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Abstract

This master’s thesis continues the work carried out in the associated specialization project by fur-

ther investigating a cyber-physical DC microgrid proposed in a research paper. The microgrid is

controlled by a suitable controller, which was proposed in another research paper. The electrical

network, referred to as the physical layer, consists of distributed generators, converters, transmis-

sion lines, capacitors, and constant impedance-current loads. Furthermore, the DC microgrid is

challenging the traditional hierarchical network structure by having a distributed communication

network called the cyber layer. The distributed generators have only access to their neighbor’s

data, which allows for distributed communication techniques and consensus optimization to provide

the two control objectives of proportional current-sharing and voltage containment.

The control objective of voltage containment is achieved by using hyperbolic nonlinear satur-

ation on the input voltage from the controller. Furthermore, the control objective of propor-

tional current-sharing is achieved by introducing an optimization problem using consensus prin-

ciples. Consequently, the optimization problem obtains an optimal set point for each generator

via Karush-Kuhn-Tucker conditions. The set points of all generators are identical due to the con-

sensus algorithm and the neighbor-to-neighbor communication. The optimization problem forms

the Proportional-Integral Dynamic Consensus Estimators that can be implemented in the cyber

layer as part of the controller. Furthermore, the distributed optimization problem also considers

the second control objective of voltage containment, resulting in sub-optimal set points for the

current ratios when the voltages are saturated to avoid integrator wind up. The controller also

includes a regulator state responsible for minimizing the distance between the optimal set point

and the current ratio. The controller is connected to a case-specific cyber-physical DC microgrid,

and simulations are carried out to confirm that the controller satisfies the control objectives.

Moreover, we aim to obtain a scalable stability certificate for the cyber-physical DC microgrid.

This allows for plug-and-play features such that the microgrid can expand without instability risks.

Large-signal stability and energy modeling methods are utilized to obtain the stability certificate.

Initially, it is demonstrated that both layers’ open-loop systems admit to a port-Hamiltonian

representation, and their respective passive outputs are determined, which serves as a beneficial

starting point for energy control. However, in the attempt to connect the two layers, an important

stumbling block appears that complicates the finding of scalable stability certificates. The thesis

identifies that this issue occurs at the interface between the cyber layer and the regulator state. To

reduce the system’s complexity with the aim of investigating this issue further, voltage saturation

is neglected in the energy modeling in this thesis.

Finally, we borrow some ideas from singular perturbation theory to justify using time-scale separa-

tion arguments as a potential solution to obtain a scalable stability certificate. This theory implies

that the system is divided into fast and slow dynamics. Moreover, a modified controller is proposed

based on this theory and the passive output of the cyber layer. In this proposal, the regulator

state is considered the slow system, which behaves as a constant in the fast system and reduces the

complexity of the equations. With this approach, energy analysis of the fast dynamics results in a

stability certificate. However, to complete the stability proof using time-scale separation principles,

the slow dynamics should also be analyzed, and only then could we conclude that the system will

be robust to stability-related challenges under all circumstances. From a practical perspective,

it is possible to disconnect the slow dynamics to maintain stable conditions in situations where

unstable behavior begin to appear.
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Sammendrag

Denne masteroppgaven bygger videre p̊a arbeidet som ble utført i forbindelse med det tilhørende

spesialiseringsprosjektet ved å fortsette p̊a analysen av et cyber-fysisk DC mikronett som ble

foresl̊att i en forskningsartikkel. Mikronettet blir kontrollert av en passende kontroller som ble

foresl̊att i en annen forskingsartikkel. Det elektriske nettverket, som ogs̊a kalles det fysiske laget,

best̊ar av distribuerte generatorer, omformere, transmisjons linjer, kondensatorer og konstant-

impedans-konstant-strøm laster. DC mikronettet har et kommunikasjonsnettverk, cyber laget,

med en distribuert kommunikasjonsstruktur. Denne strukturen utfordrer den tradisjonelle hier-

arkiske strukturen som typisk brukes i strømnettet. De distribuerte generatorene har bare tilgang

til naboens data, noe som legger til rette for distribuerte kommunikasjonsteknikker og en kon-

sensusoptimalisering for å oppfylle de to kontrollm̊alene om spenningsbegrensning og proporsjonal

strøm-fordeling.

Spenningsbegrensning oppn̊as ved å bruke en hyperbolisk ikke-lineær metningsfunksjon p̊a inngangss-

penningen fra kontrolleren. Videre oppn̊as proporsjonal strøm-fordeling ved å introduser et op-

timaliseringsproblem basert p̊a konsensusprinsipper. Slik oppn̊ar optimaliseringsproblemet en op-

timal referanseverdi for hver generator ved hjelp av Karush-Kuhn-Tucker-betingelsene. Referan-

severdiene for alle generatorene blir identiske som følger av konsensusalgoritmen og nabo-til-nabo

kommunikasjonen. Optimaliseringsproblemet danner de proporsjonale-integrale dynamisk kon-

sensusestimatorene som kan implementeres i cyberlaget som en del av kontrolleren. Det distribuerte

optimaliseringsproblemet tar ogs̊a hensyn til det andre kontrollm̊alet om spenningsbegrensing, noe

som resulterer i suboptimale referanseverdier for utnyttelsesgraden til strømmene n̊ar spennin-

gene er mettet. Dermed kan man unng̊a integrator wind-up. Kontrolleren inkluderer ogs̊a en

regulator-tilstand som har i oppgave å minimere avstanden mellom den optimale referanseverdien

og utnyttelsesgraden til strømmene. Kontrolleren kobles til et eksempelssystem, og simuleringer

utføres for å bekrefte at kontrolleren oppfyller kontrollm̊alene.

Videre forsøker vi å oppn̊a et skalerbart stabilitetssertifikat for det cyber-fysiske DC mikronettet.

Dette tillater plug-and-play-funksjoner slik at mikronettet kan utvides uten at det skal føre til

ustabiliteter i nettet. Metoder innenfor stor-signal stabilitet og energi modellering brukes for å

oppn̊a et slikt stabilitetssertifikat. Først vises det at det åpne sløyfesystemet for begge lagene kan

representeres ved hjelp av en port-Hamiltonian systemrepresentasjon. Videre bestemmes deres

respektive passive utgangsverdier, som er et gunstig startpunkt for energikontroll. Da vi forsøker å

koble disse lagene sammen, oppst̊ar det en utfordring som gjør det komplisert å oppn̊a et skalerbart

stabilitetssetifikat. Dette problemet identifiseres ved grensesnittet mellom cyberlaget og regulator-

tilstanden. Derfor tas det en beslutning om å neglisjere metningsfunksjonen i de videre analysene

av problemet.

Til slutt benytter vi ideer fra teorien om systemer med singulære forstyrrelser, for å underbygge

bruken av tidsskala-seperasjon som en mulig løsning for å oppn̊a et skalerbart stabilitetsertifikat.

Denne teorien antyder at systemet kan deles inn i rask og langsom dynamikk. Videre foresl̊as

en modifisert kontroller som baserer seg p̊a denne teorien, i tillegg til de passive utgangsverdiene

fra cyberlaget. Her betraktes regulator-tilstanden som det langsomme systemet, som oppfører seg

som en konstant i forhold til det raske systemet. Dermed reduserers kompleksiteten i ligningene

til det raske systemet. Med denne tilnærmingen oppn̊ar vi et stabilitetssertifikat for den raske

dynamikken. For å fullføre stabilitetsbeviset ved bruk av prinsippene om tidsskala-seperasjon, m̊a

ogs̊a den langsomme dynamikken analyseres og tilfredsstille kravene til stabilitet. Først da kan vi

konkludere at systemet vil være robust mot stabilitetsrelaterte utfordringer. Til slutt vektlegges

det at fra et praktisk perspektiv er det mulig å koble fra den langsomme dynamikken n̊ar ustabil

oppførsel begynner å oppst̊a, slik at man kan opprettholde stabile forhold.
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Chapter 1

Introduction

This master’s thesis investigates a cyber-physical (CP) DC microgrid (MG) based on the elec-

trical structure proposed by Babak Abdolmaleki and Gilbert Bergna-Diaz in their research work

in Distributed Control and Optimization of DC Microgrids: A Port-Hamiltonian Approach [1].

The thesis also explores the implementation of a controller proposed by the same authors in A

Nonlinear Control Framework for Optimal Load-sharing and Voltage Containment in DC Networks

[2]. Moreover, this thesis builds upon the previous research conducted by Cornelia Skaga in her

master’s thesis [3], which examined the electrical network described in [1] managed by a different

controller. Furthermore, this chapter aims to establishing the motivation, providing the foundation

and outlining the objectives of the thesis.

1.1 Background and Motivation

1.1.1 The World Energy Outlook

The world outlook related to climate change is a crucial and current topic of discussion. It is of

significant importance for world leaders and organizations, making it a high priority on the global

agenda. According to [4], the percentage of CO2 in the atmosphere is 50% higher than the pre-

industrial levels. The source also states that the burning of fossil fuels is the primary driver of the

increase in the atmospheric level of CO2. The combustion of carbon that has previously been stored

in coal and gas contributes to these increasing levels. The increased emission of greenhouse gases

into the atmosphere gradually contributes to global warming, meaning that today’s emissions will

have consequences for the future if not limited [5]. As we know, climate changes have significant

consequences of increased temperature, rising sea levels, species extinction, more diseases, forced

migration of people, and numerous others. Climate change is affecting everyone on the planet

and is happening at this moment. For this reason, the world is in desperate need of collaboration

between nations to set and achieve optimistic yet attainable goals.

In 2015, the Paris Agreement was adopted at United Nations (UN) Climate Change Conference,

an international treaty on climate change. The goal of the agreement is to ”hold the increase

in the global average temperature to well below 2◦C above pre-industrial levels” and to pursue

efforts ”to limit the temperature increase to 1.5◦C above pre-industrial levels” [6]. Through the

Paris Agreement, countries are obliged to do their best to reduce their emission and strengthen

their effort every year [7]. Every sector must contribute for countries to achieve these vital goals.

According to the International Energy Agency (IEA), the energy sector accounts for more than
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two-thirds of the total greenhouse gas emission globally, where fossil fuels represent 80% of the

total energy supply globally [8]. In other words, the energy sector has to enhance its effort to

transition from fossil fuels to renewable energy sources and contribute to novel net zero solutions.

In fact, to become net zero by 2050, almost 90% of the global electricity generation in 2050 has to

come from renewable sources, primarily wind and solar [9].

1.1.2 DC Microgrid

The demand for renewable energy sources in a limited amount of time leads to exploring new

alternatives. In particular, microgrids facilitate the shift towards renewable distributed energy

resources (DERs), which are typically small in scale and located at short distances from the loads

[10]. IEEE defines a microgrid as ”a group of interconnected loads and distributed energy resources

with clearly defined electrical boundaries. It acts as a single controllable entity with respect to the

grid and can connect and disconnect from the grid to enable it to operate in both grid-connected

or island modes” [11]. Incorporating DERs in microgrids reduces the pressure of expanding the

traditional power grids, which comes with expenses related to construction and maintenance. Ad-

ditionally, a microgrid is designed to incorporate variable energy sources, such as solar and wind,

and efficiently manage the balance between generation and loads locally. This approach signi-

ficantly mitigates the stability challenges associated with the large-scale integration of renewable

energy sources into the main grid [12]. Moreover, a microgrid can operate isolated from the grid

and provide electricity in remote areas, making energy available for developing countries that lack

infrastructure.

Historically, the electric power system has been based on AC technology schemes. The AC techno-

logy has been favored because the transformation of voltage levels has been easier, and it has been

well suited for the generators used in hydropower and fossil fuel power [13]. However, new research

in power electronics and modern technologies has recently challenged the traditional approach. DC

technology has especially been considered in microgrids, and there are several reasons to use DC

rather than AC in these applications. Since most DERs produce DC power and energy storage

devices are DC in nature, fewer converters are necessary for DC grids, which reduces the system

size and footprint. Additionally, losses and costs are reduced. DC microgrids are also simpler

to control, as they do not require frequency and reactive power control. According to [13], these

properties beat AC. However, DC microgrids need more system standardizations such that it is

harder to implement these applications. If academia and industry collaborate, it will allow for

faster standardization of components and expansion of the DC microgrids.

1.1.3 Breaking the Hierarchy with a Distributed Control Structure

DC microgrids that have control methods based on the plug-and-play concept used in the computer

industry have a better chance of success, according to [14]. The plug-and-play (PnP) concept allows

for almost immediate connection and seamless integration of new energy sources. However, the

traditional hierarchical structure of the power grid has poor PnP capability [15]. The investigation

of other methods has given promising results in using the distributed control structure [16]. By

adopting this control structure, the DC MG mitigates the risk of system failure since it neglects the

single central unit that controls the system. Additionally, this control structure is advantageous in

terms of cyber-security [17]. According to [17], the distributed control structure is preferred over the

decentralized structure since this structure struggles to provide optimal operation. The traditional

centralized control structure has three levels of control that operate at different time scales; the

primary, secondary, and tertiary level of control. The primary control is responsible for the load

2



sharing between the DGs, typically by implementing a droop controller. On the other hand,

secondary control regulates voltage fluctuation, and tertiary control manages the power flow within

the grid [15]. Microgrids with renewable sources have less rotating inertia compared to traditional

power grids. Consequently, the primary control needs to be fast and reliable [18]. A distributed

control structure is typically based on consensus algorithms to reach the objectives, which breaks

this traditional hierarchy by merging the levels of control and provides a fast response to power

changes [19]. The consensus-based method finds a globally optimal solution using information from

the neighborhood [17]. This master’s thesis utilizes such an approach in the cyber-physical MG.

In MGs with a distributed control structure, proportional current-sharing has been in focus to re-

place the traditional communication-free droop control. Furthermore, the droop control can result

in unbalanced output power since it does not provide a proportional sharing of current between the

DGs in the MG and is less reliable [15]. The proportional current-sharing, provided by a distrib-

uted control structure, resolves this issue, implying that each source provides a share according to

the capacity of its converter [20]. The converters with the highest rating provide the most current,

such that the total current being generated is proportionally allocated between the different energy

sources. According to [2], it is crucial to keep the generator voltages within operational limits in

voltage-sensitive applications. However, [21] argues that achieving proportional current-sharing

and proper voltage regulation simultaneously has proven to be challenging. This is because the

currents and voltages are tightly related. In the controller utilized in this master’s thesis, voltage

containment is prioritized before accurate proportional current-sharing. In contrast to [3], this

thesis investigates a controller that ensures that all generators stay within their operational limits,

which differs from the average voltage regulation, which only maintains the average voltage of the

entire network [2].

1.1.4 Stability Analysis

Stability requirements have a crucial role in DC microgrids because of the limited inertia in

converter-based grids. Consequently, stability analysis takes up a significant portion of this thesis.

The literature presents two types of stability analysis: small signal and large signal stability ana-

lysis. Small signal stability is a simplified approach that involves linearization around the system’s

operating point [22]. On the other hand, large signal stability analysis considers nonlinear sys-

tems, but is also applicable to linear systems. Lyapunov’s stability criteria are widely used to

determine the stability conditions of nonlinear systems. This stability analysis requires a Lya-

punov candidate to validate the stability conditions. Although there is no standardized method

for obtaining a Lyapunov candidate, using the natural port-Hamiltonian representation to obtain a

shifted Hamiltonian function serves as an efficient starting point that may yield global asymptotic

stability. If a system is proved to be globally asymptotic stable, the system qualifies for a stability

certificate, which facilitates the PnP approach. Furthermore, the port-Hamiltonian representation

of a system exhibits passivity properties strongly connected to the system’s stability conditions

and can be used in the design of passivity-based controllers [23]. The port-Hamiltonian method of

designing controllers uses information on connections and energy as tools to design a controller.
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1.2 Scope and Objectives

The primary objective of this master’s thesis is to provide an understanding of complex control con-

cepts, emphasizing port-Hamiltonian systems and energy analysis. This objective will be achieved

by examining the DC MG presented in Babak Abdolmaleki’s and Gilbert Bergna-Diaz’s research

work in [1], incorporated with a controller proposed by the same authors in [2]. Through an

extensive study of this system, the thesis fulfills its first objective as formulated below.

Thesis Objective 1: Provide a clear and accessible explanation of complex control concepts while

demonstrating their application on the cyber-physical DC microgrid of study.

A formal stability proof has yet to be published for a DC MG incorporating this specific controller

proposed in [2]. However, the associated specialization project [24] emphasized challenges in the

structure of the cyber-physical DC MG, but the cause remains unresolved. The thesis uses energy

analysis and the port-Hamiltonian framework to identify these challenges. Hence, the second

objective of this thesis is formulated as below.

