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ABSTRACT

The proliferation of misinformation, popularly known as fake news, on social media
is a pressing concern due to its potential impact on crucial events like elections and
global emergencies. Existing detection methods primarily focus on text-based news, of-
ten neglecting the value of integrating multiple modes of information, particularly visual
cues, which previous studies have found to be highly e�ective. This thesis delves into
this relatively unexplored domain by introducing a sophisticated multi-modal frame-
work called the Image-enhanced Knowledge-Aware Hierarchical Attention Network (I-
KAHAN), which builds upon a state-of-the-art uni-modal fake news detection system.
This framework e�ectively combines textual and visual attributes to enhance the detec-
tion of fake news.

To e�ectively incorporate visual elements, various techniques were experimented with
to determine the optimal combination of image embedding, dimensionality reduction,
and feature combination techniques. The most promising methods, determined through
experimentation, include the use of CLIP for image embedding and a novel dimension-
ality reduction method called IHAN. The experiments revealed that CLIP-based image
embeddings, pooling-based dimensionality reduction, and concatenation-based feature
fusion yielded the best performance. Additionally, the novel dimensionality reduction
method IHAN showed excellent performance, indicating its significant potential. Fur-
thermore, the baseline neural network classifier was compared to a version with an
additional hidden layer, aiming to enhance representational power to accommodate the
complexity introduced by adding the visual feature. Surprisingly, the shallow classifier
outperformed its more complex counterpart in almost all the cases, providing unexpected
insights.

To address concerns regarding data quality, enhancements were implemented in the
FakeNewsNet dataset collection process, leading to noticeable improvements. These en-
hancements, collectively known as FakeNewsNet+, significantly boosted the perform-
ance, with as much as 10% in some circumstances.

I-KAHAN outperformed the baseline uni-modal model across all metrics, demon-
strating an improvement of approximately 1% and 3% on the GossipCop and PolitiFact
datasets, respectively. These results reinforce the findings of previous research, which em-
phasize the significance of visual attributes as crucial cues for distinguishing between real
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and fake news. While this study significantly advances the field of fake news detection
by introducing an innovative model and uncovering valuable insights, it acknowledges
certain limitations. Concerns regarding the model’s generalizability and ethical implica-
tions, such as potential biases and misuse, emphasize the need for careful application and
ongoing refinements. Despite these challenges, this study sheds light on the promising
future of multi-modal fake news detection and underscores the necessity for continued
research in the ongoing battle against misinformation.
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SAMMENDRAG

Spredningen av misinformasjon, også kjent som falske nyheter, på sosiale medier utgjør
en alvorlig trussel. Det kan påvirke avgjørende hendelser som valg og globale kriser.
Eksisterende metoder for deteksjon av falske nyheter fokuserer hovedsakelig på indi-
viduelle nyhetsegenskaper, som for eksempel tekstinnhold, og overser i mange tilfeller
betydningen av å integrere flere informasjonsformer. Det er spesielt verdt å merke seg at
visuelle elementer har vist seg å være e�ektive for å skille mellom ekte og falske nyheter
gjennom tidligere forsking. Denne masteroppgaven utforsker dette relativt uutforskede
området ved å introdusere et omfattende flermodalt rammeverk kalt Image-enhanced
Knowledge-Aware Hierarchical Attention Network (I-KAHAN), som bygger videre på et
sofistikert unimodalt system for å oppdage falske nyheter. Dette rammeverket tar i bruk
både tekstlige og visuelle elementer fra nyheter, med mål om å overgå det unimodale
systemets klassifiseringsytelse.

For en optimal integrering av visuelle elementer, ble det utført omfattende eksperi-
mentering med ulike teknikker for numerisk bilderepresentasjon, dimensjonalitetsreduk-
sjon, og aggregering av elementer. Gjennom eksperimenteringen identifiserte vi en rekke
lovende metoder, inkludert CLIP for bildeinnkapsling og en egenutviklet dimensjonalitet-
sreduksjonsmetode kalt IHAN. Eksperimentene viste at bildeinnkapsling basert på CLIP,
dimensjonalitetsreduksjon via pooling, og aggregering via konkatinering resulterte i den
best ytelsen. IHAN demonstrerte dessuten utmerket ytelse, noe som antyder dens store
potensial. Videre sammenlignet vi den originale nevrale nettverksbaserte klassifikatoren
med en modifisert versjon med et ekstra skjult lag. Målet med denne endringen var å
forbedre representasjonsevnen og håndtere den økte kompleksiteten fra introduksjonen
av et ekstra nyhetsattributt. Imidlertid overgikk den grunnleggende klassifikatoren den
mer komplekse varianten i de fleste tilfellene.

Datakvalitet var en stor bekymring, så det ble i tillegg implementert forbedringer i
datainnsamlingsprosessen for datasettene. Dette utgjorde merkbare forbedringer, hvor
den forbedrede prosessen, kalt for FakeNewsNet+, førte til en betydelig ytelsesøkning
med opptil 10% i enkelte tilfeller.

I-KAHAN overgår det grunnleggende unimodale systemet på alle metrikker og viser
en forbedring på omtrent 1% og 3% for henholdsvis GossipCop og PolitiFact datasettene.
Disse resultatene støtter tidligere forskningsfunn som understreker viktigheten av visuelle
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attributter. Selv om denne studien bidrar betydelig til feltet for deteksjon av falske
nyheter gjennom en innovativ modell og omfattende eksperimentering, fins det viktige
begrensninger å anerkjenne. Bekymringer rundt modellens generaliserbarhet og etiske
implikasjoner, som potensielle skjevheter og misbruk, understreker behovet for forsiktig
bruk og kontinuerlige forbedringer. Til tross for disse utfordringene, fremhever denne
studien den lovende fremtiden for flermodal nyhetsklassifisering, og poengterer samtidig
behovet for vedvarende forskning i kampen mot misinformasjon.
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CHAPTER
ONE

INTRODUCTION

In an age where information is disseminated at an unprecedented pace, the task of
identifying truth from falsehood has become both critical and challenging. Social media
platforms, while reshaping the landscape of news consumption, have concurrently become
breeding grounds for misinformation, raising vital questions about the integrity of the
information ecosystem.

This introductory chapter sets the stage for an in-depth exploration of the complex
and increasingly important field of fake news detection. It outlines the contemporary
relevance of the issue and the need for e�ective countermeasures. To address this pressing
problem, this study focuses on augmenting existing detection systems by integrating
visual elements from news content, a promising but somewhat unexplored area in fake
news detection research.

The chapter begins by discussing the context and motivation, followed by an outline
of the problems faced in the field of fake news detection. It then frames the goal of the
thesis and the research questions that guide this study. A brief overview of the research
methods and the contributions of this thesis is also provided. The chapter concludes by
presenting an outline of the subsequent chapters in the thesis, guiding readers through
the subsequent exploration of this important subject.

1.1 Background and Motivation
Over recent years, the Internet has drastically evolved and become a cornerstone in our
daily lives, predominantly in how we consume news. This transformation is attributed to
the rise of social media platforms that enable prompt information dissemination among
a vast user base. Twitter, a key participant in the realm of social media, reports an
impressive count of 237.8 million active users, with nearly 500 million tweets being
generated every day as of March 20231. However, these platforms also exhibit significant
challenges. For instance, the rapid spread of false information poses a pressing concern,
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made more complex by the di�culties surrounding the verification of content [2].
A series of momentous events, including the 2016 US presidential election, have amp-

lified the severity of the misinformation problem. In particular, the 2016 election saw
the widespread sharing and belief in fake news, with pro-Trump fake stories shared on
Facebook 30 million times, significantly more than pro-Clinton fake stories [3]. This phe-
nomenon underscores the persuasive power of misinformation in shaping public opinion
and influencing significant events. Following these, the COVID-19 pandemic, and the
Russian invasion of Ukraine, further exacerbated the issue. The World Health Organ-
ization (WHO) Director-General characterized the vast spread of fake news during the
pandemic as not only battling a disease but also an infodemic2. To illustrate, approxim-
ately half of the participants in a 2020 study on the misinformation about COVID-19
believed the pandemic was a worldwide conspiracy [4]. Moreover, misinformation, often
termed as fake news, associated with the pandemic has been observed to amplify anxiety
among individuals, subsequently impacting their overall health and well-being [5]. The
numerous instances of fabricated videos and images emerging from the Russia-Ukraine
conflict exemplify the exploitation of misinformation as a strategic tool in warfare, aimed
at controlling the narrative [6].

In response to this issue, social media platforms have adopted strategies such as ap-
pending warnings to content suspected of being false. While these warnings demonstrate
potential in curbing the acceptance of false content, their e�ect remains limited. The
challenge is further complicated by the rise of advanced artificial intelligence technolo-
gies, notably large language models (LLMs), which can convincingly generate human-
like texts, and could be exploited to create deceptive content [7]. Current approaches
encounter di�culties in consistently identifying and removing misinformation, primarily
due to the dynamic nature of social media, the subtlety of false narratives, and the con-
tinuous adaptation of new strategies by the producers of misinformation [8]. Therefore,
the development of more sophisticated tools for detecting and eradicating fake news is
crucial.

1.2 Problem Outline
The increasingly complex landscape of misinformation, or what is defined as fake news in
this thesis, warrants urgent and comprehensive research into e�ective detection strategies
[3]. In this study, the narrow definition by Allcott and Gentzkow, characterizing fake news
as a news article that is intentionally and verifiably false [3], is adopted. Essentially, fake
news is not about inaccuracies from high-quality sources that are promptly corrected.
Instead, it pertains to content intentionally designed to deceive and mislead readers.
Throughout this thesis, the terms misinformation and fake news are used interchange-
ably, adhering to the above definition.

Existing methodologies for fake news detection vary, encompassing uni-modal sys-
tems like KAHAN [9], which depend on a single type of news attribute, and multi-modal
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systems like FakeMine [10] and SAFE [11], which utilize multiple news attributes to
detect fake news. Leveraging multiple modalities can o�er a comprehensive view of the
news content, enhancing the potential for accurate fake news detection.

News attributes like images, in particular, are an essential component of news content.
Most news articles include images related to the topic, providing additional context.
Interestingly, research suggests that there are notable di�erences between the images
used in real and fake news. For instance, Cao et al. [12] found that images in fake news
tend to be more visually captivating and provocative. Similar results have been found by
other researchers like Zhou et al. [13] and Segura-Bedmar et al. [14], who showed that
the use of visuals can positively a�ect news classification performance. This implies that
images could be an important tool in detecting fake news, supplementing the information
derived from other modalities such as text.

Despite the inclusion of images in past research on multi-modal fake news detection,
the optimal methods for integrating visual information remain elusive. Various tech-
niques have been deployed in this research domain, including deep learning methods.
However, their e�ectiveness may vary depending on the specific context and charac-
teristics of the fake news. This thesis aims to fill the research gap by integrating and
comparing multiple competing techniques on diverse datasets within a novel fake news
detection framework. This framework intends to enhance a state-of-the-art uni-modal
detection system by integrating visual information, thereby transforming it into a multi-
modal system. Through evaluating the impact of visual attributes on system performance
and comparing it with state-of-the-art multi-modal detection systems, this research seeks
to shed light on e�ective ways of incorporating visual information. These insights hold
the potential to significantly advance the field of fake news detection.

1.3 Goal and Research Questions
In view of the challenges outlined above, the primary objective of this thesis is encapsu-
lated in the below statement.

Goal This thesis seeks to examine the e�ects of incorporating visual attributes of news
into a fake news detection system on its classification performance. Furthermore,
it aims to evaluate and compare di�erent image integration techniques and as-
sess the resulting system’s performance against existing multi-modal fake news
detection systems.

To accomplish this goal, the research will address the following research questions: RQ1,
RQ2, and RQ3.

RQ1 What techniques are most e�ective for incorporating visual elements of news into
a multi-modal fake news detection system, thereby improving its classification
performance?

RQ2 How significantly does the integration of visual attributes into a fake news detec-
tion system influence its classification performance?
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RQ3 How does the classification performance of the developed multi-modal fake news
detection system, which includes visual elements, compare with existing state-of-
the-art multi-modal systems?

1.4 Research Method and Contributions
In this study, a quantitative, experimental approach was employed to enhance the cap-
abilities of an existing fake news detection model. The research broadened the model’s
scope by incorporating an additional feature, namely the images associated with news
items. This required the implementation of components capable of numerically repres-
enting these images and integrating them with the textual features. To maximize the
e�cacy of this integration, various image embedding techniques, dimensionality reduc-
tion methods, and feature fusion techniques were compared and evaluated.

The process and findings of this research constitute major contributions to the un-
derstanding and advancement of multi-modal fake news detection. These contributions
are best encapsulated in three key areas, seen below.

Framework A novel framework for multi-modal fake news detection has been de-
veloped, integrating not only textual information but also images and
external knowledge. This comprehensive approach provides a more
nuanced and precise mechanism for news classification.

Techniques An extensive comparative analysis of various image embedding, di-
mensionality reduction, and feature fusion techniques has been con-
ducted to optimize image integration into the detection system. This
includes the proposal of a novel dimensionality reduction method,
as well as an exploration of the potential of attention for improved
image representations.

Data Collection A refined data collection process was implemented, resulting in im-
proved data quality. A thorough analysis of the impact of this im-
proved data on detection performance also forms a significant part of
this research.

1.5 Thesis Outline
The thesis is structured into nine chapters, with the last eight summarized and presented
below.

Chapter 2 o�ers a theoretical background on fake news, machine learning, deep learning,
attention mechanisms, embeddings, knowledge extraction, and fake news detection.

Chapter 3 examines related work in the field of uni-modal and multi-modal fake news
detection, emphasizing the model our research builds upon.
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Chapter 4 discusses the datasets used, including details on data cleaning, preparation,
presentation, and visualization.

Chapter 5 outlines the research method, detailing the architecture of our novel frame-
work, with the various image embedding techniques, dimensionality reduction methods,
and feature fusion techniques implemented.

Chapter 6 provides a detailed overview of the experimental design, including tools and
technologies used, the experimental setup, and the execution of the experiments.

Chapter 7 presents the results, providing a comparative analysis of di�erent techniques,
the impact of improved data collection, and the performance of the extended model.

Chapter 8 evaluates the results, discussing the performance of the model, the impact of
di�erent techniques and improved data collection on performance. It also considers the
strengths, limitations, and ethical implications of the proposed model.

Finally, Chapter 9 draws conclusions on the research based on whether the research
questions have been adequately met. It also suggests future work and research directions
in the field of multi-modal fake news detection.
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CHAPTER
TWO

THEORETICAL BACKGROUND

This chapter provides a comprehensive overview of the theoretical foundations essential
for studying the detection of fake news. It aims to present the key concepts and theories
related to these systems in a clear and organized manner.

To begin, the chapter defines and examines the concept of fake news, elucidating its
characteristics and the motivations behind its creation.

The next section explores various aspects of machine learning, specifically focusing
on supervised, unsupervised, and self-supervised learning. Additionally, it delves into the
field of deep learning, discussing feed-forward, deep, and convolutional neural networks.
Moreover, recurrent neural networks, including long short-term memory, gated recurrent
units, and bi-directional recurrent neural networks, are covered in detail.

Particular emphasis is given to attention mechanisms, which play a vital role in al-
lowing models to assign importance to di�erent parts of the input sequence. This section
highlights self-attention, multi-head attention, co-attention, and hierarchical attention
networks.

Furthermore, the chapter explains the concept of embeddings and their role in rep-
resenting data in a lower-dimensional space for computational purposes. It explores how
embeddings are applied in the context of fake news detection. Additionally, the chapter
delves into various approaches to extracting knowledge, such as entity extraction, linking,
and claim identification.

2.1 Fake News

a news article that is intentionally
and verifiably false

Allcott and Gentzkow

The realm of fake news is a complex landscape that requires careful exploration for a
comprehensive understanding. Definitions of fake news vary, with Allcott and Gentzkow
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[3] characterizing it as a news article purposefully fabricated to deceive, and whose
falsehood can be verified. Essentially, fake news contains information that is both in-
tentionally deceptive and verifiable as false [15]. However, broader interpretations may
encompass all deceptive news, including fabrications, hoaxes, and satire. For clarity and
precision in this discussion, we will adhere to the more narrow definition provided by
Allcott and Gentzkow. By following this definition, fake news cannot be confused with
articles of high journalistic quality from trusted sources that are quickly corrected if
reports of its inaccuracy arise, but rather content intentionally designed to provoke and
mislead [16].

2.1.1 Categorization and Relationships
The Internet swarms with misleading information of various kinds. Distinguishing between
the di�erent types, particularly misinformation and disinformation, is crucial to under-
standing this complex landscape [17]. Misinformation refers to potentially misleading in-
formation without any intent of deception, while disinformation involves the intentional
propagation of inaccurate information. Fake news, according to our adopted definition,
forms a subset of disinformation. Several subcategories of misinformation exist, such
as rumors and other forms of misleading content [2]. Rumors are unverified pieces of
information shared online and can be divided into long-standing rumors and breaking
news rumors. Clickbait and social spam represent other forms of misinformation. Fur-
ther, fake news itself encompasses serious fabrications, large-scale hoaxes, and humorous
fakes. Serious fabrications pertain to the aggressive dissemination of false information,
large-scale hoaxes present fabricated stories as authentic news, and humorous fakes con-
tain satirical content masquerading as news. The relationships among these categories
are depicted in Figure 2.1.

2.1.2 Distinguishing Factors of Fake News
To di�erentiate between fake news and real news, we can consider several key character-
istics, particularly in terms of the textual and visual content.

Textual Characteristics Real news articles are typically grounded in facts and objectiv-
ity. They present information from multiple perspectives, o�ering a balanced view.
On the other hand, fake news articles tend to be subjective and biased, often rep-
resenting a single viewpoint [18]. In terms of style, fake news articles often prioritize
sensationalism and evoke emotional responses.

Visual Characteristics Fake news frequently utilizes manipulated or entirely fabricated
images, as highlighted by [12]. These images may involve elements that have been
photoshopped, images taken out of context, or completely computer-generated
visuals also known as deep fakes1. Another clue lies in the visual style of an image,
including aspects like color distribution, texture, and shape. Fake news images may

1
https://www.merriam-webster.com/dictionary/deepfake

8

https://www.merriam-webster.com/dictionary/deepfake


Misleading Information

Misinformation

Rumors Clickbait Social Spam

Disinformation

Fake News

Serious Fabrications Large-Scale Hoaxes Humorous Fakes

Figure 2.1: A visually di�erentiated tree diagram elucidating the various categories and
subcategories of misleading information. Misinformation and disinformation are two main
branches, with the latter encompassing fake news. Furthermore, fake news is segmented
into serious fabrications, large-scale hoaxes, and humorous fakes. The diagram showcases
the complex structure of false information distribution online, helping to understand
their interrelations and individual characteristics. The color coding is utilized for clear
distinction: the root node is half blue and half red, representing the overarching concept
of Misleading Information, blue for Misinformation that signifies incorrect or misleading
information presented without malicious intent, and red for Disinformation, including
Fake News, which involves intentional misinformation with a purpose to deceive.

exhibit a distinct visual style that di�ers from authentic news images. Furthermore,
examining the metadata of an image, such as the camera model, date, and location,
can also aid in detecting fake news. Fake news images often exhibit inconsistent or
missing metadata. [12] further elaborates that there are also semantic di�erences
between real and fake news images, stating that the latter images are more visually
captivating and provocative.
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2.1.3 Motives Behind Fake News
According to the research conducted by [3], the production and dissemination of fake
news can be traced back to two primary motivations that drive its creation. The first mo-
tivation is centered around financial gains, as online platforms generate revenue through
advertisements based on the number of clicks they receive. This profit-driven incent-
ive has become increasingly prevalent, with the 2016 US election serving as a notable
example. During that time, numerous fabricated stories were intentionally produced to
favor di�erent candidates, solely driven by the desire for monetary gain.

The second motivation behind the production of fake news is ideological in nature.
In this context, false narratives are strategically crafted to serve a specific agenda, of-
ten aiming to advance the interests of a particular candidate or cause. These deliberate
distortions of information are designed to manipulate public opinion, sway political dis-
course, and shape the narrative surrounding certain issues. By fabricating and dissemin-
ating false stories, purveyors of fake news seek to influence and mold public perception
in alignment with their ideological goals.
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2.2 Machine Learning
The contemporary technological landscape is witnessing an increasingly prevalent utiliz-
ation of Machine Learning (ML), a branch of computer science that focuses on algorithms
and methods to solve complex problems that are hard to handle with traditional pro-
gramming [19]. The reach of ML is vast, impacting everything from the way we search
the web to how our smartphones function [20]. The versatility of ML also means it is
used in various tasks, like recognizing objects, transcribing speech to text, and creating
personalized suggestions.

Supervised and unsupervised learning constitute the two main paradigms in machine
learning. Supervised learning, as described by LeCun et al., involves learning correlations
between data features and labels using a labeled dataset, enabling label prediction for un-
seen data. Unsupervised learning, conversely, deals with finding structures and patterns
within unlabeled data, commonly used for tasks like data clustering [21]. An additional
learning paradigm, self-supervised learning, leverages the advantages of both. According
to [22], this approach creates labels from the data itself for guiding the learning process.
Although the learning is unsupervised, it uses these derived labels, somewhat resembling
supervised learning.

2.2.1 Supervised Learning
The fundamental components of supervised ML are illustrated in Figure 2.2. The de-
picted model consists of two phases: learning and evaluation, followed by real-world
predictions. In the learning phase, the ML algorithm is trained on a dataset that rep-
resents the target domain. Subsequently, the algorithm is evaluated on the same dataset
to assess its quality and performance. If the evaluation reveals poor performance, ad-
justments can be made to the algorithm, dataset, or learning process. This evaluation
phase provides insights into the model’s expected performance when deployed and serves
as the basis for iterative improvements. The dataset is typically split into two parts: a
training set and a test set. The usual split ratio is 80/20, with the majority allocated to
the training set. Approximately 4/5 of the dataset is used for training, while the remain-
ing 1/5 is used to evaluate the model by comparing predicted labels with true labels.
To enhance the robustness of evaluation, k-fold cross-validation can be employed. This
technique involves training the model on k-1 subsets and evaluating it on the remain-
ing subset. The process is repeated k times, with each subset serving as the evaluation
set once. The performance scores obtained in each iteration are averaged to estimate
the model’s overall performance. After the learning and evaluation phases, the learned
model is utilized to make predictions on real-world data, allowing the system to provide
high-quality predictions for unseen instances.

Some supervised learning methods include Decision Tree, Naïve Bayes, and Support
Vector Machine (SVM), each with distinct characteristics and applications, optimizing
classification and regression tasks [21].
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Learn and Evaluate Real-world predictions

Dataset

Learn Evaluate

ML Algorithm

Learned model Prediction

ML Algorithm ML Algorithm

Real-world data

Figure 2.2: Illustration of the di�erent phases in supervised machine learning. The figure
is divided into two parts: the left side showcases the learning and evaluation process, while
the right side demonstrates the application of the learned model to real-world predictions.
Solid arrows represent the sequential order of events within each phase, while dashed
arrows indicate the corresponding data flow. In the learning phase, the events Learn
and Evaluate are highlighted in orange, indicating their association with the unfinished
model, while the event on the right-hand side depicts the completed, learned model.
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2.2.2 Unsupervised Learning
Unsupervised learning, another ML subset, involves pattern identification and struc-
ture discernment within unlabeled data. Unlike supervised learning, where a machine
learns from labeled data, unsupervised learning focuses on comprehending the data’s
inherent structure. The model processes sequences of inputs and generates models that
encapsulate the data’s significant information.

Unsupervised learning’s key strategies include clustering, grouping similar data points,
and dimensionality reduction, extracting pertinent data features. Such methods facilit-
ate pattern detection in data that transcend random noise, facilitating predictions, data
representation, information dissemination, and decision making [23]. Algorithms such
as k-means and k-nearest neighbors (kNN) are often employed for data clustering and
unsupervised learning tasks [21, 24].

2.2.3 Self-supervised Learning
Self-supervised learning (SSL) is a machine learning method that harnesses large amounts
of unlabeled data, standing as a notable alternative to traditional supervised and unsu-
pervised learning [22]. SSL creates pretext tasks from the data, aiding models to learn
informative representations beneficial across di�erent domains, such as natural language
processing and computer vision.

Pretext tasks in SSL might involve predicting the context of a masked word in a
sentence or missing parts of an image. This form of learning helps models to grasp
intrinsic relationships within data without explicit labels, making SSL models e�ective
for various tasks like language translation or image generation.

SSL’s main advantage is its ability to learn from extensive unlabeled data, yielding
general and robust representations applicable across multiple tasks. It is especially useful
in areas like healthcare, where labeled data is scarce, or the specific task is undefined
[22].

