
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Mikael Andreas Medina

Vision-Based Grasp Pose Detection
for Autonomous Underwater
Vehicles with 0-DoF Manipulators

Master’s thesis in Cybernetics and Robotics
Supervisor: Damiano Varagnolo
Co-supervisor: Simon Andreas Hagen Hoff & Erlend Andreas Basso
June 2023

Mikael Andreas Medina

Vision-Based Grasp Pose Detection for
Autonomous Underwater Vehicles
with 0-DoF Manipulators

Master’s thesis in Cybernetics and Robotics
Supervisor: Damiano Varagnolo
Co-supervisor: Simon Andreas Hagen Hoff & Erlend Andreas Basso
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

As the level of exploitation of ocean resources and demand for sustainable offshore
solutions rises, so too does the need for autonomous underwater vehicles (AUVs).
AUVs can help perform routine inspection, maintenance, and repair (IMR) tasks,
reducing the need for costly human expeditions to rough and challenging envi-
ronments.

An AUV requires an understanding of the scene in order to perform inter-
vention tasks. This thesis presents a framework for understanding the scene as
observed by an optical camera to generate suggested positions for an AUV to
grasp an object. The suggested framework consists of four main components that
are put together and evaluated through simulation. With the aim of giving the
AUV a semantic understanding of the scene, the theory behind creating a three-
dimensional reconstruction of the observed scene is presented. The reconstructed
scene is used as a basis for generating candidate grasp poses based on geomet-
ric considerations of the scene and the AUV’s gripper. A grasp pose evaluation
framework is suggested to evaluate the quality of the generated grasp candidates
to extract the pose most likely to be successful. Several geometric quality metrics
are proposed for the purpose of this evaluation, each one emphasizing a separate
metric considered to indicate a better grasp. For this thesis, the gripper is consid-
ered rigidly fastened to the AUV and unable to move on its own. This imposes
constraints on how the AUV has to be positioned in order to grasp objects. A scor-
ing function is introduced as a method of evaluating grasp pose candidates based
on their orientation.

The proposed grasp pose detection framework is shown to produce viable
grasps through simulation. However, no experimental results from a field situ-
ation are provided, which leaves the suggested framework with some way to go
before it can be verified.

iii

Sammendrag

Med en stor økning i utnyttelsen av havressurser og en økende etterspørsel et-
ter bærekraftige offshore-løsninger, øker også behovet for autonome undervanns-
farkoster (AUV-er). AUV-er kan brukes til å utføre rutinemessige inspeksjons-,
vedlikeholds- og reparasjonsoppdrag (IMR), og reduserer behovet for kostbare
menneskelige ekspedisjoner til tøffe og utfordrende miljøer.

For å kunne utføre slike intervensjonsoppgaver krever AUV-er en situasjons-
forståelse. Denne avhandlingen presenterer et rammeverk for at en AUV skal
tilegne seg en forståelse om omgivelsene ved bruk av et optisk kamera for å
generere foreslåtte posisjoner der AUV-en kan gripe observerte objekter. Det fores-
låtte rammeverket består av fire hovedkomponenter som til slutt settes sammen og
evalueres gjennom simulasjon. Med mål om å gi AUV-en en semantisk forståelse
av den observerte situasjonen, presenteres teorien bak hvordan en tredimensjonal
rekonstruksjon av scenen kan gjøres. Den rekonstruerte scenen brukes deretter
som grunnlag til å generere kandidater til gripeposisjoner basert på geometriske
betraktninger av den observerte scenen og griperen til AUV-en. Videre foreslås det
en ramme for evaluering av gripeposisjoner, for å evaluere de genererte kandidat-
posisjonene og finne den posisjonen som mest sannsynlig vil lykkes. Til dette for-
målet foreslås flere geometriske kvalitetsmål, hver med vekt på en separat metrikk
som anses å indikere et bedre grep. I denne oppgaven betraktes det en griper som
sitter fastmontert til AUV-en og som ikke kan bevege seg på egenhånd, noe som
legger begrensninger på hvordan AUV-en må plassere seg for å gripe objekter. En
poengfunksjon introduseres som en metode for å evaluere gripeposisjonskandi-
dater basert på orienteringen deres.

Det foreslåtte rammeverket for å detektere gripeposisjoner blir gjennom sim-
ulasjon vist til å være kapabelt til å generere brukbare grep. Imidlertid er det ikke
presentert eksperimentelle resultater fra en felt-situasjon, noe som etterlater det
foreslåtte rammeverket med en vei å gå før det kan verifiseres.

v

Preface

This master’s thesis concludes a five-year journey toward the degree of Master
of Science in Cybernetics and Robotics at the Norwegian University of Science
and Technology (NTNU). Thesis work has been carried out during the winter and
spring of 2023 at NTNU, under the supervision of Professor Damiano Varagnolo,
Ph.D. candidate Simon Andreas Hagen Hoff, and Postdoctoral Fellow Erlend An-
dreas Basso, at the Department of Engineering Cybernetics at NTNU.

Parts of this thesis use the results produced during a specialization project
conducted in the autumn of 2022. As the project report is not published, some
of the work has been restated in this thesis, this includes the sections about the
simulator and software setup, Sections 7.1 and 7.2. The presented method has
been implemented and tested using the Robot Operating System and the Gazebo
simulator. C++ has been the main language of implementation, using the Point
Cloud Library for point cloud processing and the linear algebra library Eigen for
matrix and vector operations.

First of all, I would like to thank Simon and Erlend, who have been a huge
source of help and inspiration when I needed it, and also for being great motiva-
tors in times of hardship. I would like to thank Damiano for giving me this much
freedom with my thesis and for leaving me in the more than capable hands of
Simon and Erlend.

I would also like to give thanks to my family for all their unrelenting support,
even through the challenges they have endured whilst I have been studying, and
to my girlfriend who encouraged me to spend more time at my workplace than
with her. Finally, my time at NTNU would never have been the same without the
friends I made along the way. From the unwinding board game nights to the early
wake-up motivational coffee meetings, every morning through the final semester.
I could probably have done it without you, but I would definitely have chosen to
do it with you all again a million times if given the chance.

Trondheim, June 2023
Mikael Andreas Medina

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
1 Introduction . 1

1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Contributions . 3
1.4 Thesis Structure . 3

2 Modeling of Underwater Vehicles . 5
2.1 Preliminaries . 5
2.2 Underwater Vehicle Dynamics . 7

2.2.1 Kinematics . 7
2.2.2 Kinetics . 8

3 Robotic Vision . 11
3.1 Camera Modeling . 11

3.1.1 Pinhole Camera . 12
3.1.2 Distortion . 15

3.2 Underwater Camera Modeling . 16
3.2.1 The Pinax-model . 17

3.3 Feature Detection . 18
3.3.1 Properties of a Feature Detector 18

3.4 A Selection of Feature Detectors . 19
3.4.1 Harris Corner Detector . 19
3.4.2 Scale-Invariant Feature Transform 21
3.4.3 Feature Descriptors . 25

3.5 Feature Matching . 26
3.6 Stereo Cameras . 27

3.6.1 Triangulation . 27
3.7 RGBD Cameras . 29

3.7.1 Structured Light . 29
3.7.2 Time Of Flight . 29

ix

x Mikael Medina: Grasp Pose Detection for AUVs

3.8 Scene Reconstruction . 30
4 Point Clouds . 31

4.1 Preprocessing . 32
4.1.1 Removing Invalid Values . 32
4.1.2 k-Dimensional Tree . 32
4.1.3 Denoising . 35
4.1.4 Random Sample Consensus . 35
4.1.5 Downsampling . 37

4.2 Understanding the Scene . 38
4.2.1 Surface Normal Estimation . 38
4.2.2 Segmentation . 39

5 Grasp Pose Sampling . 43
5.1 Grasp Pose Semantics . 44
5.2 Uniform With Local Variation . 44
5.3 Using Point Cloud Characteristics . 47

6 Grasp Pose Evaluation . 51
6.1 Collisions . 52
6.2 Normal Angle Alignment . 53
6.3 Orientation Constraints . 53
6.4 Contact Point Alignment . 54
6.5 Inlier Count . 57
6.6 Final Scoring . 58

7 Implementation . 59
7.1 The Robot Operating System . 59
7.2 Gazebo . 60
7.3 The Point Cloud Library . 61
7.4 Inherent Assumptions . 61

7.4.1 Imaging and Point Cloud Construction 61
7.4.2 Point Cloud Processing . 62
7.4.3 Grasp Pose Sampling . 62

8 Results . 63
8.1 Experimental Setup . 64
8.2 Point Cloud Processing . 64
8.3 Grasp Pose Sampling . 68
8.4 Grasp Pose Evaluation . 71
8.5 Final Results . 74

9 Discussion . 77
9.1 Sampling . 77
9.2 Evaluation . 78
9.3 Future Work . 79

10 Conclusion . 81
Bibliography . 83
A Image Operations . 89

A.1 Linear Filtering . 89

Contents xi

A.2 Gaussian Blur . 89
A.3 Image Derivatives . 90

Figures

1.1 Pipeline: Introduction . 3

2.1 Pipeline: Modeling of Underwater Vehicles 5

3.1 Pipeline: Robotic Vision . 11
3.2 Pinhole camera model . 12
3.3 Comparison of different radial distortions. 15
3.4 Examples of tangential distortion. 15
3.5 Pinax-model virtual camera projection 18
3.6 Harris corner detector scaling . 21
3.7 SIFT: Scale space . 22
3.8 SIFT: Difference of Gaussians . 23
3.9 Detected SIFT keypoints . 24
3.10 Image patch feature descriptor . 25
3.11 Histogram of gradients . 26
3.12 Triangulation . 28
3.13 Examples of structured light patterns. 30

4.1 Pipeline: Semantic Understanding . 31
4.2 Example binary tree . 33
4.3 Two dimensional kD tree . 34
4.4 RANSAC vs Linear regression . 36
4.5 Test scene used for comparison of region-growing segmentation. . . 40
4.6 Comparison of segmentation methods 41

5.1 Pipeline: Grasp Pose Sampling . 43
5.2 Gripper closing region . 44
5.3 Uniformly sampled points . 45
5.4 Normally sampled points . 49

6.1 Pipeline: Grasp Pose Evaluation . 51
6.2 Overlap of collision box and closing region 52
6.3 Scoring function for orientations. 54
6.4 Friction cone example . 55

xiii

xiv Mikael Medina: Grasp Pose Detection for AUVs

6.5 Antipodal grasp example . 56

7.1 BlueROV in Gazebo. 60

8.1 Objects in the simulator . 63
8.2 Node structure . 64
8.3 Scene used for segmentation comparison 66
8.4 Segmented point cloud after RANSAC 66
8.5 Multiple object segmentation . 67
8.6 Comparison of normal and uniform sampling on the barbell 69
8.7 Comparison of normal and uniform sampling on the circle 70
8.8 Point cloud used for testing downsampling 71
8.9 Grasps evaluated with normal alignment 72
8.10 Grasps evaluated with contact point alignment 73
8.11 Grasps evaluated purely based on orientation 73
8.12 Grasps evaluated based on the number of inliers 74
8.13 50 grasps on the barbell . 75
8.14 50 grasps on the circle . 75
8.15 50 grasps on the cross . 76
8.16 Histograms of grasp scores . 76

Chapter 1

Introduction

This introductory chapter gives an insight into the motivation behind this thesis in
Section 1.1 before the problem statement is presented in Section 1.2. Thereafter,
Section 1.3 presents the main contributions, followed by an outline of the thesis
in Section 1.4.

1.1 Motivation

Human beings are curious and explorers by nature. Throughout history, the world
has been extensively explored and mapped out, and with the current technology,
anyone with a handheld device is able to instantly look up directions to practically
anywhere on Earth. Since the early ages people have looked to the stars, and —
as soon as technology allowed for it — explorers went to the moon. Yet, the vast
oceans of the Earth remain mystical and largely uncharted.

Covering more of the Earth’s surface than land, the oceans provide an intrigu-
ing and largely untapped potential for explorers and entrepreneurs. Increasing
resource demands and environmental challenges push the human race to reach
into the dark depths below. The seafloor is thought to have large amounts of min-
eral resources [1]. Demand for sustainable nutrition drives researchers to utilize
the ocean for large-scale renewable resources such as fish and kelp [2]. Further-
more, some of the largest man-made structures dwell in the rough conditions
posed by the deep oceans, such as the Petronius oil platform towering more than
530 meters above the ocean floor [3].

In common for these fields is the fact that the ocean is a dangerous place to
work. Remotely Operated Vehicles (ROVs) reduce the need for direct human in-
teraction, allowing operators to remotely perform tasks such as inspection, main-
tenance, and repair (IMR). ROV operations reduce the risk of human injury but re-
quire large resources in the form of experienced operators, surface support vessels,
and time, all expensive resources [4]. Autonomous Underwater Vehicles (AUVs)
capable of performing IMR operations alleviate the need for large investments in
time and resources, further enabling safe access to the ocean, and making AUV

1

2 Mikael Medina: Grasp Pose Detection for AUVs

solutions increasingly desirable for offshore operators.

In order to effectively perform IMR and intervention tasks, AUVs need situa-
tional awareness. While visual sensors such as cameras achieve high-resolution
representations for unmanned solutions on land and in the air, subsea solutions
are limited by rough underwater conditions. Image enhancement algorithms use
physical properties of light in order to improve the clarity in captured images
[5]. However, for intervention tasks, objects have to be recognized as well, as op-
posed to just being captured in images. Underwater solutions such as the object
detection algorithm explored by Bazeille et al. exploit phenomena of underwater
lighting in order to detect objects of known color [6]. Rizzini et al. expand this
methodology further with assumptions about the shape and color of man-made
objects for easier recognition in underwater settings [7].

Machine learning solutions for object detection are rapidly gaining traction,
among others, methods such as You Only Look Once [8] and Single Shot Multi-
Box Detector [9] can be said to have popularized this approach. Mandal et al. pro-
pose an automatic identification algorithm for fish species [10], while the method
presented by Katayama et al. attempts to address color correction and object de-
tection simultaneously [11]. In a recent survey, Xu et al. conclude that while un-
derwater object detection solutions achieve great results, it remains a vital and
challenging research topic [12].

In addition to object detection, an AUV might have to interact with the envi-
ronment. Autonomous subsea intervention is still in its early days of development,
with few commercially employed solutions, to the author’s best knowledge. A pro-
posed solution by Faria et al. uses LEDs mounted on a valve to indicate its position
and two 7 Degrees of Freedom (DoF) arms for manipulation [13]. However, con-
trol of the arms requires solving the inverse kinematics, which is prone to errors
and inaccuracies. Palomeras et al. faced similar challenges with the joint posi-
tions of the manipulators on their AUV, as well as concluding that visibility and
illumination poses a great challenge [14].

Interacting with a detected Object of Interest (OOI) requires knowledge of
where to place the gripper. Given the geometry of the gripper, determining where
to place it in order to grasp an object is referred to as grasp pose detection. Zapata-
Impata et al. propose a method using principal component analysis and geometric
considerations of observed objects to determine grasping positions [15]. In their
approach ten Pas et al. also use geometrical considerations for grasp pose candi-
dates, which are then classified using a machine learning algorithm to determine
how likely the grasp is to work [16].

The use of multi-DoF manipulators increases the flexibility in AUV positioning,
as the arm can correct for positioning errors. However, as previously discussed,
this comes at the cost of an increase in complexity of control. A trade-off thus has

Chapter 1: Introduction 3

to be made between the complexity of the ROV and its manipulator. Furthermore,
increasing the number of movable parts puts the AUV at risk of itself needing
maintenance, possibly reducing its efficiency.

1.2 Problem Statement

Commercial ROVs are large and require professionally trained crew to pilot and
control their manipulators. Using an AUV for intervention tasks would lower op-
erational costs and increase the up-time of maintenance operations. In order for
an AUV to interact with the environment, situational awareness is needed along
with a method of figuring out where to grasp perceived objects. For reduced com-
plexity of the AUV, this thesis aims to develop a grasp pose detection framework
for a rigidly mounted zero DoF gripper, using geometrical considerations of the
scene and the gripper.

1.3 Contributions

This thesis investigates a method of autonomously detecting grasping poses on
underwater objects, intended to be used as a reference for a control system for
autonomous intervention. The suggested method is based on using an AUV rigidly
mounted with a 0 DoF gripper. This imposes the problem of having to maneuver
the ROV correctly in order to position the gripper, as the arm is unable to correct
any positioning errors. The main contributions of this thesis are twofold; firstly,
two sampling methods boasting different qualities emphasizing various aspects of
the sampled set are presented. Secondly, four quality metrics used for the eval-
uation of candidate grasping poses are presented, each highlighting a different
aspect of what constitutes a good grasp.