Thesis Objective 2: Investigate and identify the challenges of obtaining a stability certificate

when implementing the controller proposed in [2] to the DC MG presented

in [1].

As a final step, the thesis seeks to obtain a stability certificate for the combined network by using

time-scale separation principles to modify the controller. Accordingly, the third objective of the

master’s thesis is formulated below.

Thesis Objective 3: Modify the controller proposed in [2] to achieve a stability certificate while

ensuring the control objective of proportional current-sharing.

1.2.1 Limitation of Scope

The thesis simplifies the structure of the electrical network in the DC MG proposed in [1] by

considering zero-order converters with no inherent dynamics, enabling the implementation of a

desired converter in future work. Additionally, the constant-impedance-current-power loads (ZIP)

that result in a nonlinear behavior and create stability challenges are replaced by ZI loads to

maintain system linearity.

The thesis addresses the complex structure of the proposed controller and identifies the challenges

in obtaining a port-Hamiltonian representation of the interconnected system. Consequently, a

decision to linearize the controller is made to reduce the system’s complexity until the port-

Hamiltonian representation of the complex system is obtained. The nonlinearity of the system

is removed by neglecting the hyperbolic tangent saturation, which can be reintroduced in future

work. Therefore, the nonlinear analysis of the system is a starting point for future studies.

The proposal of the modified controller employs time-scale separation principles to obtain a stability

certificate. However, this approach only considers the system’s fast dynamics, leaving out an

analysis of the slow dynamics by arguing that the slow dynamics can be disconnected in case of

the appearance of unstable behavior. Consequently, a robust stability certificate for the system

under all circumstances cannot be conclusively established. However, further research could explore

the study of the slow dynamics to potentially obtain such a certificate.

Energy modeling, stability analysis, and control objectives have been the primary focus of this

thesis. Consequently, the transient control performance is not considered in this thesis. Lastly, the

simulation results only depict the system states that are important regarding the control objectives,
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leaving out the plots of the transmission line current, load voltages, and the cyber states.

1.3 Thesis Overview

The master’s thesis does not follow the standard report structure but instead investigates one topic

at a time before moving on to the next one. This approach intends to enhance the understanding

of readers who are new to the theory and the complex topics being discussed. The master’s thesis

builds upon the associated specialization project, which also contains different themes. However,

the master’s thesis takes each theme a step further. Consequently, the thesis allows for chapters

to contain both preliminary information and a new contribution. Furthermore, a paragraph is

incorporated at the beginning of each chapter to provide clarity to the reader and distinguish

between reproduced information and a new contributions. This paragraph is written in italic font

and identifies the information reproduced from the associated specialization project.

The remainder of this thesis is organized as follows:

Chapter 1: Introduction: provides an overview of research topics relevant to the cyber-physical

DC MG as well as outlining the thesis’ objectives.

Chapter 2: Introducing the Cyber-Physical DC Microgrid: introduces the cyber-physical DC

microgrid proposed in [1] and provides preliminary theory regarding the structure.

Chapter 3: The Controller: provides a thorough investigation and explanation of the controller

proposed in [2].

Chapter 4: Energy Modeling and Analysis: introduces and utilizes advanced energy modeling

and stability techniques in the cyber-physical DC MG. Additionally, challenges in the complex

structure are identified.

Chapter 5: Proposing a Modified Controller with a Stability Certificate: seeks to obtain a stability

certificate for a modified version of the controller proposed in [2].

Chapter 6: Conclusion and Further Work: concludes the thesis and suggests future work.

Appendices: includes supporting materials obtained in the associated specialization project.
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Chapter 2

Introducing the Cyber-Physical

DC Microgrid

A cyber-physical MG divides into two layers: the physical layer and the cyber layer. The physical

layer is the electrical network that includes renewable power sources, converters, transmission lines,

and loads. In other words, this is the visible and physical layer responsible for the power flow and

the transport of energy. On the other hand, the cyber layer is a digital layer responsible for control

and communication between the units in the physical layer. Together, these two layers consti-

tute the cyber-physical microgrid. This chapter aims to describe the structure and mathematical

foundations behind the physical and cyber layers. Furthermore, the case-specific DC MG that is

used for learning purposes throughout this master’s thesis will be introduced in this chapter.

In other words, this chapter aims to describe the preliminary concepts essential to understanding

the challenges later emphasized in this master’s thesis. As the theory below serves as the foundation

for understanding complex concepts discussed later, the information is restated from the associated

specialization project [24].

2.1 The Electrical Network

Studying the physical layer before introducing the cyber layer is intuitive, as the physical layer

consists of familiar electrical terminologies such as generators, loads, and transmission lines. There-

fore, the topic of this section will be to study the structure of the electrical network used in the

analysis of this master’s thesis.

The structure of the electrical network is based on Abdolmaleki’s publication [1]. As explained

in the associated specialization project [24], the article studied the control of a DC MG with

ZIP loads and presented the structure of a general DC MG. The impedance, Gcte
k , current, Ictek ,

and power, P cte
k , of the ZIP load at each bus were stated to be constant in this publication [1].

However, in Skaga’s master’s thesis [3], it was concluded that only the conductance and current

of the loads should be kept constant to avoid complications and stability challenges caused by a

constant power load. The relationship between a constant power load and a time-varying state

variable, i.e., P cte
k /V N

k , results in a non-linear behavior. In order to avoid this issue, Skaga adjusted

Abdolmaleki’s network by replacing ZIP loads with ZI loads, preserving the system’s linearity. For

convenience, this same approach will be adopted in this master’s thesis.
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Typically, DGs need a converter as an interface to be connected to a bus in a distributed DC MG

[25]. In this master’s thesis, grid-forming converters will be used to model the DC MG, i.e., voltage-

controlled converters, following a given voltage reference [1]. Furthermore, these converters will

be modeled as zero-order converters, such that the analysis applies to any other linear converter,

mutatis mutandis. This also implies that there are no additional internal controller dynamics in

the converter, such that the output voltage of the converter can be approximated to a desired

reference.

The schematic representation of the DC MG examined in this master’s thesis is given in Figure 2.1.

The DC MG is almost identical to the DC MG presented in Skaga’s master’s thesis [3], except

for the controller, which has been redesigned to achieve voltage containment. The controller will

be explained in further detail in a subsequent chapter. In order to maintain coherence with the

material presented in Skaga’s master’s thesis, notations for quantities and properties will be carried

on in this manuscript as well.

Figure 2.1 illustrates a DG and a ZI load at a bus that connects to the rest of the DC MG

through a transmission line. The resistance, inductance, and current of the DG at the studied

bus in Figure 2.1 are represented by RG
i , L

G
i , and IGi , respectively. The generator voltage, V G

i ,

is controlled by the variable ui,p. This control variable is unknown until the physical network is

connected to the distributed communication network in a later section. Furthermore, Gcte
k and ILk

are the constant conductance and current of the ZI-load at the studied bus. While CN
k and V N

k

represent the capacitor in parallel with the load and the voltage across it, respectively. RE
j , L

E
j ,

and IEj are the resistance, inductance and the current of the transmission line that connects the

bus to the rest of the DC MG. In the illustration, only one transmission line is connected to the

bus of study. However, a bus can have several connections. The rest of the DC MG is illustrated

as a black box, where the topology in Figure 2.1 applies for each bus.

Figure 2.1: Structure of the DC microgrid.

The next step is to introduce graph theory as a method to describe the connections of the DC

MG in a general manner. Graph theory is often combined with control theory and streamlines the

stability analysis [26]. Furthermore, graph theory is also used in designing the controller for the

distributed MG in [2]. Therefore, it is crucial to implement graph theory in the physical layer so

it is possible to connect the layers and obtain a model of the entire DC MG.

As in [1] and Skaga’s master’s thesis [3], two graphs are established to describe the physical DC

MG. A graph contains sets of nodes and edges, where an edge connects two nodes. An incidence

matrix describes the connections between the nodes and edges. The dimensions of the incidence

matrix are as follows: the number of rows is equal to the number of nodes, and the number of
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columns is equal to the number of edges [27]. If a connection exists between a node and an edge,

the corresponding element of the incidence matrix will be either 1 or -1. If the flow on an edge

enters a node, the corresponding element for this pair in the incidence matrix is 1. If the flow

on an edge leaves the node, the element in the incidence matrix is -1. If there is no connection

between an edge and a node, the element is set to 0.

In the case-specific DC MG Graph 1 was defined as MG = (Nk,Gi,BG) in Skaga’s master’s

thesis [3]. In this case, Nk is the set of nodes representing the loads, and Gi is the set of edges

representing the generators and their edges. Thus, k = {1, ..., nNk} and i = {1, ..., nGi}, where
nNk = 4 and nGi = 4, which are equal to the number of loads and generators in the case-specific

MG, respectively. The incidence matrix BG ∈ RnNk×nGi
with elements, bGki, can be found by

applying the above definition. As shown in Figure 2.2, the flow is from the generator edges to the

load, as the generators are assumed only to inject and not absorb power in [1]. Consequently, the

incidence matrix of Graph 1 consists of only positive elements. By adopting the structure from [1]

as in Figure 2.1, the generator edges are connected to only one load each. The incidence matrix of

Graph 1 is constructed based on the structure from Figure 2.2 and presented below.

BG =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (2.1.1)

Figure 2.2: Graph 1.

Graph 2 was defined as ME = (Nk, Ej ,BE) in Skaga’s master’s thesis [3]. The set of loads, Nk,

is as defined above, representing the nodes of Graph 2. The set of edges, Ej , in the graph are

defined as the transmission lines. Thus, j = {1, ..., nEj}, where nEj = 5, which is equal to the

number of transmission lines in the case-specific MG. The direction of flow between the loads

is not defined, and the corresponding incidence matrix, BE ∈ RnNk×nEj
with elements, bEkj , is

undirected. However, in Abdolmaleki’s [1], it was decided to establish an arbitrary flow direction

to obtain the incidence matrix. The incidence matrix of Graph 2 from Skaga’s master’s thesis is

constructed based on the structure from Figure 2.3 and reproduced below.

BE =


−1 0 0 −1 1

1 −1 0 0 0

0 1 1 0 −1

0 0 −1 1 0

 (2.1.2)
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Figure 2.3: Graph 2.

Furthermore, it is possible to use the graph representation of the DC MG, combined with prin-

ciples from Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Current Law (KCL), to analyze and

understand the dynamics of the MG. The incidence matrices of each graph are used in the equa-

tions describing the DC MG below in (2.1.3), as presented in [1] and [3]. This way, the equations

interconnect the three subsystems consisting of generators, loads, and transmission lines. The

ordinary differential equations (ODEs) in (2.1.3) are general, meaning they can be applied to the

case-specific DC MG and an arbitrary DC MG with a different number of DGs and interconnec-

tions. This is because we aim to model a CP MG and a controller that guarantees a plug-and-play

design, as explained in the introduction in chapter 1.

LG
i İ

G
i = V G

i −
∑
k

bGkiV
N
k −RG

i I
G
i (2.1.3a)

LE
j İ

E
j = −

∑
k

bEkjV
N
k −RE

j I
E
j (2.1.3b)

CN
k V̇ N

k =
∑
j

bEkjI
E
j +

∑
i

bGkiI
G
i − ILk (2.1.3c)

ILk = Gcte
k V N

k + Ictek (2.1.3d)

V G
i = V set

i = Vnom + ui,p (2.1.3e)
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2.2 The Distributed Control Network

The physical network presented above will be connected to a distributed control network, i.e., the

cyber layer, to provide communication in a distributed manner. Figure 2.4 shows the cyber layer

for the case-specific CP MG. In this layer, data is exchanged solely between neighboring nodes

through communication links following a distributed system topology.

Figure 2.4: Connection of the cyber layer.

The case-specific system is a so-called multi-agent system where agents, in this case, DGs, work

together to satisfy the objectives of the system [28]. Graph theory is often combined with control

theory and can explain the agents’ connection scheme and interactions [29]. As in Skaga’s master’s

thesis [3], the interconnections between the DGs in the cyber layer are represented by Graph 3,

which is defined as Mc = (Nc, Ec,A). Where the nodes Nc represent the DGs, and the edges Ec
represent the communication links between pairs of neighboring DGs. As shown in Figure 2.4, the

graph corresponding to the case-specific CP MG has nNc = 4 nodes and nEc = 4 edges.

The communication links in the distributed control network have no defined flow direction. As a

result, the graph representing the cyber layer, denoted as Mc, is undirected. This implies that the

corresponding adjacency matrix, A, is symmetric, meaning that A = A⊤. The elements of the

symmetric adjacency matrix, denoted as aij , represent the communication weights between pairs

of DGs, referred to as nodes i and j. If there is a communication link between two DGs in the

cyber layer, then aij = aji = 1. If there is no communication link between two DGs in the cyber

layer, then aij = aji = 0 [29].

The A-matrix of the case-specific CP MG have dimensions {nNc , nNc} and is presented in (2.2.1)

as in Skaga’s master thesis [3].

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

 (2.2.1)

The degree matrix, D, is a diagonal matrix, i.e. D = D⊤. The elements of the degree matrix

contain the summation of each row in the adjacency matrix, which provides information on the

number of edges connected to each node. The matrix is defined as dii =
∑nNc

j=1 aij , which results

in (2.2.2) for the case-specific MG.
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D =


d11 0 0 0

0 d22 0 0

0 0 d33 0

0 0 0 d44

 =


1 0 0 0

0 3 0 0

0 0 2 0

0 0 0 2

 (2.2.2)

The Laplacian matrix L is defined as L := D − A and presented in (2.2.3) for the case-specific

MG.

L =


1 −1 0 0

−1 3 −1 −1

0 −1 2 −1

0 −1 −1 2

 (2.2.3)

The Laplacian matrix has important properties, as explained in Appendix A.1, that will be utilized

later in the master’s thesis. As previously mentioned, the controller is also a part of the cyber

layer. However, given the complexity of the controller, the next chapter is specifically dedicated

to the controller.
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Chapter 3

The Controller

This chapter aims to explore several aspects of the controller proposed in [2] to get a comprehensive

understanding before the stability analysis is applied in the subsequent chapter 4. In control theory,

it is common to formulate an optimization problem and further design a controller based on the

corresponding optimal solution. Therefore, this chapter takes us on a path, starting from the

optimization problem leading us towards the construction of the controller and how it satisfies the

control objectives of voltage containment and proportional current-sharing. Eventually, the DC

MG is implemented in Simulink to evaluate if the controller satisfies the control objectives when

incorporated with the case-specific DC MG.

The first section of this chapter contains reproduced information from the associated specializa-

tion project [24], describing the optimization problem and the controller equations. However, this

chapter offers a more comprehensive explanation of the controller and provides deeper insights into

the different elements of the controller. Additionally, this chapter introduces an analysis of the

steady state conditions and simulation results of the combined system.

3.1 Control Objectives

As stated in the introduction in chapter 1, the control objectives are to ensure voltage containment

and proportional current-sharing. These objectives implies that Vmin ≤ V̄ G
i ≤ Vmax and ĪGi,pu =

ĪGj,pu are maintained in steady state, where x̄ denotes the variables at steady state. Abdolmaleki’s

publication [2] proposes an optimization problem and a controller which fulfills these objectives.

The optimization problem is first formulated and used to design a controller that achieves the

objectives.

The voltage and current in an electrical system are interrelated, meaning that the current naturally

gets affected when the voltage is controlled. Consequently, the voltage containment will also limit

the current as long as the voltage is bounded. With this information, optimizing with an optimal set

point, λ̄, as the optimization variable when providing proportional current-sharing is convenient.

Thus, in the optimization problem, the output of the electrical network, ĪGi,pu, is only considered an

external measurement. This approach simplifies the optimization problem compared to the case

where ĪGi,pu is selected as an optimization variable.
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3.1.1 The Centralized Optimization Problem

First, the single-variable convex optimization problem from Abdolmaleki’s publication [2] is for-

mulated and studied to take it one step at a time. In this problem, the set point is λ̄ and equal for

all generators, and the communication between units is based on a centralized topology. The aim

of the optimization problem is to find an optimal set point that can later be implemented in the

controller to drive the current ratios equal to this optimal value. For the set point to be optimal

with respect to every current ratio, it has to be the average of all the current ratios. Consequently,

the sum of the differences between the optimal λ̄ and ĪGi,pu needs to be minimized as in (3.1.1a).

In this problem, it is evident that the optimal solution is when the objective function is zero, and

the set point is equal to the current ratio.

min
λ̄

1

2

nGi∑
i=1

(λ̄− ĪGi,pu)
2 (3.1.1a)

The Lagrangian function for the problem is as given in (3.1.2).