SSL traces its roots back to early deep learning experiments, with techniques like
Recurrent Neural Networks (RNN) and Transformers being prominent examples. These
techniques are further discussed and elaborated later in this chapter. Modern SSL meth-
ods can be grouped into four families: Deep Metric Learning, Self-Distillation, Canonical
Correlation Analysis, and Masked Image Modeling [22].

In essence, SSL provides a way to e�ectively utilize large volumes of unlabeled data,
o�ering notable benefits in terms of generalization, robustness, and applicability to di-
verse tasks.

2.3 Deep Learning
Traditional machine learning approaches have inherent limitations in processing raw
data, necessitating meticulous data engineering to render it suitable for these methods
[20]. Deep learning overcomes this challenge by allowing deep techniques to autonomously
learn representations of the raw data without human intervention. Most deep learning
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techniques are built upon the concept of the Perceptron, which originated from the 1958
paper by Frank Rosenblatt [25]. The Perceptron was designed as a hypothetical nervous
system or machine to capture the intrinsic attributes of intelligent systems. At its core,
the perceptron is a network of interconnected units that process stimuli and generate
responses based on learned connections and activation thresholds. Minsky and Papert
further developed this idea in 1969 by introducing the two-layered perceptron, capable
of learning more complex representations than the original single-layered perceptron due
to the increase in parameters [26]. However, the two-layered perceptron could only ad-
equately approximate simple functions, later addressed by Hornik with the introduction
of the multilayer perceptron in 1988, capable of representing any measurable function.

The perceptron and its descendants are categorized as feed-forward networks, as
information flows from input through the activations of the layer(s) to the output. An-
other branch of neural networks, as explained in [27], comprises recurrent networks where
feedback connections are created using loops.

2.3.1 Feed-forward Neural Networks
Gardner and Dorling provide an explanation of the structure of feed-forward neural
networks [28]. These networks are composed of fully-connected neurons, also known as
nodes, with weighted connections. A fully-connected architecture means that each neuron
in one layer is connected to every neuron in the subsequent layer. The output signal of
a neuron is obtained by applying a non-linear function to the sum of the weighted input
signals. This process is repeated for each neuron in each subsequent layer, with the
output signals of all neurons in the current layer serving as input to every neuron in the
next layer. This iterative process continues until reaching the output layer, which is the
final layer of the network.

The training of feed-forward neural networks follows a supervised approach, where
the weights (parameters) are adjusted based on the error value between the predicted and
true output values [20]. The adjustment of weights is performed using computed gradients
by the learning algorithm. These gradients indicate the amount of increase or decrease
in the error term if a specific weight is adjusted. The process of adjusting the weights
based on the computed gradients is known as backpropagation, as the adjustments are
propagated backward through the network.

Deep Neural Networks

Deep neural networks (DNNs) are an extension of feed-forward neural networks that in-
corporate multiple hidden layers between the input and output layers. Each hidden layer
consists of a significant number of interconnected neurons, making DNNs capable of cap-
turing complex patterns and representations. Figure 2.3 presents a visual representation
of a generic DNN architecture, showcasing the input layer, output layer, and multiple
hidden layers. The number of hidden layers and the number of neurons in each layer can
vary depending on the complexity of the task and the available resources. DNNs with
deeper architectures and larger numbers of neurons have shown improved performance
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Figure 2.3: A visual representation of a generic deep neural network (DNN). The network
consists of an input layer, an output layer, and multiple hidden layers. The presence of an
empty middle hidden layer in the illustration highlights the possibility of incorporating
a lot of hidden layers in DNNs. Similarly, the three dots between the top and bottom
neurons of each layer indicate that a substantial number of neurons can be present within
each layer. The arrows depict the flow of information from left to right, representing the
feed-forward nature of the network

in various domains, such as image recognition, natural language processing, and speech
recognition.

Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of deep neural network (DNN) de-
signed specifically for processing structured grid data such as images and audio spectro-
grams, by considering the locality and stationarity of the input data [20]. While a DNN
connects each neuron to all neurons in the next layer, a CNN only connects each neuron
to a subset of neurons in the next layer, allowing it to capture local patterns.

Figure 2.4 depicts a model of a simple CNN. Here, an input image is sent to the net-
work composed of multiple convolutional layers followed by pooling. The output is then
flattened and passed to fully-connected layers, finally resulting in softmax probabilities.
The darker color of output neurons signifies higher probabilities. Given the input image
is of a dog, the darkest neuron corresponds to the class of a dog.
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Figure 2.4: Simplified architecture of a convolutional neural network (CNN). The input
image is processed through multiple convolutional and pooling layers. The output, after
being flattened, is passed to fully-connected layers resulting in softmax probabilities. The
darkest neuron corresponds to the class with the highest probability, in this case, a dog.

CNNs have been applied in a variety of fields, such as image and video recognition,
recommender systems, image generation, and natural language processing, achieving
state-of-the-art results in many of these areas [20].

Max Pooling Max pooling is a subsampling method that selects the maximum value
from each of a series of sub-regions of the input, as shown in Figure 2.5. This
provides robustness to spatial translations and helps to reduce the computational
load for subsequent layers.

Figure 2.5: Example of max pooling with a 2x2 pooling size. The resulting matrix consists
of the maximum values from each 2x2 submatrix in the original matrix.

Average Pooling Average pooling is another subsampling method that calculates the
average value for each of a series of sub-regions of the input, as depicted in Figure
2.6. While less common than max pooling, it can be used in scenarios where it is
important to maintain the average intensity information of the features.
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Figure 2.6: Example of average pooling with a 2x2 pooling size. The resulting matrix
consists of the average values from each 2x2 submatrix in the original matrix.

Empirical studies have shown that max pooling generally outperforms average pool-
ing in tasks such as object recognition, though the choice of pooling operation can depend
on the specific task and dataset [29].

2.3.2 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a class of neural networks that introduce con-
nections between hidden units along the time dimension, enabling the model to maintain
information across time steps. This makes RNNs particularly suitable for sequence-to-
sequence tasks such as natural language processing, time series prediction, and music
generation [30].

Figure 2.7 presents the architecture of a traditional RNN, both in its unrolled and
rolled forms. Here, ht denotes the hidden states and xt refers to each element of the
input sequence.

Figure 2.7: Architecture of a traditional recurrent neural network (RNN). ht denotes the
hidden states, while xt denotes each element of the input sequence. Both unrolled and
rolled versions are shown.
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Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a special type of RNN designed to
overcome the limitation of traditional RNNs in learning long-term dependencies. LSTMs
introduce a memory cell and gating mechanisms that regulate the flow of information
into and out of the memory cell [30]. This design allows LSTMs to e�ectively capture
long-term dependencies in sequence data.

Despite their e�ectiveness, LSTMs have a relatively complex structure and require
substantial computational resources for training.

Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is another type of RNN that aims to capture long-
term dependencies, similar to LSTM. However, GRUs simplify the LSTM architecture
by merging the cell state and hidden state, and combining the input and forget gates into
a single update gate [30]. This results in a more e�cient model with fewer parameters
than LSTM.

While GRUs simplify the architecture and reduce the training time, it is still a
matter of ongoing research to conclusively determine which of the two, GRUs or LSTMs,
performs better in various tasks. In some cases, the extra complexity of LSTM may
provide an advantage, while in others, the simplicity of GRU may su�ce.

Bi-directional Recurrent Neural Network

Bidirectional Recurrent Neural Networks (BRNNs) have been introduced as an improve-
ment over traditional RNNs, which are somewhat limited by their unidirectional pro-
cessing. BRNNs divide the state neurons into two parts, forward states, and backward
states, to process the sequence data in both positive and negative time directions. Im-
portantly, these states are not connected, enabling the BRNN to harness information
from both past and future inputs and providing a broader context for making predic-
tions [31]. The network’s enhanced modeling and prediction capabilities, facilitated by its
ability to capture patterns and dependencies from both time directions, make BRNNs
especially valuable for tasks requiring comprehensive context understanding, such as
speech recognition, machine translation, and sentiment analysis [31]. Figure 2.8 displays
a simple model of a BRNN.
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Figure 2.8: Architecture of a Bidirectional Recurrent Neural Network (BRNN). It extends
the traditional RNN model by including a second layer of RNN that processes the input
sequence in reverse, capturing additional context. The outputs from each direction are
then concatenated.
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2.4 Attention Mechanisms
William James (1890) described attention as the mind’s process of selectively focusing
on certain aspects of information while disregarding others. He defined it as the taking
possession by the mind, in clear and vivid form, of one out of what seem several simul-
taneously possible objects or trains of thought [32]. This concept has been translated into
technology through attention mechanisms, particularly in sequence transduction models,
where it allows the model to focus selectively on certain parts of the input sequence that
are most relevant for each step of the output sequence.

In the landmark paper Attention Is All You Need, Vaswani et al. introduced the
Transformer, a novel network architecture that hinges solely on attention mechanisms,
bypassing the need for recurrence or convolutions. The Transformer’s significant im-
provements in both quality and speed over previous models, along with its greater par-
allelization capabilities, marked a shift in the field of natural language processing and
machine translation [33].

2.4.1 Self-Attention
Self-attention, or intra-attention, is a mechanism employed in the Transformer model
to capture relationships and dependencies within a sequence. It allows each element in
the sequence to attend to every other element, thereby capturing global patterns and
long-range dependencies, irrespective of their distance in the sequence [33].

In the self-attention process, each element in the sequence is considered as the query,
key, and value. The query and key are used to compute an attention score, which is
then used to weigh the value. In essence, the input attends to itself, leading to the term
self-attention (see Figure 2.9). The resulting output is a weighted sum of the inputs,
which considers both the relevance of each input element to every other input element
and their original representations.
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Figure 2.9: Illustration of self-attention. The input sequence is used as query, key, and
value. The attention scores are computed using the query and key (transposed), which are
then applied to the value through a multiplication operation. The mechanism essentially
allows the input to attend to itself. The figure is inspired by the model of Praphul Singh2.

Self-attention e�ectively models dependencies within the input sequence, thus lead-
ing to superior performance in various sequence transduction tasks such as machine
translation [33].

Multi-head Attention

Multi-head attention, an extension of self-attention, is another critical component of the
Transformer model. It allows the model to focus on di�erent parts of the input sequence
across multiple representation subspaces simultaneously [33].

In multi-head attention, the input is divided into a number of equal parts correspond-
ing to the number of heads. Then, self-attention is applied independently to each part,
which allows the model to focus on di�erent positions in the sequence in parallel. This
allows the model to capture various types of dependencies and relationships within the
sequence. Figure 2.10 provides a visual representation of the multi-head attention mech-
anism in action, highlighting its unique ability to capture di�erent types of information
from the same sequence.

2
https://blogs.oracle.com/ai-and-datascience/post/multi-head-self-attention-in-nlp
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Figure 2.10: Visualization of multi-head attention. In this example, two attention heads
(blue and purple) are applied to a sentence. The word cross focuses more on the and
street in the first head, and on The in the second head. The representation is stronger
than if only one head (self-attention) was used. This illustration was created using the
Tensor2Tensor Colab notebook3.

Through this mechanism, the model is capable of capturing diverse relationships
across di�erent positions and representational spaces within the sequence, leading to
richer understanding and improved performance in tasks such as language modeling and
machine translation [33].

Co-Attention

Co-attention is an attention mechanism that considers two modalities concurrently.
Unlike traditional self-attention (or intra-attention), which focuses on the relationship
among elements within a single modality, co-attention takes into account the interactions
between two di�erent modalities simultaneously [34].

In a co-attention mechanism, the representations of the two modalities influence
each other’s attention processes. More specifically, the attention over one modality is
guided by the representation of the other modality, establishing a symmetry in their
interactions. This approach is e�ective in tasks that require an understanding of the
relationship between di�erent types of input data.

The process of co-attention is conducted at di�erent levels, enabling the model to cap-
ture hierarchical structures within the data. For example, it can be applied at the word,
phrase, and sentence levels when dealing with textual data. It can also be performed in

3
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor

2tensor/notebooks/hello_t2t.ipynb#scrollTo=odi2vIMHC3Rm
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parallel or alternating fashion, generating attention for both modalities simultaneously
or switching between the two.

The primary advantage of co-attention is its ability to capture complex dependencies
between di�erent types of input data. It allows the model to focus on the relevant parts
of both modalities, leading to better performance in tasks that require an understanding
of the relationship between di�erent types of data [34].

2.4.2 Hierarchical Attention Networks
The Hierarchical Attention Network (HAN) is a model developed for tasks that involve
structured data, such as document classification. HAN is designed to capture the hier-
archical structure of documents by incorporating di�erent layers of attention, focusing
on di�erent levels of information within the data [35].

The HAN architecture consists of two primary components: a word sequence encoder
with a word-level attention layer, and a sentence encoder with a sentence-level attention
layer (Figure 2.11). Both encoders use bidirectional Gated Recurrent Units (GRUs) to
capture the contextual information within words and sentences.

In the word sequence encoder, the word-level attention layer applies attention mech-
anisms to highlight important words within a sentence, based on their contextual in-
formation. Similarly, the sentence encoder uses a sentence-level attention layer to select
informative sentences within a document, forming a document representation that em-
phasizes relevant sections.
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Figure 2.11: Hierarchical Attention Network (HAN) architecture. The network processes
each word wi in a sentence si through the attention network, generating a condensed
and enhanced sentence representation based on the significant words. These sentence
representations are then processed through another attention network to generate an
enhanced document representation that emphasizes the important sentences.

A significant advantage of HAN is that its attention mechanisms can reveal the parts
of the input data that the model considers most important, providing insights into the
decision-making process of the model. This makes HAN not only e�ective for tasks
like document classification but also for the interpretability of text, which is a critical
requirement in many real-world applications [35].

The architecture of the attention network within HAN, which includes a bidirectional
GRU and an attention score network, is illustrated in Figure 2.12. The network takes an
input sequence and generates a series of hidden states using the bidirectional GRU. Each
of these hidden states is then fed into the attention score network to generate an attention
score. These scores are used to create a weighted sum of the hidden states, which forms
the output of the network. This architecture allows the model to give more importance
to the significant parts of the input sequence, leading to more e�ective representations.
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Figure 2.12: Architecture of the attention network within HAN. The network comprises
a bidirectional GRU and an attention score network. The input sequence is processed
through the bidirectional GRU, generating a series of hidden states. Each hidden state is
then fed into the attention score network to generate an attention score, which is used to
create a weighted sum of the hidden states that form the network’s output. This process
allows the network to emphasize important parts of the input sequence.

Overall, the hierarchical attention mechanism introduced by the HAN model allows
for a more nuanced and context-aware representation of data at di�erent granularity
levels, which is particularly useful for document classification tasks [35].
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2.5 Embeddings
Embeddings, according to Jurafsky and Martin [36], represent a potent method in ma-
chine learning and deep learning systems to convert raw data into a form that these
algorithms can process. Transforming high-dimensional data into a lower-dimensional
vector space is essential because many machine learning algorithms and all deep learning
algorithms require numerical input. The transformation process maps each unique item
to a representative point in the embedding space. This process approximates preserving
the relationships and similarities from the original space. In the following sections, the
concept will be further explained and contextualized through di�erent embedding mod-
els’ discussion and exploration.

Embedding techniques fall into two broad categories: uni-modal and multi-modal
approaches. Uni-modal approaches involve mapping data from a single modality, such as
text or images, into an embedding space. In contrast, multi-modal approaches integrate
multiple modalities, such as text and images, into a single embedding space. Both these
categories of approaches will be further discussed.

2.5.1 The Distributional Hypothesis
Introduced by Zellig Harris in 1954 [37], the Distributional Hypothesis is a cornerstone
in computational linguistics, stating that words with similar distributions have similar
meanings. In other words, words that frequently occur in the same environment share
semantic features.

Jurafsky and Martin [36] highlight that the hypothesis forms the basis for vector
semantics, where word representations, called embeddings, capture the meaning of words
in a vector space. In practice, the advent of machine learning and deep learning has
enabled us to represent words as high-dimensional vectors in a mathematical space,
referred to as the embedding space. These vectors, with their dimensions signifying
latent features of the words, serve as the embodiment of the Distributional Hypothesis.
The proximity of the vectors can indicate semantic or syntactic similarity.

Figure 2.13 provides a simplified illustration of this vector space, where words de-
scribing similar concepts are situated close to each other. The axes represent latent
dimensions in the space. Words like dog and wolf are close, indicating a level of semantic
similarity. In contrast, cat and tiger are distant along the x-axis but close on the y-axis,
revealing a di�erent type of relationship. This scenario typifies the Distributional Hy-
pothesis’s underpinning, where contextually alike words are considered to have similar
meanings.
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Figure 2.13: A simplified illustration of a vector space under the Distributional Hypo-
thesis. Words are embedded into a multi-dimensional space where the closeness of word
vectors represents semantic or syntactic similarity.

The application of the Distributional Hypothesis in machine learning and deep learning
has been a stepping stone in the creation of powerful linguistic models, as it provides a
method to numerically represent text. This numeric representation forms the basis for
word embeddings, which are essential tools for a range of natural language processing
tasks.

2.5.2 Word Embeddings
Word embeddings, as discussed by Jurafsky and Martin [36], represent a significant
advancement in the way we treat text data in machine learning algorithms. Initially,
the most straightforward way of representing text was through Bag of Words models,
which involved treating each word as an atomic unit and ignoring the ordering of words
[37]. However, this approach did not capture the context or semantics of words. With
the advent of more advanced word embeddings such as word2vec, GloVe, and BERT,
we now have mechanisms to capture the semantic meanings, syntactic relationships, and
contextual associations of words, paving the way for significant improvements in natural
language processing tasks. These types of embeddings are discussed in the following
sections.

Word2vec

Introduced by Mikolov et al. [38], word2vec is a pioneering method for learning word
embeddings. Word2vec aims to learn high-quality word vectors from massive datasets
containing billions of words with large vocabularies. These learned word vectors capture
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multiple degrees of similarity, capturing nuanced semantic and syntactic properties of
words.

The core principle of word2vec involves creating dense vector representations of words
in such a manner that the vectors for words appearing in similar contexts are closer in
the embedding space, embodying the distributional hypothesis [37]. The model utilizes
two architectures to achieve this: the Continuous Bag-of-Words (CBOW) and the Skip-
gram models. The CBOW model predicts a target word from its surrounding context,
whereas the Skip-gram model does the opposite: predicting the context words from the
target word. This bidirectional learning allows the model to capture rich contextual
information.

This method has led to significant improvements in tasks involving word similarity
and has been crucial in downstream tasks such as sentiment analysis, named entity
recognition, and information retrieval.

GloVe

Building on the foundations laid by word2vec, Pennington et al. [39] introduced GloVe,
short for Global Vectors, a new model for learning vector representations of words. GloVe
merges the benefits of both global matrix factorization methods and local context window
methods, providing an e�cient and powerful mechanism for learning word embeddings.

Unlike word2vec, which learns from local context, GloVe trains on the global word-
word co-occurrence counts, capturing global statistical information across the corpus.
The aim is to derive meaningful structure and extract semantic and syntactic regularities
from these global statistics. This global co-occurrence count allows GloVe to consider a
much larger context and better capture long-range dependencies between words.

In terms of performance, GloVe has shown state-of-the-art results in tasks such as
word analogy and named entity recognition, underlining its e�ectiveness in capturing
fine-grained semantic and syntactic regularities in word vectors.

BERT

BERT, short for Bidirectional Encoder Representations from Transformers, is a method
introduced by Devlin et al. [40] to learn representations of words by looking at their
surrounding context in both directions. Unlike earlier methods such as word2vec and
GloVe, which only consider a fixed window around a word, BERT considers all the words
in a sentence both to the left and right. This makes it much better at understanding the
full context of a word.

BERT is based on the transformer architecture, which we discussed earlier. In essence,
transformers use a method called self-attention to weigh the importance of words in the
sentence. This allows BERT to focus more on words that are important for understanding
the context and less on words that are not.

At its core, BERT works by randomly hiding some words in a sentence, known as
masking, and then trying to predict these masked words from the other words in the
sentence. This forces BERT to learn to understand the context and meaning of words.
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BERT also learns to understand the relationship between sentences by guessing if one
sentence logically follows another.

What makes BERT special is its flexibility. After learning from a large amount of
text data in this way, a process known as pre-training, BERT can be easily adapted
to a wide range of tasks, such as answering questions or identifying the sentiment of a
text, with only some additional training. This ability to handle various tasks by simply
adjusting its inputs and outputs, coupled with its impressive performance, is what made
BERT a breakthrough for word embedding.

2.5.3 Image Embeddings
Images can contain a great amount of information, from colors and shapes to patterns
and objects. But machines do not understand images like we do. For a machine to
interpret an image, it needs to be converted into a numerical form, known as image
embedding.

Unlike text, images contain spatial and hierarchical patterns that can be quite com-
plex. Hence, finding an e�ective way to represent images numerically is more challenging
than with text. Various methods have been developed to tackle this challenge, including
Convolutional Neural Networks (CNNs) and newer techniques like Vision Transformers
(ViTs). In the following sections, we will explore some popular image embedding methods
and discuss their unique strengths and features.

VGG19

VGG19 is a type of Convolutional Neural Network (CNN) developed by Karen Simonyan
and Andrew Zisserman [41]. It is called VGG19 because it has a total of 19 layers - 16
of them are for feature extraction and 3 are fully-connected layers for classifying the
extracted features. This architecture is illustrated in Figure 2.14.

VGG19 operates on color images of size 224x224 pixels. It first applies a series of filters
to the input image, progressively reducing the image size while increasing the number
of channels (or depth). Each filter is applied to a small 3x3 region of the image, sliding
across the entire image to capture di�erent features. This makes VGG19 especially good
at spotting patterns, like lines and curves, that appear in di�erent parts of the image.

There are other versions of VGG, like VGG16, which work similarly but have fewer
layers. These architectures are known for their simplicity and e�ectiveness in tasks like
image classification.
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Figure 2.14: VGG19 architecture. This CNN has 19 layers, including a 16-layer feature
extractor and a 3-layer classifier. The final layer uses softmax activation for image clas-
sification.

ResNet

ResNet, short for Residual Network, is another type of CNN that is designed to be
very deep while avoiding the common problem of vanishing gradients, which can make
training deep networks di�cult [42].

ResNet uses something called shortcut connections, which allows the input of a layer
to skip one or more layers and be added directly to the output. This helps to keep the
gradient from shrinking too much during backpropagation, which makes it easier to train
very deep networks.

Like VGG19, ResNet operates on 224x224 pixel images and includes a series of layers
for feature extraction and classification. However, the architecture of ResNet is more
complex, with di�erent versions having anywhere from 50 to over 100 layers, as shown
in Figure 2.15. Despite the additional complexity, ResNet is still e�cient and e�ective
for tasks like image classification.

Figure 2.15: ResNet-50 architecture. This CNN has 50 layers, including a 49-layer fea-
ture extractor and a 1-layer classifier. The final layer uses softmax activation for image
classification.

Inception

The Inception network, also known as GoogLeNet, was first introduced by Szegedy et
al. in the paper Going Deeper with Convolutions [43]. It was designed to achieve high
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performance while e�ciently using computational resources. Inception’s unique approach
relies on approximating an optimal sparse structure with available dense components,
allowing it to capture more complex features at di�erent scales.

Inception operates using modules, each consisting of parallel convolutional layers
with varying filter sizes (1x1, 3x3, 5x5) and a max pooling layer. This parallel structure
helps the model capture features at multiple scales and combine them e�ectively. Addi-
tionally, Inception uses dimension reduction techniques, such as 1x1 convolution layers,
to manage computational complexity. This approach prevents computational explosion
while preserving the network’s capability to recognize complex patterns.

The GoogLeNet variant of the Inception architecture is a 22-layer deep network
that uses auxiliary classifiers connected to its intermediate layers. These classifiers help
address the vanishing gradient problem and provide regularization during training, al-
though they are discarded during inference. Another feature of GoogLeNet is the use of
average pooling instead of fully-connected layers before the final classifier, along with
dropout for further regularization.

Inception’s design demonstrates an important balance in deep learning: it achieves
strong performance on tasks like image classification while remaining computationally
e�cient. This allows it to function e�ectively on devices with limited resources, making
it more practical for a variety of applications.

Vision Transformers

In contrast to CNN-based architectures like VGG, ResNet, and Inception, Vision Trans-
formers (ViTs) introduced a novel way to address image analysis tasks. Presented by Wu
et al. [44], ViTs build on the Transformer architecture, initially developed for natural
language processing, and are adapted for image analysis tasks.

The ViT architecture consists of three main components: the tokenizer, the trans-
former, and the projector. The tokenizer aggregates pixels into semantic tokens, the
transformer captures interactions between these tokens, and the projector fuses the
transformer’s output with the original image features for refined pixel-level details.

ViTs bring several advantages to the table. They focus computational resources more
on important image regions, model only relevant concepts, and e�ectively relate distant
but related concepts. Moreover, they can be integrated into existing vision models, re-
placing parts of a CNN with transformer modules, often resulting in higher accuracy
and the need for fewer computational resources.