1.4 Thesis Structure

Preliminaries

Introduction

Underwater
Vehicle Model

Visual Perception
Semantic Un-
derstanding

Grasp Pose
Sampling

Grasp Pose
Evaluation

Control and
Grasp Execution

Figure 1.1: Pipeline for autonomous underwater grasping of unknown objects.
This chapter has motivated the thesis and introduced its structure. The red faded
node represents the next step, which is outside the scope of this thesis.

4 Mikael Medina: Grasp Pose Detection for AUVs

Grasping an object is the final step in a series of processes, each step repre-
senting highly prevalent research problems. This thesis is structured such that
each chapter represents a piece of the puzzle, introducing relevant theories and
methodology for performing each task, leading up to the results from a simula-
tion of the presented solution. This chapter has presented the motivation behind
the thesis, along with the main contributions and structure. In Chapter 2, some
preliminary theory regarding modeling of underwater vehicles is presented. This
theory is applied to the implementation and simulation setup introduced in Chap-
ter 7. Chapter 3 introduces camera modeling and concepts used for robotic vision
and lays the foundation for the pipeline suggested in this thesis.

A general overview of the pipeline is shown in Figure 1.1, where a cyan high-
light indicates that the current chapter covers the highlighted topic. Subsequent
chapters will introduce and further emphasize their own fields, while the red node
in Figure 1.1 denotes future work for the implementation of a control scheme us-
ing the generated grasp pose. Chapter 4 outlines processing techniques for point
cloud processing. Chapter 5 introduces two methods of sampling grasp pose can-
didates before quality metrics used to evaluate the poses are introduced in Chap-
ter 6. The simulation setup used for testing the proposed methods is presented in
Chapter 7. Thereafter, Chapters 8 and 9 present the results from the simulation
and discuss the performance before Chapter 10 concludes the thesis.

Chapter 2

Modeling of Underwater Vehicles

Research on dynamics for aquatic vehicles has been ongoing for many years and
has produced accurate equations for guidance, navigation, and control. This chap-
ter acts as a brief introduction to the dynamics of an underwater vehicle, specifi-
cally as presented by Fossen in [17]. Section 2.1 covers some preliminary details
such as reference frames and transformations before the dynamics of an under-
water vehicle are presented in Section 2.2.

Preliminaries

Introduction

Underwater
Vehicle Model

Visual Perception
Semantic Un-
derstanding

Grasp Pose
Sampling

Grasp Pose
Evaluation

Control and
Grasp Execution

Figure 2.1: In this chapter preliminaries on the modeling of underwater vehicles
are presented.

2.1 Preliminaries

This section serves as an overview of some notation used throughout this thesis,
as well as an introduction to preliminary concepts such as frames and rotations.

Throughout this thesis vectors are denoted as bold lowercase letters v and
matrices with bold capital letters M. Superscript on a vector denotes the reference
frame the vector is relative to, the vector vn is a vector in the north-east-down
(NED) frame. A vector from one point to another is denoted vb

ab, meaning the
vector from a to b represented in frame b. For the purpose of this thesis, NED is
treated as a world-fixed inertial frame, while the BODY frame b is a body-fixed
frame with axes pointing front, right, and down relative to a body.

5

6 Mikael Medina: Grasp Pose Detection for AUVs

A rotation matrix Rb
a is a matrix in the special orthogonal group of all rotations

in Euclidean space, i.e. Rb
a ∈SO(3). Notation-wise Rb

a reads as the rotation from
frame a to b. Rotation matrices are orthogonal and satisfy the properties

RR⊤ = RR−1 = I, |det (R)|= 1 (2.1)

, i.e. the transpose of the matrix is equal to its inverse. An inverse of a rotation
matrix represents the inverse of the rotation, i.e. Rb

a = inv(Ra
b). Euler angle rep-

resentation of rotation denotes the rotation from one frame to another as a series
of rotations around the x-, y- and z-axis by the angles φ,θ ,ψ respectively, where
φ,θ ,ψ are commonly referred to as roll, pitch, and yaw. The individual rotation
matrices are given in Equations (2.2) to (2.4), while the full rotation is the product
Rz y x(Θ) = Rz(ψ)Ry(θ)Rx(φ), where Θ = [φ,θ ,ψ]⊤. Consequently, a rotation
from BODY to NED is written as Rn

b(Θnb), where Θnb represents the Euler angles.

Rx(φ) =





1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)



 (2.2)

Ry(θ) =





cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)



 (2.3)

Rz(ψ) =





cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



 (2.4)

The Euler angle representation of a rotation matrix is susceptible to gimbal
lock. Gimbal lock is a phenomenon where two of the three rotational axes align,
causing the rotation to lose a degree of freedom. When using the Euler angle
representation, gimbal lock happens at θ = ±90◦, making it so a change in ρ
or ψ causes the same rotation. Alternative representations of rotations that avoid
the problem of gimbal locking are for instance quaternions and Rodrigues’ rotation
formula.

Rodrigues’ rotation formula describes the rotation of a vector v around a unit
rotation axis k by the angle θ as in Equation (2.5).

vrot = v cos(θ) + (k× v) sin(θ) + k(k · v)(1− cos(θ)) (2.5)

Rotation quaternions are unit vectors of four elements, where three elements
constitute the imaginary part and one element the real part. While quaternions
are less intuitive than Euler angles, they avoid gimbal lock and allow rotations to
be represented by a single angle around an axis, similar to Rodrigues’ formula.

Chapter 2: Modeling of Underwater Vehicles 7

Conversion from a rotation using Rodrigues’ formula to a rotation using quater-
nions is done simply by halving the angle and defining the real and imaginary
parts of the quaternion. This is shown in Equation (2.6), where w is the real part
of the quaternion and x , y, z the imaginary.

q=







w
x
y
z






=

�

cos
�

θ
2

�

k3×1 sin
�

θ
2

�

�

(2.6)

2.2 Underwater Vehicle Dynamics

In this section a 6 degrees of freedom (DoF) model for underwater vehicles is
presented. The model is based on the work presented by Fossen in [17], where
the dynamics for an underwater vehicle are presented as

η̇= Jk(η)(νr + νc), k ∈ {Θ,q} (2.7)

Mν̇r +C(νr)νr +D(νr)νr + g(η) + g0 = τ (2.8)

where k denotes Euler angles or unit quaternions. η is chosen accordingly and
represents the pose — position and orientation — in the inertial frame. Assuming
constant current velocity, νc is the linear ocean current velocity, νr is the relative
velocity given in BODY, νr = ν − νc . Jk(η) is the transformation from BODY to
NED and also changes depending on angle representation, further details in Sec-
tion 2.2.1. The matrices M, C(νr) and D(νr) consist of rigid body dynamics and
hydrodynamics, and are known as the system inertia, Coriolis and centripetal, and
damping matrices respectively.

M=MRB +MA (2.9)

C(νr) = CRB(νr) +CA(νr) (2.10)

D(νr) = D+Dn(νr) (2.11)

In the following sections a selection of components of Equation (2.7) to (2.11)
will be discussed further.

2.2.1 Kinematics

Kinematics describes the geometrical aspect of motion of the underwater vehi-
cle. As the underwater vehicle moves, the position and orientation relative to the
world-fixed inertial NED frame is given by

η= [xn, yn, zn,φ,θ ,ψ]⊤ (2.12)

for Euler angles and
η= [xn, yn, zn,η,ε1,ε2,ε3]

⊤ (2.13)

8 Mikael Medina: Grasp Pose Detection for AUVs

using quaternions. For convenience, the velocity of the vehicle relative to the ori-
gin of NED is given in the BODY frame. As such the linear velocity vb

nb = [u, v, w]⊤

is expressed along the x b, y b, zb-directions of BODY respectively, and the angular
velocity of the axes relative to NED is ωb

nb = [p, q, r]⊤. Jk(η) relates the velocity

ν =

�

vb
nb
ωb

nb

�

in BODY to the velocity in NED. For conciseness, the details of the

matrices R and T are left out here, but the transformation has the form

JΘ(η) =

�

Rn
b(Θnb) 03×3
03×3 Tn

b(Θnb)

�

(2.14)

for Euler angles, and

Jq(η) =

�

Rn
b(q

n
b) 03×3

04×3 Tn
b(q

n
b)

�

(2.15)

for quaternions.

2.2.2 Kinetics

Kinetics relates forces to the motion of a body. Kinetic forces include forces due to
the shape of the body and the relationship between the body and the environment.
Sticking to the framework presented in [17], kinetics are divided into rigid-body
kinetics, hydrodynamics, and hydrostatics. For the purpose of this thesis, the de-
tails behind the Coriolis and centripetal matrix C(νr) have been left out, however,
it is noted that these terms arise from the motion of the rotating BODY frame with
respect to NED. For all intents and purposes, the Coriolis and centripetal matrices
can be calculated from the rigid-body and hydrodynamic added mass matrices
MRB and MA [17].

Rigid-body

In order to take advantage of a vehicle’s geometric properties, it is convenient to
express the equations of motion about an arbitrary Coordinate Origin (CO). To do
so, the equations are first derived around the Center of Gravity (CG), then they
are transformed to the CO using a coordinate transform. The transformation is
calculated using the vector rb

bg from CO to CG. The rigid body inertia matrix can
then be expressed around the CO as

MRB =

�

mI3 −mS(rb
bg)

mS(rb
bg) Ib

g −mS2(rb
bg)

�

(2.16)

where m is the mass of the vehicle, Ib
g the inertia matrix about CG, and S(rb

bg) the

skew-symmetric matrix representation of rb
bg , i.e.

S(rb
bg) =





0 −r3 r2
r3 0 −r1
−r2 r1 0



 (2.17)

Chapter 2: Modeling of Underwater Vehicles 9

Assuming that the CO is defined close to the CG, rb
bg ≈ 0, and the rigid body

inertia matrix is reduced to

MRB =

�

mI3 03×3

03×3 Ib
g

�

(2.18)

Hydrodynamics

Hydrodynamics are forces imposed on the body as it moves through liquids. The
added mass matrix MA describes the mass displaced by the vehicle as it moves and
is highly dependent on the shape of the vehicle as well as its velocity. Assuming
symmetry of the vehicle about the xz and yz planes yields an added mass matrix
with mostly terms on the diagonal and a couple of off-diagonal terms. Either as-
suming that the off-diagonal terms are much smaller than the diagonal terms, or
through x y symmetry, the added mass matrix is reduced to a diagonal matrix

MA = −diag{X u̇, Yv̇ , Zẇ, Kṗ, Mq̇, Nṙ} (2.19)

As the motion of an underwater vehicle is highly nonlinear and coupled at
high speeds, modeling the damping, as well as the previously mentioned terms,
is a complicated task. In Equation (2.11) damping has been divided into a lin-
ear damping term D and a nonlinear term Dn(νr). By assuming operations at
low speed, the nonlinear damping term can be neglected. Furthermore, assum-
ing symmetry over multiple planes and that off-diagonal terms are low, the linear
damping matrix is also reduced to a diagonal matrix

D= −diag{Xu, Yv , Zw, Kp, Mq, Nr} (2.20)

Hydrostatics

A submerged body displaces a volume of liquid equal to the volume of the body. If
the density of the body displacing the liquid is lower than the density of the liquid,
the liquid exerts an upwards force on the body, this is known as buoyancy. Buoy-
ancy is exerted on the center of the volume that displaces the liquid, the Center of
Buoyancy (CB). For a fully submerged body, the CB coincides with the centroid of
the body. The submerged body is also affected by gravity in CG. Gravity attempts
to pull the body down, while buoyancy pushes upwards, giving rise to the name
restoring forces. Furthermore, if the weight of the body is equal to the weight of
the liquid it displaces, the body stays stationary. A body in which buoyancy and
gravity are equal is called neutrally buoyant.

Buoyancy and gravity enter the model in Equation (2.8) as the term g(η),
while the term g0 relates to ballast, i.e. weight that can be loaded to change the
properties of buoyancy. As the restoring forces act along the vertical axis of the

10 Mikael Medina: Grasp Pose Detection for AUVs

inertial NED frame, they can be represented in NED as

fn
b =





0
0
B



 , fn
g =





0
0
W



 (2.21)

where W = mg is the gravity and B = ρg∇ is the buoyancy. Assuming that the
vehicle is neutrally buoyant the restoring forces are

g(η) =















0
0
0

−BGyW cos(θ) cos(φ) + BGzW cos(θ) sin(φ)
BGzW sin(θ) + BGxW cos(θ) cos(φ)
−BGxW cos(θ) sin(φ)− BGyW sin(θ)















(2.22)

where BGx ,y,z are the components of the vector defining the distance between
CG and CB, [BGx , BGy , BGz]⊤. In practice, most AUVs are designed such that the
buoyancy is slightly larger than the force of gravity such that the AUV slowly rises
to the surface in the event of a malfunction.

As previously stated, the restoring forces act opposite to each other. If the CB
is below the CG, the buoyant forces will push the CB upwards, while the gravita-
tional forces push the CG downwards. This results in both restoring forces working
to drive the CG below the CB and the vehicle will spin. Thus, for a vehicle where
the CG is located far below the CB, achieving poses with a high degree of roll or
pitch requires the vehicle to combat the restoring forces.

Chapter 3

Robotic Vision

For a robot to get an understanding of a scene, it uses sensors to measure what the
environment around it is like. This chapter introduces robotic perception through
the means of optical cameras, starting with introducing the basic mathematical
principles behind the pinhole camera model in Section 3.1. Further, Section 3.2
hints at why a camera modeled and calibrated for in-air operations might struggle
underwater, before Section 3.2.1 introduces a camera model designed for more
accurate underwater imaging. Sections 3.3 to 3.5 introduces feature detection and
matching, which is the process of describing regions of interest in one image in
order to recognize the same region in other images. When a point is recognized
in two images, knowledge of the camera positions can be used to estimate the
three-dimensional (3D) coordinates of the point. This is one of the core motivators
behind stereo imaging, a topic presented in Section 3.6. Section 3.7 expands on
this with some other methods of acquiring the depth of a point in an image.

Preliminaries

Introduction

Underwater
Vehicle Model

Visual Perception
Semantic Un-
derstanding

Grasp Pose
Sampling

Grasp Pose
Evaluation

Control and
Grasp Execution

Figure 3.1: In this chapter theory and methods related to the visual perception
part of the pipeline is presented.

3.1 Camera Modeling

In its most basic form, a camera is a device that projects the light of a 3D scene
onto a 2D imaging plane. The first cameras were based on the principle that light
traveling from a 3D scene through a small opening in a wall depicts the scene

11

12 Mikael Medina: Grasp Pose Detection for AUVs

inverted on another wall behind the opening. Early in the 1600s Johannes Kepler,
among others, termed this the camera obscura [18]. Modern-day cameras use the
same principles but capture the projected image by using a grid of photosensitive
sensors as the 2D imaging plane. Digital representations of images consist of ma-
trices holding the intensity value of each individual pixel. An image with one such
matrix represents the intensity of one color, popularly black and white. Colored
images are usually represented using three channels, one channel each for the
colors red, green, and blue (RGB).

3.1.1 Pinhole Camera

The pinhole camera model is a mathematical model that describes the relation
between the 3D real-world coordinates and the 2D pixel coordinates, illustrated in
Figure 3.2. As all the rays converge through a singular point in the aperture — i.e.
the origin o in Figure 3.2 — this kind of camera model is referred to as a singular
viewpoint (SVP) model. Using the similar triangles illustrated in Figure 3.2, the
relation between camera coordinates (X , Y , Z) and image coordinates (x , y) can
now be expressed as in Equation (3.1). The ray is captured by the imaging sensor,
indicated by the leftmost frame, however, a virtual imaging plane is defined at a
positive distance f in front of the aperture to avoid the image appearing flipped.

x
f
=

X
Z
−→ x = f

X
Z

y
f
=

Y
Z
−→ y = f

Y
Z

(3.1)

x

y

z

x

y

z

f

f Z

x
X

o

Figure 3.2: Similar triangles form the basis of the projective pinhole camera
model. The leftmost frame is the imaging plane, where the observed point has
been inverted, as in the camera obscura. The distance f is the focal length.

From real-world coordinates to pixel coordinates, there are two main transfor-
mations happening. The first transformation is from world coordinates to camera
coordinates, the parameters of this transformation are called extrinsic. Going from
camera coordinates to pixel coordinates is the second transformation, whose pa-
rameters are referred to as intrinsics [19].