L(λ̄) =
1

2

nGi∑
i=1

(λ̄− ĪGi,pu)
2 (3.1.2)

The minimum of the Lagrangian function is derived in (3.1.3). Following the Karush-Kuhn-Tucker

(KKT) conditions, (3.1.3c) will be the optimal solution to (3.1.1a). This occurs when the set point

is equal to the average of all the generator currents, as desired. However, it should be noted that

the currents are not changed in this optimization problem since it is optimized with respect to λ̄

and not ĪGi,pu.

∂L(λ̄)
∂λ̄

=

nGi∑
i=1

(λ̄− ĪGi,pu) = 0 (3.1.3a)

nGi λ̄−
nGi∑
i=1

ĪGi,pu = 0 (3.1.3b)

λ̄ =
1

nGi

nGi∑
i=1

ĪGi,pu (3.1.3c)

3.1.2 The Distributed Optimization Problem

The case-specific CP MG has a distributed topology, where each DG only has information about

its neighboring units. This implies that each DG has its own set point for the parameter λ̄ and has

no information on the set points of DGs that are not their neighboring units. Consequently, the

equality constraint (3.1.4b) based on the distributed consensus algorithm explained in Appendix

A.1 adds to the problem and set points, λ̄i, for each DG replace the common set point λ̄ from

(3.1.1a), as stated in [2]. The distributed cyber network has been modeled with an undirected

communication graph, as demonstrated in section 2.2, where the communication weight between

generator i and j is aij = aji obtained from the adjacency matrix in (2.2.1). The undirected

communication graph results in advantageous properties for the Laplacian matrix, which makes it

possible for the set points given in (3.1.4b) to converge to a common consensus value as explained

in Appendix A.1.
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min
λ̄1, ..., λ̄nGi

1

2

nGi∑
i=1

(λ̄i − ĪGi,pu)
2 (3.1.4a)

s.t. z̄i =
∑

j∈NGi

aij(λ̄j − λ̄i) = 0 (3.1.4b)

NGi
in (3.1.4b) is the neighbor-set of generator i, which contains the generators j that are com-

municating with generator i. The neighbor-set of each generator will be listed to give a clear

understanding. In Figure 2.4, it can be seen that DG 4 is a neighbor of DG 2 and DG 3. Con-

sequently, the neighbor-set of DG 4 is NG4
= {2, 3}. The sets corresponding to the case-specific

CP MG are presented below.

NG1
= {2}

NG2 = {1, 3, 4}
NG3 = {2, 4}
NG4

= {2, 3}

The Lagrangian function for the problem is as given in (3.1.5), where ζ̄i is the Lagrange multiplier

of equality constraint (3.1.4b).

L(λ̄i, ζ̄i) =
1

2

nGi∑
i=1

(λ̄i − ĪGi,pu)
2 +

nGi∑
i=1

ζ̄i
∑

j∈NGi

aij(λ̄j − λ̄i)︸ ︷︷ ︸
z̄i

(3.1.5)

In the publication, [2], it is stated that the optimal shapes of λ̄i and z̄i are as given in (3.1.7b) and

(3.1.4b) respectively, as long as they satisfy the KKT conditions. The derivative of the Lagrangian

function with respect to the Lagrange multiplier ζ̄i, i.e., the relation in (3.1.4b) is first obtained

and proven below in (3.1.6). This is in accordance with the KKT conditions of a convex problem

with equality constraints [30].

∂L(λ̄i, ζ̄i)

∂ζ̄i
=
∑

j∈NGi

aij(λ̄j − λ̄i) = 0 (3.1.6a)

⇒ (λ̄j − λ̄i) = 0 (3.1.6b)

λ̄i = λ̄j (3.1.6c)

The optimal solution is given in (3.1.6c), where the set points are identical because of the properties

of the Laplacian matrix described in Appendix A.1. However, it is essential to notice that even

though λ̄i = λ̄j it does not necessarily imply that the current ratio, ĪGi,pu, is equal for all generators.

In Appendix A.2, the optimal shape of λ̄i is derived from the derivative of the Lagrangian function

with respect to each set point following the KKT conditions to provide a deeper comprehension.

The result of the derivation is as given below in (3.1.7b).
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∂L(λ̄i, ζ̄i)

∂λ̄i
= λ̄i − ĪGi,pu +

∑
j∈NGi

aij
(
ζ̄j − ζ̄i

)
= 0 (3.1.7a)

⇒ λ̄i = ĪGi,pu +
∑

j∈NGi

aij
(
ζ̄i − ζ̄j

)
(3.1.7b)

In conclusion, the optimal shape for each set point in the case-specific CP MG is given below in

(3.1.8).

λ̄1 = λ̄2 = λ̄3 = λ̄4 (3.1.8a)

λ̄i = ĪGi,pu +
∑

j∈NGi

aij
(
ζ̄i − ζ̄j

)
→


λ̄1 = ĪG1,pu + a12(ζ̄1 − ζ̄2)

λ̄2 = ĪG2,pu + a21(ζ̄2 − ζ̄1) + a23(ζ̄2 − ζ̄3) + a24(ζ̄2 − ζ̄4)

λ̄3 = ĪG3,pu + a32(ζ̄3 − ζ̄2) + a34(ζ̄3 − ζ̄4)

λ̄4 = ĪG4,pu + a42(ζ̄4 − ζ̄2) + a43(ζ̄4 − ζ̄3)

(3.1.8b)

Note that the optimal shape of λ̄i above does not correspond to the definition of proportional

current-sharing. However, it is worth noting that in situations where the voltages at the gener-

ators are within their operating limits and do not need to be saturated, the relation λ̄i = ĪGi,pu is

valid for the distributed topology. This is because the last term of (3.1.7b) is linked to voltage

saturation and will only be present when the voltages are saturated, as we will show in section 3.2.

Therefore, proportional current-sharing is provided as long as the voltages are within operating

limits. During saturation, the controller provides the optimal shape in (3.1.7b), per the optimiza-

tion problem. However, this shape is only a sub-optimal shape in an operated MG. Nevertheless,

with the information from the optimization problem, we know that this is the best shape during

the saturation of the voltages. This will be explained in further detail in the subsequent section

3.2.

3.2 The Nonlinear Controller

A nonlinear controller that maintains voltage containment and proportional current-sharing in a

DC MG is designed in Babak Abdolmaleki’s and Gilbert Bergna-Diaz’s publication of A Nonlinear

Control Framework for Optimal Load-sharing and Voltage Containment in DC Networks [2]. The

controller is based on the optimization problem in section 3.1, and its goal is to provide voltage

containment and proportional current-sharing. The controller should also provide the optimal

value of z̄i in (3.1.4b), such that all set points in the DC MG are equal, i.e., λ̄i = λ̄j as in (3.1.6c).

If proportional current-sharing is not possible, the controller should provide the sub-optimal shape

of λ̄i in (3.1.7b). This also implies that the voltages are kept within limits and that the difference,

(λ̄i− ĪGi,pu), is minimized. Therefore, the load-ratio output IGi,pu=IGi /I
G
rated of the DC MG modeled

in section 2.1 will go to a value that is optimal according to the present operating conditions in

steady state. As stated by Ohm’s law, voltage saturation will also constrain the currents, ensuring

that both the voltage and current do not go to undesirable high values. This is why voltage

containment can be prioritized over proportional current-sharing in the controller. The electrical

network’s proposed controller in [2] is as follows in (3.2.1).
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ui,p = ∆tanh
(vi
∆

)
(3.2.1a)

τ v̇i = −ρ(vi)vi + Vnom(λi − IGi,pu) (3.2.1b)

ρ(vi) =

{∣∣ vi
∆

∣∣− 3 if |vi| > 3∆

0 otherwise
(3.2.1c)

Vnom =
1

2
(Vmin + Vmax) (3.2.1d)

∆ =
1

2
(Vmax − Vmin) (3.2.1e)

In (3.2.1), vi is the regulator state, which is the voltage that possibly needs to be saturated, τ

is the time constant, and ρ(vi) ≥ 0 is a nonlinear leakage coefficient [2]. Vnom in (3.2.1d) is the

nominal voltage of the DGs, which is in the middle of the DGs rated voltage operating region. In

contrast, ∆ in (3.2.1e) expresses how much vi is allowed to deviate from Vnom before the voltage

constraints are reached. In combination with the fact that −1 < tanh(·) < 1, this ensures that the

controller in (3.2.1a) provides voltage containment.

Under normal conditions the leakage coefficient ρ(vi) is equal to zero and τ v̇i = Vnom(λi− IGi,pu) in

(3.2.1b). Accordingly, IGi,pu follows the reference value of λi and the desirable operation condition

in steady state is achieved: τ ˙̄vi = Vnom(λ̄i − ĪGi,pu) = 0 ⇒ λ̄i = ĪGi,pu. However, suppose the voltage

set point, V set
i , reaches the operational limits of the generator. In that case, the regulator voltage,

vi, needs to be saturated, and the leakage coefficient is activated. Consequently, λ̄i and ĪGi,pu will

not be equal.

The saturation of the regulator state happens when the voltage reaches the minimum or maximum

allowed limits. The integral term in (3.2.1b) continuously adjusts the regulator state to reduce the

error until the generator currents reach the set point. However, during saturation of the regulator

state, this state can no longer affect the generator currents. As a result, the integral term continues

to accumulate the constant error during saturation, and the regulator state struggles to ensure an

equilibrium ˙̄vi = 0 in steady state. This is a direct consequence of the nonlinear saturation, a

phenomenon known as integrator wind up, which commonly occurs in controllers with integral

terms, such as the controller in (3.2.1b) — resulting in a delay in error tracking and an increase in

settling time when the system recovers from the saturation. Slow response times, overshoot, and

that it takes longer for the controller to return to steady state conditions are the consequences of

the nonlinear saturation [31].

An anti-wind up technique is used by introducing the leakage coefficient ρ(vi) from (3.2.1c) to

prevent the wind up. This leakage coefficient will be activated in (3.2.1b) when the voltage vi
reaches the saturation point and |vi| > 3∆. The activation of the leakage coefficient should ensure

the steady state equilibrium of the regulator state, even under circumstances where there exists

an error between the set point and the generator current. Hence, the leakage coefficient increases

until the following relationship is obtained in steady state: ˙̄vi = 0 ⇒ ρ(v̄i)v̄i = Vnom(λ̄− ĪGi,pu) and

the accumulation of the error is prevented.

In other words, the leakage coefficient can be regarded as a safety vault to prevent integrator wind

up and to ensure an equilibrium in steady state. To guarantee a stable operation, it implies that

ĪGi,pu is forced to be shaped like in (3.2.2) and not the desired shape of ĪGi,pu = λ̄i.
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ĪGi,pu = λ̄i −
1

Vnom
ρ(v̄i)v̄i (3.2.2)

However, as demonstrated in (3.1.7b) and section 3.1, this shape is optimal considering that the

voltage reaches the operating limits. The controller is focusing on keeping the voltages within

limits while doing its best to provide proportional current sharing, meaning this is the closest ĪGi,pu
can be to λ̄i when the voltage set point is close to the operating limits. It also follows that the

current ratios of the generators are not equal to each other during saturation, i.e., ĪGi,pu ̸= ĪGj,pu.

More significant deviations in the current ratios will occur as the voltage reaches saturation and

the leakage coefficient increases in size. However, this approach is preferred because it provides

stable conditions in steady state, while limiting deviations.

Note that the condition |vi| > 3∆ in (3.2.1c) is chosen based on the correlation tanh(3) ≈ 1. For

even greater values, tanh(·) gets even closer to unity. If this is the case, the generator voltage in

(2.1.3e) yields V G
i ≈ Vnom±∆, where V G

i approaches the limits in the voltage operating region due

to the definitions of Vnom and ∆. However, the design of the controller ensures that the voltage set

point will never wholly reach the limits in this case. Thus, the controller provides an acceptable

level of accuracy for the voltage set point [2].

So far, several shapes of λ̄i have been derived. It can be observed that the shape of λ̄i in Equation

(3.2.2) is equivalent to the shape of λ̄i in (3.1.7b) imposed by the equality from the optimizing

problem. By setting the two equations equal to each other, the following correlation in (3.2.3b) is

obtained.

ĪGi,pu +
∑

j∈NGi

aij
(
ζ̄i − ζ̄j

)
= ĪGi,pu +

1

Vnom
ρ(v̄i)v̄i (3.2.3a)

∑
j∈NGi

aij
(
ζ̄i − ζ̄j

)
=

1

Vnom
ρ(v̄i)v̄i (3.2.3b)

It is clear that both of these expressions are related to the leakage coefficient and the saturation of

the voltage set point. Therefore, it is deduced that the term
∑

j∈NGi
aij
(
ζ̄i − ζ̄j

)
in (3.1.7) obtained

through the optimizing problem will be zero as long as the voltage set point is within limits and

vi is not close to being saturated. This is in line with the previously stated characteristics of the

leakage coefficient. These saturation terms provide stable performance under different operating

conditions.

3.2.1 The Cyber Controller

To find the optimal λ̄i to be used in the local controller in (3.2.1), Proportional-Integral (PI)

Dynamic Consensus Estimators can be implemented at each DG and are defined in Abdolmaleki’s

[2] as presented in (3.2.4), where kP , kI , and ky are positive gains. These estimators were based

on an algorithm presented in [32]. The estimators consist of the internal estimator states, ζi and

λi, which are received as input from neighboring generators [32]. Thus, these states are exchanged

in a distributed manner and can be considered the cyber states of the CP MG. Cyber state is

an expression introduced in Skaga’s master’s thesis [3] and was used to name the states in the

distributed control network, i.e., the cyber layer.
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ζ̇i = kI
∑

j∈NGi

aij(λj − λi) (3.2.4a)

λ̇i = ky(I
G
i,pu − λi) + ky

∑
j∈NGi

aij(ζi − ζj) + kP
∑

j∈NGi

aij(λj − λi) (3.2.4b)

3.3 Steady State Conditions in the Cyber Layer

The steady state conditions are of interest because we eventually want the system to operate at

the optimal steady state operating point. Therefore, the following sections investigate the steady

state conditions of the cyber layer, including the estimator states and the regulator state.

3.3.1 Steady State Conditions in the Distributed Control Network

As long as communication is present and the adjacency matrix of the control network’s communica-

tion graph is connected, the steady state behavior of the estimators will satisfy the KKT conditions

[2]. This can be proven by considering the steady state conditions of (3.2.4a) and (3.2.4b) in vector

form as presented in (3.3.1a) and (3.3.1b), respectively. Each generator in the network has two

corresponding cyber states, such that ζ ∈ RnG
i ,λ ∈ RnG

i . Furthermore, KP , KI and Ky are

diagonal matrices that contains the positive gains and have the following dimension RnG
i ×nG

i .

ζ̇ = −KILλ (3.3.1a)

λ̇ = Ky(I
G
pu − λ) +KyLζ −KPLλ (3.3.1b)

Solving (3.3.1a) in steady state, results in the following relationship: −KILλ̄ = 0 ⇒ Lλ̄ = 0.

From the properties of the Laplacian-matrix explained in Appendix A.1, this relationship implies

that λ̄ consists of identical elements and that all generators share the same λ̄i, i.e., Lλ̄ = 0, where

λ̄ = [λ̄i, λ̄i, ..., λ̄i]
⊤ = λ̄[1, 1, . . . , 1]⊤. Due to this relationship, the term KPLλ̄ = 0 in (3.3.1b) is

removed, which implies

Ky(Ī
G
pu − λ̄) +KyLζ̄ = 0

⇒ Ī
G
pu − λ̄+Lζ̄ = 0

⇒ λ̄ = Ī
G
pu +Lζ̄

(3.3.2)

The shape of λ̄ is identical to the previously derived optimal shape of λ̄i from the optimization

problem in section 3.1.2. Since the expression contains the Laplacian matrix, it is possible to take

advantage of the properties of this unique matrix. As explained in Appendix A.1, 1⊤L = 0. To

better illustrate the derivations below, an example is conducted on a vector x of n equal elements:

1⊤x =
∑n

i=1 xi = nxi. Furthermore, multiplying each term by 1⊤ gives an expression of the set

points in steady state as shown in (3.3.3).
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1⊤λ̄ = 1⊤Ī
G
pu + 1⊤Lζ̄

⇒ nGiλi = 1⊤Ī
G
pu

⇒ λ̄i =
1

nGi

nGi∑
i=1

ĪGi,pu

(3.3.3)

The derivations above demonstrate that the set points, λ̄i, are of optimal shape according to the

optimization problem. Furthermore, these set points are equal to the average of all the generator

current ratios in the network, which is the optimal solution of the centralized case, as explained

in section 3.1.1 and expressed in (3.1.3). Consequently, the set points converge to a value that

minimizes the difference between the currents and the set points. It can be beneficial to express

the set points in vector notation for a later stage. Therefore, the expression is multiplied by the

vector of ones, 1, on both sides in (3.3.4).

