 +

(
DτA(k)∓

√
D2

τA(k) + J2|fδA(k)|2
)2]1/2 .

Denoting αk as the linear combination of ak and bk that diagonalizes the Hamiltonian with eigenvalue
E+

k , and similarly βk with the eigenvalue E−
k , the transformation to the new basis can be expressed

as [
αk

βk

]
= U †

m(k)
[
ak
bk

]
, Um(k) = [ê+(k), ê−(k)],
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and Um(k) is an unitary matrix. The calculated normal modes of the system, {αk, βk}, have been
found to fulfill the bosonic commutation relation.

In the absence of DMI, the dispersion simplifies to

E±
k = JS(Z ± |fδA(k)|) + ∆.

The E−
k branch exhibit a similar dispersion relation to the one observed in the square lattice (equation

(3.5)), albeit with a distinct structure factor. Correspondingly, the eigenvectors are simplified to
ê±(k) = (1/

√
2)[eiφk/2,∓e−iφk/2]T , with φk = arg(fδA(k)). In the limit of small wavevectors (|k| → 0),

it becomes apparent that the E+
k mode is asymmetric, causing the two sublattices to possess in-plane

spin components pointing in opposite directions. On the other hand, the E−
k mode is symmetric,

representing a uniform precession of the entire lattice in the same direction.

The dimensionless dispersion along the symmetry lines of the Brillouin zone is illustrated in Figure 3.3
with and without the presence of DMI. Like the magnon spectrum in the ferromagnetic square lattice,
the magnon spectrum is lifted by ∆. In the absence of DMI, a Dirac cone emerges at the K−point,
as seen in Figure 3.3a. The two branches are degenerate and have a linear dispersion at this point,
creating a Dirac point. We can demonstrate the linear relationship by Taylor expanding the dispersion
around this point. We find that |fδA(u)| ≈

√
3
2 a|u|, where u = k −K, suggesting that E±

k ∼ k. As a
result, the effective Hamiltonian is the massless 2D Dirac equation [47], hence the name. Similar to
how an external magnetic field breaks the time-reversal symmetry, the ferromagnetic ordering of spins
also breaks the time-reversal symmetry. However, there may be an effective time-reversal symmetry
that remains intact, consisting of a combined time-reversal symmetry and either a crystal symmetry
or a lattice translation that preserves the magnetic unit cell [60]. As long as the effective time-reversal
symmetry is preserved, the Dirac points will remain [47].

In the presence of DMI, the situation changes, as illustrated in Figure 3.3b, and a band gap emerges
due to the broken inversion symmetry caused by DMI. The size of the band gap at the K−point is
determined to be ∆K = 6

√
3Dnnn

z S. The presence of a band gap in the system leads to an intriguing
feature called Berry curvature, which can give rise to the emergence of topological magnons. Chapter
5 will provide a more in-depth exploration of this concept, specifically focusing on the principles of
topological band theory.

We evaluate the expectation value of the angular momentum Sz in each normal mode. The expression
for Sz is given by

Sz =
∑
i

i∈A

SiAz +
∑
i

i∈B

SiBz =
1
2SN −

∑
i

i∈A

a†iai +
1
2SN −

∑
i

i∈B

b†ibi

= SN −
∑
k

(a†kak + b†kbk) = SN −
∑
k

(α†
kαk + β†kβk).

Hence, the expectation value of Sz in the state α†
k |0⟩ and β

†
k |0⟩ is

⟨0|αkSzα
†
k |0⟩ = SN − 1, ⟨0|βkSzβ†k |0⟩ = SN − 1.

As expected, the magnon excitation decreases the angular momentum by an equivalent amount as
described in equation (3.8) for the ferromagnetic square lattice.
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3.4. Calculation of antiferromagnetic magnon dispersion

3.4. Calculation of antiferromagnetic magnon dispersion
We calculate the magnon dispersion for the antiferromagnetic square and honeycomb lattices using
the nearest neighbour Heisenberg exchange interaction. In this case, the exchange coupling coefficient
J is negative (J < 0), resulting in antiferromagnetic ordering of the spins. In the Hamiltonian, as
depicted in equation (3.1), the DMI term is exclusively included for the honeycomb lattice.

We examine an antiferromagnetic system with a checkerboard-like arrangement, where spins at nearest
neighbouring sites exhibit opposite ordering. This arrangement is illustrated for the square lattice
in Figure 3.4. Consequently, we can divide the lattice into two sublattices, A and B, with their
belonging spins SiA and SiB and corresponding bosonic operators ai and bi. By assigning up-spins
to sublattice A and down-spins to sublattice B, we establish a classical ground state with SiA = Sẑ
and SiB = −Sẑ. To analyze the system using bosonic operators, we apply the Holstein-Primakoff
transformation, which, at the lowest order, takes the following form

SiA+ =
√
2Sai, SiB+ =

√
2Sb†i ,

SiA− =
√
2Sa†i , SiB− =

√
2Sbi, (3.14)

SiAz = S − a†iai, SiBz = −S + b†ibi,

and we define the Fourier-transformed operators as

a†i =
√

2
N

∑
k

a†ke
−ik·Ri , ai =

√
2
N

∑
k

akeik·Ri ,

b†i =
√

2
N

∑
k

b†ke
ik·Ri , bi =

√
2
N

∑
k

bke−ik·Ri .

(3.15)

3.4.1. Square lattice
Similar to before, we transform the summation

∑
<i,j> to

∑
i,δ, where i solely belongs to sublattice A.

This allows us to write the Hamiltonian as

Figure 3.4.: Illustration of the magnetic ordering in the square checkerboard-type antiferromagnet.
The direction of the spins is out of the lattice plane where the two sublattices, marked in red and
blue, have an opposing arrangement.
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H =− J
∑
i,δ
i∈A

[SiAzSi+δ,Bz +
1
2(SiA+Si+δ,B− + SiA−Si+δ,B+)]− h

∑
i

i∈A

SiAz −Kz

∑
i

i∈A

S2
iAz

− h
∑
i

i∈B

SiBz −Kz

∑
i

i∈B

S2
iBz.

By inserting the Holstein-Primakoff transformation and omitting the constant terms, we obtain

H =− JS
∑
i,δ
i∈A

(a†iai + b†i+δbi+δ + a†ib
†
i+δ + aibi+δ) + (K + h)

∑
i

i∈A

a†iai + (K − h)
∑
i

i∈B

b†ibi, (3.16)

with K = (2S−1)Kz. By utilizing the magnon operators in k−space, we can express the Hamiltonian
in terms of these operators. The diagonal terms are transformed as∑

i
i∈A

a†iai =
∑
k

a†kak,
∑
i

i∈B

b†ibi =
∑
k

b†kbk.

Likewise, the off-diagonal terms become

∑
i,δ
i∈A

(aibi+δ + a†ib
†
i+δ) =

2
N

∑
i,δ
i∈A

∑
k,k′

(
akbk′ei(k−k

′)·Rie−ik′·δ + a†kb
†
k′e

−i(k−k′)·Rieik′·δ
)

=
∑
k

(
akbkf

∗(k) + a†kb
†
kf(k)

)
.

(3.17)

As the structure factor for the square lattice is a real quantity, we end up with

H =
∑
k

[
(κ+ h)a†kak + (κ− h)b†kbk − JSf(k)(akbk + a†kb

†
k)
]

=
∑
k

ψ†
kHm(k)ψk, Hm(k) =

[
κ+ h −JSf(k)

−JSf(k) κ− h

]
, ψk = [ak, b†k]

T .

where κ = −JSZ + K. The Hamiltonian contains terms like akbk and a†kb
†
k, which suggests that

these operators do not represent long-lived quantized spin-excitations [33]. In order to diagonalize
the Hamiltonian, we perform a Bogoliubov transformation. This is done by introducing the bosonic
operators αk and βk, defined by

αk = ukak + vkb
†
k, α†

k = uka
†
k + vkbk,

βk = vka
†
k + ukbk, β†k = vkak + ukb

†
k,

where the Bogoliubov coefficients (uk, vk) are yet to be determined. To ensure that the new operators
are bosonic, they must satisfy the commutation relation [αk, α

†
k′ ] = δ(k − k′), and the same applies

for βk. This condition is met when the following equation hold

[ukak+vkb†−k, uk′a
†
k′ + vk′b−k′ ] = ukuk′ [ak, a†k′ ] + vkvk′ [b†−k, b−k′ ]

= δ(k − k′)(u2k − v2k) =⇒ u2k − v2k = 1.
(3.18)
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3.4. Calculation of antiferromagnetic magnon dispersion

The inverse relations are [
ak
b†k

]
=
[
uk −vk
−vk uk

] [
αk

β†k

]
, (3.19)

such that the Hamiltonian, expressed in terms of the new bosonic operators, is on the form

H =
∑
k

[
2κv2k + 2JSf(k)ukvk + (κ(u2k + v2k) + h+ 2JSf(k)ukvk)α†

kαk

+ (κ(u2k + v2k)− h+ 2JSf(k)ukvk)β†kβk
]
,

(3.20)

where the coefficients in front of the terms αkβk and α†
kβ

†
k are set equal to zero. To be more specific,

uk and vk must satisfy the equation

|J |Sf(k)(u2k + v2k) = 2κukvk. (3.21)

With the help of relation (3.18), the equation is solved with

u2k = 1
2

1 + κ√
κ2 − J2S2f2(k)

 , v2k = 1
2

−1 + κ√
κ2 − J2S2f2(k)

 ,
and ukvk = |J |Sf(k)

2
√
κ2 − J2S2f2(k)

.

The first two terms in the Hamiltonian, as given in equation (3.20), represent a quantum correction
to the classical magnetization and arise from the bosonic commutation relation [33]. Since these
terms do not contribute to the magnon dispersion, they can be omitted. Therefore, the diagonalized
Hamiltonian is expressed as follows

H =
∑
k

[
(
√
κ2 − J2S2f2(k) + h)α†

kαk + (
√
κ2 − J2S2f2(k)− h)β†kβk

]
,

=
∑
k

[
E+

k α
†
kαk + E−

k β
†
kβk

]
.

The dispersion relations for the Bogoliubov quasiparticles are then

E+
k = |J |S

√
(Z + K

|J |S
)2 − f2(k) + h, E−

k = |J |S
√
(Z + K

|J |S
)2 − f2(k)− h, (3.22)

where f(k) = 2 cos (kxa) + 2 cos (kya) and Z = 4. This is in accordance with the findings in Ref. [61],
with the exception of the anisotropy term, which is K = 2SKz and does not account for the contribu-
tion from the fourth-order term presented in equation (3.3). Figure 3.5a illustrates the dimensionless
dispersion along the symmetry lines of the Brillouin zone with h/(|J |S) = 1 and K/(|J |S) = 0.2. The
Bogoliubov quasiparticles, which are linear combinations of the original bosonic operators, exhibit
minima at the Γ-point and all corners of the Brillouin zone where f2(k) = Z2.

By examining the influence of anisotropy, we investigating two scenarios: one where h = 0 without
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(a) h/(|J |S) = 1 and K/(|J |S) = 0.2.
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(b) h/(|J |S) = 0 and K/(|J |S) = 0.2.
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(c) h/(|J |S) = 0 and K/(|J |S) = 0.

Figure 3.5.: Magnon dispersion in an antiferromagnetic square lattice along the symmetry lines of
the Brillouin zone, with different values of the magnetic field and anisotropy strength, in units of
|J |S.

anisotropy, and the other with the presence of anisotropy. This comparison is depicted in Figure
3.5b and 3.5c. The introduction of anisotropy results in a general energy increase and a quadratic
dependence of Ek in the vicinity of the minima. In simpler terms, the anisotropy requires more energy
to excite magnons and deviate from the Néel ground state, similar to the observations made in the
ferromagnetic scenario. When expanding the dispersions around the Γ-point with Kz = 0, we observe
that the dispersions scale linearly, as seen from the following equations

E+
k ≈ |J |S

√
2Z|k|a+ h, E−

k ≈ |J |S
√
2Z|k|a− h.

This is in contrast to the ferromagnetic case where the dispersion scales quadratically regardless of
the presence of anisotropy, as described in equation (3.7).

The two modes, E+
k and E−

k , can be distinguished by their opposite chirality. The E+
k mode is

characterized by right-handed spins while the E−
k mode possesses left-handed spins. This distinction

can be demonstrated by evaluating the expectation value of Sz for each mode, as done in Ref. [14,
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3.4. Calculation of antiferromagnetic magnon dispersion

57]. The z−component of the total spin can be written like

Sz =
∑
i

i∈A

SiAz +
∑
i

i∈B

SiBz =
1
2SN −

∑
i

i∈A

a†iai −
1
2SN +

∑
i

i∈B

b†ibi

=
∑
k

(−a†kak + b†kbk) =
∑
k

(−α†
kαk + β†kβk),

after substituting the Holstein-Primakoff and Bogoliubov transformation. The expectation value in
each mode is then

⟨0|αkSzα
†
k |0⟩ = −1, ⟨0|βkSzβ†k |0⟩ = +1, (3.23)

with the corresponding angular momentum ∓ℏ. The next step is to establish a connection between
angular momentum and chirality. This can be achieved by calculating the resonance frequencies
using a macrospin approximation, where the magnetization of each sublattice is given by mA(B) =
1
2gJµBNSA(B), similar to the approach outlined in Ref. [61]. The resonance frequency corresponds to
the frequency of the uniform precession modes, where the wavevector is k = 0. The energy per unit
volume is

E = −B0(mAz +mBz) +
HE

m
(mA ·mB)−

Hani
2m (m2

Az +m2
Bz),

where HE = |J |SZ
gJµB

, Hani = 2SKz
gJµB

and m is the saturation magnetization at zero temperature, equal
for both sublattices. We solve the Landau-Lifshitz equation

dmA(B)

dt = γmA(B) ×HA(B)
eff ,

HA(B)
eff = −∇mA(B)E(mA,mB)

= (B0 +
Hani
m

mA(B)z)ẑ − HE

m
(mB(A)xx̂+mB(A)yŷ +mB(A)zẑ),

with γ = gJµB/ℏ as the gyromagnetic ratio. Postulating a magnetization on the form mA(B) =
mA(B)zẑ + (m̄A(B)xx̂ + m̄A(B)yŷ)e−iωt, with mAz = m and mBz = −m, the equation reduces to the
eigenvalue problem Fm̄ = ωm̄ with

F =
[

0 F2×2
F2×2 0

]
, F2×2 =

[
−γ(Hani +HE +B0) −γHE

γHE γ(Hani +HE −B0)

]
,

and m̄ = [mAx,mBx, imAy, imBy]T . The eigenvalue problem yields four eigenvalues, but only two of
them are physically meaningful as they are positive. The positive eigenvalues are

ω+ = γ(Hc +B0), ω− = γ(Hc −B0), (3.24)

Hc =
√
H2

ani + 2HaniHE .

The eigenvalues ℏω± correspond to the ones calculated in the second quantized form when k = 0,
equation (3.22), except for the anisotropy lacking the contribution from the fourth order term. The
corresponding eigenvectors are given by
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Figure 3.6.: An illustration of the precession of the the sublattice magnetizations in the two resonance
modes, ω+ and ω−, of a square antiferromagnet is depicted in the figure. The illustration is inspired
by Ref. [61].

m̄+ = C+


η+
−1
−η+
1

 , m̄− = C−


η−
−1
η−
−1

 ,
with

η± = Hani +HE ±Hc

HE
,

and C+(C−) determine the amplitude. By examining the ansatz for mA(B) in each mode, assuming
C+ and C− are both equal to one for simplicity, we obtain the following expressions for each sublattice

m+
A = mẑ + η+(cos(ωt)x̂+ sin(ωt)ŷ), m+

B = −mẑ − (cos(ωt)x̂+ sin(ωt)ŷ),
m−

A = mẑ + η−(cos(ωt)x̂− sin(ωt)ŷ), m−
B = −mẑ − (cos(ωt)x̂− sin(ωt)ŷ).

It is evident that both sublattices rotate counterclockwise in the ω+ mode, where counterclockwise
rotation is defined as the observed rotation when looking down on the xy−plane from z > 0. The
radius, which represents the size of the precession circle, is larger for the A sublattice due to η+ > 1.
This implies that the magnetization at sublattice A has a smaller out-of-plane component compared
to the magnetization at sublattice B. When summing over the entire lattice, a net magnetization
along the −ẑ direction is obtained, resulting in a net negative angular momentum. This aligns with
what we observed in equation (3.23) and is illustrated in Figure 3.6. Conversely, in the ω− mode, both
sublattices exhibit clockwise rotation. Analysis reveals that η− is always less than unity, meaning that
the magnetization at sublattice A has the largest mz component, resulting in a net positive angular
momentum. Therefore, the right-handed (counterclockwise) spin mode carries a negative angular
momentum, while the left-handed (clockwise) spin mode carries a positive angular momentum. The
locking of chirality to the expectation values of Sz remains unaffected by the wave vector k, ensuring
that this result holds true even for k ̸= 0 [57]. It is important to note that these findings are specific to
our model with only an easy-axis anisotropy. The relationships described are disrupted if the rotational
symmetry around the z-axis is broken, such as by introducing an in-plane easy-axis anisotropy [57].
According to this argument, ferromagnetic modes with negative angular momentum are expected to
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Figure 3.7.: Illustration of how the quantity ω/γ, proportional to the magnon frequency at k = 0,
behaves as a function of the magnetic field B0 for the two branches in the antiferromagnetic square
lattice.

exhibit a right-handed chirality, and a detailed exploration of ferromagnetic right-handedness can be
found in Ref. [62].

Comparing the resonance frequencies of ferromagnetic and antiferromagnetic systems yields interesting
insights. Typically, the anisotropy energy is much smaller compared to the exchange energy, allowing
us to neglect the H2

ani in equation (3.24) in relation to 2HaniHE . Consequently, in the absence of a
magnetic field, the antiferromagnetic resonance frequency (AFMR) is given by ωAFMR = γ

√
2HaniHE .

Similarly, according to equation (3.6), the ferromagnetic resonance frequency (FMR) is ωFMR =
γHani. As Hani << HE , it follows that ωFMR << ωAFMR. The AFMR typically falls within the
range of hundreds of gigahertz [44]. Due to this characteristic, along with their zero net magnetic
moment, antiferromagnetic materials have gained significant attention for their potential in ultrafast
magnetization dynamics [63].

In the absence of an external magnetic field, the two branches of the magnon dispersion are degener-
ate, as depicted in Figure 3.5c and 3.5b. However, when an external magnetic field is applied, these
branches spilt and become nondegenerate. One way to interpret this is by considering the addition
of a Larmor precession, ω = γB0, which occurs counterclockwise around the direction of B0. Conse-
quently, the Larmor precession introduces an additional positive contribution to the ω+ branch, while
it subtracts from the clockwise ω− branch [62].

The frequency of the dispersion minima, described by equation (3.24), depends on the strength of
the applied magnetic field. Figure 3.7 provides an illustration of how the frequency of both branches
changes linearly with the external field. Specifically, the ω− mode reaches zero frequency when the
magnetic field reaches a critical value, denoted as Bc = Hc ≈

√
2HaniHE . At this critical field, a

phase transition occurs, leading to a spin-flop state where the spins are bent nearly perpendicular
to the magnetic, causing the Néel vector to lie in the plane [61, 64]. With further increase in the
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magnetic field, another phase transition occurs, resulting in a spin-saturated flip state where all spins
align parallel to the magnetic field [64].

3.4.2. Honeycomb lattice
The Hamiltonian, given by equation (3.10), includes an out-of-plane DMI contribution described by
equation (3.9). The exchange coupling coefficient is negative, J < 0, indicating a Néel ordered ground
state. A and B represents the two sublattices with spins arranged in opposite order. The non-DMI part
of the Hamiltonian is treated in an equal manner as for the antiferromagnetic square lattice (as seen
in equations (3.16) to (3.17)). By employing the Holstein-Primakoff transformation and substituting
the Fourier-transformed operators, the DMI contribution to the Hamiltonian becomes

HDMI =iD
nnn
z S

2
∑
i,τA
i∈A

ντA(a
†
iai+τA − a†i+τA

ai)− iD
nnn
z S

2
∑
i,τB
i∈B

ντB (b
†
ibi+τB − b†i+τB

bi)

=iD
nnn
z S

2
∑
k,τA

ντAa
†
kak(e

ik·τA − e−ik·τA)− iD
nnn
z S

2
∑
k,τB

ντBb
†
kbk(e

−ik·τB − eik·τB )

=S
∑
k

DτA(k)a
†
kak + S

∑
k

DτB (k)b
†
kbk

=S
∑
k

DτA(k)(a
†
kak − b†kbk).

The total Hamiltonian is then

H =
∑
k

[
(κ+ SDτA(k) + h)a†kak + (κ− SDτA(k)− h)b†kbk − JSf∗δA(k)akbk − JSfδA(k)a

†
kb

†
k

]
=
∑
k

ψ†
qHm(k)ψq, Hm(k) =

[
κ+ SDτA(k) + h −JSfδA(k)

−JSf∗δA(k) κ− SDτA(k)− h

]
,ψk = [ak, b†k]

T .

Once more, the Hamiltonian is diagonalized using the Bogoliubov transformation. In this case, the
structure factor fδA(k) is complex, allowing the (uk, vk) coefficients to also be complex numbers. We
define the transformation as[

αk

β†k

]
=
[
uk v∗k
vk u∗k

] [
ak
b†k

]
,

[
ak
b†k

]
=
[
u∗k −v∗k
−vk uk

] [
αk

β†k

]
,

where

|uk|2 − |vk|2 = 1.

This results in a Hamiltonian on the form

H =
∑
k

2|vk|2κ+ JS(f∗δA(k)u
∗
kv

∗
k + fδA(k)ukvk)

+
[
κ(|uk|2 + |v2k|) + SDτA(k) + h+ JS(f∗δA(k)u

∗
kv

∗
k + fδA(k)ukvk)

]
α†
kαk

+ [κ(|uk|2 + |v2k|)− SDτA(k)− h+ JS(f∗δA(k)u
∗
kv

∗
k + fδA(k)ukvk)]β

†
kβk,

where the coefficients must satisfy
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3.4. Calculation of antiferromagnetic magnon dispersion

JS(f∗δA(k)(u
∗
k)2 + fδA(k)v

2
k) = −2κu∗kvk and JS(fδA(k)u

2
k + f∗δA(k)(v

∗
k)2) = −2κukv∗k.

The two equations are each other’s complex conjugates. To simplify the expression, we can represent
the complex quantities in polar form, with φu, φv and φf representing the phases for uk, vk and fδA(k),
respectively. Using this representation, the first equation can be rewritten as follows

|J |S|fδA(k)|(|uk|
2e−i(φf+2φu) + |vk|2ei(φf+2φv)) = 2κ|uk||vk|ei(φv−φu)

=⇒ |J |S|fδA(k)|(2 cos(Φ)|uk|
2e−iΦ − 1) = 2κ|uk||vk|e−iΦ,

where Φ = φu + φv + φf . By equating the real and imaginary parts, we obtain

(i) |J |S|fδA(k)|(2 cos
2(Φ)|uk|2 − 1) = 2κ|uk||vk| cos(Φ),

(ii) |J |S|fδA(k)| cos(Φ) sin(Φ)|uk|
2 = κ|uk||vk| sin(Φ).

The second equation is solved with Φ = 0 or cos(Φ) = κ|vk|
|J |S|fδA ||uk| . Inserting the solutions into the

first equation, only the Φ = 0 solution yields physical results. Therefore, we end up with

|J |S|fδA(k)|(|uk|
2 + |vk|2) = 2κ|uk||vk|,

which is the same equation as (3.21), with solutions

|uk|2 =
1
2

1 + κ√
κ2 − J2S2|fδA(k)|2

 , |vk|2 =
1
2

−1 + κ√
κ2 − J2S2|fδA(k)|2

 .
The phases φu and φv may be chosen freely as long as Φ = 0. We choose φu = −φf and φv = 0. This
leads to the following Hamiltonian

H =
∑
k

[
E+

k α
†
kαk + E−

k β
†
kβk

]
,

where

E+
k = |J |S

√
(Z + K

|J |S
)2 − |fδA(k)|2 + SDτA(k) + h,

E−
k = |J |S

√
(Z + K

|J |S
)2 − |fδA(k)|2 − SDτA(k)− h,

(3.25)

|fδA(k)|2 and DτA(k) are defined in equation (3.13), and Z = 3. This is consistent with the findings
reported in Ref. [57], where they utilize a different definition of the Fourier-transformed operators. The
branches are degenerate when both the Zeeman and DMI terms are zero. Additionally, in the absence
of anisotropy (Kz = 0), the branches scale linearly from the Γ−point, similar to the antiferromagnetic
square lattice. Figure 3.8a shows the dimensionless magnon dispersion with the presence of a magnetic
field, along with relatively weak DMI and anisotropy strengths compared to the exchange coupling
coefficient. The dispersion is displayed along the symmetry lines of the Brillouin zone, including
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the K ′ = (4π/3a, 0) point situated at the corner of the Brillouin zone. The chosen parameters in
this illustrative example are h/|J |S = 1, Dnnn

z /|J | = 0.1 and K/|J |S = 0.2. The branches exhibit
a minimum at the Γ-point, where their energy exceeds the Zeeman energies (h and −h) due to the
anisotropy energy. When a strong magnetic field, B0 = Bc, is applied, the antiferromagnetic resonance
frequency of the lower branch reaches zero, leading to a phase transition into the spin-flop phase, as
discussed in section 3.4.1.

In the absence of an external magnetic field, Figures 3.8b and 3.8c present the magnon dispersion for
weak and strong DMI, respectively. Specifically, the DMI values used in the two cases are Dnnn

z /|J | =
0.05 and Dnnn

z /|J | = 0.4, with K/(|J |S) = 0.2. Due to the linear dependence of DτA(k) and its
odd nature in k, the branches are nonreciprocal, meaning Ek does not equal E−k [14]. Furthermore,
along the symmetry line Γ → M , the branches are degenerate because DτA(k) becomes zero when
kx = 0. A strong DM coupling leads to a relatively large band gap, which can be significant enough
to shift the global minima to a location other than the Γ−point in the Brillouin zone. In order

M Γ K K ′ Γ
0

1

2

3

4

5

E
|J|S

(a) h/(|J |S) = 1 and Dnnn
z /|J | = 0.1.

M Γ K K ′ Γ
0

1

2

3

4

E
|J|S

(b) h/(|J |S) = 0 and Dnnn
z /|J | = 0.05.

M Γ K K ′ Γ
0

1

2

3

4

5

6

E
|J|S

(c) h/(|J |S) = 0 and Dnnn
z /|J | = 0.4.

Figure 3.8.: Magnon dispersion in an antiferromagnetic honeycomb lattice along the symmetry lines
of the Brillouin zone, in units of |J |S. The dispersion is shown for different values of the magnetic
field and DMI strength, with K/(|J |S) = 0.2.
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3.4. Calculation of antiferromagnetic magnon dispersion

for the branches to be positive across the Brillouin zone in the absence of an external field, the
inequality Dnnn

z /|J | < (3+K/|J |S)/3
√
3 must be met. The expression reduces to Dnnn

z /|J | < 1/
√
3, as

suggested by Ref. [59] as the upper limit forDnnn
z in the absence of anisotropy and under ferromagnetic

ordering. This upper limit represents a breakdown of the linear spin-wave theory as the expected Néel
ground state deviates from the true ground state, a spin spiral, rendering the Holstein-Primakoff
transformation assumption of a collinear arrangement unsuitable [57]. It is worth noting that in
contrast to the ferromagnetic case, where a nonzero DMI is required to induce Berry curvature, the
Néel ordering of spins inherently possesses intrinsic Berry curvature [57]. Surprisingly, the presence
or absence of DMI does not affect the Berry curvature in this scenario.

Following a similar approach to the previous cases, we evaluate the expectation value of Sz in the two
magnon modes, yielding ⟨0|αkSzα

†
k |0⟩ = −1 and ⟨0|βkSzβ†k |0⟩ = 1. Consequently, the E+

k branch
exhibits right-handedness, while the E−

k branch displays left-handedness [14].
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CHAPTER 4

Hybridization in magnetic systems with out-of-plane
magnetization direction

The preceding chapters have laid the foundation for understanding elastic vibrations and spin-waves
in materials with magnetic order. In this chapter, we aim to merge these concepts and explore
systems that exhibit magnetoelastic interactions. Specifically, we will investigate the coupling between
magnons and phonons, which are the corresponding quasiparticles. In general, the Hamiltonian can
be divided into the interacting part and the non-interacting part as

H = H0 +Hint,

where H0 = Hph +Hm is the non-interacting phonon and magnon Hamiltonian. The magnetoelastic
energy, denoted asHint, represents the portion of energy in a crystalline material that emerges from the
interaction between the magnetization and lattice strain [65]. The magnetoelastic coupling can give
rise to various phenomena, including magnetostriction, which involves the generation of spontaneous
stress induced by magnetization, leading to alterations in the shape of the crystal [66]. Furthermore,
it contributes to the damping of spin-waves [67].

The interacting Hamiltonian allows for magnon and phonon bosonic operators of various orders. The
cubic terms are linked to the Kasuya-LeCraw process, where magnons scatter and either absorb
or emit phonons. Additionally, the Confluent process, where two magnons of opposite polarization
decay into a phonon, becomes possible for antiferromagnets [25]. Scattering processes play a crucial
role in nonequilibrium calculations as they help to determine the equilibration times of spin and
lattice systems and the lifetimes of their excitations [25, 67]. The quadratic terms, also known as
linear magnetoelastic coupling terms, are associated with hybridization. These linear magnetoelastic
coupling terms create hybridized magnon-polarons that produce anticrossing gap openings at the
intersections of magnon and phonon dispersions [63]. The objective of this chapter is to compute
the energy spectrum of magnetoelastic interactions in various two-dimensional systems with out-of-
plane magnetic ordering and compare these findings to previous research. To accomplish this, we
will employ the approximation that considers only the linear magnetoelastic coupling terms, which
has been proven to be a valid approach [67]. A comprehensive examination of how the inclusion of
magnon-phonon interactions can result in nontrivial topology will be presented in Chapter 7.