Chapter 3: Robotic Vision 13

Homogeneous Coordinates

Homogeneous coordinates are used to allow for more convenient calculations
than their counterpart Cartesian. With homogeneous coordinates, any affine trans-
formation is reduced to a matrix-vector product. This allows for a more complex
series of transformations to be calculated into one transformation matrix, rather
than having to do all operations individually.

To transform a Cartesian vector to a homogeneous one, simply add a 1 at the
end, see Equation (3.2). Extracting the Cartesian vector from a homogeneous one
is done by first dividing the vector by the last element and then removing it, see
Equation (3.3).

x=





x
y
z



 −→ x̃=







x
y
z
1






(3.2)

x̃=







x
y
z
w






−→ x=





x/w
y/w
z/w



 (3.3)

Extrinsics

Given that the camera is placed with a known relation to a world frame, the extrin-
sics consist of the rigid-body transformation between the camera frame and the
world frame. A homogeneous rigid-body transformation consists of the rotation
and translation required to go from one frame to another. Equation (3.4) shows a
homogeneous transform from frame b to frame a, where ta

ab indicates the position
of frame b, relative to a. Homogeneous world coordinates are then transformed
to homogeneous camera coordinates according to Equation (3.5), where Tc

w is the
extrinsic matrix.

Ta
b =

�

Ra
b ta

ab
01×3 1

�

(3.4)

x̃c = Tc
w · x̃

w (3.5)

Intrinsics

The intrinsic camera parameters describe the relation between 3D camera coor-
dinates and the 2D image coordinates. Converting the pinhole model described
in Equation (3.1) to homogeneous coordinates, expanding and rearranging the

14 Mikael Medina: Grasp Pose Detection for AUVs

terms, yields the matrix-vector relation in Equation (3.6). The 3× 4 identity ma-
trix, P3×4, represents projection from 3D homogeneous camera coordinates to 2D
image coordinates, while the matrix containing the focal length f is scaling.

Z c





x
y
1



=





f 0 0
0 f 0
0 0 1









1 0 0 0
0 1 0 0
0 0 1 0











X c

Y c

Z c

1






(3.6)

Pixels are commonly given with integer values, contrary to image coordinates.
To address this, the image coordinates are scaled with a factor related to the phys-
ical configuration of the sensor

�

xs
ys

�

=

�

sx sθ
0 sy

��

x
y

�

(3.7)

where sθ is the skew factor, which is 0 if the pixels are rectangular.

The model in Equation (3.6) is defined for an image plane where the center of
the image is the origin, however, it is common to denote the top left pixel as the
origin for computations. Correcting the origin is done with a simple translation

�

x ′

y ′

�

=

�

xs + ox
ys + oy

�

(3.8)

where the point (ox , oy) is the center of the image sensor relative to the top right.
Finally, these transformations are put together in their homogeneous form to com-
pose the intrinsic matrix K.

K=





sx sθ ox
0 sy oy
0 0 1









f 0 0
0 f 0
0 0 1



=





f sx sθ ox
0 f sy oy
0 0 1



 (3.9)

Replacing the left-hand Z c with a possibly unknown scaling factor λ, the full
pinhole camera model can now be expressed as

λx̃′ = KsK f P3×4Tc
wx̃w

λ





x ′

y ′

1



=





f sx sθ ox 0
0 f sy oy 0
0 0 1 0





�

Rc
w tc

cw
01×3 1

�







xw

yw

zw

1







(3.10)

Chapter 3: Robotic Vision 15

3.1.2 Distortion

In practice a camera is not just a hole in a surface, but rather one or more lenses
that alter the path of the light rays. The arrangement of the lenses relative to
the imaging sensor can cause distortion of pixels that make straight lines appear
curved, this is known as radial distortion, see Figure 3.3. If the imaging sensor
is not correctly aligned with the lenses the image may appear tilted, known as
tangential distortion, see Figure 3.4.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(a) No distortion.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(b) Barrel distortion.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(c) Pincushion distortion.

Figure 3.3: Comparison of different radial distortions.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 3.4: Examples of tangential distortion.

Distortion can be corrected using models that mathematically describe the ef-
fect of the distortion on the pixels. One of the most common distortion models is
the Brown-Conrady model, which models radial distortion as

δxr = x
�

k1(x
2 + y2) + k2(x

2 + y2)2 + k3(x
2 + y2)3 + ...
�

δ yr = y
�

k1(x
2 + y2) + k2(x

2 + y2)2 + k3(x
2 + y2)3 + ...
� (3.11)

and tangential distortion as

r =
Æ

x2 + y2

δx t =
�

p1(r
2 + 2x2) + 2p2 x y

�

(1+ p3r2 + p4r4 + p5r6 + ...)

δ yt =
�

p2(r
2 + 2y2) + 2p1 x y

�

(1+ p3r2 + p4r4 + p5r6 + ...)

(3.12)

where kn are the radial, and pn the tangential, distortion coefficients of the lens
[20]. It is usually sufficient to only use lower order terms for both types of distor-
tion, as the higher order terms give a diminishing effect.

16 Mikael Medina: Grasp Pose Detection for AUVs

The distortion models use coefficients specific to the lens, which need to be
found by calibrating the camera before use. Camera calibration can also be used to
find the intrinsic and extrinsic parameters. One method of camera calibration that
is able to estimate all of these parameters through a maximum-likelihood prob-
lem was established in 2000 by Zhengyou Zhang [21]. Zhang’s method proposes
that calibration can be done by taking a series of images of a pattern of known
size, then posing the pinhole model equations as given in Equation (3.10) as a
maximum-likelihood estimation problem. This method estimates the extrinsics
and intrinsics. Estimating the distortion parameters is done in a similar manner,
where the ideal image coordinates are calculated with the pinhole model, then
compared to the calibrated coordinates giving an error known as the reprojection
error. The reprojection error quantifies how accurate the camera calibration is,
and can be minimized through optimization techniques.

3.2 Underwater Camera Modeling

If the camera model is inaccurate and produces images with many deviations from
the truth, algorithms depending on the image might perform worse. Viz., local-
ization indicating the AUV is closer to an object than it is, or object detection not
being able to detect misshaped familiar objects. As such, it is important to use the
proper equipment with proper calibration for the environment. This section aims
to familiarize the reader with the motivations behind why underwater camera
models are needed, before introducing the Pinax-model for underwater imaging.

Submerging a camera in liquid presents a new challenge, as the light behaves
differently than in air. Physical properties of liquids degrade the light exponen-
tially as it travels, resulting in hazy-looking images [5]. Turbidity and floating
particles further worsen image quality underwater. Furthermore, to protect the
camera, it is commonly placed in a watertight enclosure which can have more
implications on light rays. A camera model that aims at resolving the latter issue
is presented in Section 3.2.1.

Light changes speed when traveling from one medium to another. If the angle
of attack is different than 90◦, the change of speed causes the light to bend, known
as refraction. The blue rays in Figure 3.5 visualize such refractions. Camera lenses
are commonly placed behind flat viewports made of transparent materials such as
glass. As the light from a scene hits the glass from different directions, the amount
of refraction varies. If the variation in refraction is significant enough, the singular
viewpoint assumption of the pinhole camera model is invalidated, as the light no
longer converges to one point in the aperture. The underlying geometry of rays
in such a system has been shown to correspond to an axial camera rather than
an SVP pinhole camera [22, 23]. An axial camera is a camera where all light rays
converge along a stretched-out line of points in the camera’s normal direction,
rather than in one singular point such as the focal point in the pinhole model.

Chapter 3: Robotic Vision 17

3.2.1 The Pinax-model

Previous methods of modeling underwater cameras predominantly use the pin-
hole model, then calibrate the camera in-situ underwater [24–26]. This is a te-
dious process that requires precise calibration to be done in still and clear water.
The Pinax-model is a camera model that provides accurate and efficient refrac-
tion correction for underwater imaging, without using in-situ underwater calibra-
tion [24]. While it can be shown that using an SVP calibration for an underwater
camera can be sufficient at a fixed distance, the fall-off in performance increases
rapidly as distance changes [24].

To formulate the Pinax-model a set of assumptions are made, mainly related
to the physical configuration of the camera and the conditions of the environ-
ment. Assumption number one states that the camera should be placed such that
the distance from the camera to the encapsulating flat port is small and near the
optimal distance. In short, this assumption is sufficiently satisfied by placing the
camera as close as possible to the glass. Secondly, it is assumed that the axis of
the camera aligns with the normal of the glass surface, or that a correcting trans-
form can be applied. Again, this assumption is satisfied by taking careful note of
the placement of the camera. The third and fourth assumptions relate to knowing
the refraction index of the glass and the water respectively. These indices can for
instance be found in the product specification for the glass, and by using table
values for water refraction.

Using the result that the camera satisfies an SVP pinhole model at the cali-
brated distance, the Pinax-model defines an offline method for generating a map
of the refracted rays. A virtual pinhole camera Cv is defined for the camera, whose
images correspond to the distorted images produced. Each point pv of the virtual
camera is then projected to points mw on the Pinax plane in front of the camera,
using the inverse projection of the pinhole model. Using the results presented
in [22], a 12th degree polynomial defines the forward projection from the Pinax
plane to a point ma on the inside of the flat port encasing the camera. Now all
the points ma correspond to the scene as it appears after refractions through the
flat port, using the in-air calibrated pinhole model for the physical camera Cp now
yields the refraction-corrected image. This procedure is illustrated in Figure 3.5.

Generating the mapping of the refracted rays is shown in [24] to be a time-
consuming task. However, as this only needs to be done once for the setup, this
procedure can be done offline and the full camera system can be deployed with the
static map for real-time use. Calibrating the camera is also as simple as calibrating
it as an SVP pinhole camera in the air, as the projection for the physical camera is
only from the inner surface of the viewport to the camera. Thus, calibration can
be done using popular and widely implemented methods such as Zhang’s method,
briefly covered in Section 3.1.2.

18 Mikael Medina: Grasp Pose Detection for AUVs

Pinax plane

Water

Glass

Air

mw

ma

Cv

Cp

Figure 3.5: Projection from the virtual camera Cv to the Pinax plane, then back to
the physical camera Cp by solving the 12th degree polynomial presented in [22].
Note that the Pinax plane is placed further away from the glass, this distance is
purely for visualization.

3.3 Feature Detection

When looking at a series of images, humans can easily recognize it as the same
scene given that enough identifiers are present. These identifiers can range from
the color of a wall to the shape of a rock. Recognizing an identifier depends on
how well the person knows the scene. A major strength in state-of-the-art com-
puter vision is that this process can be automated, fast, and even able to make
matches between scenes a human would struggle with. In order to do so, algo-
rithms known as feature detectors process images and produce feature descriptors
that can uniquely identify parts of the image.

3.3.1 Properties of a Feature Detector

Due to inconsistency in lightning levels and hue, a scene undergoes multiple visual
changes over time. This and other factors such as geometric changes in camera
position give rise to the need of some desired properties of a feature detector.
As stated by Tuytelaars et al. in [27] it would be ideal if the detector could use
semantically meaningful parts of objects in the scene, however, this is infeasible
as it would require high-level knowledge of the scene. With modern-day machine
learning solutions this might become more feasible in time [28], but that discus-
sion is left out here.

One can easily reason that an important property of a feature detector is its
ability to repetitively produce the same results, even under changes in viewing

Chapter 3: Robotic Vision 19

conditions. Tuytelaars states that repeatability is arguably the most important
property and that it is mainly achieved in two ways [27]. Repeatability can be
improved by making the detector invariant to transformations, or by increasing
robustness to smaller changes such as image noise, for instance in the form of blur.
Other ideal properties of a feature detector mentioned by Tuytelaars include dis-
tinctiveness, meaning that the underlying descriptors of a feature have high vari-
ance such that features are easily distinguished. A feature detector should inhibit
the locality property, a feature should be represented by a small neighborhood in
order to reduce the probability of occlusion, and allow for transformative effects
between different views. As distinctiveness and locality are competing factors, a
trade-off has to be made. Tuytelaars mentions other properties, but the final prop-
erty discussed in this thesis is the number of features. Sufficiently many features
should be detected such that even smaller objects have multiple features, mean-
ing that the information of the image is more or less reflected by the extracted
features.

3.4 A Selection of Feature Detectors

Humans tend to recognize scenes through a high level of semantic understanding,
using global features such as specifically shaped objects or different vegetation.
However, as these descriptors carry such a high level of semantic understanding,
using them in a general algorithm would require the algorithm to have a similar
understanding which is understandably complex. Feature detection algorithms
rather use local features — commonly based on the pixel intensity of the image
— such as corners and edges. Different approaches can be employed to detect
such local features, in this section two feature detectors are introduced.

3.4.1 Harris Corner Detector

A simple yet efficient algorithm for detecting edge and corner features in images is
the Harris-Stephens corner detector [29]. Based on the sum of squared differences
(SSD) between image patches, the algorithm calculates a corner response function
that indicates whether or not the region contains a corner.

Given an image I the intensity of the pixel at coordinates (x , y) is given by
I(x , y). A local view into a region of an image, denoted a window, is given by
(x , y) ∈W. Thus, the sum of intensities in the window W is

∑

(xk ,yk)∈W

I(xk, yk) (3.13)

Displacing the window by an amount (∆x ,∆y) the sum of intensities in the win-
dow is simply

∑

(xk ,yk)∈W

I(xk +∆x , yk +∆y) (3.14)

20 Mikael Medina: Grasp Pose Detection for AUVs

Subtracting the intensity of the displaced window from the normal window and
squaring gives the change in intensity denoted as ESSD, shown in Equation (3.15).
Assuming the displacement is small, the intensity at each pixel in (3.14) can be
approximated with a first-order Taylor expansion, (3.16).

ESSD =
∑

(xk ,yk)∈W

(I(xk, yk)− I(xk +∆x , yk +∆y))2 (3.15)

I(xk +∆x , yk +∆y)≈ I(xk, yk) +
δI(xk, yk)
δx

∆x +
δI(xk, yk)
δ y

∆y (3.16)

Substituting (3.16) in (3.15), leaving out (xk, yk) for conciseness and abusing that
the approximation is accurate with small displacements, the SSD is now given by

ESSD =
∑

(xk ,yk)∈W

�

I(xk, yk)− I(xk, yk) + Ix∆x + Iy∆y
�2

=
∑

(xk ,yk)∈W

�

Ix∆x + Iy∆y
�2

(3.17)

Where Ix denotes the partial derivative of I with respect to x , see Appendix A.3.
Equation (3.17) can be written in matrix form

ESSD =
∑

(xk ,yk)∈W

�

∆x ∆y
�

�

Ix
Iy

�

�

Ix Iy
�

�

∆x
∆y

�

=
∑

(xk ,yk)∈W

�

∆x ∆y
�

�

I2
x Ix Iy

Iy Ix I2
y

��

∆x
∆y

�

=∆x ·M ·∆x (3.18)

M=





∑

(xk ,yk)∈W
I2

x

∑

(xk ,yk)∈W
Ix Iy

∑

(xk ,yk)∈W
Iy Ix
∑

(xk ,yk)∈W
I2

y



 (3.19)

where M is known as the structure tensor, or the second-moment matrix, describ-
ing the gradient in the neighborhood of a point. The gradient information is ex-
actly what provides information about the composition of the image, i.e. in what
direction there is a rapid change, as this indicates an edge.

R= det(M)− k · trace2(M), k ∈ [0.04,0.15] (3.20)

In [29]Harris suggests the corner response function in Equation (3.20), where
k is found empirically. This representation avoids explicit calculation of the eigen-
values of M , however, it is worth noting that the eigenvalues represent the amount

Chapter 3: Robotic Vision 21

of change in the direction of the eigenvectors. By inspection, the eigenvalues in-
dicate that there is a corner if both values are large, an edge if one eigenvalue is
close to zero, and a flat region if both eigenvalues are close to zero.

As the corner response function essentially uses the eigenvalues and vectors to
indicate corners, rotating the image simply rotates the eigenvectors, which indi-
cates that the Harris corner detector is invariant under rotation. The image deriva-
tives are shift-invariant, meaning the corner detector is translation invariant. As
long as the intensity change is constant over the entire image, the corner detector
is also invariant to intensity changes. Scale changes of the image will change how
much information each window contains and as such the corner detector is not
invariant to scale, shown in Figure 3.6.

Edges

Scale

Figure 3.6: The curve on the left is detected as multiple edges, while the same
curve in a down-scaled image is detected as a corner.