λ̄ =
1 · 1⊤Ī

G
pu

nGi
(3.3.4)

In conclusion, it has been proven that the expressions for the estimator states, i.e., the cyber states,

are formulated such that they satisfy the optimal shape of λ̄i in steady state, as derived from the

optimization problem.

3.3.2 Steady State Conditions in the Regulator State

The steady state conditions of the regulator state (3.2.1b) were expressed in (3.2.2). And can

also be examined in vector notation, resulting in (3.3.5). The vector elements in ρ(v̄) are either

zero or non-zero depending on whether the corresponding generator is saturating its voltage or

not, respectively. Consequently, the current ratio corresponding to a DG that is not saturating its

voltage will be equal to the set point obtained by consensus, while the current ratio corresponding

to a DG that is saturating its voltage will take on the sub-optimal shape as explained in section

3.2.

τ ˙̄v = −ρ(v̄)v̄ + Vnom(λ̄− Ī
G
pu) = 0

⇒ Ī
G
pu = λ̄− 1

Vnom
ρ(v̄)v̄

(3.3.5)

3.4 Simulations of the Nonlinear Controller

This section aims to give a proper understanding of the controller by exploring the function of its

elements – the regulator, the hyperbolic tangent function, and the leakage coefficient. It will be

explained why these elements are included in the controller, and it will be demonstrated how they

work together to achieve the desired objectives in the DC MG. This will be done by implementing

the model of the physical DC MG in Simulink and by including the different elements of the

controller step by step.

The DC MG is implemented in Simulink following the structure as given in Figure 2.1. The

parameters for the first two simulations are presented below in Table 3.1, 3.2, and 3.3, providing
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the data of all the generators, transmission lines, and loads in the DC MG. However, in subsequent

simulations, the load and transmission line data will be modified to illustrate the controller’s

working better. The time constant of the controller is set to τ = 3, and the gains are set to

kI = 1.3, ky = 10, and kp = 50.

Table 3.1: Generator (DG) Specifications.

Parameters DG 1 DG 2 DG 3 DG 4

Ii,rated [A] 12 4 8 6

Vnom [V] 48 48 48 48

∆ [V] 0.48 0.48 0.48 0.48

RG
i [Ω] 0.075 0.06 0.0825 0.0675

LG
i [mH] 0.15 0.12 0.165 0.135

Table 3.2: Transmission Line (TL) Specifications.

Parameters TL 1 TL 2 TL 3 TL 4 TL 5

RE
j [Ω] 0.3 0.6 0.6 0.3 0.3

LE
j [mH] 0.6 1.2 1.2 0.6 0.6

Table 3.3: Load (L) Specifications.

Parameters L 1 L 2 L 3 L 4

CN
k [mF] 22 22 22 22

1/Gcte
k [Ω] 40 30 30 20

Ictek [A] 2 2.1 1.9 2

Four graphs are obtained for each simulation, displaying the behavior of three crucial states in

the system – The generator’s current ratio (IG), the generator voltages (V G), and the regulator

states (v), as well as the leakage coefficients (ρ(v)). The information obtained from these states is

essential in understanding the DC MG’s stability, the controller’s performance, and if the control

objectives are satisfied.

In all the simulations presented below, the DC MG is achieving steady state conditions before

the controller is activated at t = 10s. Furthermore, the DC MG is achieving new steady state

conditions before a load change is applied at t = 20s and removed at t = 30s. The load change is

implemented as a 50% increase in current consumption at each load in the DC MG by introducing

a step block in the Simulink model. The events are summarized in Table 3.4 below.

Table 3.4: Events implemented in the simulations.

Time Interval [s] Event

[0, 10] The DC MG is uncontrolled

[10, 50] The controller is activated

[20, 30] 50% increased current consumption at the loads

3.4.1 Neglecting the Controller

The initial 10 seconds of the simulations in the figures below illustrate the DC MG without the

controller; the currents are not proportionally shared between the generators, and the generator
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voltages are equal to the nominal voltage. Moreover, the regulator states and leakage coefficients

are equal to zero since they are part of the inactivated controller, and their values have not yet

been assigned.

3.4.2 Neglecting the Leakage Coefficient

The simulation results illustrated in Figure 3.1 represent the DC MG with parameters identical

to those specified in Table 3.1, 3.2, and 3.3. In this simulation, the controller gets activated

at t = 10. However, the leakage coefficient from (3.2.1c) is disregarded to investigate why this

element is needed in the controller. The voltage band is set to the strict interval of [Vmin, Vmax] =

[0.99pu, 1.01pu] to examine the functioning of the controller under heavily constrained conditions.

As observed after the activation of the controller, the current ratios are going toward identical

per unit values, while the generator voltages are kept within their limit. It is clear that DG 2 is

approaching the minimum voltage limit of 0.99pu and is forced not to exceed this limit because of

the hyperbolic tangent function that is saturating the voltage. The regulator state corresponding

to DG 2 has a slight decrease because of this saturation, but it reaches a stable equilibrium in

steady state. Thus, the controller manages sufficiently and achieves the control objectives without

the leakage coefficient.

However, when the current consumption at the loads is increased during the time interval of

[20, 30] seconds, all the current ratios increase, making it harder for the generator voltages to be

kept within limits. As a result, the voltages at DG 1 and DG 3 also approach the voltage limit.

Due to the size of the load change and the strict saturation term, the two generators experiencing

the greatest saturation, i.e., DG 2 and DG 3, are not able to achieve proportional current-sharing.

For the same reason, their corresponding regulator states experience wind up, as seen in the sharp

change of the corresponding regulator states. The change in the regulator state implies that the

distance between the set point and the current ratio is nonzero, i.e., τ v̇i ̸= 0 ⇒ λi ̸= IGi,pu meaning

that an error exists. The error accumulates, and the regulator states do not reach a steady state

equilibrium, as explained in section 3.2. Note that the two generators that experience the least

saturation, i.e., DG 1 and DG 4, have approximately equal currents throughout the simulation

period – implying that these DGs converge to a common set point. As seen by the simulation,

these two DGs’ currents are in between the two other DGs’ current ratios, resulting in a consensus

equal to the average of all the generator currents as proved in (3.3.3).

The step in load is removed after 30 seconds, and the system attempts to return to its original

state and achieve proportional current-sharing. However, this process is slow and takes about 10

seconds because of the significant error accumulation in the regulators of the saturated DGs. The

error has to decrease before the regulator can drive the current ratios equal to the set point decided

by consensus. When the error has decreased sufficiently, the currents eventually get equal, and the

control objectives are achieved. The slow and inefficient behavior of this recovery period is why it

is advantageous to include the leakage coefficient, and will be explained in the subsequent section.

3.4.3 Including the Leakage Coefficient

The leakage coefficient is included in the second simulation with results presented in Figure 3.2.

The load and transmission line parameters are unchanged, and the simulation follows the same

events as described in Table 3.4. It can be observed that the DGs achieve proportional current-

sharing and that the generator voltages are contained after the activation of the controller. In

other words, there exists a remarkable similarity in the first time interval between the first and

second simulation results of the generator currents and voltages.
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During the time interval [20, 30] seconds, the system is heavily loaded, and the leakage coefficients

corresponding to DG 2 and DG 3 increase because of the saturation of the corresponding regulator

voltages and the fact that {v2, v3} > 3∆ as described in (3.2.1c). From the simulations, it can

be confirmed that these leakage coefficients increase until the regulator states find an equilibrium,

as explained in the previous section 3.2. The leakage coefficients compensate for the error in the

regulator states and prevent integrator wind up. Thus, the system and all its states achieve steady

state operation when the load is changed. This is different from the previous simulation without

the leakage coefficients, where the two regulator states were not achieving steady state operation.

When the load step is removed at t = 30 seconds, the voltages of the regulator states return to the

closest equilibrium. Consequently, the regulator states get closer to zero, followed by a drop in the

leakage coefficients. Furthermore, the generator currents quickly go back to proportional current-

sharing, and the recovery period of 10 seconds from the last simulation is drastically improved

by including the leakage coefficient. The simulations demonstrate the efficiency of the leakage

coefficient and why this is included in the controller.
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Figure 3.1: [Vmin, Vmax] = [0.99 pu, 1.01 pu].

The leakage coefficient is not included.
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Figure 3.2: [Vmin, Vmax] = [0.99 pu, 1.01 pu].

The leakage coefficient is included.
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3.4.4 Adjusting the Voltage Limits

In Figure 3.3, the voltage limits are adjusted to the more realistic interval, [Vmin, Vmax] = [0.95pu, 1.05pu],

while the load and transmission line parameters are unchanged. As reflected by the simulations,

these limits are not strict for this specific system since all the generator voltages are within the

voltage bands in every time interval. Thus, the leakage coefficients are zero, the regulator voltages

are not saturated, and wind up is not an issue. Furthermore, due to the unproblematic behavior of

the voltages, the DGs perfectly achieve proportional current-sharing during the whole simulation

period.

3.4.5 Modyfing the Load and Transmission Line Parameters

The system described in Figure 3.3 works perfectly and does not illustrate the saturation of voltages

or activation of the leakage coefficients. Therefore, the system parameters are modified to illustrate

better the controller’s working in a more realistic system. The load current and transmission line

parameters from Table 3.2 and 3.3 are modified by doing the following multiplication: 2 · Ictek ,

2.25 ·RE
j and 2.25 ·LE

j . The simulation results are depicted in Figure 3.4 and exhibit similarities to

the results presented in Abdolmaleki’s publication [2], where accurate proportional current-sharing

is quickly achieved outside the load change. During the load change, the generator voltages at DG

2 and DG 3 are saturated to the extent that the corresponding leakage coefficients are activated.

This results in the current ratios of DG 2 and DG 3 going towards the sub-optimal value in (3.2.2)

in steady state. However, the voltages are kept within limits, and the controller is doing its best to

maintain proportional current-sharing. When the load change is removed, the system is smoothly

recovering in a few seconds.
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Figure 3.3: The voltage limits are adjusted

to [Vmin, Vmax] = [0.95 pu, 1.05 pu].
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Figure 3.4: [Vmin, Vmax] = [0.95 pu, 1.05 pu].

Parameters from Table 3.1 and updated TL and

load parameters.

The period where the system experiences a change, i.e., when the controller is activated or when the

step in load is applied, describes the system’s transient behavior. The simulation results presented

in these sections show short transients containing overshoots and inadequate responses. However,

the performance is not the primary focus of this thesis, as emphasized in Limitation of Scope in

section 1.2.1. Additionally, the case-specific DC MG is of small size and, consequently, it is low

inertia in the system, resulting in reduced resilience against changes. Contrary to this limitation,

the controller behaved as expected in all simulations, successfully achieving the control objectives

and ensuring steady state operation. In conclusion, the controller is well-suited for managing the

DC MG presented in Figure 2.1.
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Chapter 4

Energy Modeling and Analysis

In the previous chapter, the controller proposed in [2] was implemented in the case-specific DC

microgrid, and simulations were conducted in Simulink. It was demonstrated that the controller

successfully satisfies the two control objectives as presented in [2]. Although it was not discovered

any instability issues in the simulations, it cannot be guaranteed that the system will remain stable

if it scales up in size. Following the principles discussed in the introduction in chapter 1, obtaining

a stability proof applicable to all DC MG configurations is desired. The thorough elaboration of

the controller from the previous chapter 3 offers insight into the responsibilities of the different

elements in the controller. This understanding is essential information before entering the stability

analysis, as it will be necessary to do simplifications regarding the controller. By doing so, we can

make informed decisions about the necessary simplifications.

In this chapter, the theory on port-Hamiltonian systems and Lyapunov’s stability criteria are re-

produced from the associated specialization project [24]. Additionally, the specialization project

presented the energy modeling of the electrical and distributed control networks. This information

is also reproduced in this chapter and serves as important preliminary information prior to the new

contribution of the clarification about why the current ratio needs to be included in the mathem-

atical equations, identifying the passive outputs, interconnecting the two layers and identifying the

challenges in the connection. The new analysis also contains mathematical proofs and validation

of the results using simulations in Simulink.

4.1 Introducing Port-Hamiltonian System Theory and Lya-

punov Stability Criteria

In the next sections, an investigation will be conducted to determine whether the open-loop elec-

trical network and control network admits to a port-Hamiltonian (pH) representation. In order

to accomplish this, it will be necessary to introduce the theoretical foundations of pH systems

and Lyapunov’s Stability Criteria. These frameworks are primarily used to investigate nonlinear

systems but are also applicable to linear systems [33]. As stated in the introduction in chapter 1,

disregarding the nonlinearities in the controller has been necessary due to the complex structure

of the combined network. However, the next step for the specific system is to consider the non-

linearities, which is why a nonlinear stability analysis is utilized in this master’s thesis. However,

due to the relative complexity of the controller, the next chapter is dedicated to breaking it down.
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4.1.1 Port-Hamiltonian System Theory

A port-Hamiltonian representation of a system is a way of rewriting a system of differential equa-

tions, where the system’s energy-dissipating elements and the interconnection in the system are em-

phasized. For example, in the DC MG, Graph 1 and Graph 2 function as interconnections between

the three subsystems; the sets of generators, loads, and transmission lines. Port-Hamiltonian rep-

resentations of systems also allow for connecting and analyzing interconnected subsystems from

different domains [34]. This makes it possible to interconnect a distributed cyber layer to the phys-

ical network layer described above, which also allows for analyzing the stability of the combined

cyber-physical system. The port-Hamiltonian representation is also a valuable tool in designing a

passivity-based controller (PBC), which can ensure the stability of a closed-loop system.

The systems introduced in this master’s thesis belong to a subclass of pH systems, input-state-

output port-Hamiltonian systems. These pH systems occur if 1. There are no algebraic constraints

between the state variables, 2. The external port variables can be split into input and output

variables, and 3. The resistive structure is linear and of input-output form [34]. This type of

pH system is well-established in the control theory community. Equation (4.1.1a) shows the state

space representation of
∑
u,y

, an input-state-output pH system.

∑
u,y

{
ẋ = [J(x)−R(x)]∇H(x) + g(x)u+E

y = g⊤(x)∇H(x)
(4.1.1a)

H(x) =
1

2
x⊤Qx (4.1.1b)

All energy variables of the system are represented by the state vector x ∈ Rn. The input-port

of the system is u ∈ Rm. The output of the system is y ∈ Rm. The input matrix, g ∈ Rn×m,

is the matrix describing the relation between the inputs and the outputs in the system. E ∈ Rn

represents the constant source vector, if any. For the derivations below, this term is neglected

for illustration purposes. The interconnections related to power conservation are represented by

the interconnection matrix J ∈ Rn×n. This matrix is skew-symmetric, which implies that J =

−J⊤. The damping and dissipation of the system are represented by the dissipation matrix

R ∈ Rn×n. This is a symmetric matrix, which implies that R = R⊤. It also has positive semi-

definite properties, such as R ≥ 0. The term [J − R] is often denoted as F , i.e. F = [J − R].

The scalar, H(x), in Equation (4.1.1b) is referred to as the Hamiltonian or the stored energy in

the system. Q ∈ Rn×n describes the energy storage and is a symmetric positive definite matrix:

Q = Q⊤ > 0. This relationship ensures H(x) ≥ 0. Q also occurs in the expression of the co-energy

variables, ∇H(x), where ∇H(x) = Qx. The mentioned definitions of the matrices in (4.1.1) result

in Ḣ(x) ≤ y⊤u, which also is the definition of passive systems [34].

The latter point can be proven by deriving an expression for Ḣ(x). The derivative of the storage

function can be written like this:

Ḣ(x) =
∂⊤H(x)

dt
=

∂⊤H(x)

dx

dx

dt
= ∇⊤H(x) · ẋ

The expression for ẋ from (4.1.1a) is inserted:

Ḣ(x) = ∇⊤H(x) · ([J(x)−R(x)]∇H(x) + g(x)u)
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This results in the following:

Ḣ(x) = ∇⊤H(x)J(x)∇H(x)︸ ︷︷ ︸
power preservation: 0

−∇⊤H(x)R(x)∇H(x)︸ ︷︷ ︸
power dissipation: ≤ 0

+ ∇⊤H(x)g(x)︸ ︷︷ ︸
passive output: y⊤

·u

As a skew-symmetric matrix satisfies the condition z⊤Jz = 0, the final expression for Ḣ(x) is

given as follows:

Ḣ(x) = −∇⊤H(x)R(x)∇H(x)︸ ︷︷ ︸
≤0

+y⊤u

As the positive semi-definite symmetric, R, matrix satisfy the condition z⊤Rz ≥ 0. As a result,

the first term in the given expression is non-positive, meaning it is either negative or equal to zero.