In essence, ViTs represent a promising alternative to traditional CNNs. They e�ect-
ively tackle some of the limitations of CNNs, and despite their relative novelty, they
have already shown impressive results in various computer vision tasks.

2.5.4 Multi-modal Embeddings
Multi-modal embeddings present an intriguing area in machine learning. They aim to
integrate diverse data modalities, such as text, images, and audio, into a shared vector
space. This integration facilitates meaningful interaction and comparison between these
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di�erent modalities, equipping models to tap into the unique insights each modality
o�ers. Prime instances of such a methodology include CLIP and ImageBind, elaborated
further in the following sections.

One of the main benefits of multi-modal embeddings is their ability to enable atten-
tion mechanisms and other model components to operate seamlessly across modalities.
This may result in more accurate and versatile models. Additionally, they could pave
the way for zero-shot learning across a range of data types, heralding an exciting phase
in machine learning research.

Contrastive Language-Image Pre-Training

CLIP (Contrastive Language-Image Pre-training) is a model that takes a significant step
towards multi-modal embeddings by aligning text and images in a shared vector space
[45]. As Figure 2.16 illustrates, CLIP is trained by predicting which captions correspond
to a given image from a large dataset of image-text pairs, learning to embed related
images and text near each other in the vector space.

The strength of CLIP lies in its ability to transfer learning from its pre-training
task to a variety of downstream tasks in a zero-shot manner. For instance, it can un-
derstand and reference visual concepts learned during pre-training when presented with
related natural language, without any further task-specific training. CLIP’s performance
on various computer vision tasks, such as object classification and action recognition,
often matches or surpasses fully supervised models, demonstrating the potential of this
approach.

By harnessing the abundance of image-text pairs available on the internet, CLIP
underscores the power of natural language as a form of supervision for learning visual
representations. This approach is not only scalable but also allows flexible zero-shot
transfer by connecting image and text representations, highlighting the promise of multi-
modal embeddings.

Figure 2.16: The CLIP model [45] uses a dataset of image-text pairs to align text and
images in a shared embedding space. The model can be adapted for zero-shot prediction
on various tasks.
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ImageBind

Building on the concept of multi-modal embeddings introduced by CLIP, ImageBind
takes this one step further by incorporating more types of data modalities into the
shared vector space. This includes not only text and images but also modalities such as
audio and depth [46].

ImageBind leverages the binding property of images, which is that images can evoke
various sensory experiences such as sounds or textures. By aligning the embeddings of
each modality to image embeddings, an emergent alignment across all modalities can
be achieved. This leads to powerful capabilities, including zero-shot recognition across
new modalities and various cross-modal tasks, such as retrieval and detection, and even
audio-to-image generation.

ImageBind’s approach hints at the future direction of multi-modal embeddings, with
increasingly diverse types of data being incorporated into shared vector spaces.
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2.6 Fake News Detection
Fake news detection has emerged as a significant research field with the rise of digital
media platforms and the subsequent proliferation of misleading information. Primarily,
fake news detection is approached as a classification problem, with the majority of al-
gorithms viewing it as a binary classification exercise [2]. This classification formulates
the problem into two classes: fake and real news, where the function Detect(n) assigns
the value of 1 for real news and 0 for fake news. In mathematical terms, for a given piece
of news n,

Detect(n) =
I

1 if n is real
0 if n is fake

(2.1)

It is, however, worth noting that certain subtypes of fake news classification exist
which address more nuanced categories such as satire, humorous fakes, and varying
degrees of false information [8].

Machine learning and deep learning approaches have been instrumental in address-
ing this classification problem. These techniques, including Support Vector Machines
(SVMs), Recurrent Neural Networks (RNNs), and Convolutional Neural Networks (CNNs),
have been extensively applied and demonstrated promising results [2]. Additionally, data
mining techniques and knowledge bases have been leveraged to aid detection [8].

Fake news detection methodologies can be broadly categorized into content-oriented
and context-oriented approaches, with hybrid models existing that exploit both types
of features [2]. The following sections elaborate on the content- and context-oriented
detection strategies.

2.6.1 Content-oriented
The content-oriented approach to fake news detection primarily focuses on extracting
and analyzing features from the news content itself. Two types of features are central to
this approach: linguistic and visual features [8].

Linguistic features seek to capture di�erent writing styles, sensational headlines,
and deceptive cues that are often present in fake news articles. These can be extracted
at various text levels, including characters, words, sentences, and documents. They may
include lexical features (e.g., word count, unique words), syntactic features (e.g., function
words, part-of-speech tagging), and domain-specific linguistic features such as quoted
words or external links [8].

Visual features, on the other hand, aim to analyze the images and videos associated
with the news articles. Fake news often utilizes sensational or manipulated visual ele-
ments to elicit emotional responses from readers. These features could include image
ratios, the count of images, and other hand-crafted features at the user and tweet levels
[8].

Once these features are extracted, they can be input into various models for the ac-
tual task of classification. Two significant types of models in this context are knowledge-
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based and style-based models. Knowledge-based models rely on external sources for fact-
checking claims made in news articles, which could involve expert-oriented, crowdsourcing-
oriented, or computational-oriented fact-checking. On the other hand, style-based models
exploit the cues found in the writing style of the news content [8].

Expert-oriented fact-checking involves human domain experts investigating the data
and documents to verify claims, whereas crowdsourcing-oriented fact-checking aggregates
annotations from regular users to assess news veracity. Computational-oriented fact-
checking, on the other hand, automates the fact-checking process using external resources
like the open web or structured knowledge graphs [8].

2.6.2 Context-oriented
Context-oriented methods for fake news detection leverage social context features, which
provide insights beyond the content of the news article itself. These features are generally
grouped into three types: user-based features, post-based features, and network-based
features [8].

User-based features seek to characterize the users who interact with the news, cap-
turing aspects like registration age, number of followers and followees, and the number
of authored tweets. These features can help identify accounts like social bots or cyborgs,
which are often associated with the spread of fake news.

Post-based features, on the other hand, analyze the content of the social media posts
related to the news article. This includes the user’s stance or opinion on the topic, the
credibility of the post, and the temporal pattern of the post features over time.

Network-based features focus on the relationships and interactions between users
and posts on social media. This includes stance networks, which capture the similarity
of stances between tweets; co-occurrence networks, which indicate user engagements with
the same news articles; and di�usion networks, which track the spread of news through
the platform [8].

Models that incorporate these context-oriented features can be classified into two
categories: stance-based models and propagation-based models. Stance-based models in-
fer the veracity of news articles from the viewpoints expressed in related social media
posts, using either explicit reactions like likes and dislikes or implicit sentiment extrac-
ted from the post’s content. Propagation-based models, on the other hand, predict the
credibility of news articles by analyzing the interrelations and spread of related social
media posts [8].

2.6.3 Evaluation Metrics
During the evaluation of fake news detection algorithms, a variety of metrics are em-
ployed, drawing upon the components of the confusion matrix depicted in Figure 2.17.
These components encompass true negatives (TN), false negatives (FN), true positives
(TP), and false positives (FP) [8]. TP represents instances where the algorithm correctly
identifies news as genuine, while FP denotes the algorithm’s incorrect classification of
fake news as real news. FN arises when the algorithm mistakenly labels real news as fake,
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whereas TN corresponds to the algorithm’s accurate identification of fake news articles
as fake.

Figure 2.17: A confusion matrix showing the four components of binary classification:
True Negatives (TN), False Negatives (FN), True Positives (TP), and False Positives
(FP). True predictions are highlighted in green and false predictions are in red.

Based on these components, the following metrics are commonly used for evaluating the
performance of fake news detection algorithms:

Accuracy Measures the overall correctness of the classifier, including both true
positive and true negative predictions [8]. It is defined as:

Accuracy = TP + TN

TP + TN + FP + FN
(2.2)

Precision Measures the fraction of true positive predictions among all positive
predictions. In the context of fake news detection, precision helps
identify which articles are correctly predicted as fake [8]. It is defined
as:

Precision = TP

TP + FP
(2.3)

Recall Measures the fraction of true positive predictions among all actual
positive instances. In fake news detection, recall quantifies the ability
of the classifier to detect all fake news articles [8]. It is defined as:

Recall = TP

TP + FN
(2.4)

F1 Score A single metric that combines both precision and recall using the
harmonic mean, thereby giving a balanced measure of the classifier’s
performance [47]. It is defined as:
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F1 Score = 2 ◊ Precision ◊ Recall
Precision + Recall (2.5)

Micro F1 In multiclass settings, Micro F1 calculates precision and recall for
each instance and then averages them [47]. It is particularly useful
when the dataset is imbalanced.

Macro F1 Also useful in multiclass settings, Macro F1 calculates precision and
recall for each class separately and then averages them [47]. It gives
equal weight to each class, regardless of its size.

These metrics allow the comprehensive evaluation of a fake news detection classifier,
considering various aspects like precision, recall, and overall accuracy. An additional
tool often used is the Receiver Operating Characteristics (ROC) curve and its associated
Area Under the Curve (AUC), which provides a measure of the classifier’s ability to rank
fake news higher than genuine news, considering the trade-o� between the True Positive
Rate (TPR) and the False Positive Rate (FPR) [8, 47].
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2.7 Knowledge Extraction
Knowledge extraction refers to the process of acquiring relevant information from un-
structured natural language documents and representing them in a structured format
[48]. The primary aim is to transform unstructured knowledge into structured represent-
ations that machines can understand and utilize, bridging the gap between human lan-
guage and machine-readable data. This automated extraction and structuring of know-
ledge enable various applications, including decision support systems, question answer-
ing, and search optimization.

A notable application of knowledge extraction is in the detection of fake news, where
it has been applied to enrich the representation of news articles and leverage the relation-
ships among news entities [49, 50]. For instance, the Knowledge-aware Attention Network
(KAN) model incorporates external knowledge from a knowledge graph to enhance fake
news detection [49]. On the other hand, the CompareNet model utilizes external know-
ledge from a knowledge base to determine the trustworthiness of a news document [50].
These techniques show the potential of knowledge extraction in leveraging structured
knowledge to support complex tasks like fake news detection.

2.7.1 Graph Theory
Graph theory is a fundamental area of study that focuses on graphs, and mathematical
structures used to model pairwise relations between objects. In the most general sense, a
graph is composed of vertices (or nodes) and edges (or arcs). Vertices represent objects
or entities, while edges signify connections or relationships between these entities. The
degree of a vertex, which is the number of edges connected to it, represents the number
of interactions an entity has within the network [51].

The notation used to represent graphs typically involves vertices as points and edges
as lines connecting these vertices. Importantly, the specific spatial arrangement or layout
of the graph does not influence its properties, as long as the relationships between vertices
and edges remain unchanged. The graph depicted in Figure 2.18a is an example of
a simple undirected graph. It has five vertices and five edges, representing a simple
network where each node is connected to another through an undirected edge. This
figure represents a basic structure that can be used to model any pairwise relationship
between entities.

Directed Graphs

Directed graphs, also known as digraphs, are a type of graph where the edges have a
specific direction, indicating the relationships are not symmetrical but have a certain
order [51]. In these graphs, the edge from vertex A to vertex B does not imply a mutual
edge from vertex B to vertex A. This characteristic makes directed graphs suitable for
representing one-way relationships, such as dependencies or causal relationships.

The directed graph depicted in Figure 2.18b provides an illustration of this concept.
Each arrow represents a directed edge, indicating the relationship’s direction. It is im-
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(a) Undirected graph (b) Directed graph

Figure 2.18: Illustration of a simple undirected and directed graph with five vertices each
connected by either undirected or directed edges, representing two di�erent networks of
relationships.

portant to note that the presence of an edge from one vertex to another does not neces-
sitate a corresponding edge in the opposite direction.

Moreover, the study of directed graphs involves several other concepts, including
walks, paths, and cycles [51]. A walk is a sequence of vertices where each adjacent pair is
connected by an edge. A path is a walk in which all vertices (and, in the case of directed
graphs, all edges) are distinct. Finally, a cycle is a path that starts and ends at the same
vertex.

Heterogeneous Graphs

Heterogeneous graphs are a more complex type of graph that contain di�erent types
of nodes and links [52]. This is in contrast to homogeneous graphs, where all nodes
and links are of the same type, such as for the graphs presented previously. These
di�erences are illustrated in Figure 2.19. The heterogeneous graph, as shown in Figure
2.19b, contains multiple types of nodes and edges, each represented by di�erent colors,
while the homogeneous graph, as shown in Figure 2.19a, only contains one type of node
and edge.

In a heterogeneous graph, each type of node and edge may have di�erent properties
or attributes. For example, in a house-related heterogeneous graph, as seen in Figure
2.20, the nodes could represent di�erent entities like house, building, and villa, each
with their unique set of attributes. Similarly, the edges could represent di�erent types
of relationships, such as is and can be.

The heterogeneity of these graphs results in rich and diverse information representa-
tion. However, handling this complex structural information and preserving the diverse
feature information simultaneously poses challenges in the field of graph theory.
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(a) Homogeneous graph (b) Heterogeneous graph

Figure 2.19: Comparison of homogeneous and heterogeneous graphs. The coloring illus-
trates the di�erent entities and relationships found in heterogeneous graphs.

Knowledge Base

A knowledge base serves as the repository of knowledge in an information system, stor-
ing sentences expressed in a knowledge representation language. These sentences, often
presented as axioms, are assertions about the world [53]. Two main operations are per-
formed on a knowledge base: TELL, which involves adding new sentences, and ASK,
which is used to query the existing knowledge. The process of inference is crucial in a
knowledge base, allowing the derivation of new sentences based on the existing ones [53].

An example of a knowledge base is the knowledge graph, which is a structured rep-
resentation of knowledge that is widely used in research and various industries, especially
in the fields of Semantic Web technologies, linked data, data analytics, and cloud com-
puting [54]. As shown in Figure 2.20, a knowledge graph is a type of heterogeneous graph
that describes real-world entities and their interrelations. A knowledge graph organizes
entities, their properties, and their relationships in a graph structure. It is used to define
classes and relations of entities in a schema and allows for interrelating arbitrary entities
[54]. Notably, the terms knowledge graph and knowledge base are often used interchange-
ably, with the former emphasizing the graph structure and the latter focusing on formal
semantics [55].

Other examples of knowledge bases include Freebase, YAGO 4, and Wikidata. These
are each described below.

Freebase Freebase is a publicly accessible graph database designed to structure
human knowledge. Its uniqueness lies in its ability to combine the scalab-
ility of structured databases with the collaborative nature of wikis,
which facilitates the accumulation of structured information [56]. Free-
base demonstrates the power of knowledge bases in e�ectively organiz-
ing, storing, and accessing structured data.

YAGO 4 YAGO 4 is a knowledge base that combines schema.org’s typing and
constraints with Wikidata’s instance data, distinguishing itself with its
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logical rigor and reasoning capabilities. It maps Wikidata instances to
schema.org classes and applies SHACL constraints, enforcing a struc-
tured and consistent approach to knowledge representation [57].

Wikidata Wikidata serves as a structured and multilingual knowledge base de-
signed to manage Wikipedia’s factual information. With its centralized
structure, Wikidata facilitates the access and utilization of structured
data from Wikipedia, demonstrating the power of knowledge bases in
integrating data, supporting multiple languages, and enabling advanced
analytics [58].

In summary, a knowledge base, whether it be a traditional knowledge base or a know-
ledge graph, serves as a powerful tool for storing and accessing structured information.
Examples like Freebase, YAGO, and Wikidata provide valuable resources for integrating,
storing, and analyzing diverse sources of knowledge.

Figure 2.20: Example of a knowledge graph, which is a type of heterogeneous graph.
Di�erent relations, like is and can be, and di�erent vertex types, such as House and
Building, are illustrated.

2.7.2 Entity Extraction, Linking, and Claim Identification
As mentioned in the introduction, knowledge extraction can be viewed as a process of
extracting information from a knowledge base. This is a key component of some fake
news detection systems, such as the KAN model [49], but the approach can have utility
in a variety of other contexts. The entity extraction, linking, and claim identification,
the fundamental steps in knowledge extraction, are discussed in detail below.

Entity Extraction The first step in the knowledge extraction process is entity extraction.
This process involves identifying and marking the entities present in an arbitrary
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piece of text, such as that seen in Figure 2.21 [49]. This marking of entities can be
accomplished with various tools designed specifically for this purpose. One such
tool is the Relation Extraction and Linking (REL) tool4. Before the application of
such tools, an initial extraction of text from the web can be performed using tools
like Newspaper3k 5. It is important to note that these tools are simply examples
of the many available for these purposes.

Figure 2.21: An illustration of entity extraction, with entities in an arbitrary text high-
lighted in purple. Example derived from [49].

Entity Linking Once the entities have been extracted, the next step is entity linking. This
process involves mapping each entity extracted from the text to its corresponding
linked entities, as demonstrated in Figure 2.22 [49]. Tools such as REL can also
be used for this purpose, by identifying mentions of these entities in the text and
linking them to their corresponding entities in a knowledge base.

Figure 2.22: An illustration of entity linking, where extracted entities are linked to cor-
responding entities. Example taken from [49].

4
https://rel.readthedocs.io/en/latest/

5
https://newspaper.readthedocs.io/en/latest/
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Claim Identification The final step in the knowledge extraction process is claim iden-
tification. In this phase, entities that were identified and linked, such as Barack
Obama in Figure 2.23, are used to search in the knowledge base for associated
entities or claims [49]. This step is crucial for the acquisition of structured know-
ledge that can be further used in various contexts, such as in the detection of fake
news. Wikidata, as discussed in a previous section, can serve as a comprehensive
knowledge base for such claim extraction.

Figure 2.23: An illustration of claim identification, where a given entity is used to search
the knowledge base for associated entities or claims. Example derived from [49].

After these steps, the resulting set of claims needs to be embedded for further use
in a machine learning setting. This is where tools like Wikipedia2Vec [59] come into
play. Wikipedia2Vec provides an e�cient and user-friendly solution for learning and
visualizing word and entity embeddings from Wikipedia, making it a valuable tool for
the embedding process.
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CHAPTER
THREE

RELATED WORK

Addressing the complexity and growth of fake news propagation requires advanced and
sophisticated detection mechanisms. This chapter explores the evolution from uni-modal
approaches, which primarily relies on one attribute of news, such as text, to multi-
modal strategies that may integrate various news features such as images. Notably, the
Knowledge-aware Attention Network (KAN) [49] and dEFEND [60] are discussed in the
context of uni-modal approaches, while the shift towards multi-modal methodologies is
represented through models such as FakeMine [10] and the Event Adversarial Neural
Network (EANN) [61].

3.1 Uni-modal Fake News Detection
Uni-modal fake news detection models focus on only one aspect of news, typically the
textual content. They use a variety of techniques including knowledge graphs, attention
mechanisms, and the exploration of the social context surrounding the news, such as
comments.

KAN exemplifies the use of external knowledge for enriching the detection process.
In this model, entity mentions in the news content are identified and aligned with corres-
ponding entities in a knowledge graph, allowing the model to leverage these entities and
their contexts for additional information. This process is known as knowledge extrac-
tion, and it was explained in depth in Chapter 2. While promising in its approach, KAN
may be limited by its reliance on the quality and comprehensiveness of the employed
knowledge graph. It suggests the importance of auxiliary knowledge, but also underlines
the need for caution regarding its dependency, as the knowledge of the graph in some
cases can be both unreliable and incomplete.

dEFEND [60], on the other hand, prioritizes the integration of explainability into
the detection process. It introduces a sentence-comment co-attention sub-network that
utilizes both the news content and user comments for its detection. Its primary focus
lies in capturing explainable check-worthy sentences and user comments that are vital
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for fake news detection. However, this approach could face obstacles when dealing with
deceptive comments or when user comments are not available for certain news items.

FakeBERT [62] is a deep learning approach that leverages the BERT model, com-
bining it with single-layer deep CNN blocks. FakeBERT e�ectively handles structured
and unstructured text, capturing semantic and long-distance dependencies bidirection-
ally and o�ering a more comprehensive analysis of the text content. While this model
delivers impressive accuracy, its complexity and computational requirements might pose
challenges for larger datasets or real-time applications, implying a trade-o� between
performance and computational e�ciency.

3.1.1 KAHAN
The landscape of uni-modal fake news detection techniques boasts an array of innovative
solutions, yet the Knowledge-Aware Hierarchical Attention Network (KAHAN) [9] carves
its own niche through a unique approach. KAHAN weaves the external knowledge and
social media temporal data into the fabric of uni-modal fake news detection, showcasing
their pivotal role in enhancing the performance and e�ectiveness of the model.

KAHAN is built around dual HANs that simultaneously model the news content
and user comments, encapsulating multiple aspects and layers of semantic granularity.
To bring an even wider lens to the task, KAHAN incorporates a time-based sub-event
division algorithm. This algorithm draws out temporal patterns from user comments,
augmenting the detection process by providing a dynamic understanding of user inter-
action with the news content.

Architecture Overview

As shown in Figure 3.1, the architecture of KAHAN is designed around four major
components, namely external knowledge attention, news content encoder, user comment
encoder, and the fake news classifier.

The external knowledge attention module (shown in yellow in Figure 3.1) is respons-
ible for enriching the model’s understanding by incorporating external knowledge derived
from a knowledge graph. It identifies entities mentioned in the news text, maps these
entities to their counterparts in the knowledge graph, and extracts direct neighbors (one-
hop neighbors) of the linked entities. Once the entity claims are captured, the entities
and their claims are embedded using Wikipedia2vec, creating contextually relevant vec-
tor representations. This is the same process that was further elaborated in Chapter
2.

The news content encoder (depicted in red in Figure 3.1) uses HAN at the word- and
sentence-level to capture the inherent linguistic structure within the news text. Word-
level embeddings are aggregated into sentence representations, which are then further
combined into an overall news representation using sentence-level embeddings. The News
Towards Entities Attention (N-E) mechanism is incorporated to assign importance to
entities with respect to the news content. Essentially, this component is a modification
of the HAN model discussed in Chapter 2, where entity attention through multi-head
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attention is used to enhance the sentence representations. This attention-enhanced HAN
model is illustrated in Figure 3.2.

The user comment encoder (illustrated in blue in Figure 3.1) attempts to model
the temporal characteristics of user comments by partitioning them into distinct sub-
events. The rationale behind this mechanism is the observation that user perception of
a news piece might evolve over time. The Comments Towards Entities Attention (C-E)
mechanism is utilized to allocate significance to entities based on their relevance between
the entity and the sub-event using external knowledge.

Finally, the fake news classifier (shown in green in Figure 3.1) integrates the repres-
entations derived from the news content and user comments to determine the veracity
of the news. It concatenates the news representation and comment representations into
a unified feature vector which is then passed through a fully-connected layer for final
predictions.

Figure 3.1: The architecture of KAHAN [9]. It consists of four main components: a user
comment encoder (blue) that encapsulates the temporal dynamics and thematic structure
of user comments, a news content encoder (red) that models the textual information
of news content, an external knowledge attention mechanism (yellow) that leverages
auxiliary information from a knowledge graph, and a fake news classifier (green) that
integrates the learned representations to determine the veracity of the news.

Limitations

KAHAN, along with similar uni-modal fake news detection models such as KAN, exhibit
particular constraints that could impede their e�ectiveness. These limitations primarily
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Figure 3.2: Overview of a modification of the HAN architecture that was seen in Figure
2.11. It includes the addition of entity attention through multi-head attention.
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revolve around their uni-modal approach, focusing solely on textual data, overlooking
the richness o�ered through other modalities like images.

Firstly, both KAHAN and KAN heavily rely on the quality and completeness of the
external knowledge graph. That means if the knowledge graph is inadequate or contains
incorrect information, it could negatively influence the models’ capability to distinguish
between real and fake news. This limitation is not unique to these models but is indeed
a common issue with models that rely on knowledge graphs.

Secondly, KAHAN assumes a linear temporal progression of user comments. In the
dynamic and often disjointed world of social media interactions, this assumption of lin-
earity may not hold true. User comments can display a non-linear pattern, responding to
di�erent aspects of the discussion at various points, which could lead to misinterpretation
of the discussion flow, ultimately a�ecting the accuracy of fake news detection.

However, the possibly most critical limitation of KAHAN, as well as KAN, and the
other uni-modal models lies in their dependency on a single modality. This neglects the
multi-modal nature of contemporary news, where di�erent types of data such as images,
videos, or social network structures often coexist. Cao et al. [12] highlight the importance
of a multi-modal approach, emphasizing the pivotal role that for example visual elements
can play on detection performance.

This lack of multi-modal consideration might restrict these models’ ability to detect
fake news that cleverly manipulates multiple modalities. Therefore, the development of a
multi-modal approach, integrating various data types alongside text, could significantly
enhance the robustness of these fake news detection models.

Drawing upon these insights, it is imperative to extend models like KAHAN and
KAN to incorporate a multi-modal approach, thereby making them more versatile and
e�ective in the multifaceted landscape of fake news.