3.4.2 Scale-Invariant Feature Transform

In order to achieve a scale-invariant feature detector, some more convoluted meth-
ods need to be employed. The Scale-Invariant feature transform (SIFT) developed
by Lowe in 1999 generates a scale space representation of an input image to de-
tect features [30]. This section aims to give a brief introduction to SIFT and the
concepts behind it.

A scale space representation of an image is simply a collection of the image at
different scales. For each scale, the method generates multiple blurred images at
increasing degrees of blur. All the different blurred images at one scale are denoted
as an octave. Blurring is achieved by convolving the image with a Gaussian kernel
of increasing σ, see Appendices A.1 and A.2. A resulting scale space for an image
is shown in Figure 3.7.

Once the scale space for the image has been generated, the difference be-
tween images of increasing blur is calculated, known as the Difference of Gaus-
sians (DoG). The DoG produces multiple layers of differences for each scale, where
the highlighted areas correspond to regions of interest, see Figure 3.8. In essence,
the DoG is a feature enhancement algorithm that accentuates regions of moder-
ate frequency changes while attenuating low- and high-frequency regions, like a
band-pass filter.

22 Mikael Medina: Grasp Pose Detection for AUVs

0 200 400 600

0

500

1000

1500

2000

2500

Octave 1

0 100 200 300

0

200

400

600

800

1000

1200

1400

Octave 2

0 50 100 150

0

100

200

300

400

500

600

700

Octave 3

Figure 3.7: Three octaves of an image with varying scale and blur. Note the mag-
nitude of the axes.

Chapter 3: Robotic Vision 23

0 100 200 300 400 500 600

0

250

500

750

1000

1250

1500

1750

2000

Octave 1

0 50 100 150 200 250 300

0

200

400

600

800

1000

Octave 2

0 25 50 75 100 125 150

0

100

200

300

400

500

Octave 3

Figure 3.8: Difference of Gaussians for the scale space images in Figure 3.7. Each
individual DoG is the difference between two neighboring images within the same
octave.

24 Mikael Medina: Grasp Pose Detection for AUVs

Figure 3.9: Detected SIFT keypoints. The size of the keypoint determines the scale
at which it was found, and the small line indicates the canonical orientation.

Chapter 3: Robotic Vision 25

Once the DoG has been calculated for all blurred images at each scale, a com-
parison is done to find the keypoints. By comparing each point with its local neigh-
borhood the local maxima of a single image is found, this point is then compared
to the corresponding neighborhood in adjacent scales. If the point remains the
local maxima, the scale of the keypoint has been determined, and as such, in-
formation about the scale can be saved with the keypoint for future reference.
Detected keypoints are shown in Figure 3.9 as circles, where the inner line de-
picts the orientation of the keypoint, while the size corresponds to what scale the
keypoint was found at.

3.4.3 Feature Descriptors

Once a feature has been found in an image, a description of the feature is stored for
later use. A feature descriptor might be as simple as storing the image patch that
constitutes the neighborhood of the detected feature. Having detected a corner
using e.g. the Harris Corner Detector described in Section 3.4.1, the feature is
stored as the image patch centered at the corner, resulting in something like the
highlighted patch in Figure 3.10.

Figure 3.10: Example of an image patch that could correspond to a corner fea-
ture.

In Section 3.4.1 it is briefly stated that the Harris Corner Detector is invariant
to rotation, as corners detected by this method come with corresponding eigenvec-
tors indicating the direction of change. Normalizing the orientation of the descrip-
tor patch can then be done by rotating the patch so the eigenvector corresponding
with the greatest change aligns with i.e. the x-axis. Detected corners in the new
image can then be rotated according to their eigenvectors and then compared to

26 Mikael Medina: Grasp Pose Detection for AUVs

the saved feature descriptor to find potential matches. This is a simplified version
of the Multi-scale Oriented PatcheS (MOPS) descriptor as described in [31].

Input image Histogram of Oriented Gradients

Figure 3.11: Histogram of gradients of an image, generated using Scikit-Image
hog() function [32].

The aforementioned feature descriptor, MOPS, is invariant to rotation and
translation, however, much like the corner detector it is based upon, it is not in-
variant to scale. In Section 3.4.2 the scale-invariant feature detector SIFT was
introduced. Features detected through SIFT are stored using corresponding SIFT
feature descriptors, which give rotation, translation, and scale invariance. At each
pixel, both gradient orientation and magnitude are calculated by means of local
pixel differences. The gradient directions for all pixels in the neighborhood are
compared in a histogram, and the peak value determines the keypoints canonical
orientation. A histogram of gradients for an image is visualized in Figure 3.11.
The final SIFT feature descriptor thus consists of the position of the keypoint, the
scale at which it was found, the canonical angle from the histogram of gradients,
and the size of the neighborhood.

3.5 Feature Matching

Once features have been extracted and stored using feature descriptors, finding
pairings of which features might be related to each other is the next step. A naive
approach would be taking the patch around a detected keypoint, to then scan a
second image for that same patch. This method could work in the absolutely most
basic cases but is not advisable. A search in this manner would require the exact
patch to be present in order to be detected, which is a highly unlikely situation.
Thus, feature matching is formulated as a similarity problem, where features are
matched as long as they are similar enough, rather than just identical.

Chapter 3: Robotic Vision 27

One approach to feature matching is to use a distance measure. Assuming that
the feature descriptors are designed such that they can be used in distance mea-
surements, finding the closest match is equivalent to finding the two describing
vectors with the shortest distance between them [33]. Let di denote the descriptor
of the i-th feature, then the Euclidean distance between two features is given by
the Euclidean norm

distance(d1,d2) = ||d1 − d2||2 (3.21)

where a feature is accepted if the distance is less than a chosen threshold. For large
multidimensional features, finding the closest match through a nearest neighbor
search is an efficient alternative. This is described for SIFT features in [30], and
a nearest neighbor algorithm is described in more detail in Section 4.1.2.

3.6 Stereo Cameras

A single camera will capture 2D projections of 3D scenes, which leads to a loss of
depth information. By using two or more imaging sensors with a known relation
to each other, geometrical considerations can be used to extrapolate depth infor-
mation of the scene. The methods described in this section can be done manually
with two separate cameras, however, a multitude of fully integrated solutions ex-
ist, such as the Intel Realsense series of cameras [34].

3.6.1 Triangulation

Given a set of corresponding points in two images, a linear approximation can be
made to estimate the 3D coordinates of the point P, known as triangulation. Using
the camera’s projection model, rays from the projected points xL and xR are avail-
able. Intuitively the original point P is then located at the intersection between
the rays, as shown in Figure 3.12. In an ideal world, this would be the case, how-
ever, due to inaccuracies and noise in the real world, an approximation has to
be sufficient. This section covers a triangulation algorithm presented by Longuet-
Higgins in [35] that imposes constraints on the projected rays to approximate the
coordinates of P.

Let X̃ be the homogeneous coordinates of P as seen from the left camera,
assumed to align with the world frame. The projected point x̃L is then given by
(3.10), with intrinsics KL and extrinsics equal to the identity, due to no rotation
nor translation. PL denotes the full projection matrix of the left-hand camera.

λx̃L = KLI4×4X̃= PL x̃w (3.22)

The projected point x̃R as observed by the right camera, placed with a known
transformation T relative to the left camera, is then given by

λx̃R = KRTx̃w = PRx̃w (3.23)

28 Mikael Medina: Grasp Pose Detection for AUVs

b

P

CL CR

xRxL

T

Figure 3.12: Visualization of the triangulation problem. The rays going from the
cameras CL,R might not exactly intersect at P. The distance b between the two
cameras is commonly denoted as the baseline.

The following derivation is equal for both left and right, hence the subscript L, R
is left out. Denoting the i-th row vector of projection matrix P as pi where i ∈
[1, 2,3], equations (3.22) and (3.23) may be written as

λx ′ = p1x̃w, λy ′ = p2x̃w, λ= p3x̃w (3.24)

Eliminating the unknown scaling factor λ by inserting the third equality in the
first two, results in the two linear equations

x ′p3x̃w = p1x̃w

y ′p3x̃w = p2x̃w (3.25)

Rearranging (3.25) for both cameras and grouping them together results in the
system of linear equations given by

Ax̃w = 0 (3.26)

where A is the 4× 4 matrix

A=







x ′Lp3 − p1
y ′Lp3 − p2
x ′Rp3 − p1
y ′Rp3 − p2






(3.27)

In the ideal case, this system can be solved for x̃w up to the unknown scaling factor
λ. However, as previously stated, the relation presented in Equation (3.26) does
not hold precisely with noisy real-world cameras, an approximate solution will
suffice [36]. This can be achieved for instance using a linear least-squares method
such as Singular Value Decomposition (SVD). As this section only intends to give
intuition on the main ideas behind triangulation, the SVD solution is left to the
reader.

Chapter 3: Robotic Vision 29

As a final note on the linear approximation to triangulation, it is worth noting
that the linear method is heavily affected by the initial pairing of point correspon-
dences and their levels of noise. As such it might be advisable to use the result
of Equation (3.26) as an initial guess for a nonlinear iterative estimation method,
such as Levenberg-Marquardt [36].

3.7 RGBD Cameras

An RGBD camera is the combination of an RGB camera and a depth sensor in
one package. The camera captures a colored image of the scene, while the depth
sensor measures distances. Given that both sensors have similar resolutions, the
sensor returns an image along with corresponding depths at each pixel. As the
pinhole camera has been covered somewhat extensively, this section will briefly
introduce a selection of depth-sensing methods.

3.7.1 Structured Light

One category of depth sensors uses structured light to extract depth information
from a scene. Structured light sensors are set up like stereo cameras and contain
one projector and one detector. The projector projects light in a structured pattern
onto the scene, which is then observed from a different viewpoint by the observing
camera. Patterns used for structured light sensors are typically straight lines or
repeating dot patterns as seen in Figure 3.13. When the known pattern of light is
projected onto a 3D object, the pattern appears deformed to the observing camera.
Comparing the deformed pattern to the original gives a disparity map which is
used to compute the depth.

Under the reasonable assumption that the camera and projector are only dis-
placed horizontally with baseline distance b, the disparity is reduced to a dif-
ference in horizontal values. A full disparity map for the projected pattern can
be computed for each pixel, giving the disparity m(x , y) for the pixel located at
(x , y). As disparity is given in pixel coordinates, the focal length is also given in
pixel units, i.e. fp =

f
s . Depth for the pixel at (x , y) can now be computed as

d =
b· fp

m(x ,y) . A popular structured light sensor is the Kinect developed by Microsoft
[37].

3.7.2 Time Of Flight

LIght Detection And Ranging (LIDAR) is another well-known method of measur-
ing depth in an environment by using the time of flight for light. A LIDAR sensor
works by emitting a pulse of light toward the scene. The light travels through the
air at speed c and is reflected back to the sensor when hitting objects. When the
reflected light hits the LIDAR sensor, the traveled distance l is given by the time it
took for the reflected light to hit the sensor, i.e. l = c · t. As the light had to travel

30 Mikael Medina: Grasp Pose Detection for AUVs

(a) Structured light pattern of vertical
lines with varying intensity according to
a sinusoidal signal.

(b) Parts of the structured light pattern
of a Microsoft Kinect sensor, uncovered by
Reichinger in [38].

Figure 3.13: Examples of structured light patterns.

this distance twice, once from the sensor to the object and once from the object
to the sensor, the distance to the scene is simply given by d = l

2 .

3.8 Scene Reconstruction

When depth information has been gathered for a large portion of the scene as
observed by a camera, a 3D representation can be generated. This is done by
augmenting the image coordinates with their corresponding depth value, resulting
in each triangulated point being represented in 3D. Storing all the triangulated
points in a structured manner is referred to as a point cloud. Plotting each point
in a 3D-coordinate system will then give a sparse representation of the captured
scene’s surfaces.

A point cloud can be enhanced further with more information about each
point. While getting a 3D representation of the scene in itself is useful enough,
appending information such as color to the points is a natural choice. Estimates
of scene semantics can also improve the information yielded by each point, such
as an estimate of the surface normal in the neighborhood of each point, this is
further explored in the following chapter.

Chapter 4

Point Clouds

A point cloud produced by triangulation with an optical sensor is a sparse rep-
resentation of an observed scene. The higher the density of the points, the more
accurate the scene appears. However, imaging sensors and reconstruction meth-
ods are prone to noise and faulty measurements. In order to provide semantically
meaningful information the point cloud has to be processed.

Preliminaries

Introduction

Underwater
Vehicle Model

Visual Perception
Semantic Un-
derstanding

Grasp Pose
Sampling

Grasp Pose
Evaluation

Control and
Grasp Execution

Figure 4.1: This chapter marks the step of generating semantically meaningful
information for the autonomous system.

This chapter introduces point cloud processing at different stages. Starting
with preprocessing in Section 4.1 a quick method of removing invalid values is
presented in Section 4.1.1. Thereafter, a data structure for efficiently represent-
ing a point cloud in a search tree is introduced in Section 4.1.2, which is followed
by a brief overview of a statistical outlier removal method for denoising in Sec-
tion 4.1.3. Filtering methods for reducing the complexity of a point cloud are
presented in Sections 4.1.4 and 4.1.5. Section 4.2 introduces two methods of ex-
tracting semantic information from a scene represented by a point cloud, namely,
a surface normal estimation algorithm in Section 4.2.1 and a segmentation algo-
rithm in Section 4.2.2.

31

32 Mikael Medina: Grasp Pose Detection for AUVs

4.1 Preprocessing

A raw point cloud generated from stereo camera triangulation as described in Sec-
tion 3.8 can be full of artifacts, noise, and wrongly triangulated pixels. To combat
this issue some preprocessing methods are popularly employed. This section cov-
ers the preprocessing steps used for this thesis, as well as some methods that
should be considered when implementing for field testing.

4.1.1 Removing Invalid Values

Erroneous sensor measurements could lead to invalid point values in point clouds.
Such measurements can occur if regions of the scene/image are outside the range
of a depth sensor, where points commonly get placed at infinite depth. This can
also occur if a point is erroneously triangulated. When using an imaging sensor
paired with a depth sensor to produce depth information, the resolution of the two
sensors might not always be the same, and in such instances, depth information
is only available for parts of the scene. This section emphasizes that albeit simple
and fast, removing the invalid values is an important step in the process.

A point with an invalid value is typically denoted with one or more coordinates
being infinite or not-a-number (NaN). As a point cloud is essentially a list of points
that contain their individual coordinates, removing invalid values is as simple as
iterating over the list and then removing the points with invalid values.

4.1.2 k-Dimensional Tree

Semantic understanding of a point cloud often requires knowledge about neigh-
boring points, as the geometry of a singular point means little to nothing alone.
Viz., estimating a surface can not accurately be done with just one point. Hence,
it is desirable to have a search method that is able to quickly find the k nearest
neighbors (kNN) of a given query point.

As the nearest neighbor search is used for multiple purposes, and might there-
fore be repeated often, it is desirable that when querying for kNNs a re-computation
of distances is avoided. Thus the need for a data structure able to convey distance
information in a fast way is prudent. The k-Dimensional tree (kD tree) is one such
data structure, presented in 1975 by Jon Louis Bentely [39]. A kD tree is a space-
partitioning data structure that organizes k-dimensional data points in a search
tree, where nodes close to each other in the tree correspond to points close in the
k-dimensional space.

Binary Tree

To understand the structure of a kD tree, a brief introduction to the binary tree is
included. A binary tree is a data structure consisting of nodes, represented by a

Chapter 4: Point Clouds 33

value, for instance integers. Each node has a maximum of two children, denoted
the left or right child. When constructing a binary tree the value of the new node
is compared to the existing one, if it is greater, the new node becomes the right
child, and if it is lower it becomes the left child. Thus, one simply follows the path
to the left or right until the desired value is reached. If a dead end is reached
before the desired value is reached it is indicative of the value being absent from
the tree.

e : 8

d : 4 h : 12

b : 2 c : 5 g : 11 f : 14

i : 15a : 1

Figure 4.2: An example of a balanced binary tree.

The binary tree in Figure 4.2 has been balanced, meaning the depth has been
reduced to the minimum. A worst-case scenario of the binary tree in Figure 4.2
would be starting with node a, then having each new node being inserted in in-
crementing fashion, giving the tree a-b-d-c-e-g-h- f -i, which would have a depth
of 8 rather than 3 in the balanced case.