Thus, Ḣ(x) will not be any greater than the latter term y⊤u and the following relationship is

valid:

Ḣ(x) ≤ y⊤u

The above point illustrates that port-Hamiltonian systems are passive and that not every system

can adopt a port-Hamiltonian representation since not all systems have skew-symmetric and sym-

metric positive semi-definite properties in their respective interconnection and dissipation matrices

[35]. This critical point will be emphasized later in this master’s thesis. However, pH and passive

systems can be stabilized by appropriately designing a controller based on passivity arguments. In

addition, to study and prove asymptotic stability in a system, the shifted Hamiltonian function

can be used as a Lyapunov candidate to evaluate if it satisfies the requirements of a Lyapunov

function.

4.1.2 Lyapunov’s Stability Criteria

Lyapunov’s method is a mathematical approach to study the stability of a system. A Lyapunov

function is a scalar function that often describes the total energy in a system, similar to a Hamilto-

nian function. However, a function, V (x), is a Lyapunov function if it is continuously differentiable,

if it is defined in a region that contains the origin and if it satisfies the requirements below [36].

A Lyapunov function is a powerful tool to determine the stability of a system, as it can always be

associated with a stable system. Thus, if a Lyapunov function exists for a system, the system is

stable. [37]

V (x̄) = 0; V (x) > 0 ∈ Rn\{x̄} V (x̄) = 0; V (x) > 0 ∈ Rn\{x̄}
V̇ (x̄) = 0; V̇ (x) < 0 ∈ Rn\{x̄}︸ ︷︷ ︸

Global asymptotic stability

V̇ (x̄) = 0; V̇ (x) ≤ 0 ∈ Rn\{x̄}︸ ︷︷ ︸
Global stability

Energy will dissipate in a system when it is in motion. Thus, the derivative of the function that

describes the system will be non-positive along the trajectories of the system, i.e., V̇ (x) ≤ 0 [36].

This implies that the storage function V (x) is non-increasing over time, and it may eventually

reach the origin, which is considered the equilibrium point x̄ in Lyapunov’s theory. If V̇ (x) ≤ 0 ∀
x ̸= x̄, it is possible that the trajectory of the system stops before it reaches the origin. However,
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the origin is still considered stable [36]. The other relationship, V̇ (x) < 0 ∀ x ̸= x̄, implies that the

trajectory eventually will reach the origin; thus the equilibrium point is located at the minimum

of the energy function. This is desirable since this implies that the origin is asymptotically stable

and that the system converges to the equilibrium point. As noticed from the sections above, a

Hamiltonian function, H(x), shares some properties with a Lyapunov function. This makes it

convenient to use a Hamiltonian function as a Lyapunov candidate as a starting point for finding

a Lyapunov function. If the Hamiltonian function satisfies the requirements from above, it can be

proven to be a Lyapunov function, which can be used to prove asymptotic stability in the system.

4.1.3 Incremental Model

The abovementioned theory implies that Lyapunov’s theory can be applied to a Hamiltonian

function. Thus, it is possible to analyze if the case-specific DC MG in the master’s thesis is stable.

However, Lyapunov’s method considers the origin as the equilibrium point, i.e., x̄ = 0. This is not

the desired operation point for a DC MG, as it will be out of operation. However, by shifting the

system and using incremental states, Lyapunov’s theory can still be applied while ensuring that

the equilibrium point corresponds to the minimum of the energy function. This approach involves

using the modified state variables x̃ = x − x̄, where x̄ is the state at the minimum equilibrium

point, while x is the state of the actual operating point. Since x̃ = 0 when the actual operating

point and the minimum equilibrium point correspond, i.e., x = x̄, Lyapunov’s method can be used

to analyze the stability of the DC MG while ensuring that it is operating at its desired equilibrium

point [38]. In this master’s thesis, J , R and g are constant matrices such the incremental pH

representation of
∑

u,y from (4.1.1) can be presented as in (4.1.3).

∑̃
u,y

{
˙̃x = [J −R]∇V (x̃) + gũ

ỹ = g⊤∇V (x̃)
(4.1.3a)

V (x̃) =
1

2
x̃⊤Qx̃ (4.1.3b)

It should be noted that the constant source vector, E, from (4.1.1a) disappear due to the following

relationship x̃ = ẋ− ˙̄x = (ax+ b)− (ax̄+ b) = ax̃.

4.2 Energy Modeling of the Electrical Network

As previously mentioned, a system must satisfy specific criteria to qualify as a port-Hamiltonian

system. In particular, the system must be passive with respect to both the input-output mapping

and the output. This implies that the matrices in (4.1.1a) need to have specific properties as

described above.

When the port-Hamiltonian representation of the case-specific electrical network,
∑

p, is obtained,

the ODEs from (2.1.3) needs to be rewritten in matrix notation. These equations were expressed

in actual values with dimensions. However, in order to incorporate the controller and verify

proportional current-sharing, it is necessary to express the current in its utilization ratio. This ratio

is the current ratio in per-unit, denoted as IGi,pu in this thesis. The ratio describes how much each

generator contributes to the current in the system relative to its maximum capacity. Accordingly,

the state variable representing the current is expressed in per-unit values, while the remaining state

variables in the physical system are expressed in actual values. This approach facilitates accurate
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modeling of the physical behavior of the DC MG and enables the implementation of control in the

cyber layer. The relationship between the actual value and the rated current of each converter is

given by IGi,pu = IGi /I
G
i,rated.

In matrix notation, this results in IG
pu = blockdiag−1{IG

rated}I
G . Furthermore, the actual value of

the current can be represented as IG = blockdiag{IG
rated}I

G
pu. This expression will be substituted

into the system of equations in (2.1.3). To reduce the complexity of the equations, vectors and

matrices that were previously multiplied by the actual generator current will now be multiplied

by blockdiag{IG
rated}. This results in LG

∗ = LG · blockdiag{IG
rated}, R

G
∗ = RG · blockdiag{IG

rated}
and BG

∗ = BG · blockdiag{IG
rated}. It can be noted that the adjusted incidence matrix is a block

diagonal matrix of the rated currents, i.e., BG
∗ = blockdiag{IG

rated}. This relation can be derived

from the fact that the original incidence matrix is a diagonal matrix with all its elements equal to

one. These substitutions result in (4.2.1), which is the updated representation of the differential

equations from (2.1.3) written on matrix notation. Furthermore, Vnom is multiplied by the column

vector of ones, 1 = col(1) ∈ RnGi
, since it is a constant that appears in every vector element.

Introducing the system equations in matrix notation is an advantage when analyzing the stability

and steady state conditions of the system. It can also be seen that the incidence matrices obtained

with graph theory, BG and BE can be directly incorporated in the representation of the system.

LG
∗ İ

G
pu = 1Vnom + up −BG⊤

V N −RG
∗I

G
pu (4.2.1a)

LE İ
E
= −BE⊤

V N −REIE (4.2.1b)

CN V̇
N

= BEIE +BG
∗I

G
pu −GN

cteV
N − Icte (4.2.1c)

However, the substitution in (4.2.1) removes the skew-symmetric properties of the system, be-

cause BG
∗ ̸= BG . To provide the skew-symmetry, equations (4.2.1b) and (4.2.1c) are multi-

plied by blockdiag−1{IG
rated} such that the term multiplied by IG

pu in (4.2.1c) gets back to be-

ing BG . This results in LE
∗ = LE · blockdiag−1{IG

rated}, BE⊤

∗ = BE⊤
· blockdiag−1{IG

rated},
RE

∗ = RE · blockdiag−1{IG
rated}, C

N
∗ = CN · blockdiag−1{IG

rated}, B
E
∗ = BE · blockdiag−1{IG

rated},
GN

∗,cte = GN
cte · blockdiag−1{IG

rated} and I∗,cte = Icte · blockdiag−1{IG
rated} as shown below in

(4.2.2). Consequently, the skew-symmetry in this representation is provided by BE
∗ = −BE⊤

∗ and

BG = −BG⊤
.

LG
∗ İ

G
pu = 1Vnom + up −BG⊤

V N −RG
∗I

G
pu (4.2.2a)

LE
∗ İ

E
= −BE⊤

∗ V N −RE
∗I

E (4.2.2b)

CN
∗ V̇

N
= BE

∗I
E +BGIG

pu −GN
∗,cteV

N − I∗,cte (4.2.2c)

Eventually, the pH representation of the electrical network can be expressed as below in (4.2.3).

 LG
∗ İ

G
pu

LE
∗ İ

E

CN
∗ V̇

N


︸ ︷︷ ︸

ẋp

=

−RG
∗ 0 −BG⊤

0 −RE
∗ −BE⊤

∗
BG BE

∗ −GN
∗,cte


︸ ︷︷ ︸

F p

I
G
pu

IE

V N


︸ ︷︷ ︸
∇Hp(xp)

+

I
G

0

0


︸ ︷︷ ︸

gp

up +

 1Vnom

0

−I∗,cte


︸ ︷︷ ︸

Ep

(4.2.3)

The state vector containing the energy variables is defined as the column vector, xp ∈ RnG
i +nE

j +nN
k ,
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i.e. xp ∈ R13 : ΦG
∗ ∈ R4,ΦE

∗ ∈ R5, qN
∗ ∈ R4 for the case-specific DC MG. xp consists of the flux

linkages in the generators and transmission lines, as well as the charges of the loads, due to the

correlations of Φ = LI and q = CV :

xp :=

Φ
G
∗

ΦE
∗

qN
∗


The input matrix gp ∈ R(n

G
i +nE

j +nN
k )×nG

i is structured such that the upper portion consists of the

identity matrix, IG ∈ RnGi×nGi
, and the remaining entries are zeros, 0 ∈ RnE

j ×nG
i and 0 ∈ RnN

k ×nG
i .

This is because the control input is only present in the equations corresponding to the voltages

of the DGs. To ensure the dimensions in the equations add up, up is multiplied by the identity

matrix. The input matrix is in the form presented below:

gp :=

I
G

0

0


Ep ∈ RnG

i +nE
j +nN

k contains the constant terms and is defined below, where 1 ∈ R4,0 ∈ R5, I∗,cte ∈
R4:

Ep :=

 1Vnom

0

−I∗,cte


The interconnection matrix Jp ∈ R13×13 describes how the three subsystems are interconnected

and contain the incidence matrices of Graph 1 and Graph 2. The dissipation matrix Rp ∈ R13×13

consists of the electrical dissipation. F p has the same dimensions as the two other matrices:

Jp :=

 0 0 −BG⊤

0 0 −BE⊤

∗
BG BE

∗ 0

 Rp :=

R
G
∗ 0 0

0 RE
∗ 0

0 0 GN
∗,cte

 F p :=

−RG
∗ 0 −BG⊤

0 −RE
∗ −BE⊤

∗
BG BE

∗ −GN
∗,cte


∇Hp(xp) ∈ R13 is the co-energy variables consisting of the currents in the DGs and transmis-

sion lines respectively, and the voltages at the loads. Qp ∈ R13×13 consist of the inverse of the

inductance in the DGs and transmission lines and the inverse of the capacitance of the loads.

∇Hp(x) :=

I
G
pu

IE

V N

 Qp :=

(L
G
∗)

−1 0 0

0 (LE
∗)

−1 0

0 0 (CN
∗ )−1


The definitions above clearly show that the physical DC MG admits to a pH representation. This

is due to the skew-symmetry of Jp = −J⊤
p , and the symmetrical positive definiteness of Rp = R⊤

p ,

which also ensures Ḣp(xp) ≤ y⊤
p up and the definition of a passive system. To summarize, the port-

Hamiltonian representation,
∑

p, together with the Hamiltonian function, Hp(xp), of the physical

system can be expressed as follows in (4.2.4a).
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∑
p

{
ẋp = F p∇Hp(xp) + gpup +Ep

yp = g⊤
p ∇Hp(xp)

(4.2.4a)

Hp(xp) =
1

2
xp

⊤Qpxp (4.2.4b)

The passive output is defined as y = g⊤∇H = g⊤Qx, from the definition of a pH system given

in section 4.1.1. In the physical network, the output port is proven to be yp = IG
pu as in (4.2.5)

below.

yp = g⊤
p Qpxp

=
[
IG 0 0

](L
G
∗ )

−1 0 0

0 (LE
∗)

−1 0

0 0 (CN
∗)

−1


 LG

∗I
G
pu

LE
∗I

E

CN
∗ V N


=
[
IG

pu(L
G
∗)

−1 0 0
] LG

∗I
G
pu

LE
∗I

E

CN
∗ V N


= IGIG

pu = IG
pu

(4.2.5)

Furthermore, the incremental Hamiltonian function can be used as a Lyapunov candidate to ana-

lyze if the system is asymptotically stable, as explained in section 4.1.2. The incremental pH

representation of the system is given as below in (4.2.6) where Vp(x̃p) = Hp(x̃p) represents the

Hamiltonian function of the incremental model of the physical layer. ũp is the unknown input,

and ỹp = ĨGpu is the passive output of the incremental model.

∑̃
p

{
˙̃xp = F p∇Vp(x̃p) + gpũp

ỹp = g⊤
p ∇Vp(x̃p)

(4.2.6a)

Vp(x̃p) =
1

2
x̃⊤
p Qpx̃p (4.2.6b)

The following relationship is valid: Vp(x̃) > 0, since Qp is proven to be a positive definite matrix

consisting of only the inverse of stored inductance and capacitance. As explained in section 4.1.1,

the derivative of the storage function is on the shape given below because the physical network

admits to a pH representation.

V̇p(x̃p) =−∇⊤Vp(xp)Rp∇Vp(xp) + y⊤
p up +∇⊤Vp(xp)Ep︸ ︷︷ ︸

V̇p(xp)

−
(
−∇⊤Vp(x̄p)Rp∇Vp(x̄p) + ȳ⊤

p ūp +∇⊤Vp(x̄p)Ep

)
︸ ︷︷ ︸

V̇p(x̄p)

=−∇⊤Vp(x̃p)Rp∇V (x̃p) + ỹ⊤
p ũp (4.2.7a)

The constant terms disappear in the incremental model, and it is evident that V̇p(x̃p) ≤ ỹ⊤
p ũp and

that the incremental model of the system is passive. Thus, the physical network is ready to be

connected to a suitable controller.
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4.3 Energy Modeling of the Distributed Control Network

As mentioned in the previous section 3.2, the states of the distributed network are xc = [ζ,λ]⊤.

According to the equations (3.2.4) presented in [1], the input of the cyber layer has to be the

load-ratio at each DG, i.e., uc = yp = IG
pu. This relation will also be derived in the subsequent

section 4.4.1. The equations in (3.3.1) can be rewritten as below in (4.3.1) to illustrate that the

distributed control network can admit to a pH representation.

ζ̇ = −LKIλ (4.3.1a)

λ̇ = LKyζ −KyK
−1
I KIλ−LKPK

−1
I KIλ+Kyuc (4.3.1b)

Furthermore, this can be represented in matrix notation as in (4.3.2), where xc ∈ RnG
i +nG

i ,

i.e. xc ∈ R8 : ζ ∈ R4,λ ∈ R4 for the case-spesific DC MG. The Laplacian matrix and the matrices

corresponding to the gains are as mentioned earlier in section 2.2 and section 3.3.

[
ζ̇

λ̇

]
︸︷︷︸
ẋc

=

[
0 −L
L − (Ky +LKP )K

−1
I

]
︸ ︷︷ ︸

F c

[
Kyζ

KIλ

]
︸ ︷︷ ︸
∇Hc(xc)

+

[
0

Ky

]
︸ ︷︷ ︸

gc

uc (4.3.2)

When equation (4.3.2) is represented like this, it is convenient to check if the distributed control

network admits to a pH representation. As seen in the underbraces of (4.3.2), the ODEs of (4.3.1)

are represented using pH formalism. In this representation, it can be stated that there are no

constant sources in the system since Ec is not represented. It can also be stated that Jc is given

by the Laplacian matrix of the distributed network and that Rc is represented by the positive

gains and the Laplacian matrix.