3.2 Multi-modal Fake News Detection
The multi-modal approach to fake news detection is a significant progression from uni-
modal methods, leveraging not only textual content but also the wider context of news.

In [10], Ahuja and Kumar introduces FakeMine, a multi-modal model that considers
both textual, visual, and network information to detect fake news. This technique uses a
Graph Neural Network to explore the network structure of social media posts, BERT to
represent textual content while preserving semantic relationships in news articles, and
VGG19 to represent image features. An optimized LSTM classifier, enhanced using a
Chimp optimization algorithm, is used for final classification. FakeMine surpasses other
models in terms of accuracy when tested on multiple modalities, demonstrating the
e�ectiveness of multi-modal fusion and the importance of an optimized classifier in fake
news detection. Nevertheless, while FakeMine shows promising results, its complexity
may lead to increased computational resources and processing time.

The Event Adversarial Neural Network (EANN) proposed by [61] addresses the
challenge of identifying fake news on newly emerged events. EANN is an end-to-end
framework that uses an event discriminator to remove event-specific features and main-
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tain shared features among di�erent events. This approach allows the model to learn
transferable, event-invariant features, aiding the detection of fake news related to newly
arrived events. EANN employs a CNN to extract features from textual and visual con-
tent, and its performance has been demonstrated to be superior to existing methods.
However, EANN’s reliance on adversarial learning could present a limitation if the ad-
versarial components are not carefully regulated, potentially leading to unstable learning
dynamics.

Zhou et al. presents a Similarity-Aware Fake news detection method (SAFE) [11],
which examines multi-modal information, particularly the relationship between textual
and visual content in news articles. SAFE uses neural networks to extract textual and
visual features and examines their relationship. The representations of news’ textual
and visual information along with their similarity are jointly learned and used to classify
news. This approach aims to identify the incongruity between text and images in news
articles, which is often a characteristic of fake news. However, the challenge with SAFE
lies in the di�culty of precisely quantifying the semantic similarity between text and
images.

Expanding on the concept of multi-modal fake news detection, Zhou et al. [13] in-
troduce the FND-CLIP framework. FND-CLIP leverages the CLIP model and addresses
the challenge of cross-modal ambiguity by explicitly calculating the correlation between
the text and images in targeted posts. This correlation guides the feature fusion and
decision-making stages of the model. Despite its success, FND-CLIP may encounter dif-
ficulties when dealing with posts where the text and images exhibit low correlation,
potentially leading to less informative fused features.

Lastly, [63] proposes Sentiment-Aware Multi-modal Embedding (SAME), an end-to-
end deep embedding framework that incorporates user sentiment into fake news detec-
tion. It uses an adversarial mechanism to preserve semantic relevance and representation
consistency across di�erent modalities. SAME specifically considers the sentiment hid-
den in user comments, providing a unique perspective to fake news detection. Despite
its innovative approach, SAME might face challenges when dealing with ambiguous or
contradictory sentiments expressed in user comments.

The evolution of multi-modal fake news detection, as demonstrated by the works
of Ahuja et al. [10], Wang et al. [61], Zhou et al. [11, 13], and Cui et al. [63], has
certainly added invaluable dimensions to the field. Each approach, while e�ective, has
its limitations, such as computational complexity, instability from adversarial learning,
the precision of semantic similarity quantification, and dealing with low correlation or
ambiguous sentiments.

These challenges and the varied strengths of the individual methods highlight the
need for a more integrated approach to fake news detection. Such an approach would con-
sider multiple forms of data and techniques, extending the strength of high-performing
uni-modal models by incorporating elements of multi-modal methods. The variety of
multi-modal methods and their inherent strengths and limitations underscore the neces-
sity of a comprehensive solution. This solution would not only address the limitations
of current methodologies but also draw from the salient findings of previous research,
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thereby enhancing the robustness of fake news detection. This pursuit of an integrated
approach and its detailed exploration will be the focus of the following chapters.
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CHAPTER
FOUR

DATASETS

In the field of fake news detection, the significance of datasets cannot be overstated, as
they serve as the foundation for constructing and validating robust models. This chapter
delves into a comprehensive exploration and evaluation of the datasets employed in this
study, with a primary emphasis on the collection process, dataset contents, and the
associated challenges encountered. These challenges encompass aspects such as diversity
and access issues, which significantly impact the quality and reliability of the data.
Moreover, this chapter sheds light on the modifications implemented in the collection
process to overcome these challenges and enhance the overall data quality.

4.1 FakeNewsNet
In this study, two distinct datasets have been collected and used, namely PolitiFact
and GossipCop, both of which are collected as part of the FakeNewsNet dataset [64].
FakeNewsNet consists of news articles that have been labeled by the fact-checking or-
ganizations GossipCop1 and PolitiFact2, with GossipCop primarily focusing on news
within the entertainment and celebrity domain, while PolitiFact focuses on political and
mainstream content. The FakeNewsNet web scraper3 retrieves not only the news con-
tent of the labeled news articles, but also related social media data from Twitter. The
FakeNewsNet web crawler consists of multiple parts, first, it gathers true labels from the
claims made by fact-checkers, and further, it collects the news content from the URL of
the fact-checked article. If the article for various reasons cannot be accessed, a search
will be made to WayBack Machine4 to look for a usable snapshot. Additionally, the
crawler utilizes Twitter’s search API to find tweets linking to the article, its responses,
and details about the relevant users [64].

1
https://web.archive.org/web/20200903082521/https://www.gossipcop.com/ (only accessible

via the Wayback Machine due to the discontinuation of the organization in 2021).
2
https://www.politifact.com

3
https://github.com/KaiDMML/FakeNewsNet

4
https://web.archive.org/
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Due to di�culties gaining access to the Twitter API, the social media data was re-
trieved from the external data repository5 collected by the authors of SAFE [11]. In
addition, for data quality reasons, the news content was collected using a slight modific-
ation of the FakeNewsNet collection process. This will be elaborated further in a later
section.

4.1.1 FakeNewsNet Contents and Data Collection
FakeNewsNet o�ers a rich and diverse set of data features spanning news text, social
media data, and images, providing an extensive landscape for fake news analysis. This
subsection provides detailed descriptions of the specific data types collected and the
process involved in the collection of these data points.

News Text

The news text was collected as JSON files named news_article.json. These files contain
a set of attributes about the specific article. The utilized attributes of this file that is
utilized in this thesis are seen in the list below.

text: The main body text of the news articles.

images: The image URLs associated with news articles, which may include illus-
trations, photographs, or other visual elements.

top_img: The URL of the most prominent or featured image within the news
article.

Social Media Data

The social media data was gathered from a pre-collected data repository and divided
into a set of four files, each encapsulating relevant data associated with each news article
from Twitter (see the list below).

replies.json: The aggregation of user-generated responses or replies, including inform-
ation such as the reply text, the original tweet, and the timestamp of
the reply.

likes.json: The records of likes attributed to all tweets, detailing the user who liked
which tweet.

retweets.json: The data pertaining to retweets, including the original tweet’s text,
retweet text, and the user who retweeted the content.

tweets.json: The primary data of individual tweets, incorporating tweet metadata
such as the tweet’s author, creation timestamp, content, hashtags, and
other relevant information.

5
https://drive.google.com/drive/folders/1gSx4S9i6Haul4TQRkoNQtj3sRHVwGFQ3
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In this thesis, only comments or replies on tweets will be considered, therefore only
replies.json is relevant.

Images

Images were retrieved mainly using the top_img attribute. A Python script was imple-
mented to download the image of every news article. These images were then stored as
separate files in a folder structure that distinguished between fake and real news images.
In many cases, the script was unable to download specific images because they were
missing from the specified URL. In these instances, an addition to the script implemen-
ted the Levenshtein distance to find the most similar URL from the images attribute
list to that of top_img and re-attempted the download.

4.1.2 Enhanced Data Collection
As previously indicated, the data collection process for FakeNewNet was refined to en-
hance the quality of the datasets. This adjustment was necessitated by the substantial
volume of irrelevant news text identified in the datasets collected via FakeNewsNet.
Table 4.1 presents a few instances of such content, exhibiting the frequency of occur-
rences in the first column and the specific content in the second. From both datasets, we
can infer the crawler’s failure in cases where websites display pop-up elements, such as
in the fourth row of Table 4.1b. This isn’t unexpected given that the crawler lacks the
capacity to interact with the browser to remove overlaying elements.

Furthermore, a prevalent issue was discovered, pertaining to reference decay or link
rot. As demonstrated in the first, fifth, and last rows of Table 4.1a, as well as the seventh
row of Table 4.1b, the content suggests that the domain is either no longer active or
available for sale. Similarly, as shown in the third and penultimate rows of Table 4.1a,
the domain persists but the actual news article is absent, seemingly leading the crawler
to redirect to the home page and scrape the content there. Additionally, in certain cases,
the incorrect section of the website is scraped, such as in the sixth row of Table 4.1b,
where the domain owners’ policy notice is obtained instead of the actual article text. This
highlights the limitations of the Newspaper3k library, which is utilized by the crawler
for web article content extraction.
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Table 4.1: Top 10 most frequent news content occurrences in the PolitiFact and GossipCop
datasets. Instances of irrelevant or redundant content suggest crawler ine�ciency and
webpage navigation issues.

(a) PolitiFact Dataset

News Content Freq.
Everygame 0.0 rating GET
$750 IN BONUS FUNDS ON
YOUR FIRST THREE DE...

15

Username Password Need
help? Contact the CQ Hotline
at(800) 648-2848.

13

About Trendolizer™ Trendol-
izer™ (patent pending) auto-
matically scans ...

13

JavaScript is not available.
We’ve detected that JavaS-
cript is disa...

9

Yes, you can transfer your do-
main to any registrar or host-
ing compa...

7

For full functionality of this
site it is necessary to enable
JavaS...

6

Use this guide to help you find
the full text of recent bills and
r...

5

COPYRIGHT © 2005 Lexis-
Nexis, a division of Reed El-
sevier Inc. All r...

4

The .gov means it’s o�cial.
Federal government websites
often end...

4

The site is unavailable.
CQ.com is currently unavail-
able. We are wo...

4

(b) GossipCop Dataset

News Content Freq.
When you face the world, all
you want is to be seen as the
unstopp...

95

* Please note that this form
cannot be used to reset your
Google Ac...

76

A big swirling bucket of the
latest rumors, celebrity news
and Holl...

62

We use cookies on our website
to give you the most relevant
experie...

59

You are using an older
browser version. Please use a
supported vers...

56

IMDb.com, Inc. takes no re-
sponsibility for the content or
accuracy ...

53

The domain nextdivas.com is
for sale. To purchase, call
BuyDomains....

51

About Trendolizer™ Trendol-
izer™ (patent pending) auto-
matically scan...

47

et Google-selskap levere og
vedlikeholde Google-tjenester
spill, bi...

35

Enter the characters you see
below Sorry, we just need to
make sure you’re not a robot...

31

To counteract the aforementioned issues, two modifications were made to the FakeNews-
Net web crawler: (1) prioritizing Wayback machine snapshots of web articles, falling
back on the original URL only when snapshots were unavailable, and (2) integrating a
randomized user agent on each request to circumvent human verification during high
request frequency. The latter issue was observed in the 31 cases outlined in the last row
of Table 4.1b. The first modification seeks to solve the link rot issue, where URLs no
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longer point to the intended website, or the website has been shut down or relocated.
This refined data collection process will henceforth be referred to as FakeNewsNet+.

Table 4.2: Comparison of the number of news articles, images, and average comments
per news between the original FakeNewsNet and the enhanced FakeNewsNet+ crawler.
Improvement in data quantity and quality with FakeNewsNet+ is evident. The best
numbers are marked in bold.

FakeNewsNet+ FakeNewsNet

PolitiFact
# Real News/Images 624/219 408/187
# Fake News/Images 432/172 351/143
# Total News/Images 1056/391 759/330
Avg. # Comments per News 184 163

GossipCop
# Real News/Images 16817/1564 13416/1973
# Fake News/Images 5323/1779 4256/2033
# Total News/Images 22140/3343 17672/4006
Avg. # Comments per News 8 8

Table 4.2 o�ers a comprehensive comparison between the data gathered by FakeNewsNet
and its enhanced version, FakeNewsNet+. A significant increase in the number of fake
and real news articles gathered by FakeNewsNet+ stands out. Moreover, FakeNewsNet+
collects more images for the PolitiFact dataset. However, it retrieves fewer images than
FakeNewsNet for GossipCop, indicating potential constraints in image retrieval reliab-
ility from the WayBack Machine. This is consistent with the WayBack Machine’s help
page [65] stating that images aren’t always archived with webpages. Nonetheless, the
images gathered with FakeNewsNet+ are likely more reliable as they’re sourced directly
from the archive, ensuring their authenticity. Likewise, the news content scraped with
FakeNewsNet+ is more likely to originate from the correct source.

Additionally, the average number of comments per news in the PolitiFact dataset
has seen a considerable increase. This can be attributed to the additional news articles
gathered by FakeNewsNet+, which appear to have more associated comments in the
aforementioned data repository compared to the other news articles.

In conclusion, the enhanced version, FakeNewsNet+, provides a significant increase
in data quantity along with indications of improved data quality.
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4.2 Data Cleaning and Preparation
The process of data cleaning and preparation was conducted diligently on the gathered
datasets to augment their quality. Upon an initial evaluation, certain weaknesses were
identified in the GossipCop and PolitiFact datasets. Each feature utilized in this study,
the news text, comments, and image feature, posed distinct challenges, which are dis-
cussed in detail below. A comprehensive overview of the data cleaning and preparation
process is available in Table 4.3.

Table 4.3: The table illustrates the progressive removal of cases at each stage, refining
the PolitiFact and GossipCop datasets. The final datasets are presented at the bottom,
while the accompanying percentages indicate the significance of each step for the size of
the datasets.

Stage Platform # News # Images Avg. # Comments

Original PolitiFact 1056 417 184
GossipCop 22140 3409 8

Text Cleaning PolitiFact -219 – +15
GossipCop -2535 – -1

Image Cleaning PolitiFact – -26 –
GossipCop – -66 –

Preparation PolitiFact -446 – +41
GossipCop -16262 – +6

Final Datasets PolitiFact 391(-63.0%) 391(-6.24%) 240(+30.4%)
GossipCop 3343(-84.9%) 3343(-1.93%) 13(+38.5%)

The refined GossipCop and PolitiFact datasets are publicly accessible on Google Drive6.

4.2.1 News Text Feature
Enhancements to the dataset collection process aimed to mitigate the inclusion of in-
correct or irrelevant data, particularly in the face of changing domains and altered or
removed web pages. Despite these measures, some issues persisted in the FakeNewsNet+
datasets, such as the inclusion of duplicate news text. As noted earlier, this problem ori-
ginates from the weaknesses of Newspaper3k, which were not rectified in FakeNewsNet+.
A total of 219 and 2535 news items were eliminated from each respective dataset due
to concerns over the text content, as noted in Table 4.3. The cases removed included
duplicates, content less than 50 characters long, and non-English content. Short content
was deemed suspicious, possibly being unrelated and simply resulting from the aforemen-
tioned challenges in data retrieval. Non-English content was excluded to ensure dataset
consistency, which is conducive to enhancing classification performance.

6
https://drive.google.com/drive/folders/1sIuZ4c3EBzgzShMxM_o6zbtS8GW8dRo6?usp=sharing
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4.2.2 Comments Feature
Similar to the news text, comments that were either non-English or consisted of blank
spaces or empty content were removed to ensure consistency. This cleaning process did
not directly influence the quantity of data in either dataset, but it did have a notable
e�ect on the average number of comments per news item throughout the cleaning and
preparation process (as seen in Table 4.3).

4.2.3 Image Feature
Upon evaluating the datasets, it became evident that some images were not directly
related to the corresponding news articles. Such irrelevant images were either discarded
or, when feasible, manually replaced with appropriate ones accessed directly from the
relevant websites. A set of such images from the datasets are demonstrated in Figure 4.1.
An intriguing example includes a pizza advertisement image that seemingly has no link to
the news story. Additional issues were identified with certain images, such as monochrome
images, loading icons, or images displaying text indicating their unavailability. All such
images were removed from the datasets, resulting in the removal of 26 images from the
PolitiFact dataset and 66 images from the GossipCop dataset.
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Figure 4.1: Examples of images that were removed from the datasets during cleaning.

An interesting observation in the image dataset was the existence of images that matched
those shown in Figure 4.2. These images could potentially leak the labels of the news
pieces, causing the model to cheat during training and appear more accurate in classifying
news than it would be on real-world data. It is possible that this could happen because the
numerical representation of the images might preserve certain characteristics associated
with them. For example, if an image with a red color and contained the text False
consistently appeared alongside certain news articles, the classifier might learn that any
such similar image should be labeled as fake news. Since these cases were not very
frequent in the dataset, and due to the limited amount of data, such cases were not
removed from the dataset. Moreover, given the relatively small number of instances, it
is unlikely that a classifier would have su�cient exposure to learn this pattern.
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Figure 4.2: Figure depicting the images used by the PolitiFact fact-checkers to indicate
the degree of truth of a news piece.

The final stage of our data cleaning and preparation process was data preparation, where
we removed all news articles without an associated valid image or any news text. This
action led to a significant reduction in the number of news articles in our datasets,
potentially limiting the maximum achievable classification performance. However, to
maintain accurate and complete data, this trade-o� was deemed necessary.

4.3 Data Presentation and Visualization
The final datasets are presented in Table 4.4. The PolitiFact dataset consists of 391 news
articles, while the GossipCop dataset contains 3343 news articles. These figures represent
a reduction of -63.0% and -84.9% compared to the initial datasets before the preparation
and cleaning process, as shown in Table 4.3. Additionally, there is a slight decrease in
the number of images and a notable increase in the average number of comments per
news article for both datasets.

Table 4.4: Statistics for the PolitiFact and GossipCop datasets after data cleaning.

PolitiFact GossipCop

Avg. # Comments per News 240 13
Avg. # Entities per News 105 28
Avg. # Entity Claims per News 37 24

Real News 219 1564
Fake News 172 1779

Total News 391 3343

An interesting observation from Table 4.4 is the minor imbalance in the distribution
of real and fake news within both datasets. The PolitiFact dataset contains more real
news articles, while the GossipCop dataset contains a higher proportion of fake news
articles. This data imbalance has the potential to contribute to an increased risk of mis-
classification if not e�ectively addressed and handled during the classification process.
Another interesting observation is that there are typically much more comments and
entity mentions in the PolitiFact dataset compared to GossipCop.
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In the upcoming sections, data from each dataset will be visualized and discussed the
data, with the primary objective to uncover any discernible distinctions, particularly in
relation to di�erentiating between real and fake news.

4.3.1 PolitiFact
The textual contents of the datasets can be better understood through the analysis of
word clouds. The word clouds generated from the PolitiFact dataset, as shown in Figure
4.3, provide insights into the language used in both the fake and real news articles.
In the word cloud associated with fake news, the most prominent words are Trump,
said, and would. These words suggest a focus on controversial statements and political
rhetoric often associated with fake news. On the other hand, the real news word cloud
prominently features words such as think, know, and people indicating a more informative
and factual tone in the real news articles.

The di�erences observed in the word clouds between fake and real news in the Poli-
tiFact dataset can be attributed to the typical presentation of fake news. Fake news
generally relies on sensationalism and exaggeration to attract attention. As a result, it
tends to prioritize provocative language and controversial figures such as former Presid-
ent Trump. In contrast, real news articles appeal to a broader audience, commonly with
a more objective and informative tone. The presented word clouds largely confirm these
distinctions.

PolitiFact

(a) Real News (b) Fake News

Figure 4.3: Word clouds depicting the most frequent words in the PolitiFact dataset,
di�erentiating between real and fake news articles.

In addition to the textual content, images also play a significant role in understanding the
datasets. Figure 4.4 displays the images associated with real and fake news articles in the
PolitiFact dataset. The images related to real news articles typically feature politicians,
news organizations like CNN, and professional-looking photographs of individuals or
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locations, as depicted in Figure 4.4a. These images convey a sense of seriousness and
professionalism. In contrast, the images accompanying fake news articles exhibit a higher
level of extremism and a lack of seriousness. For example, Figure 4.4b shows the CNN
logo with flames edited onto it, as well as two images with superimposed text containing
provocative statements like Nasty and Ejaculation is murder. Additionally, fake news
images sometimes employ humor, such as a person making a funny face, which can also be
observed in the figure. These insights suggest that the visual elements accompanying fake
news articles often aim to evoke emotional responses and reinforce sensational narratives
rather than providing factual information, aligned with the findings of the discussion on
distinguishing attributes of fake news in Chapter 2. In addition, one notable image among
the fake news images in Figure 4.4b is the one in the top right corner, where the face of
former President Obama has been edited onto another man’s body, creating the illusion
of an arrest. This manipulated image, along with the cases of superimposed text, further
indicates that fake news images are more prone to manipulation and modification. It
suggests that these images are intentionally altered to mislead and provoke emotional
reactions rather than presenting authentic visual representations.
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PolitiFact

(a) Real News (b) Fake News

Figure 4.4: Typical examples of images associated with fake and real news in the Politi-
Fact dataset.

4.3.2 GossipCop
Figure 4.5 depicts the word clouds generated from the GossipCop dataset. The word
cloud associated with fake news reveals prominent terms such as said, one, and time.
Similarly, these words are also prevalent in the word cloud of real news, as shown in
Figure 4.5a. However, a noteworthy distinction is the higher frequency of the word show
in the real news subset. This observation suggests a larger proportion of news articles in
the real category are related to television programming and shows.

Compared to the PolitiFact dataset, the distinction in word clouds between fake and
real news articles is not as pronounced in the case of GossipCop. This finding implies
that relying solely on textual content would be less e�ective in di�erentiating between
fake and real news within the domain of entertainment news.
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GossipCop

(a) Real News (b) Fake News

Figure 4.5: Word clouds depicting the most frequent words in the GossipCop dataset,
di�erentiating between real and fake news articles.

Shifting our attention to the analysis of images associated with fake and real news
articles within the GossipCop dataset, we can observe typical examples in Figure 4.6.
These images predominantly feature celebrities captured in diverse scenarios, including
red-carpet events. Notably, within the subset of fake news, there is a relatively higher
occurrence of images presenting celebrities in opposition to one another. These images
often portray the faces of celebrities being juxtaposed, accompanied by dramatic facial
expressions. For instance, a noteworthy example is an image where Katy Perry and
Taylor Swift are depicted with seemingly intense expressions directed at each other.
This suggests that fake news within the entertainment domain tends to emphasize and
amplify dramatic elements in its visual presentation, in similarity to the fake news of
PolitiFact.

Upon examining the images associated with fake and real news articles in the Gossip-
Cop dataset, although there is some variation, the distinction between the two types of
news is not as pronounced as in the PolitiFact dataset. Both fake and real news articles
utilize images of celebrities in a range of contexts, including images where celebrities
are presented together. However, there is a noticeable di�erence in the nature of these
images. In the real news subset, the celebrities’ expressions tend to be more neutral and
less confrontational compared to the exaggerated and intense expressions commonly seen
in fake news images. While there are some visual cues that may hint at a distinction
between real and fake news in the GossipCop dataset, the overall di�erentiation based
solely on the images is not as clear-cut as in the PolitiFact dataset.
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GossipCop

(a) Real News (b) Fake News

Figure 4.6: Typical examples of images associated with fake and real news in the Gos-
sipCop dataset.
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CHAPTER
FIVE

METHOD

Tackling the detection of fake news is a complex challenge that demands a comprehens-
ive strategy. Previous approaches have explored various methods, each with their own
strengths and weaknesses. This thesis presents an innovative architecture that combines
the analysis of text and images from news articles to enhance the detection of fake news.

The chosen model to build upon is the KAHAN model, renowned for its e�cient and
innovative design. This model utilizes a hierarchical attention mechanism to process news
articles and identify key sentences and words that indicate the presence of fake news.
However, a limitation of the KAHAN model is its exclusive focus on text, disregarding
the visual elements of news articles.

To overcome this limitation, we propose the Image-enhanced Knowledge-Aware Hier-
archical Attention Network (I-KAHAN). This architecture extends the capabilities of the
KAHAN model by incorporating image analysis, which is increasingly important in the
realm of modern news. The primary objective of I-KAHAN is to improve fake news
detection by integrating this crucial visual component.

The subsequent sections of this chapter will provide a detailed examination of I-
KAHAN, including the alternative methods employed for image embedding, dimension-
ality reduction, and feature fusion within the architecture.

5.1 The I-KAHAN Architecture
The I-KAHAN architecture contemplates three attributes of news, as illustrated in Fig-
ure 5.1.

In this figure, the components inherited from KAHAN appear within a gray box,
while the white area holds the new modules related to image integration. It also showcases
the feature fusion mechanism responsible for merging these features and the classifier
that determines the news classification.