Building a k-Dimensional Tree

A kD tree takes the idea of a binary tree further. In a kD tree, each node is rep-
resented by a multidimensional point. The root node generates a separating hy-
perplane on the first dimension where the left subtree represents points that have
lower values, and the right subtree has higher values. For each subtree, the di-
mension of comparison is changed, so if the root node does comparisons in the
first dimension, children of the root node perform comparisons in the second di-
mension, and so on. Each subtree then generates its separating hyperplane in the
dimension of comparison, and the full tree is generated [40].

Searching a k-Dimensional Tree

The process of querying a kD tree is similar to the process of building it. Starting at
the root node, the query point makes comparisons in the dimension corresponding
to the one used to separate at that level, iterating all the way to a leaf node. Once

34 Mikael Medina: Grasp Pose Detection for AUVs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

a

b
c

d
e

f

g

h

i

(a) Two dimensional point cloud with separating hyperplanes visualized.

e

c g

d b h f

ia

x < 8 x > 8

y < 8 y > 8 y < 5 y > 5

x < 2 x < 14

(b) Tree representation of the kD tree.

Figure 4.3: kD tree for two dimensions. First separating hyperplane separates
on x-axis, then separation alternates between y- and x-axis respectively. ©2021
Jonathan Viquerat, with modifications [41].

Chapter 4: Point Clouds 35

a leaf node is reached a comparison is done, if the distance is shorter than the
current shortest distance, it is updated. The algorithm then recursively iterates
backward to the root of the tree, checking whether the opposing hyperplane has
points closer to the query point or not.

The distance calculations done when querying a point can be saved during a
search. This allows for the values to be looked up when performing another search
later, reducing the need for re-computations. The algorithm can also be expanded
to computing the kNNs by keeping a record of the set of closest matches, not just
the single closest match [42].

4.1.3 Denoising

In the ideal case, all points in the point cloud are perfectly triangulated, and their
position is accurately represented in the 3D plot. However, this is most likely
never the case outside of simulation, and as such, methods for removing noise
are needed.

A statistical outlier removal algorithm removes points that do not fit within a
statistical measure of the point cloud. One such method described by Rusu in [43]
iterates over the point cloud twice. In the first iteration, the average distance for
each point to its kNN is calculated. After the first iteration, the algorithm calculates
the mean µ and standard deviationσ of the nearest neighbor distances. A distance
threshold is then formulated as µ+σ, then in the second iteration over the point
cloud, points that fall outside the threshold are removed. In [43] experimental
data shows that this algorithm performs well in datasets where approximately
1% of points are considered noise.

4.1.4 Random Sample Consensus

Not only do point clouds potentially contain noisy and faulty values, but they can
hold a lot of information that is strictly unwanted for the desired application. Say
a robot wants to pick up an object sitting on a table. Given a point cloud of the
scene, only a subset of the points belongs to the object, while a majority belongs to
the table. An algorithm for grasping the object need only consider grasping poses
for the points belonging to the object, and not the entire table surface.

One method for filtering out unwanted data is through Random Sample Con-
sensus (RANSAC) developed by Fischler and Bolles in 1981 [44]. RANSAC is an it-
erative method of estimating a mathematical model fitting a provided dataset. The
core assumption behind RANSAC is that the provided dataset consists of points
that can fit a parametric model (inliers) and points that can be considered noise
(outliers). RANSAC roughly consists of two main steps, which are iteratively re-
peated until either a maximum amount of iterations has passed, or a model with
sufficiently good fit has been found.

36 Mikael Medina: Grasp Pose Detection for AUVs

−4 −2 0 2 4 6 8

−20

−10

0

10

20

30
Outliers
Inliers
RANSAC
Inlier threshold
Linear regression

Figure 4.4: Comparison of RANSAC and normal linear regression on a dataset
containing a noisy line with outliers. Observe how the linear regression model
heavily skews towards the outliers in an attempt to fit the model to all the points.

The first step of RANSAC is to randomly select a subset of points from the
provided dataset. A parametric model is then fit to the selected subset, which
constitutes the second step. The order of the fitted model is in general selected
from the size of the selected sample, but expansions to the algorithm allow for
a prior model order to be provided. In 1999 Torr and Zissermann presented the
Maximum Likelihood SAC (MLESAC) variation of RANSAC, which selects a model
based on a maximum likelihood [45], allowing for a prior to be provided for esti-
mation of datasets with some predetermined known structure.

Fischler and Bolles identify three main parameters that define different thresh-
olds in the RANSAC algorithm. The first threshold parameter is the error tolerance
used to decide whether or not a point is compatible with the estimated model, i.e.
the maximum distance a point can lie from the model to be considered an inlier
in the case of Figure 4.4. A check is performed using this threshold to identify all
the inliers of that model. The subset of points that define a model and the points
that are inliers for that model make up the consensus set. Secondly, a parameter
to limit the amount of model parameter sets to try is defined. This ensures that the
algorithm is guaranteed to terminate if a sufficiently large consensus set has not
been found in the specified amount of iterations. Thirdly, a threshold that defines
the desired minimum amount of inliers in a consensus set. In this way, a model is
accepted as correct if the consensus set is bigger than the threshold.

There is no maximum number of iterations guaranteed to give the desired
result. However, an estimate can be found from the desired probability of the
RANSAC algorithm giving at least one good result, the steps are as follows: (1)
pick a desired probability p that at least one useful result is found. For simplicity

Chapter 4: Point Clouds 37

let a useful result be a result in which all n randomly sampled points are inliers.
(2) calculate the inlier fraction using Equation (4.1). In situations where w is not
known exactly, a rough estimate will suffice.

w=
Inliers

Total points
(4.1)

(3) the probability that n points are inliers is then given by wn, consequently 1−wn

is the probability that at least one of the points is an outlier. Thus, the probability
of the algorithm not returning a useful result in k iterations is given by

1− p = (1−wn)k (4.2)

Furthermore, by taking the logarithm of both sides in Equation (4.2), the esti-
mated maximum iterations needed for the probability p of picking a useful set
is

k =
log(1− p)

log(1−wn)
(4.3)

RANSAC is robust, computationally efficient, and capable of finding models
even in datasets heavily affected by outliers. In Figure 4.4 a RANSAC estimate is
compared to a normal linear regression, and it is clear that the linear regression
estimate is heavily influenced by the outliers. As RANSAC samples only a random
subset to perform thresholding checks on, the influence of the outliers is heavily
reduced. However, it is worth noting that the algorithm is heavily affected by the
threshold parameters. There is no upper bound on iterations unless specified, and
there is no guarantee that the sampled points will lead to an optimal model. If the
inlier threshold was halved in Figure 4.4, a lot of the inliers would fall outside the
threshold.

4.1.5 Downsampling

Depending on the resolution of the sensor or method used to generate a point
cloud, the density varies. This is sort of analogous to the variation in scale seen
in Figure 3.6, Naturally, computation time complexity increases with the number
of points in the cloud, thus it is desirable to reduce the number of points with-
out loss of defining features to speed up computations. This process is known as
downsampling.

VoxelGrid filtering is a technique used for point cloud downsampling. To per-
form VoxelGrid filtering the 3D space holding the point cloud is divided into cubic
cells called voxels. A voxel thus holds all the points in the cloud that lies within
that region of the 3D space. Downsampling is then performed by calculating the
centroid of all points contained in each voxel, then replacing those points with
the centroid. The larger the voxels, the greater the magnitude of downsampling,
as each voxel will hold more points. Reducing the number of points in this way

38 Mikael Medina: Grasp Pose Detection for AUVs

generally preserves the structure and shape of the point cloud, as each region is
represented by its centroid. However, a loss of resolution naturally leads to some
loss of information. Thus, a trade-off has to be made on information loss versus
the grade of downsampling by specifying the voxel size.

4.2 Understanding the Scene

Once the point cloud has been properly pre-processed, it is ready to be processed
further for the extraction of semantic information. In this section, two methods of
capturing the underlying geometric properties of the point cloud are presented.
Firstly, a method of estimating the surface normals is introduced. Then, a region-
growing-based segmentation method is presented.

4.2.1 Surface Normal Estimation

The full point cloud gives a rough representation of the observed scene but is lack-
ing in local describing features. A safe assumption for the point cloud is that points
very close to each other form a surface, these points might not belong to the same
object, but they roughly form a surface nonetheless. In order to accurately describe
the geometry of an underlying surface it is important to estimate its orientation in
space. The k points Pk closest to a query point pq can be found using a kNN algo-
rithm such as the one described in Section 4.1.2. Once the neighborhood Pk has
been determined, algorithms can be used to determine the underlying structure
of pq.

Estimating the surface normal of a point can be done by looking at charac-
teristics of its local neighborhood Pk. The 3D tangent plane fitting algorithm,
presented by Berkmann et al. in [46] uses such local considerations to estimate a
plane tangent to the centroid of Pk. A tangent plane consists of three basis vectors,
two pointing in the directions of the neighborhood, and a third that is perpendic-
ular to the two others, this is the normal vector. The algorithm defines the local
first-order surface covariance matrix C of the neighborhood Pk as

C=
1
k

k
∑

i=1

(pi − p̄) · (pi − p̄)⊤ (4.4)

where p̄ is the centroid of Pk given by

p̄=
1
k

k
∑

i=1

pi (4.5)

C is a symmetric positive semi-definite matrix, hence all the eigenvalues are real
and non-negative, i.e. λi ∈ {R|λi ≥ 0}, i = 1, 2,3. The eigenvectors vi form an
orthogonal frame, where the two eigenvectors v1,2 corresponding to the largest

Chapter 4: Point Clouds 39

eigenvalues λ1,2 form a plane tangent to Pk at pq. The frame spanned by the
eigenvectors corresponds to the principal components of C, and as such the eigen-
vector v0 corresponding to the smallest eigenvalue λ0 is an approximation of the
normal n to the tangent plane, i.e. the surface normal at pq [47].

The frame formed by the principal components of the neighborhood Pk, i.e.
the eigenvectors, is ambiguous in the sense that there is no general way of solving
for the sign of n. As such all the estimated surface normals for the full point cloud
might not be consistently oriented. For a full point cloud, made by a 3D scan
from all directions of an object, rectifying this is difficult [47]. However, as the
point clouds generated by a stereo camera generally have a known viewpoint po-
sition vp, surface normals can be corrected towards the viewpoint. As any surface
normal pointing away from the viewpoint would be considered as being behind
an observed object, this is a non-feasible normal direction. Correction is done by
making sure the surface normals satisfy the equation

n · (vp − pi)> 0 (4.6)

4.2.2 Segmentation

In the context of 3D point clouds, segmentation is the act of defining which points
belong to which objects/regions in the scene. The clustering of a point cloud into
the different segments that constitute the scene provides vital contextual informa-
tion. This section aims to inform the reader why segmentation is a powerful tool,
then provide an example of a segmentation algorithm.

Take for instance a point cloud representation of a cup on a table. Given that
the segmentation algorithm properly manages to separate the two, detecting the
cup would be reduced to comparing both segments of the cloud to an already
stored cloud representation of the cup. Comparing two point clouds and measur-
ing their similarity is a well-researched topic known as point cloud registration,
however, as it is not covered in this thesis, the reader is referred to a thorough
survey on the state of point cloud algorithms by Huang et al. [48]. When lacking
prior knowledge of the object — or in cases where it is poorly represented by the
point cloud — registration algorithms are limited.

Without prior knowledge of the present objects, segmentation nevertheless
provides valuable information for autonomous systems. While registration algo-
rithms might have limited potential, object detection/recognition algorithms can
provide beneficial information. As 3D scanners such as LIDAR and Kinect have
been widely employed in the last decade, a multitude of segmentation approaches
have been made. Nguyen et al. performed a survey of methods in 2013 [49]
and distinguished segmentation algorithms into multiple categories such as edge-
based methods, region-based methods, and model-based methods. For the pur-
pose of this thesis, only region-based methods have been considered, but it is

40 Mikael Medina: Grasp Pose Detection for AUVs

worth noting that model-based machine learning methods are rapidly increasing
in popularity, such as Microsoft’s newly published and popular Segment Anything
model for images [28].

Figure 4.5: Test scene used for comparison of region-growing segmentation.

Region-growing segmentation methods start by selecting a point, then based
on certain criteria iteratively adds neighboring points to the current set. When no
more points pass the criteria for being added to the set, the region is considered
fully grown, and a new point is chosen as starting point for the next region. This
is repeated until all points have been added to their corresponding regions. De-
pending on the algorithm, a thresholding can be done on the regions to determine
if it sufficiently big to be considered a proper segment.

There are a wide variety of criteria that can be used for defining whether a
point belongs to a region or not. The criteria used in the method implemented
for this thesis are surface normal direction, curvature, distance, and optionally
color. Most of these criteria are self-explanatory, but curvature is a measure that
requires some explanation. As was the case with the surface normal, one method
of inferring curvature is by estimating it from the local neighborhood of points.
As it happens, this information is held by the same covariance matrix C as in
Equation (4.4). Recall that the eigenvalue corresponding to the surface normal,
λ0, indicates the rate of change in the direction of minimum variance. The change
of curvature in the neighborhood Pk can then be estimated as the ratio between
the minimum eigenvalue and the sum of the eigenvalues

σp =
λ0

λ0 +λ1 +λ2
(4.7)

This ratio can be understood as the variation in the direction of n relative to the
total variation in the direction of all eigenvectors. High values of σp indicate a
large variance in the normal direction, while a low value of σp indicates that the

Chapter 4: Point Clouds 41

(a) Region-growing segmentation. Regions are color-coded and red points correspond to
points that do not belong to a specific region.

(b) RGB region-growing segmentation. Regions sufficiently close in color and space have
the same color. Note that while the long pole is black, reflected lightning makes the color
difference too big, as seen in Figure 4.5. For the left object, the distance threshold is not
satisfied, hence it is split into two segments despite the color being sufficiently close.

Figure 4.6: Comparison of region-growing segmentation with and without color
comparison.

42 Mikael Medina: Grasp Pose Detection for AUVs

points in the neighborhood lie in the tangent plane of point p, indicating low
curvature [47].

To summarize, the region-growing segmentation algorithm starts with select-
ing the point with minimum curvature, which according to [47] helps reduce the
number of segments, and adds it to a set of seeds. The neighborhood Pk of the
starting point is found and a test is done on the normal at each point. If the angle
between the normals is lower than a threshold value, the point is added to the
current region. If RGB segmentation is specified, a color check is performed here
as well. For the point to be added to the region the difference in color needs to be
below a certain threshold. Next, each point in the neighborhood is tested on cur-
vature, if the curvature is below a threshold, the point is added to the seeds. This
concludes the checks for the starting point, which is then removed from the set of
seeds. The next seed is picked from the set and the same checks are performed.
When the set is empty it means the region has been fully grown, a new starting
point is found and the process is repeated. In the case of RGB segmentation, a
merging step takes place after all the segments have been classified. A distance
threshold determines if two segments are close enough to be merged, if they are,
the difference in average color for the two segments has to pass a last threshold
to merge. An example of a cloud segmented using regular region-growing seg-
mentation is shown in Figure 4.6a, while the color criteria have been added in
Figure 4.6b.

Chapter 5

Grasp Pose Sampling

When a human is tasked with picking up an object, a decision about how to pick
it up is made just by taking a quick gaze at it. This intuition is built up over years
of picking up objects, all the way from being a toddler. However, putting human
intuition into an algorithm for use by a robot is a complicated — nigh impossible
— process, a generalized grasping algorithm that performs just as well as a human
has yet to be made. Still, researchers keep working towards it, as it would change
the robotics field drastically [50].

Preliminaries

Introduction

Underwater
Vehicle Model

Visual Perception
Semantic Un-
derstanding

Grasp Pose
Sampling

Grasp Pose
Evaluation

Control and
Grasp Execution

Figure 5.1: This chapter marks the step in the process where grasp pose candi-
dates are sampled. This chapter presents two methods of doing so, along with
some grasp pose semantics used.

Multiple strategies can be utilized when generating candidate poses for a grasp-
ing algorithm. This chapter will cover two slightly different approaches for sample
pose generation. Before delving into specifics about sampling, Section 5.1 intro-
duces the different terms used when talking about grasping, as well as the gripper
itself. Then, Section 5.2 presents the first sampling method based on uniform sam-
pling of points in the point cloud, before another sampling method based upon
point cloud characteristics is presented in Section 5.3

43

44 Mikael Medina: Grasp Pose Detection for AUVs

5.1 Grasp Pose Semantics

This section aims at giving the reader an understanding of the terminology used
for the gripper and subjects related to it in this thesis. Starting with the basic
term grasp pose — or simply grasp — which essentially means the position and
orientation of a gripper. In the context of this thesis, the discussion is limited
to two-finger grippers. Anatomical terms such as finger and palm are used in the
same context as on a human hand, note that the surface normal of the palm points
in the direction of the closing region of the fingers. As such, the word hand might
be used interchangeably with either gripper or grasp pose, based on context. When
referring to the normal direction — or just normal — of a grasp, it is implied that
this is the surface normal of the palm of the hand.