Jc :=

[
0 −L
L 0

]
Rc :=

[
0 0

0 − (Ky +LKP )K
−1
I

]

As seen by the shape of these matrices, Jc is a skew-symmetric matrix, and Rc is a symmetrical

positive semi-definite matrix, which agrees with the definitions of these matrices from the pH

formalism. ∇Hc(xc) = Qcxc, thus it is noticeable from (4.3.2) that Qc given below is a symmetric

positive matrix consisting of the positive gains.

Qc :=

[
Ky 0

0 KI

]

As explained above, the distributed control network admits to a pH formulation. Thus, the matrices

above ensures Ḣc(xc) ≤ y⊤
c uc and the definition of a passive system. To summarize, the port-

Hamiltonian representation,
∑

c, together with the Hamiltonian function, Hc(xc), of the physical

system can be expressed as follows in (4.3.3a).

∑
c

{
ẋc = F c∇Hc(xc) + gcuc

yc = g⊤
c ∇Hc(xc)

(4.3.3a)

Hc(xc) =
1

2
xc

⊤Qcxc (4.3.3b)
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In the physical network, the output port is proven to be yc = KyKIλ as in (4.3.4) below.

yc = g⊤
c Qc xc

=
[
0 Ky

] [Ky 0

0 KI

][
ζ

λ

]

=
[
0 KyKI

] [ζ
λ

]
= KyKIλ

(4.3.4)

The incremental pH representation of the distributed control network is obtained below in (4.3.5b),

where Vc(x̃c) = Hc(x̃c) is chosen as the Lyapunov candidate. The input and the passive output

of the incremental model of the system are ũc = IG ĨGpu and ỹc = KyKI λ̃ respectively.

∑̃
c

{
˙̃xc = F c∇Vc(x̃c) + gcũc

ỹc = g⊤
c ∇Vc(x̃c)

(4.3.5a)

Vc(x̃c) =
1

2
x̃⊤
c Qcx̃c (4.3.5b)

Furthermore, the incremental Hamiltonian function can be used as a Lyapunov candidate, as

explained for the physical system in section 4.2.

V̇c(x̃c) = −∇⊤Vc(x̃c)Rc∇V (x̃c) + ỹ⊤
c ũc (4.3.6)

Since Qc is proven to be a positive definite matrix and Vc(x̃c) > 0. It is also evident that

V̇c(x̃c) ≤ ỹ⊤
c ũc and that the incremental model of the system is passive. Thus, the distributed

control network is ready to be connected to the physical layer.

4.4 Analyzing the Structure of the Combined Network

As previously mentioned, the cyber-physical DC MG consists of two layers - the physical layer and

the cyber layer. The sections above demonstrated that the physical and cyber layers admitted to a

pH representation when analyzed separately. However, when conducting an energy analysis of the

entire system, it is convenient to partition the system into one additional part. In this approach,

the regulator state, v, from (3.2.1b) constitutes the third part of the system. The regulator state

is an expression of both a physical state, IG
pu, and a cyber state, λ. Thus, the regulator state is

at the interface of the two layers with the primary objective of driving the current ratios equal to

the set point. The equations that constitute the cyber-physical MG are summarized in Figure 4.1

to provide an understanding of the combined system. As depicted in the figure, the physical layer

calculates the current ratios, which are then employed in the equations of the regulator and cyber

layer. Conversely, the set points are calculated in the cyber layer and utilized in the regulator.

Lastly, the regulator state is calculated within the regulator equation and serves as input in the

physical layer, where ω(v) represents the passive input either with or without the hyperbolic

tangent function.
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Figure 4.1: Structured representation of the system equations.

Furthermore, as addressed in the specialization project [24] and Appendix A.3, obtaining a pH

representation of the CP DC MG with the regulator state and both layers connected is a complex

procedure. These challenges arise even in the linear system, i.e., in the absence of the non-linearities

in the controller. For this reason, the voltage saturation and leakage coefficient will be neglected

in the energy analysis in this master’s thesis. The presence of a state variable that is a function of

a hyperbolic tangent function makes it even more challenging to obtain a pH representation of the

system. Consequently, the initial and apparent step is to exclude these non-linearities and identify

what specific elements of the total cyber-physical DC MG contribute to the challenges in obtaining

the pH representation.

4.4.1 Analyzing the Interconnection of the Cyber and Physical Layers

Initially, an attempt to interconnect the cyber and physical layers will be made. When two pH

systems are interconnected by a power preserving interconnection, they exhibit the property of

being another pH system [34]. This property is due to the specific geometric structure of pH

systems, discussed in section 4.1.1. Therefore, it is possible to interconnect the two layers that

were proved to admit to a pH representation in section 4.2 and section 4.3. The two layers are

interconnected using the control by interconnection (CbI) technique. The power preserving skew-

symmetric interconnection matrix is the subsystem
∑

I given below in (4.4.1). It should be noted

that this part of the analysis neglects the regulator state.

∑
I

:

{[
up

uc

]
=

[
0 −1

1 0

][
yp

yc

]
(4.4.1)

The following result in the relation up = −yc and uc = yp. The output ports of each system were

previously obtained in (4.2.5) and (4.3.4) from the definition of the passive output. This implies

that uc = yp = IGIG
pu and up = −yc = −KyKIλ, i.e., the voltage input in the physical layer

takes the shape of gains and the set point. The Hamiltonian function of a combined system is

obtained by the sum of the Hamiltonian functions of its port-Hamiltonian subsystems and as given

below in (4.4.2) [34].

HT (xT ) = Hp(xp) +Hc(xc) =
1

2
x⊤
p Qpxp +

1

2
x⊤
c Qcxc (4.4.2)
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The above expression results in the pH representation of the interconnected system as given in

(4.4.3b) and in matrix notation in (4.4.4). QT is a block diagonal matrix consisting of the elements

of Qp and Qc in the diagonal, i.e., QT = blockdiag{(LG
∗)

−1, (LE)−1, (CN )−1,Ky,KI}.

∑
T

{
ẋT = F T∇HT (xT ) +ET

yT = g⊤
T∇HT (xT )

(4.4.3a)

HT (xT ) =
1

2
xT

⊤QTxT (4.4.3b)


LG

∗ İ
G
pu

LE
∗ İ

E

CN
∗ V̇

N

ζ̇

λ̇


︸ ︷︷ ︸

ẋT

=


−RG

∗ 0 −BG⊤
0 −Ky

0 −RE
∗ −BE⊤

∗ 0 0

BG BE
∗ −GN

∗,cte 0 0

0 0 0 0 −L
Ky 0 0 L − (Ky +LKP )K

−1
I


︸ ︷︷ ︸

FT


IG
pu

IE

V N

Kyζ

KIλ


︸ ︷︷ ︸
∇HT (xT )

+


1Vnom

0

−I∗,cte

0

0


︸ ︷︷ ︸

ET

(4.4.4)

From (4.4.2), it can be noted that the time derivative of the stored energy in a combined system is

equal to the sum of the time derivatives of the stored energy in each of its subsystems, as presented

in (4.4.5a) below. In the previous sections, it has been demonstrated that both the physical and

cyber layers can be represented as pH systems. As a result, the time derivative of the corresponding

Hamiltonian functions, Ḣp and Ḣc presented in (4.4.5b), take on the pH form discussed in section

4.1.1. Consequently, the skew-symmetric parts of the system cancel out, resulting in a simplified

form. In (4.4.5c), the input ports are substituted by the output ports, and energy stored in the

cyber layer cancels out energy stored in the physical layer. This proves that the interconnection

is power preserving and ḢT (xT ) ≤ ∇⊤Hp(xp)Ep as shown in (4.4.5d). Additionally, it is proved

that a power preserving interconnection of two pH systems results in another pH system.

ḢT (xT ) = Ḣp(xp) + Ḣc(xc) (4.4.5a)

= −∇⊤Hp(xp)Rp∇Hp(xp) + y⊤
p up +∇⊤Hp(xp)Ep︸ ︷︷ ︸

Ḣp

−∇⊤Hc(xc)Rc∇Hc(xc) + y⊤
c uc︸ ︷︷ ︸

Ḣc

(4.4.5b)

= −∇⊤Hp(xp)Rp∇Hp(xp)−∇⊤Hc(xc)Rc∇Hc(xc) −y⊤
p yc + y⊤

c yp︸ ︷︷ ︸
0

+∇⊤Hp(xp)Ep

(4.4.5c)

= −∇⊤HT (xT )RT∇HT (xT ) +∇⊤Hp(xp)Ep (4.4.5d)

As earlier, the Hamiltonian function of the incremental model is used as a Lyapunov candidate to

analyze the stability of the system. The incremental model of the combined system that is used

in the energy analysis is given below in (4.4.6).

∑̃
T

{
˙̃xT = F T∇VT (x̃T ) + gT ũT

ỹT = g⊤
T∇VT (x̃T )

(4.4.6a)

VT (x̃T ) =
1

2
x̃⊤
TQT x̃T (4.4.6b)

V̇T (x̃T ) = −∇⊤VT (x̃T )RT∇VT (x̃T ) ≤ 0 (4.4.6c)
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The following relationship VT (x̃T ) > 0 is valid since QT is proven to be a positive definite matrix

consisting of only the inverse of stored inductance and capacitance and some positive gains. As

RT ≥ 0 has semi-definite properties, Equation (4.4.6c) implies that V̇T (x̃T ) ≤ 0 meaning the rate

of change of the energy stored in the system is non-increasing and that the system is stable. By ap-

plying LaSalle’s invariance principle on the system equations, it can be stated that V̇T (x̃T ) < 0 and

the system is globally asymptotically stable [36]. In conclusion, the interconnection solely between

the physical layer and the cyber layer admits to a pH representation without any challenges.

Steady State Conditions

As previously discussed, the primary function of the regulator is to ensure that the current ratios

ĪGi,pu converge to the set point, which is the average of all the generator currents as derived in

(3.3.3). When the regulator is neglected, the controller loses its ability to control the currents,

failing to achieve the goal of proportional current sharing. Additionally, the initial analysis neglects

the voltage saturation, which causes the controller to lose both of its objectives. However, (2.1.3e)

gets equal to V̄
G
= 1Vnom+ ūp = 1Vnom−KyKI λ̄ when the steady state conditions are achieved.

Since the last term in the equation is negative, the voltages will remain within their limit and not

exceed the voltage bound as long as KyKI λ̄ < ∆.

Furthermore, note that when consensus is reached on the set points under nominal conditions, the

parameters in the equation are identical for all generators, resulting in identical voltages at each

generator. This observation implies that proportional voltage-sharing is achieved in steady state,

which is the opposite of the intended objective of proportional current-sharing. Therefore, it is

possible in further research to explore the consequences of flipping the current and voltage in the

system such that proportional current-sharing gets achieved instead.

Simulation of the Interconnected System

The mathematical findings discussed above can be validated by implementing the closed-loop

system in Simulink. The Simulink model has the parameters for the generators, transmission lines,

and loads as previously listed in Table 3.1, 3.2, and 3.3, respectively. The gains of the controller

are chosen as kI = 0.7, ky = 0.4 and kp = 2. Furthermore, the control variable, up, is activated at

t = 10 seconds, and the 50% step in load is applied at t = 80 seconds to study the behavior of the

DC MG after the DC MG has reached steady state conditions. The load change is removed after

an additional 40 seconds. The long simulation period is a result of the relatively simple controller

that excludes the regulator and time constants.
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Figure 4.2: Simulation of the interconnected CP MG disregarding the regulator state.

As depicted in Figure 4.2, the voltages converge to an identical value, assuring proportional voltage-

sharing throughout the simulation period instead of proportional current-sharing. However, there

are no signs of instabilities in the system, which makes sense because of the previous proof stating

the asymptotic stability of the system. It should be noted that this is the opposite of the desired

control objectives. This leaves room for exploring a flipped version of the system, where the currents

and voltages are interchanged; i.e., modeling converters as controlled current sources instead of

voltage sources.

4.4.2 Analyzing the Physical Layer With the Regulator State Included

In this section, the regulator state is included in the dynamics of the physical layer, while the

cyber layer is neglected. Since the regulator state is not considered another layer, introducing an

interconnection matrix is irrelevant.

In the cyber-physical DC MG, the cyber layer provides information about the set point to the

physical layer. However, in the absence of the cyber layer, the set point is treated as a constant

reference, denoted by 1λref in (3.2.1b). Note that the leakage function, ρ(v), is neglected in this

equation. Furthermore, to ensure a valid pH representation, another modification is required. The

challenge occurs because Vnom is multiplied by the generator current in (3.2.1b), but not with the

regulator state in (4.2.2a). As a result, the system loses its skew-symmetry. To solve this, Vnom can

be considered a constant gain set to one, ensuring a valid pH representation. However, eliminating

Vnom does not impact the system since this parameter is already defined as 1pu in the regulator
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equation. The modifications result in the differential equation for the regulator state as depicted

below in (4.4.7).

τ v̇ = 1λref − IG
pu (4.4.7)

With these adjustments, the regulator equation can be incorporated into the pH representation of

the physical system as seen below in (4.4.8). The identity matrix, IG , is added to ensure that the

dimensions in the equations add up as earlier explained in section 4.2.


LG

∗ İ
G
pu

LE
∗ İ

E

CN
∗ V̇

N

τ v̇


︸ ︷︷ ︸

ẋpr

=


−RG

∗ 0 −BG⊤
IG

0 −RE
∗ −BE⊤

∗ 0

BG BE
∗ −GN

∗,cte 0

−IG 0 0 0


︸ ︷︷ ︸

F pr


IG
pu

IE

V N

v


︸ ︷︷ ︸

∇Hpr(xpr)

+


IG

0

0

0


︸ ︷︷ ︸

gp

upr +


1Vnom

0

−I∗,cte

1λref


︸ ︷︷ ︸

Epr

(4.4.8)

Studying the system and the characteristic matrices it can be stated that the system admits to

the pH formalism: The interconnection matrix Jpr ∈ R17×17 is skew-symmetric, the dissipation

matrix Rpr ∈ R17×17 is positive semi-definite and Qpr ∈ R17×17 is symmetric positive definite.

Jpr :=


0 0 −BG⊤

IG

0 0 −BE⊤

∗ 0

BG BE
∗ 0 0

−IG 0 0 0

 Rpr :=


RG

∗ 0 0 0

0 RE
∗ 0 0

0 0 GN
∗,cte 0

0 0 0 0



Qpr :=


(LG

∗)
−1 0 0 0

0 (LE
∗)

−1 0 0

0 0 (CN
∗ )−1 0

0 0 0 (τ )−1


Since the combination of the electrical network and the regulator admits to a pH representation,

the incremental model of the system can be introduced to facilitate the stability analysis. Giving

the following incremental pH system in (4.4.9b), where the constant terms is disregarded. By

performing the identical procedure as in (4.2.5), it is discovered that the passive output of the

incremental model, ỹpr, is equal to the passive output of the physical layer, ỹp. This is because

the control variable, ũpr, only appears in the expression for the generator voltages.

∑̃
pr

{
˙̃xpr = F pr∇Vpr(x̃pr) + gprũp

ỹpr = g⊤
pr∇Vpr(x̃pr)

(4.4.9a)

Vpr(x̃pr) =
1

2
x̃⊤
prQprx̃pr (4.4.9b)

V̇pr(x̃pr) = −∇⊤Vpr(x̃pr)Rpr∇Vpr(x̃pr) + ỹ⊤
prũpr (4.4.9c)

(4.4.9d)

The relationship Vpr(x̃pr) > 0 is valid because Qpr is a positive definite matrix as in (4.4.9b) and

V̇pr(x̃pr) ≤ ỹ⊤
prũpr is valid because Rpr ≥ 0 in (4.4.9c) has semi-definite properties. Consequently,

the open-loop system presented in this section admits to a pH representation and is passive with

respect to the passive input and output. In conclusion, this specific part of the CP DC MG exhibits
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a structure that does not introduce any problems within the pH representation for the combined

system.

Steady State Conditions

In steady state, the regulator state equation yields the following: τ ˙̄v = 1λref − Ī
G
pu = 0 ⇒ 1λref =

Ī
G
pu. This implies that the currents will drive towards the common set point and that all generator

currents will be identical. Therefore, including the regulator state in the physical layer facilitates

proportional current-sharing. However, in the absence of the cyber layer, there is no distributed

communication between the generators, and the set point is not determined based on the average

of the generator currents. In contrast, the network communication is centralized, meaning that

each generator has information about a single common set point, and the regulator state drives

each generator’s current to be equal to this set point. A consequence of centralized communication

is, as mentioned in section 1.1.3, that the system is more vulnerable to cyber-attacks and that it

also loses the scalability in the system.