The magnetoelastic energy can be obtained through various methods, such as a phenomenological or
microscopic approach. In the phenomenological approach, there are two main contributions: exchange
modulation due to lattice vibrations, as the exchange coupling coefficients Jij depend on phonon
coordinates, and relativistic effects such as spin-orbit coupling and dipole-dipole interactions [67]. In
the present chapter, we will employ a microscopic approach to derive the interacting Hamiltonian.
This will be achieved by expanding the magnetic exchange interactions that are position-dependent
on the lattice sites.
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HYBRIDIZATION IN MAGNETIC SYSTEMS WITH OUT-OF-PLANE MAGNETIZATION DIRECTION

4.1. Derivation of the interacting Hamiltonian via Taylor expansion
As previously stated, the position of the ions in the lattice affects the exchange coupling coefficient
Jij in the magnon Hamiltonian, equation (3.1). This also applies for the DM vector Dij . Assuming
small displacements, ui = ri − Ri, the functions can be Taylor-expanded around their equilibrium
positions Ri −Rj . Our investigation starts with exploring the exchange coupling coefficient.

4.1.1. Exchange coupling coefficient
To first order in the displacement, the Taylor-expanded exchange coupling coefficient is [25, 26]

J(rij) ≈ J(Rij) + ∇rijJ(rij)
∣∣∣
Rij

· uij ,

where rij = ri − rj , Rij = Ri − Rj and uij = ui − uj . The operator ∇rij is defined as ∇rij =
( ∂
∂rx

ij
, ∂
∂ry

ij

, ∂
∂rz

ij
) in Cartesian coordinates. The first term is the constant coupling coefficient, already

used in calculating the non-interacting magnon dispersion. The second term, however, contributes to
the interacting part of the Hamiltonian. A general expression for the exchange contribution to the
interacting Hamiltonian is

Hex
int = −

∑
i,j

∑
µ

∂J(rij)
∂rµij

∣∣∣∣∣
Rij

(uiµ − ujµ)(Si · Sj).

As shown in equation (2.10), the phonon annihilation and creation operators are proportional to the
ionic displacements. The specific form of the expression and its dependence on magnon and phonon
operators may vary depending on the crystal geometry and spin alignment. In the case of collinear spin
alignment, the exchange part of the interacting Hamiltonian incorporates linear, cubic, and higher-
order terms, as dictated by the dot product of the spins. Consequently, the Heisenberg exchange
interaction does not contribute to hybridization. In contrast, the scenario would be modified in the
case of a noncollinear antiferromagnet, where the presence of quadratic terms would have an impact
[19].

4.1.2. Dzyaloshinskii–Moriya vector
In order to derive linear magnetoelastic terms, we will utilize an extended form of the DM vector that
goes beyond the DM vector perpendicular to the plane, as discussed in section 3.3.2. More specifically,
we introduce an additional in-plane component to the DM vector, leading to the following modified
form [18, 26, 28]

D(rij) = Dnnn
⊥ (rij)ẑ +Dnn

|| (rij). (4.1)

The in-plane part is represented by Dnn
|| (rij) = Dnn

xy(rij)(ẑ × r̂ij), while the out-of-plane component
is denoted as Dnnn

⊥ (rij) = Dnnn
z (rij)νij . The out-of-plane contribution is exclusively observed between

next-nearest neighbours, while the in-plane components are between the nearest neighbours (NN).
Moreover, the out-of-plane component can be understood as an intrinsic DMI resulting from the lack
of inversion symmetry in the midpoints of the second neighbouring bonds. Conversely, the in-plane
DMI arises when the mirror symmetry relative to the lattice plane is broken, which can occur when
growing a 2D plate on a substrate [26]. Figure 4.1 displays the orientation of the in-plane DM vector for
both the honeycomb and square lattices. Beginning with the out-of-plane DMI, the Taylor expansion
is performed as
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4.1. Derivation of the interacting Hamiltonian via Taylor expansion

Figure 4.1.: The figures illustrate the orientation of the in-plane nearest neighbour DM vector for
both the honeycomb lattice (two figures on the left) and the square lattice (on the right). These
vectors are perpendicular to the neighbouring bonds and lie in the plane. Specifically, for the
honeycomb lattice, we present the DM vectors associated with lattice sites belonging to sublattice
A (far left figure) and sublattice B (middle figure), with their orientations being opposite to each
other.

D⊥(rij)nnn ≈ Dnnn
⊥ (Rij) + ∇rijD

nnn
⊥ (rij)

∣∣∣
Rij

· uij ,

resulting in the following contribution to the interacting Hamiltonian

HD⊥
int = −

∑
<<i,j>>

∑
µ

∂Dnnn
⊥ (rij)
∂rµij

∣∣∣∣∣
Rij

(uiµ − ujµ)(Si × Sj)z. (4.2)

Unlike the exchange contribution to the interacting Hamiltonian, this term establishes a coupling
between spins of different spatial components, thanks to the presence of the cross product. Upon
closer examination of the in-plane DMI, it can be expressed in a general form as follows

HD|| = −
∑
<i,j>

Dnn
xy(rij)(ẑ × r̂ij)·(Si × Sj). (4.3)

The in-plane DM strength Dnn
xy(rij) as well as the unit vector r̂ij connecting the lattice sites both rely

on the phonon coordinates. By performing a Taylor expansion, we obtain [28, 68]

Dnn
xy(rij) ≈ Dnn

xy(Rij) + ∇rijD
nn
xy(rij)

∣∣∣
Rij

· uij ,

r̂ij ≈
Rij + uij

|Rij + uij |
=

Rij + uij√
R2

ij + 2Rij · uij + u2
ij

≈
Rij + uij

|Rij |
(1−

Rij · uij

|Rij |2
).

By substituting these expressions into equation (4.3) and considering only the first-order terms in
displacement, the in-plane DMI contribution to the interacting Hamiltonian can be expressed as

HD||
int =−

∑
<i,j>

Dnn
xy(Rij)
|Rij |

[
ẑ ×

(
uij − R̂ij

(
R̂ij · uij −

|Rij |
Dnn

xy(Rij)
∇rijD

nn
xy(rij)

∣∣∣
Rij

· uij

))]
· [Si × Sj ]

=
∑
<i,j>

∑
µ,ν

(uiµ − ujµ)Tµν
ij (Si × Sj)ν ,

(4.4)

53



HYBRIDIZATION IN MAGNETIC SYSTEMS WITH OUT-OF-PLANE MAGNETIZATION DIRECTION

where the magnon-phonon coupling matrix Tµν
ij is given by

Tµν
ij = −

Dnn
xy(Rij)
|Rij |

∑
ξ=x,y,z

εzξν

δµξ − R̂ξ
ij

R̂µ
ij −

|Rij |
Dnn

xy(Rij)
∂Dnn

xy(rij)
∂rµij

∣∣∣∣∣
Rij

 ,
and εzξν is the Levi-Civita tensor. The matrix elements can be approximated further. We write the
in-plane DM strength derivatives in cylindrical coordinates as

∇rijD
nn
xy(rij)

∣∣∣
Rij

=
∂Dnn

xy(rij)
∂ρij

∣∣∣∣∣
Rij

ρ̂ij +
∂Dnn

xy(rij)
ρij∂θij

∣∣∣∣∣
Rij

θ̂ij +
∂Dnn

xy(rij)
∂zij

∣∣∣∣∣
Rij

ẑ,

with rxij = ρij cos(θij), ryij = ρij sin(θij) and zij = rzij . By neglecting the second term directed along
θ̂ij , which is assumed to be small for tiny displacements [28], and using ρ̂ij ≈ R̂ij to lowest order in
displacement, the approximation is(

∇rijD
nn
xy(rij)

∣∣∣
Rij

)
µ
≈
∂Dnn

xy(rij)
∂ρij

∣∣∣∣∣
Rij

R̂µ
ij +

∂Dnn
xy(rij)
∂zij

∣∣∣∣∣
Rij

ẑµ.

Using this expression, the coupling matrix elements are reduced to the form

Tµν
ij = −

Dnn
xy

Rij

∑
ξ=x,y,z

εzξν
(
δµξ − (1 + dR)R̂ξ

ijR̂
µ
ij − dzR̂

ξ
ij ẑµ

)
,

where dR = −(∂Dnn
xy(rij)/∂ρij)(Rij/D

nn
xy), dz = −(∂Dnn

xy(rij)/∂zij)(Rij/D
nn
xy), Dnn

xy = Dnn
xy(Rij) and

Rij = |Rij |. The derivatives are evaluated at equilibrium position. Writing out the summation, the
matrix elements that couple to in-plane (µ = x, y) and out-of-plane (µ = z) phonon modes are [18,
29]

(µ = x, y) : Tµν
ij =

Dnn
xy

Rij
[εzνx(δµx − (1 + dR)R̂x

ijR̂
µ
ij) + εzνy(δµy − (1 + dR)R̂y

ijR̂
µ
ij)],

(µ = z) : T zν
ij = −

Dnn
xydz

Rij
[εzνxR̂x

ij + εzνyR̂
y
ij ].

(4.5)

We notice that for µ = z, the matrix elements are odd in R̂ij . Consequently, we have T zν
ji = −T zν

ij .
This relationship implies that

(µ = z) : HD||
int = 1

2
∑
<i,j>

∑
ν

[
(uiz − ujz)T zν

ij (Si × Sj)ν + (ujz − uiz)T zν
ji (Sj × Si)ν

]
= 1

2
∑
<i,j>

∑
ν

(uiz − ujz)(T zν
ij + T zν

ji )(Si × Sj)ν = 0.

As a result, we can infer that the in-plane DMI solely induces a higher-order coupling between magnons
and out-of-plane phonon modes, without causing hybridization. This finding aligns with the outcomes
reported in previous investigations [18, 26, 28]. On the other hand, alternative studies that do not
rely on mirror symmetry breaking to achieve hybridization have found that magnons primarily couple
to out-of-plane phonon modes in the case of a perpendicular magnetization alignment [27, 29]. In
these studies, the magnetoelastic energy is derived from the continuum limit of the anisotropy energy
density and is attributed to the local variation in anisotropy caused by atomic motion within the
crystal [65]. Although there is a possibility of coupling to out-of-plane phonon modes, we will follow
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4.2. The Bogoliubov-de Gennes equation

the approach of Refs. [18, 26, 28] and ignore the coupling to out-of-plane phonon modes. Instead, we
will rely on the derived expression.

We examine two scenarios where the magnetization is either perpendicular or parallel to the lattice
plane, and analyze the coupling terms associated with both in-plane and out-of-plane DMI.

Perpendicular magnetization

With a perpendicular magnetization, the out-of-plane DMI part of the interacting Hamiltonian, equa-
tion (4.2), becomes

HD⊥
int =

∑
<<i,j>>

∑
µ

(∂rµDnnn
⊥ )(uiµ − ujµ)(SiySjx − SixSjy),

with ∂rµDnnn
⊥ = ∂Dnnn

⊥ (rij)
∂rµ

ij

∣∣∣∣
Rij

. Because both Sx and Sy are linearly dependent on magnon operators,

the lowest order terms involve cubic terms, which result in scattering. Therefore, in the case of
perpendicular spin alignment, the out-of-plane DMI does not contribute to hybridization. Turning
our attention to the in-plane DMI described in equation (4.4), we find that the interacting Hamiltonian
contains the following quadratic terms

HD||
int = S

∑
<i,j>

∑
µ

(uiµ − ujµ)[Tµx
ij (Siy − Sjy)− Tµy

ij (Six − Sjx)],

where we used Sz = S, assuming a ferromagnet. Thus, the in-plane DMI is a source for hybridization.

In-plane magnetization

Taking the magnetization axis to be along the x-axis, we set Sx = S as a specific example. In this
case, the contribution from the out-of-plane DMI to the interacting Hamiltonian is

HD⊥
int = S

∑
<<i,j>>

∑
µ

(∂rµDnnn
⊥ )(uiµ − ujµ)(Siy − Sjy).

Similarly, the interacting Hamiltonian is affected by the contribution from the in-plane DMI as follows

HD||
int = S

∑
<i,j>

(uiµ − ujµ)Tµy
ij (Siz − Sjz),

where we used that Tµz
ij = 0. Both the in-plane and out-of-plane DM vectors result in second-order

contributions that can potentially lead to hybridization when the magnetization lies in the plane.
However, it is generally observed that the out-of-plane DMI is insignificant compared to the in-plane
component. This is primarily because the out-of-plane DMI is proportional to the derivative of the
DMI strength, rendering its effect relatively negligible.

4.2. The Bogoliubov-de Gennes equation
The magnetic systems that were examined earlier utilized two methods to diagonalize the Hamiltonian:
an unitary transformation for ferromagnetic systems and a Bogoliubov transformation for antiferro-
magnetic systems. Nonetheless, applying a direct Bogoliubov transformation for larger systems proves
to be a laborious process. To address this issue, the Bogoliubov-de Gennes (BdG) equation is intro-
duced in this section as a more convenient method for carrying out the Bogoliubov transformation in
larger systems.
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Let us consider a general quadratic Hamiltonian on the form

H = 1
2
∑
k

X†
kH(k)Xk,

where the basis consists of bosonic operators and H(k) is a matrix. Assuming that we can diagonalize
the Hamiltonian with a matrix Vk, it can be written as

H = 1
2
∑
k

X†
kH(k)Xk = 1

2
∑
k

(X†
k(V

†
k )

−1)(V †
kH(k)Vk)(V −1

k Xk) =
1
2
∑
k

X ′†
k EkX

′
k,

where Ek = V †
kH(k)Vk is a diagonal matrix containing the eigenvalues and X ′

k = V −1
k Xk is the

rotated basis. To ensure that the rotated basis is bosonic, a non-unitary transformation is typically
necessary. By examining the commutation relation of the basis, we can determine the structure of
the transformation matrix Vk. Specifically, the commutation relation of the basis satisfy the following
condition [69]

[Xk,X
†
k] =Xk(X∗

k)T − (X∗
kX

T
k )T := η,

where X∗
k is the column vector of the Hermitian adjoint operators and η is a matrix composed of

c−numbers (commuting real or complex numbers). By using Xk = VkX
′
k, it can be deduced that [69]

η = [VkX ′,X ′†V †
k ] = VkX

′
k(X ′∗

k )T (V ∗
k )T − (V ∗

kX
′∗
kX

′T
k V

T
k )T

= VkX
′
k(X ′∗

k )TV
†
k − Vk(X ′∗

kX
′T
k )TV †

k

= Vk[X ′
k,X

′†
k ]V

†
k = Vkη

′V †
k ,

where we used that the matrix Vk is also composed of c−numbers. In order for the rotated basis to
fulfill the same bosonic commutation relation, it is necessary for η′ to be equal to η, leading to the
following relationships

η = VkηV
†
k and V −1

k = ηV †
k η

−1.

The eigenvalues of the normal modes are then related to the Hamiltonian matrix via

H(k)Vk = (V †
k )

−1Ek = η−1VkηEk =⇒ ηH(k)Vk = VkηEk.

In the case where η is a diagonal matrix, the equation can expressed in the form of an eigenvalue
problem [69]

ηH(k)vk,n = Ēk,nvk,n, (4.6)

where vk,n are the columns in Vk and Ēk,n = ηnnEk,n. Solving this eigenvalue problem is a general
procedure to find the energy spectrum while ensuring bosonic normal modes.

A typical BdG system consists of basis vectors on the formXk = [ξTk , ξ
†
−k]

T with ξTk = [ξk,1, . . . , ξk,Nd
],

ξ†−k = [ξ†−k,1, . . . , ξ
†
−k,Nd

] and each ξk,n is a bosonic operator. The dimensions of H(k) is then 2Nd ×
2Nd. Similarly, we denote the rotated basis by X ′

k = [γT
k ,γ

†
−k]

T with γT
k = [γk,1, . . . , γk,Nd

]. In such
a system, the diagonal matrix containing the eigenvalues is on the form
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4.2. The Bogoliubov-de Gennes equation

Ek =
[
diag(Ek,1, . . . , Ek,Nd

) 0
0 diag(E−k,1, . . . , E−k,Nd

)

]
,

and the diagonal Hamiltonian can be written [70]

H = 1
2
∑
k

Nd∑
n

(
Ek,nγ†k,nγk,n + E−k,nγ−k,nγ

†
−k,n

)
=
∑
k

Nd∑
n

Ek,n(γ†k,nγk,n + 1
2).

The energy spectrum is comprised of the eigenvalues Ek,n for n = 1, . . . , Nd. With this particular
basis, they satisfy the commutation relation

η = σ3 := σz ⊗ INd×Nd
=
[
I 0
0 −I

]
,

where each entry is a Nd × Nd matrix and σz is the third Pauli matrix. A matrix on this form is
referred as a para-unit matrix and the matrix Vk leads to a para-unitary transformation. With the
known form of η and Ek, the eigenvalues of σ3H(k) are

σ3Ek =
[
diag(Ek,1, . . . , Ek,Nd

) 0
0 −diag(E−k,1, . . . , E−k,Nd

)

]
.

The system produces two copies of the same eigenstates. In analogy to fermionic systems, we can
denote the two sets as particle and hole states where the states n = 1, . . . , Nd represents particles and
the states n = Nd + 1, . . . , 2Nd are holes. Retaining only the positive energies suffices as the negative
ones are unnecessary. It is worth noting that the matrix σ3H(k) is not necessarily Hermitian and its
eigenvalues may not be real, but it has been proven that this is indeed the situation [69]. Furthermore,
in order for H(k) to be diagonalized with a para-unitary transformation, it must be a positive definite
matrix, resulting in only positive eigenvalues [71].

The particle-hole symmetry of the BdG Hamiltonian leads to [70]

H(k) = σ1H
T (−k)σ1, σ1 = σx ⊗ INd×Nd

, (4.7)

where σx is the first Pauli matrix. By using this relation, the eigenvalue problem in equation (4.6)
can be transformed to

σ3H(k)vk,n = Ēk,nvk,n =⇒ σ3σ1H
T (−k)σ1vk,n = Ēk,nσ1σ1vk,n

=⇒ σ3H(k)σ1v∗−k,n = σ3σ1σ3Ē−k,nσ1σ1v
∗
−k,n = −Ē−k,nσ1v

∗
−k,n.

Thus, if the Hamiltonian has an eigenvector vk,n with eigenvalue Ēk,n, then σ1v∗−k,n is also an eigen-
vector of the same Hamiltonian matrix with eigenvalue −Ē−k,n. By defining vn,+(k) = vk,n and
vn,−(k) = σ1v

∗
−k,n for n = 1, . . . , Nd, the para-unitary matrix can be written on the form [72]

Vk = [v1,+(k), . . . ,vNd,+(k),v1,−(k), . . . ,vNd,−(k)],

and the eigenvectors satisfy the para-orthogonality condition v†n,ρ(k)σ3vn′,ρ′(k) = ρδnn′δρρ′ . We should
note that while solving the eigenvalue problem, there is no guarantee that the eigenvectors satisfy the
para-orthogonality condition [19]. To address this, Colpa’s method can be used [71]. This involves per-
forming a Cholesky decomposition of the Hamiltonian matrix, H = K†K, which allows the definition
of an unitary matrix U that diagonalizes Kσ3K† [19]
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U †[Kσ3K†]U = Ē .

The eigenvectors can then be defined as V = K−1U
√
E , where E = σ3Ē is a diagonal matrix containing

only positive energies.

4.3. Ferromagnetic square lattice
We consider a ferromagnetic square lattice with out-of-plane magnetization and imagine the mirror
symmetry with respect to the lattice plane to be broken such that an in-plane DMI is present. As-
suming that Dnn

xy is small enough to make the ground state a collinear ferromagnet, the condition
Dnn

xy <
√
JKz/2 represents the upper limit in the absence of a magnetic field [18]. It can be shown

that the in-plane DMI yields no contribution to the non-interacting magnon Hamiltonian as long as the
spin alignment is perpendicular to the lattice plane [18, 28, 54]. Hence, we can safely add the in-plane
DMI to the interacting Hamiltonian without altering the magnon dispersion. As demonstrated, the
exchange term that results in coupling terms quadratic in bosonic operators, and therefore hybridiza-
tion, is solely from the in-plane DMI in this perpendicular spin alignment. We consider only coupling
to in-plane phonon modes as they provide the lowest order contribution. In particular, we use the
obtained Taylor-expanded expression, equation (4.4), with the coupling matrix defined in equation
(4.5). The calculation assumes that the values of Dnn

xy and dR are uniform for all nearest neighbours.

The calculations are done in both the first and second quantized formalism. In the first quantized
approach, the Hamiltonian is formulated using ion and spin displacements, and the system’s energies
are determined by applying the Heisenberg equation of motion. On the other hand, the second
quantized method involves transforming the ion and spin displacements into magnons and phonons,
and expressing the Hamiltonian in terms of creation and annihilation operators. The diagonalization
of the Hamiltonian is achieved by solving the Bogoliubov-de Gennes equation.

4.3.1. First quantized approach
Phonon Hamiltonian

Before investigating the magnon-phonon interaction, we transform the phonon Hamiltonian, given
by equation (2.1), into a more appropriate form. We introduce the dimensionless variables ũiαµ =√
MαΩ/ℏuiαµ and p̃iαµ =

√
1/MαΩℏpiαµ, where Ω is an as-yet unspecified parameter in units of

frequency. We also consider their Fourier components

ũqαµ = 1√
Nuc

∑
i

ũiαµe−iq·Riα , p̃qαµ = 1√
Nuc

∑
i

p̃iαµe−iq·Riα . (4.8)

The dimensionless displacement and momentum satisfy the commutation relation [ũl, p̃l′ ] = iδl,l′ . In
terms of the dimensionless Fourier components, the phonon Hamiltonian is expressed as

Hph = 1
2ℏΩ

∑
q,α

p̃Tq,α · p̃−q,α +
∑
β

ũT
−q,α

Dαβ(q)
Ω2 ũq,β

 ,
where Dαβ(q) are d × d dynamical matrices between different lattice sites. Moreover, we let Ω =√
Dαβ

µν (δ) be a scaling parameter, for a particular configuration of indices that will be specified later on.
This allows us to define the dimensionless dynamical matrix D̃(q) = D(q)/Ω2, with the corresponding
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4.3. Ferromagnetic square lattice

dimensionless eigenvalues ω̃2
q,λ. The physical frequency is restored by multiplying with Ω, ωq,λ = Ωω̃q,λ.

The phonon Hamiltonian can be written compactly as

Hph = 1
2
∑
q

φ̃
T
ph(−q)Hph(q)φ̃ph(q), (4.9)

in the basis φ̃ph(q) = [ũT
q,α1 , ũ

T
q,α2 , . . . , p̃

T
−q,α1 , p̃

T
−q,α2 , . . . ]

T . The intention of this notation is for each
component to be interpreted as a row vector, with its spatial components as individual elements.
Moreover, we have

Hph(q) = ℏΩ
[
D̃(q) 0
0 I

]
,

where each entry is a dr×dr matrix, r being the number of atoms in the unit cell. We want to express
the phonon Hamiltonian in terms of its eigenmodes, where the Hamiltonian becomes diagonal. To
achieve this, we introduce a rotated basis that diagonalizes the dynamical matrix. Denoting the first
half of φ̃ph(q) as ũq, the rotated basis is given by ũ′

q = U−1
ph (q)ũq, where Uph(q) = [ê1(q), . . . , êdr(q)] is

an unitary matrix and êλ(q) represents the eigenvector to mode λ. The eigenvalues of the dimensionless
dynamical are proportional to the square of the dimensionless frequency. To adjust for this, we
factor out

√
ω̃q,λ in the basis. Consequently, the basis that diagonalizes the dynamical matrix with

eigenvalues proportional to the frequency is given by ũ′
q = diag(

√
ω̃q,λ)U †

ph(q)ũq, with diag(
√
ω̃q,λ) =

diag(
√
ω̃q,1, . . . ,

√
ω̃q,dr) for shorthand notation. To maintain the commutation relation between the

displacement and momentum, we define p̃′q = diag(1/
√
ω̃q,λ)UT

ph(q)p̃q as the rotated momentum part
of the basis. The commutation relation is calculated as

[ũ′q,λm
, p̃′k,λn

] =
√
ω̃q,λm

ω̃k,λn

[êλm∗(q) · ũq, ê
λn(k) · p̃k]

=
√
ω̃q,λm

ω̃k,λn

∑
α,β
µ,ν

êλm∗
αµ (q)êλn

βν(k)[ũqαµ, p̃kβν ]

= iδq,k

√
ω̃q,λm

ω̃q,λn

∑
α,µ

êλm∗
αµ (q)êλn

αµ(q) = iδq,kδλm,λn ,

where the orthonormality condition of the eigenvectors, equation (2.5), was used in the last equality.
Since matrix satisfies Uph(−q) = U∗

ph(q), the momentum part of the Hamiltonian transforms to

p̃Tq · p̃−q = (U∗
ph(q)diag(

√
ω̃q,λ)p̃′q)T (Uph(q)diag(

√
ω̃q,λ)p̃′−q) = diag(ω̃q,λ)p̃′Tq · p̃′−q.

By the same approach, the displacement part transforms to

ũT
−qD̃(q)ũq = (U∗

ph(q)diag(1/
√
ω̃q,λ)ũ′

−q)T D̃(q)(Uph(q)diag(1/
√
ω̃q,λ)ũ′

q)

= diag(ω̃q,λ)ũ′T
−q · ũ′

q,

where we used that U †
ph(q)D̃(q)Uph(q) = diag(ω̃2

q,λ). The diagonal phonon Hamiltonian is then

Hph = 1
2
∑
q

φ̃
′T
ph(−q)H ′

ph(q)φ̃
′
ph(q) =

1
2
∑
q

φ̃
′†
ph(q)H ′

ph(q)φ̃
′
ph(q),
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φ̃
′
ph(q) is the rotated basis and

H ′
ph(q) = ℏΩ

[
diag(ω̃q,λ) 0

0 diag(ω̃q,λ)

]
.

This represents a general form of the phonon Hamiltonian. For a square lattice, the specific definitions
of the eigenvectors and eigenvalues for various modes can be found in section 2.3.1, with Nuc = N .

Interacting Hamiltonian

Expressing the spins as Si = Sẑ+δSi, where δSi lies in the plane, and considering only the quadratic
terms, we can write the Taylor-expanded in-plane DMI as

Hint = S
∑
<i,j>

∑
µ

(uiµ − ujµ)
[
Tµx
ij (δSiy − δSjy)− Tµy

ij (δSix − δSjx)
]
,

for µ ∈ {x, y}. To facilitate comparison, we examine the ’normalized’ spin displacement δS̃i =
δSi/

√
S. This allows us to directly correspond the result with those obtained in the second quantized

formalism. Note the abuse of notation as the spin is already dimensionless. Furthermore, to prevent
double counting, we utilize

∑
<i,j> → (1/2)

∑
i,δ, where i covers the entire lattice and δ represents the

nearest neighbours. Expressing the interacting Hamiltonian in terms of the Fourier components

δS̃qµ = 1√
SN

∑
i

δSiµe−iq·Ri , δSiµ =

√
S

N

∑
q

δS̃qµeiq·Ri ,

and ũqµ, defined in equation (4.8), it may be written as

Hint =
S

2N

√
ℏS
MΩ

∑
i,δ

∑
µ

∑
q,q′

ũq′µeiq
′·Ri(1− eiq′·δ)

[
Tµx
i,i+δδS̃qye

iq·Ri(1− eiq·δ)− Tµy
i,i+δδS̃qxe

iq·Ri(1− eiq·δ)
]

=S

√
ℏS
MΩ

∑
q

∑
δ,µ

ũ−qµ(1− cos(q · δ))
[
Tµx
δ δS̃qy − Tµy

δ δS̃qx
]

=
∑
q

ũ†
qTqδS̃q,

where ũq = [ũqx, ũqy]T , δS̃q = (1/
√
S)[δSqx, δSqy]T and we used that Tµν

i,i+δ = Tµν
δ as the matrix

elements solely rely on the vectors connecting the nearest neighbours. Furthermore, Tq is a 2 × 2
matrix defined accordingly

Tq = S

√
ℏS
MΩ

∑
δ

[
−T xy

δ T xx
δ

−T yy
δ T yx

δ

]
(1− cos(q · δ)).

Upon computation, we find that the matrix is diagonal with the following elements

T xx
q = 2ζS

√
SDnn

xy (−dR(1− cos(qxa)) + 1− cos(qya)) ,

T yy
q = 2ζS

√
SDnn

xy (1− cos(qxa)− dR(1− cos(qya))) ,
(4.10)
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4.3. Ferromagnetic square lattice

where ζ = (1/a)
√
ℏ/MΩ is a dimensionless quantity proportional to the interaction strength. By ex-

pressing the displacement in terms of the normal modes ũ†
q = ũ′†

q diag(1/
√
ω̃q,λ)U †

ph(q), the interacting
Hamiltonian becomes

Hint =
∑
q

ũ′†
q T

′
qδS̃q,

where the new rotated coupling matrix is T ′
q = diag(1/

√
ω̃q,λ)U †

ph(q)Tq. For shorthand notation, we
denote the phonon modes by λ = {1, 2} = {TA,LA}. The elements in the rotated coupling matrix
are then

T ′
q =


(A−C−D)Txx

q√
ω̃q,1

√
(A−C−D)2+4B2

2BT yy
q√

ω̃q,1
√

(A−C−D)2+4B2

(A−C+D)Txx
q√

ω̃q,2
√

(A−C+D)2+4B2

2BT yy
q√

ω̃q,2
√

(A−C+D)2+4B2

 ,
where the functions A,B, C and D are defined in section 2.3.1. By utilizing the fact that

∑
q =

∑
−q,

the interacting Hamiltonian may be split up in the following way

Hint =
1
2

∑
q

ũ′†
q T

′
qδS̃q +

∑
−q

ũ′†
−qT

′
−qδS̃−q

 = 1
2
∑
q

(
ũ′†
q T

′
qδS̃q + ũ′†

−qT
′
−qδS̃−q

)
= 1

2
∑
q

(
ũ′†
q T

′
qδS̃q + ũ′T

q T
′
−qδS̃

∗
q

)
= 1

2
∑
q

(
ũ′†
q T

′
qδS̃q + δS̃

†
qT

′†
q ũ

′
q

)
,

where we in the last equality took the transpose of the last term and also used that T ′T
−q = T ′†

q .

Magnon Hamiltonian

The magnon Hamiltonian, equation (3.6), can be expressed in terms of δS̃q by noticing that δS̃qx =
(1/

√
2)(aq + a†−q) and δS̃qy = −(i/

√
2)(aq − a†−q). The Hamiltonian is transformed to

Hm = 1
2
∑
q

δS̃
†
qHm(q)δS̃q, Hm(q) = EqI2×2,

where Eq is the magnon dispersion.