The textual processing in I-KAHAN, represented within the gray area, follows a
similar pattern as in the KAHAN model. It begins with embedding the article text
(designated as News Text), using GloVe to convert the sentences Si, comprising Wix
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words, into a numerical format. This phase also involves padding the sentences and
words to a fixed length for a more structured representation. HAN then processes this
embedded text to generate a concise and e�cient representation. This operation utilizes
the Knowledge Extraction component, which provides entities En and related entity
claims Cnm from the knowledge base. Both of these processes were further elaborated
in Chapter 2. The entities and claims are embedded using wiki2vec and contribute to
the overall attention mechanism as illustrated by the yellow arrows in the figure. The
outcome of these operations is a vector with 200 numerical values, which is then fed into
the fusion component.

Similarly, the Comments, represented as a set of comments Cj containing sentences
Sjy, undergo similar processing. For the sake of simplicity, the sub-event division process,
which enables the model to consider the comments’ timeline, is encapsulated under the
Comments Embed operation. This operation also embeds the comments using GloVe and
results in another 200-value vector.

The modules related to image integration occupy the left-hand side of Figure 5.1,
within the white area. The raw image is initially processed by the Transform module to
normalize, scale, and crop the pixel array, resulting in a more compact 3◊224◊224 matrix
representation. This pre-processing is vital to ensure that the inputs to the subsequent
embedding methods maintain consistent dimensions, regardless of the original image
size.

The color-coded components in the figure represent image embedding (Image Em-
bed), dimensionality reduction (Dimensionality Reduction), and feature fusion (Feature
Fusion). These components employ multiple alternative methods, categorized under cor-
responding colors as detailed in the figure’s top-left lists. For instance, Image Embed
utilizes both CNN-based and CLIP-based methods, depicted in blue and purple, re-
spectively.

Image Embed: This step transforms images into low-dimensional numerical rep-
resentations or embeddings.

CNN-based: This category encompasses embeddings achieved through
deep convolutional networks, specifically VGG19 and ResNet-50.

CLIP-based: This approach employs the CLIP to provide a com-
mon vector space representation of the text and image. A variant
that includes entity attention on the CLIP embedding was also
implemented.
Additional information on the image embedding methods can be
found in Section 5.2.

Dimensionality
Reduction:

This operation condenses the large vectors generated by the CNN-

based image embedding methods into a more manageable repres-
entation.
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Pooling-based: This method uses max pooling and average pool-
ing to compress the embeddings.

Neural net-based: This group includes a fully-connected layer
and a deep neural network to reduce the size of the embedding. It
o�ers a more sophisticated dimensionality reduction method due
to the trainable parameters.

IHAN-based: This method includes a standalone and attention-
enabled version of the proposed Image-based Hierarchical Atten-
tion Network (IHAN), an architecture inspired by the HAN ap-
proach.
More details on dimensionality reduction methods are available in
Section 5.3.

Feature Fusion: This final component of the I-KAHAN architecture merges the
feature vectors into a single representation compatible with the
classifier.

Concatenation: This method combines features by stacking them.

Elementwise multiplication: This method multiplies the values
of the feature vectors for fusion.

Averaging: This approach averages the values of the feature vec-
tors for fusion.
Additional information on the methods for feature combination
can be found in Section 5.4.

The bottom part of Figure 5.1 displays two di�erent length image vectors. The first,
depicted in blue, contains 200 numerical values, while the second carries 512 values.
These colors correlate to their associated image embedding groups. Importantly, the
CLIP-based embeddings do not require subsequent dimensionality reduction since they
already produce relatively small vectors.

After feature fusion, a 200-length vector is forwarded to the classifier, a feed-forward
neural network similar to that in the KAHAN model. This classifier performs binary
classification, outputting a probability distribution over the two classes fake or real. Two
alternative classifier architectures have been implemented, one with only one hidden
layer, as in the KAHAN model, and another with two.
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Figure 5.1: Overview of the I-KAHAN architecture
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5.2 Image Embedding Techniques
This thesis leverages various image embedding techniques to generate numerical repres-
entations of images. Two primary categories of image embeddings are employed: pre-
trained deep CNNs, namely VGG19 and ResNet-50, and utilization of the CLIP model.

5.2.1 Deep CNN-based Image Embeddings
VGG19 and ResNet-50, popular deep CNN architectures, are adopted in this study for
their proven e�cacy in object recognition tasks, as well as their frequent use in the field
of fake news detection, as discussed in Chapter 3.

As illustrated in Figure 5.2, both VGG19 and ResNet-50 perform feature extraction
by generating numerical representations of images. The feature vector, denoted as N, is
obtained from the final convolutional layer of each model, bypassing the usual softmax-
activated vector of probabilities used in object classification tasks.

(a) VGG19-based feature extraction. A transformed image is passed to VGG19 for embedding,
from which a feature vector (N ) of size 25088 is collected by skipping the classification stage.

(b) ResNet-50-based feature extraction. Similar to VGG19, ResNet-50 embeds the transformed
image, extracting a feature vector (N ) of size 100352 by bypassing the classification phase.

Figure 5.2: Deep CNN-based image embedding strategies.
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5.2.2 CLIP-based Image Embeddings
CLIP represents an innovative approach to image embedding with a relatively unexplored
potential in the fake news detection domain. With its unique ability to encode images
and text within a shared vector space, CLIP produces concise and information-rich
embeddings that parallel textual features.

Figure 5.3 demonstrates two implementations of CLIP within this study’s architec-
ture. In the first instance (see Figure 5.3a), the transformed image is directly encoded
through CLIP, yielding an image vector situated within a vector space. In the second
approach, CLIP’s text encoder is employed to separately embed entities and claims,
following which multi-head attention is applied to the image vector. This innovative
adaptation, inspired by the Hierarchical Attention Network (HAN), enables the image
vector to align more closely with the most relevant claims, thereby boosting the repres-
entational power of the image.

In summary, the chosen image embedding techniques comprise the well-established VGG19
and ResNet-50 deep CNN models, complemented by the novel CLIP-based embeddings.
The selection was based on the successful use of these methods in the field of fake news
detection, their capacity to generate meaningful image representations, and the innov-
ative potential of CLIP, particularly when combined with entity attention inspired by
the HAN model.

5.3 Dimensionality Reduction Methods
The large vectors produced by CNN-based embeddings necessitate a dimensionality re-
duction process, in order to reduce the size. Without this reduction, the dominance of
high-dimensional image vectors (25,088 or 100,352 values) against the comparatively
small textual vectors (200 values) could potentially skew the classifier’s decisions. To
deal with the imbalance, this thesis explores three categories of dimensionality reduction
mechanisms: neural network-based methods, pooling-based techniques, and the novel
Image-based Hierarchical Attention Network (IHAN) approach. The choice of these
methods aligns with the goal of developing a robust and adaptive solution, capable
of generating compressed yet informative image representations.

5.3.1 Neural Network-based Dimensionality Reduction
Neural networks, commonly employed for vector size reduction in related research, ex-
hibit high representational power and can learn to produce increasingly accurate repres-
entations. As depicted in Figure 5.4, the image vectors derived from CNN-based image
embeddings serve as the input for these networks, outputting a reduced image vector
of size 200. Both networks, shown in Figures 5.4a and 5.4b, utilize the same number
of input and output neurons. The di�erence lies in the network architecture: the latter
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(a) Feature extraction via CLIP. The transformed image is encoded by the CLIP image encoder,
rendering an image vector of size 512 within a vector space.

(b) CLIP-enhanced image encoding with multi-head attention. While the image is encoded as in
the previous approach, entities and claims are separately embedded using CLIP’s text encoder.
This results in vectors representing the average claim for each entity, alongside entity vectors,
all situated within the same vector space as the image. These vectors act as key (entity vectors)
and value (claim vectors) in the multi-head attention mechanism, with the image vector as the
query. Consequently, the representation of the image is adjusted to align more closely with the
claims, enhancing its semantic richness while maintaining its original size.

Figure 5.3: Implementations of CLIP for image encoding.
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incorporates multiple hidden layers, providing a richer representational power through
its trainable parameters, but adding complexity to the training process.

(a) Fully-connected layer for dimensionality reduction. CNN-derived embeddings serve as the
input, with a reduced image vector as the output.

(b) Deep neural network for dimensionality reduction. The network consists of multiple hidden
layers, allowing for greater representational power.

Figure 5.4: Neural network-based approaches for dimensionality reduction.

5.3.2 Pooling-based Dimensionality Reduction
As a simpler alternative, pooling techniques such as max pooling and average pooling
were employed. These techniques divide the original vector into equal-sized patches,
taking the maximum or average value from each patch to yield the reduced vector. This
process, analogous to pooling in CNNs but applied to one-dimensional vectors in our
case, is showcased in Figure 5.5. Although simpler and faster, these techniques may not
deliver the representational power of neural networks as they are non-trainable.
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(a) Max pooling process applied to the image embeddings. The embedding is partitioned into N
segments of length k, with the maximum value from each segment forming the reduced image
vector.

(b) Average pooling process applied to the image embeddings. The embedding is partitioned into
N segments of length k, with the average value from each segment forming the reduced image
vector.

Figure 5.5: Max and average pooling methods for dimensionality reduction.
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5.3.3 Image-based Hierarchical Attention Network
Building upon the successful utilization of the HAN for textual content representation,
this thesis introduces the Image-based Hierarchical Attention Network (IHAN) for visual
content. The core premise of IHAN, similar to HAN, is the hierarchical structure of
data: analogous to how words form sentences and sentences form text, smaller segments
of an image contribute to the understanding of larger segments and, ultimately, the
entire image. As such, IHAN is considered an intelligent, multi-level pooling method
that extends the principles of HAN to image processing.

Furthermore, an additional attention layer, inspired by the entity-attention approach
of the KAHAN model, was incorporated into IHAN to refine image embeddings by
focusing on entities and claims similar to those found in the text content. This attention
layer is expected to assist the classifier by providing more contextually-relevant visual
information.

Figure 5.6 presents the implementation of IHAN in the architecture, with 5.6a show-
ing the basic IHAN and 5.6b illustrating the enhanced version with the entity attention
layer.

5.4 Feature Fusion Techniques
As one of the key components in the I-KAHAN architecture (see Figure 5.1), feature
fusion serves to combine multiple feature vectors into a single representation. Although
KAHAN used concatenation for this purpose, the inclusion of an additional modality
in this work prompted the exploration of di�erent techniques: concatenation, element-
wise multiplication, and averaging. Each of these methods o�ers a unique approach
to blending the features from text, comments, and images, denoted as xn, xc, and xi,
respectively.

Concatenation
Concatenation simply stacks the feature vectors to form a new vector xconcat:

xconcat = xn ü xc ü xi =

S

WU
xn

xc

xi

T

XV (5.1)

This technique maintains all the original information, albeit at the cost of increasing
the dimensionality of the final representation. To solve this issue a fully-connected layer
with 200 output neurons was applied to the output.

Element-wise Multiplication
Element-wise multiplication merges the feature vectors by multiplying their correspond-
ing elements, forming a new vector xelem:
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(a) IHAN as an extension of HAN. The image embeddings are processed similarly to text in
HAN, forming a hierarchical structure.

(b) IHAN with entity attention. The attention mechanism is designed to refine image embeddings
by focusing on entities and claims found in the text.

Figure 5.6: The IHAN dimensionality reduction method, both in its standard form and
with the addition of entity attention.
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xelem = xn § xc § xi (5.2)

This operation has the advantage of reinforcing the areas where all modalities agree,
potentially emphasizing important features. However, it also risks obscuring information
where only one or two modalities provide significant input.

Averaging
Averaging computes the element-wise mean of the feature vectors to form a new vector
xavg:

xavg = 1
3

ÿ
(xn, xc, xi) (5.3)

This method e�ectively compromises between the other two techniques: it reduces di-
mensionality like element-wise multiplication but maintains the notion of distinct input
sources like concatenation. However, it may dilute the impact of individual features.
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CHAPTER
SIX

EXPERIMENTS

This chapter presents the experiments carried out to evaluate and compare di�erent im-
age integration techniques in the I-KAHAN architecture. Three principal tasks, namely
embedding generation, dimensionality reduction, and feature fusion, are the core focus.
The experiments utilize the GossipCop and PolitiFact datasets and assess a variety of
I-KAHAN configurations. The chosen evaluation metrics include accuracy, precision,
recall, F1 score, as well as the confusion matrix.

The chapter further highlights the key tools and technologies employed, such as
PyTorch, Torchvision, IDUN, Open CLIP, Gensim, Scikit-learn, and NLTK, and provides
a clear outline of the experimental setup. Details about the chosen hyperparameters and
how the experiments were executed are also discussed.

6.1 Experimental Design
The set of competing techniques presented in the previous chapter was thoroughly ex-
amined in order to determine the best-performing methods for each of the three tasks
associated with image integration, namely embedding generation, dimensionality reduc-
tion, and feature fusion, and in addition a comparative experiment between the shallow
and deep architecture of the classifier. To achieve a solid understanding of the strengths
and shortcomings of each technique, various configurations of I-KAHAN, taking into
account every possible combination of techniques, was trained and evaluated on the
GossipCop and PolitiFact datasets. Furthermore, an additional experiment was con-
ducted to evaluate the data quality of the modified dataset collection process, namely
FakeNewsNet+, with its original counterpart, FakeNewsNet.

Outlined below is a comprehensive list of the experiments that were carried out. The
scheme consists of three principal experiments, the first of which is labeled as Experiment
1, further broken down into four sub-experiments marked as Experiment 1A, Experiment
1B, Experiment 1C, and Experiment 1D. The remaining experiment is designated as
Experiment 2.
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Experiment 1 This experiment encapsulates the four sub-experiments (A), (B), (C)
and (D).

(A) This experiment focuses on the di�erence in classification per-
formance between the various embedding generation techniques.

(B) In this experiment, the performance of the individual dimension-
ality reduction methods is evaluated.

(C) This experiment explores the performance of the di�erent feature
fusion methods.

(D) This examines the performance of the enhanced classifier as com-
pared to the original.

Experiment 2 This final experiment assesses the quality of data collected through the
improved process (FakeNewsNet+) against the original (FakeNewsNet).

Four metrics have been employed as the basis for evaluating these experiments, namely
accuracy, precision, recall, and the F1 score. In addition, the confusion matrix has been
employed for a comprehensive evaluation of the overall classification performance of
the proposed architecture. The details of these metrics and the confusion matrix were
discussed in Chapter 2.

6.2 Tools and Technologies
The following subsections detail the specific tools and technologies employed in con-
ducting the experiments of this study. These comprise various programming languages,
software libraries, and hardware resources. Each tool was selected on the basis of its
robust capabilities, wide acceptance in the scientific community, and its relevance to the
tasks at hand.

PyTorch1 PyTorch is an open-source machine learning library from the Face-
book AI Research team. It provides a flexible deep learning framework
and encourages e�cient research prototyping and development. PyT-
orch supports tensor computation with strong GPU acceleration and
automatic di�erentiation for building and training neural networks.
In this thesis, it was employed to perform all machine learning-related
tasks, including the implementation of a learning rate scheduler that
dynamically adjusts the learning rate during training to help reduce
overfitting and improve model generalization.

Torchvision2 Torchvision, a PyTorch add-on, provides access to popular datasets,
model architectures, and image transformations for computer vision.

1
https://pytorch.org

2
https://pytorch.org/vision/stable/index.html
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It simplifies the process of loading data and includes functionalities
for tasks such as reading images and applying transformations. In
this research, it was employed to perform image transformations and
to load the VGG19 and ResNet-50 models.

IDUN3 IDUN is a High-Performance Computing (HPC) service o�ered by the
Norwegian University of Science and Technology. With its powerful
computational resources, it’s a pivotal tool for large-scale data pro-
cessing and complex computations. In this research, the IDUN sys-
tem was harnessed for executing exhaustive experiments and training
comprehensive models. The array jobs function of IDUN was partic-
ularly beneficial for managing parallel processes. Furthermore, the
SLURM workload manager was utilized for submitting, monitoring,
and managing jobs.

Open CLIP4 Open CLIP, an open-source rendition of OpenAI’s CLIP model, is a
neural network that leverages a vast variety of internet text. For this
research, Open CLIP was employed for encoding entities, claims, and
images, thus enriching the representational capacity of the developed
models.

Gensim5 Gensim is an open-source Python library designed to handle large
text collections with data streaming and incremental algorithms. For
the purpose of this research, it was used to download GloVe pre-
trained embeddings and to load these embeddings into the model,
hence facilitating e�cient and e�ective textual data processing.

Scikit-learn6 Scikit-learn is a versatile machine learning library for Python that
o�ers a wide array of algorithms for classification, regression, cluster-
ing, and dimensionality reduction. It also provides tools for model fit-
ting, data preprocessing, model selection, and evaluation, which were
utilized extensively throughout the various stages of this research.

NLTK7 The Natural Language Toolkit (NLTK) is a leading platform for con-
structing Python programs to work with human language data. With
its comprehensive suite of text processing libraries for classification,
tokenization, stemming, tagging, parsing, and semantic reasoning,
NLTK was employed for the rigorous preprocessing of textual data
in this study.

3
https://www.hpc.ntnu.no/idun/

4
https://github.com/mlfoundations/open_clip

5
https://radimrehurek.com/gensim/index.html

6
https://scikit-learn.org/stable/

7
https://www.nltk.org
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6.3 Experimental Setup
This section describes the experimental setup, providing the necessary information and
resources to replicate the experiments conducted in this study, with further details found
in the associated repository. The KAHAN8 codebase served as the starting point for
these experiments, and it underwent considerable modifications and enhancements to
incorporate image features. In addition, the code was optimized for performance to
facilitate comprehensive experimentation within the time frame of the thesis. The revised
I-KAHAN codebase9 is available on GitHub10.

6.3.1 Prerequisite Data
Certain pre-trained models, namely GloVe and Wikipedia2vec, are required by the I-
KAHAN architecture for text embedding purposes. Table 6.1 outlines these prerequisite
data files. The GloVe models, glove-wiki-gigaword-100 for news content and glove-twitter-
100 for comments, were sourced via the Gensim library. The enwiki-20180420-100d.pkl
file, used for embedding the entities and entity claims through Wikipedia2vec, was ob-
tained from the Hugging Face11 platform.

Unlike text embeddings, image embeddings did not require any external downloads.
The Torchvision library’s Models subpackage provided access to the VGG19 and Resnet-
50 model, while the Open CLIP library was used to get access to the ViT-B-32-quickgelu
pre-trained model used to implement the CLIP model.

Table 6.1: Pre-trained data files required for textual embeddings, including their sources
and uses.

Pre-trained File Usage Source

glove-wiki-gigaword-100 Embedding news content Gensim’s GloVe model

glove-twitter-100 Embedding comments Gensim’s GloVe model

enwiki-20180420-100d.pkl Embedding entities and
entity claims

Hugging Face

6.3.2 Hyperparameters
The hyperparameters for the I-KAHAN model are presented in Table 6.2. They have
been kept consistent across all experiments to ensure an equitable comparison among

8
https://github.com/ienlie0513/KAHAN

9
https://github.com/oysteinlondal/I-KAHAN

10
https://github.com

11
https://huggingface.co
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di�erent configurations. The selection of these parameters was an iterative process based
on initial experiments and refined to maximize the model’s classification performance.

The hyperparameters from the original KAHAN model served as the starting point
for these initial experiments. For instance, parameters such as batch size and weight
decay were found to be optimal at their original values from the KAHAN experiments
and thus were carried forward into the I-KAHAN model.

6.3.3 Execution of the Experiments
Each experiment was run as a separate array job on the IDUN system, with each exper-
iment comprising 39 distinct jobs per dataset. This number originates from the applic-
ation of the two embedding models (VGG19 and ResNet-50), each tested with the six
dimensionality reduction techniques and the three fusion methods discussed in Chapter
5. Two additional jobs account for the application of the CLIP model and the CLIP model
enhanced with entity attention, which employs only the concatenation fusion technique
and requires no dimensionality reduction. Finally, the KAHAN model execution serves
as a baseline comparison.

In total, the experiments amount to 39◊4◊2 = 312 unique jobs, where 39 signifies the
configurations of I-KAHAN per dataset, 4 accounts for the two datasets (GossipCop and
PolitiFact) collected using two di�erent platforms (FakeNewsNet and FakeNewsNet+),
and 2 signifies the use of two distinct classifiers, namely the shallow and the deep.
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Table 6.2: Hyperparameters utilized in all I-KAHAN model experiments.

Hyperparameter Value Explanation

Epochs 65 Number of times the model
iteratively learns from the
data.

Batch Size 16 Number of samples the
model learns from in one
iteration.

Learning Rate 5 ◊ 10≠5 Rate at which model para-
meters are updated during
training.

Number of Seeds 3 Number of repetitions for
cross-validation to enhance
reliability.

Number of Folds 3 Number of partitions of
the data in k-fold cross-
validation.

Hidden Size 100 Size of the first hidden
layer of the classifier influ-
encing model complexity.

Weight Decay 1 ◊ 10≠4 Coe�cient for L2 regular-
ization, preventing overfit-
ting.

Dropout 0.3 Probability of a neuron
being temporarily ignored
during training, aiding in
preventing overfitting.

84



CHAPTER
SEVEN

RESULTS

The outcomes of the experiments outlined in the prior chapter will be presented and
elucidated in this chapter. Detailed results of each individual experiment will be discussed
initially, followed by a comparison of the top-performing I-KAHAN configurations on
the two datasets, PolitiFact and GossipCop, against the baseline. The data presented
are based on the average scores across all k-fold cross-validation folds and repetitions
for each I-KAHAN configuration. This methodology ensures the maximum accuracy
and reliability of the results, thereby mitigating any possible impact from chance or
randomness.

7.1 Experiment 1: Comparison of Alternative Methods
This section presents the outcomes of the first experiment, with each sub-experiment’s
results elaborated through separate plots and tables. The first three sub-experiments util-
ize a process of averaging the scores of configurations using the same methods, providing
a fair basis for comparing the performance of individual methods.

7.1.1 (A) Image Embedding Methods
Figure 7.1 depicts the average F1 score achieved by each embedding technique across
all configurations. The blue and orange bars represent the PolitiFact and GossipCop
datasets, respectively. The plot reveals that the methods tend to perform better on
the PolitiFact dataset, although this is not of primary concern for this experiment due
to other factors such as data quality discrepancies. However, it is noteworthy that the
rankings are consistent across both datasets. For example, CLIP scores the highest F1
in both datasets, followed by CLIP with entity attention, while ResNet-50 and VGG19
perform similarly on both datasets.
Table 7.1 provides further insight into the performance of the methods. It compares
performance across the metrics used during the experimentation. The best-performing
methods are highlighted in bold, with the second-best underlined. Across both datasets,
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Figure 7.1: Comparison of the image embedding methods on the PolitiFact and Gossip-
Cop datasets. The F1 score has been employed as the metric for the comparison. The
blue marks the F1 score on PolitiFact, while the yellow marks those of GossipCop.

CLIP outperforms the other methods, with the di�erence being most significant on the
PolitiFact dataset.

7.1.2 (B) Dimensionality Reduction Methods
The findings of Experiment 1B, which examines di�erent dimensionality reduction tech-
niques, are presented in Figure 7.2 and Table 7.2. As per the blue and orange bars in the
figure, the techniques are consistently more e�ective on the PolitiFact dataset, and the
ranking order appears to be relatively similar across both datasets. One clear inference
is the relatively weak performance of the fully-connected layer, but the top performer is
less evident from the chart alone.
Table 7.2 o�ers a more detailed perspective, revealing that max pooling outperforms
other methods on the PolitiFact dataset, closely trailed by average pooling. Interestingly,
the deep neural network approach does marginally better on the precision metric for
this dataset. On the GossipCop dataset, however, IHAN followed by average pooling
o�er the best scores. Across both datasets, the three methods IHAN, max pooling, and
average pooling demonstrate highly similar performance, indicating their interchangeable
e�ectiveness.
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Table 7.1: Comparison of image embedding methods on PolitiFact and GossipCop. The
F1 score is employed as the metric for the comparison. The blue and orange bars represent
the F1 scores on PolitiFact and GossipCop datasets, respectively.

(a) PolitiFact

Method PolitiFact
Accuracy Precision Recall F1

CLIP 0.9059 0.9090 0.9025 0.9049
CLIP(EA) 0.8373 0.8391 0.8345 0.8323
ResNet50 0.7945 0.7951 0.7952 0.7881
VGG19 0.7984 0.8000 0.7974 0.7914

(b) GossipCop

Method GossipCop
Accuracy Precision Recall F1

CLIP 0.8011 0.8020 0.8001 0.8005
CLIP(EA) 0.7657 0.7669 0.7650 0.7649
ResNet50 0.7115 0.7219 0.7139 0.7026
VGG19 0.7129 0.7236 0.7151 0.7037

Figure 7.2: Comparison of dimensionality reduction methods on the PolitiFact and Gos-
sipCop datasets. The F1 score is employed as the metric for the comparison. The blue
and orange bars represent the F1 scores on PolitiFact and GossipCop datasets, respect-
ively.
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Table 7.2: Comparison of dimensionality reduction methods on PolitiFact and GossipCop
datasets. The highest numbers are in bold, while those underlined are the second highest.
Across both datasets, max pooling, IHAN, and average pooling perform comparably well.