4.4.3 Analyzing the Cyber Layer With the Regulator State Included

In this part of the analysis, the interface of the cyber layer and regulator state is examined. It

should be noted that this combination does not include the electrical network and would not be

applicable in a practical setting. However, keep in mind that the purpose of these sections is

primarily to investigate if there are any challenges related to the pH representation of the total

DC MG.

The current ratios that appear in the regulator equation are represented by a constant vector

IG
pu,ref , similar to how the set point was replaced by a constant in the previous section 4.4.2.

Furthermore, the regulator state is attempted to be included in the open-loop pH representation

of the cyber layer below in (4.4.10).

 ζ̇

λ̇

τ v̇


︸ ︷︷ ︸
ẋcr

=

0 −L 0

L − (Ky +LKP )K
−1
I 0

0 1VnomK
−1
I 0


︸ ︷︷ ︸

F cr

Kyζ

KIλ

v


︸ ︷︷ ︸
∇Hcr(xcr)

+

 0

Ky

0


︸ ︷︷ ︸

gcr

ucr +

 0

0

−1VnomIGIG
pu,ref


︸ ︷︷ ︸

Ecr

(4.4.10)

Based on the representation above, the pH matrices can be derived as shown below. It can be

observed that Rcr and Qcr have a valid pH structure and are both positive definite matrices.

However, Jcr is not skew-symmetric, and the system does not admit to a pH representation. As a

result, it can be concluded that the challenges concerning the pH structure occur at the interface

between the cyber layer and the regulator state. Hence, this section has no purpose in further

conducting a stability analysis.

Jcr :=

0 −L 0

L 0 0

0 1VnomK
−1
I 0

 Rcr :=

0 0 0

0 (Ky +LKP )K
−1
I 0

0 0 0

 Qcr :=

Ky 0 0

0 KI 0

0 0 τ−1


The lack of a valid stability proof at the interface between the cyber layer and the regulator presents

a challenge in obtaining a valid stability proof for the entire DC MG, which includes both and
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the regulator state. The complexity of the controller, particularly the outer loop derived from the

regulator, contributes to the challenges in obtaining a valid pH representation. The outer loop

problem pertains to the regulation of the state, IG
pu to be equal another state, λ. This problem

will be further investigated in section 5.
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Chapter 5

Proposing a Modified Controller

With a Stability Certificate

From previous derivations in this master’s thesis, it is evident that the proposed controller in

Babak Abdolmaleki’s and Gilbert Bergna-Diaz’s paper [2] achieves the desired control objectives.

Nevertheless, when the incremental model of the case-specific DC MG is interconnected with the

controller, it fails to meet the requirements for obtaining a stability certificate. Specifically, a

Lyapunov function of the incremental model is not identified. Ideally, the proposed controller

should immediately result in a Lyapunov function. However, since this approach has yet to be

successful, alternative methodologies need to be explored to obtain a stability certificate. This

chapter investigates the mathematical framework known as singular perturbations theory as a

potential solution to obtain a stability certificate by taking inspiration from another publication

[39] by Abdolmaleki et al. The article utilizes singular perturbation theory to obtain a valid

stability certificate for an AC MG.

This chapter only contains new contributions and is not related to the associated specialization

project.

5.1 Singular Perturbations Theory for Time Scale Separa-

tion

Singular perturbation theory is a method to control a system of different scales, where the system

equations are divided into equations representing the fast and slow dynamics [40]. The standard

singular perturbation model is depicted below, where (5.1.1a) is the reduced model representing

the slow dynamics, while (5.1.1b) is the boundary-layer model representing the fast dynamics. ϵ

is the singular perturbation parameter, a small positive parameter [41].

ẋ = f(t, x, z, ϵ) (5.1.1a)

ϵż = g(t, x, z, ϵ) (5.1.1b)

The separation of the system results in two stability analyses. Accordingly, it can be attempted to

find two Lyapunov functions – one for the fast model and another for the slow model. Following the

standard procedure of singular perturbation theory, a Lyapunov function of the composite system
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within a given interval of ϵ can be approximated by the solutions of the slow and fast subsystems

[41]. The parameter, ϵ, describes the relationship between the time constants corresponding to the

fast and slow models, implying that it decides the relationship that ensures stability in the system.

Obtaining a Lyapunov function and a stability proof of the composite system employing singular

perturbation theory is a comprehensive procedure and will not be formally conducted in this

master’s thesis. However, the proof will be derived under specific simplifications and assumptions.

A more advanced proof will be left for further research.

5.2 Conducting an Analysis of the Modified Controller

As proven in the previous chapter 4, the interface between the cyber layer and regulator state

causes problems obtaining a pH representation of the total CP DC MG. The concepts of singular

perturbation theory from above can be utilized to derive a controller that provides a stability

certificate for the interconnected cyber-physical DC MG. Note that the hyperbolic tangent and

leakage functions remain excluded from the energy analysis for as long as the stability proof of the

linear system is obtained.

In section 4.4.1, it was proved that the interconnection of the cyber and physical layers admits

to the pH formalism. This important feature is carried forward in the pursuit of a controller

in this chapter. Therefore, the system
∑

T from section 4.4.1 is used as a starting point in the

new proposal. Consequently, the output ports of both layers obtained in (4.2.5) and (4.3.4) are

continued, and the interconnection matrix from (4.4.1) is further utilized in this system. This

method facilitates the design of a controller considering the passive outputs, which is an important

aspect of obtaining a stability certificate. Note that the equation for the physical layer (4.2.2) and

the cyber layer (4.3.1) remain.

Nevertheless, the configuration in
∑

T neglects the regulator state such that the proportional

current-sharing provided by the regulator state is not satisfied. To ensure that this control objective

is satisfied, the input of the physical layer is divided into up,1 and up,2 as presented below. The

assurance of achieving the objective of proportional current-sharing occurs in the integrator term of

the equation corresponding to the second input (5.2.1c), where the additional state, x is included.

The integrator term in (5.2.1d) drives the currents to be equal to the set points, minimizing the

error, e, with the very purpose of the previously mentioned regulator state v.

up = up,1 + up,2 (5.2.1a)

up,1 = −KIKyλ (5.2.1b)

up,2 = Kp,2(λ− IG
pu) + x (5.2.1c)

τ ẋ = e = λ− IG
pu (5.2.1d)

However, what distinguishes this modified version of the controller from the original controller

is that the time constant in the integrator, (5.2.1d), is assigned a significant value compared to

the rest of the dynamics. This results in a separation between the fast and slow dynamics in

the system. Specifically, the integrator is considered the slow dynamics, while the rest of the

system is considered the fast dynamics. The separation of the system facilitates the use of singular

perturbation theory to obtain a stability certificate. In this chapter, an analysis of the fast system

with respect to the slow variables is conducted.

The increased time constant results in the relationship ẋ = e/τ ≈ 0, which implies that there is ap-
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proximately no change in x and it can be treated as a constant in (5.2.1c). Since the corresponding

time constant is larger than the rest of the dynamics in the system, it is assumed that the faster

elements responsible for consensus have converged on a set point by the time x reaches steady

state. Accordingly, the set point associated with the fast dynamics is considered a quasi-steady

state value in the equation of the integrator. This implies that the set point is changing so slowly

that it can be considered a constant. In other words, the other dynamics in the system reach

steady state significantly faster than the integrator. The increased time constant also implies that

the system’s response becomes slow. However, the system’s stability and steady state conditions

are more critical than its response time.

Studying the expressions of up,2, the current ratios are multiplied by the gain Kp,2, which implies

that increasing Kp,2 will result in IG
pu influencing the output even more. For this reason, it is

assumed that Kp,2 is approximately zero. With Kp,2 ≈ 0 and x constant, it implies that up,2

is considered constant compared to the other dynamics in the system. Recall that constants are

removed in the incremental model as discussed in 4.1.3. Consequently, up,2 is removed in the energy

and stability analysis of the incremental model, resulting in ũp,2 = 0. Therefore, the additional

up,2 will not impact the stability proof.

The incremental storage functions of the physical and cyber layers are used as Lyapunov candidates

to illustrate that up,2 is not affecting the stability proof of the interconnected cyber-physical DC

MG,
∑

T , from section 4.4.1. Firstly, QT is as previously presented and is a positive definite

matrix such that VT (x̃T ) > 0. Secondly, the derivatives of the Lyapunov candidates are studied

to evaluate if V̇T (x̃T ) ≤ 0 still holds. The result from (4.2.7a) is reproduced with an updated ũp

below in (5.2.2a), while (5.2.2b) is identical to the result in (4.3.6).

V̇p(x̃p) ≤ ỹ⊤
p ũp = ỹ⊤

p ũp,1 + ỹ⊤
p ũp,2 (5.2.2a)

V̇c(x̃c) ≤ ỹ⊤
c ũc (5.2.2b)

As illustrated in (5.2.3a), the Lyapunov candidate for the interconnected system is a summation

of the Lyapunov functions of the two layers. The two relationships from (5.2.2a) and (5.2.2b) that

apply for these functions yields as follows in (5.2.3b). The interconnection matrix from (4.4.1)

results in the passive outputs and inputs as presented in section 4.4.1. However, up,2 is considered

constant and gets eliminated in the incremental model as shown in (5.2.3c). Furthermore, the input

ports are substituted by the passive output ports, and the skew-symmetric parts of the system

cancel out. Consequently, the relationship in (5.2.3d) is valid, and the incremental model of the

total DC MG is a Lyapunov candidate, which satisfies the asymptotically stable requirements when

LaSalle’s invariance principle is applied [36].

V̇T (x̃T ) = V̇c(x̃c) + V̇p(x̃p) (5.2.3a)

≤ ỹ⊤
c ũc + ỹ⊤

p ũp,1 + ỹ⊤
p ũp,2 (5.2.3b)

= ỹ⊤
c ỹp − ỹ⊤

p ỹc︸ ︷︷ ︸
=0

+ ỹ⊤
p ũp,2︸ ︷︷ ︸
=0

(5.2.3c)

V̇T (x̃T ) ≤ 0 (5.2.3d)

The derivations above demonstrate that the additional integrator does not affect the above stability

proof using principles from singular perturbation theory. Consequently, a stability certificate for

the fast system of the modified controller is obtained. Nevertheless, this analysis is the first

step towards conducting the complex singular perturbation analysis for the interconnected system.
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Furthermore, the complicated procedure of analyzing the slow dynamics and obtaining a Lyapunov

candidate for the composite system within a specified interval of ϵ are needed to complete the proof.

However, due to time limitation, we decided to leave this missing part of the analysis for future

work and only then we could potentially conclude that the system will be robust to stability-related

challenges under all circumstances. Additionally, the value of the time constant in (5.2.1d) that

guarantees the stability of the composite system can be derived by ϵ in such further analysis.

That being said, from a practical perspective, it is possible to disconnect the integrator to maintain

stable conditions in situations where ustable behavior begins to appear. To a certain extent, this

practical option to disconnect the integrator when instability arises compensates for the lack of a

formal proof of the slow system. As demonstrated in section 4.4.1, disconnecting the slow dynamics

enables the system to meet the criteria for a stability certificate. However, as seen in Figure 4.2, the

period of disconnection of the integrator comes at the expense of the control objectives concerning

proportional current-sharing.

This analysis highlights the difficulties in achieving a perfect stability proof while meeting the con-

trol objectives. Furthermore, the master’s thesis has emphasized that it is complicated to achieve

both, especially in systems that include outer loops. Therefore, the control and electrical engineers

must find a sufficient golden mean between the stability and control objective requirements. In

contrast to the controller proposed in [1] and investigated in [3], it has been clear that the improve-

ment of the control objectives in [2] comes at the cost of compromised stability. To summarize,

obtaining a stability proof for this system is challenging, and certain simplifications have been

made to obtain a stability certificate.

5.3 Simulations of the Modified Controller

The DC MG with the modified controller is implemented in Simulink, utilizing parameters specified

in Table 3.1, 3.2 and 3.3. The gains are set to kI = 0.001, ky = 1.2, kp = 0.9 and kp,2 = 0.0001.

The events and the 50% load change specified in Table 3.4 is applied to the system, identical to

the initial simulations conducted in section 3.4. The exact value of the time constant necessary

to guarantee a stability proof has yet to be determined. Therefore, the system is simulated for

three values of τ to demonstrate the difference in small and large time constants. Note that the

saturation is disregarded in the controller for these simulations.
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Figure 5.1: τ = 1.
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Figure 5.2: τ = 10.
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Figure 5.3: τ = 50.

As observed in the figures 5.1 and 5.2, it is evident that the systems with time constants of τ = 1

and τ = 10 have relatively rapid responses, reaching steady state within ten seconds. However,

this does not apply to the system with a time constant equal to τ = 50, as depicted in Figure 5.3

which struggles to reach steady state before the step in load. In conclusion, a larger time constant

results in a slower response, as predicted in section 5.2. This slow response may be the case for

the case-specific system if the time constant eventually derived from ϵ is sufficiently large.

5.3.1 Including the Saturation Function and Leakage Coefficient

Simulations are conducted to examine the behavior of the modified controller when the saturation

and leakage functions are included. Therefore, the leakage coefficient is added to (5.2.1d) as for the

regulator state equation in (3.2.1b). Since we have not achieved a proper stability proof of the DC

MG incorporated with this controller, the time constant is yet to be determined. Consequently,

we choose to set it as τ = 10 for illustration purposes. The gains are tuned to kI = 0.001, ky = 10,

kp = 50 and kp,2 = 0.0001. The 50% load change is implemented at t = 30s and removed at

t = 70s in these simulations. The time interval differs from Table 3.4 because it will take longer

for this system to reach steady state conditions due to the large time constant. First, the voltage

band is set to the strict interval of [Vmin, Vmax] = [0.99 pu, 1.01 pu] and the parameters are as

presented in Table 3.1, 3.2 and 3.3. The simulation results for this DC MG are as depicted in

Figure 5.4. Lastly, the leakage coefficient is included, and the voltage band is expanded to the

interval of [Vmin, Vmax] = [0.95 pu, 1.05 pu], while the load and transmission line parameters are

modified as in section 3.4.5. The simulation results for these specifications are given in Figure 5.5.
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Figure 5.4: [Vmin, Vmax] = [0.99 pu, 1.01 pu].

The leakage coefficient is not included.
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Figure 5.5: [Vmin, Vmax] = [0.95 pu, 1.05 pu].

Parameters from Table 3.1 and updated TL and

load parameters. The leakage coefficient is in-

cluded.

Upon comparing these two results with the corresponding simulation result of the original controller

in Figure 3.1 and Figure 3.4 from section 3.4, it becomes apparent that there are notable similarities

between them. The small values of kI and kp,2 tone down the effect of the new elements in the

modified controller, contributing to the minor differences in the simulation results. However,

incorporating the modified controller into the DC MG results in a longer response time and poorer

transient response is poorer, as observed in the simulations presented in this section. As previously

mentioned, stability properties are prioritized over performance and response time in this master’s

thesis. Considering these objectives, the modified controller’s results are promising and give good

prospects for future work.
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Chapter 6

Conclusion and Further Work

In this thesis, we have provided an accessible introduction to large signal stability analysis through

a systematic analysis of complex control concepts. The primary focus has been on the possibility

and challenges of the application of PI consensus to DC MGs, focusing on achieving proportional

current-sharing and voltage containment as key control objectives. Moreover, we have also aimed

to achieve a scalable stability certificate for the system under investigation.

6.1 Conclusion

Initially, the electrical and control networks were presented, providing system equations and an

introduction to graph theory. Moreover, this part of the thesis presented a case-specific example

that was used for learning practices throughout mathematical derivations and simulations in the

thesis.

Furthermore, the optimization problem that forms the basis for the controller was derived with

Thesis Objective 1 in mind, aiming at an accessible presentation of complex topics. The op-

timization problem utilizes the consensus algorithm to achieve proportional current-sharing in a

distributed manner. By solving the optimization problem via the KKT conditions, a common

consensus-based set point for the DGs was obtained. The set points were equal to their respective

current ratios and an additional term. Consequently, it was emphasized that the optimization

problem provided a sub-optimal value for the set points due to the non-identical current ratios

in the optimal solution. However, it was demonstrated that this term is only present in case of

voltage saturation and represents the optimal solution under such operating conditions. Therefore,

proportional current-sharing is achieved as long as the voltages are within operating limits and as

accurately as possible during the saturation of voltages. Consequently, the thesis emphasizes the

difficulty of obtaining both proportional current-sharing and desired voltage regulation as stated

by [21] in the introduction in section 1.1.3.

The optimization problem forms the basis for the Proportional-Integral Dynamic Consensus Estim-

ators presented in [2], which constitutes the cyber controller. Studying the steady state conditions

of these estimators illustrates that the optimal set point is the average of all the DG’s current

ratios in the microgrid and ensures that a consensus is obtained at the set points. In conclusion,

the estimators fulfill the optimization problem and achieve the objectives in steady state.