Finding the energy bands

The total Hamiltonian, including the interacting part, can be written on the form

H = 1
2
∑
q

(
δS̃

†
qHm(q)δS̃q + φ̃

′†
ph(q)H ′

ph(q)φ̃
′
ph(q) + ũ′†

q T
′
qδS̃q + δS̃

†
qT

′†
q ũ

′
q

)
= 1

2
∑
q

φ†
qHme(q)φq,

in the basis φq = [δS̃q,x, δS̃q,y, ũ′q,1, ũ′q,2, p̃′−q,1, p̃
′
−q,2]T . The magnetoelastic matrix Hme(q) is defined

as

Hme(q) =
[
Hm(q) T ′†

q

T ′
q H ′

ph(q)

]
.
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From the Heisenberg equation of motion, iℏ∂tφq = [φq,H], we obtain [18, 26]

iℏ∂tφq = ηHme(q)φq,

with η = [φq,φ
†
q] =

−σy 02×2 02×2
02×2 02×2 iI2×2
02×2 −iI2×2 02×2

 ,
and σy is the second Pauli matrix. Thus, the energy bands are obtained by diagonalizing the effective
Hamiltonian matrix ηHme(q). The positive eigenvalues yield the energy spectrum while the negative
ones are redundant. Finding the energies in this manner can be thought of as solving the generalized
Bogoliubov-de Gennes equation [18].

4.3.2. Second quantized approach
From equations (2.9) and (3.6), the non-interacting part of the Hamiltonian in the second quantized
formalism is

H0 = Hph +Hm,

Hph =
∑
q,λ

εq,λc
†
q,λcq,λ,

Hm =
∑
k

Eka
†
kak.

Here, {cq,λ, c†q,λ} is the phonon annihilation and creation operator and εq,λ = ℏωq,λ is the phonon energy
in mode λ. Similarly, {ak, a†k} denotes the magnon annihilation and creation operator. Employing the
Holstein-Primakoff transformation, equation (3.2), and expressing the ionic displacement in terms of
bosonic operators, equation (2.10), the quadratic terms in the interacting Hamiltonian described in
equation (4.4) become

Hint =− S

2

√
S

2
∑
i,δ

∑
µ

(uiµ − ui+δ,µ)
[
(Tµy

δ + iTµx
δ )(ai − ai+δ) + (Tµy

δ − iTµx
δ )(a†i − a†i+δ)

]

=− S

4

√
ℏS
NM

∑
q,λ

∑
i,δ

∑
µ

eλµ(q)√
ωq,λ

(cq,λ + c†−q,λ)e
iq·Ri

(
1− eiq·δ

)
×
[
(Tµy

δ + iTµx
δ )(ai − ai+δ) + (Tµy

δ − iTµx
δ )(a†i − a†i+δ)

]
.

Substituting for the magnon operators in reciprocal space, equation (3.4), the Hamiltonian transforms
to

Hint =− S

4N

√
ℏS
M

∑
q,q′,λ

∑
i,δ

∑
µ

eλµ(q)√
ωq,λ

(cq,λ + c†−q,λ)e
i(q−q′)·Ri

(
1− eiq·δ

)
× (1− e−iq′·δ)

[
(Tµy

δ + iTµx
δ )a−q′ + (Tµy

δ − iTµx
δ )a†q′

]
=− S

2

√
ℏS
M

∑
q,λ

∑
δ,µ

eλµ(q)√
ωq,λ

(cq,λ + c†−q,λ) (1− cos(q · δ))
[
(Tµy

δ + iTµx
δ )a−q + (Tµy

δ − iTµx
δ )a†q

]
=
∑
q,λ

[
Gq,λ(cq,λ + c†−q,λ)a−q +G∗

q,λ(c−q,λ + c†q,λ)a
†
−q

]
.
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Here we defined the coupling coefficients

Gq,λ = −S2

√
ℏS

Mωq,λ

∑
δ,µ

eλµ(q)(1− cos(q · δ))(Tµy
δ + iTµx

δ )

= ζS
√
SDnn

xy

eλ(q) · gq√
ω̃q,λ

,

and the elements in gq are

gq =
[

−dR(1− cos(qxa)) + 1− cos(qya)
−i(1− cos(qxa)) + idR(1− cos(qya))

]
. (4.11)

The total Hamiltonian can be written in matrix notation on the form

H = 1
2
∑
q

Ψ†
qHme(q)Ψq,

with Ψq = [ψT
q ,ψ

†
−q]T and ψT

q = [aq, cq,1, cq,2]. Hme(q) is a 6× 6 Hermitian matrix with the elements

Hme(q) =



Eq G∗
−q,1 G∗

−q,2 0 G∗
−q,1 G∗

−q,2
G−q,1 εq,1 0 G∗

q,1 0 0
G−q,2 0 εq,2 G∗

q,2 0 0
0 Gq,1 Gq,2 Eq Gq,1 Gq,2

G−q,1 0 0 G∗
q,1 εq,1 0

G−q,2 0 0 G∗
q,2 0 εq,2


.

The energy bands are obtained by solving the BdG equation, namely computing the eigenvalues of
σ3Hme(q), where σ3 is the para-unit matrix σ3 = diag(1, 1, 1,−1,−1,−1). We keep only the positive
eigenvalues.

4.3.3. Result
In an attempt to reproduce the results obtained in Ref. [18] where they considered coupling to in-plane
phonon modes, we set the nonzero force coefficients in the phonon dispersion to ρ1 = ρ2 = γ1/8 where
γ1 = −|γ1| and use the parameters J = 2meV, ℏΩ = 10meV (with Ω =

√
|γ1|/M), ∆ = 1meV and

Dnn
xy = 0.4meV. Since we are unable to determine the lattice constant used in Ref. [18], we set ζ = 0.1

which is a commonly used value in materials [26]. Other parameters include S = 3/2 and dR = 0.
These values, except for the missing lattice constant, are typical values for atoms in 3d transition
metals [18]. We choose not to display the out-of-plane phonon modes since they are unaffected by the
interacting Hamiltonian.

We find the energy spectrum through numerical diagonalization and present the results in Figures 4.2a
and 4.2b, which show the coupled magnon-phonon dispersion along the symmetry lines of the Brillouin
zone, calculated with the first and second quantized approaches, respectively. Gap openings occur at
avoided crossings between phonon and magnon branches where the hybridized magnon-polaron state
is significant. This is demonstrated clearly in the inset figures. The wavefunction in these hybridized
states is partially magnonic and partially phononic, and we illustrate this by assigning colors (red,
blue, or yellow) to each mode based on the absolute value of the magnon part of the wavefunction,
using a color scale from 0 to 1 where 1 means the wavefunction is completely magnonic, and thus red.
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(a) First quantized formalism.
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(b) Second quantized formalism.

Figure 4.2.: The figures show the magnetoelastic energy spectrum in a ferromagnetic square lat-
tice found by calculating in the first and second quantized formalism. We only display the in-
plane phonon branches as coupling to out-of-plane phonon modes are of higher order. The labels
(LA,TA,E) correspond to the non-interacting system. The parameters are J = 2, ℏΩ = 10, ∆ = 1
and Dnn

xy = 0.4, in units of meV. Moreover, ζ = 0.1, S = 3/2 and dR = 0.

Comparing the results obtained in our study to those in Ref. [18] is challenging to judge by just
looking at the results. While the non-interacting magnon and phonon dispersions align, accurately
determining the band gap size presents difficulties. It is likely that discrepancies arise from variations
in the parameter ζ, which is proportional to the coupling strength. Additionally, we note a

√
2
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4.4. Ferromagnetic honeycomb lattice

discrepancy in the formulation of the coupling matrix elements, outlined in equation (4.10).

While lacking analytical proof, numerical comparisons between the first and second quantized ap-
proaches demonstrate a complete overlap in the obtained energy spectra. The results align precisely,
accounting for numerical errors. This consistency holds true across various tested parameter configura-
tions. The motivation behind selecting the ’normalized’ spin as the basis in the first quantized method
is its compatibility with the magnon operators. This choice ensures equal interaction strengths and
facilitates direct comparisons. Similar considerations apply to the normal (rotated) ion displacement,
which can be expressed as follows

ũ′q,λ = 1√
2
(cq,λ + c†−q,λ).

An important observation is that the second quantized method offers greater ease and simplicity in its
application. This is primarily due to the fact that the creation and annihilation operators correspond
to excitations of the normal modes within the system, and they follow straightforward commutation
relations.

4.4. Ferromagnetic honeycomb lattice
In this calculation, we study the magnon-phonon energy bands in a ferromagnetic honeycomb lattice.
The lattice is made up of identical atoms and the magnetization is perpendicular to the lattice plane.
We examine the bilinear terms in the Hamiltonian driven by the in-plane DMI, as defined in equation
(4.4). The interacting Hamiltonian only accounts for nearest neighbour interactions between spin
degrees of freedom and in-plane phonons, with the assumption of uniform values for Dnn

xy and dR across
all nearest neighbours. The calculation is carried out using both the first and second quantization
methods.

4.4.1. First quantized approach
The phonon Hamiltonian is treated in a similar way as in section 4.3.1, where the in-plane eigenvalues
and eigenvectors are defined in equations (2.21) and (2.23) respectively. Subsequently, the phonon
eigenvectors are transformed to the Cartesian basis using equation (2.24).

Magnon Hamiltonian

The magnon Hamiltonian listed in equation (3.11) is on the form

Hm =
∑
q

ψ†
m(q)Hm(q)ψm(q),

in the basis ψm(q) = [aq, bq]T . We seek a Hamiltonian in the spin basis. By adding a hole space to
the particle space, as done in [26], the Hamiltonian becomes

Hm =1
2
∑
q

(
ψ†

m(q)Hm(q)ψm(q) +ψT
m(−q)HT

m(−q)ψ∗
m(−q)

)

=1
2
∑
q

[a†q, b†q, a−q, b−q]
[
Hm(q) 0

0 HT
m(−q)

]
[aq, bq, a†−q, b

†
−q]T

=1
2
∑
q

δS†
qH

′
m(q)δSq,
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where δSq =
√
SP †[aq, bq, a†−q, b

†
−q]T = [δSqAx, δSqAy, δSqBx, δSqBy]T and we defined

H ′
m(q) =

1
S
P †
[
Hm(q) 0

0 HT
m(−q)

]
P with P = 1√

2


1 i 0 0
0 0 1 i
1 −i 0 0
0 0 1 −i

 .

Interacting Hamiltonian

By decomposing the spin and the spin displacement as Si = Sẑ + δSi and splitting the summation
into two separate summations over each sublattice, the interacting Hamiltonian can be expressed as

Hint =
S

2
∑
i,δA
i∈A

∑
µ

(uiAµ − ui+δA,Bµ)
[
Tµx
δA

(δSiAy − δSi+δA,By)− Tµy
δA

(δSiAx − δSi+δA,Bx)
]

+S2
∑
i,δB
i∈B

∑
µ

(uiBµ − ui+δB ,Aµ)
[
Tµx
δB

(δSiBy − δSi+δB ,Ay)− Tµy
δB

(δSiBx − δSi+δB ,Ax)
]
.

Due to the equality Tµν
δA

= Tµν
δB

, the contribution from each sublattice is identical. By substituting the
Fourier-transformed displacements into the equation, with a normalization factor of 1/

√
Nuc =

√
2/N ,

we obtain

Hint =S

√
ℏ
MΩ

∑
q

∑
δA,µ

(ũ−qAµ − ũ−qBµe−iq·δA)
[
Tµx
δA

(δSqAy − δSqByeiq·δA)

−Tµy
δA

(δSqAx − δSqBxeiq·δA)
]

=
∑
q

ũqHc(q)δSq,

where ũq = [ũqAx, ũqAy, ũqBx, ũqBy]T . Moreover, Hc(q) is a matrix on the form

Hc(q) =
[
Tq=0 −Tq
−T−q Tq=0

]
,

with

Tq = S

√
ℏ
MΩ

∑
δA

[
−T xy

δA
T xx
δA

−T yy
δA

T yx
δA

]
eiq·δA .

The matrix elements are determined to be

Tq =
1
2SD

nn
xyζe

− i
2
√

3
qya

(1− 3dR) cos(12qxa) + 2ei
√
3

2 qya i
√
3(1 + dR) sin(12qxa)

i
√
3(1 + dR) sin(12qxa) (3− dR) cos(12qxa)− 2dRei

√
3

2 qya

 ,
where we defined the dimensionless quantity ζ = (1/a0)

√
ℏ/MΩ with a0 = a/

√
3 as the interatomic

distance. We may split the summation into two terms in the following way
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4.4. Ferromagnetic honeycomb lattice

Hint =
1
2
∑
q

(
ũ†
qHc(q)δSq + δS†

qH
†
c (q)ũq

)
,

since the coupling matrix satisfies HT
c (−q) = H†

c (q). By introducing the rotated ion displacement as
the basis, the expression undergoes a transformation, resulting in

Hint =
1
2
∑
q

(
ũ′†
q H

′
c(q)δSq + δS†

qH
′†
c (q)ũ′

q

)
,

where the new coupling matrix is

H ′
c(q) = diag(1/

√
ω̃q,λ)U †

ph(q)Hc(q), Uph(q) = [êTA(q), êLA(q), êTO(q), êLO(q)],

and each êλ(q) is written in terms of the ũq basis.

Finding the energy bands

Summing up all the terms, the total Hamiltonian is

H = 1
2
∑
q

φ†
qHme(q)φq,

Hme(q) =

H ′
m(q) H ′†

c (q) 04×4
H ′

c(q) ℏΩdiag(ω̃q,λ) 04×4
04×4 04×4 ℏΩdiag(ω̃q,λ)

 , φq = [δST
q , ũ

′T
q , p̃

′T
−q]T .

By using the Heisenberg equation of motion, the energy spectrum is found by diagonalizing ηHme(q)
where η is a matrix on the form

η = [φq,φ
†
q] =

 ξ 04×4 04×4
04×4 04×4 iI4×4
04×4 −iI4×4 04×4

 , ξ =
[
−Sσy 0
0 −Sσy

]
.

4.4.2. Second quantized approach
The non-interacting Hamiltonian is

H0 = Hph +Hm,

Hph =
∑
q,λ

εq,λc
†
q,λcq,λ,

Hm =
∑
k

(
E+

k α
†
kαk + E−

k β
†
kβk

)
,

where the magnon eigenmodes {αk, βk} and eigenfrequencies E±
k are defined in section 3.3.2. Re-

garding the interacting Hamiltonian, the contribution from each sublattice is similar, allowing us to
perform the summation exclusively over sublattice A

Hint = −S

√
S

2
∑
i,δA
i∈A

∑
µ

(uiAµ − ui+δA,Bµ)
[
(Tµy

δA
+ Tµx

δA
)(ai − bi+δA) + (Tµy

δA
− iTµx

δA
)(a†i − b†i+δA

)
]
.
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By expressing the ionic and spin displacements in terms of bosonic operators in reciprocal space, the
bilinear terms in the interacting Hamiltonian are

Hint = −S2

√
ℏS
M

∑
q,λ

∑
δA,µ

(cq,λ + c†−q,λ)√
ωq,λ

(eλAµ(q)− eλBµ(q)eiq·δA)

×
[
(Tµy

δA
+ iTµx

δA
)(a−q − b−qe−iq·δA) + (Tµy

δA
− iTµx

δA
)(a†q − b†qe−iq·δA)

]
.

The expression can be written more concisely as

Hint =
∑
q,λ

[
(cq,λ + c†−q,λ)(G

A
q,λa−q +GB

q,λb−q) + (c†q,λ + c−q,λ)(GA∗
q,λa

†
−q +GB∗

q,λb
†
−q)
]
,

where

GA
q,λ =− S

2

√
ℏS

Mωq,λ

∑
δA,µ

(eλAµ(q)− eλBµ(q)eiq·δA)(T
µy
δA

+ iTµx
δA

),

GB
q,λ =− S

2

√
ℏS

Mωq,λ

∑
δA,µ

(eλBµ(q)− eλAµ(q)e−iq·δA)(Tµy
δA

+ iTµx
δA

).

Upon computation, the coupling factors GA(B)
q,λ can be written as

GA
q,λ = 1

2SD
nn
xyζ

√
S

ω̃q,λ

(
eλA(q) · gq=0 − eλB(q) · gq

)
,

GB
q,λ = 1

2SD
nn
xyζ

√
S

ω̃q,λ

(
eλB(q) · gq=0 − eλA(q) · g−q

)
,

(4.12)

with the new vector defined as

gq =
1
2e

i√
3
qya

 2 + e−i
√
3

2 qya
(
(1− 3dR) cos(12qxa) +

√
3(1 + dR) sin(12qxa)

)
2idR − ie−i

√
3

2 qya((3− dR) cos(12qxa)−
√
3(1 + dR) sin(12qxa))

 .
By utilizing the magnon eigenmodes αk and βk, the interacting Hamiltonian can be transformed to
the form

Hint =
∑
q,λ

[
(cq,λ + c†−q,λ)(G

α
q,λα−q +Gβ

q,λβ−q) + (c†q,λ + c−q,λ)(Gα∗
q,λα

†
−q +Gβ∗

q,λβ
†
−q)
]
,

with Gα
q,λ = [GA

q,λ, G
B
q,λ]T · ê+(−q) and Gβ

q,λ = [GA
q,λ, G

B
q,λ]T · ê−(−q). Note that êλ(q) are the phonon

eigenvectors while ê±(q) are the magnon eigenvectors. The four phonon branches are denoted by
λ = {1, 2, 3, 4}. In the basis Ψq = [ψT

q ,ψ
†
−q]T , ψT

q = [αq, βq, cq,1, cq,2, cq,3, cq,4], the total Hamiltonian
can be written like

H = 1
2
∑
q

Ψ†
qHme(q)Ψq. (4.13)

The energy bands are obtained by diagonalizing σ3Hme(q) where Hme(q) is outlined in Appendix B.
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4.4. Ferromagnetic honeycomb lattice

4.4.3. Result
In Ref. [26], a calculation was previously done that focused on coupling with in-plane phonon modes.
In our attempt to replicate the result, we select the following values for the nonzero force coefficients:
γ2 = −|γ2| = −γ1, ρ1 = ρ2 = 0.08γ2 , which result in the same in-plane phonon dispersion. Moreover,
we set J = 2meV, ℏΩ = 5meV (with Ω =

√
2|γ2|/M), ∆ = 0 eV, Dnnn

z = 0.1meV and Dnn
xy = 0.5meV.
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(a) First quantized formalism.
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(b) Second quantized formalism.

Figure 4.3.: Dispersion curves for the coupled magnon-phonon systems in a ferromagnetic honeycomb
lattice, calculated in the first and second quantized formalism. The labelling of the bands correspond
to the non-interacting system. The parameters are J = 2, ℏΩ = 5, ∆ = 0,Dnnn

z = 0.1 andDnn
xy = 0.5,

in units of meV. Moreover, S = 1, ζ = 0.1 and dR = 0. The values of the in-plane force coefficients
are given in the main text.
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The dimensionless parameters are S = 1, ζ = 0.1 and dR = 0. It should be noted that these parameter
values do not satisfy the condition Dnn

xy <
√
JKz/2, since we have assumed a zero magnon energy gap.

However, we have chosen these values for the purpose of comparison.

Figure 4.3a and 4.3b display the energy spectrum of the hybrid magnon-phonon in a ferromagnetic
honeycomb lattice along the symmetry lines in the Brillouin zone, calculated in the first and sec-
ond quantized formalism, respectively. Like the ferromagnetic square lattice, magnons interact with
phonons where their frequencies match and form anticrossing regions with the emergence of magnon-
polaron states. The numerical dispersions obtained from the first and second quantization methods
are in agreement, indicating complete overlap. This is achieved without introducing the normalized
spin as the basis in the first quantized method since S = 1, making the basis and interaction strength
equal for both methods.

When compared to the results from Ref. [26], the magnetoelastic modes appear to be similar but it
is challenging to confirm if the band gaps are of exact size. Nevertheless, it can be concluded that the
band gaps are of a comparable magnitude.

4.5. Antiferromagnetic lattices
We investigate the magnetoelastic energy spectrum in the antiferromagnetic (checkerboard-type)
square and honeycomb lattice with an out-of-plane magnetization. The source of the coupling is
the in-plane DMI, which is based on the same assumptions as in the calculation for the ferromagnetic
square lattice (referred to in section 4.3). We utilize the second quantized formalism, which has been
demonstrated to be effective and straightforward in previous sections, and consider only coupling to
in-plane phonon modes as they constitute the lowest order contribution.

4.5.1. Square lattice
The non-interacting Hamiltonian is given by

H0 = Hph +Hm,

Hph =
∑
q,λ

εq,λc
†
q,λcq,λ,

Hm =
∑
k

(
E+

k α
†
kαk + E−

k β
†
kβk

)
,

(4.14)

with the magnon energy bands and eigenmodes defined in section 3.4.1. To derive a suitable expression
for the interacting Hamiltonian, we perform a Holstein-Primakoff transformation, equation (3.14), to
obtain

Hint = S

√
S

2
∑
i,δ
i∈A

∑
µ

(uiAµ − ui+δ,Bµ)
[
(Tµy

δ + iTµx
δ )(ai + b†i+δ) + (Tµy

δ − iTµx
δ )(a†i + bi+δ)

]
, (4.15)

where the summation is performed over only one sublattice since the contribution from each sublattice
is identical. In the case of a square lattice with a monoatomic crystal basis, we have uiA = uiB.
Following similar calculations as before, we express the ionic displacement in terms of bosonic operators
and Fourier transform the magnon operators using equation (3.15). This yields the following result
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4.5. Antiferromagnetic lattices

Hint =
S

2

√
ℏS
NM

√
2
N

∑
q,q′,λ

∑
i,δ
i∈A

∑
µ

eλµ(q)√
ωq,λ

(cq,λ + c†−q,λ)e
iq·RiA(1− eiq·δ)

× e−iq′·RiA

[
(Tµy

δ + iTµx
δ )(a−q′ + b†−q′e

−iq′·δ) + (Tµy
δ − iTµx

δ )(a†q′ + bq′e−iq′·δ)
]

= S

2

√
ℏS
2M

∑
q,λ

∑
δ,µ

eλµ(q)√
ωq,λ

(cq,λ + c†−q,λ)(1− eiq·δ)

×
[
(Tµy

δ + iTµx
δ )(a−q + b†−qe−iq·δ) + (Tµy

δ − iTµx
δ )(a†q + bqe−iq·δ)

]
=
∑
q,λ

[
(cq,λ + c†−q,λ)Gq,λ(b†−q − a−q) + (c−q,λ + c†q,λ)G

∗
q,λ(b−q − a†−q)

]
.

The coupling coefficients are defined as

Gq,λ = SζDnn
xy

√
S

2ω̃q,λ
êλ(q) · gq,

where gq is outlined in equation (4.11). Inserting for the Bogoliubov transformed operators {αq, βq}
obtained from equation (3.19), we obtain

Hint =
∑
q,λ

[
(cq,λ + c†−q,λ)G

′
q,λ(β

†
−q − α−q) + (c−q,λ + c†q,λ)G

′∗
q,λ(β−q − α†

−q)
]
,

with G′
q,λ = Gq,λ(u−q + v−q). In the basis Ψq = [ψT

q ,ψ
†
−q]T , ψT

q = [αq, β
†
q , cq,1, cq,2], where λ =

{1, 2} = {TA,LA}, the Hamiltonian is

H = 1
2
∑
q

Ψ†
qHme(q)Ψq,

with

Hme(q) =



E+
q 0 −G′∗

−q,1 −G′∗
−q,2 0 0 −G′∗

−q,1 −G′∗
−q,2

0 E−
q G′∗

−q,1 G′∗
−q,2 0 0 G′∗

−q,1 G′∗
−q,2

−G′
−q,1 G′

−q,1 εq,1 0 −G′∗
q,1 G′∗

q,1 0 0
−G′

−q,2 G′
−q,2 0 εq,2 −G′∗

q,2 G′∗
q,2 0 0

0 0 −G′
q,1 −G′

q,2 E+
q 0 −G′

q,1 −G′
q,2

0 0 G′
q,1 G′

q,2 0 E−
q G′

q,1 G′
q,2

−G′
−q,1 G′

−q,1 0 0 −G′∗
q,1 G′∗

q,1 εq,1 0
−G′

−q,2 G′
−q,2 0 0 −G′∗

q,2 G′∗
q,2 0 εq,2


.

The energy spectrum is found by diagonalizing ηHme(q) where η is on the form

η = diag(1,−1, 1, 1,−1, 1,−1,−1). (4.16)

We utilize the same parameters as those used for the ferromagnetic square lattice: J = −2meV,
Kz = 0.5meV, ℏΩ = 10meV (with Ω =

√
|γ1|/M), Dnn

xy = 0.4meV, ζ = 0.1, dR = 0 and S = 3/2.
Additionally, the nonzero force coefficients are ρ1 = ρ2 = γ1/8, γz = γ1/10.

The results are shown in Figure 4.4, which displays the magnetoelastic energy spectrum in the presence
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(a) h = 0.0meV.
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(b) h = 0.3meV.

Figure 4.4.: The figures show the magnetoelastic energy spectrum in an antiferromagnetic square
lattice in the absence, Figure 4.4a, and presence, Figure 4.4b, of a magnetic field. The labelling
of the bands correspond to the non-interacting system. The parameters are J = −2, Kz = 0.5,
ℏΩ = 10 and Dnn

xy = 0.4, in units of meV. The dimensionless parameters are ζ = 0.1, dR = 0 and
S = 3/2.

and absence of a magnetic field. In the presence of a magnetic field, when the magnon modes are
nondegenerate, they both couple to acoustic phonons at their respective anticrossings. However, in the
absence of an external field, only a single magnon mode couples to the phonon branch, as seen in the
inset of Figure 4.4a. This breaks the degeneracy as the hybridized magnon-polaron state forms from
the coupling of a single magnon and a single phonon. The additional degenerate mode is therefore
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4.5. Antiferromagnetic lattices

unaffected. If the parameters are adjusted so that the avoided crossings occurs at the M -point, where
the LA and TA modes coincide, both magnon branches are impacted by the interaction since they
effectively anticross two phonon branches.

4.5.2. Honeycomb lattice
The non-interacting Hamiltonian is given by equation (4.14), which incorporates the magnon energy
bands and eigenmodes {αk, βk} as defined in section 3.4.2. On the other hand, the interacting Hamil-
tonian, described in equation (4.15), takes into account the distinct displacements, uiA and uiB,
associated with different sublattices. By substituting the phonon creation and annihilation operators,
along with the Fourier-transformed magnon operators, the expression can be written as

Hint =
S

2

√
ℏS
M

∑
q,λ

∑
δA,µ

(cq,λ + c†−q,λ)√
ωq,λ

(eλAµ(q)− eλBµ(q)eiq·δA)

×
[
(Tµy

δA
+ iTµx

δA
)(a−q + b†−qe−iq·δA) + (Tµy

δA
− iTµx

δA
)(a†q + bqe−iq·δA)

]
=
∑
q,λ

[
(cq,λ + c†−q,λ)(G

B
q,λb

†
−q −GA

q,λa−q) + (c−q,λ + c†q,λ)(G
B∗
q,λb−q −GA∗

q,λa
†
−q)
]
,

with the coupling factors GA(B)
q,λ defined in equation (4.12). When expressed in terms of the magnon

eigenmodes, the expression transforms to

Hint =
∑
q,λ

[
(cq,λ + c†−q,λ)(G

β
q,λβ

†
−q +Gα

q,λα−q) + (c−q,λ + c†q,λ)(G
β∗
q,λβ−q +Gα∗

q,λα
†
−q)
]
,

where Gα
q,λ = −u∗−qG

A
q,λ − v−qG

B
q,λ and Gβ

q,λ = v∗−qG
A
q,λ + u−qG

B
q,λ. In the basis Ψq = [ψT

q ,ψ
†
−q]T ,

ψT
q = [αq, β

†
q , cq,1, cq,2, cq,3, cq,4], the Hamiltonian is

H = 1
2
∑
q

Ψ†
qHme(q)Ψq. (4.17)

Hme(q) is a matrix outlined in Appendix B and the eigenvalues are obtained by diagonalizing ηHme(q)
where η = diag(1,−1, 1, 1, 1, 1,−1, 1,−1,−1,−1,−1). When using this matrix, we would obtain E−

−q

instead of E−
q because we only consider the positive energies. However, this does not affect the

dispersion as long as Dnnn
z = 0, forming reciprocal bands. With the given values J = −2meV,

Kz = 0.5meV, h = 0.3meV, ℏΩ = 7meV (Ω =
√
2|γ2|/M), Dnnn

z = 0meV, Dnn
xy = 0.2meV, ζ = 0.5,

dR = 0 and assuming S = 3/2, the calculated hybridized magnon-phonon energy spectrum is presented
Figure 4.5. The phonon dispersion is set with γ2 = −|γ2| = −γ1, ρ1 = ρ2 = γ2/392. The parameters
are similar to the parameters used in a previous study of coupling between magnons and in-plane
phonons (Ref. [28]). Note that the lattice constant was not provided in the reference, so we chose
ζ = 0.5 to ensure that the resulting band gaps fit well.
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Figure 4.5.: Dispersion curves for coupled magnon-phonon excitations in an antiferromagnetic hon-
eycomb lattice. The labels correspond to the non-interacting bands. The parameters are J = −2,
Kz = 0.5, h = 0.3, ℏΩ = 7, Dnnn

z = 0 and Dnn
xy = 0.2, in units of meV, and ζ = 0.5, dR = 0 and

S = 3/2.
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Part II.
Topological Analysis of Magnon-Phonon

Coupling on Ferromagnetic Honeycomb Layer
with Arbitrary Magnetization Direction
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CHAPTER 5

Topological band theory

Topological band theory is a branch of condensed matter physics that aims to explain various physical
phenomena in solid-state materials by analyzing the topology of their band structure and classifying
materials based on their physical properties. Topological insulators are a well-known example of
such materials, where the bulk is insulating, while the edge states are robust conducting modes
protected from external perturbations [15, 73]. In topological band theory, the Berry curvature plays a
crucial role as it characterizes the geometry of the space of Bloch states across the Brillouin zone [60].
Functioning as a gauge field, it unveils the material’s energy band topology and contributes intrinsically
to various transport phenomena, including the quantum Hall effect and the intrinsic anomalous Hall
effect in electronic systems [74]. Similarly, analogous transport phenomena can also be observed in
bosonic systems. For instance, the magnon-mediated thermal Hall effect, which was initially detected
in the insulating pyrochlore ferromagnet Lu2V2O7, exemplifies this phenomenon [60].