(a) PolitiFact

Method PolitiFact
Accuracy Precision Recall F1

DNN 0.8015 0.8196 0.7955 0.7947
IHAN 0.8124 0.7899 0.8091 0.8015
IHAN(EA) 0.7971 0.7824 0.8022 0.7883
AvgPool 0.8168 0.8118 0.8159 0.8114
FC 0.7325 0.7503 0.7384 0.7275
MaxPool 0.8183 0.8312 0.8166 0.8151

(b) GossipCop

Method GossipCop
Accuracy Precision Recall F1

DNN 0.7116 0.6745 0.7064 0.6927
IHAN 0.7310 0.7548 0.7371 0.7258
IHAN(EA) 0.7240 0.7474 0.7280 0.7167
AvgPool 0.7296 0.7540 0.7353 0.7242
FC 0.6549 0.6604 0.6535 0.6435
MaxPool 0.7220 0.7455 0.7267 0.7160
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7.1.3 (C) Feature Fusion Techniques
Figure 7.3 demonstrates the average F1 score of each fusion technique across all configur-
ations. In line with previous results, the fusion methods perform better on the PolitiFact
dataset. The fusion methods consistently rank in the same order on both datasets. Par-
ticularly, concatenation proves to be the superior fusion method, followed by averaging,
while element-wise multiplication lags behind significantly.

Figure 7.3: Evaluation of feature fusion methods on the PolitiFact and GossipCop data-
sets using F1 scores. Blue bars represent the PolitiFact dataset, while orange bars indicate
the GossipCop dataset.

Table 7.3 delivers a more comprehensive perspective on the performance metrics of the
fusion techniques. It emphasizes the negligible performance di�erence between concat-
enation and averaging, especially on the GossipCop dataset. However, it’s worth not-
ing that the element-wise multiplication method performs significantly poorer than its
counterparts. In fact, on the GossipCop dataset, configurations employing element-wise
multiplication for feature fusion yield results only slightly better than a random guessing
strategy.

7.1.4 (D) Classifier Comparison
This section is dedicated to the comparative analysis of two classifiers’ performance: a
shallow classifier with a single hidden layer, and a more complex model with an additional
hidden layer. The goal is to identify the classifier that performs most e�ectively in
accurately classifying the datasets used.
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Table 7.3: Detailed comparison of feature fusion methods on the PolitiFact and GossipCop
datasets. The highest values are indicated in bold, while the second-highest values are
underlined. Concatenation achieves the best performance, closely followed by averaging.

(a) PolitiFact

Method PolitiFact
Accuracy Precision Recall F1

Avg 0.8500 0.8510 0.8467 0.8486
Cat 0.8683 0.8694 0.8665 0.8670
ElemMult 0.6716 0.6731 0.6760 0.6539

(b) GossipCop

Method GossipCop
Accuracy Precision Recall F1

Avg 0.7757 0.7763 0.7755 0.7752
Cat 0.7781 0.7788 0.7782 0.7776
ElemMult 0.5836 0.6141 0.5906 0.5575

Figure 7.4 illustrates the classifiers’ performance on the PolitiFact and GossipCop
datasets. Light blue bars on the left-hand side of Figure 7.4a represent the perform-
ance of the shallow classifier, while the dark blue bars on the right-hand side depict
the performance of the deeper model. A line graph is added to the bar plots to high-
light the performance di�erences across all configurations. For conciseness, the graph
includes only ten configurations, labeled on the x-axis. The label for each configuration
is a combination of the embedding model, dimensionality reduction technique, and fusion
method used, separated by dashes. For instance, a configuration using the CLIP model
for image embedding, no reduction technique, and concatenation for feature combina-
tion is denoted as CLIP-Cat. Likewise, a configuration using ResNet-50 with IHAN for
reduction and concatenation for fusion is denoted as Resnet50-IHAN-Cat. Figure 7.4b
represents a similar plot for the GossipCop dataset.

90



(a) PolitiFact

(b) GossipCop

Figure 7.4: Performance comparison of the shallow and deep classifier across various
configurations on the PolitiFact and GossipCop datasets.

The ten configurations were selected based on their superior average performance on
each dataset when using the shallow classifier. The aim was to see if the deeper classifier
could enhance the performance of these configurations. However, the results contradict
this initial assumption. Especially in the GossipCop dataset, the shallow classifier gen-
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erally matches or outperforms the deeper model. With the PolitiFact datasets, the best
classifier varies across configurations, making it di�cult to determine a clear winner.
For instance, in the VGG19-IHAN-Cat configuration, the deeper classifier considerably
improves performance, while for the CLIP-Cat configuration, it significantly reduces
performance.

To provide a more detailed comparison, Table 7.4a and Table 7.4b below the plots
represent the data from the graphs with enhanced precision. The numbers on the left
represent the shallow classifier, and the numbers on the right represent the deep classifier,
with the best results highlighted in bold. Table 7.4a provides a detailed comparison of
the PolitiFact dataset. As indicated by the bold text, the shallow classifier and the deep
classifier each excel an equal number of times, meaning neither classifier consistently
outperforms the other. In contrast, Table 7.4b, detailing the results for the GossipCop
dataset, demonstrates that the shallow classifier outperforms the deeper model in seven
out of the ten configurations, suggesting that the shallow model is generally better suited
for this dataset.

To review the full comparison, including all configurations, refer to the extended
results presented in Appendix A.

7.2 Experiment 2: Comparing FakeNewsNet and FakeNewsNet+
The following section of the study presents the results of the comparison between the
original FakeNewsNet data collection process and the enhanced version, referred to as
FakeNewsNet+. The comparison is depicted through graphs and tabulated data for an
in-depth analysis. The figures used in this evaluation represent the average of averages
across all folds and seeds, for both datasets.

Figure 7.5 reveals an intriguing trend in the performance of di�erent configurations
across both datasets, PolitiFact and GossipCop. While there is minimal performance
variance between FakeNewsNet and FakeNewsNet+ for most configurations, some show
significant improvements with FakeNewsNet+. For instance, the configurations VGG19-
AvgPool-Cat and VGG19-DNN-Cat applied to PolitiFact demonstrate an approximate
5% increase with the improved data collector. On the GossipCop dataset, the Resnet50-
DNN-Avg and Resnet50-DNN-Cat configurations also show notable improvements with
FakeNewsNet+, albeit less dramatic than those seen with PolitiFact. The CLIP-Cat
configuration appears to perform slightly better with the original data collector, Fake-
NewsNet, but the di�erence is negligible at around 1%.

From the observed trends, it’s evident that configurations utilizing deep neural net-
works, pooling operations, or IHAN for dimensionality reduction are likely to benefit
from the data collector enhancements. Conversely, configurations that employ CLIP em-
beddings seem to experience a slight performance decrease, while others remain largely
una�ected.
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Table 7.4: Detailed comparison of the shallow and deep classifier on the PolitiFact and
GossipCop datasets. The numbers on the left side of each slash are those of the shallow
classifier, while those on the right-hand side are of the deep one. The highest numbers
are presented in bold.

(a) PolitiFact

Configuration PolitiFact
Accuracy Precision Recall F1

CLIP-Cat 0.9020/0.8892 0.9059/0.8911 0.8983/0.8874 0.901/0.8883
Resnet50-AvgPool-Cat 0.8875/0.8995 0.8873/0.8988 0.8863/0.8980 0.887/0.8987
Resnet50-IHAN(EA)-Cat 0.8876/0.8841 0.8911/0.8842 0.8849/0.8809 0.886/0.8830
Resnet50-IHAN-Cat 0.8850/0.8926 0.8859/0.8922 0.8836/0.8923 0.884/0.8920
Resnet50-MaxPool-Cat 0.8790/0.8756 0.8796/0.8777 0.8770/0.8715 0.878/0.8742
VGG19-AvgPool-Cat 0.8918/0.8994 0.8922/0.8997 0.8888/0.8966 0.891/0.8985
VGG19-DNN-Cat 0.8816/0.8721 0.8854/0.8809 0.8772/0.8631 0.880/0.8698
VGG19-IHAN(EA)-Cat 0.8799/0.8781 0.8798/0.8771 0.8793/0.8777 0.879/0.8773
VGG19-IHAN-Cat 0.8773/0.8986 0.8789/0.8976 0.8734/0.8983 0.876/0.8979
VGG19-MaxPool-Cat 0.8926/0.8960 0.8924/0.8968 0.8911/0.8940 0.892/0.8951

(b) GossipCop

Configuration GossipCop
Accuracy Precision Recall F1

CLIP-Cat 0.8011/0.7987 0.8020/0.7986 0.8001/0.7991 0.800/0.7984
Resnet50-AvgPool-Cat 0.7978/0.7984 0.7973/0.7999 0.7980/0.8005 0.798/0.7983
Resnet50-DNN-Avg 0.8242/0.7881 0.8247/0.7919 0.8222/0.7898 0.824/0.7878
Resnet50-DNN-Cat 0.8073/0.7920 0.8075/0.7950 0.8069/0.7916 0.807/0.7913
Resnet50-IHAN-Avg 0.7950/0.7930 0.7955/0.7940 0.7964/0.7945 0.795/0.7929
Resnet50-IHAN-Cat 0.7959/0.7924 0.7965/0.7937 0.7968/0.7935 0.796/0.7921
VGG19-AvgPool-Cat 0.7977/0.7938 0.7978/0.7938 0.7984/0.7948 0.797/0.7937
VGG19-IHAN(EA)-Cat 0.7944/0.7904 0.7963/0.7926 0.7954/0.7930 0.794/0.7904
VGG19-IHAN-Cat 0.8073/0.7930 0.8084/0.7934 0.8090/0.7942 0.807/0.7928
VGG19-MaxPool-Cat 0.8034/0.7987 0.8041/0.7995 0.8044/0.8002 0.803/0.7986
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Figure 7.5: Comparative performance of configurations using FakeNewsNet and Fake-
NewsNet+

(a) PolitiFact

(b) GossipCop

Performance results are also presented in a tabular format for detailed comparison in
Table 7.5. It o�ers a comparative analysis of FakeNewsNet+ and FakeNewsNet for the
PolitiFact (Table 7.5a) and GossipCop (Table 7.5b) datasets. For each metric, the left
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and right numbers denote the performance scores of FakeNewsNet+ and FakeNewsNet
respectively. An extensive dataset of the results can be found in the appendix referenced
in the previous section.

Table 7.5 reveals that, for the PolitiFact dataset, there are equal instances where a
configuration performs best under both FakeNewsNet+ and FakeNewsNet. However, it’s
critical to note that when FakeNewsNet outperforms, it does so by a small margin. In
contrast, when FakeNewsNet+ leads, the performance di�erence is significant. Following
the trends observed in Experiment 1D, FakeNewsNet+ outperforms FakeNewsNet for
most configurations. For the few configurations where FakeNewsNet+ is not as e�ective,
the margin is relatively small. These findings underscore the benefits of the enhanced
FakeNewsNet+ data collector, as it consistently delivers comparable or better results
across a wide range of configurations and metrics.

The same trend can be observed in the GossipCop dataset, albeit to a lesser extent.
FakeNewsNet+ and FakeNewsNet seem to compete neck-to-neck, each outperforming
the other in equal instances. Again, the margin of outperformance by FakeNewsNet+ is
typically larger, particularly when it comes to F1 scores.

7.3 Overall Performance
The comparative performance of various configurations on the PolitiFact and GossipCop
datasets is apparent from the findings outlined earlier. As shown in Figure 7.6, the
PolitiFact dataset consistently yields higher performance than the GossipCop dataset,
with the di�erence exceeding 5% for most configurations. The blue bars on the left
represent the performance of each configuration on the PolitiFact dataset, while the
orange bars on the right denote the performance on the GossipCop dataset.

The line graphs suggest a trend of inverse performance between the two datasets.
For instance, the configuration Resnet-50-DNN-Avg is optimal for GossipCop but is the
least e�cient for PolitiFact. Likewise, CLIP-Cat yields good results for PolitiFact but
falters slightly on GossipCop.

95



Table 7.5: Performance comparison between FakeNewsNet+ and FakeNewsNet for di�er-
ent configurations. The numbers on the left side of each slash represent FakeNewsNet+,
while those on the right-hand side represent the original FakeNewsNet. The highest num-
bers are in bold.

(a) PolitiFact

Configuration PolitiFact
Accuracy Precision Recall F1

CLIP-Cat 0.9020/0.9097 0.9059/0.9121 0.8983/0.9067 0.901/0.9088
Resnet50-AvgPool-Cat 0.8875/0.8875 0.8873/0.8873 0.8863/0.8863 0.887/0.8867
Resnet50-IHAN(EA)-Cat 0.8876/0.8876 0.8911/0.8911 0.8849/0.8849 0.886/0.8864
Resnet50-IHAN-Cat 0.8850/0.8858 0.8859/0.8866 0.8836/0.8845 0.884/0.8850
Resnet50-MaxPool-Cat 0.8790/0.8790 0.8796/0.8796 0.8770/0.8770 0.878/0.8779
VGG19-AvgPool-Cat 0.8918/0.8595 0.8922/0.8597 0.8888/0.8543 0.891/0.8575
VGG19-DNN-Cat 0.8816/0.8364 0.8854/0.8426 0.8772/0.8272 0.880/0.8330
VGG19-IHAN(EA)-Cat 0.8799/0.8799 0.8798/0.8798 0.8793/0.8793 0.879/0.8791
VGG19-IHAN-Cat 0.8773/0.8773 0.8789/0.8789 0.8734/0.8734 0.876/0.8760
VGG19-MaxPool-Cat 0.8926/0.8926 0.8924/0.8924 0.8911/0.8911 0.892/0.8918

(b) GossipCop

Configuration GossipCop
Accuracy Precision Recall F1

CLIP-Cat 0.8011/0.8046 0.8020/0.8045 0.8001/0.8044 0.800/0.8042
Resnet50-AvgPool-Cat 0.7978/0.7903 0.7973/0.7903 0.7980/0.7896 0.798/0.7898
Resnet50-DNN-Avg 0.8242/0.7751 0.8247/0.7759 0.8222/0.7736 0.824/0.7743
Resnet50-DNN-Cat 0.8073/0.7907 0.8075/0.7907 0.8069/0.7894 0.807/0.7901
Resnet50-IHAN-Avg 0.7950/0.7847 0.7955/0.7856 0.7964/0.7859 0.795/0.7845
Resnet50-IHAN-Cat 0.7959/0.7957 0.7965/0.7963 0.7968/0.7966 0.796/0.7955
VGG19-AvgPool-Cat 0.7977/0.7977 0.7978/0.7978 0.7984/0.7984 0.797/0.7975
VGG19-IHAN(EA)-Cat 0.7944/0.7927 0.7963/0.7941 0.7954/0.7940 0.794/0.7925
VGG19-IHAN-Cat 0.8073/0.7972 0.8084/0.7981 0.8090/0.7985 0.807/0.7970
VGG19-MaxPool-Cat 0.8034/0.7928 0.8041/0.7935 0.8044/0.7932 0.803/0.7925
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Figure 7.6: Performance comparison of configurations on the PolitiFact and GossipCop
datasets.

Table 7.6 presents a more detailed overview of the performance of each configura-
tion. The best results for each dataset are emphasized in bold, with blue representing
PolitiFact and orange for GossipCop. The second-best results are underlined. CLIP-Cat
and Resnet50-DNN-Avg are the best configurations for PolitiFact and GossipCop, re-
spectively, and are highlighted in the leftmost column of the table. The configuration
that achieved the highest average score across both datasets, CLIP-Cat, is highlighted
with a border.

Table 7.6: Comparison of the overall performance of various configurations across both
datasets.

Configuration PolitiFact vs GossipCop
Accuracy Precision Recall F1

CLIP-Cat 0.9020/0.8011 0.9059/0.8020 0.8983/0.8001 0.901/0.8005
Resnet50-AvgPool-Cat 0.8875/0.7978 0.8873/0.7973 0.8863/0.7980 0.887/0.7975
Resnet50-DNN-Avg 0.8611/0.8242 0.8674/0.8247 0.8541/0.8222 0.859/0.8235
Resnet50-DNN-Cat 0.8653/0.8073 0.8677/0.8075 0.8684/0.8069 0.865/0.8068
Resnet50-IHAN(EA)-Cat 0.8876/0.7840 0.8911/0.7853 0.8849/0.7852 0.886/0.7838
Resnet50-IHAN-Cat 0.8850/0.7959 0.8859/0.7965 0.8836/0.7968 0.884/0.7957
VGG19-AvgPool-Cat 0.8918/0.7977 0.8922/0.7978 0.8888/0.7984 0.891/0.7975
VGG19-IHAN(EA)-Cat 0.8799/0.7944 0.8798/0.7963 0.8793/0.7954 0.879/0.7941
VGG19-IHAN-Cat 0.8773/0.8073 0.8789/0.8084 0.8734/0.8090 0.876/0.8071
VGG19-MaxPool-Cat 0.8926/0.8034 0.8924/0.8041 0.8911/0.8044 0.892/0.8031
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For a more in-depth understanding of the top-performing configurations, confusion matrices
have been constructed for each, as depicted in Figure 7.7. Each matrix captures the classi-
fication performance of a given fold during k-fold cross-validation. Figure 7.7a represents
the CLIP-Cat confusion matrix for PolitiFact, indicating a low number of false negat-
ives and positives. Interestingly, true positives exceed true negatives by 52% to 43%.
This trend is reversed in Figure 7.7b, where the Resnet50-DNN-Avg confusion matrix
for GossipCop shows more true negatives than positives and slightly higher rates of false
negatives and positives. This aligns with the data in Table 7.6.

In essence, these confusion matrices suggest that CLIP-Cat leans towards classifying
news more often as real, while Resnet50-DNN-Avg tends to classify news more often as
fake.

(a) Confusion matrix for CLIP-Cat on the
PolitiFact dataset.

(b) Confusion matrix for Resnet50-DNN-Avg
on the GossipCop dataset.

Figure 7.7: Confusion matrices for the top-performing configurations on the PolitiFact
and GossipCop datasets.

7.3.1 Performance Details of the Best-Performing I-KAHAN Configuration
The superior configuration, as indicated in Table 7.6 and highlighted with dark borders,
is CLIP-Cat. Given its overall superior performance, this configuration is expected to
function well on real-world data. Therefore, it has been selected for the final I-KAHAN
model, and a comprehensive analysis of its performance is provided below. This starts
with an examination of the accuracy per epoch during training, as illustrated in Figure
7.8.

Figure 7.8a displays the accuracy of the training and validation sets of an arbitrary
fold during the k-fold cross-validation of the configuration on the PolitiFact dataset. The
graph shows a sharp increase in accuracy for the first 10 epochs, after which the increase
slows for the remaining 55 epochs with no further changes in accuracy. The accuracy of
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the training set is nearly optimal, suggesting the model is fitting the training data too
well. This can often indicate di�culties in classifying new data, although in this case, it
is not a major concern due to the measures implemented to reduce the impact of this,
particularly the learning rate scheduler. Also, this phenomenon is likely due to the small
size of the PolitiFact dataset. The accuracy of the CLIP-Cat on the GossipCop dataset, as
shown in Figure 7.8b, also plateaus after the initial few epochs, albeit at a lower level. The
model, however, does not seem to overfit as much, with the training accuracy remaining
around 95%. This may be due to the larger size of the GossipCop dataset. Overfitting
seems to be mitigated by the learning rate scheduler for both datasets, although the
large di�erence between training and validation accuracy is particularly noteworthy in
the latter case.

(a) Accuracy per epoch for CLIP-Cat on the
PolitiFact dataset.

(b) Accuracy per epoch for CLIP-Cat on the
GossipCop dataset.

Figure 7.8: Accuracy per epoch during training for the CLIP-Cat configuration.

Examining the loss per epoch graph provides another useful perspective on the per-
formance of the configuration. Figure 7.9 displays the loss per epoch for CLIP-Cat on
each dataset. In both cases, the validation loss starts lower than the training loss, which
might seem counterintuitive as the model is trained on the training set and should there-
fore have a lower loss. However, this is most likely due to the implementation of both
regularization and dropout on the classifier, which inflates the training loss. As shown
in Figure 7.9a, the training loss of the model is nearing zero on the PolitiFact dataset.
This indicates overfitting, although the learning rate scheduler seems to mitigate this as
shown by the graphs leveling o�. A similar observation can be made with the loss on
the GossipCop dataset, as shown in Figure 7.9b. In this case, the model does not appear
to overfit as much, maintaining a training loss slightly higher than zero. However, the
validation loss does rise slightly after the initial few epochs and remains at that level.

The confusion matrices for CLIP-Cat on each dataset are presented in Figure 7.10.
The left-most matrix, shown in Figure 7.10a, is identical to the one presented earlier
since the same configuration performs best overall and on the PolitiFact dataset. The
configuration generally performs well on both datasets. However, as illustrated in Figure
7.10b, the configuration is more conservative on the GossipCop dataset. This pattern
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(a) Loss per epoch for CLIP-Cat on the Poli-
tiFact dataset.

(b) Loss per epoch for CLIP-Cat on the Gos-
sipCop dataset.

Figure 7.9: Loss per epoch during training for the CLIP-Cat configuration.

was also observed for the Resnet50-DNN-Avg configuration, suggesting this is due to
the dataset’s imbalance, with a higher proportion of fake news. Conversely, the Politi-
Fact dataset has a higher proportion of real news, explaining why the configuration is
comparatively more optimistic.

(a) Confusion matrix for CLIP-Cat on the
PolitiFact dataset.

(b) Confusion matrix for CLIP-Cat on the
GossipCop dataset.

Figure 7.10: Confusion matrices for the CLIP-Cat configuration on each dataset.

7.3.2 Comparison of I-KAHAN with Baseline KAHAN
Table 7.7 presents the performance of the KAHAN model for each of the four metrics,
with the I-KAHAN model displayed below for comparison. As previously stated, the
I-KAHAN model utilizes the CLIP-Cat configuration due to its superior performance.
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Upon examination, it becomes apparent that the I-KAHAN model outperforms the
baseline across all metrics. However, the di�erence is not significant, especially not for
the GossipCop dataset. On the GossipCop dataset, the I-KAHAN model surpasses the
KAHAN model by slightly over 1% for all metrics, while on the PolitiFact dataset, it
shows a slightly more substantial improvement of approximately 3%.

Table 7.7: Comparison of overall performance between I-KAHAN and baseline KAHAN.

PolitiFact GossipCop

Accuracy Precision Recall F1 Accuracy Precision Recall F1

KAHAN 0.8756 0.8762 0.8732 0.8745 0.7894 0.7904 0.7905 0.7892
I-KAHAN 0.9020 0.9059 0.8983 0.901 0.8011 0.8020 0.8001 0.8005
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CHAPTER
EIGHT

EVALUATION AND DISCUSSION

This chapter evaluates the performance of the I-KAHAN model for fake news detection.
It delves into the nuances behind the results and discusses the research process, high-
lighting the challenges encountered, the methodological considerations, and the ethical
implications of the work.

The previous chapter presented the experimental results of the two experiments con-
ducted in this thesis, namely Experiment 1, with sub-experiments 1A-D, and Experiment
2. The evaluation of the first experiment is presented in the next section, while the other
one is in the section after that.

8.1 Assessing Experiment 1: Evaluating the Alternative Methods
and Classifier Variations

In this section, the results of Experiment 1 will be evaluated and discussed. The discus-
sion has been divided into two, where the results of Experiment 1A-C are detailed first,
followed by that of 1D.

8.1.1 Experiment 1A-C Evaluation: Impact of Di�erent Methods on Perform-
ance

The results of the first three sub-experiments (1A-C) demonstrate intriguing findings
about the various methods and their impacts on the I-KAHAN model’s performance.
While the experiments validate certain hypotheses about the e�ectiveness of some meth-
ods, they also expose unexpected behavior from others.

Assessment of Image Embedding Performance

As was seen through the results presented in the previous chapter, the CLIP-based image
embeddings performed around 10% better than the CNN-based embeddings on both the
PolitiFact and GossipCop dataset. One reason could be the benefit of CLIP’s ability
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to represent both text and image data in a common vector space, which may aid the
classifier in correlating the text and visuals more easily.

This added advantage of CLIP may be particularly useful in light of the issues sur-
rounding fact-checking images inherent in the PolitiFact dataset, as discussed in Chapter
??. Specifically, some of the real news in the dataset included images embedded with text
a�rming their authenticity, while certain fake news featured images annotated with text
indicating that they had been fact-checked and deemed false. These factors could con-
tribute to the improved performance of CLIP-based image embeddings.