The thesis’ investigation of the nonlinear local controller proposed in [2] provided a detailed over-

view of each control element, arguing why they are included in the control equations. It was
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demonstrated that the nonlinear leakage coefficient had a solid connection to the additional term

included in the shape of the set points. Additionally, it was illustrated through simulations that

the leakage term efficiently functioned as an anti-wind up technique. The simulations also depicted

that the controller successfully achieves its control objectives when connected to the case-specific

DC MG.

Furthermore, the port-Hamiltonian representation for both the physical layer and cyber layer was

obtained, which was promising regarding the large signal stability analysis. However, when the two

layers were interconnected, challenges in the port-Hamiltonian structure preservation occurred at

the interface between the cyber layer and the regulator state, as the mathematical interconnection

between them is unfortunately not power preserving. As a result, Thesis Objective 2 of identifying

these challenges was accomplished. To reduce the system’s complexity until this issue is resolved

in future work, the voltage saturation was neglected in the energy modeling in this thesis. Fur-

thermore, a Lyapunov function for the incremental model of DC MG neglecting the regulator was

obtained, such that a scalable stability certificate could be achieved. Although successful from

a stability viewpoint, this system configuration could not achieve proportional current-sharing.

Instead, it achieved proportional voltage-sharing, leaving an interesting topic of study for future

work.

Eventually, we used the energy preserving interconnection between the physical and cyber layers

in the attempt to design a suitable controller that could ensure a stability certificate for the

total system and achieve Thesis Objective 3. Additionally, we took inspiration from singular

perturbation theory to justify using time-scale separation arguments as a potential solution to

obtain a scalable stability certificate. The dynamics of the controller from [2] were divided into slow

and fast components, with the regulator state considered to have slow dynamics, which reduces the

complexity of the equations as it is considered constant compared to the fast dynamics. When the

energy analysis of the fast dynamics was conducted, a stability certificate was obtained because

of energy preserving interconnection. However, the slow dynamics should also be analyzed to

complete the stability proof using time-scale separation principles. Only then can we conclude

that the system will be robust to stability-related challenges in all scenarios. However, it was

argued that the slow dynamics could be disconnected from the system in practical situations to

preserve stable conditions.
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6.2 Further Work

As outlined in Limitation of Scope in section 1.2, simplifications were made in this thesis by using

ZI loads and zero-order converters in the modeling of the physical network. Therefore, further

research could explore the implementation of the nonlinear ZIP loads and advanced converters.

Additionally, the master’s thesis disregards transient analysis as performance was not the primary

focus of this thesis.

Moreover, simplifications in regard to the energy and stability analysis were made due to the

complicated structure of the combined system. This is due to the interface of the cyber layer and

the regulator state that has been challenging in terms of a pH representation. Specifically, the

outer-loop regulating a state to be equal to another state is the root to the problem. Obtaining

a valid pH representation of the incremental model in further research could contribute to the

pursuit of a scalable stability certificate for the interconnected DC MG. However, this process is

not straightforward as it is not clear how to obtain a Lyapunov candidate.

Lastly, the thesis obtained a stability certificate for the fast dynamics of the modified controller

proposed in chapter 5. However, a comprehensive proof based on singular perturbation theory that

could potentially guarantee stability under all circumstances is left for further work.
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Appendices

A.1 The Laplacian Matrix and Consensus

The following section is reproduced from the associated specialization project [24]. It explains the

Laplacian matrix used throughout the master’s thesis and its important properties that can be

taken advantage of in control theory. The Laplacian of a graph is a central object in the study

of distributed consensus dynamics [42]. A system can have consensus if every agent in the system

has agreed upon a common value [29]. In distributed networks, the system has consensus if every

pair of neighbors i and j converge to the same value. This gives the following relation between the

local states at each agent: xi = xj , i.e., as in (A.1.1).

lim
t→∞

(xi(t)− xj(t)) = 0 (A.1.1)

The Laplacian consensus dynamics of the ith DG, in a system, is given as in (A.1.2), where aij
represent the elements in the adjacency matrix [42].

ẋi = −
∑
j∈Ni

aij (xi(t)− xj(t)) (A.1.2)

This implies that the DGs only need information about their neighbors to update their state,

i.e., following a distributed topology. The neighbors of the ith DG are given in the set Ni. The

expression (A.1.2) can be expressed as below in (A.1.3).

ẋi = −

∑
j∈Ni

aijxi(t)−
∑
j∈Ni

aijxj(t)

 (A.1.3)

When (A.1.3) is written in matrix notation, the following relation in (A.1.4) is obtained.

ẋ = − (D −A)x(t) = −Lx(t) (A.1.4)

Based on an undirected graph like Mc, the Laplacian matrix above becomes a symmetric positive

semi-definite matrix. This also implies that the Laplacian consensus dynamics are stable and

must converge in steady-state [42]. Therefore, when an undirected graph is related to the system

modeling, the sum of all DG’s states will be unchanged over time, as pointed out below [29].
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d

dt

(
n∑

i=1

xi(t)

)
= 0

⇒
n∑

i=1

xi(t) = constant

⇒ −
∑
j∈Ni

aij (xi(t)− xj(t)) = 0

⇒ xi(t) = xj(t)

The above relation implies that the dynamics of the Laplacian will bring any initial condition to

a consensus and maintain the sum of the initial states, xi(0) [42]. Further, the state of each DG

converges to the same average value as below in (A.1.6) [29].

α =
1

n

n∑
i=1

xi(0) (A.1.6)

The sum of each row in the Laplacian matrix is equal to zero. Thus, the Laplacian matrix has

the property of Lα = 0, where α = [α, α, ..., α]⊤. This property is being taken advantage of in

designing the controller because it is desirable that generators converge to a common consensus

value to satisfy specific control objectives.

The sum of the elements in each column is also zero, giving the following relationship 1⊤ = 0.[29]

This property is used to illustrate that the set-points converge to the optimal shape in steady state.

A.2 Deriving the KKT Condition

This section contains reused material from the associated specialization project [24], where the

optimal shape of λ̄i was derived from the derivative of the Lagrangian function in (A.2.1) with

respect to each set-point as in (A.2.2) following the KKT conditions. The derivations have the

purpose of giving a thorough derivation of the complicated optimization problem presented in [2].

L(λ̄i, ζ̄i) =
1

2

nGi∑
i=1

(λ̄i − ĪGi,pu)
2 +

nGi∑
i=1

ζ̄i
∑

j∈NGi

aij(λ̄j − λ̄i)︸ ︷︷ ︸
z̄i

(A.2.1)

∂L(λ̄i, ζ̄i)

∂λ̄i
= 0 (A.2.2)

The derivatives of the two terms in (A.2.1) will be obtained separately as the latter term’s derivative

is complicated and needs further explanation. However, the derivative of the first term is rather

straightforward and given in (A.2.3) below.

∂

∂λ̄i

1

2

nGi∑
i=1

(λ̄i − ĪGi,pu)
2

 = λ̄i − ĪGi,pu (A.2.3)

The derivative of the latter term in (A.2.1) is complicated and will be derived by applying it to

the case-specific CP MG from Figure 2.4. Firstly, the z̄is for the system will be explained and
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listed. The number of terms in z̄i is determined by the number of neighbors that generator i has.

As an example, DG1 only communicates with DG2 according to NG1
= {2}. Consequently, z̄1

only consists of one term. All z̄is relevant for the case-specific CP MG are listed below in (A.2.4),

where z̄i from equation (A.2.1) is used in the calculations.

z̄i =
∑

j∈NGi

aij(λ̄j − λ̄i) →


z̄1 = a12(λ̄2 − λ̄1)

z̄2 = a21(λ̄1 − λ̄2) + a23(λ̄3 − λ̄2) + a24(λ̄4 − λ̄2)

z̄3 = a32(λ̄2 − λ̄3) + a34(λ̄4 − λ̄3)

z̄4 = a42(λ̄2 − λ̄4) + a43(λ̄3 − λ̄4)

(A.2.4)

The following statements are valid when j is the neighbor of i and the communication graph is

undirected, i.e, aij = aji:

• ∂
∂λ̄i

z̄i =
∑

j∈NGi

−aij .

• ∂
∂λ̄i

z̄j =
∑

j∈NGi

aij , ∀ j ̸= i

•
nGi∑
j=1
j ̸=i

=
∑

j∈NGi

All the relevant z̄is are identified and the derivative of the latter term in (A.2.1) is obtained in

(A.2.5a). Using the statements above, the general shape of the derivative will result in expression

(A.2.5d).

∂

∂λ̄i

nGi∑
i=1

ζ̄iz̄i

 =
∂

∂λ̄i

(
ζ̄1z̄1 + ζ̄2z̄2 + ζ̄3z̄3 + ζ̄4z̄4

)
(A.2.5a)

=
∂

∂λ̄i

ζ̄iz̄i +

nGi∑
j=1
j ̸=i

ζ̄j z̄j

 =
∂

∂λ̄i

ζ̄iz̄i +
∑

j∈NGi

ζ̄j z̄j

 (A.2.5b)

=
∑

j∈NGi

ζ̄i(−aij) +
∑

j∈NGi

ζ̄jaij (A.2.5c)

=
∑

j∈NGi

aij
(
ζ̄j − ζ̄i

)
(A.2.5d)

To prove the final shape of the derivative in (A.2.5d), the expression in (A.2.5a) will be derivated

with respect to λ̄i for all i = 1, ..., nGi .

Generator 1, i = 1

In this case, i represents DG 1, and j represents the generators that are neighbors with DG 1.

This DG has only one neighbor, thus z̄j = {z̄2} and the derivative in (A.2.5a) with respect to λ̄1

gives only two summation terms as derived below. This is because λ̄1 is only present in z̄1 and z̄2.
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∂

∂λ̄1

nGi∑
i=1

ζ̄iz̄i

 = ζ̄1(−a12) + ζ̄2a21 + 0 + 0

=
∑

j∈NG1

ζ̄1(−a1j) +

nGi∑
j=1
j ̸=i

ζ̄j
∑

j∈NG2

aj1

=
∑

j∈NG1

ζ̄1(−a1j) +
∑

j∈NG1

ζ̄jaj1

=
∑

j∈NG1

a1j
(
ζ̄j − ζ̄1

)

Generator 2, i = 2

In this case, i represents DG 2, and j represents the generators that are neighbors with DG 2.

This DG has three neighbors, thus z̄j = {z̄1, z̄3, z̄4} and the derivative in (A.2.5d) with respect to

λ̄2 gives four summation terms, since λ̄2 is present in all z̄is. This is because DG 2 is connected to

all the DGs in the case-specific DC MG as shown in Figure 2.4.

∂

∂λ̄2

nGi∑
i=1

ζ̄iz̄i

 = ζ̄1a12 + ζ̄2(−a21 − a23 − a24) + ζ̄3a32 + ζ̄4a42

=
∑

j∈NG2

ζ̄2(−a2j) +

nGi∑
j=1
j ̸=i

ζ̄j
∑

j∈NG2

aj2

=
∑

j∈NG2

ζ̄2(−a2j) +
∑

j∈NG2

ζ̄jaj2

=
∑

j∈NG2

a2j
(
ζ̄j − ζ̄2

)

Generator 3, i = 3

In this case, i represents DG 3, and j represents the generators that are neighbors with DG 3.

This DG has two neighbors, thus z̄j = {z̄2, z̄4} and the derivative in (A.2.5d) with respect to λ̄3

gives three summation terms. This is because λ̄3 is present in z̄2, z̄3 and z̄4.

∂

∂λ̄3

nGi∑
i=1

ζ̄iz̄i

 = ζ̄2a23 + ζ̄3(−a32 − a34) + ζ̄4a43 + 0

=
∑

j∈NG3

ζ̄3(−a3j) +

nGi∑
j=1
j ̸=i

ζ̄j
∑

j∈NG3

aj3

=
∑

j∈NG3

ζ̄3(−a3j) +
∑

j∈NG3

ζ̄jaj3

=
∑

j∈NG3

a3j
(
ζ̄j − ζ̄3

)

Generator 4, i = 4

In this case, i represents DG 4, and j represents the generators that are neighbors with DG 4.
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This DG has two neighbors, thus z̄j = {z̄2, z̄3} and the derivative in (A.2.5d) with respect to λ̄4

gives three summation terms. This is because λ̄4 is present in z̄2, z̄3 and z̄4.

∂

∂λ̄4

nGi∑
i=1

ζ̄iz̄i

 = ζ̄2a24 + ζ̄3a34 + ζ̄4(−a42 − a43) + 0

=
∑

j∈NG4

ζ̄4(−a4j) +

nGi∑
j=1
j ̸=i

ζ̄j
∑

j∈NG4

aj4

=
∑

j∈NG4

ζ̄4(−a4j) +
∑

j∈NG4

ζ̄jaj4

=
∑

j∈NG4

a4j
(
ζ̄j − ζ̄4

)
From the above derivations, it is clear that the general relationship in (A.2.5d) holds. This re-

lationship, together with the derivative of the first term as given in (A.2.3), makes it possible to

solve (A.2.2) as derived in (A.2.10).

∂L(λ̄i, ζ̄i)

∂λ̄i
= λ̄i − ĪGi,pu +

∑
j∈NGi

aij
(
ζ̄j − ζ̄i

)
= 0 (A.2.10a)

λ̄i = ĪGi,pu +
∑

j∈NGi

aij
(
ζ̄i − ζ̄j

)
(A.2.10b)

The optimal shape for each λ̄i in the case-specific CP MG is given below in (A.2.11).

λ̄i = ĪGi,pu +
∑

j∈NGi

aij
(
ζ̄i − ζ̄j

)
→


λ̄1 = ĪG1,pu + a12(ζ̄1 − ζ̄2)

λ̄2 = ĪG2,pu + a21(ζ̄2 − ζ̄1) + a23(ζ̄2 − ζ̄3) + a24(ζ̄2 − ζ̄4)

λ̄3 = ĪG3,pu + a32(ζ̄3 − ζ̄2) + a34(ζ̄3 − ζ̄4)

λ̄4 = ĪG4,pu + a42(ζ̄4 − ζ̄2) + a43(ζ̄4 − ζ̄3)

(A.2.11)

A.3 Energy Modeling of the Cyber-Physical DC Micro Grid

This section is reproduced from the associated specialization project [24] and aims to illustrate the

challenge that occurred in the pH representation of the CP DC MG with the regulator state and

both layers connected.

As a first step, the controller is simplified by disregarding the non-linear hyperbolic tangent func-

tion, as shown in equation (A.3.1a). In addition, the leakage function, which is only activated

when the voltage needs to saturate, will also be ignored. This simplification will allow us to avoid

any complications caused by the non-linearity of the hyperbolic tangent function.

ui,p = vi (A.3.1a)

τ v̇i = Vnom(λi − IGi,pu) (A.3.1b)
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The physical layer and cyber layer were represented in matrix notation in (4.2.3) and (4.3.2),

respectively. Combined with the ODE for the regulator state, vi, the total cyber-physical MG in

matrix notation can be obtained with these two equations as in (A.3.2).



LG
∗ İ

G
pu

LE
∗ İ

E

CN
∗ V̇

N

ζ̇

λ̇

τ v̇


︸ ︷︷ ︸

ẋT

=



−RG
∗ 0 −BG⊤

0 0 IG

0 −RE
∗ −BE⊤

∗ 0 0 0

BG BE
∗ −GN

∗,cte 0 0 0

0 0 0 0 −L 0

Ky 0 0 L − (Ky +LKP )K
−1
I 0

−IGVnom 0 0 0 VnomK
−1
I 0


︸ ︷︷ ︸

FT



IG
pu

IE

V N

Kyζ

KIλ

v


︸ ︷︷ ︸
∇HT (xT )

+



1Vnom

0

−I∗,cte

0

0

0


︸ ︷︷ ︸

ET

(A.3.2)

From the correlation, ∇HT (xT ) = QTxT , it can be observed that QT is a symmetric positive

matrix that consists of the inverse of inductances, capacitances, a time constant, and positive

gains. This implies that QT has desirable properties for use in the analysis of the system.

QT :=



(LG
∗)

−1 0 0 0 0 0

0 (LE
∗)

−1 0 0 0 0

0 0 (CN
∗ )−1 0 0 0

0 0 0 Ky 0 0

0 0 0 0 KI 0

0 0 0 0 0 (τ )−1


However, FT from (A.3.2) is not a symmetrical positive semi-definite matrix. Consequently, a pH

representation of the CP DC MG is not obtained.
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