This chapter provides a concise introduction to topological band theory, highlighting key concepts such
as the Chern number and transport properties that are closely associated with topological systems.
Additionally, the chapter offers a brief overview of the computation of Berry curvature in Bogoliubov-
de Gennes systems. In order to gain a deeper understanding of how these transport phenomena emerge
in condensed matter physics, we begin by explaining the Berry phase and see how it is related to the
Berry curvature and the Chern number.

5.1. The relation between Berry phase, Berry curvature and the Chern
number
In 1984, Berry proposed that under an adiabatic evolution of a quantum system, the quantum state
may acquire a phase that is gauge-invariant and hence observable in physical systems [75]. This phase
is known as the Berry phase and is an important quantity in topological band theory. To understand
its origin, consider a system with a Hamiltonian that is dependent on a set of parameters l, implicitly
time-dependent. Now, imagine that we vary the system from t = 0 to t = T such that the parameters
make a closed curve C in parameter space. The phase acquired traversing this path, not including the
well-known dynamical phase factor exp(−iEt/ℏ), is known as the Berry phase (or geometrical phase)
and takes the form [74, 75]

γn = i
∮
C
⟨n(l)| ∇l |n(l)⟩ · dl.

|n(l)⟩ are the instantaneous eigenstates of the Hamiltonian with energies En(l). Assuming the pa-
rameter space is three-dimensional, Stoke’s theorem can be applied to convert the path integral to a
surface integral [74, 75]

γn =
∫
S
dS ·Fn(l),

where Fn(l) = ∇l × i ⟨n(l)| ∇l |n(l)⟩ = i
〈
∇ln(l)

∣∣ × ∣∣∇ln(l)〉 is the Berry curvature and the integral
is taken over a surface that encloses the curve C. By drawing an analogy, the Berry phase can be
understood as the Aharanov-Bohm phase experienced by a charged particle moving along a loop with
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magnetic flux, while the Berry curvature can be compared to the magnetic field [74]. To show that the
Berry curvature is gauge-invariant, and hence also the Berry phase, the gauge transformation |n(l)⟩ →
eiφ(l) |n(l)⟩ induces the change ⟨n(l)| ∇l |n(l)⟩ → ⟨n(l)| ∇l |n(l)⟩+ i∇φ(l), and since ∇l ×∇lφ(l) = 0,
the Berry curvature remains unchanged [75]. The Berry phase is only nonzero as long as the path
C is closed. For an open path, one can always choose a gauge such that the Berry phase cancels
[74]. Unlike the Berry phase, the Berry curvature is a local property that characterizes the geometric
features of the parameter space. Therefore, it can be considered a more fundamental quantity than
the Berry phase [74].

As one traverses the closed path C, the Berry phase undergoes a change represented by φ(l(t =
0))−φ(l(t = T )) due to the gauge transformation. In order for the eigenstates to remain single-valued
functions, |n(l(t = 0))⟩ = |n(l(t = T ))⟩, which also applies for the gauge-transformed eigenstates, the
acquired Berry phase resulting from the gauge transformation, φ(l(t = 0))− φ(l(t = T )), must equal
2πm, wherem is an integer [74]. This observation signifies that the Berry phase is equal to a multiple of
2π in any gauge, as it is gauge-invariant. Extending this principle to a surface integral, the integrated
Berry curvature over a closed manifold is quantized in units of 2π [74]. This quantized number is
referred to as the Chern number. In reciprocal space, for nondegenerate volume bands, it is possible
to assign a Chern number Cn to each band by [15, 72]

Cn = 1
2π

∫
BZ

dk2Fn(k),

where Fn(k) = i (⟨∂xn(k)| ∂yn(k)⟩ − ⟨∂yn(k)| ∂xn(k)⟩) ,

∂µ = ∂/(∂kµ) is the partial derivative and the integration is performed over the first Brillouin zone.
If a band has a nonzero Chern number, it is classified as a Chern band and is regarded as possessing
nontrivial topological properties [47]. The Chern number is zero only if a well-defined choice of
gauge exists for the wavefunctions across the entire Brillouin zone [76]. If not, the Brillouin zone can
be dissected into patches with unique gauges to make the wavefunctions well-defined, and the Chern
number becomes related to the winding number of the gauge transformation on the boundary between
the patches [76]. Since the Chern number is an integer, it is a topological invariant that cannot change
continuously. However, if the system’s adiabatic evolution leads to gap closing and reopening between
adjacent bands, the adiabatic theorem no longer holds and the Chern number may change [15, 74].

The Chern number is a powerful tool for characterizing topological properties of two-dimensional
gapped Hamiltonians with a broken time-reversal symmetry [47]. However, and as we mentioned
earlier, the effective time-reversal symmetry may be preserved in certain cases, resulting in gapless
bands that are still topologically nontrivial. Apart from the Chern number, there are many more
topological invariants that can be used. For instance, if the time-reversal symmetry is preserved, a
Z2 index can be defined as the topological invariant [15, 47, 60]. This index determines the parity
between the Chern numbers of the degenerate bands with different spin-polarization in the absence of
spin-orbit coupling [60].

The principle of the bulk-edge correspondence is a fundamental concept in topological band theory.
When a finite sample has a topologically nontrivial bulk and a topologically trivial exterior, the bands
must intersect at the edge of the sample [47]. As a result, edge states emerge, which are found
between the gapped bulk bands and typically have a gapless Dirac cone-dispersion [47, 73]. One
noteworthy characteristic of these edge states is their persistence in remaining gapless even under
moderate variations in the parameters of the sample, making them regarded as robust modes that are
protected by the topology of the bulk states [15, 60].
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5.2. Berry curvature in Bogoliubov-de Gennes systems
Given the para-unitary nature of eigenvectors in Bogoliubov-de Gennes systems, it becomes necessary
to adjust the definition of the Berry curvature. The revised expression takes the following form [26,
70]

Fn(k) = iεµν
[
σ3(∂µV †

k )σ3(∂νVk)
]
nn
, (5.1)

where εµν represents the Levi-Civita tensor in two dimensions, with an implicit summation over the
spatial indices µ and ν. The matrices Vk and σ3 are known from section 4.2. We notice that the
expression is gauge-dependent, which can pose challenges in numerical computations. We will in the
following address this problem by transforming this into a new expression. In the case of a standard
Bogoliubov-de Gennes Hamiltonian, the eigenvalue problem can be formulated as

σ3H(k)Vk = Vkσ3Ek, with Vkσ3V
†
k = σ3,

By differentiating this equation with respect to the momentum, we obtain

σ3(∂µH(k))Vk + σ3H(k)(∂µVk) = (∂µVk)σ3Ek + Vkσ3(∂µEk)

=⇒ σ3V
†
k (∂µH(k))Vk = V −1

k (∂µVk)σ3Ek − σ3V
†
kH(k)(∂µVk),

where we only consider the off-diagonal elements. We multiplied the equation with V −1
k from the left

and used that V −1
k σ3 = σ3V

†
k . Furthermore, by considering the eigenvalue problem, we can derive

the useful relationship σ3V
†
kH(k) = σ3EkV −1

k . Introducing Ēk = σ3Ek as the diagonal matrix with
elements Ēk,n, we can express the matrix elements of the equation as

(
σ3V

†
k (∂µH(k))Vk

)
mn

=
∑
l,s

[(
V −1
k

)
ml

(∂µVk)ls δsn
(
Ēk
)
s,n

− δml

(
Ēk
)
ml

(
V −1
k

)
ls
(∂µVk)sn

]
=(Ēk,n − Ēk,m)

∑
l

(
V −1
k

)
ml

(∂µVk)ln

=⇒
(
V −1
k (∂µVk)

)
mn

=

(
σ3V

†
k (∂µH(k))Vk

)
mn

(Ēk,n − Ēk,m)
, m ̸= n.

(5.2)

Using a similar approach, we can determine a relationship for the complex conjugate of that expression,
given by

(
(∂µV †

k )(V
†
k )

−1
)
mn

=

(
V †
k (∂µH(k))Vkσ3

)
mn

(Ēk,m − Ēk,n)
, m ̸= n. (5.3)

The expression for the Berry curvature, as given in equation (5.1), can be expanded into the following
form

Fn(k) = iεµν
[
σ3(∂µV †

k )(V
†
k )

−1V †
k σ3VkV

−1
k (∂νVk)

]
nn

= iεµν
[
σ3(∂µV †

k )(V
†
k )

−1σ3V
−1
k (∂νVk)

]
nn

= iεµν
∑
m ̸=n

ρn
(
(∂µV †

k )(V
†
k )

−1
)
nm

ρm
(
V −1
k (∂νVk)

)
mn

,
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where ρn := (σ3)nn = 1 when band n is in the particle space and ρn = −1 when the band is in the
hole space. The term m = n has been excluded from the summation, as it has been demonstrated
that the diagonal terms do not contribute to the Berry curvature [19]. By substituting the derived
expressions from equations (5.2) and (5.3), we obtain the following result [26]

Fn(k) = iεµν
2Nd∑
m=1
m ̸=n

ρn
(
V †
k (∂µH(k))Vk

)
nm

ρm
(
V †
k (∂νH(k)Vk)

)
mn

(Ēk,n − Ēk,m)2

= iεµν
2Nd∑
m=1
m ̸=n

ρnρm

(Ēk,n − Ēk,m)2
⟨nk| ∂µH(k) |mk⟩ ⟨mk| ∂νH(k) |nk⟩ ,

(5.4)

where Nd is the number of particle states in the system. It is worth noting that the resulting expression
is gauge-independent, making it suitable for numerical computations. It becomes apparent that the
Berry curvature remains well-defined only when the bands are isolated. Additionally, we observe that
the Berry curvature captures the complete energy spectrum of the system, and it is not possible to have
a finite Berry curvature for a Hamiltonian associated with a single band. Based on this expression,
we can deduce the following properties of the Berry curvature [70]

(i)
2Nd∑
n=1

Fn(k) = 0,

(ii) Fn(k) = −Fn+Nd
(−k) for n = 1, . . . , Nd.

The first relation becomes evident upon summation, while the second expression establishes a connec-
tion between the Berry curvature in the particle and hole space. To demonstrate the second relation,
we utilize the eigenvectors vn,+(k) for the particle states and vn,−(k) for the hole states, which are
related by vn,−(k) = σ1v

∗
n,+(−k) [72]. In terms of these eigenvectors, the Berry curvature Fn,ρn(k)

for the (n, ρn) band can be expressed as

Fn,ρn(k) =iεµν
∑
m,ρm

(m,ρm )̸=(n,ρn)

ρnρm
(Ek,n,ρn − Ek,m,ρm)2

[
v†n,ρn(k)(∂µH(k))vm,ρm(k)v†m,ρm(k)(∂νH(k))vn,ρn(k)

]

=− iεµν
∑
m,ρm

(m,ρm) ̸=(n,ρn)

ρnρm
(Ek,n,ρn − Ek,m,ρm)2

[
v†n,ρ̄n(−k)(∂µH(−k))vm,ρ̄m(−k)

× v†m,ρ̄m
(−k)(∂νH(−k))vn,ρ̄n(−k)

]
,

wherem ∈ {1, . . . , Nd} and ρm ∈ {−1,+1}. We utilized the particle-hole symmetry of the Hamiltonian
from equation (4.7), and we defined ρ̄n = −ρn. Moreover, we use the notation Ek,n,+ = Ek,n and
Ek,n,− = −E−k,n, such that the eigenvalues of the bands are related by Ek,n,ρn = −E−k,n,ρ̄n . By using
that ρnρm = ρ̄nρ̄m, in addition to switching indices ρ̄m → ρm, we obtain

Fn,ρn(−k) =− iεµν
∑
m,ρm

(m,ρm )̸=(n,ρn)

ρ̄nρm
(Ek,n,ρ̄n − Ek,m,ρm)2

[
v†n,ρ̄n(k)(∂µH(k))vm,ρm(k)v†m,ρm(k)(∂νH(k))vn,ρ̄n(k)

]

=−Fn,ρ̄n(k),
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where we also used that (E−k,n,ρn − E−k,m,ρ̄m)2 = (Ek,n,ρ̄n − Ek,m,ρm)2. Thus, if band n corresponds to
a particle band, then Fn(k) = −Fn+Nd

(−k).

Like the properties exhibited by the Berry curvature in Bogoliubov-de Gennes systems, the Chern
number also follows a summation rule. Specifically, when summing the Chern numbers across all
particle bands or all hole bands, the result reduces to zero [70]. The summation rule can be expressed
as follows

Nd∑
n=1

Cn = 0, and
2Nd∑
n=Nd

Cn = 0.

5.3. Transport properties related to the Berry curvature
Topological electronic systems can exhibit transport phenomena such as the quantum Hall effect, and
potentially, the anomalous Hall effect. The Hall effect is a well-known phenomenon in conductors
where an external magnetic field applied perpendicularly to the electric current deflects the charge
carriers from their straight paths, causing them to accumulate at one end of the material and produce
a transverse voltage. The quantum Hall effect is a quantized version of this phenomenon, where the
Hall conductivity is proportional to the Chern number [74]. Similarly, the anomalous Hall effect’s
conductivity is proportional to the Berry curvature, but it does not require a nonzero Chern number
for a nonvanishing conductivity.

In bosonic systems, where the transport properties concerns neutral quasiparticles such as magnons
and phonons, the experienced Lorentz force which produces the anomalous velocity comes from the
Berry curvature in momentum space [47]. This effect is exemplified by the Dzyaloshinskii-Moriya
interaction in magnetic systems, where the canting of neighbouring spins yields a spin chirality that
results in a geometrical phase for propagating magnons [60]. The Berry curvature can also origi-
nate from dipolar interaction, magnon-magnon interaction or noncollinear and noncoplanar magnetic
textures [15, 60, 70]. Applying a thermal gradient to such a system, a transverse magnon current
emerges, producing a heat current since magnons are neutral particles. This phenomenon is called the
magnon-mediated thermal Hall effect, and a similar effect can be observed for phonons [60]. Moreover,
topological magnonic systems can display the spin Nernst effect, where the longitudinal temperature
gradient generates a transverse spin current [57]. Both the spin Nernst coefficient and the thermal
Hall conductivity are directly related to the Berry curvature. However, while the spin Nernst effect is
expected to occur in all systems with nonvanishing Berry curvature, the thermal Hall effect requires
a broken effective time-reversal symmetry [60].

In topological magnon insulators1, the thermal Hall effect can be attributed to the magnon edge
current [15, 77]. When a thermal gradient is applied, the heat current flowing through the two
opposite edges of the insulator shows a difference in contribution, resulting in a finite thermal Hall
current. This phenomenon has been extensively studied due to its importance in understanding the
topological properties of magnetic materials. It is important to note that both the thermal Hall effect
and spin Nernst effect are geometric properties rather than topological properties of the system, as
they rely on the local Berry curvature in momentum space [60]. Indeed, the magnon Hall effect has
been observed in a cubic magnet with topologically trivial characteristics [27]. However, although the

1In contrast to "true" insulators, topological magnon insulators involve the participation of all magnon bands, including
both bulk and edge states, in transport properties. However, the dominant contribution to transport comes from the
edge states [15].
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presence of such Hall effects does not guarantee the existence of magnon band topology, it is expected
to be present in nondegenerate Chern bands and can serve as an indicator of nontrivial topology
[47]. Furthermore, similar anomalous Hall effects has been observed in other topological systems, such
as topological superconductors and Weyl semimetals, indicating its relevance across various fields of
physics [73, 78].

The thermal Hall conductivity κxy is a quantity that relates the transverse heat current to the applied
temperature gradient. Mathematically, this relation can be expressed as JQ

x = κxy(−∇T )y, where T
denotes temperature and JQ

x refers to the transverse heat current [26, 54]. The theoretical derivation
of this conductivity in electronic systems is typically accomplished using linear response theory by
introducing a fictitious gravitational field that exerts a force on the wave packet [77]. A similar method
can be used for magnons, where two significant contributions are identified. The first component is a
deviation of the particle density operator from equilibrium as calculated using the Kubo formula [17],
while the second component is associated with the orbital motion of magnons [70, 77]. The complete
derivation is beyond the scope of this thesis, therefore, we present only the final result. The thermal
Hall conductivity in a bosonic system can be expressed as follows [70]

κxy = −
k2BT

ℏA
∑
k

Nd∑
n=1

(
c2[gBE(Ek,n)]−

π2

3

)
Fn(k), (5.5)

where kB is the Boltzmann constant, A is the area of the system and gBE(Ek,n) is the Bose-Einstein
distribution, given by

gBE(Ek,n) =
1

eEk,n/kBT − 1
.

Furthermore, the function c2(x) is defined as

c2(x) = (1 + x)
(
ln 1 + x

x

)2
− (ln x)2 − 2Li2(−x),

where Li2(x) is the polylogarithm function of second order. The function c2[gBE(Ek,n)] has its max-
imum value of π2/3 at zero energy and is a monotonically decreasing function where it approaches
zero in the limit Ek,n → ∞ [70]. It is important to highlight that the summation is confined to the
particle bands of the BdG Hamiltonian. When summing over the first Brillouin zone, the last term
in the parentheses is directly related to the summation of the Chern numbers of all particle bands.
However, as demonstrated in the previous section, we established that this term evaluates to zero and
can thus be disregarded in the calculations.

Similarly, the spin Nernst coefficient αxy relates the spin current density to the applied temperature
gradient through the equation JS

x = αxy(−∇T )y. To derive an expression for this coefficient, we
introduce the spin Berry curvature, which is associated with the spin current operator defined as jS =
1
4(uσ3S+Sσ3u), where u = ℏ−1∂kH(k) is the velocity operator. Additionally, S is the spin excitation
operator, which takes the form of a diagonal matrix with values ±1 for the elements corresponding to
magnon excitations. Specifically, if a magnon excitation is associated with a spin aligned parallel to
the magnetization axis, we insert −1, while for an anti-parallel spin alignment, we use +1. The spin
Berry curvature is defined as follows [79, 80]

[
FS
n (k)

]
µν

= 2iℏ2
2Nd∑
m=1
m ̸=n

ρnρm

(Ēk,n − Ēk,m)2
〈
nk
∣∣∣ jSµ ∣∣∣mk

〉
⟨mk|uν |nk⟩ . (5.6)
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With this expression at hand, the spin Nernst coefficient, obtained through linear response theory, is
given by [54, 79, 80]

αxy = −2kB
A

∑
k

Nd∑
n=1

c1[gBE(Ek,n)]
[
FS
n (k)

]
xy
, (5.7)

where

c1(x) = (1 + x) ln (1 + x)− x ln (x).

Similar to the behaviour of c2(x), the function c1(x) demonstrates a monotonically decreasing nature
that converges to zero as Ek,n approaches infinity. Moreover, the spin Berry curvature follows the same
summation rule as the conventional Berry curvature, where the total sum of the Berry curvatures across
all bands is zero. We can also establish a relationship between the spin Berry curvature of the particle
and hole states with the following expression

[
FS
n (k)

]
µν =

[
FS
n+Nd

(−k)
]
µν

[79].
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CHAPTER 6

Modifying the magnon dispersion

Within this chapter, we build on the work in Chapter 3 where we studied the magnon dispersion in
various lattices with both ferro- and antiferromagnetic ordering. However, in the present chapter,
we narrow our focus to the honeycomb lattice with ferromagnetic ordering and extend our model to
include additional features. Specifically, we investigate the impact on the magnon dispersion and the
magnon-phonon coupling, which we cover in Chapter 7, when the magnetization direction deviates
from the out-of-plane alignment. Furthermore, we utilize a magnon Hamiltonian that includes the
biquadratic Heisenberg exchange term and a general form of the nearest and next-nearest neighbour
DMI. Towards the end of the chapter, we compare the dispersion of magnons in the presence of either
DMI or Kitaev interactions. Both interactions have the potential to give rise to topological magnons,
and we examine the differences in the magnon energy spectra resulting from each interaction.

We aim to investigate the magnon-phonon coupling in a general honeycomb lattice. However, our
magnon Hamiltonian is based on CrI3, a vdW magnet with ferromagnetic ordering perpendicular to
the lattice plane and a Curie temperature of Tc = 45K in the 2D-limit [81]. The Cr3+ ions are arranged
in a 2D honeycomb network with six I− ions in an edge-sharing octahedral environment [81]. The
interaction between the crystal field and the iodine ions leads to a total spin of S = 3/2 with quenched
orbital momentum (L = 0) [13, 81]. Ferromagnetic ordering is achieved through superexhange paths
via the iodine atoms. Despite the weak spin-orbit coupling of chromium ions, the magnetic anisotropy
is significant due to the strong spin-orbit coupling of the heavier iodine atoms, which ensures thermal
stability [13].

6.1. Biquadratic exchange
Apart from the (bilinear) Heisenberg exchange interaction, there exist higher-order terms, like the
biquadratic exchange interaction, that can have an impact on the magnon Hamiltonian. The presence
of these additional terms arises from the intricate interplay between superexchange processes involving
nonmagnetic atoms and Coulomb repulsion between neighbouring magnetic sites. These interactions
can significantly influence the overall energy of the system and can be effectively incorporated by
introducing the biquadratic exchange interaction [82]. Biquadratic exchange has a strong impact in
materials where the exchange is weak, such as several 2D magnets that have been discovered so far
[82].

To accurately depict the magnon energy spectrum in CrI3, we incorporate the biquadratic exchange
interaction between nearest neighbours into the magnon Hamiltonian. The term can be expressed as
follows [82]

Hbq = −
∑
<i,j>

Λij(Si · Sj)2,

with Λij = Λ for all pairs of nearest neighbours. In the following, we will examine the impact
of the biquadratic exchange on the magnon dispersion and assess whether it can result in linear
magnetoelastic coupling terms.
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6.1.1. Effect of biquadratic exchange on magnon dispersion
By splitting the honeycomb lattice into two distinct sublattices, labeled as A and B, the biquadratic
exchange interaction can be expressed as follows

Hbq = −Λ
∑
i,δA
i∈A

(SiA · Si+δA,B)2.

To facilitate comparison, we will investigate both ferromagnetic and antiferromagnetic ordering.

Ferromagnetic ordering

For a ferromagnet, the biquadratic exchange can be described using the Holstein-Primakoff transfor-
mation for spins ordered in a ferromagnetic manner, resulting in

Hbq = −Λ
∑
i,δA
i∈A

(S2 − Sa†iai − Sb†i+δA
bi+δA + Sa†ibi+δA + Sb†i+δA

ai)2.

After evaluating the product and rearranging the terms into normal order, similar to what was done
for the anisotropy term, the resulting expression becomes

Hbq = −Λ
∑
i,δA
i∈A

[
S4 − 2S2(S − 1)(a†iai + b†i+δA

bi+δA − a†ibi+δA − b†i+δA
ai)
]
,

to second order in bosonic operators. The magnon Hamiltonian’s complete Heisenberg exchange part
is obtained by combining the bilinear exchange and dropping the zeroth order term, expressed as

HHeis = Hbl +Hbq = (J + 2ΛS(S − 1))S
∑
i,δA
i∈A

(a†iai + b†i+δA
bi+δA − a†ibi+δA − b†i+δA

ai).

The biquadratic exchange leads to a shift in the effective exchange coupling coefficient. Defining
J̃ = J + 2ΛS(S − 1) as the effective exchange coupling coefficient, the magnon dispersion in the
honeycomb lattice is on the form described in equation (3.12) with J → J̃ . Neglecting the normal
ordering procedure for the fourth-order terms, the result would have been J̃ = J + 2ΛS2 [82, 83].

Antiferromagnetic ordering

By employing the Holstein-Primakoff transformation for antialigned spins, the biquadratic exchange
is transformed to

Hbq = −Λ
∑
i,δA
i∈A

(−S2 + Sa†iai + Sb†i+δA
bi+δA + Sa†ib

†
i+δA

+ Saibi+δA)
2,

which after rearranging the terms according to their normal order and keeping only the second-order
terms yields

Hbq = 2ΛS2(S − 1)
∑
i,δA
i∈A

(a†iai + b†i+δA
bi+δA + a†ib

†
i+δA

+ aibi+δA),

where we also removed the zeroth order terms. By comparing with the bilinear exchange part of the
magnon Hamiltonian (equation (3.16)), the inclusion of a biquadratic exchange leads to the effective
exchange coupling coefficient J = J − 2ΛS(S − 1). This is in accordance with Ref. [83], neglecting
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the normal ordering procedure of the fourth order terms. By assuming the biquadratic exchange does
not alter the sign of the effective exchange coupling coefficient, such that J is a negative number, the
magnon dispersion in the honeycomb lattice is given by equation (3.25) with J → J .

6.1.2. Taylor expansion of the biquadratic exchange coupling coefficient
Similar to the bilinear exchange coupling coefficient, the biquadratic exchange coupling coefficient is
in general a function of the ionic coordinates. A Taylor expansion around the equilibrium position
yields

Λ(rij) = Λ(Rij) + (∇rijΛ(rij)
∣∣∣
Rij

) · uij .

Thus, the magnon-phonon coupling terms arising from the biquadratic exchange can be expressed as
follows

Hbq
int = −

∑
<i,j>

∑
µ

∂Λ(rij)
∂rµij

∣∣∣∣∣
Rij

(uiµ − ujµ)(Si · Sj)2.

Like the coupling terms obtained by expanding the bilinear exchange coupling coefficient, the dot
product couples spins with the same spatial component to each other, resulting in terms of first,
third, or higher order. This relationship holds when considering collinear spin ordering within the
Holstein-Primakoff framework.

6.2. Computing magnon dispersion with arbitrary magnetization direction
Up to this point, the magnetization direction of the investigated two-dimensional magnetic systems
has been exclusively perpendicular to the plane of the lattice. In this section, we aim to investigate
the implications of ferromagnetic ordering of spins in an arbitrary direction. Our assumption is that
a strong magnetic field aligns the spins with the field in the classical ground state, and that the spin
direction can be modified by altering the field direction. Specifically, we analyze a ferromagnetic
honeycomb lattice governed by a Hamiltonian on the following form

H = −J
∑
<i,j>

Si · Sj − Λ
∑
<i,j>

(Si · Sj)2 −
∑
i

Si · h−Kz

∑
i

S2
iz −

∑
i,j

Dij · [Si × Sj ]. (6.1)

The system possesses an easy-axis single ion anisotropy, and the DMI is expressed in a general form.
As mentioned earlier in equation (4.1), the out-of-plane next-nearest neighbour DMI is intrinsic and
stems from the locally asymmetric path to the next-nearest neighbours. On the other hand, the
in-plane nearest neighbour DMI arises from the loss of mirror symmetry with respect to the lattice
plane and can be induced by different factors like a surrounding substrate or an electric field [11,
26]. However, when the mirror symmetry is broken, both the next-nearest and nearest neighbour
DM vector can deviate from their perpendicular and in-plane orientations, respectively [11, 84]. We
consider two scenarios for the next-nearest neighbour DM vector; a tilted out-of-plane DM vector
with arbitrary directions for the in-plane components, or a vector where the in-plane components are
directed towards the next-nearest neighbours. The latter is the proposed format of the DM vector in
CrI3 [11]. We utilize the following expressions

Dnnn,t
ij = νij(Dnnn

x x̂+Dnnn
y ŷ +Dnnn

z ẑ),

Dnnn,r
ij = −ηijDnnn

xy R̂ij + νijD
nnn
z ẑ,
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where ηij = +1(−1) for bonds between the A(B) sublattice and νij is the Haldane sign. Additionally,
we modify the previously used expression for the nearest neighbour DMI by adding an out-of-plane
component, resulting in the DM vector taking the form of [11]

Dnn
ij = Dnn

xy(ẑ × R̂ij) +Dnn
z ẑ.

The objective of this section is to examine the magnon dispersion for each of the DM-vectors and
distinguish their dissimilarities. A significant emphasis is placed on identifying the presence of a band
gap and observing how it varies with alterations in the magnetization direction. Before proceeding
with the calculations, we shortly investigate the symmetry of the proposed expressions for the DM
vectors.

6.2.1. Symmetry analysis of the DM vectors
The presence of Dirac cones in the magnon energy spectrum is conditional on the existence of effective
time-reversal symmetry in the system. One possible method to achieve this symmetry is by combining
a rotation in spin space with time-reversal symmetry [16]. A spin rotation should restore the initial spin
texture, as the time-reversal symmetry operator corresponds to a spin-flip. However, the Hamiltonian
must remain unchanged for this transformation to be an effective time-reversal symmetry. The spin
rotation is represented byR(n, π) and causes a π spin rotation around an axis n, which is perpendicular
to the magnetization direction. When we consider the out-of-plane next-nearest neighbour DMI with
a magnetization normal to the lattice plane, the rotation R(x, π) results in Si → (Six,−Siy,−Siz)
such that the term Dnnn

z (SixSjy−SiySjx) reverses its sign. However, for a magnetization in the plane,
the spin rotation is around the z−axis, which leaves the term unchanged [16]. As a result, we expect
to see gap openings as long as the magnetization has out-of-plane components.

The two expressions for the next-nearest neighbour DM vectors have different in-plane components. If
the in-plane components point toward the next-nearest neighbours, the vector has the same symmetries
as the neighbouring vectors, including reflection, inversion and rotational symmetry. This symmetry
preserves the effective time-reversal symmetry. For instance, consider the magnetization along the
x−axis, and let’s apply the rotation R(z, π). This rotation changes the sign of the in-plane DMI
terms. However, as the transformation R̂ij → −R̂ij maps the in-plane DM vectors in Dnnn,r

ij onto
itself, the DMI terms are left unchanged under a spin rotation. This is not the case for the other
next-nearest neighbour DM vector, and we should expect a gap opening.

When considering the in-plane part of the nearest neighbour DM vector, the combined symmetry
of C2,z rotation and time-reversal symmetry forms an effective time-reversal symmetry when the
magnetization lies in the plane [16]. The C2,z transformation involves rotating the space and spins
around the z−axis, with the center of mass of the hexagon acting as the center of rotation. However, in
the case of out-of-plane magnetization, the systems does not possess effective time-reversal symmetry
since there is no in-plane axis about which the spins can be rotated without altering the DMI terms
[16]. Therefore, the existence of nonzero out-of-plane components in the magnetization is anticipated
to cause gap openings as a consequence of the nearest neighbour DMI.