Interestingly, CLIP-based embeddings perform over 10% better on PolitiFact than
on GossipCop. One reason could be the prevalence of embedded text in PolitiFact’s
images, which CLIP, unlike CNN-based methods, can e�ectively process. However, when
entity attention was introduced to the CLIP embeddings, the performance degraded
significantly. One hypothesis for this could be due to the technical constraints which
limited entity attention to just the top 10 entities and a maximum of 25 entity claims
each, compared to 100 entities for the text embeddings.

The scope of the experiment could have been expanded to consider the same number
of entities and claims as the text content, although this would require overcoming the
performance and resource limitations currently faced when using the CLIP encoder on
the IDUN cluster.

Comparative Analysis of Dimensionality Reduction Methods

For Experiment 1B, the best method of dimensionality reduction di�ered between the
datasets. Max pooling was best on PolitiFact, and IHAN was best on GossipCop. In
general, simpler methods like pooling operations outperformed more complex ones like
the deep neural network approach. This might suggest that, for this context, simpler
representations are more e�ective.

Interestingly, the use of entity attention in IHAN degraded the performance. This
could be because while the text and entity-claim vectors share the same vector space,
the CNN-based image embeddings and the entity-claim vectors do not. This may have
limited the e�ectiveness of entity attention.

Evaluating Fusion Methods

In Experiment 1C, the element-wise multiplication method performed worst on both
datasets, while averaging and concatenation were close to the top. This suggests that
element-wise multiplication might not be the optimal fusion method in this context. It
is possible that element-wise multiplication, by introducing non-linearities, may have
resulted in a more complex representation that the classifier struggles to learn from.

Summary of Findings from Experiments 1A-C

The rankings from these experiments provide valuable insights, but they should be in-
terpreted with caution. The reason being that the performance of each method was
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averaged across all configurations of I-KAHAN in which it was used, which might not
fully reflect their potential under specific configurations. For instance, configurations
with ResNet-50 and the deep neural network, despite their low individual rankings, were
part of the best-performing configuration on GossipCop.

Moreover, the consistent rankings across both datasets suggest that the e�ectiveness
of these methods might be largely independent of the dataset used, suggesting a broader
implication of these results for future research in this field. However, the experiments
should have been conducted on an even more comprehensive collection of diverse datasets
to further confirm this.

8.1.2 Evaluating Experiment 1D: Comparative Analysis of Deep and Shallow
Classifiers

In the comparative analysis of deep and shallow classifiers, the introduction of an addi-
tional hidden layer yielded interesting findings. The classifier’s performance varied con-
siderably depending on the dataset and configuration applied, illustrating the complex
interaction between data attributes, model structure, and the learning process.

Improved performance was observed on the GossipCop dataset when the classifier
incorporated an additional hidden layer, especially those employing IHAN or average
pooling for dimensionality reduction, with the exception of instances incorporating entity
attention with IHAN. This can be attributed to the enhanced capacity for learning more
intricate patterns granted by the additional layer. However, an additional layer also
increases the model’s complexity, potentially leading to overfitting, particularly when
paired with complex dimensionality reduction methods like the deep neural network
approach.

Even with dropout and regularization techniques in place, the deep classifier did
not exhibit the expected level of performance. A potential explanation for this behavior
might be the slow-down in the learning process introduced by these features. Dropout
and regularization aim to curtail overfitting, but in doing so, they extend the model’s
training time by adding a complexity penalty, in the case of regularization, or by ran-
domly deactivating neurons during training, in the case of dropout. This additional
time, compounded with the inherent complexity of some of the dimensionality reduc-
tion methods, might limit the e�ciency of the classifier’s learning process. Although the
value of both of these hyperparameters was chosen based on some initial experimenta-
tion, it might have been beneficial to take it a step further by utilizing a more extensive
search for optimal values, through the implementation of for example grid search. The
grid search mechanism exhaustively searches through a predefined set of hyperparameter
combinations to find the optimal configuration for a machine learning model [66].
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8.2 Experiment 2 Analysis: Impact of Revised Dataset on Per-
formance

This section will delve into the assessment of the dataset collected using the proposed
FakeNewsNet+ collection process, and its impact on the performance of I-KAHAN. The
evaluation aims to analyze the role and influence of data quality and its inherent influence
on the performance of the di�erent configurations.

8.2.1 Impact of Data Enhancement on Performance
The revised dataset played a crucial role in enhancing I-KAHAN’s performance across
di�erent configurations. A diverse and high-quality dataset o�ers a rich learning context
for the model, assisting in the formation of more accurate representations. However, the
performance varied across di�erent configurations, underlining the nuanced relationship
between the datasets and the various model configurations. However, the general trend,
as we observed in the previous chapter, is that the revised dataset at large led to a
significant improvement in classification performance. Certain configurations exhibited
a remarkable performance boost of 10% beyond that of the initial dataset.

8.2.2 Reflections on Dataset Limitations and Further Improvements
Dataset limitations and potential areas of improvement are critical aspects that need
addressing. One of the primary challenges encountered during data collection was the
inaccurate extraction of text content from news articles by the scraping tool. This resul-
ted in the scraping of irrelevant data such as website details and cookie policies. Although
these instances were eliminated during data cleaning, the issue highlights the need for a
more sophisticated data scraping tool to improve the quality of collected data. For in-
stance, the recent WorkGPT framework1, showing impressing web scraping capabilities,
could have been utilized.

Dataset size and balance pose significant challenges as well. The size of the Politi-
Fact dataset was noticeably reduced following the data cleaning, possibly a�ecting the
results due to the smaller sample size. This underlines the need for alternative methods
to augment the data volume, either through additional data sources or synthetic data
augmentation techniques.

The imbalance of datasets raises concerns about the potential impact of the trade-o�
between data retention and balance. Techniques such as under-sampling, over-sampling,
and Synthetic Minority Over-sampling Technique (SMOTE) could be considered to ad-
dress this issue. Under-sampling reduces the size of the majority class while over-sampling
increases the minority class size, and SMOTE synthesizes new examples in the minority
class, thereby maintaining a balance without significantly reducing the dataset size [67].

Furthermore, the specificity of the PolitiFact and GossipCop datasets to political and
celebrity news respectively limits the scope of the study. Incorporating a broader range

1
https://github.com/team-openpm/workgpt
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of news categories could o�er more comprehensive insights and robust results.
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8.3 Comparing I-KAHAN with the State-of-the-Art
Comparisons with state-of-the-art models are integral to research as they shed light on
the relative performance of the developed model, which in this case is the I-KAHAN.
This analysis helps to answer one of the research questions regarding how I-KAHAN
compares with the latest advancements in multi-modal fake news detection.

Table 8.1 outlines the F1 scores of I-KAHAN in contrast to several state-of-the-
art multi-modal fake news detection models. On the PolitiFact dataset, the FND-CLIP
model demonstrated the best performance, followed closely by I-KAHAN. Conversely,
for the GossipCop dataset, the SAFE model emerged as the best performer, succeeded
by the SAME model, with I-KAHAN taking the third position.

Table 8.1: Comparison between the proposed I-KAHAN and various state-of-the-art
multi-modal fake news detection models.

Model F1 Score

PolitiFact GossipCop

SAME [63] 0.7678 0.810
SAFE [11] 0.896 0.895
EANN [61] 0.7035 0.7123
FND-CLIP [13] 0.9285 0.783
I-KAHAN 0.901 0.8005

When interpreting these results, it is important to consider that the models were ex-
ecuted under di�erent conditions. Factors such as varying hyperparameters and dataset
versions can significantly influence the outcomes. For instance, according to the published
research, the original KAHAN model achieved an F1 score of 0.9573 on the GossipCop
dataset. However, the experimentation conducted in this thesis only yielded a score of
0.7892. This di�erence highlights how di�erent experimental conditions can a�ect the
model’s performance. Moreover, the variation in performance could also be attributed
to variations in the evaluation methods used in di�erent studies. In this work, the scores
were averaged as mentioned earlier, whereas other studies might consider the highest
achieved score. When working with the KAHAN codebase, it was observed that it re-
corded only the highest score across the folds of the k-fold cross-validation, which might
explain the discrepancy between the performance of KAHAN in this experiment and the
results presented in the paper.

To ensure a fair and comprehensive comparison, an ideal approach could have been
to implement and test all models, including I-KAHAN, on the same dataset or, alternat-
ively, run I-KAHAN on the datasets used by the other models. However, this approach
was impracticable due to the lack of publicly available code and datasets from many of
the state-of-the-art model publications. Nonetheless, this comparison provides a general
idea of how I-KAHAN aligns with the current state-of-the-art, acknowledging the noted
limitations.
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Apart from the potential di�erences resulting from varying datasets and experimental
conditions, there could be intrinsic attributes to I-KAHAN that might have led to its
comparatively lower performance. This includes the relative simplicity of I-KAHAN’s
integration techniques compared to the other models.

Several state-of-the-art models employ intricate fusion strategies and sophisticated
methods to integrate multimodal information. For instance, models like FND-CLIP and
SAFE leverage advanced techniques such as cross-modal attention mechanisms or hier-
archical learning strategies to better capture the interplay between textual and visual
information.

On the other hand, I-KAHAN, while e�cient, is fundamentally simpler in its archi-
tecture. Its primary focus was on combining a range of proven techniques rather than
exploring complex integration methods. This straightforward approach, while beneficial
in terms of interpretability and ease of implementation, might not capture the intricacies
of multi-modal information as e�ectively as the more sophisticated methods employed
by other models.

8.4 Strengths and Limitations of I-KAHAN
This section navigates through the strengths and limitations of the proposed I-KAHAN
fake news detection framework. It delves into its unique contributions, the inherent
limitations of the system, and ethical implications.

8.4.1 Significance of I-KAHAN in the Domain of Fake News Detection
I-KAHAN positions itself in the field of fake news detection as a unique framework, most
notably through its systematic approach to exploring alternative methods for image
representation and integration with other features. It goes beyond simply creating a
model; it o�ers invaluable insights into the comparative e�cacy of di�erent techniques,
setting a helpful precedent for future research.

In its toolbox, I-KAHAN includes the novel IHAN method, with its creative use of at-
tention mechanisms, exhibiting impressive performance. Furthermore, the incorporation
of CLIP for image representation introduces an innovative twist to image embedding, by
utilizing entity attention. While this application of attention did not consistently improve
results, it illuminates the potential that attention-based techniques hold in enhancing
fake news detection systems. The use of CLIP within the field has also only been briefly
explored, and the addition of attention has to my knowledge never been explored before
in previous work.

I-KAHAN also distinguishes itself through its comprehensive design. It utilizes three
distinct news attributes: images, news text, and comments, and supplements these with
external knowledge from a knowledge base. Although other such multi-modal systems
exist, only a few utilize attention and external knowledge to this extent, especially not on
image embeddings. This multi-dimensional approach has proven e�ective, outperforming
the baseline by over 1% on the GossipCop dataset and 3% on the PolitiFact dataset.
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8.4.2 Boundaries of I-KAHAN
While I-KAHAN has shown promise, it is also constrained by its limitations. The per-
formance of I-KAHAN configurations diverges considerably between the GossipCop and
PolitiFact datasets. This discrepancy suggests potential issues with the system’s gener-
alizability across di�erent categories of news, a challenge that could be partially due to
the limited scope of datasets considered in this work. This also reflects a broader issue
within the field of fake news detection, where comprehensive, high-quality datasets are
scarce.

Another critical concern worth mentioning is the discernible bias observable in I-
KAHAN’s classification outcomes. Detailed analysis of I-KAHAN’s results reveals a
propensity towards false positives when handling the PolitiFact dataset, notable for
its higher concentration of fake news. In contrast, when processing the GossipCop data-
set, which is characterized by a predominance of real news, I-KAHAN demonstrated a
tendency towards false negatives. This dichotomy suggests that I-KAHAN struggles with
e�ectively managing imbalanced datasets, an intricate problem discussed previously.

Additionally, when compared to other state-of-the-art models, as seen in the perform-
ance comparison section, the focus of I-KAHAN on combining a set of optimal techniques
rather than inventing new fusion strategies might limit its potential to capture more nu-
anced patterns. This approach, while providing a more direct understanding of how each
component contributes to the overall performance and o�ering clear pathways for further
improvement, might slightly compromise the model’s performance.

Notably, the current framework of I-KAHAN does not encompass all possible features
relevant to fake news detection. The system focuses primarily on images, news text, and
comments, in conjunction with external knowledge. However, other valuable information,
such as user metadata is not utilized. The lack of additional contextual features poses a
boundary to the capabilities of I-KAHAN, potentially limiting the richness of the model’s
understanding and the nuances in its detection abilities.

8.4.3 Ethical Implications
The real-world deployment of I-KAHAN, and fake news detection systems in general,
brings forward several ethical considerations. Among these is the potential for false
positives. If these systems were implemented in such a way that posts deemed by the
system as fake news, would be blocked, there is a risk of infringing on freedom of speech.
This concern is not limited to I-KAHAN but extends to all fake news detection systems,
emphasizing the need for careful, ethically-informed implementations.

Similarly, there is a risk that the model might develop biases toward certain writing
styles or images. This could inadvertently lead to instances where valid information is
wrongly classified as fake news, potentially causing discrimination and unjust treatment.

Moreover, the possibility of exploitation by malicious actors is a real concern. For
instance, they could mimic the styles or elements of credible news sources to enhance the
perceived authenticity of their fake news. While I-KAHAN’s multi-dimensional approach,
which includes comments and news text, provides some level of protection, it underscores
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the need for continual development and refinement in fake news detection systems, always
guided by ethical considerations.

8.5 Technical Challenges
Through working on this thesis several technical challenges were encountered, including
integration into an existing codebase, the handling of complex programming challenges,
as well as learning and optimizing the use of the IDUN cluster to conduct extensive
experimentation.

8.5.1 Integration into an Existing Codebase
The process of integrating into an existing codebase represented a significant challenge.
Understanding the code proved formidable due to the incompleteness of the accompany-
ing documentation, which comprised only comments in the code, the KAHAN research
paper, only scratching the surface on technical details, and a README file in the Git-
Hub repository of KAHAN. In addition, unsuccessful attempts at communicating with
the original authors left many questions unanswered.

Overcoming the challenge of identifying the appropriate data files necessary for em-
bedding the textual content was crucial to recreate the same experimental setup as the
baseline. Determining the file locations for the external knowledge embedding data ne-
cessary for embedding entities and claims was particularly challenging. This necessitated
an exhaustive investigation and extensive web searches. To alleviate such di�culties in
future research, the data sources used in this study have been clearly indicated, and
downloadable links have been provided.

Integrating the necessary format for comments so that they could be processed by
the existing comment-processing pipeline in the codebase also proved challenging. This
required a comprehensive understanding of the codebase and substantial trial and error.
It is worth noting that the original pipeline was not equipped to handle instances with
no comments. However, such cases were included in this study due to the shortage
of available data and the need to ensure that all instances contained textual content
and an image. Adapting the pipeline to handle these instances necessitated significant
modifications, adding an extra layer of complexity.

8.5.2 Managing Complex Programming Challenges
Complex programming tasks added another layer of di�culty to the study. To optimize
the training process, image and text preprocessing tasks, including the embedding pro-
cess and all other required preparation, were segregated into a separate script that was
executed before the training loop. This division drastically reduced the training time,
from several days to just a few hours. This was important due to the extensive amount
of run-time needed to get the complete experimental results.

Incorporating various image integration components represented a demanding task
due to their sheer number and the need to consider all alternative methods outlined
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in the experiments. This resulted in an extensive implementation phase that involved
integrating multiple components, each with its unique characteristics and interactions.
To accommodate this complexity, the script was modified to accept a comprehensive
set of parameters, allowing the same script to be applied across all possible configur-
ations simply by altering the input arguments. This undertaking required considerable
debugging and presented significant complexity in its implementation. Nevertheless, it
greatly simplified the process of conducting the experiments, turning a challenge into a
streamlined process.

8.5.3 Optimizing the Utilization of the IDUN Cluster
Utilizing the IDUN cluster for experiments presented its own set of challenges. The
learning curve was steep, requiring mastering the use of shell scripts and the command
interface of Ubuntu to interact with the server where the scripts were run. This also
entailed understanding the SLURM workload manager to execute, monitor, and manage
jobs. Further, understanding the hardware of the IDUN cluster, the available resources,
and their usage through shell script parameters was crucial.

The heavy demand for the IDUN cluster resources led to queuing issues and resource
constraints. As detailed in Chapter 6, a total of 312 di�erent runs were performed on the
IDUN cluster to obtain the results presented in Chapter 7. Each of these runs required
its own CPU core, placing a substantial demand on the cluster’s resources. Discovering
an e�cient method to run these experiments required considerable trial and error. The
final solution involved the use of array jobs and the generation of multiple array jobs
from a complex loop. The configurations were defined in a separate text file for easy
modification, resulting in a more e�cient run-time.
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CHAPTER
NINE

CONCLUSION AND FUTURE WORK

In this final chapter, we revisit the research questions outlined at the beginning of this
thesis. The discussion aims to assess whether these questions have been satisfactorily
addressed and to what extent the thesis objectives have been achieved. The chapter is
divided into two sections: the first section provides a conclusive summary of the findings,
and the second section identifies potential avenues for future work in the field of multi-
modal fake news detection.

9.1 Conclusion and Research Contributions
This thesis delved into the domain of misinformation detection and proposed an enhance-
ment to an existing detection model by incorporating the visual attributes of news.
It is grounded in the historical progression from uni-modal to multi-modal fake news
detection techniques. Building upon this foundation, the study introduced the Image-
enhanced Knowledge-Aware Hierarchical Attention Network (I-KAHAN) model, which
creatively combines textual and visual data to enhance the performance and robustness
of fake news detection. The significant contributions of this research lie in the meticulous
experimentation with various image integration techniques and the successful enhance-
ment of the FakeNewsNet dataset, referred to as FakeNewsNet+. These e�orts resulted
in notable improvements, with some cases demonstrating improvements of up to 10%
compared to FakeNewsNet.

The ensuing discussion delves into the specific findings of the study, addressing each
research question (RQ) in turn:

RQ1 Which techniques are most e�ective for incorporating visual elements into a multi-
modal fake news detection system to enhance its classification performance?

The research revealed the potential of various image integration techniques for improv-
ing fake news detection. CLIP-based image embeddings, pooling operations for dimen-
sionality reduction, and concatenation for feature fusion emerged as the most e�ective
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techniques. Additionally, the study introduced a novel dimensionality reduction method,
IHAN, and extensively explored the use of external knowledge and attention mechanisms
to enhance the representation. Notably, the combination of CLIP with entity attention
and the utilization of IHAN achieved remarkable performance. In addition, the study
explored di�erent classifier architectures and surprisingly found that a simpler neural
architecture with only one hidden layer outperformed the one with an additional layer.

RQ2 How significantly does the integration of visual attributes into a fake news detec-
tion system influence its classification performance?

The significant improvement in the classification performance of the fake news detection
system rea�rms the importance of integrating visual attributes. The I-KAHAN model
outperformed the baseline, demonstrating an increase of over 1% in performance on
the GossipCop dataset and 3% on the PolitiFact dataset. Since all other aspects of these
systems remained the same, except for the integration of images in I-KAHAN, it suggests
that the inclusion of visual aspects has a positive influence on classification performance.

RQ3 How does the classification performance of the developed multi-modal fake news
detection system, which includes visual elements, compare with existing state-of-
the-art multi-modal systems?

While the I-KAHAN model, incorporating visual elements, did not surpass all state-of-
the-art multi-modal detection systems, it ranked second best on PolitiFact and third
best on GossipCop among the four multi-modal systems it was compared to. This result
is respectable, but not exceptional. Possible reasons for this discrepancy could be at-
tributed to the relatively simplistic image integration approach of I-KAHAN compared
to the more complex strategies employed by the other architectures. Another plausible
reason could be that the performance of the other models was obtained from their re-
spective papers and not re-evaluated under the same setup and with the same datasets
as I-KAHAN. To strengthen this hypothesis, it is worth mentioning that the baseline
KAHAN performed significantly worse during the experimentation conducted in this
thesis compared to the results presented in the original paper. It is also possible that the
evaluation methods employed by the other models di�er, such as considering the highest
achieved score during training as the final score, rather than the average score as in the
case of this study.
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9.2 Future Work
The promising results of this thesis not only validate the e�cacy of multi-modal fake
news detection but also illuminate various avenues for future research. It is important to
approach these potential enhancements systematically and comprehensively, as they are
interconnected and contribute collectively to the ongoing fight against misinformation.

One area that holds significant potential for advancement is the extended use of the
CLIP encoder to embed textual attributes. By unifying the representation of visual and
textual elements in the same vector space, this enhancement could improve the classifier’s
learning process. It would enable the model to discover nuanced correlations among
diverse news attributes more e�ectively, leading to improved classification performance.

Improving the data collection process emerges as a critical facet for future research.
The incorporation of sophisticated data scraping tools, such as the recent WorkGPT
framework, could greatly enhance the quality of data collection. Additionally, expanding
the range of data sources and employing synthetic data augmentation techniques could
increase the volume of data available for training the model. This, in turn, would assist
the model in learning and generalizing patterns more accurately, thereby enhancing its
overall performance.

Addressing the challenge of dataset imbalance is also essential for improving the
model’s performance. Techniques like under-sampling, over-sampling, or SMOTE can
help maintain a balance in the datasets, leading to more unbiased and robust results.
Furthermore, diversifying the scope of news categories by incorporating additional data-
sets could enhance the model’s generalizability across varied news topics and styles.

Considering the potential misuse of these models by malicious actors is a critical
consideration. The ability of malefactors to mimic the styles of credible news sources
to enhance the perceived authenticity of their fake news highlights the importance of
continuous development and refinement of fake news detection systems. One possible
direction is the inclusion of even more news attributes, building on the improved per-
formance observed with the addition of images. Ethical considerations should always
guide this approach, mitigating the risk and bolstering the model’s resilience against
such misuse.

Lastly, ethical considerations regarding freedom of speech warrant careful deliber-
ation. While the necessity for e�cient fake news detection is undeniable, it must be
balanced with the preservation of this fundamental right. To achieve a delicate equilib-
rium, dedicated research is required to ensure that these technologies foster a healthy
information ecosystem, where misinformation is combated without infringing upon free-
dom of speech.

In summary, the fight against misinformation is an ongoing endeavor, and each step
toward improvement brings us closer to robust and e�ective models. This study has
already illuminated promising pathways, reinforcing the importance and potential of
multi-modal fake news detection. The suggested enhancements, intertwined with one
another, collectively contribute to strengthening this line of research and making a mean-
ingful impact in the battle against fake news.
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APPENDIX
ONE

EXTENDED EXPERIMENTAL RESULTS

This section contains a detailed presentation of the experimental results. To provide a
comprehensive overview, Table A.1 presents the complete output of all conducted exper-
iments, using the F1 score as the sole metric for simplicity. Additionally, for Experiment
1D, extended results for the PolitiFact and GossipCop datasets can be found in Table
A.2 and Table A.3 respectively. Similarly, Table A.4 and Table A.5 present the exten-
ded results of Experiment 2 for each dataset. These tables encompass all configurations,
surpassing the previously mentioned limit of ten configurations in Chapter 7.
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Table A.1: F1 scores for di�erent I-KAHAN architecture configurations. Each cell contains two scores: shallow
(left) and deep (right). The best numbers in each column are shown in bold, while the second-best are under-
lined.