A candidate grasp pose is a grasp pose that has been sampled, but not yet eval-
uated. As such, a candidate grasp pose can be in a configuration that ultimately
wouldn’t lead to a grasp, such as a pose where the gripper would intersect or col-
lide with the object. The closing region is the region enclosed between the fingers
of the gripper and the palm, i.e. the area spanned by moving the fingers from a
fully open to a fully closed position. If a candidate pose has no points from the
object in its closing region, the grasp would unsurprisingly not be able to pick up
the object.

A point being sampled is considered as centered in the closing region of the
gripper, as illustrated in Section 5.1. In this manner, if the object geometry allows
for it, simply closing the gripper would be sufficient to grasp it as there are no
collisions. For sampled points in surfaces that are larger than the max aperture of
the gripper, a collision check would have to be made, which is further discussed
in Section 6.1.

max aperture
n

Figure 5.2: Sampled point inside closing region of a gripper with simplified ge-
ometry. n is the normal pointing out of the grippers palm.

5.2 Uniform With Local Variation

Sampling points uniformly from the object point cloud is a straight forward method
of generating candidate poses. Given that segmentation has output a point cloud
consisting of the OOI, then each point could be a potential basis for a grasp. The

Chapter 5: Grasp Pose Sampling 45

initial sample gives points belonging to the object, with an orientation aligned
with the direction the camera is facing. It is easy to see that only considering
poses with this alignment would drastically reduce the chances of finding a grasp.

To widen the sample size and introduce variation in orientations, the uniformly
sampled poses are augmented. Augmentations are done by pulling from a normal
distribution then adding the result to the sampled pose, the standard deviation
in orientation and position can be tuned according to the desired variation. Hav-
ing augmented all the uniformly sampled poses, the resulting cloud of grasping
candidates will be reminiscent of star clusters, see Figure 5.3. Pseudocode for the
uniform sampling algorithm is given in Algorithm 1.

While using a uniform distribution with enough samples is sure to cover the en-
tire object, this method generates multiple candidates closely clustered together.
The tight clustering in itself is not necessarily a problem as the standard deviation
could be tuned, but it could lead to detrimental performance issues. If the initially
sampled point is objectively a bad place to grasp, the newly sampled points with
variations will most likely also just be bad candidates. In order to extract good can-
didates, the sampling algorithm would have to generate many candidates, just to
discard a large chunk of the bad ones at later stages. It is worth repeating that each
of the candidates, i.e. the blue points in Figure 5.3, would also have individual
orientations.

Figure 5.3: Uniformly sampled points with local variations looking like star clus-
ters. Red points belong to the object that is being sampled from and blue points
are sampled positions. Lines are drawn from the uniformly sampled point to their
corresponding local variations.

46 Mikael Medina: Grasp Pose Detection for AUVs

Algorithm 1 Uniform grasp pose sampling with local variations

Input:
P ← Point cloud
σp← Standard deviation position
σθ ← Standard deviation orientation
k← Number of points to sample uniformly
n← Number of local variations for each uniformly sampled point

procedure UNIFORMSAMPLING(P,σp,σθ , k, n)
S ← ; ▷ Initialize sampled poses as empty set
Pk sampled from U(P, k) ▷ Sample k points uniformly from P
for all points p in Pk do

for i← 1, n do ▷ Sample n variations per uniformly sampled point
v sampled from N (0,σp) ▷ Sample local variation
pi ← p+ v ▷ Add local variation to each point
θ i sampled from N (0,σθ) ▷ Sample 3DoF orientation
η← [p⊤i ,θ⊤i]

⊤ ▷ Sampled pose is position pi and orientation θ i
S ∪ {η} ▷ Add pose to set of sampled poses

end for
end for
return S

end procedure

Chapter 5: Grasp Pose Sampling 47

5.3 Using Point Cloud Characteristics

Hand placement when picking up objects is far from arbitrary. Picking up an object
far from the center of mass leads to gravity acting as a wrench, causing the object
to pivot and possibly slip from the grasp. Through many years of intuition behind
holding things, humans can adapt to this challenge when sensing movement in the
object. Counteractions might include rapidly moving the grip to another location,
supporting the object with another hand, tightening the grip, or simply letting the
object fall while attempting to catch it with another extremity, popularly a foot.
These counteractions can have varying degrees of success, hence it is important
to consider the hand placement beforehand. To give a robot the capabilities of all
these counteractions is a hard task, hence an approach to combat it is to perform
the grasp closer to the center of mass to minimize the wrench produced by gravity.

Estimating the center of mass for an unknown object is a thesis, or even an
entire research field, in its own right, a simpler approach can be made with some
assumptions. Under the realistic assumption that the observed point cloud has a
uniform mass distribution, the center of mass coincides with the centroid of the
point cloud. As such, if a sufficiently accurate segmentation has been done the
OOIs center of mass can be estimated as the centroid of the point cloud segment.

A point cloud as observed by a stereo camera only has partial information
about a scene. Any part of the scene occluded by an object would not be included
in the point cloud. Without performing a full survey of the scene this limits the
knowledge of full 3D information about object shapes and depth in the scene.
Hence, an assumption that the object cloud as a result of segmentation carries
sufficient information about the object is made. In essence, this assumption means
that estimating the center of mass for the observed part of the object is sufficiently
close to estimating the center of mass for the entire object.

In light of the previous assumptions, estimating the segment’s center of mass is
reduced to estimating its centroid. Recall that the centroid can be estimated using
Equation (4.5), but rather than summing over a neighborhood the whole cloud is
used. The estimated center of mass can then be used as the mean in a distribution
of candidate grasping poses. There are some considerations to be taken when
picking the standard deviation, and type of distribution, which depend on the
desired properties of the sampling algorithm. Namely, using a distribution with
heavy tails would give a higher probability of sampling poses at the extremities,
while a lighter-tailed distribution has a higher density at the mean. Under the
assumption that the center of mass is a good point to grasp, a high density at the
mean is desirable. However, for objects that are hard — or even impossible — to
grasp at the centroid, sampling around the mean would have a low probability of
finding a feasible grasp, such as a large ring.

The normal distribution is a natural first choice for a roboticist, satisfying the

48 Mikael Medina: Grasp Pose Detection for AUVs

property of having a sufficiently high and wide peak and decently weighted tails.
The final consideration for the sampling distribution then falls on the standard
deviation. Again the dilemma of picking a sufficiently wide distribution arises, as
a low standard deviation implies a lower variation in gripper poses. As the sampled
poses are in 3D, the distribution forms an ellipsoid around the mean, furthermore,
if the standard deviation for x , y and z is the same the distribution has a spherical
shape. For an object that is significantly smaller along one axis than the other it is
undesirable to sample along both axes with the same standard deviation, as this
would likely lead to more infeasible poses.

Point cloud characteristics such as the variation along the x-, y- and z-axis can
aid in picking standard deviations for sampling. In similar fashion as finding the
covariance matrix of the neighborhood Pk in Section 4.2.1, the covariance of the
entire cloud can be estimated using the estimated centroid then summing over the
entire cloud with Equation (4.4). A good pick for standard deviation in x , y and z
is then given by the square root of the diagonal elements of C respectively. Finally,
pseudocode for the algorithm is given in Algorithm 2

Algorithm 2 Normal grasp pose sampling around centroid

Input:
P ← Point cloud
αp← Scaling factor for estimated standard deviation position
σθ ← Standard deviation orientation
k← Number of points to sample

procedure NORMALSAMPLING(P,αp,σθ , k)
S ← ; ▷ Initialize sampled poses as empty set
p̄←ESTIMATECENTROID(P) ▷ Equation (4.5)
C←ESTIMATECOVARIANCE(P,p̄) ▷ Equation (4.4)
σ2

p← diag(C) ▷ Standard deviation is
p

var.
for i← 1, k do

pi sampled from N (p̄,α⊤pσp) ▷ Sample position with scaling on std.dev.
θ i sampled from N (0,σθ) ▷ Sample 3DoF orientation
η← [p⊤i ,θ⊤i]

⊤ ▷ Sampled pose is position pi and orientation θ i
S ∪ {η} ▷ Add pose to set of sampled poses

end for
return S

end procedure

Chapter 5: Grasp Pose Sampling 49

(a) Frontal view at a slight angle.

(b) Top-down view.

Figure 5.4: Example of sampled positions using a normal distribution with mean
at the centroid. Centroid is drawn in orange, sampled positions are blue and the
object cloud is red.

Chapter 6

Grasp Pose Evaluation

To decide what grasp pose candidate is best suited for grasping the object of in-
terest, quality measures have to be calculated. Optimally these measures have a
high correlation with experimental results such that high quality in the algorithm
is indicative of a high-quality grasp. While using machine learning frameworks to
classify grasps is growing rapidly in popularity [16], the quality measures used for
this thesis are purely geometry based. In Section 5.3 it is mentioned that gripping
near the center of mass is indicative of a more stable grasp, it is assumed that this
quality is baked into the sampling algorithm.

Preliminaries

Introduction

Underwater
Vehicle Model

Visual Perception
Semantic Un-
derstanding

Grasp Pose
Sampling

Grasp Pose
Evaluation

Control and
Grasp Execution

Figure 6.1: This chapter wraps up the presented pipeline with reasoning behind
some quality metrics for evaluating grasp poses candidates.

Grasp pose evaluation is formulated as a score, where each component adds to
the score according to how well the pose satisfies the metric. At the end, the pose
with the highest score is labeled as the best pose, as this is the pose that aligned
best with the metrics presented in this chapter.

This chapter aims to introduce further quality measures for a grasp candidate
and the reasoning behind them. Section 6.1 discusses the removal of candidate
grasps that have invalid configurations before a metric describing hand alignment
is introduced in Section 6.2. Further, Section 6.3 presents a discussion about pun-
ishing demanding poses due to the restoring forces on a submerged vehicle. A
secondary measure of hand alignment relative to the estimated object surface is

51

52 Mikael Medina: Grasp Pose Detection for AUVs

provided in Section 6.4, before Section 6.5 provides a qualitative measure of how
well the gripper encloses the object. Finally, the full metric used for scoring a grasp
candidate is summarized in Section 6.6.

6.1 Collisions

As the presented sampling algorithms sample poses with little to no regard for
the gripper geometry, some grasp candidates are bound to be infeasible. A pose is
given by the position of the centroid of the closing region and an orientation that
dictates the normal direction of the hand, as shown in Section 5.1. Depending on
the gripper configuration, the aperture dictates the maximum width of an object it
can grip. Thus, if the closing region of the gripper intersects a region in the point
cloud exceeding this width, a collision would occur.

To detect possible collisions an outer collision box for the gripper is defined.
The collision box encloses the closing region and is large enough to enclose the
physical geometry of the gripper in a fully open configuration. To avoid poses
where the gripper would fit at the object, but be too wide to get there, the collision
box stretches backward along the arm. A collision is indicated if a point contained
in the collision box does not simultaneously lie within the closing region. This
relationship is visualized in Figure 6.2.

Collision
box

Closing
region

Figure 6.2: Diagram showing that the closing region is a subset of the collision
box. If a point lies in the collision box and not the closing region it indicates a
collision.

The algorithm creates convex hulls for the collision box and the closing region.
The convex hulls are defined as the geometry of the gripper around the center
point of the closing region. The next step is to filter the points that lie within the
collision box, the points that do are added to a temporary cloud. The temporary
cloud and the closing region are similarly filtered. If any point in the temporary
cloud is outside of the closing region, it is considered at risk of collision, and the
grasp is classified as a collision. Any grasps marked as collisions are removed from
the sample set S. Grasps with no points in the closing region are also filtered out
at this stage.

Chapter 6: Grasp Pose Evaluation 53

6.2 Normal Angle Alignment

Through experiments, Balasubramanian et al. discovered that humans tend to
align their wrists with the principal axis or its perpendiculars when grasping ob-
jects [50]. In order to measure how well a grasp pose candidate aligns with the
point cloud, a comparison is done with the grasp normal and the estimated surface
normal of the closest point. The point in the closing region closest to the gripper
position is found using kNN as described in Section 4.1.2, and the normal corre-
sponding to that point is readily available from the result of the method explained
in Section 4.2.1. The grasps alignment with the surface normal is calculated di-
rectly from the vector cross-product as

cos(θ) =
ng × ns

||ng || · ||ns||
(6.1)

where ng is the grasp normal and ns is the estimated surface normal of the closest
point.

The angle between the normals could be computed as arccos(·) of Equation (6.1),
however, in order to use it directly as a score it is left as is. Cosine provides val-
ues in the range [−1,1], where -1 means the normals are pointing in opposite
directions, 0 means they are perpendicular, and 1 means they point in the same
direction. Hence, taking the absolute value of (6.1), i.e.

qn = | cos(θ)|=
�

�

�

�

ng × ns

||ng || · ||ns||

�

�

�

�

(6.2)

provides a score in the range [0,1] of how well the normals align. A score of 1
indicates that the angle between the normals is 0, which is analogous to the grasp
being perpendicular to the surface.

6.3 Orientation Constraints

As the camera is mounted rigidly on the AUV, the images it produces, and the point
clouds, are relative to the AUV’s pose. Recall that the gripper is rigidly fixed to the
AUV and has no DoF once fastened. Hence, if a grasp candidate is sampled at
an orientation far from θ = [0, 0,0]⊤, performing that grasp requires the AUV to
achieve that pose. For a neutrally buoyant vehicle, the restoring forces will always
try to keep CG below CB, consequently, an AUV at 90◦ roll produces restoring
forces pushing roll back to 0. Achieving a grasp at 90◦ roll would then require
thrust to compensate for the restoring forces, making the grasp harder to perform.

Assuming that the AUV is in a neutral orientation, the point cloud generated is
aligned with NED. This also means that all sampled poses are relative to the neu-
tral NED orientation. A scoring function is introduced in order to accommodate

54 Mikael Medina: Grasp Pose Detection for AUVs

for low-impact orientations, giving higher scores closer to a neutral orientation.
The suggested scoring function is

qo,α = 1− | sin(α)|, α= {φ,θ ,ψ} (6.3)

which gives a decreasing value as the angle deviates from 0, as shown in Fig-
ure 6.3. Note that when passing π

2 the value increases again. In practice this would
for instance mean a roll of more than 90◦, however, this can also be solved by
rolling the appropriate amount in the opposite direction due to gripper symmetry.
For pitching this solution can not be applied, hence, situations where the sampled
orientation has a component greater than π

2 should be avoided e.g. by using a
significantly low standard deviation when sampling.

−π −π2
π
2

π

0.5

1

α

qo,α

Figure 6.3: Scoring function for orientations.

Orientation is inherently a three DoF property, and as such the scoring func-
tion gives a score qo,α ∈ [0, 1] for each degree of freedom. With the purpose of
reducing the impact of orientation scores, a weighting is done such that the total
contribution of qo = qo,φ + qo,θ + qo,ψ is in the range [0, 1], i.e.

qo = w1qo,φ +w2qo,θ +w3qo,ψ, w1 +w2 +w3 = 1 (6.4)

Furthermore, it is worth noting that a deviation from 0 in yaw has little to no
impact on the difficulty of reaching the pose, hence w3 can be picked significantly
lower than the other weights. A word of caution here is that with point clouds
generated from only one viewpoint, knowledge of the scene decreases when yaw
deviates from the viewpoint, as such, the standard deviation in yaw should also
be tuned accordingly.

6.4 Contact Point Alignment

In order to grasp and hold an object the grasping hand needs to counteract a se-
ries of forces. Simply picking an object straight up requires the negation of gravi-
tational forces. This can be achieved either by getting underneath the object and
pushing it upwards, fastening something to the object and hoisting it like a crane,
or by grabbing the object by the sides and lifting it. Depending on the configu-
ration of the two-finger gripper, mainly the first or last options are applicable,

Chapter 6: Grasp Pose Evaluation 55

α

fcn

fg

f f

f1f2

Figure 6.4: Forces acting in one contact point of a two-finger grasp, showing how
the total force needs to be inside the friction cone in order for the object not to
slip.

however, in both cases, the stability of the grasp depends on the friction at the
contact points.