6.2.2. Next-nearest neighbour DMI
To find the magnon dispersion for an arbitrary direction of the spins, it is convenient to change the
frame of reference to {ê1, ê2, ê3}, where each êi is a unit vector. The new frame of reference is defined
such that ê3 is aligned with the magnetic field, and hence the magnetization direction. It is related
to the lab-frame via a rotation on the form [13]
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6.2. Computing magnon dispersion with arbitrary magnetization direction

ê1 = Ox̂, ê2 = Oŷ, ê3 = Oẑ,

where O = Oz(φ)Oy(θ)Ox(ϑ) is the rotation matrix and

Oz(φ) =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 , Oy(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 ,
Ox(ϑ) =

1 0 0
0 cos(ϑ) − sin(ϑ)
0 sin(ϑ) cos(ϑ)

 .
Denoting S′

i as the spins in the new frame of reference, they are related to the ones in the lab-frame
by S′

i = OTSi, where

O =

Ox1 Ox2 Ox3
Oy1 Oy2 Oy3
Oz1 Oz2 Oz3


=

cos(θ) cos(φ) sin(θ) cos(φ) sin(ϑ)− sin(φ) cos(ϑ) sin(θ) cos(φ) cos(ϑ) + sin(φ) sin(ϑ)
cos(θ) sin(φ) sin(θ) sin(φ) sin(ϑ) + cos(φ) cos(ϑ) sin(θ) sin(φ) cos(ϑ)− cos(φ) sin(ϑ)
− sin(θ) cos(θ) sin(ϑ) cos(θ) cos(ϑ)

 .
The rotation matrix is an orthogonal matrix satisfying OTO = I. For the spins in the new frame of
reference, the Holstein-Primakoff transformation can be written like

S′
iA1 =

√
S

2 (ai + a†i ),

S′
iA2 =− i

√
S

2 (ai − a†i ),

S′
iA3 =S − a†iai,

(6.2)

and similarly for the spins at sublattice B.

As the transformation to the new reference frame is independent of the lattice sites, the bilinear and
biquadratic Heisenberg exchange terms are not affected by the spin rotation. This can be demonstrated
by

Si · Sj = ST
i Sj = S′T

i O
TOS′

j = S′
i · S′

j .

Likewise, the Zeeman term remains unaffected as the spins align with the magnetic field. However,
the anisotropy interaction is influenced by the new spin direction. To second order, the anisotropy
term can be expressed as

89



MODIFYING THE MAGNON DISPERSION

Hani =−Kz

∑
i

i∈A

(OS′
iA)2z

=−Kz

∑
i

i∈A

S2O2
z3 +

S

2 (O
2
z1 +O2

z2) + S

√
S

2Oz3(Oz1 − iOz2)ai + h.c

−
(
(2S − 1)O2

z3 − S(O2
z1 +O2

z2)
)
a†iai +

S

2Qzaiai + h.c
]
,

where

Qz = (Oz1 − iOz2)2.

The notation h.c denotes the Hermitian conjugate of the previous term and the summation over
sublattice B is similar with ai → bi. Note that there are terms with single magnon operators. These
linear terms contribute to the magnon dispersion only at the Γ−point, and can therefore be disregarded
[13]. In addition, we omit the ground state energy, the zeroth order terms, by changing the reference
energy. In terms of the Fourier-transformed operators, the anisotropy term is on the form

Hani = Kz

∑
k

[(
(2S − 1)O2

z3 − S(O2
z1 +O2

z2)
)
(a†kak + b†kbk)−

S

2Qz(aka−k + bkb−k) + h.c
]
.

For the Dzyaloshinskii-Moriya interaction, we let Dnnn
ij ∈ {Dnnn,t

ij ,Dnnn,r
ij } be any of the two types of

next-nearest neighbour DM vectors. To bring the vector into the frame of reference, it can be rotated
by

Dnnn
ij

′ = OTDnnn
ij =

D
nnn
ij,1

′

Dnnn
ij,2

′

Dnnn
ij,3

′

 ,
such that the DMI term can be written as [13]

HDMI,nnn =−
∑

<<i,j>>

Dnnn
ij · [Si × Sj ] = −

∑
<<i,j>>

(Dnnn
ij )TOOT [Si × Sj ]

=−
∑

<<i,j>>

Dnnn
ij

′ · [S′
i × S′

j ].
(6.3)

By substituting the magnon operators, the summation over sublattice A becomes

HDMI,nnn =
∑

<<i,j>>
i∈A

S
√
S

2 (D
nnn
ij,2

′ + iDnnn
ij,1

′)(ai − aj) + h.c + iSDnnn
ij,3

′(a†iaj − a†jai)

 .
The first term, which involves single magnon operators, sums to zero. This can be demonstrated by
taking into account the antisymmetric nature of the DM vector Dnnn

ij = −Dnnn
ji , which also holds true

for the rotated vector, and results in the following
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6.2. Computing magnon dispersion with arbitrary magnetization direction

∑
<<i,j>>

i∈A

(Dnnn
ij,2

′ + iDnnn
ij,1

′)(ai − aj) =
∑

<<i,j>>
i∈A

2ai(Dnnn
ij,2

′ + iDnnn
ij,1

′)

=
∑
i∈A

ai
∑
τA

(Dnnn
τA,2

′ + iDnnn
τA,1

′),

where τA = −Rij is the vector to the next-nearest neighbours. As τA consists of a collection of
symmetric vectors, such as τA

1 = −τA
4 , the summation over the neighbouring vectors result in the

cancellation of all terms. Thus, only the quadratic terms remain. The summation over both sublattices
can be expressed as

HDMI,nnn = i
2S

∑
i,τA
i∈A

Dnnn
τA,3

′(a†iai+τA − a†i+τA
ai) +

i
2S

∑
i,τB
i∈B

Dnnn
τB ,3

′(b†ibi+τB − b†i+τB
bi)

=− S
∑
k

∑
τA

Dnnn
τA,3

′ sin(k · τA)a†kak − S
∑
k

∑
τB

Dnnn
τB ,3

′ sin(k · τB)b†kbk

=S
∑
k

Dnnn
k (a†kak − b†kbk),

where we defined Dnnn
k = −

∑
τA
Dnnn

τA,3
′ sin(k · τA). Separating between the two expressions for the

DM vectors, the rotated components Dnnn
τA,3

′ are

Dnnn,t
τA,3

′ = ντA(Ox3D
nnn
x +Oy3D

nnn
y +Oz3D

nnn
z ),

Dnnn,r
τA,3

′ = Ox3D
nnn
xy τ̂Ax +Oy3D

nnn
xy τ̂Ay + ντAOz3D

nnn
z ,

and the function Dnnn
k for each type is

Dnnn,t
k =− 2(Ox3D

nnn
x +Oy3D

nnn
y +Oz3D

nnn
z )(sin(kxa)− 2 sin(12kxa) cos(

√
3
2 kya)),

Dnnn,r
k =− 2 sin(kxa)(Ox3D

nnn
xy +Oz3D

nnn
z )− 2 sin(12kxa) cos(

√
3
2 kya)(Ox3D

nnn
xy − 2Oz3D

nnn
z )

− 2
√
3 cos(12kxa) sin(

√
3
2 kya)Oy3D

nnn
xy .

Since the out-of-plane components of the DM vectors are identical, the contribution from Dnnn
z is the

same in both cases. By combining all the terms, the total Hamiltonian is

H =
∑
k

[
tAk a

†
kak + tBk b

†
kbk − tka

†
kbk − t∗kb

†
kak −

1
2SKzQz(aka−k + bkb−k)−

1
2SKzQ

∗
z(a

†
ka

†
−k + b†kb

†
−k)

]
,

(6.4)
with the new coefficients defined as

tAk = 3J̃S +∆′ + SDnnn
k , tBk = 3J̃S +∆′ − SDnnn

k ,

tk = J̃SfδA(k), ∆′ = h+
(
(2S − 1)O2

z3 − S(O2
z1 +O2

z2)
)
Kz,
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J̃ = J + 2ΛS(S − 1), Dnnn
k ∈ {Dnnn,t

k , Dnnn,r
k } and fδA(k) is the structure factor. The Hamiltonian

can be represented in matrix form as follows

H = 1
2
∑
k

ψ†
m(k)Hm(k)ψm(k),

where ψm(k) = [ak, bk, a†−k, b
†
−k] and

Hm(k) =


tAk −tk −SKzQ

∗
z 0

−t∗k tBk 0 −SKzQ
∗
z

−SKzQz 0 tA−k −t∗−k

0 −SKzQz −t−k tB−k

 , (6.5)

As usual, we obtain the eigenvalues by diagonalizing σ3Hm(k). By using that tA−k = tBk and t−k = t∗k,
the positive eigenvalues are

E±
k =

(
(3J̃S +∆′)2 + S2(Dnnn

k )2 + J̃2S2|fδA(k)|
2 − S2K2

z |Qz|2

±2S
√
(Dnnn

k )2((3J̃S +∆′)2 − S2K2
z |Qz|2) + J̃2|fδA(k)|2(3J̃S +∆′)2

)1/2
.

The magnetic field strength must meet certain requirements to yield positive eigenvalues, which depend
on the orientation of the spins. When the spins are aligned perpendicular to the plane, there is no
constraint, however, for spins lying in the plane, the Zeeman energy h must be greater than 2SKz.
This requirement holds for all rotation angles since the competing anisotropy term is largest for the
in-plane spin alignment. The obtained expression for the magnon dispersion is general and holds for
an arbitrary spin direction. For the sake of simplicity, let’s consider the case where ϑ = 0. In this
scenario, the newly defined variables simplifies to

|Qz| = sin2(θ), ∆′ = h+ ((2S − 1) cos2(θ)− S sin2(θ))Kz

Ox3 = sin(θ) cos(φ), Oy3 = sin(θ) sin(φ), Oz3 = cos(θ).

It is evident that the contribution of each component of the DM vector to the dispersion is determined
by its projection onto the spins, which is expressed by Ox3, Oy3 and Oz3. When the spins are parallel
to the plane (θ = π/2), only the in-plane components of the DM vector affect the dispersion, whereas
if the spins are tilted from the plane and the in-plane components are zero, the dispersion is affected
only by the projection of the out-of-plane component, cos(θ)Dnnn

z . The next step is to explore the
impact of the two different next-nearest neighbour DM vectors on the magnon dispersion.

DM vector tilted along the x-axis

With the obtained expression forDnnn,t
k , we expand around the Γ−point and find a quadratic dispersion

on the form

E−
k ≈

√
∆′2 − S2K2

z |Qz|2 +
1
4

J̃S∆′√
∆′2 − S2K2

z |Qz|2
(ka)2.

The relationship between the magnon energy gap (∆) and the angles can be described as follows when
ϑ = 0
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6.2. Computing magnon dispersion with arbitrary magnetization direction

∆ =
√
∆′2 − S2K2

z |Qz|2

=
(
h2 − 2hSKz + 2Kz cos2(θ)((3S − 1)h− S(2S − 1)Kz) + cos4(θ)(2S − 1)(4S − 1)K2

z

)1/2
,

where it is easily seen that h > 2SKz for θ = π/2. Furthermore, the band gap that opens up at the
K-point is given by

∆K = E+
k=K − E−

k=K = 2S|Dnnn,t
k=K | = 6

√
3|Ox3D

nnn
x +Oy3D

nnn
y +Oz3D

nnn
z |. (6.6)

The contribution to the band gap comes from the projection of both the in-plane and out-of-plane
components of the DM vector onto the spins, indicating that a band gap is expected for any spin
orientation in the plane, provided that the DM vector has an in-plane component along the same
axis. To illustrate this further, Figures 6.1a, 6.1b, 6.1c and 6.1d demonstrate the magnon dispersion
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Figure 6.1.: The figures display the magnon dispersion in a ferromagnetic honeycomb lattice for
different orientations of the magnetization, ê3. The calculations are done with a NNN DM vector,
Dnnn,t

ij , that is perpendicular to the plane [Dnnn
x , Dnnn

y , Dnnn
z ] = [0.0, 0.0, 0.31]meV (solid lines) and

tilted [0.3, 0.0, 0.31]meV (dashed lines). Other parameters include J̃ = 2.955meV, Kz = 0.109meV,
h = 2meV and S = 3/2.
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for various spin directions ê3, and in each of these figures, the effects of the in-plane portion of the
DM vector are clarified by computing the dispersion with a perpendicular next-nearest neighbour DM
vector, and a DM vector that is tilted towards the x−axis. Our analysis employ specific parameters
for the magnon dispersion in CrI3 that have been measured or calculated, including J̃ = 2.955meV,
Kz = 0.109meV, Dnnn

z = 0.31meV and S = 3/2 [82]. Moreover, we choose the remaining values as
h = 2meV and Dnnn

x = 0.3meV. In the perpendicular spin alignment, we obtain the dispersion found
in section 3.3.2 since the in-plane DM components yield no contribution. When comparing the band
gap of spin alignments along x̂ and ŷ, the gap closes for ŷ because they are orthogonal to the DM
vector, but opens along x̂ because Dnnn

x is nonzero. If ê3 = (1/2)[1, 1,
√
2]T , a DM vector tilted along

the x−axis increase the band gap due to the in-plane DM vector component. However, if Dnnn
x < 0

with the same magnetization direction, a tilted DM vector results in a smaller band gap due to the
negative contribution. By integrating the Berry curvature, which is computed using equation (5.4),
across the Brillouin zone, we determine the Chern numbers associated with the topologically nontrivial
magnon bands. Specifically, we find that the lower band possesses a Chern number of C = +1, while
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M Γ K K ′ Γ
0

5

10

15

20

25

30

E
 (m

eV
)
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Figure 6.2.: The figures display the magnon dispersion in a ferromagnetic honeycomb lattice for
different orientations of the magnetization, ê3. The calculations are done with a NNN DM vector,
Dnnn,r

ij , that is perpendicular to the plane (Dnnn
xy , Dnnn

z ) = (0.0, 0.31)meV (solid lines) and tilted
(Dnnn

xy , Dnnn
z ) = (0.3, 0.31)meV (dashed lines) along the next-nearest neighbouring vectors. The

remaining parameters consist of J̃ = 2.955meV, Kz = 0.109meV, h = 2meV and S = 3/2.
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6.2. Computing magnon dispersion with arbitrary magnetization direction

the upper band has a Chern number of C = −1, when the magnetization has a positive out-of-plane
component. However, when the magnetization is tilted below the plane without any in-plane DM
components, the bands touch and reopen, resulting in a phase transition where the Chern numbers
of the bands interchange. A similar phenomenon occurs in the presence of Dnnn

x , but the angle at
which the bands touch depends on the angle φ. In the xz−plane where φ = 0, this angle is given by
θ = tan−1(−Dnnn

z /Dnnn
x ).

At a constant magnetic field strength, the magnon energy gap gradually reduces as the spin alignment
tilts towards the plane. This is because the anisotropy term favours a perpendicular alignment, so
exciting magnons, which are deviations from the ferromagnetic ground state, requires less energy when
the spins are in the plane.

DM vector directed along the next-nearest neighbours

The effect of the function Dnnn,r
k on the dispersion is more complex compared to a DM vector tilted

along the x−axis, and it is not easy to understand its impact intuitively. Expanding the function
around the Γ−point, we obtain

Dnnn,r
k ≈ −3Dnnn

xy (Ox3kx +Oy3ky),

suggesting that the DMI has no effect on the magnon energy gap, but has a stronger influence on the
dispersion in the long wavelength limit compared to Dnnn,t

k . The band gap at the symmetry point K
is found to be

∆K = 6
√
3|Oz3D

nnn
z |,

implying that the in-plane components have no effect on the band gap. This is in contrast to the other
choice of DM vector, as stated in equation (6.6), and is in alignment with the observations done in
the symmetry analysis.

The magnon dispersion for different spin directions is depicted in Figures 6.2a, 6.2b, 6.2c and 6.2d,
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xy = 0.0meV.
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Figure 6.3.: Contour plots of the lower magnon band for the case studied in Figure 6.2b, where the
magnetization is directed along the x−axis. Figure a) and b) display the dispersion in the absence
and presence of an in-plane next-nearest neighbour DMI, respectively.
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using Dnnn,r
ij as the DM vector. We examine the influence of in-plane components by displaying the

dispersion using two DM vectors: (Dnnn
xy , Dnnn

z ) = (0.0, 0.31)meV and (Dnnn
xy , Dnnn

z ) = (0.3, 0.31)meV.
The other parameters remain the same. The in-plane component of the DM vector has a relatively
small impact on the magnon dispersion, causing only a slight deviation from the perpendicular DM
vector along the symmetry lines and leaving the magnon energy gap and band gap unaffected. How-
ever, we do observe that the in-plane component of the DM vector introduces an asymmetry in the
magnon dispersion when the magnetization has in-plane components. This asymmetry becomes ap-
parent in the differences observed along the symmetry lines Γ → K and Γ → K ′. More specifically,
the presence of the in-plane component disturbs the rotational symmetry of the magnon dispersion,
resulting in contour plots that display a more elongated shape. Figure 6.3 provides a clear illustra-
tion of this effect by comparing the cases with and without an in-plane next-nearest neighbour DM
vector when the magnetization is directed along the x-axis. Additionally, it is important to note that
the bands retain their reciprocal nature even when there is an in-plane next-nearest neighbour DMI
present.

As the in-plane part of Dnnn,r
ij does not create a band gap, the magnon bands are topologically trivial

when the magnetization lies within the plane. Furthermore, when the magnetization is tilted away from
the plane and Dnnn

z is nonzero, the in-plane components do not affect the Chern numbers. Therefore,
we still observe C = 1 for the E−

k branch and C = −1 for the E+
k branch when the magnetization has

a positive out-of-plane component.

6.2.3. Nearest neighbour DMI
We are going to calculate the nearest neighbour DMI contribution for an arbitrary spin direction. As
shown in equation (6.3), the DMI term retains the same form in the new frame of reference. We rotate
the DM vector to

Dnn
ij

′ = OTDnn
ij =

D
nn
ij,1

′

Dnn
ij,2

′

Dnn
ij,3

′

 ,
and employ the Holstein-Primakoff such that the nearest neighbour DMI contribution becomes

HDMI,nn =
∑

<<i,j>>
i∈A

S
√
S

2 (D
nn
ij,2

′ + iDnn
ij,1

′)(ai − bi+δA) + h.c + iSDnn
ij,3

′(a†ibi+δA − b†i+δA
ai)


+A↔ B.

After discarding the terms of first order, we are left with

HDMI,nn = i
2S

∑
i,δA
i∈A

Dnn
δA,3

′(a†ibi+δA − b†i+δA
ai) +

i
2S

∑
i,δB
i∈B

Dnn
δB ,3

′(b†iai+δB − a†i+δB
bi)

= i
2S

∑
k,δA

[
(Dnn

δA,3
′ −Dnn

−δA,3
′)eik·δAa†kbk − (Dnn

δA,3
′ −Dnn

−δA,3
′)e−ik·δAb†kak

]
=S

∑
k

[
Dnn

k a†kbk +Dnn∗
k b†kak

]
,

where we used that δAi = −δBi for i = 1, 2, 3. Furthermore, we have introduced the function Dnn
k ,

which, upon evaluation, is on the following form
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6.2. Computing magnon dispersion with arbitrary magnetization direction

Dnn
k = i

2
∑
δA

(Dnn
δA,3

′ −Dnn
−δA,3

′)eik·δA

=iDnn
xy

∑
δA

(Ox3δ̂Ay −Oy3δ̂Ax)eik·δA

=iDnn
xy

[
Ox3e

i√
3
kya − (

√
3i sin(12kxa)Oy3 + cos(12kxa)Ox3)e

−i kya

2
√
3

]
.

It is important to mention that the out-of-plane component of the DM vector is canceled out and does
not affect the dispersion. However, it can still play a role in magnon-phonon coupling. By expanding
the definition of tk to tk = J̃SfδA(k) − SDnn

k , the energy spectrum is obtained by computing the
eigenvalues of σ3Hm(k), as given in equation (6.5). Numerical methods are employed to find the
eigenvalues due to the fourth order equation that arises. Additionally, it should be noted that tk now
satisfies t∗−k = J̃SfδA(k) + SDnn

k ̸= tk.
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Figure 6.4.: The figures display the magnon dispersion in a ferromagnetic honeycomb lattice for
different orientations of the magnetization, ê3. The calculations are done without (solid lines) and
with (dashed lines), a nearest neighbour DMI of magnitude Dnn

xy = 0.3meV. Other parameters
include J̃ = 2.955meV, Kz = 0.109meV, h = 2meV, S = 3/2, and we also include a perpendicular
NNN DMI with the strength Dnnn

z = 0.31meV.
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MODIFYING THE MAGNON DISPERSION

Similar to the previous cases, we present the magnon dispersion for different spin directions and com-
pare the outcomes. Figures 6.4a, 6.4b, 6.4c and 6.4d display the dispersions for each spin orientation
with and without a nearest neighbour DMI of magnitude Dnn

xy = 0.3meV. We use similar parameters as
earlier where we also include the intrinsic out-of-plane next-nearest neighbour DMI, Dnnn

z = 0.31meV.
When the magnetization is perpendicular to the plane, the nearest neighbour DMI has no effect on
the dispersion, as shown in Figure 6.4a. However, for magnetizations that are not perpendicular to
the plane, a gap appears at the symmetry points K and K ′, and the branches exhibit nonreciprocal
behaviour. To observe how the asymmetry arises in the dispersion, it is useful to examine the dis-
persion across the entire Brillouin zone. We consider the lower band and present contour plots of the
dispersion. Without the nearest neighbour DMI, the dispersion is independent of the spin orientation
in the plane, as illustrated in Figure 6.5a. Figures 6.5b and 6.5c depict the dispersion when the spins
are oriented along x̂ and ŷ, respectively, with Dnn

xy = 0.3meV. It is evident that the presence of nearest
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4 2 0 2 4
kxa

4

2

0

2

4

kya

0

2

4

6

8

10

12

14

16

E
 (m

eV
)

(b) Dnn
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Figure 6.5.: Contour plots in Figure a)-c) show the dispersion of the lower band E−
k across the

Brillouin zone with varying magnetization directions ê3 and Dnn
xy values. Figure d) displays a 3D-

plot of the two bands around the K−point in the presence of nearest neighbour DMI. We have
excluded the next-nearest neighbour DMI from the analysis and the remaining parameters are:
J̃ = 2.955meV, Kz = 0.109meV, h = 2meV and S = 3/2.
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6.3. Comparison between Dzyaloshinskii-Moriya and Kitaev interactions

neighbour DMI causes a shift in the energy spectrum within the Brillouin zone. The direction of the
shift depends on the magnetization direction. For a magnetization along x̂ and Dnn

xy > 0, the shift is
towards +k̂y, while for a magnetization along ŷ, the shift is towards −k̂x. This shift accounts for the
asymmetry in the magnon dispersion along the symmetry lines of the Brillouin zone.

According to the argument that the nearest neighbour DMI only causes a shift in the dispersion, the
band gap is expected to disappear in the absence of a perpendicular next-nearest neighbour DMI or
when the magnetization is solely in the lattice plane. This is shown in Figure 6.5d, which uses the same
parameters as in Figure 6.5b, where the Dirac point is shifted from the K symmetry point. Hence, in
this scenario, the presence of a gap at the K and K ′ points does not necessarily indicate the existence
of topologically gapped bands. This finding contradicts the previous symmetry analysis, where a band
gap due to the nearest neighbour DMI was expected as long as the magnetization had out-of-plane
components. The reason for this discrepancy is that the breaking of effective time-reversal symmetry
is not evident in the harmonic theory and only becomes apparent when we include the third-order
terms and renormalize the magnon energy spectrum [16]. Conversely, when there is a perpendicular
next-nearest neighbour DMI present and the magnetization is tilted away from the plane to create a
band gap, the energy spectrum shift does not impact the Chern numbers of the bands.

6.3. Comparison between Dzyaloshinskii-Moriya and Kitaev interactions
The band gap observed in the magnon dispersion can be generated not only by the Dzyaloshinskii-
Moriya interaction but also by other exchange interactions, such as Kitaev interactions or off-diagonal
symmetric exchange [47, 85]. Kitaev interactions are naturally found in two-dimensional honeycomb
lattices with edge-sharing octahedrally coordinated transition metals, such as in CrI3. In these mate-
rials, the Kitaev interaction arises due to the strong spin-orbit coupling of the heavy ligands, which
results in competing pathways for the exchange coupling [86]. However, determining the underlying
interaction in a material can be challenging. For example, in CrI3, some reports suggest that the
Kitaev interaction generates the band gap [86], while other suggests that the DMI is responsible for
producing the Dirac gaps [13]. The objective of this section is to calculate the magnon dispersion in
a ferromagnetic honeycomb lattice for an arbitrary magnetization direction, including Kitaev interac-
tions, and see how the gap opening emerges. Lastly, we perform a brief comparison to the case where
DMI is present.

We apply a strong external magnetic field to align the ground state spin direction with the direction
of the magnetic field. We follow the previously outlined methodology in section 6.2.2. By including
the Heisenberg exchange interaction, together with the Kitaev interaction, the Hamiltonian can be
expressed as follows [87]

H = −
∑

<i,j>∈γ
S̃

T
i HK,γS̃j ,

HK,ξ =

J +K 0 0
0 J 0
0 0 J

 , HK,η =

J 0 0
0 J +K 0
0 0 J

 , HK,ζ =

J 0 0
0 J 0
0 0 J +K

 ,
withK as the Kitaev interaction strength. The notation < i, j >∈ γ symbolizes the nearest neighbour-
ing bonds between sublattice A and B, and the spins are written in the local Kitaev frame {ξ̂, η̂, ζ̂}.
The neighbouring bonds are denoted by γ ∈ {ξ, η, ζ}, which corresponds to the previously used nota-
tion {δA2 , δA3 , δA1 }, respectively. Taking CrI3 as an example, each Cr-Cr bond has an associated Kitaev
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MODIFYING THE MAGNON DISPERSION

Figure 6.6.: Illustration of a honeycomb network where the magnetic ions are in a edge-sharing
octahedral environment, as shown for three ions on the right hand side. Using CrI3 as an illustration,
the blue circles are Cr3+ ions, the dark purple are I− ions above the plane while the light purple
are I− below the plane. The Kitaev axes {ξ̂, η̂, ζ̂} are shown with arrows, directed towards the I−
ions above the plane. The neighbouring Cr-Cr bonds {ξ, η, ζ}, marked with green, blue and red
respectively are shown together with the previously used notation {δA1 , δA2 , δA3 } for the same bonds.
The illustration is inspired by Ref. [86].

axis directed towards the intermediate I− ion, based on the direction of the super-exchange path. The
geometry of the system is further explained in Figure 6.6. The position of these Kitaev axes relative
to the Cartesian (crystallographic) axes is given by [87]

ξ̂ = [ 1√
6
,− 1√

2
,
1√
3
]T , η̂ = [ 1√

6
,
1√
2
,
1√
3
]T , ζ̂ = [−

√
6
3 , 0, 1√

3
]T ,

suggesting that the spins in the Cartesian frame are related to the spins in the Kitaev frame via
S̃i = UKSi, where UK is an orthogonal matrix containing ξ̂, η̂ and ζ̂ as rows. By performing this
transformation, we obtain the following expression for the Hamiltonian

H = −
∑

<i,j>∈γ
ST

i HC,γSj ,

with HC,γ = UT
KHK,γUK . Computing the matrices for each bond, the summation may be written

compactly as [88]

H = −J ′ ∑
<i,j>∈γ

Si · Sj +
1
3K

∑
<i,j>∈γ

ST
i W

γSj ,

W γ =

 −cφγ sφγ

√
2cφγ

sφγ cφγ

√
2sφγ√

2cφγ

√
2sφγ 0

 ,
where J ′ = J + 1

3K, cφγ = cos(φγ), sφγ = sin(φγ) and φγ = 0, 2π/3, 4π/3 for γ = ζ, ξ, η bonds
respectively. The first term represents a scaling of the isotropic Heisenberg exchange coupling co-
efficient, while the second term introduces anisotropic contributions. The first term was treated in
section 6.2.2, so we will further investigate the last term. We remember that the spins are rotated
according to the direction of the magnetic field, and that the transformation to this basis is done
via Si = OS′

i. The matrix multiplication in the second term can then be expressed as S′T
i M

γS′
j ,

where Mγ = OTW γO. We notice that the summation over each sublattice is identical because both
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6.3. Comparison between Dzyaloshinskii-Moriya and Kitaev interactions

spins on sublattice A and B are projected onto the same Kitaev axis. Therefore, we only need to sum
over sublattice A to simplify the calculations. By using the Holstein-Primakoff transformation and
retaining only second-order terms, the resulting expression is as follows

HK = 1
3KS

∑
<i,j>∈γ

i∈A

[
−Mγ

33(a
†
iai + b†jbj) +

1
2M

γ
+a

†
ibj + h.c + 1

2M
γ
−aibj + h.c

]
,

where

Mγ
± =Mγ

11 ±Mγ
22 − i(Mγ

12 ∓Mγ
21),

=⇒ Mγ
+ = cφγ (Γyy − Γxx + 2

√
2Γxz) + 2sφγ (Γxy +

√
2Γyz),

=⇒ Mγ
− = cφγ (O2

y −O2
x + 2

√
2OxOz) + 2sφγ (OxOy +

√
2OyOz).

We defined the quantities Γµν = Oµ1Oν1 +Oµ2Oν2 and Oµ = Oµ1 − iOµ2 for shorthand notation. By
inserting the Fourier-transformed magnon operators, we obtain

HK = 1
3KS

∑
k

∑
{δA,γ}

[
−Mγ

33(a
†
kak + b†kbk) +

1
2M

γ
+e

ik·δAa†kbk + h.c + 1
2M

γ
−e−ik·δAakb−k + h.c

]
,

where {δA, γ} denotes a summation over the neighbouring bonds with the corresponding Kitaev axes.
If we incorporate this term into the total Hamiltonian where we include the Heisenberg exchange
interactions (both linear and biquadratic), the single-ion anisotropy and the Zeeman term, as in
equation (6.4) without the DMI, the total Hamiltonian may be written

H =
∑
k

[
t0(a†kak + b†kbk)− t̃ka

†
kbk − t̃∗kb

†
kak −

1
2SKzQz(aka−k + bkb−k)

− 1
2SKzQ

∗
z(a

†
ka

†
−k + b†kb

†
−k) + dkakb−k + d∗ka

†
kb

†
−k

]
.

The newly defined coefficients are given by

t0 = 3J ′S +∆′ − 1
3KS

∑
{δA,γ}

Mγ
33, t̃k = J ′SfδA(k)−

1
6KS

∑
{δA,γ}

Mγ
+e

ik·δA ,

dk = 1
6KS

∑
{δA,γ}

Mγ
−e−ik·δA ,

with J ′ = J + 2ΛS(S − 1) + K/3. This expression for the Hamiltonian aligns with the findings in
Ref. [86] for spin ordering in the out-of-plane direction. By summing over the nearest neighbours, we
obtain the following coefficients

101



MODIFYING THE MAGNON DISPERSION

t0 =3J ′S +∆′,

t̃k =J ′SfδA(k)−
KS

6

[
(Γyy − Γxx + 2

√
2Γxz)e

i kya
√
3 − e−i kya

2
√
3

(
(Γyy − Γxx + 2

√
2Γxz) cos(

1
2kxa)

+i2
√
3(Γxy +

√
2Γyz) sin(

1
2kxa)

)]
,

dk =KS6

[
(O2

y −O2
x + 2

√
2OxOz)e

−i kya
√
3 − ei

kya

2
√
3

(
(O2

y −O2
x + 2

√
2OxOz) cos(

1
2kxa)

−i2
√
3(OxOy +

√
2OyOz) sin(

1
2kxa)

)]
.