Configuration GossipCop PolitiFact
FakeNewsNet FakeNewsNet+ FakeNewsNet FakeNewsNet+

CLIP(EA)-Cat 0.7667/0.7487 0.7649/0.7487 0.8301/0.8175 0.8323/0.8175
CLIP-Cat 0.8042/0.7984 0.8005/0.7984 0.9088/0.8883 0.9049/0.8883
Resnet50-AvgPool-Avg 0.7929/0.7971 0.7929/0.7971 0.8702/0.8986 0.8702/0.8986
Resnet50-AvgPool-Cat 0.7898/0.7983 0.7975/0.7983 0.8867/0.8987 0.8867/0.8987
Resnet50-AvgPool-ElemMult 0.5743/0.5861 0.5887/0.5861 0.659/0.7857 0.6566/0.7857
Resnet50-DNN-Avg 0.7743/0.7878 0.8235/0.7878 0.8633/0.8464 0.8611/0.8464
Resnet50-DNN-Cat 0.7901/0.7913 0.8068/0.7913 0.8726/0.8427 0.8742/0.8427
Resnet50-DNN-ElemMult 0.4966/0.5809 0.4962/0.5809 0.6374/0.6571 0.6374/0.6571
Resnet50-FC-Avg 0.6842/0.678 0.6855/0.678 0.784/0.7827 0.784/0.7827
Resnet50-FC-Cat 0.6735/0.6668 0.6744/0.6668 0.7887/0.7816 0.7887/0.7816
Resnet50-FC-ElemMult 0.5331/0.5726 0.5374/0.5726 0.6175/0.7177 0.6175/0.7177
Resnet50-IHAN(EA)-Avg 0.7916/0.7893 0.79/0.7893 0.8617/0.8804 0.8617/0.8804
Resnet50-IHAN(EA)-Cat 0.7924/0.7917 0.7838/0.7917 0.8864/0.883 0.8864/0.883
Resnet50-IHAN(EA)-ElemMult 0.5773/0.5846 0.5696/0.5846 0.588/0.8091 0.6239/0.8091
Resnet50-IHAN-Avg 0.7845/0.7929 0.7949/0.7929 0.8702/0.8875 0.8702/0.8875
Resnet50-IHAN-Cat 0.7955/0.7921 0.7957/0.7921 0.885/0.892 0.8845/0.892
Resnet50-IHAN-ElemMult 0.5732/0.5856 0.5791/0.5856 0.6521/0.8022 0.6521/0.8022
Resnet50-MaxPool-Avg 0.7544/0.7597 0.7621/0.7597 0.8073/0.8647 0.8073/0.8647
Resnet50-MaxPool-Cat 0.7795/0.7927 0.7869/0.7927 0.8779/0.8742 0.8779/0.8742
Resnet50-MaxPool-ElemMult 0.581/0.5855 0.5823/0.5855 0.7447/0.7827 0.7447/0.7827
VGG19-AvgPool-Avg 0.7917/0.7989 0.7917/0.7989 0.794/0.9044 0.8746/0.9044
VGG19-AvgPool-Cat 0.7975/0.7937 0.7975/0.7937 0.8575/0.8985 0.8908/0.8985
VGG19-AvgPool-ElemMult 0.5766/0.5875 0.5766/0.5875 0.6438/0.8042 0.6892/0.8042
VGG19-DNN-Avg 0.7651/0.7951 0.7649/0.7951 0.8311/0.8623 0.8619/0.8623
VGG19-DNN-Cat 0.7691/0.7925 0.7691/0.7925 0.833/0.8698 0.8802/0.8698
VGG19-DNN-ElemMult 0.4956/0.5755 0.4956/0.5755 0.5984/0.7715 0.6532/0.7715
VGG19-FC-Avg 0.7129/0.7103 0.733/0.7103 0.7876/0.7916 0.7876/0.7916
VGG19-FC-Cat 0.7053/0.7 0.7053/0.7 0.7844/0.7912 0.7844/0.7912
VGG19-FC-ElemMult 0.5256/0.5726 0.5257/0.5726 0.6025/0.7402 0.6025/0.7402
VGG19-IHAN(EA)-Avg 0.793/0.7893 0.7931/0.7893 0.8585/0.8837 0.8585/0.8837
VGG19-IHAN(EA)-Cat 0.7925/0.7904 0.7941/0.7904 0.8791/0.8773 0.8791/0.8773
VGG19-IHAN(EA)-ElemMult 0.5654/0.5864 0.5696/0.5864 0.62/0.8095 0.62/0.8095
VGG19-IHAN-Avg 0.7883/0.7924 0.7899/0.7924 0.8718/0.8927 0.8718/0.8927
VGG19-IHAN-Cat 0.797/0.7928 0.8071/0.7928 0.876/0.8979 0.876/0.8979
VGG19-IHAN-ElemMult 0.572/0.5884 0.5882/0.5884 0.6546/0.795 0.6546/0.795
VGG19-MaxPool-Avg 0.7805/0.7793 0.7805/0.7793 0.8101/0.872 0.8737/0.872
VGG19-MaxPool-Cat 0.7925/0.7986 0.8031/0.7986 0.8918/0.8951 0.8918/0.8951
VGG19-MaxPool-ElemMult 0.5809/0.5827 0.5809/0.5827 0.6601/0.796 0.6955/0.796
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Table A.2: Detailed comparison of the shallow and deep classifier on the PolitiFact dataset for all the configur-
ations of I-KAHAN. The numbers on the left side of each slash are those of the shallow classifier, while those
on the right-hand side are of the deep one. The highest numbers are in bold.

Configuration PolitiFact
Accuracy Precision Recall F1

CLIP(EA)-Cat 0.8186/0.8184 0.8231/0.8178 0.8125/0.8188 0.809/0.8175
CLIP-Cat 0.9020/0.8892 0.9059/0.8911 0.8983/0.8874 0.901/0.8883
Resnet50-AvgPool-Avg 0.8713/0.8994 0.8728/0.8993 0.8691/0.8979 0.870/0.8986
Resnet50-AvgPool-Cat 0.8875/0.8995 0.8873/0.8988 0.8863/0.8980 0.887/0.8987
Resnet50-AvgPool-ElemMult 0.6735/0.7920 0.6636/0.8133 0.6729/0.7747 0.659/0.7857
Resnet50-DNN-Avg 0.8611/0.8482 0.8674/0.8572 0.8541/0.8455 0.859/0.8464
Resnet50-DNN-Cat 0.8653/0.8448 0.8677/0.8564 0.8684/0.8426 0.865/0.8427
Resnet50-DNN-ElemMult 0.6498/0.6931 0.6913/0.7553 0.6546/0.6558 0.637/0.6571
Resnet50-FC-Avg 0.7852/0.7835 0.7844/0.7850 0.7846/0.7867 0.784/0.7827
Resnet50-FC-Cat 0.7894/0.7826 0.7897/0.7864 0.7921/0.7856 0.789/0.7816
Resnet50-FC-ElemMult 0.6303/0.7246 0.6815/0.7277 0.6471/0.7096 0.618/0.7177
Resnet50-IHAN(EA)-Avg 0.8628/0.8815 0.8626/0.8821 0.8607/0.8782 0.862/0.8804
Resnet50-IHAN(EA)-Cat 0.8876/0.8841 0.8911/0.8842 0.8849/0.8809 0.886/0.8830
Resnet50-IHAN(EA)-ElemMult 0.6387/0.8150 0.5826/0.8397 0.6595/0.7981 0.613/0.8091
Resnet50-IHAN-Avg 0.8713/0.8883 0.8709/0.8885 0.8685/0.8869 0.870/0.8875
Resnet50-IHAN-Cat 0.8850/0.8926 0.8859/0.8922 0.8836/0.8923 0.884/0.8920
Resnet50-IHAN-ElemMult 0.6827/0.8082 0.6141/0.8311 0.6781/0.7911 0.652/0.8022
Resnet50-MaxPool-Avg 0.8090/0.8662 0.8093/0.8680 0.8049/0.8622 0.807/0.8647
Resnet50-MaxPool-Cat 0.8790/0.8756 0.8796/0.8777 0.8770/0.8715 0.878/0.8742
Resnet50-MaxPool-ElemMult 0.7519/0.7894 0.7900/0.8134 0.7465/0.7718 0.745/0.7827
VGG19-AvgPool-Avg 0.8756/0.9054 0.8749/0.9070 0.8736/0.9025 0.875/0.9044
VGG19-AvgPool-Cat 0.8918/0.8994 0.8922/0.8997 0.8888/0.8966 0.891/0.8985
VGG19-AvgPool-ElemMult 0.7016/0.8108 0.6977/0.8359 0.7028/0.7926 0.689/0.8042
VGG19-DNN-Avg 0.8645/0.8645 0.8733/0.8687 0.8557/0.8577 0.862/0.8623
VGG19-DNN-Cat 0.8816/0.8721 0.8854/0.8809 0.8772/0.8631 0.880/0.8698
VGG19-DNN-ElemMult 0.6751/0.7835 0.7219/0.8351 0.6522/0.7583 0.653/0.7715
VGG19-FC-Avg 0.7895/0.7929 0.7891/0.7926 0.7859/0.7925 0.788/0.7916
VGG19-FC-Cat 0.7861/0.7928 0.7840/0.7926 0.7835/0.7910 0.784/0.7912
VGG19-FC-ElemMult 0.6147/0.7468 0.6734/0.7540 0.6369/0.7317 0.603/0.7402
VGG19-IHAN(EA)-Avg 0.8594/0.8849 0.8586/0.8865 0.8579/0.8815 0.858/0.8837
VGG19-IHAN(EA)-Cat 0.8799/0.8781 0.8798/0.8771 0.8793/0.8777 0.879/0.8773
VGG19-IHAN(EA)-ElemMult 0.6463/0.8150 0.5938/0.8357 0.6640/0.7985 0.620/0.8095
VGG19-IHAN-Avg 0.8730/0.8935 0.8729/0.8929 0.8701/0.8923 0.872/0.8927
VGG19-IHAN-Cat 0.8773/0.8986 0.8789/0.8976 0.8734/0.8983 0.876/0.8979
VGG19-IHAN-ElemMult 0.6844/0.8014 0.6162/0.8259 0.6807/0.7834 0.655/0.7950
VGG19-MaxPool-Avg 0.8747/0.8730 0.8731/0.8719 0.8726/0.8713 0.874/0.8720
VGG19-MaxPool-Cat 0.8926/0.8960 0.8924/0.8968 0.8911/0.8940 0.892/0.8951
VGG19-MaxPool-ElemMult 0.7024/0.8031 0.7425/0.8295 0.7077/0.7841 0.696/0.7960
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Table A.3: Detailed comparison of the shallow and deep classifier on the GossipCop dataset for all the con-
figurations of I-KAHAN. The numbers on the left side of each slash are those of the shallow classifier, while
those on the right-hand side are of the deep one. The highest numbers are in bold.

Configuration GossipCop
Accuracy Precision Recall F1

CLIP(EA)-Cat 0.7657/0.7494 0.7669/0.7499 0.7650/0.7484 0.765/0.7487
CLIP-Cat 0.8011/0.7987 0.8020/0.7986 0.8001/0.7991 0.800/0.7984
Resnet50-AvgPool-Avg 0.7932/0.7973 0.7934/0.7973 0.7935/0.7979 0.793/0.7971
Resnet50-AvgPool-Cat 0.7978/0.7984 0.7973/0.7999 0.7980/0.8005 0.798/0.7983
Resnet50-AvgPool-ElemMult 0.6025/0.6000 0.6803/0.6767 0.6214/0.6188 0.589/0.5861
Resnet50-DNN-Avg 0.8242/0.7881 0.8247/0.7919 0.8222/0.7898 0.824/0.7878
Resnet50-DNN-Cat 0.8073/0.7920 0.8075/0.7950 0.8069/0.7916 0.807/0.7913
Resnet50-DNN-ElemMult 0.5505/0.5953 0.4541/0.6711 0.5388/0.6141 0.496/0.5809
Resnet50-FC-Avg 0.6867/0.6786 0.6858/0.6787 0.6841/0.6781 0.685/0.6780
Resnet50-FC-Cat 0.6757/0.6677 0.6767/0.6680 0.6740/0.6668 0.674/0.6668
Resnet50-FC-ElemMult 0.5671/0.5810 0.5650/0.6212 0.5676/0.5960 0.537/0.5726
Resnet50-IHAN(EA)-Avg 0.7901/0.7894 0.7918/0.7924 0.7920/0.7922 0.790/0.7893
Resnet50-IHAN(EA)-Cat 0.7840/0.7918 0.7853/0.7931 0.7852/0.7937 0.784/0.7917
Resnet50-IHAN(EA)-ElemMult 0.5911/0.5979 0.6561/0.6691 0.5999/0.6163 0.570/0.5846
Resnet50-IHAN-Avg 0.7950/0.7930 0.7955/0.7940 0.7964/0.7945 0.795/0.7929
Resnet50-IHAN-Cat 0.7959/0.7924 0.7965/0.7937 0.7968/0.7935 0.796/0.7921
Resnet50-IHAN-ElemMult 0.5962/0.6009 0.6639/0.6861 0.6099/0.6205 0.579/0.5856
Resnet50-MaxPool-Avg 0.7625/0.7600 0.7618/0.7596 0.7621/0.7602 0.762/0.7597
Resnet50-MaxPool-Cat 0.7872/0.7930 0.7877/0.7932 0.7877/0.7936 0.787/0.7927
Resnet50-MaxPool-ElemMult 0.5998/0.5987 0.6702/0.6708 0.6133/0.6171 0.582/0.5855
VGG19-AvgPool-Avg 0.7920/0.7991 0.7923/0.7995 0.7925/0.8002 0.792/0.7989
VGG19-AvgPool-Cat 0.7977/0.7938 0.7978/0.7938 0.7984/0.7948 0.797/0.7937
VGG19-AvgPool-ElemMult 0.5944/0.6016 0.6627/0.6804 0.6079/0.6206 0.577/0.5875
VGG19-DNN-Avg 0.7667/0.7955 0.7709/0.7982 0.7634/0.7967 0.765/0.7951
VGG19-DNN-Cat 0.7702/0.7931 0.7714/0.7969 0.7681/0.7936 0.769/0.7925
VGG19-DNN-ElemMult 0.5505/0.5873 0.4183/0.6473 0.5391/0.6046 0.496/0.5755
VGG19-FC-Avg 0.7335/0.7110 0.7328/0.7110 0.7328/0.7100 0.733/0.7103
VGG19-FC-Cat 0.7059/0.7004 0.7057/0.7001 0.7053/0.7003 0.705/0.7000
VGG19-FC-ElemMult 0.5605/0.5819 0.5963/0.6261 0.5570/0.5976 0.526/0.5726
VGG19-IHAN(EA)-Avg 0.7933/0.7894 0.7953/0.7916 0.7951/0.7914 0.793/0.7893
VGG19-IHAN(EA)-Cat 0.7944/0.7904 0.7963/0.7926 0.7954/0.7930 0.794/0.7904
VGG19-IHAN(EA)-ElemMult 0.5914/0.5998 0.6594/0.6734 0.6004/0.6184 0.570/0.5864
VGG19-IHAN-Avg 0.7903/0.7926 0.7905/0.7935 0.7903/0.7940 0.790/0.7924
VGG19-IHAN-Cat 0.8073/0.7930 0.8084/0.7934 0.8090/0.7942 0.807/0.7928
VGG19-IHAN-ElemMult 0.6014/0.6023 0.6742/0.6803 0.6199/0.6212 0.588/0.5884
VGG19-MaxPool-Avg 0.7807/0.7795 0.7808/0.7794 0.7813/0.7799 0.780/0.7793
VGG19-MaxPool-Cat 0.8034/0.7987 0.8041/0.7995 0.8044/0.8002 0.803/0.7986
VGG19-MaxPool-ElemMult 0.5984/0.5977 0.6681/0.6793 0.6117/0.6171 0.581/0.5827
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Table A.4: Performance comparison between FakeNewsNet+ and FakeNewsNet for all the I-KAHAN configur-
ations on the PolitiFact dataset. The numbers on the left side of each slash are those of FakeNewsNet+, while
those on the right-hand side are of the original FakeNewsNet. The highest numbers are in bold.

Configuration PolitiFact
Accuracy Precision Recall F1

CLIP(EA)-Cat 0.8186/0.8346 0.8231/0.8365 0.8125/0.8303 0.809/0.8301
CLIP-Cat 0.9020/0.9097 0.9059/0.9121 0.8983/0.9067 0.901/0.9088
Resnet50-AvgPool-Avg 0.8713/0.8713 0.8728/0.8728 0.8691/0.8691 0.870/0.8702
Resnet50-AvgPool-Cat 0.8875/0.8875 0.8873/0.8873 0.8863/0.8863 0.887/0.8867
Resnet50-AvgPool-ElemMult 0.6735/0.6735 0.6636/0.6636 0.6729/0.6729 0.659/0.6590
Resnet50-DNN-Avg 0.8611/0.8654 0.8674/0.8721 0.8541/0.8586 0.859/0.8633
Resnet50-DNN-Cat 0.8653/0.8730 0.8677/0.8760 0.8684/0.8766 0.865/0.8726
Resnet50-DNN-ElemMult 0.6498/0.6498 0.6913/0.6913 0.6546/0.6546 0.637/0.6374
Resnet50-FC-Avg 0.7852/0.7852 0.7844/0.7844 0.7846/0.7846 0.784/0.7840
Resnet50-FC-Cat 0.7894/0.7894 0.7897/0.7897 0.7921/0.7921 0.789/0.7887
Resnet50-FC-ElemMult 0.6303/0.6303 0.6815/0.6815 0.6471/0.6471 0.618/0.6175
Resnet50-IHAN(EA)-Avg 0.8628/0.8628 0.8626/0.8626 0.8607/0.8607 0.862/0.8617
Resnet50-IHAN(EA)-Cat 0.8876/0.8876 0.8911/0.8911 0.8849/0.8849 0.886/0.8864
Resnet50-IHAN(EA)-ElemMult 0.6387/0.6146 0.5826/0.5685 0.6595/0.6414 0.613/0.5880
Resnet50-IHAN-Avg 0.8713/0.8713 0.8709/0.8709 0.8685/0.8685 0.870/0.8702
Resnet50-IHAN-Cat 0.8850/0.8858 0.8859/0.8866 0.8836/0.8845 0.884/0.8850
Resnet50-IHAN-ElemMult 0.6827/0.6827 0.6141/0.6141 0.6781/0.6781 0.652/0.6521
Resnet50-MaxPool-Avg 0.8090/0.8090 0.8093/0.8093 0.8049/0.8049 0.807/0.8073
Resnet50-MaxPool-Cat 0.8790/0.8790 0.8796/0.8796 0.8770/0.8770 0.878/0.8779
Resnet50-MaxPool-ElemMult 0.7519/0.7519 0.7900/0.7900 0.7465/0.7465 0.745/0.7447
VGG19-AvgPool-Avg 0.8756/0.7971 0.8749/0.8100 0.8736/0.7992 0.875/0.7940
VGG19-AvgPool-Cat 0.8918/0.8595 0.8922/0.8597 0.8888/0.8543 0.891/0.8575
VGG19-AvgPool-ElemMult 0.7016/0.6650 0.6977/0.6649 0.7028/0.6624 0.689/0.6438
VGG19-DNN-Avg 0.8645/0.8372 0.8733/0.8580 0.8557/0.8248 0.862/0.8311
VGG19-DNN-Cat 0.8816/0.8364 0.8854/0.8426 0.8772/0.8272 0.880/0.8330
VGG19-DNN-ElemMult 0.6751/0.6385 0.7219/0.6735 0.6522/0.6070 0.653/0.5984
VGG19-FC-Avg 0.7895/0.7895 0.7891/0.7891 0.7859/0.7859 0.788/0.7876
VGG19-FC-Cat 0.7861/0.7861 0.7840/0.7840 0.7835/0.7835 0.784/0.7844
VGG19-FC-ElemMult 0.6147/0.6147 0.6734/0.6734 0.6369/0.6369 0.603/0.6025
VGG19-IHAN(EA)-Avg 0.8594/0.8594 0.8586/0.8586 0.8579/0.8579 0.858/0.8585
VGG19-IHAN(EA)-Cat 0.8799/0.8799 0.8798/0.8798 0.8793/0.8793 0.879/0.8791
VGG19-IHAN(EA)-ElemMult 0.6463/0.6463 0.5938/0.5938 0.6640/0.6640 0.620/0.6200
VGG19-IHAN-Avg 0.8730/0.8730 0.8729/0.8729 0.8701/0.8701 0.872/0.8718
VGG19-IHAN-Cat 0.8773/0.8773 0.8789/0.8789 0.8734/0.8734 0.876/0.8760
VGG19-IHAN-ElemMult 0.6844/0.6844 0.6162/0.6162 0.6807/0.6807 0.655/0.6546
VGG19-MaxPool-Avg 0.8747/0.8141 0.8731/0.8095 0.8726/0.8079 0.874/0.8101
VGG19-MaxPool-Cat 0.8926/0.8926 0.8924/0.8924 0.8911/0.8911 0.892/0.8918
VGG19-MaxPool-ElemMult 0.7024/0.6725 0.7425/0.6768 0.7077/0.6834 0.696/0.6601
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Table A.5: Performance comparison between FakeNewsNet+ and FakeNewsNet for all the I-KAHAN config-
urations on the GossipCop dataset. The numbers on the left side of each slash are those of FakeNewsNet+,
while those on the right-hand side are of the original FakeNewsNet. The highest numbers are in bold.

Configuration GossipCop
Accuracy Precision Recall F1

CLIP(EA)-Cat 0.7657/0.7672 0.7669/0.7677 0.7650/0.7669 0.765/0.7667
CLIP-Cat 0.8011/0.8046 0.8020/0.8045 0.8001/0.8044 0.800/0.8042
Resnet50-AvgPool-Avg 0.7932/0.7932 0.7934/0.7934 0.7935/0.7935 0.793/0.7929
Resnet50-AvgPool-Cat 0.7978/0.7903 0.7973/0.7903 0.7980/0.7896 0.798/0.7898
Resnet50-AvgPool-ElemMult 0.6025/0.5914 0.6803/0.6555 0.6214/0.6045 0.589/0.5743
Resnet50-DNN-Avg 0.8242/0.7751 0.8247/0.7759 0.8222/0.7736 0.824/0.7743
Resnet50-DNN-Cat 0.8073/0.7907 0.8075/0.7907 0.8069/0.7894 0.807/0.7901
Resnet50-DNN-ElemMult 0.5505/0.5509 0.4541/0.4546 0.5388/0.5392 0.496/0.4966
Resnet50-FC-Avg 0.6867/0.6855 0.6858/0.6846 0.6841/0.6828 0.685/0.6842
Resnet50-FC-Cat 0.6757/0.6749 0.6767/0.6759 0.6740/0.6732 0.674/0.6735
Resnet50-FC-ElemMult 0.5671/0.5664 0.5650/0.5350 0.5676/0.5663 0.537/0.5331
Resnet50-IHAN(EA)-Avg 0.7901/0.7917 0.7918/0.7920 0.7920/0.7931 0.790/0.7916
Resnet50-IHAN(EA)-Cat 0.7840/0.7925 0.7853/0.7941 0.7852/0.7945 0.784/0.7924
Resnet50-IHAN(EA)-ElemMult 0.5911/0.5949 0.6561/0.6626 0.5999/0.6084 0.570/0.5773
Resnet50-IHAN-Avg 0.7950/0.7847 0.7955/0.7856 0.7964/0.7859 0.795/0.7845
Resnet50-IHAN-Cat 0.7959/0.7957 0.7965/0.7963 0.7968/0.7966 0.796/0.7955
Resnet50-IHAN-ElemMult 0.5962/0.5898 0.6639/0.6503 0.6099/0.6024 0.579/0.5732
Resnet50-MaxPool-Avg 0.7625/0.7549 0.7618/0.7542 0.7621/0.7541 0.762/0.7544
Resnet50-MaxPool-Cat 0.7872/0.7797 0.7877/0.7812 0.7877/0.7808 0.787/0.7795
Resnet50-MaxPool-ElemMult 0.5998/0.5977 0.6702/0.6622 0.6133/0.6105 0.582/0.5810
VGG19-AvgPool-Avg 0.7920/0.7920 0.7923/0.7923 0.7925/0.7925 0.792/0.7917
VGG19-AvgPool-Cat 0.7977/0.7977 0.7978/0.7978 0.7984/0.7984 0.797/0.7975
VGG19-AvgPool-ElemMult 0.5944/0.5944 0.6627/0.6627 0.6079/0.6079 0.577/0.5766
VGG19-DNN-Avg 0.7667/0.7668 0.7709/0.7708 0.7634/0.7635 0.765/0.7651
VGG19-DNN-Cat 0.7702/0.7702 0.7714/0.7714 0.7681/0.7681 0.769/0.7691
VGG19-DNN-ElemMult 0.5505/0.5505 0.4183/0.4183 0.5391/0.5391 0.496/0.4956
VGG19-FC-Avg 0.7335/0.7134 0.7328/0.7126 0.7328/0.7125 0.733/0.7129
VGG19-FC-Cat 0.7059/0.7059 0.7057/0.7057 0.7053/0.7053 0.705/0.7053
VGG19-FC-ElemMult 0.5605/0.5597 0.5963/0.5928 0.5570/0.5557 0.526/0.5256
VGG19-IHAN(EA)-Avg 0.7933/0.7932 0.7953/0.7952 0.7951/0.7950 0.793/0.7930
VGG19-IHAN(EA)-Cat 0.7944/0.7927 0.7963/0.7941 0.7954/0.7940 0.794/0.7925
VGG19-IHAN(EA)-ElemMult 0.5914/0.5902 0.6594/0.6625 0.6004/0.5986 0.570/0.5654
VGG19-IHAN-Avg 0.7903/0.7885 0.7905/0.7888 0.7903/0.7891 0.790/0.7883
VGG19-IHAN-Cat 0.8073/0.7972 0.8084/0.7981 0.8090/0.7985 0.807/0.7970
VGG19-IHAN-ElemMult 0.6014/0.5939 0.6742/0.6292 0.6199/0.6068 0.588/0.5720
VGG19-MaxPool-Avg 0.7807/0.7807 0.7808/0.7808 0.7813/0.7813 0.780/0.7805
VGG19-MaxPool-Cat 0.8034/0.7928 0.8041/0.7935 0.8044/0.7932 0.803/0.7925
VGG19-MaxPool-ElemMult 0.5984/0.5984 0.6681/0.6681 0.6117/0.6117 0.581/0.5809
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