When contact is formed between two objects, a perpendicular force is exerted
on both objects. The static object exerts a normal force on the object that comes in
contact with it, which exerts a contact force on the static object. When a gripper
closes on an object, the normal force stops the gripper from passing through the
object. In order to cancel out the gripper movement, the normal force is equal in
magnitude to the contact force, but opposite in direction.

Due to the contacting surfaces being uneven on a microscopic level, a friction
force occurs when the surfaces move in opposite directions. The friction force is
opposite to the force that moves the object. Using a Coulomb friction model, the
friction force required to keep the object stationary is given by

f f ≤ µsn (6.5)

where µs is the static friction coefficient for the contact between the two materials,
and f f ,n is the friction and normal force respectively. Thus, if the friction force
increases above µsn as a result of an external force, the object starts moving in the
direction of the external force. The friction cone is defined as the region spanned
by the set of forces that can be applied without causing the object to be moved.
For one contact point, this gives the friction cone

¦

f ∈ R3 :
Ç

f 2
x + f 2

y ≤ µs fz , fz ≥ 0
©

(6.6)

where fx and f y are forces tangent to the contact surface and fz is perpendicular
to the surface.

For a grasp where two fingers are placed on opposite sides of an object, in
an attempt to lift it, the gravitational force pulls the object down with a force

56 Mikael Medina: Grasp Pose Detection for AUVs

α1 α2

(a) Antipodal grasp

α2
α1

(b) Not antipodal grasp.

Figure 6.5: Two finger grasps as seen from above, the grasp in (a) satisfies the
antipodal condition, while the grasp in (b) does not. Further, the line connecting
the contact points is also referred to as the connecting line.

perpendicular to the contact forces. In order to stop the object from slipping, the
gravitational force needs to be canceled out sufficiently by the friction forces. In
Figure 6.4 the forces are drawn for one contact point. The angle α comes from

the right triangle spanned by the contact and friction forces, i.e. µs =
f f

fc
= tan(α).

Let the angle α in Figure 6.4 be given by the friction coefficient µs. Then, given
the contact force fc and the friction f f as a result of the gravitational force fg in
Figure 6.4, the resulting total force is f1. As f1 lies inside the cone spanned by
α, no slip occurs. However, lowering the contact force, and thus also the friction
force, the total force is f2, which lies outside the friction cone, and a slip occurs.

Murray et al. define any grasp able to resist external wrenches with sufficient
contact forces as a force-closure grasp [51]. Furthermore, Murray et al. state that a
grasp with two contact points with friction is a force-closure if and only if the lines
connecting the contact points lie within both friction cones. A grasp satisfying this
condition is termed an antipodal grasp. This adds the additional constraint that
the two friction cones have to open towards each other, in essence meaning that
the fingers should be placed sufficiently opposite to each other. This is shown in
Figure 6.5, where Figure 6.5b creates a situation where the connecting line lies
outside the friction cones, and Figure 6.5a is an antipodal grasp.

Thus, the antipodality of a grasp can be indicated by the line connecting the
contact points. Given a contact force at a contact point, the friction cone around
the normal component of the contact force indicates how robust that contact is to
slipping. As the setup used for this thesis has no measurement of contact force,
a comparison of the connecting line and the two contact point normals gives an
indication of how well the antipodality constraint is satisfied. The contact point
for each finger is estimated by finding the point in the closing region that is closest
to the plane spanned by the corresponding finger. Let ng be the line connecting
the contact points and ns be the estimated surface normal, the alignment of the

Chapter 6: Grasp Pose Evaluation 57

two vectors is then given by Equation (6.1). This alignment is calculated for each
contact point, giving two scores, qcl for the left finger and qcr for the right finger,
calculated the same way as normal alignment, Equation (6.2).

6.5 Inlier Count

A grasp pose candidate which only encompasses a small part of the point cloud
is able to get a fairly high evaluation based on the previously mentioned metrics.
However, if the grasp barely contains any part of the object the grasp is likely not
satisfactory. Hence it is pertinent to give grasp candidates containing more of the
object a better score.

In its simplest form, scoring based on inliers is simply an addition to the score
proportional to the amount of points in the closing region. However, as the other
metrics mentioned in this chapter provide scores within the region [0,1] it would
be suitable for the inlier metric to do the same. It follows from the nature of the
problem that the amount of inliers is highly dependent on the geometry of the
gripper and the object, as well as the density of the point cloud.

As the gripper geometry is known and the downsampling algorithm described
in Section 4.1.5 uses voxels of a given size, a theoretical maximum amount of
inliers can be found. By calculating the volume of the closing region and know-
ing the volume of the voxels, the maximum amount of inliers is calculated as the
amount of voxels fitting in the closing region. Thus, a score is given by the per-
centage of inliers compared to the maximum possible, Equation (6.7). However,
the maximum as computed in this manner is not feasible, as it represents a fully
occupied closing region, which is only possible given a dense point cloud. The sur-
faces constructed by the point cloud generation methods explained in this thesis
would likely never fully populate the closing region. Hence, a percentage score of
inliers based on the maximum found in this manner would produce scores in the
lower percentages.

qi =
Inliers

Maximum inliers
(6.7)

For the purpose of this thesis, the value of maximum inliers was found empir-
ically, in order to get an inlier score closer to the range qi ∈ [0, 1]. Experiments
gave an intuition of how many inliers were expected for the chosen gripper geom-
etry, and the maximum inlier amount was changed accordingly. It is worth noting
that lowering the maximum inlier amount based on empirical knowledge intro-
duces cases where a grasp could get a percentage score of above 1, indicating that
the grasp contains more inliers than the maximum limit. This quality measure is
highly influenced by several geometrical factors with regards to both the gripper
and the object, meaning it should probably be tuned for individual cases.

58 Mikael Medina: Grasp Pose Detection for AUVs

6.6 Final Scoring

In the preceding sections scores indicating geometric considerations for a robust
grasp have been introduced. The final quality indicator of a grasp is the weighted
sum of these scores, given by Equation (6.8). Weighting the individual scores to
indicate priority of the grasp. For instance if the orientation is of low importance,
setting the weight wo close to zero reduces the impact.

qtot = wnqn +woqo +wcqcl +wcqcr +wiqi (6.8)

Each individual quality measure as stated in this chapter gives a score q ∈ [0,1].
Thus, the maximum achievable score — given that all weights are 1 and maximum
inliers is picked sufficiently high — is a score of 5, which indicates a grasp that
aligns perfectly with all the provided measures.

To summarize, qn evaluates the alignment of the grasp normal and the esti-
mated surface normal. qo is the weighted sum of the orientation scores that eval-
uates the grasp pose based on its orientation. qcl evaluates the alignment of the
connecting line at the left contact point to the estimated surface normal and qcr at
the right contact point. Finally, qi is the inlier score which evaluates the number
of inliers within the closing region.

Chapter 7

Implementation

To test the solution explored in this thesis, a simulation environment has been
used. The simulator was originally developed alongside a specialization project
conducted during the autumn of 2022. As the specialization project is unpub-
lished, some implementation details of the simulator environment are restated
here. Some modifications were made to the simulator to facilitate stereo/RGBD
vision to generate point clouds.

This chapter will cover the implementation framework used for simulating the
method described in this thesis. Starting by presenting the Robot Operating Sys-
tem software framework in Section 7.1, before introducing the simulator Gazebo
in Section 7.2, followed by a brief introduction to the Point Cloud Library in Sec-
tion 7.3. As the simulator provides a scenario with optimal conditions, some of
the inherent assumptions this brings to the system are covered in Section 7.4.

7.1 The Robot Operating System

The Robot Operating System (ROS) is an open-source framework for building
and implementing robotic systems, maintained by the Open Robotics organiza-
tion. ROS provides a message-passing framework for modular applications in the
structure of nodes. A node is a process capable of performing computations, which
communicates with other nodes through named streams called topics. Nodes can
publish messages on topics, other nodes in turn can then access the message by
subscribing to the same topic. In this manner, communication is anonymous be-
tween nodes in the sense that a node can freely publish to a topic without knowing
if any other nodes subscribe. Topics specify their types of messages, such that a
node publishing or subscribing knows what to expect when interfacing with the
topic.

ROS applications become highly modular due to the nature of communication
between nodes. New nodes can be developed on the fly, as the interface is known,
allowing for rapid testing and integration of new modules. ROS also provides a
framework for launching larger applications consisting of multiple nodes through

59

60 Mikael Medina: Grasp Pose Detection for AUVs

launch files, which allows the developer to specify which nodes are started and
with what settings. The development of complex systems consisting of multiple
modules is thus facilitated by the framework provided by ROS.

7.2 Gazebo

Gazebo is a 3D robotics simulation environment that provides a realistic physics
engine supporting a wide range of sensors and actuators. Maintained by the Open
Robotics organization, the software is open source and available under the Apache
2.0 license. The simulator grants the ability to simulate highly complex robot be-
havior, which makes it ideal for use before the field deployment of developed
systems.

Gazebo supports an array of files used to describe the world and the robots in
it and boasts an arsenal of different sensors it can simulate. This allows for specific
robot designs to be provided for simulation with high customizability for accurate
simulations. The simulator comes with a buoyancy system and is capable of simu-
lating hydrodynamics such as fluid added mass, damping, and Coriolis forces, M,
D and C respectively, which makes it well suited for underwater simulations. C,
the Coriolis and centripetal matrix, is calculated internally by the simulator using
M as stated in Section 2.2.2, as such, the simulator only needs to be provided with
the added mass and damping matrices. For this thesis, a BlueROV2 with the heavy
configuration has been simulated, fitted with an RGBD camera.

The BlueROV2, with its heavy configuration, is a small and affordable high-
performance ROV produced by Blue Robotics [52]. The ROV is small at approxi-
mately 0.46m×0.34m×0.25m and weighs in at around 12 kg. The heavy config-
uration comes with eight thrusters and is capable of precise movement with full
6 DoF control. With its modular frame, the BlueROV2 is easily modifiable, for the
purpose of grasping, a two-finger gripper is rigidly attached to the frame, mean-
ing it can only grasp in the configuration it is attached in. Figure 7.1 shows the
BlueROV in its simulated configuration.

Figure 7.1: BlueROV in Gazebo.

The Open Robotics organization, which maintains both Gazebo and ROS, has
made it possible to communicate between the two frameworks seamlessly. Gazebo
is structured similarly to ROS with nodes, topics, and messages, allowing for a ROS

Chapter 7: Implementation 61

node to act as a bridge to Gazebo. In this manner, nodes can publish messages on
topics in Gazebo, such as a camera sensor publishing an image, and then a node
running in ROS can subscribe to the topic and receive the image.

7.3 The Point Cloud Library

The Point Cloud Library (PCL) is an open-source software framework for 2D/3D
image and point cloud processing [53]. PCL carries a wide range of algorithms
used for point cloud processing, such as the ones presented in Chapter 4. The
solution implemented for this thesis uses PCL extensively for these purposes.

7.4 Inherent Assumptions

As the simulator provides an ideal environment without any disturbances, some
assumptions are inherently made about the system. The assumptions have varying
degrees of realism as the visual conditions in the simulator are a bad represen-
tation of rough underwater conditions. This section serves as a brief overview of
considerations and assumptions done at the different steps of the pipeline.

7.4.1 Imaging and Point Cloud Construction

Underwater imaging is a tough task as underwater phenomena can heavily impact
the captured images. The presence of marine snow and other suspended particles
in water can cause turbidity, making the water hazy and cloudy and interfering
with the penetration of light. Projected light from an AUV can also be reflected by
the suspended particles and turbid water, known as backscattering, which impacts
contrast in the captured scene. Furthermore, the light rapidly attenuates in water,
making colors appear different and duller.

The severity of the aforementioned effects varies based on the conditions of
the water body and depth. In the simulated solution these effects are not present,
which poses the assumption that the underwater conditions are perfect, with low
turbidity and good lighting. A light source in the simulator acts as a sun which
casts a reflection on certain objects, such as the black bar in Figure 4.5. This effect
is reminiscent of light changing the apparent color of perceived objects, but an as-
sumption is nevertheless made that this effect is minimal. The effect of attenuation
is also assumed negligible, i.e. colors appear as they are.

As the camera in the simulation produces perfect representations of the per-
ceived scene, the camera is assumed to be properly calibrated with a suitable
model for underwater imaging. This relates to the fact that there is no noise
present in the images, nor are there any distortions. Furthermore, the point cloud
produced by the RGBD camera in Gazebo produces exact representations. For this

62 Mikael Medina: Grasp Pose Detection for AUVs

to be feasible, assumptions are made that triangulation for 3D scene reconstruc-
tion is accurate, and that objects even with low-texture areas can be reconstructed
using the chosen reconstruction method. To somewhat more accurately represent
field conditions, the depth sensor in the simulator has been limited to a maximum
distance of 6 m.

7.4.2 Point Cloud Processing

Given that a point cloud is produced, most processing can be done without as-
sumptions. However, an assumption is made that the seafloor is sufficiently flat so
that it can be estimated and removed with a RANSAC model to speed up segmen-
tation. For the processing to produce accurate results, it is assumed that the point
cloud produced by reconstruction has a sufficient density to accurately represent
the scene. For this thesis, it has been assumed that the object of interest can be
distinguished by its color, allowing the use of color segmentation algorithms to
identify it. In the case of multiple objects of the same color, this assumption is ex-
tended to the object with the highest intensity of that color. It is further assumed
that the point cloud’s estimated surface normals represent the true surface.

7.4.3 Grasp Pose Sampling

As the point clouds generated mainly show objects from one side, it is assumed
that this is sufficient information to get a decent idea of the shape of the object. In
essence, this assumption means that a grasp is collision-free as long as it passed
the collision check described in Section 6.1, and is not placed fully behind the
object, i.e. the object geometry does not deviate considerably from the point cloud
representation. For further implementation the simulator also provides accurate
odometry, giving the position and orientation of the AUV. When control algorithms
are implemented this means that full knowledge is available to guide the vehicle
towards the target grasping pose.

Chapter 8

Results

The following chapter presents the experimental results of the grasp pose detec-
tion method explored in this thesis, tested by means of simulation in Gazebo.
Section 8.1 introduces the simulation environment used for testing. Section 8.2
presents results related to the processing steps described in Section 4.1. Results
from different sampling methods are presented in Section 8.3, followed by Sec-
tion 8.4 which explores the metrics used for evaluating the grasp pose candidates
before final results are displayed in Section 8.5.

Figure 8.1: The three objects present in the simulation environment. For this
figure, the barbell (middle object) has been raised to the level of the others and
thus appears larger than it is.

63

64 Mikael Medina: Grasp Pose Detection for AUVs

8.1 Experimental Setup

In order to test the proposed framework for grasp pose detection, a simulation en-
vironment in Gazebo is used. A model of a BlueROV2 heavy fitted with an RGBD
camera is placed in the Gazebo-simulated world. In the simulator three other ob-
jects of interest are present. The first object is shaped like a barbell, consisting of
two squares connected by a narrow rectangle. This shape is used to represent an
object only graspable in a limited region. The second object is a ring on top of
a pole, which has the property that the centroid contains no viable grasps, while
the ring itself is graspable from essentially any pose. Finally, a horizontal cross
is present in the simulation, aimed at testing the orientation aspect of the imple-
mentation. Figure 8.1 shows the three objects in the simulator.

The RGBD camera publishes its image and corresponding point cloud to a
Gazebo topic, which is then bridged to ROS for further processing. A rough outline
of the node structure is shown in Figure 8.2. Note that all point clouds shown in
this chapter show coordinates relative to the camera, i.e. y = 0 implies the object
is straight in front, and negative z means that the object is below the ROV.

Gazebo
Tasks:
·Run simulation
Output:

Point cloud

Point Cloud
Handler

Tasks:
·Remove invalid val-
ues
·Filtering (RANSAC)
·Segmentation
·Extract reddest seg-
ment
Input:

Point cloud
Output:

Object point cloud

Grasp Detection

Tasks:
·Downsampling
·Normal estimation
·Sample poses
·Evaluate poses

Input:
Object point cloud

Output:
N best poses

Figure 8.2: Overview of Gazebo and ROS node structure, along with their tasks.
Dashed line indicates the separation between Gazebo(left) and ROS(right).

8.2 Point Cloud Processing

Different measures are used in order to evaluate the performance of the point
cloud processing steps. A measurement of time indicates how effective filtering
is, while the segmentation results are quantitatively inspected. As a baseline, the
point cloud is first segmented without performing any filtering, other than remov-

Chapter 8: Results 65

ing the points with invalid values. Table 8.1 shows the average time for removing
invalid values and performing segmentation on the unfiltered point cloud, shown
in Figure 8.3a. Note that the color of the segments after segmentation — as in
Figure 8.3b — are randomly picked by the segmentation algorithm, true colors
are shown in Figure 8.3a.