By using that t̃−k = t̃∗k, we can write the Hamiltonian in matrix notation on the form

H = 1
2
∑
k

ψ†
m(k)Hm,Kit(k)ψm(k), ψm(k) = [ak, bk, a†−k, b

†
−k]

T ,

Hm,Kit(k) =


t0 −t̃k −SKzQ

∗
z d∗k

−t̃∗k t0 d∗−k −SKzQz∗
−SKzQz d−k t0 −t̃k

dk −SKzQz −t̃∗k t0

 .
Solving the BdG system by computing the eigenvalues of σ3Hm,Kit(k), the positive eigenvalues are

E±
k = 1√

2

(
−Ãk ±

√
Ã2

k − 4B̃k

) 1
2
,

with the helping variables defined as

Ãk =− 2t20 − 2|t̃k|2 + 2S2K2
z |Qz|2 + |dk|2 + |d−k|2,

B̃k =(t20 − |t̃k|2)2 + S2K2
z |Qz|2(S2K2

z |Qz|2 − 2t20 − 2|t̃k|2)− t20(|dk|2 + |d−k|2) + |dk|2|d−k|2

+ 4t0SKz Re
(
t̃kQzd

∗
−k + t̃kQ

∗
zdk
)
− 2Re

(
t̃2kdkd

∗
−k

)
− 2S2K2

z Re
(
Q2

zd
∗
kd

∗
−k

)
.

Figure 6.7a, 6.7c and 6.7e display the magnon dispersion along the symmetry lines of the Brillouin
zone for the x̂, ŷ and ẑ magnetization directions. The parameters used in this analysis are taken from
Ref. [86], specifically J = 0.2meV and K = 5.2meV which corresponds to the dispersion in bulk CrI3.
This results in an effective exchange coupling coefficient of J ′ = J + K/3 = 1.94meV. To facilitate
comparison, we present the dispersion with and without Kitaev interaction, using the same effective
exchange coupling coefficient. Other parameters utilized are h = 2meV, Kz = 0.109meV and S = 3/2.
Moreover, Figure 6.7b, 6.7d and 6.7f show contour plots of the lower band E−

k in the presence of
Kitaev interactions for the respective magnetization directions. It should be noted that the strength
of the Kitaev interaction remains a topic of debate, with some studies suggesting a value 25 times
larger than J , while others propose a relative strength of 0.4 [88]. Additionally, the relative sign of
the Kitaev interaction may change accordingly [11].

Figure 6.7e demonstrates that a gap opens up in the magnon dispersion when the magnetization
is ordered out of the lattice plane and the Kitaev interaction is activated. In contrast, when the
magnetization lies in the plane, it remains unclear if the band gaps close due to a shift of the extreme
points away from the K and K ′ symmetry points. Thus, there may be gap closings that are not

102



6.3. Comparison between Dzyaloshinskii-Moriya and Kitaev interactions

M Γ K K ′ Γ
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

E
 (m

eV
)

(a) x̂.

4 2 0 2 4
kxa

4

2

0

2

4

kya

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

E
 (m

eV
)

(b) x̂.

M Γ K K ′ Γ
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

E
 (m

eV
)

(c) ŷ.
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Figure 6.7.: The figures in the left column display the magnon dispersion in a ferromagnetic honey-
comb lattice for different magnetization orientations. The solid (dashed) lines indicate the dispersion
without (with) Kitaev interactions, with a magnitude of K = 5.2meV. Both types of dispersion
use the same effective exchange coupling coefficient, J ′ = J + K/3 = 1.94meV. The remaining
parameters are Kz = 0.109meV, h = 2meV and S = 3/2. The right column depicts contour plots
of the lower band, E−

k , using the same parameters, including Kitaev interaction.
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apparent in the figures. A similar shift of the extreme points was observed in the presence of a nearest
neighbour DMI. When comparing this shift to the one induced by the DMI, we observe that the latter
results in a complete displacement of the entire energy spectrum in a particular direction, while the
Kitaev interaction exhibits a more intricate characteristic with elongated contour plots that vary in
size for magnetizations along the x̂ and ŷ directions. This elongated shape leads to a disruption of
the rotational symmetry in the dispersion.

To examine the relationship between the gap and magnetization direction more closely, we investigate
various planes and observe how the gap evolves with the tilting angle. Specifically, we consider four
scenarios: tilting in the xz- and yz-plane as θ varies, in addition to magnetization directions in the
xy−plane and the plane where θ = π/4 as φ varies. We consider angles within the range [0, π], and for
each angle, we calculate the displacement of the extreme point from the K-point and determine the
corresponding gap size. The results of this analysis are presented in Figure 6.8, where we also compare
them to the case when the DMI is included. We employ two parameter sets: J = 0.2meV (without
biquadratic exchange) and K = 5.2meV for the Kitaev case, and J̃ = 2.955meV, Dnnn

z = 0.31meV and
Dnn

xy = 0.3meV in the DMI case. The remaining parameters are left unchanged.

In the presence of the DMI, the size of the gap reaches its maximum when the magnetization is
perpendicular to the lattice plane. As the magnetization tilts away from the perpendicular direction,
the gap gradually decreases following a cosine function until it closes completely for parallel alignment
with the lattice plane. This behaviour is observed in both the xz- and yz-plane. The shift is most
significant when θ = π/2 because the projection of the in-plane nearest neighbour DM vector onto the
magnetization is largest at this angle. When examining the xy−plane and the plane where θ = π/4
with a varying azimuthal angle φ, we observe an isotropic behaviour of the DMI-induced gap and
shift. In these cases, both the displacement and the size of the gap remain independent of the angle
φ.

In the case of Kitaev interactions, the gap closure occurs for two intermediate angles within the xz-
plane, while in the yz-plane, it closes for three angles, including θ = π/2. This implies that unlike
DMI, the gap does not necessarily close for a magnetization lying in the plane. Comparing the gap
sizes between Dnnn

z = 0.31meV and K = 5.2meV, we observe that the gap size increases more rapidly
with DMI. Additionally, for the Kitaev interaction, there are noticeable differences when comparing
the shift and gap size between the xz− and yz−planes, where symmetric curves around θ = π/2 is
observed only in the yz−plane. This anisotropic behaviour is further illustrated when varying φ in
the planes where θ = π/2 and θ = π/4. For magnetization directions in the plane, we observe gap
closure when the magnetization aligns along both the neighbouring bonds associated with sublattices
A and B. This explains why the gap closes for a magnetizations in the ŷ direction but not in the x̂
direction.

Based on this analysis, we can infer that in the presence of DMI, the band gap tends to close uniformly
as the magnetization is tilted towards the plane, regardless of the in-plane magnetization components.
However, in the presence of Kitaev interactions, a strong dependence on the in-plane magnetization
components is expected. It is also important to note that in the absence of mirror symmetry breaking,
where Dnn

xy is zero, the influence of the magnetization direction on the magnon dispersion is primarily
limited to the vicinity of the K and K ′ symmetry points when an out-of-plane next-nearest neighbour
DMI is present. In contrast, the impact of the magnetization direction extends beyond these points
in the presence of Kitaev interactions. These observations are consistent with a study mentioned in
Ref. [13], where the magnon dispersion in CrI3 was measured using inelastic neutron scattering for
both in-plane and out-of-plane magnetization directions.
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Figure 6.8.: The figures illustrate two quantities: the band gap (∆k0) at the extreme points of the
magnon dispersion, represented by k0 (maximum for the lower band and minimum for the upper
band), and the displacement of these extreme points from the K−point (|k0 −K|a). We examine
four scenarios: varying the angle θ in the xz− and yz−planes, and varying φ in the xy−plane and
the plane where θ = π/4. Each figure compares the effects of Kitaev interactions (J = 0.2meV and
K = 5.2meV without considering biquadratic exchange) and DMI (J̃ = 2.955meV, Dnnn

z = 0.31meV
and Dnn

xy = 0.3meV). The other parameters are held constant for both cases, with h = 2meV,
Kz = 0.109meV and S = 3/2.
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CHAPTER 7

Hybridization in FM honeycomb layer with arbitrary
magnetization direction

In this chapter, our goal is to analyze the magnetoelastic energy spectrum arising from bilinear coupling
in a ferromagnetic honeycomb lattice, considering different magnetization directions. Building upon
the spin-rotation techniques utilized in Chapter 6 to obtain the magnon dispersion for a general form
of the Dzyaloshinskii-Moriya interaction, our calculations in this chapter bear similarities to those
presented in Chapter 4. Furthermore, we will compute the Chern numbers of the magnon-polaron
bands and compare them with those of the non-interacting system, in addition to investigate the Hall
response to a temperature gradient.

7.1. Derivation of the magnetoelastic energy
The objective of this section is to derive the interacting Hamiltonian that arises from lattice vibrations
in a ferromagnet. We employ a microscopic approach by conducting a Taylor expansion of the mag-
netic exchange interactions that depend on the lattice sites. We will not consider Kitaev interactions
and solely focus on DMI, as previous chapters have shown, can generate bilinear coupling terms in
the interacting Hamiltonian for collinear spin ordering. In addition, an anisotropy-based contribution
to the magnetoelastic energy is included, as discussed in section 4.1.2. In section 6.2, two types of
next-nearest neighbour DM vectors were introduced: one with arbitrary direction for the in-plane
components, Dnnn,t

ij , and the other with in-plane components directed along the next-nearest neigh-
bours, Dnnn,r

ij . It has been found that only the latter generates the lowest order of coupling terms,
and therefore, will be used in the following analysis.

Contribution from the NNN DMI

We expressed the next-nearest neighbour DM vector in the following form

Dnnn,r(rij) = −ηijDnnn
xy (rij)r̂ij + νijD

nnn
z (rij)ẑ.

By Taylor expanding the interaction strengths Dnnn
xy (rij), Dnnn

z (rij) and the unit vector r̂ij around
the equilibrium position Rij , the vector can be expressed as a first-order approximation in terms of
the ionic displacement as

Dnnn,r(rij) ≈Dnnn,r(Rij)− ηij
Dnnn

xy (Rij)
|Rij |

(
uij − (R̂ij · uij)R̂ij

)
− ηij

(
∇rijD

nnn
xy (rij)

∣∣∣
Rij

· uij

)
R̂ij + νij

(
∇rijD

nnn
z (rij)

∣∣∣
Rij

· uij

)
ẑ

≈Dnnn,r(Rij)− ηij
Dnnn

xy (Rij)
|Rij |

(
uij − (R̂ij · uij)R̂ij

)
,

where we only keep the dominant terms, assuming the derivatives make negligible contributions. This
is the reason why we have chosen to use this type of DM vector instead of Dnnn,t

ij , where all the
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first-order terms in the ionic displacement involve derivatives. The last term makes a contribution to
the interacting Hamiltonian, given by

HD,nnn
int =

∑
<<i,j>>

∑
µ,ν

(uiµ − ujµ)ηij
Dnnn

xy

Rij

(
δµν − R̂µ

ijR̂
ν
ij

)
(Si × Sj)ν ,

with Rij = |Rij | and Dnnn
xy = Dnnn

xy (Rij). By performing a rotation (Si × Sj)ν = (O(S′
i × S′

j))ν , the
spins can be expressed in terms of the reference frame consisting of {ê1, ê2, ê3}, where ê3 aligns with
the magnetic field direction. This allows us to represent the Hamiltonian in a concise form as follows

HD,nnn
int =

∑
<<i,j>>

∑
µ,ν

(uiµ − ujµ)Fµν
ij (S′

i × S′
j)ν ,

where µ ∈ {x, y, x}, ν ∈ {1, 2, 3} and the coupling matrix is defined by

Fµν
ij =

∑
ξ=x,y,z

ηij
Dnnn

xy

Rij

(
δµξ − R̂µ

ijR̂
ξ
ij

)
Oξν .

Writing out the summation, the coupling to in-plane (µ = x, y) and out-of-plane (µ = z) phonon
modes can be separated as

(µ = x, y) : Fµν
ij =ηij

Dnnn
xy

Rij

[
(δµx − R̂µ

ijR̂
x
ij)Oxν + (δµy − R̂µ

ijR̂
y
ij)Oyν)

]
,

(µ = z) : F zν
ij =ηij

Dnnn
xy

Rij
Ozν .

Contribution from the NN DMI

The nearest neighbour DM vector is on the form

Dnn
ij = Dnn

xy(ẑ × R̂ij) +Dnn
z ẑ.

Section 4.1.2 carefully addressed the in-plane aspect of the nearest neighbour DMI. However, we redo
the calculations for the updated nearest neighbour DM vector to ensure all aspects are considered.
By performing a Taylor expansion, the DM vector’s lowest order contributions are

Dnn(rij) ≈Dnn(Rij) +
Dnn

xy

Rij

(
ẑ × (uij − (R̂ij · uij)R̂ij)

)
+
(
∇rijD

nn
xy(rij)

∣∣∣
Rij

· uij

)
(ẑ × R̂ij) +

(
∇rijD

nn
z (rij)

∣∣∣
Rij

· uij

)
ẑ

≈Dnn(Rij) +
Dnn

xy

Rij

(
ẑ × (uij − (R̂ij · uij)R̂ij)

)
,

with Dnn
xy = Dnn

xy(Rij) and we ignore the terms containing derivatives. The second term yields an
additional contribution to the interacting Hamiltonian, which may be written concisely as

HD,nn
int =

∑
<i,j>

∑
µ,ν

(uiµ − ujµ)Tµν
ij (S′

i × S′
j)ν ,

for µ ∈ {x, y, x}, ν ∈ {1, 2, 3} and the nearest neighbour coupling matrix is defined by
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Tµν
ij = −

∑
ξ,γ

∈{x,y,z}

Dnn
xy

Rij
εzγξ

(
δµγ − R̂µ

ijR̂
γ
ij

)
Oξν ,

where εzγξ is the Levi-Civita tensor. If we explicitly express the summation, the interacting Hamil-
tonian’s lowest order contribution does not result in coupling with out-of-plane phonon modes, as
previously stated in section 4.1.2. However, the coupling with in-plane phonon modes takes the fol-
lowing form

(µ = x, y) : Tµν
ij =−

Dnn
xy

Rij

[
(δµx − R̂µ

ijR̂
x
ij)Oyν − (δµy − R̂µ

ijR̂
y
ij)Oxν

]
.

Contribution from anisotropy

The magnetoelastic energy caused by crystalline anisotropy occurs because the movement of atoms
results in a local alteration of crystal axes, which in turn affects the crystalline anisotropy and becomes
linked to spins. As crystalline anisotropy is a feature of all solids, this form of magnetoelastic coupling
should also exist. The derivation of the contribution to the interacting Hamiltonian takes its starting
point from the anisotropy energy density hani in an untrained cubic crystal. Expanding the energy
density in terms of the strains, the magnetoelastic energy density is on the form [29, 65, 67]

hanime = b1(m̂2
xexx + m̂2

yeyy + m̂2
zezz) + 2b2(m̂xm̂yexy + m̂ym̂zeyz + m̂xm̂zezx),

where eµν = 1
2 (∂νuµ + ∂µuν) are the strains and ∂νuµ = ∂uµ

∂rν
. The magnetoelastic coupling con-

stants are denoted by b1 and b2, while the directional cosines of the magnetization are represented by
(m̂x, m̂y, m̂z). Additionally, in the continuum limit, u(r) signifies the displacement. Since we look at
a two-dimensional system, we can neglect the derivative of the displacement with respect to z [29]. By
rotating the Cartesian magnetization components to the new frame of reference and neglecting higher
order contributions, we obtain

hanime =2b1
[
∂xux(Γxx

1 m̂′
1 + Γxx

2 m̂′
2) + ∂yuy(Γyy

1 m̂
′
1 + Γyy

2 m̂
′
2)
]

+2b2
[
(∂yux + ∂xuy)(Γxy

1 m̂
′
1 + Γxy

2 m̂
′
2) + ∂xuz(Γxz

1 m̂
′
1 + Γxz

2 m̂
′
2)

+∂yuz(Γyz
1 m̂

′
1 + Γyz

2 m̂
′
2)
]
,

where Γµµ′
ν = (1/2)(OµνOµ′3 +Oµ3Oµ′ν) and we utilized m̂′

3 ≈ 1. In order to use this expression in a
discrete lattice, we approximate the strain tensor with the discrete strain tensor [63]

ẽµνij = 1
2

1
|Ri −Rj |2

[(Riν −Rjν)(uiµ − ujµ) + (Riµ −Rjµ)(uiν − ujν)] ,

which is proportional to the strain tensor in the long wavelength limit. By using m̂′
µ = S′

iµ/S
2 and

summing over the nearest neighbours, the magnetoelastic energy becomes

Hani
int = 1

a20

∑
<i,j>

[
κ1
(
Rx

iju
x
ij(Γxx

1 S′
i1 + Γxx

2 S′
i2) +Ry

iju
y
ij(Γ

yy
1 S

′
i1 + Γyy

2 S
′
i2)
)

+ κ2
(
(Ry

iju
x
ij +Rx

iju
y
ij)(Γ

xy
1 S

′
i1 + Γxy

2 S
′
i2) +Rx

iju
z
ij(Γxz

1 S
′
i1 + Γxz

2 S
′
i2)
)

Ry
iju

z
ij(Γ

yz
1 S

′
i1 + Γy2

2 S
′
i2)
)]

=
∑
<i,j>

∑
µν

(uiµ − ujµ)Kµν
ij S

′
iν ,
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for µ ∈ {x, y, z} and ν ∈ {1, 2}. The interaction strengths κ1 and κ2 have been defined, with each
being proportional to b1 and b2, respectively, and expressed in units of energy. The coupling matrix
is defined as follows

Kij =
1
a20

κ1R
x
ijΓxx

1 + κ2R
y
ijΓ

xy
1 κ1R

x
ijΓxx

2 + κ2R
y
ijΓ

xy
2

κ1R
y
ijΓ

yy
1 + κ2R

x
ijΓ

xy
1 κ1R

y
ijΓ

yy
2 + κ2R

x
ijΓ

xy
2

κ2(Rx
ijΓxz

1 +Ry
ijΓ

yz
1 ) κ2(Rx

ijΓxz
2 +Ry

ijΓ
yz
2 )

 .
When considering a magnetization perpendicular to the plane, the expression simplifies to

(magnetization ⊥ plane) : Hani
int = κ2

2a0

∑
<i,j>

(uiz − ujz)(R̂ij · Si),

which bears resemblance to the utilized expression in Ref. [27]. In contrast to the DMI, which solely
interacts with in-plane phonon modes when the magnetization is perpendicular to the plane, the
anisotropy induces a coupling that is limited to out-of-plane phonon modes for the same magnetization
direction. Similarly, a magnetization aligned with the x̂ direction generates the following interacting
Hamiltonian

(magnetization || x̂) : Hani
int = κ2

2a0

∑
<i,j>

(
(uxijR̂

y
ij + uyijR̂

x
ij)Siy + uzijR̂

x
ijSiz

)
.

It is important to observe that in order for κ1 to have an impact on the dispersion, the orientation of
the magnetization must not be parallel to any of the Cartesian axes in the coordinate system. This is
connected to the fact that the derivation begins with the anisotropy energy density specific to a cubic
lattice.

The interacting Hamiltonian

The total interacting Hamiltonian is then

Hint =

HD,nn
int︷ ︸︸ ︷∑

<i,j>

∑
µ,ν

(uiµ − ujµ)Tµν
ij (S′

i × S′
j)ν +

HD,nnn
int︷ ︸︸ ︷∑

<<i,j>>

∑
µ,ν

(uiµ − ujµ)Fµν
ij (S′

i × S′
j)ν

+
∑
<i,j>

∑
µν

(uiµ − ujµ)Kµν
ij S

′
iν︸ ︷︷ ︸

Hani
int

.

By neglecting the terms that contain derivatives, only the planar components Dnn
xy and Dnnn

xy , along
with κ1 and κ2, play a role in the hybridization and establish the extent of the coupling.

7.2. Calculation of magnon-phonon energy spectrum
Two methods are employed to derive the magnetoelastic energy spectrum. The first method involves
the use of the second quantization formalism, where the basis is constructed using magnon and phonon
bosonic operators. In the second approach, the phonon Hamiltonian is expressed in a non-diagonalized
form, and the magnetoelastic Hamiltonian is formulated using the magnon bosonic operators and the
phonon BdG field. Although the two methods produce the same energy spectrum, the latter method
is better suited for numerical computations of the Berry curvature [19].
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7.2.1. Second quantized approach
The Hamiltonian for the non-interacting energy of phonons and magnons in the honeycomb ferromag-
net can be expressed as follows

H0 = Hph +Hm,

Hph =
∑
q,λ

εq,λc
†
q,λcq,λ,

Hm = 1
2
∑
k

ψ†
m(k)Hm(k)ψm(k),

where εq,λ = ℏωq,λ = ℏΩω̃q,λ is the phonon energy in mode λ, and Ω =
√
Φαβ
µν /M for a yet to be

specified force coefficient. The magnon basis vector is on the form ψm(k) = [ak, bk, a†−k, b
†
−k]

T , and
Hm(k) is described in equation (6.5). To account for interactions, it is necessary to derive a more
applicable expression for the interacting Hamiltonian. Since we are examining a ferromagnetic system,
we can make the following approximations S′

i3 ≈ S and S′
j3 ≈ S, such that

Hint = S
∑
<i,j>

∑
µ

(uiµ − ujµ)
[
Tµ1
ij (S′

i2 − S′
j2)− Tµ2

ij (S′
i1 − S′

j1)
]

+ S
∑

<<i,j>>

∑
µ

(uiµ − ujµ)
[
Fµ1
ij (S′

i2 − S′
j2)− Fµ2

ij (S′
i1 − S′

j1)
]

+
∑
<i,j>

∑
µ

(uiµ − ujµ)
[
Kµ1

ij S
′
i1 +Kµ2

ij S
′
i2

]
,

to second order in bosonic operators. By considering the first term, we utilize the Holstein-Primakoff
transformation given by equation (6.2), to obtain the following

HD,nn
int =S2

√
S

2
∑
i,δA
i∈A

∑
µ

(uiAµ − ui+δA,Bµ)
[
Tµ
δA
(bi+δA − ai) + Tµ∗

δA
(b†i+δA

− a†i )
]

+ S

2

√
S

2
∑
i,δB
i∈B

∑
µ

(uiBµ − ui+δB ,Aµ)
[
Tµ
δB
(ai+δB − bi) + Tµ∗

δB
(a†i+δB

− b†i )
]
,

where we defined Tµ
δA(B)

= Tµ2
δA(B)

+iTµ1
δA(B)

for shorthand notation. By expressing the ionic displacement
in terms of bosonic operators using equation (2.10), and substituting for the Fourier-transformed
magnon operators, it results in

HD,nn
int =

∑
q,λ

[
(cq,λ + c†−q,λ)(T

A
q,λa−q + TB

q,λb−q) + (c−q,λ + c†q,λ)(T
A∗
q,λa

†
−q + TB∗

q,λ b
†
−q)
]
,

where the coupling coefficients are defined by

T
A(B)
q,λ = −S2

√
ℏS

Mωq,λ

∑
δA(B),µ

(
eλA(B),µ(q)− eλB(A),µ(q)e

iq·δA(B)
)
Tµ
δA(B)

.

The coefficients can be written more compactly as
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TA
q,λ =1

2SζD
nn
xy

√
S

ω̃q,λ

(
eλA(q) · gnnq=0 − eλB(q) · gnnq

)
,

TB
q,λ =1

2SζD
nn
xy

√
S

ω̃q,λ

(
eλB(q) · gnnq=0 − eλA(q) · gnn−q

)
,

with ζ = (1/a0)
√
ℏ/MΩ, and the elements in gnnq are

gnnqx =e
i√
3
qyaOy +

1
2e

−i qya

2
√
3

(
cos(12qxa)Oy − i

√
3 sin(12qxa)Ox

)
,

gnnqy =− 1
2e

−i qya

2
√
3

(
3 cos(12qxa)Ox − i

√
3 sin(12qxa)Oy

)
,

gnnqz =0,

where we also defined Oµ = Oµ2 + iOµ1.

Similarly, the second term in the interacting Hamiltonian can be split up in the following way

HD,nnn
int =S2

√
S

2
∑
i,τA
i∈A

∑
µ

(uiAµ − ui+τA,Aµ)
[
Fµ
τA(ai+τA − ai) + Fµ∗

τA (a†i+τA
− a†i )

]

+ S

2

√
S

2
∑
i,τB
i∈B

∑
µ

(uiBµ − ui+τB ,Bµ)
[
Fµ
τB (bi+τB − bi) + Fµ∗

τB (b†i+τB
− b†i )

]
,

with Fµ
τA(B) = Fµ2

τA(B) + iFµ1
τA(B) . Proceeding, we have

HD,nnn
int =− S

2

√
ℏS
M

∑
q,λ

∑
τA,µ

(cq,λ + c†−q,λ)√
ωq,λ

eλAµ(q)(1− cos(q · τA))
[
Fµ
τAa−q + Fµ∗

τA a
†
q

]

− S

2

√
ℏS
M

∑
q,λ

∑
τB ,µ

(cq,λ + c†−q,λ)√
ωq,λ

eλBµ(q)(1− cos(q · τB))
[
Fµ
τBb−q + Fµ∗

τB b
†
q

]
=
∑
q,λ

[
(cq,λ + c†−q,λ)(F

A
q,λa−q + FB

q,λb−q) + (c−q,λ + c†q,λ)(F
A∗
q,λa

†
−q + FB∗

q,λ b
†
−q)
]
,

where the coefficients are given by

F
A(B)
q,λ =− S

2

√
ℏS

Mωq,λ

∑
τA(B),µ

eλA(B),µ(q)(1− cos(q · τA(B)))Fµ
τA(B)

.

Computing the summation over the second nearest neighbours, the coupling coefficients may be written
as

FA
q,λ =− 1

2SζD
nnn
xy

√
S

3ω̃q,λ
eλA(q) · gnnnq ,

FB
q,λ =1

2SζD
nnn
xy

√
S

3ω̃q,λ
eλB(q) · gnnnq ,
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with

gnnnqx =3Ox

(
1− cos(12qxa) cos(

√
3
2 qya)

)
−
√
3Oy sin(

1
2qxa) sin(

√
3
2 qya),

gnnnqy =Oy

(
3− 2 cos(qxa)− cos(12qxa) cos(

√
3
2 qya)

)

−
√
3Ox sin(

1
2qxa) sin(

√
3
2 qya),

gnnnqz =2Oz

(
3− cos(qxa)− 2 cos(12qxa) cos(

√
3
2 qya)

)
.

The third term in the interacting Hamiltonian, stemming from the anisotropy, can be expressed as

Hani
int =1

2

√
S

2
∑
i,δA
i∈A

∑
µ

(uiAµ − ui+δA,Bµ)
[
(Kµ1

δA
− iKµ2

δA
)ai + (Kµ1

δA
+ iKµ2

δA
)a†i
]

+ 1
2

√
S

2
∑
i,δB
i∈B

∑
µ

(uiBµ − ui+δB ,Aµ)
[
(Kµ1

δB
− iKµ2

δB
)bi + (Kµ1

δB
+ iKµ2

δB
)b†i
]

=
∑
q,λ

[
(cq,λ + c†−q,λ)(K

A
q,λa−q +KB

q,λb−q) + (c−q,λ + c†q,λ)(K
A∗
q,λa

†
−q +KB∗

q,λb
†
−q)
]
,

where

K
A(B)
q,λ = 1

4

√
ℏS

Mωq,λ

∑
δA(B),µ

(
eλA(B)µ(q)− eλB(A)µ(q)e

iq·δA(B)
)
(Kµ1

δA(B)
− iKµ2

δA(B)
).

In a more concise format, the coefficients are on the form

KA
q,λ =− 1

4ζ
√

S

ω̃q,λ
eλB(q) · ganiq ,

KB
q,λ =1

4ζ
√

S

ω̃q,λ
eλA(q) · gani−q ,

with the vector defined as

ganiqx =− κ2Γxye
i√
3
qya + e−i qya

2
√
3 (κ2Γxy cos(12qxa)− i

√
3κ1Γxx sin(12qxa)),

ganiqy =− κ1Γyye
i√
3
qya + e−i qya

2
√
3 (κ1Γyy cos(12qxa)− i

√
3κ2Γxy sin(12qxa)),

ganiqz =− κ2Γyze
i√
3
qya + κ2e

−i qya

2
√
3 (Γyz cos(12qxa)− i

√
3Γxz sin(12qxa)),

and Γµµ′ = Γµµ′

1 − iΓµµ′

2 .
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By summing up the contributions from the three terms, we obtain the following interacting Hamilto-
nian

Hint =
∑
q,λ

[
(cq,λ + c†−q,λ)(G

A
q,λa−q +GB

q,λb−q) + (c−q,λ + c†q,λ)(G
A∗
q,λa

†
−q +GB∗

q,λb
†
−q)
]
,

with GA(B)
q,λ = T

A(B)
q,λ +FA(B)

q,λ +KA(B)
q,λ . The total magnetoelastic Hamiltonian in the second quantized

(sq) formalism can then be written as

H = 1
2
∑
q

Ψ†
qH

sq
me(q)Ψq, (7.1)

in the basis Ψq = [ψT
q ,ψ

†
−q]T , ψT

q = [aq, bq, cq,1, cq,2, cq,3, cq,4, cq,5, cq,6] and the 16× 16 matrix Hsq
me(q)

is listed in Appendix B. The eigenvalues are obtained numerically by diagonalizing σ3Hsq
me(q).

7.2.2. Method using non-diagonalized form of the phonon Hamiltonian
From equation (4.9), the phonon Hamiltonian is given by

Hph = 1
2
∑
q

φ̃
†
ph(q)Hph(q)φ̃ph(q), Hph(q) = ℏΩ

[
D̃(q) 0
0 Iph

]
, φ̃ph(q) = [ũT

q,A, ũ
T
q,B, p̃

T
−q,A, p̃

T
−q,B]T ,

where ũT
q,α = [ũqαx, ũqαy, ũqαz] denotes the dimensionless displacement of the ions at sublattice α =

A,B while p̃−q,α is the dimensionless momentum, and Iph = I6×6. The derivation of the interacting
Hamiltonian follows a similar approach as in the previous section, so we present the final result as
follows. The interacting Hamiltonian, which couples the displacement to the magnonic Holstein-
Primakoff operators, can be expressed as

Hint =
∑
q

ũ†
qHc(q)ψm(q), ũq = [ũT

qA, ũ
T
qB]T , ψm(q) = [aq, bq, a†−q, b

†
−q]T ,

Hc(q) = ζ

√
S

2

[
−dnnq=0 − dnnnq dnnq + daniq −dnn∗q=0 − dnnn

∗
q dnn

∗
−q + dani∗−q

dnn−q − dani−q −dnnq=0 + dnnnq dnn
∗

q − dani∗q −dnn∗q=0 + dnnn
∗

q

]
,

where each element in the matrix is a 3 × 1 column vector. In order to define the vectors dq, we
introduce the helping functions

fq(s1, s2, s3) = s1e
i qya
√
3 + s2e

−i( qxa
2 + qya

2
√
3
) + s3e

i( qxa
2 − qya

2
√
3
)
,

hq(s1, s2, s3) = s1(1− cos(qxa)) + s2(1− cos(12qxa+
√
3
2 qya)) + s3(1− cos(12qxa−

√
3
2 qya)),

which corresponds to a summation over the first and second nearest neighbours, respectively. The dq
vectors corresponding to the nearest neighbour DMI, the anisotropy, and the next-nearest neighbour
DMI are given by the following expressions
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dnnq = −SDnn
xy

 fq(Oy,
1
4(Oy +

√
3Ox), 14(Oy −

√
3Ox))

fq(0,−1
4(3Ox +

√
3Oy),−1

4(3Ox −
√
3Oy))

0

 ,
daniq = 1

2

fq(−κ2Γxy, 12(κ2Γ
xy +

√
3κ1Γxx), 12(κ2Γ

xy −
√
3κ1Γxx))

fq(−κ1Γyy, 12(κ1Γ
yy +

√
3κ2Γxy), 12(κ1Γ

yy −
√
3κ2Γxy))

fq(−κ2Γyz, 12κ2(Γ
yz +

√
3Γxz), 12κ2(Γ

yz −
√
3Γxz))

 , (7.2)

dnnnq =
SDnnn

xy√
3

hq(0, 12(3Ox −
√
3Oy), 12(3Ox +

√
3Oy))

hq(2Oy,
1
2(Oy −

√
3Ox), 12(Oy +

√
3Ox))

2hq(Oz, Oz, Oz)

 .
Thus, in the basis φ̄q = [ψT

m, ũ
T
q , p̃

T
−q]T , the magnetoelastic Hamiltonian becomes

H = 1
2
∑
q

φ̄
†
qHme(q)φ̄q, Hme(q) =

Hm(q) H†
c (q) 04×6

Hc(q) ℏΩD̃(q) 06×6
06×4 06×6 ℏΩIph

 .
This Hamiltonian matrix is not a bosonic BdG Hamiltonian since the basis operators do not obey the
bosonic commutation relation. However, this can be adjusted by introducing the phonon BdG field
[19]

vq =
1√
2
(p̃−q − iũq), v†−q =

1√
2
(p̃−q + iũq).

By defining v′q,+ = vq and v′q,− = v†−q, we see that the operators satisfy the typical BdG commutation
relation [v′q,ρ,v′†q,ρ′ ] = ρδρ,ρ′Iph. Furthermore, we sort the basis into particle and hole spaces with the
matrix P . Finally, we obtain

H = 1
2
∑
q

φ†
qH

nd
me(q)φq, φq = [aq, bq,v′Tq,+, a

†
−q, b

†
−q,v

′T
q,−]T ,

Hnd
me(q) = PLHme(q)L†P †,

L =

I2m 0 0
0 − i√

2Iph
1√
2Iph

0 i√
2Iph

1√
2Iph

 , P =


Im

Iph
Im

Iph

 ,
Im = I2×2, I2m = I4×4 and Hnd

me(q) is the magnetoelastic Hamiltonian matrix in the non-diagonalized
(nd) phonon basis. The eigenvalues are obtained by diagonalizing σ3Hnd

me(q).

7.3. The magnetoelastic energy spectrum
Our analysis uses the following parameter values for the magnon dispersion: J̃ = 2.955meV, S = 3/2,
Kz = 0.109meV and Dnnn

z = 0.31meV, which have shown good agreement with experimental results
in CrI3 [82]. We also establish h = 4.5meV as the strength of the Zeeman term. The strength of the
coupling is determined by the planar components of the nearest and next-nearest neighbour DM vector
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and is dependent on the degree of symmetry breaking present in the system. The coupling associated
with the anisotropy is exclusively determined by the phenomenological parameter κ2, as we limit our
investigation to magnetization directions parallel to the Cartesian axes. Our toy model uses the values
Dnn

xy = 0.2meV, Dnnn
xy = 0.3meV and κ2 = 1meV. As the Cr atoms in CrI3 form a honeycomb lattice, we

use the same relative relationship between the force coefficients as for the dispersion in graphene, listed
in equation (2.25), and set the scaling parameter to ℏΩ = 10meV (with Ω =

√
|γ2|/M). We chose this

value to match the energies of the optical branches with the high-frequency branches reported in Refs.
[81, 89], which calculated the phonon dispersion in CrI3 using first-principles calculations. However, it
is crucial to note that our phonon dispersion is distinct from that of CrI3 because we neglect the iodine
atoms and assume a perfect honeycomb lattice in our calculation. The dimensionless constant ζ that
is proportional to the coupling terms has the magnitude ζ = 0.023, considering the massM = 51.996u
of the Cr atoms and a lattice constant of a = 6.687Å [81]. This constant induces a relatively weak
coupling. Nevertheless, to observe gap openings, we use a higher value of ζ = 0.2. Despite the gap’s
size, the topological properties should remain unaffected, as long as there is a gap opening.

To examine the impacts of the various coupling terms, we calculate and present the dispersion with
either Dnnn

xy , Dnn
xy or κ2 being nonzero, as well as the case where all parameters are nonzero. We display

the dispersions in Figures 7.1 and 7.2, where each figure illustrates the dispersion with the magne-
tization along x̂, ŷ and ẑ. Consistent with previous findings, we find that the magnon and phonon
bands exhibit anticrossing regions where their frequencies match. Notably, differences are observed
when either Dnn

xy or Dnnn
xy is nonzero. In the former case, there is no coupling to out-of-plane phonon

modes for any magnetization direction to lowest order, while in the latter case, there is coupling to
out-of-plane phonon modes as long as the magnetization has in-plane components. These distinctions
may not be clearly visible in the figures due to the intersection of the ZO branch with the lower
magnon branch where the TA phonon mode also hybridizes with the same magnon branch. However,
it can be viewed along the line M → Γ. Both the nearest neighbour and next-nearest neighbour pla-
nar DM components induce hybridization between in-plane phonons and magnons in all investigated
magnetization directions. Additionally, the Dnnn

xy generates a more significant hybridization compared
to Dnn

xy in most cases, particularly among the TA branch when the magnetization is out-of-plane. It is
important to note that even if there are no apparent indications of hybridization, particularly near the
Γ-point, there may still be subtle gap openings that are not readily observable. In the presence of a
nonzero κ2, the dispersion reveals that the most profound hybridization occurs among the TA branch
when the magnetization lies in the plane, while the coupling to out-of-plane phonon modes is weak in
all examined magnetization directions. Furthermore, it is evident that the anisotropy-based coupling
exhibits stronger hybridization with in-plane phonon modes near the Γ−point compared to the DMI.
It should be emphasized that these observations are not universally applicable, as they depend on the
specific parameters for the phonon and magnon dispersions.

In the presence of in-plane DMI, the bare magnon dispersion becomes asymmetric when the magneti-
zation lies in the plane. This asymmetry was previously observed in Chapter 6, where the dispersion
displayed different characteristics along the symmetry lines Γ → K and Γ → K ′. As a result, the
hybridization pattern also exhibits the same asymmetry, as evident from the figures. A similar effect
is observed when κ2 serves as the source for hybridization. While the bands exhibit asymmetry, it is
only in the presence of a nonzero Dnn

xy that the bands become nonreciprocal. It is important to note
that this asymmetry disappears when the magnetization is oriented out of the plane.

In addition to the avoided crossings between magnon and phonon branches, we also observe a nonde-
generacy of the interacting phonon branches at the K and K ′ symmetry points. This gap arises due
to the breaking of inversion symmetry caused by the interactions between magnons and phonons [28].
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Figure 7.1.: The figures in columns show the dispersion curves for magnon-phonon excitations in
a ferromagnetic honeycomb lattice, with magnetization directions x̂, ŷ and ẑ. In the left column,
the dispersion is shown with a nonzero nearest neighbour planar DM-vector component of Dnn

xy =
0.2meV, while in the the right column, it is shown with Dnnn

xy = 0.3meV. The values of the other
parameters are: J̃ = 2.955, Kz = 0.109, h = 4.5, ℏΩ = 10, Dnnn

z = 0.31, in units of meV, and
ζ = 0.2, S = 3/2. The force coefficients used have the same relative relationship as those listed in
equation (2.14), resulting in a phonon dispersion similar to that in graphene.
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Figure 7.2.: The magnetoelastic energy spectrum is displayed for a ferromagnetic honeycomb lattice
with magnetization orientations x̂, ŷ and ẑ. The left column illustrates the dispersion with κ2 =
1meV as the sole source of coupling, while the right column includes Dnn

xy = 0.2meV, Dnnn
xy = 0.3meV

and κ2 = 1meV. Other parameters include J̃ = 2.955, Kz = 0.109, h = 4.5, ℏΩ = 10, Dnnn
z = 0.31,

in units of meV, and ζ = 0.2, S = 3/2. The force coefficients have the same relative relationship as
listed in equation (2.14) and yields a phonon dispersion like that in graphene.
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However, the size of these gaps are too small to be visually distinguishable in the presented figures.
The presence of such a gap between the phonon branches can suggest the existence of chiral phonons,
which are phonons with circular polarization and exhibit opposite chirality at different valleys (K and
K ′) [90]. Chiral phonons can possess phonon angular momentum and may exhibit a valley phonon
Hall effect. However, our investigation does not delve further into this aspect. A similar gap opening
is observed among the magnon bands when the magnetization lies in the plane.

While not explicitly shown in this section, we can confirm that both the second quantized method
and the non-diagonalized phonon Hamiltonian approach yield consistent results, indicating complete
overlap of the energy bands. However, a difference is observed at the symmetry points K and K ′

when using the analytically obtained phonon eigenvectors (as given by equations (2.20) and (2.23))
compared to the numerical calculation of the eigenvectors. The reason for this difference is that the
analytical expression is not well-defined at these points.

7.4. Computing the Chern numbers
As demonstrated in Chapter 6, the intrinsic out-of-plane next-nearest neighbour DMI yields topological
magnons characterized by Chern numbers C = ±1, provided that the magnetization has nonzero out-
of-plane components. In contrast, the in-plane components of Dnn

ij and Dnnn,r
ij do not introduce

gap openings in the magnon dispersion. However, when considering the lowest order interactions
between magnons and phonons, the topological properties are modified. This is because the presence
of anticrossing regions between the magnon and phonon bands, along with gap openings between
phonon-phonon and magnon-magnon branches, can generate localized regions of Berry curvature.
These Berry curvature hot-spots have an impact on the Chern numbers.

The Chern numbers are calculated numerically by integrating the Berry curvature, equation (5.4),
across the Brillouin zone. We utilize the non-diagonalized form of the phonon Hamiltonian, Hnd

me(q),
and compute the derivatives of the Hamiltonian matrix using numerical methods, specifically employ-
ing a second-order finite difference scheme. To ease the computations, we use a numerical Brillouin
zone that takes the shape of a rectangle with four corners: (0,0), (0, 4π/

√
3a), (2π/a, 2π/

√
3a) and

(2π/a, 6π/
√
3a). The corners are located at the Γ−points of four neighbouring Wigner-Seitz unit cells.

For each point in the numerical Brillouin zone, we determine the eigenvalues and eigenvectors using
Colpa’s method. However, the output of the numerical diagonalization procedure is sorted according
to energy and not according to the band to which it belongs.

To address this challenge, we adopt a simplified approach by studying two separate isolated systems:
in-plane phonon modes + magnons and out-of-plane phonon modes + magnons. By doing so, the
interacting bands are naturally arranged in order of energy, thanks to the emergence of gap openings.
While this approach does not provide accurate Chern numbers for the entire system, it allows us to
observe intriguing characteristics. It is worth mentioning that this choice of approach was made after
extensive efforts to properly sort the bands, which proved challenging due to unforeseen numerical
complexities.

In addition to avoiding the complexities of a complicated sorting algorithm, we address the issue
of intersections between in-plane and out-of-plane phonon branches by splitting the entire system
into two subsystems. These intersections pose challenges when computing Berry curvature, as the
expression is only well-defined for isolated bands. However, even in the out-of-plane phonon modes +
magnons system, we still encounter singularities. This is due to the extremely small magnon-magnon
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x̂ ŷ ẑ

Non-interacting [0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 1, 0, 0, 0, -1]

(a) Non-interacting bands, labeled by [ZA, TA, LA, E−
k , ZO, LO, TO, E+

k ].

x̂ ŷ ẑ

Dnn
xy × × ×

Dnnn
xy [0, 0, 0, 0] [0, 0, 0, 0] ×
κ2 BC= 0 BC= 0 [0, -2, 3, -1]

Dnn
xy , D

nnn
xy , κ2 [0, 0, 0, 0] [0, 0, 0, 0] [0, -2, 3, -1]

(b) Out-of-plane phonon modes + magnons. The labelling of the bands correspond to [ZA, E−
k , ZO, E+

k ]
around the Γ−point.

x̂ ŷ ẑ

Dnn
xy BC= 0 BC= 0 [0, 0, -1, 3, -3, 1]

Dnnn
xy [0, -1, 1, 3, -2, -1] [0, 0, 0, 0, 0, 0] [0, 3, -4, 2, -2, 1]
κ2 BC= 0 BC= 0 ×

Dnn
xy , D

nnn
xy , κ2 [0, 1, 0, -2, 2, -1] [0, 0, 0, 0, 0, 0] [0, 0, -1, 0, 0, 1]

(c) In-plane phonon modes + magnons. The labelling of the bands correspond to [TA, LA, E−
k , LO, TO, E+

k ]
around the Γ−point.

Table 7.1.: Chern numbers for the particle bands with varying magnetization directions and nonzero
coupling parameters, computed by diagonalizing Hnd

me(q). Table 7.1a correspond to the non-
interacting system while table 7.1b and 7.1c display the Chern numbers for the isolated systems
out-of-plane phonons + magnons and in-plane phonons + magnons, respectively. Notice that we
only display the Chern numbers when there is observed nonvanishing Berry curvature between in-
teracting bands. For the cases where there is no magnon-phonon interaction (represented by ×), we
refer to Table 7.1a for the Chern numbers. Moreover, in the cases with vanishing Berry curvature
(represented by BC= 0), all Chern numbers are zero. We utilize the same parameters as in Figure
7.1 and 7.2.

and phonon-phonon band gaps that appear at the K and K ′ symmetry points, with a magnitude of
∼ 10−7meV. Although these points are not true singularities, they can cause numerical difficulties in
calculations. To address this problem, we simply exclude these points from the summation whenever
singularities arise.

To obtain accurate Chern numbers, a high grid resolution is required, which is defined as (Nr ×Nr)
grid points in the numerical Brillouin zone. This is crucial due to the presence of extremely small band
gap openings, necessitating high precision. To address this challenge, we calculate the Chern numbers
several times using increasing resolutions and observe convergence towards integer values, which are
the expected results. Generally, a resolution of around Nr = 1200 is sufficient, although certain
cases may demand a higher resolution, approximately Nr = 3500. In situations where computational
efficiency is necessary, we artificially enhance the interaction strength ζ to achieve faster convergence,
while maintaining the same values for the coupling parameters Dnn

xy , Dnnn
xy and κ2.
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Table 7.1b and 7.1c present the calculated Chern numbers for the interacting systems of out-of-plane
phonons + magnons and in-plane phonons + magnons, respectively. Each table element correspond to
a specific combination of magnetization direction (x̂, ŷ or ẑ) and nonzero coupling parameters (Dnn

xy ,
Dnnn

xy , κ2 or all combined). We utilize the same parameters for the magnon and phonon dispersion as
in the previous section. Comparing with the non-interacting system (Table 7.1a), we observe that the
interaction between magnons and phonons induces topological bands in the presence of a perpendicular
magnetization or when the magnetization is aligned along the x−axis with a nonzero Dnnn

xy coupling
parameter.

For the out-of-plane spin alignment, certain out-of-plane phonon modes exhibit topological properties
solely in the presence of anisotropy-based coupling. In the isolated system of out-of-plane phonons
+ magnons, the acoustic out-of-plane phonon mode possesses a Chern number of zero, as it does not
undergo anticrossings with any of the magnon branches. Similarly, the E+

k branch remains unaffected
by the interaction and maintains a Chern number of C = −1. However, the ZO and E−

k branches
form anticrossing regions, leading to a redistribution of Berry curvature and thereby altering their
respective Chern numbers.

Conversely, some in-plane phonon modes exhibit topological behaviour exclusively in the presence
of in-plane DMI for a magnetization perpendicular to the plane. However, not all bands exhibit
topological properties, as some experience multiple anticrossing regions that effectively cancel out
the Berry curvature. Moreover, it is worth mentioning that certain bands, even without anticrossing
regions, still possess a nonzero Chern number. This is attributed to the gap openings between phonon-
phonon branches, which generate Berry curvature. The LO phonon branch serves as an example of such
a case. In the isolated system of in-plane phonons + magnons with the same magnetization direction,
we observe a difference in the Chern numbers between the cases where the nearest neighbour and next-
nearest neighbour DMI is nonzero. Although phonon and magnon bands form anticrossing regions at
the same locations, the wavefunctions are modified, resulting in different contributions to the Berry
curvature and consequently the Chern numbers. Moreover, when both the nearest neighbour and
next-nearest neighbour planar DM components are nonzero, the resulting Chern numbers are further
modified. Additionally, our investigations reveal that by varying the relative strength of Dnn

xy and
Dnnn

xy , we observe corresponding changes in the Chern numbers as the dominant interaction changes
accordingly.

In cases where κ2 or Dnn
xy is nonzero and the magnetization lies in the plane, we find a vanishing

Berry curvature. Although the system exhibits interactions and anticrossing regions between magnon
and phonon branches, the resulting wavefunctions possesses topologically trivial properties, resulting
in Chern numbers of zero. However, perturbing the magnetization to have nonzero out-of-plane
components, Berry curvature appears at the avoided crossings and the bands are of topological nature.

This pattern does not hold true when Dnnn
xy is the coupling source, generating Berry curvature at the

anticrossing regions in all examined magnetization directions. However, even in this scenario, the
Chern numbers remain zero when the magnetization lies in the plane for the out-of-plane phonons +
magnons system, or when the magnetization is oriented along the y−axis for the in-plane phonons
+ magnons system. This cancellation of Chern numbers arises from the balanced distribution of
Berry curvature, effectively canceling out the net contribution when integrated over the Brillouin
zone. By perturbing the magnetization direction away from the y−axis for the in-plane phonons +
magnons system, we break the symmetry of the Berry curvature distribution, resulting in nonzero
Chern numbers. However, for the out-of-plane phonons + magnons system, achieving topological
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bands requires tilting the magnetization away from the lattice plane. Furthermore, we observe different
Chern numbers for the in-plane phonons + magnons system when the magnetization is along the
x−axis, comparing the case where solely Dnnn

xy is nonzero and the case where Dnn
xy , Dnnn

xy and κ2 are
all nonzero. One would expect identical Chern numbers since the next-nearest neighbour DMI is the
only coupling parameter contributing to the Berry curvature. However, the nearest neighbour in-plane
DMI induces a shift in the magnon dispersion, causing the anticrossings to occur at different locations,
thereby resulting in different Chern numbers.
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(a) Berry curvature calculated using Hnd
me(q).
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(b) Berry curvature calculated using Hsq
me(q) and an-

alytical phonon eigenvectors.
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(c) Berry curvature calculated using Hsq
me(q) and nu-

merical phonon eigenvectors.
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(d) Magnon and phonon part of the wavefunction.

Figure 7.3.: Figure a) to c) show the Berry curvature obtained through different computational
methods. Specifically, we present the Berry curvature distribution across the Brillouin zone for the
fifth band, which corresponds to the TO phonon branch near the Γ−point, in the system composed
of in-plane phonons + magnons. The hybridization is solely influenced by Dnnn

xy = 0.3meV, with
ζ = 0.2, and a magnetization oriented along the y−axis. The Berry curvature is expressed in terms
of the function sgn(F(q)) ln (1 + F(q)). Additionally, panel d) indicates regions where the magnon
or phonon part of the wavefunction is dominant. The remaining parameters are consistent with
those employed in section 7.3, namely J̃ = 2.955meV, S = 3/2, Kz = 0.109meV, h = 4.5meV and
ℏΩ = 10meV.

122



7.5. Transport properties

7.4.1. Comparison using Hsq
me(q) and Hnd

me(q)
The Chern numbers were calculated using Hnd

me(q) due to the limitations of the second quantized ap-
proach in numerical calculations, which relies on smooth phonon eigenvectors. Ref [19] highlights the
challenge of obtaining smoothly defined numerical phonon eigenvectors, rendering the Hamiltonian
matrix Hsq

me(q) problematic. The analytical expression for phonon eigenvectors also encounters diffi-
culties across the Brillouin zone, leading to different results. To demonstrate this, Figure 7.3 presents
contour plots of the Berry curvature obtained with Hnd

me(q) and Hsq
me(q) using both numerical and

analytical phonon eigenvectors. Specifically, the Berry curvature for the fifth band in the isolated
in-plane phonon modes + magnons system is presented, with a planar next-nearest neighbour DM
vector component and a magnetization along the y−axis. Notably, Figure 7.3c reveals discontinuities
in the Berry curvature when using numerical phonon eigenvectors, forming a dotted pattern. While
the use of analytical phonon eigenvectors reduces the degree of discontinuity, discrepancies persist
when compared to the non-diagonalized form of the phonon Hamiltonian. These observations are
consistent with the discrepancies observed in the magnetoelastic energy spectrum, which arise from
the lack of well-defined analytical expressions for the phonon eigenvectors at certain locations in the
Brillouin zone.

Figure 7.3d illustrates the regions where the wavefunction exhibits characteristics resembling either
magnons or phonons for the same interacting band. In this configuration, where the magnetization lies
in the plane and the bare magnon bands possess topologically trivial properties, the emergence of Berry
curvature is solely attributed to the interaction between magnons and phonons. When comparing this
figure with the contour plot of the Berry curvature, we observe that Berry curvature hot-spots precisely
arise at the locations of the hybridization rings. Furthermore, we notice the presence of additional
Berry curvature lines that are not associated with the hybridization rings. These lines emerge as a
result of the gap openings between phonon-phonon branches.

For this particular band, as well as for all bands when the magnetization is aligned in the ŷ direction
and a nonzero next-nearest neighbour planar DM vector is considered, the corresponding Chern num-
ber is zero. This occurs due to the balanced distribution of Berry curvature, which, when summed
over the Brillouin zone, results in a vanishing overall effect. By further analysing the symmetry, we
observe that the Berry curvature satisfies

(m || ŷ) : Fn(qx, qy) = −Fn(−qx, qy), and Fn(qx, qy) = −Fn(qx,−qy).

This symmetry of the Berry curvature is demonstrated in Figure 7.3a, serving as a compelling example
of how bands can possess finite Berry curvature despite being topologically trivial.

7.5. Transport properties
In experimental settings, transport properties in materials can be measured to probe the presence of
finite Berry curvature and characterize the materials accordingly [29, 47]. In magnonic systems, two
notable transport phenomena associated with Berry curvature are the thermal Hall effect and the spin
Nernst effect. While the observation of these transport effects does not definitively prove the existence
of a topological system, they are typically associated with bands that possess nonzero Chern numbers,
thus serving as an indication of a topological system. In this section, our main focus is on calculating
the thermal Hall conductivity and the spin Nernst coefficient which arise from the Berry curvature in
momentum space within the interacting magnon-phonon system.
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7.5.1. Thermal Hall conductivity
The thermal Hall conductivity, κxy, is calculated using equation (5.5), where the Berry curvature
is obtained from Hnd

me(q). To evaluate the summation over q in momentum space, we convert the
expression into an integral with the following relation [16]

1
A
∑
q

→
∫
BZ

d2q
(2π)2 .

In our calculation, we consider the entire system of both phonon and magnon bands, and there is no
need to sort the bands since we sum over the Berry curvature of all particle bands at each point in the
numerical Brillouin zone. However, we observe that the full system exhibits additional singularities
caused by the intersection of in-plane and out-of-plane phonon branches. To avoid these singularities,
we only include bands in the summation that have a gap to adjacent bands larger than a threshold
value of approximately 10−4meV. We have validated the effectiveness of this approach by comparing
the thermal Hall conductivity computed in the full system using the threshold value to the case of an in-
plane phonons + magnons system, where only in-plane phonons interact with magnons. Furthermore,
we find that the non-interacting case, consisting solely of topological magnons, agrees completely with
the full system when using this threshold value.

To provide a simplified explanation of how conductivity arises, we examine a specific point in momen-
tum space where a gap forms between two branches. At this point, the Berry curvature for the lower
and upper bands exhibits equal magnitudes but opposite signs. For instance, let’s assume the lower
band has a positive Berry curvature while the upper band has a negative Berry curvature. In this
case, the contribution to the thermal Hall conductivity at this particular point is proportional to

(c2[gBE(Eq,2)]− c2[gBE(Eq,1)]) |Fq|, (7.3)
where Eq,1 represents the lower branch, while Eq,2 represents the upper branch, and |Fq| represents their
mutual Berry curvature magnitude. We notice that the thermal Hall conductivity depends on both
the size of the band gap and the magnitude of the Berry curvature (which is also indirectly influenced
by the energy gap), and is expected to rise as the band gap expands. Additionally, as c2[gBE(Eq,n)]
decreases with increasing energy, we observe that c2[gBE(Eq,2)] is smaller than c2[gBE(Eq,1)], resulting
in a negative contribution to the conductivity. Conversely, if the upper band demonstrates positive
Berry curvature, it contributes positively to the conductivity.

To compare the thermal Hall conductivity for different magnetization directions, we focus on the case
where the next-nearest neighbour DMI is nonzero, as the other coupling sources (anisotropy-based
coupling and nearest neighbour DMI) do not generate any Berry curvature when the magnetization lies
in the plane, resulting in a trivial case with no thermal Hall conductivity. Specifically, we use the same
parameters for the magnon and phonon dispersion as described in section 7.3, with Dnnn

xy = 0.3meV
and ζ = 0.2. Figure 7.4 presents the thermal Hall conductivity resulting from the interaction between
magnons and phonons, plotted as a function of temperature for magnetization directions along x̂, ŷ
and ẑ. It is important to note that when the magnetization is perpendicular to the plane, resulting in
topological magnons, we subtract the conductivity originating from the non-interacting system to focus
solely on the contributions arising from magnon-phonon interactions. The thermal Hall conductivity,
measured in SI units, is on the order of 10−13W/K, which is comparable to previous studies [18, 28].
Moreover, we observe a notable increase in positive conductivity for a magnetization perpendicular to
the plane in comparison to in-plane magnetization directions at higher temperatures. This distinction
can primarily be attributed to the disparities in magnon dispersion between in-plane and out-of-
plane magnetization directions. Additionally, in the perpendicular alignment, spin interactions are
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7.5. Transport properties

exclusively hybridized with in-plane phonon modes. Interestingly, we have discovered that by tuning
the strength of Dnnn

z in the perpendicular magnetization direction, new anticrossing regions emerge,
leading to significant fluctuations in the conductivity. This highlights the sensitivity of the conductivity
to the parameters that govern the magnon dispersion.

The thermal Hall conductivity exhibits varying signs for both the x̂ and ẑ magnetization directions.
At low temperatures, only the interaction between the LA phonon branch and the lower magnon band
becomes thermally significant. In this regime, the lower band acquires a positive Berry curvature, while
the upper band possesses negative Berry curvature, leading to a negative conductivity. However, as
the temperature rises, additional band gaps become thermally activated, causing a change in sign.

The conductivity is negligibly small, approximately 10−16W/K, when the magnetization is aligned
along the y−axis compared to other magnetization directions. However, after conducting several tests
with different grid resolutions, we have observed that this value is not numerically stable. The con-
ductivity alternates around zero due to the lack of symmetry in grid points around the hybridization
rings, resulting in nonzero values. Nevertheless, the true value, which is challenging to obtain numer-
ically, is expected to be zero. This expectation arises from the complete balance in the distribution
of Berry curvature. Specifically, for each band gap that contributes to the conductivity according
to equation (7.3), there exists a corresponding band gap elsewhere in the Brillouin zone where the
bands exhibit opposite Berry curvature, leading to a negative contribution. Consequently, the net
conductivity should be zero. This finding strengthens the idea that a nonzero conductivity can serve
as an indicator of a topological system.

Moving forward, it is interesting to compare the different parameters Dnn
xy , Dnnn

xy and κ2 as sources for
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Figure 7.4.: The thermal Hall conductivity that arises solely from interactions between magnons and
phonons are presented as a function of temperature. The interaction is solely driven by Dnnn

xy =
0.3meV, and we compare the conductivity generated in the magnetization directions x̂, ŷ and
ẑ. Furthermore, we utilize ζ = 0.2 while the remaining parameters for the magnon and phonon
dispersion are alike the ones used in Figure 7.1 and 7.2.
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HYBRIDIZATION IN FM HONEYCOMB LAYER WITH ARBITRARY MAGNETIZATION DIRECTION

hybridization and their impact on the thermal Hall effect. To facilitate this comparison, we consider
the out-of-plane magnetization direction and use the same effective interaction strength in all cases.
The effective interaction strengths are defined as the prefactors in front of the vectors in equation
(7.2). By setting these strengths equal, we obtain the following relationships: Dnnn

xy =
√
3Dnn

xy and
Dnnn

xy = κ2/2
√
3, with S = 3/2. Using the value Dnnn

xy = 0.3meV, we find that Dnn
xy = 0.173meV

and κ2 = 1.04meV approximately satisfy the requirements. Employing these values, we calculate the
thermal Hall conductivity, which is presented in Figure 7.5a. Additionally, we include the case without
magnon-phonon interactions, where only the topological magnons contribute to the conductivity. We
observe a significant conductivity magnitude in all scenarios, on the order of 10−11W/K, which is
comparable to the findings in Ref. [26] where they used a lower value for Dnnn

z . However, it is
worth noting that the interactions have only a minor effect on the conductivity, primarily due to the
relatively low interaction strength compared to the magnon energy. By using D̄nnn

xy = ζSDnnn
xy

√
S/6

as the effective interaction strength, the relative strength is approximately given by D̄nnn
xy /J̃S ≈ 0.01.

Upon examining Figure 7.5b, which displays the contribution to the conductivity arising solely from
magnon-phonon interactions in the perpendicular magnetization direction, a significant difference
between the DMI and anisotropy contributions become apparent. Unlike the DMI, the anisotropy
contribution exhibits nonzero values at low temperatures. One possible explanation for this disparity
is the emergence of a slightly negative Berry curvature in the ZA phonon branch around the Γ-
points in the presence of a nonzero κ2. This negative curvature contributes to a positive conductivity.
Interestingly, this effect diminishes as the ZA branch scales linearly, highlighting its unique behaviour
in two-dimensional materials. However, the underlying reason for the existence of this nonzero Berry
curvature near the Brillouin center remains unclear.
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Figure 7.5.: The thermal Hall conductivity is plotted as a function of temperature when the magne-
tization is perpendicular to the plane. Three cases are considered: κ2, Dnn

xy and Dnnn
xy representing

the nonzero coupling parameter, with values of 1.04meV, 0.173meV and 0.3meV respectively. In
Figure a), the effects of the interaction are compared to the non-interacting system, while Figure
b) specifically shows the conductivity resulting solely from magnon-phonon interactions. The same
parameters for the magnon and phonon dispersion as in section 7.3 are used, with ζ = 0.2.
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7.5. Transport properties

7.5.2. Spin Nernst coefficient
By utilizing equation (5.7), we calculate the spin Nernst coefficient, αxy. The spin excitation operator,
S, takes the form of a diagonal matrix in which the elements associated with magnon operators
possess a value of −1, while the remaining elements are zero. Following a similar approach as the
analysis of the thermal Hall conductivity, we investigate two different scenarios. Firstly, we consider
a nonzero Dnnn

xy with different magnetization directions, focusing on the contribution arising from
magnon-phonon interactions. Secondly, we examine the case of a magnetization perpendicular to the
plane with varying coupling parameters κ2, Dnn

xy and Dnnn
xy , in addition to the non-interacting case

where all coupling parameters are zero. The results are presented in Figure 7.6a and 7.6b, respectively.

When comparing the contribution of magnon-phonon interactions to the spin Nernst coefficient in
the presence of a nonzero Dnnn

xy , we observe a nonvanishing spin Nernst coefficient for all examined
magnetization directions. The magnitude of the coefficient is similar in all cases, but the sign varies. A
positive coefficient is observed when the magnetization is oriented along ŷ, while negative contributions
are observed for the directions x̂ and ẑ. In contrast to the thermal Hall conductivity shown in Figure
7.4, the spin Nernst coefficient does not change sign when increasing the temperature. This difference
can be attributed to the distinct distribution of the conventional Berry curvature and the spin Berry
curvature. Furthermore, we find that the magnitude of the spin Nernst coefficient resulting from
magnon-phonon interactions is an order of magnitude lower compared to the results reported in Ref.
[54], where magnon-phonon interactions in a honeycomb ferrimagnet were studied, and two orders of
magnitude lower than in a bilayer antiferromagnet [80].

Interestingly, even in cases where the bands exhibit topologically trivial behaviour (such as when the
magnetization aligns with ŷ), we still observe a nonvanishing spin Nernst coefficient. The nonvanishing
spin current arises from the spin Berry curvature, which, unlike the conventional Berry curvature, is
not directly linked to the Chern number [80]. In contrast, the thermal Hall conductivity remains zero,
indicating that the system exhibits a spin current while the heat current vanishes. Consequently, there
must exist a counteracting phonon current that opposes and cancels out the spin current. Systems
exhibiting these characteristics are highly intriguing in the field of magnon spintronics [57].

When considering a magnetization direction perpendicular to the plane, the inclusion of either coupling
parameter in the magnon-phonon interaction leads to a modest renormalization of the spin Nernst
coefficient. This can be attributed to the relatively weak interaction strength compared to the energy
of the magnons, as discussed earlier. By further breaking the mirror symmetry and increasing the
strength of the in-plane DMI, a more pronounced renormalization effect is anticipated. However, it
is important to note that in this study, we employed an artificially large value for ζ, which suggests
that weaker renormalization effects would be expected in practical measurements. Our findings reveal
that the magnitude of the spin Nernst coefficient, in the absence of magnon-phonon interactions, is
consistent with previous studies conducted in various systems. For example, comparable magnitudes
have been observed in studies involving a kagome lattice ferromagnet with DMI [91] or a noncollinear
antiferromagnet [79].

The expression for the spin Nernst coefficient employed in this study is derived from linear response
theory. Alternatively, a semiclassical approach can be utilized to derive a similar expression. However,
it should be noted that the semiclassical approach is not suitable for situations where spin is not
conserved, such as in the presence of magnon-phonon interactions. In Appendix C, we present the
results obtained using the semiclassical approach, along with a discussion on the numerical convergence
challenges associated with this method.
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Figure 7.6.: Spin Nernst coefficient as a function of temperature. In panel a), we showcase the
magnon-phonon interaction contribution to the coefficient due to an in-plane next-nearest neighbour
DMI, and compare with different magnetization directions x̂, ŷ and ẑ. In panel b), the coefficient
is displayed when the magnetization is perpendicular to the plane and we consider the cases where
either κ2, Dnn

xy or Dnnn
xy has nonzero values, in addition to the scenario where all are zero which

corresponds to the non-interacting system. We utilize the values κ2 = 1.04meV, Dnn
xy = 0.173meV,

Dnnn
xy = 0.3meV, ζ = 0.2 and the remaining parameters for the magnon and phonon dispersion are

alike the ones used in section 7.3.
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CHAPTER 8

Conclusion and Outlook

In this thesis, we have established the necessary theoretical framework for investigating the hybridiza-
tion of magnons and phonons in a ferromagnetic honeycomb layer with adjustable magnetization
direction via an external magnetic field. By considering symmetry constraints, we determined the
phonon dispersion up to third neighbour interactions, resulting in a phonon spectrum that accurately
matches the experimentally observed dispersion in graphene. This includes the presence of out-of-plane
phonon modes with quadratic scaling. Additionally, we accounted for mirror symmetry breaking with
respect to the lattice plane and utilized a generalized form of the Dzyaloshinskii-Moriya vector to
derive the magnon dispersion. Utilizing literature values representing the magnon dispersion in CrI3
and matching the phonon spectrum with the high-frequency branches found in the same material, we
computed the magnetoelastic energy spectrum, taking into account the lowest order contributions to
the interacting Hamiltonian. Notably, the calculations specifically accounted for three sources of hy-
bridization: nearest neighbour and next-nearest neighbour in-plane Dzyaloshinskii-Moriya interaction,
as well as magnetic anisotropy.

The obtained results demonstrate the emergence of a hybridized magnon-polaron state at the regions
of anticrossing between magnon and phonon branches. It is revealed that these regions exhibit the
generation of Berry curvature when the magnetization possesses nonzero out-of-plane components.
Moreover, even in cases where the magnetization lies within the plane, the presence of a next-nearest
neighbour planar DM vector induces Berry curvature in these regions. Furthermore, we witness
the emergence of band gaps between both phonon-phonon and magnon-magnon branches, attributed
to the inversion symmetry breaking caused by magnon-phonon interactions. These gap openings
contribute to the generation of Berry curvature, thereby influencing the Chern numbers. By conducting
a topological analysis of the magnon-polaron bands, it is concluded that the interaction between
magnons and phonons enhances the pre-existing topology by assigning nonzero Chern numbers to
multiple initial phonon branches. Additionally, the in-plane next-nearest neighbour DMI can induce
topological bands from initially uncoupled trivial bands when the magnetization lies within the plane.

The findings indicate that when the magnetization is perpendicular to the lattice plane, magnon-
phonon interactions cause a renormalization of the thermal Hall conductivity and spin Nernst co-
efficient. However, this renormalization effect is relatively weak and challenging to distinguish from
uncertainties originating from the parameters of the magnetoelastic Hamiltonian. Moreover, the extent
of renormalization is highly sensitive to variations in the magnon and phonon dispersions. As a result,
experimental verification of such coupling may present difficulties when considering this magnetization
direction. On the other hand, when the magnetization lies in the plane and uncoupled magnons do
not exhibit a Hall response to an applied temperature gradient, we observed a nonvanishing thermal
Hall conductivity and spin Nernst coefficient due to the presence of an in-plane next-nearest neighbour
Dzyaloshinskii-Moriya interaction. This distinct feature, unlike other sources of hybridization, serves
as a valuable tool for identifying the presence of such magnon-phonon interactions in a material. Of
particular interest is the situation where the magnetization is aligned along the y−axis, as it gives
rise to a scenario where a spin current is opposed by a phonon current, resulting in the cancellation
of the transverse thermal flow in the system. The discoveries made in this thesis are anticipated to
offer valuable insights into the topological aspects of magnon-phonon interactions and hold promise
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for potential applications in the field of spin caloritronics.

To conduct a more comprehensive study of our model, several interesting avenues can be explored.
Firstly, it would be intriguing to investigate whether the phonons exhibit chiral properties at the gap
openings of K and K ′ points, similar to what has been observed in analogous antiferromagnetic sys-
tems. Such chiral phonons could potentially enable applications in valley Hall effects [28]. Additionally,
exploring the formation of magnon-polarons in a finite ribbon geometry would be valuable. Compar-
ing the effects of different magnetization directions becomes particularly intriguing in systems with
armchair edges, as the presence of edge phonons may play a significant role [27]. Furthermore, while
the spin Nernst current does not guarantee edge spin accumulation due to the spin non-conserving
nature emerging from the magnon-phonon interactions, it would be informative to calculate the spin
density to verify this aspect [54]. Spin accumulation serves as a measurable quantity in experiments
and can provide evidence for the existence of magnon-phonon interactions. Although the main focus
of this study was on responses to an applied temperature gradient, it is worth noting that magnons
can also generate a spin current in the presence of a magnetic field gradient, known as the spin Hall
effect of magnons [16, 92]. Conducting a similar calculation of the spin Hall conductivity would be
intriguing.

As part of future research directions, we suggest investigating analogous antiferromagnetic systems
that demonstrate similar types of magnon-phonon interactions and exploring their behaviour under
varying magnetization directions. Recent studies have demonstrated the tunability of transport prop-
erties in such systems through the application of an external magnetic field [28, 54, 80], which makes
them particularly interesting for spintronics applications. In antiferromagnets, the presence of an
external field can lead to the splitting of degenerate magnon bands, and the magnitude of the field
determines the size of the magnon band gap. Additionally, we propose investigating magnon-phonon
interactions arising from other important magnetic exchange interactions, such as the Kitaev inter-
action. By conducting a comparative analysis of magnetoelastic modes and transport properties,
considering magnon-phonon interactions arising from both the Dzyaloshinskii-Moriya interaction and
the Kitaev interaction, novel experimental approaches may be discovered to determine the dominant
interaction in the material.
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APPENDIX A

Calculation of phonon dispersion with a spring force model

The spring force model considers the directional forces between adjacent ions, similar to how a spring
connects the ions. Ions that are equidistant from each other are assigned the same spring constant.
Specifically, the nearest neighbours are assigned the spring constant C1, while the next-nearest neigh-
bours are assigned C2, and so on. The relationship between the in-plane force coefficients and the
spring constants is given by [31]

Φαβ
µν (∆) = −Cαβ(∆)∆̂µ∆̂ν , (A.1)

where ∆̂µ = ∆µ/|∆| is the µ-component of the unit vector to one of the neighbours.

A.1. Square lattice
The phonon dispersion in a monoatomic square lattice is calculated by considering interactions up to
the next-nearest neighbours. In this case, the (α, β) indices become irrelevant. The lattice is situated
in the xy−plane, and the ions can move in three dimensions. The vectors connecting neighbouring ions
are described in equation (2.13). The presence of z → −z mirror symmetry allows us to distinguish
between the in-plane and out-of-plane modes [39].

In-plane modes

The nonzero in-plane force coefficients, computed with the above-mentioned equation (A.1), are given
by

Φxx(δ1,3) = Φyy(δ2,4) = −C1,

Φxx(τ 1,2,3,4) = Φyy(τ 1,2,3,4) = Φxy(τ 1,3) = Φyx(τ 1,3) = −C2
2 ,

Φxy(τ 2,4) = Φyx(τ 2,4) =
C2
2 ,

and the nonzero self-force coefficients, found from the stability condition (2.12), are

Φxx(0) = 2(C1 + C2),
Φyy(0) = 2(C1 + C2).

We compute the matrix elements of the dynamical matrix D(q) with equation (2.11), and obtain

Dxx(q) =
2C1
M

(1− cos(qxa)) +
2C2
M

(1− cos(qxa) cos(qya)),

Dxy(q) =Dyx(q) =
2C2
M

sin (qxa) sin (qya),

Dyy(q) =
2C1
M

(1− cos (qya)) +
2C2
M

(1− cos (qxa) cos (qya)).
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CALCULATION OF PHONON DISPERSION WITH A SPRING FORCE MODEL

Thus, the eigenvalues of the in-plane phonon branches are as follows

ω2
TA =

Dxx +Dyy

2 −

√(
Dxx −Dyy

2

)2
+ (Dxy)2,

ω2
LA =

Dxx +Dyy

2 +

√(
Dxx −Dyy

2

)2
+ (Dxy)2.

Out-of-plane modes

Considering that equation (A.1) is applicable only to the in-plane force coefficients, we represent the
force coefficients for the first and second nearest neighbours in the out-of-plane direction as −Cz

1 and
−Cz

2 , respectively. Consequently, the mode corresponding to the out-of-plane motion is expressed as

ω2
ZA = Dzz(q)

=
2Cz

1
M

(2− cos(qxa)− cos(qya)) +
4Cz

2
M

(1− cos(qxa) cos(qya)).

The dispersion

The more general method used in section 2.3.1 reduce to the spring force model if C1 = −γ1, C2 =
−2ρ1 = −2ρ2, Cz

1 = −γz, Cz
2 = −ρz and all other force coefficients are set equal to zero. Figure

A.1 shows the phonon dispersion obtained with the spring force model in a square lattice along the
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Figure A.1.: The three acoustic branches of the phonon dispersion in a square lattice, longitudinal
(LA), transverse (TA) and out-of-plane (ZA), are shown along the symmetry lines of the Brillouin
zone. The frequency is given in units of

√
C1/M , with the following values for the spring constants

C2/C1 = 1/2, Cz
1/C1 = 1/10 and Cz

2/C1 = 1/20.
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A.2. Honeycomb lattice

symmetry lines of the Brillouin zone. The dispersion is shown in unit of
√
C1/M and the values of

the spring constants are C2/C1 = 1/2, Cz
1/C1 = 1/10 and Cz

2/C1 = 1/20, using the same values as in
equation (2.14).

A.2. Honeycomb lattice
By employing the spring force model and taking into account interactions up to second nearest neigh-
bours, we calculate the phonon dispersion in a honeycomb lattice consisting of two sublattices (A and
B) with identical ions. The vectors connecting to the first and second nearest neighbours are listed in
equation (2.15).

In-plane modes

By decomposing the in-plane force coefficients to spring constants with relation (A.1), the nonzero
force coefficients based on sublattice A are given by

ΦAB
xx (δA2,3) = −3

4C1, ΦAB
xy (δA2 ) = ΦAB

yx (δA2 ) = −
√
3
4 C1,

ΦAB
yy (δA2,3) = −1

4C1, ΦAB
xy (δA3 ) = ΦAB

yx (δA3 ) =
√
3
4 C1,

ΦAB
yy (δA1 ) = −C1, ΦAA

xx (τA
1,4) = −C2,

ΦAA
xx (τA

2,3,5,6) = −1
4C2, ΦAA

xy (τA
3,6) = ΦAA

yx (τA
3,6) =

√
3
4 C2,

ΦAA
yy (τA

2,3,5,6) = −3
4C2, ΦAA

xy (τA
2,5) = ΦAA

yx (τA
2,5) = −

√
3
4 C2,

and the nonzero self-force coefficients computed with the stability condition are

ΦAA
xx (0) = ΦAA

yy (0) = 3
2C1 + 3C2.

The matrix elements in DAA(q) and DAB(q) can be expressed as

DAA
xx (q) = 3C1

2M + C2
M

(3− 2 cos (qxa)− cos (12qxa) cos (
√
3
2 qya)) ≡ A,

DAA
yy (q) = 3C1

2M + 3C2
M

(1− cos (12qxa) cos (
√
3
2 qya)) ≡ B,

DAA
xy (q) = DAA

yx (q) =
√
3C2
M

sin (12qxa) sin (
√
3
2 qya) ≡ C,

DAB
xx (q) = −3C1

2M e−i qya

2
√

3 cos (12qxa) ≡ D,

DAB
xy (q) = DAB

yx (q) = i
√
3C1
2M e−i qya

2
√
3 sin (12qxa) ≡ E ,

DAB
yy (q) = −C1

M
ei

qya
√
3

(
1 + 1

2e
−i

√
3qya

2 cos (12qxa)
)

≡ F .

Moreover, DBB(q) = DAA(q) due to the sublattice symmetry and the DBA(q) matrix is determined
by setting ∆ → −∆ in the DAB(q) matrix. This amounts to a complex conjugation. Thus, the
determinant that needs to be solved takes the following form

133
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det


A− ω2 C D E

C B − ω2 E F
D∗ E∗ A− ω2 C
E∗ F∗ C B − ω2

 = 0,

and the characteristic polynomial may be written

λ4 +Aλ3 +Bλ2 + Cλ+D = 0, λ = ω2.

The coefficients are related to the matrix elements from the following formulas

A =− 2(A+ B),
B =A2 + 4AB + B2 − 2C2 − |F|2 − |D|2 − 2|E|2,

C =2
[
(A+ B)(C2 + |E|2) +A(|F|2 − B2) + B(|D|2 −A2)− C(ED∗ +DE∗ + FE∗ + EF∗)

]
,

D =A2(B2 − |F|2) + 2AC(FE∗ + EF∗ − BC) + 2BC(ED∗ +DE∗)− B2|D|2 + C4−
C2(FD∗ +DF∗ + 2|E|2)− 2AB|E|2 − E2D∗F∗ −DF(E∗)2 + |D|2|F|2 + |E|4.

The solutions to the fourth-order equation are expressed as

ω2
LA = −A4 − ζ + 1

2

√
−4ζ2 − 2p1 +

p2
ζ
, ω2

TA = −A4 − ζ − 1
2

√
−4ζ2 − 2p1 +

p2
ζ
,

ω2
TO = −A4 + ζ + 1

2

√
−4ζ2 − 2p1 −

p2
ζ
, ω2

LO = −A4 + ζ − 1
2

√
−4ζ2 − 2p1 −

p2
ζ
,

where the helping variables are defined in equation (2.22).

Out-of-plane modes

We denote the out-of-plane force coefficients for the first and second nearest neighbours by −Cz
1 and

−Cz
2 . The matrix elements of Dout-of-plane(q) are

DAA
zz (q) = DBB

zz (q) = 1
M

[
3Cz

1 + 2Cz
2 (3− cos(qxa)− 2 cos(12qxa) cos(

√
3
2 qya))

]
,

DAB
zz (q) = DBA∗

zz (q) = −
Cz
1
M

ei
qya
√
3 (1 + 2 cos(12qxa)e

−i
√
3qya

2 ),

which yields the following eigenvalues

ωZO =
√
DAA

zz + |DAB
zz |, ωZA =

√
DAA

zz − |DAB
zz |.

The dispersion

The more general method derived in section 2.3.2 reduce to the spring force model when C1 = 4γ1 =
−4γ2, C2 = −4ρ1 = −4ρ2, Cz

1 = −γz, Cz
2 = −ρz and the remaining force coefficients are zero. Figure

A.2 shows the phonon dispersion in a honeycomb lattice along the symmetry lines of the Brillouin
zone, obtained with the spring force model. The dispersion is shown in units of

√
C1/M , with the

following values for the spring constants C2/C1 = 0.40, Cz
1/C1 = 0.35 and Cz

2/C1 = −0.04.
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Figure A.2.: The six branches of the phonon dispersion in graphene are shown along the symmetry
lines of the Brillouin zone. The six branches are longitudinal acoustic (optical) [LA (LO)], transverse
acoustic (optical) [TA (TO)] and out-of-plane acoustic (optical) [ZA (ZO)]. The frequency is in units
of
√
C1/M , with C2/C1 = 0.40, Cz

1/C1 = 0.35 and Cz
2/C1 = −0.04.
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APPENDIX B

The magnetoelastic Hamiltonian for the honeycomb lattice

Perpendicular magnetization

The Hamiltonian matrix Hme(q) for the magnon-phonon system in a honeycomb lattice, considering
ferromagnetic (equation (4.13)) and antiferromagnetic (equation (4.17)) ordering with spins oriented
perpendicular to the lattice plane, can be expressed in a similar form. However, the magnon energy
spectrum E±

q and the coupling coefficients Gα(β)
q,λ have different definitions. The matrix takes the

following structure

Hme(q) =



E+
q 0 Gα∗

−q,1 Gα∗
−q,2 Gα∗

−q,3 Gα∗
−q,4

0 E−
q Gβ∗

−q,1 Gβ∗
−q,2 Gβ∗

−q,3 Gβ∗
−q,4

Gα
−q,1 Gβ

−q,1 εq,1 0 0 0
Gα

−q,2 Gβ
−q,2 0 εq,2 0 0

Gα
−q,3 Gβ

−q,3 0 0 εq,3 0
Gα

−q,4 Gβ
−q,4 0 0 0 εq,4

0 0 Gα
q,1 Gα

q,2 Gα
q,3 Gα

q,4
0 0 Gβ

q,1 Gβ
q,2 Gβ

q,3 Gβ
q,4

Gα
−q,1 Gβ

−q,1 0 0 0 0
Gα

−q,2 Gβ
−q,2 0 0 0 0

Gα
−q,3 Gβ

−q,3 0 0 0 0
Gα

−q,4 Gβ
−q,4 0 0 0 0

0 0 Gα∗
−q,1 Gα∗

−q,2 Gα∗
−q,3 Gα∗

−q,4
0 0 Gβ∗

−q,1 Gβ∗
−q,2 Gβ∗

−q,3 Gβ∗
−q,4

Gα∗
q,1 Gβ∗

q,1 0 0 0 0
Gα∗

q,2 Gβ∗
q,2 0 0 0 0

Gα∗
q,3 Gβ∗

q,3 0 0 0 0
Gα∗

q,4 Gβ∗
q,4 0 0 0 0

E+
−q 0 Gα

q,1 Gα
q,2 Gα

q,3 Gα
q,4

0 E−
−q Gβ

q,1 Gβ
q,2 Gβ

q,3 Gβ
q,4

Gα∗
q,1 Gβ∗

q,1 εq,1 0 0 0
Gα∗

q,2 Gβ∗
q,2 0 εq,2 0 0

Gα∗
q,3 Gβ∗

q,3 0 0 εq,3 0
Gα∗

q,4 Gβ∗
q,4 0 0 0 εq,4



.
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Arbitrary magnetization direction

The matrix Hsq
me(q) in the magnetoelastic Hamiltonian for the honeycomb lattice with ferromagnetic

order and arbitrary magnetization direction, computed using the second quantized formalism as de-
scribed in equation (7.1), has the following form

Hsq
me(q) =



tAq −tq GA∗
−q,1 GA∗

−q,2 GA∗
−q,3 GA∗

−q,4 GA∗
−q,5 GA∗

−q,6
−t∗q tBq GB∗

−q,1 GB∗
−q,2 GB∗

−q,3 GB∗
−q,4 GB∗

−q,5 GB∗
−q,6

GA
−q,1 GB

−q,1 εq,1 0 0 0 0 0
GA

−q,2 GB
−q,2 0 εq,2 0 0 0 0

GA
−q,3 GB

−q,3 0 0 εq,3 0 0 0
GA

−q,4 GB
−q,4 0 0 0 εq,4 0 0

GA
−q,5 GB

−q,5 0 0 0 0 εq,5 0
GA

−q,6 GB
−q,6 0 0 0 0 0 εq,6

−SKzQz 0 GA
q,1 GA

q,2 GA
q,3 GA

q,4 GA
q,5 GA

q,6
0 −SKzQz GB

q,1 GB
q,2 GB

q,3 GB
q,4 GB

q,5 GB
q,6

GA
−q,1 GB

−q,1 0 0 0 0 0 0
GA

−q,2 GB
−q,2 0 0 0 0 0 0

GA
−q,3 GB

−q,3 0 0 0 0 0 0
GA

−q,4 GB
−q,4 0 0 0 0 0 0

GA
−q,5 GB

−q,5 0 0 0 0 0 0
GA

−q,6 GB
−q,6 0 0 0 0 0 0

−SKzQ
∗
z 0 GA∗

−q,1 GA∗
−q,2 GA∗

−q,3 GA∗
−q,4 GA∗

−q,5 GA∗
−q,6

0 −SKzQ
∗
z GB∗

−q,1 GB∗
−q,2 GB∗

−q,3 GB∗
−q,4 GB∗

−q,5 GB∗
−q,6

GA∗
q,1 GB∗

q,1 0 0 0 0 0 0
GA∗

q,2 GB∗
q,2 0 0 0 0 0 0

GA∗
q,3 GB∗

q,3 0 0 0 0 0 0
GA∗

q,4 GB∗
q,4 0 0 0 0 0 0

GA∗
q,5 GB∗

q,5 0 0 0 0 0 0
GA∗

q,6 GB∗
q,6 0 0 0 0 0 0

tBq −t∗−q GA
q,1 GA

q,2 GA
q,3 GA

q,4 GA
q,5 GA

q,6
−t−q tAq GB

q,1 GB
q,2 GB

q,3 GB
q,4 GB

q,5 GB
q,6

GA∗
q,1 GB∗

q,1 εq,1 0 0 0 0 0
GA∗

q,2 GB∗
q,2 0 εq,2 0 0 0 0

GA∗
q,3 GB∗

q,3 0 0 εq,3 0 0 0
GA∗

q,4 GB∗
q,4 0 0 0 εq,4 0 0

GA∗
q,5 GB∗

q,5 0 0 0 0 εq,5 0
GA∗

q,6 GB∗
q,6 0 0 0 0 0 εq,6


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APPENDIX C

Semiclassical calculation of spin Nernst coefficient

Following Ref. [54], the spin Nernst coefficient can be obtained through a semiclassical calculation
using the following expression

αxy = −kB
A
∑
k

Nd∑
n=1

⟨S⟩k,n c1[gBE(Ek,n)]Fn(k),

where ⟨S⟩k,n = ⟨nk| S |nk⟩ represents the spin expectation value of the nth band at a specific k. In
cases where spin is conserved, this expression coincides with the one derived from linear response the-
ory (equation (5.7)). To demonstrate the connection between this expression and a purely magnonic
system, we can simplify it by considering a ferromagnetic lattice where each magnon excitation cor-
responds to a spin expectation value of −1. In this case, the expression reduces to the following form
[91]

αxy = kB
A
∑
k

Nd∑
n=1

c1[gBE(Ek,n)]Fn(k).

In order to compare the spin Nernst coefficient obtained through the semiclassical approach and linear
response theory, we analyze its temperature dependence for the same scenarios discussed in section
7.5.2, as shown in Figure C.1. Notably, significant differences are observed when considering nonzero
values for Dnnn

xy with magnetization directions along ŷ and ẑ. Additionally, when the magnetization is
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Figure C.1.: Spin Nernst coefficient as a function of temperature, calculated with the semiclassical
approach. The figure on the left display the magnon-phonon interaction contribution to the coeffi-
cient due to an in-plane next-nearest neighbour DMI, and we compare with different magnetization
directions x̂, ŷ and ẑ. The figure on the right shows the coefficient when the magnetization is
perpendicular to the plane and we consider the scenarios where either κ2, Dnn

xy or Dnnn
xy is nonzero,

in addition to the case where all are zero which corresponds to the non-interacting system. We use
the following values: κ2 = 1.04meV, Dnn

xy = 0.173meV, Dnnn
xy = 0.3meV, ζ = 0.2 while the remaining

parameters for the magnon and phonon dispersion are consistent with those used in section 7.3.
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SEMICLASSICAL CALCULATION OF SPIN NERNST COEFFICIENT

out of the plane, the semiclassical approach yields a considerably larger magnitude for the coefficient.
As for the other cases examined, such as nonzero values of κ2 or Dnn

xy for the out-of-plane magnetization
direction, the two approaches yield approximately similar results.

To further investigate the significant discrepancy observed whenDnnn
xy is nonzero and the magnetization

is aligned with the z−axis, we perform a convergence test by calculating the coefficient using both
the semiclassical approach and linear response theory. We consider various resolutions (Nr × Nr) in
the Brillouin zone and compare the results, as shown in Figure C.2. The findings reveal that the
semiclassical approach yields numerically unstable results, exhibiting substantial variations depending
on the grid resolution. Consequently, we deem these results unreliable. We attribute this instability to
the combined distribution of ⟨Sz⟩k,nFn(k) near the anticrossing regions, where the spin expectation
value undergoes a gradual transition as the bands transition between phonon and magnon states. As
the band gaps diminish, giving rise to a large Berry curvature and a more abrupt transition in the
spin expectation value, the outcome becomes highly sensitive to the resolution. In contrast, the spin
Nernst coefficient obtained from linear response theory demonstrates numerically stable results. It is
evident that a resolution of Nr = 1400 is sufficient to obtain reliable outcomes.
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Figure C.2.: The figures show the Spin Nernst coefficient calculated using the semiclassical approach
(left) and the linear response theory (right) for different grid resolutions (Nr ×Nr) in the numerical
Brillouin zone. We specifically focus on a scenario with a magnetization out of the lattice plane,
considering Dnnn

xy = 0.3meV and ζ = 0.2. The remaining parameters for the magnon and phonon
dispersion are alike the ones used in section 7.3. Additionally, we include the spin Nernst coefficient
obtained in the non-interacting case where Dnnn

xy = 0.0meV.
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