Table 8.1: Average time for removing invalid values and performing segmenta-
tion on an unfiltered scene observed by a stationary ROV over 10 iterations.

Average Time
Removing Invalid Values 10.3 ms
Segmentation 3650.7 ms

RANSAC is then used to filter out the points corresponding to the seafloor. As
the point cloud is of a known size, the inlier fraction is found by looking at the
size of the two segments in Figure 8.3b, the segment corresponding to the plane
consists of 395245 points, while the barbell consists of 2835. Let the desired prob-
ability of finding a fitting model for the ground be p = 99%. Only n = 3 points
are needed for estimating a plane. These numbers are then plugged into Equa-
tion (4.3), giving the iterations needed k = 1.19. Thus, by setting the maximum
iterations of RANSAC to k = 20, a model fitting the ground should be found with
sufficient probability.

Table 8.2 shows the average time of segmenting the same scene as in Fig-
ure 8.3a after removing the ground with RANSAC. The resulting segmented point
cloud can be seen in Figure 8.4.

Table 8.2: Average time for removing invalid values and performing segmenta-
tion, after removing points corresponding to the seafloor using RANSAC, on an
unfiltered scene observed by a stationary ROV over 10 iterations.

Average Time
Removing Invalid Values 18.7 ms
Segmentation 25.6 ms
RANSAC 31.1 ms

In scenes with multiple objects, the object of interest is assumed to be recog-
nized by color, see Section 7.4.2. Figure 8.5 shows the process of segmenting a
scene with multiple red objects, where the final segment sent to the Grasp Detec-
tion node is shown in Figure 8.5c.

66 Mikael Medina: Grasp Pose Detection for AUVs

(a) Raw point cloud.

(b) Segmented point cloud.

Figure 8.3: Scene used for comparison of segmentation with and without filtering
with RANSAC.

Figure 8.4: Result of running segmentation on the point cloud in Figure 8.3a
after performing RANSAC and removing the points belonging to the ground.

Chapter 8: Results 67

(a) Raw point cloud.

(b) Segmented point cloud.

(c) Extracted object.

Figure 8.5: Process of segmentation and extraction of object from a scene con-
taining multiple red objects.

68 Mikael Medina: Grasp Pose Detection for AUVs

8.3 Grasp Pose Sampling

Once the point cloud has been segmented and the segment thought to contain
the OOI has been found, it is passed to the grasping node. Two different sampling
methods, as described in Sections 5.2 and 5.3, were tested. Of most interest when
considering the sampling algorithms is their ability to sufficiently cover the object,
in order to accommodate finding grasps on objects of all shapes. For this purpose
two objects with different properties were tested, the barbell and the circle. For
brevity the sampling method described in Section 5.2, sampling uniformly over
the object with local variations, is referred to as the uniform method. Similarly,
sampling normally over the point cloud using object characteristics, as described
in Section 5.3, is referred to as the normal method.

Figure 8.6 compares sampling with the normal method and the uniform method.
Normal sampling has a higher density around the centroid but has heavier tails in
the direction of the largest variance. As the object is observed from the x direction,
it has the lowest variance there as well, which in Figure 8.6c causes the sampled
cloud to be thin. Uniform sampling generally covers the object uniformly, which
ensures that even for objects that have a centroid outside of the object geometry,
sampled grasps are decently close. In Figure 8.7 the assumption that the centroid
is a good place to grasp is invalid, as such, sampling normally produces a lot of
infeasible positions. Uniform sampling follows the object geometry and appears
to be better suited in such a situation.

To evaluate the efficiency of the two sampling methods, a measurement of
time spent on sampling is made. Furthermore, the amount of poses after collision
checking is noted. Collision checking is evaluated further in Section 8.4, and the
results presented in Table 8.3 purely represent the throughput of feasible sample
poses generated by the sampling methods. For this purpose, both sampling meth-
ods are tested with 50 iterations on each object, sampling 5000 poses. The objects
are observed at the same angle as in Figures 8.13 to 8.15.

Table 8.3: The average number of collision-free poses sampled over 50 iterations
with 5000 poses sampled in each iteration.

Object Method Time Collision-Free Poses Percentage
Barbell Normal 12.88 ms 25.56 0.51%
Barbell Uniform 22.56 ms 37.24 0.75%
Circle Normal 13.86 ms 43.14 0.86%
Circle Uniform 21.92 ms 394.96 7.9%
Cross Normal 17.52 ms 18.94 0.38%
Cross Uniform 26.12 ms 58.52 1.17%
Total Normal 14.75 ms 29.21 0.19%
Total Uniform 23.53 ms 163.57 1.09%

Chapter 8: Results 69

(a) Normal. (b) Uniform.

(c) Normal. (d) Uniform.

Figure 8.6: Comparison of the uniform and normal sampling on the barbell. (a),
(b) Normal distribution has denser samples towards the centroid, uniform covers
the object more. (c) Object shape causes high variation in z, lower in x . (d) Again,
uniform samples closer to the object.

70 Mikael Medina: Grasp Pose Detection for AUVs

(a) Normal. (b) Uniform.

(c) Normal. (d) Uniform.

Figure 8.7: (a), (b), (c) and (d) Normal sampling uses characteristics of the point
cloud, assuming that the centroid is a good region to grasp. Uniform sampling
follows the object, which in this case produces more viable candidates.

Chapter 8: Results 71

8.4 Grasp Pose Evaluation

Before any grasp pose candidates are evaluated, poses that would collide with the
object are discarded. This is done by checking if points lie in the collision box of the
grasp, as described in Section 6.1. As this algorithm is proportional to the number
of points in the point cloud, the effect of downsampling before collision checking is
apparent. The point cloud in Figure 8.8a contains 64648 points, which is reduced
to 4446 after downsampling using voxels with size 2.5 mm × 2.5mm × 2.5 mm,
Figure 8.8b. Table 8.4 shows the time spent on collision checking 3000 sampled
poses with and without performing downsampling.

Table 8.4: Time spent on checking 3000 grasp pose candidates for collisions.
Times are averaged over 10 iterations.

Points Average Time
Collision checking 64648 228.5 s
Downsampling — 4 ms
Collision checking after downsampling 4446 16.9 s

(a) Raw. (b) Downsampled.

Figure 8.8: Point cloud used for testing downsampling. The downsampled point
cloud carries roughly the same information as the unfiltered point cloud.

The internal quality measures described in Chapter 6 give an indication of how
grasps are ranked against each other. In the following figures, each quality metric
is tested on its own, starting with the alignment with the estimated closest surface
normal, described in Section 6.2. Note that in the following figures, the quality
of a grasp is indicated by its color. A brighter color indicates a higher-rated grasp,
the color space is scaled such that the best grasp is equal to the maximum and the
worst grasp is equal to the minimum.

72 Mikael Medina: Grasp Pose Detection for AUVs

Figure 8.9 shows five grasps scored exclusively based on their alignment with
the surface normal. The dark blue grasp is parallel to the surface and has a score
of nearly 0, while the bright yellow grasp appears to be aligned with the surface
normal. It is worth pointing out that the visualized grasps are thin lines, while the
closing region of the gripper is 1.5 cm tall. This means that grasps that have few
inliers in simulation might appear as having no inliers in the figures.

Figure 8.9: Five grasps evaluated using normal angle alignment. The best grasp
appears normal on the point cloud, while the worst is close to parallel to the point
cloud.

In Figure 8.10, six grasps are evaluated using the method described in Sec-
tion 6.4. The line connecting the points closest to the fingers of the gripper is
compared to the estimated surface normals at said points. The total score for
each grasp is given by the sum of the two alignments, giving scores in the range
qc ∈ [0,2] in the unweighted case.

Grasps solely evaluated based on their orientation are shown in Figure 8.11.
Orientations deviating from a neutral pose are punished using the loss function
described in Equation (6.3). For the purpose of this figure, the weighting scheme
introduced in Equation (6.4) has not been used, such that the scores in Figure 8.11
are in the range qo ∈ [0,3].

Finally, evaluating grasps purely based on their amount of inliers gives results
as in Figure 8.12. This is the only metric completely disregarding placement, only
optimizing for the sheer volume of perceived points in the closing region. For the
results shown in this figure, the maximum amount of inliers is set to 135 points,
which approximately corresponds to 5% of the point cloud with 2725 points. As
seen from the quality indicator, 135 maximum inliers appear to be hard to achieve

Chapter 8: Results 73

Figure 8.10: Six grasps evaluated using contact point alignment. Due to the view
angle and shape of the object, no two surfaces where the gripper fits are parallel
in the point cloud, which limits the accuracy of the quality measure in this case.

Figure 8.11: Grasp poses evaluated purely based on their orientation. No weight-
ing has been done for the individual directions in this figure.

74 Mikael Medina: Grasp Pose Detection for AUVs

for this point cloud, and a weighting or readjustment might be warranted for
inliers to have a greater impact on the final scoring.

Figure 8.12: Grasp poses wholly evaluated based on their amount of inliers. Note
how more tilted grasps are favored at the corners of the square pieces, as this
maximizes the used volume of the closing region.

8.5 Final Results

Finally, all quality metrics are combined in order to evaluate the candidate grasp
poses. However, as this thesis does not cover control and final interaction with
the object, no experiments performing interaction have been conducted. Thus, the
grasp poses that score the best are evaluated by inspection to confirm whether or
not the grasp is a success.

The highest rated grasp pose from 50 iterations is kept for each of the objects,
Figures 8.13 to 8.15 show these 50 poses. In each iteration, 3000 poses are sam-
pled. For the results in Figures 8.13 to 8.15 the weights shown in Table 8.5 are
used. The weighting scheme for orientation shown in Equation (6.4) is applied,
with emphasis on the fact that achieving poses with large yaw is less problem-
atic than roll or pitch. For the barbell, normal sampling is used with no scaling
on standard deviation in position, as this produces more grasps close to the more
graspable centroid. For all objects, the standard deviation in orientation is π4 for
all directions. Uniform sampling is applied for the cross and the circle, as this
produces more feasible poses based on their geometries, ref. Table 8.3. The his-
tograms in Figure 8.16 show the distribution of scores for the 150 total grasps in
the three figures.

Chapter 8: Results 75

Table 8.5: The weights used for the final results.

wn wo wo,φ wo,θ wo,ψ wc wi Maximum Inliers
Barbell 1.0 1.0 0.45 0.45 0.1 1.0 2.0 135
Circle 1.0 1.0 0.45 0.45 0.1 1.0 1.0 135
Cross 1.0 1.0 0.45 0.45 0.1 1.0 1.0 250

Figure 8.13: The 50 highest evaluated grasps from as many iterations on the
barbell.

Figure 8.14: The 50 highest evaluated grasps from as many iterations on the
circle.

76 Mikael Medina: Grasp Pose Detection for AUVs

Figure 8.15: The 50 highest evaluated grasps from as many iterations on the
cross.

Figure 8.16: Histograms of scores for all grasps in Figures 8.13 to 8.15.

Chapter 9

Discussion

This chapter will discuss the performance of the grasp pose detection method as
presented in the preceding chapter. Firstly, the details around sampling methods
are discussed in Section 9.1. Thereafter, Section 9.2 brings up some strengths and
shortcomings of the chosen quality metrics, before Section 9.3 sheds light on some
future work that could further improve the method described in this thesis.

9.1 Sampling

The two proposed sampling methods have different properties proven to per-
form well in their intended situations. Uniform sampling generates poses that are
evenly spread over the object, which proves to be useful in situations where the
object has a graspable region away from the centroid. The weakness is that many
samples are performed at the edges of the detected point cloud, which generates
multiple poses such as the lower left one in Figure 8.12, where the object surface
is misinterpreted as collision-free. The number of such samples could probably in
most cases be reduced by implementing a surveying method of the scene before
sampling, such that a more proper representation of the object is available.

Scaling the standard deviation when using normal sampling can be hard. As
seen in Figure 8.6a, where the height of the object gives a high variance in the z
direction. While the method still produces a high density of samples towards the
centroid, much time is spent on samples that are easily identified as infeasible.
Furthermore, objects that appear narrow to the camera do not always have a
sufficiently high variance to fully cover the object in samples. A possible strategy
that has not been tested could be to start out with a small standard deviation,
then increase it repeatedly until adequate sampling results are found.

The biggest weakness of both sampling methods does not lie directly in the
sampling, but rather in how collisions are checked. As collision checking takes or-
ders of magnitude longer than every other step, this is the greatest limiting factor
of the algorithm. However, as shown in Table 8.3, the sampling algorithms provide
an average of barely 1% usable poses, which might indicate that improvements

77

78 Mikael Medina: Grasp Pose Detection for AUVs

could be made in the sampling strategy in order to provide better initial samples.
In this way, fewer samples could be used in order to generate the same amount of
usable poses. Nevertheless, with both sampling methods described in this thesis,
the algorithm has been shown to provide suitable grasping poses for the three
objects used in the simulation.

9.2 Evaluation

The curated collection of grasps in Section 8.4 showcases the properties of the
different quality measures used. As mentioned, normal angle alignment compares
the gripper normal with the point closest to the centroid of the closing region.
For grasp candidates in orientations where the closest point poorly represents the
majority of the surface in the closing region, this might become a poor indication of
actual alignment. One such case could be for a corner or an edge, as the curvature
of the region influences the estimated surface normal. On the other hand, the
measure gives a fairly decent indication of how well the grasp aligns with the
object, which was shown in [50] to be a measure commonly used with humans.
This is also reflected by the histogram of the highest scoring grasps having normal
scores heavily skewed towards 1, Figure 8.16.

Alignment of the connecting line is also highly tied to the accuracy of the esti-
mated surface normals. Furthermore, in order to use this measure as efficiently as
possible, the surface enclosed in the closing region should represent both contact
planes accurately. Using the point cloud construction method discussed in this the-
sis the objects are only partially reconstructed in 3D, according to the viewpoint of
the camera. Thus, information about two opposing surfaces is seldom available,
limiting the ability of this quality measure. The quality measure nevertheless pro-
vides a decent indication of the desired property, and as seen in Figure 8.10 it too
helps indicating how well a grasp is estimated to perform.

In Section 6.4 details about friction at the contact points are presented. The
implemented metric measuring this alignment for the results shown in Chapter 8
completely disregards the friction coefficient, and only focuses on how well the
connecting line aligns with the estimated surface normals at the contact points.
Knowing the friction coefficient between the gripper and the object in the con-
ditions where the object is placed could further improve the usefulness of this
metric, as a more accurate representation of the friction cones could be achieved.

The orientation metric is a fairly straightforward way of making sure that ori-
entations harder to achieve for the ROV are rated lower. However, this metric
also requires some considerations of the object. For the cross seen in Figure 8.15,
grasps at the ends have been evaluated better than those at higher roll and pitch. If
the aim is to pick up the cross, this would most likely lead to an unstable grasp due
to the wrench applied by gravity. On the contrary, if the cross is rigidly mounted

Chapter 9: Discussion 79

in the center and the goal is to turn in, like a valve, grasps at the ends can apply
more torque to the center. This highlights some of the object-specific considera-
tions that need to be applied for the orientation scoring function. In hindsight, the
scoring function explained in Figure 6.3 should not periodically increase again,
as this facilitates for poses where for instance a yaw of 180◦ is evaluated as very
good when in reality there is no proper knowledge about the backside of the ob-
ject. This problem has been avoided by using a sufficiently low standard deviation
when sampling such that such poses are highly unlikely, but the scoring function
should probably be revisited regardless.

Some discussion of the accuracy of the inlier measurement is given in Sec-
tion 6.5. The empirical nature of the metric as implemented for this thesis makes
it highly dependent on both the density and geometry of the point cloud. For ob-
jects such as the circle in Figure 8.14, grasps at a higher angle tend to be evaluated
better, as they can fit more of the circle inside the grasping region. Given sufficient
tuning and weighting of the inlier and normal alignment scores, however, this ef-
fect should be possible to minimize.

9.3 Future Work

In order for the simulation to be an accurate representation of the system in situ,
the assumptions presented in Section 7.4 are of importance. It is worth pointing
out a final time that the rough underwater conditions put the system presented
in this thesis under pressure, as the presented grasping algorithms rely heavily
on the accuracy of the point clouds produced. The validity of the assumptions
was discussed a bit in Section 7.4, but further testing of the method outside of
simulation will tell whether or not they are appropriately reasonable.

Furthermore, as collision checking is the part of the algorithm that takes the
most time, there should be little to no loss in making the quality evaluation met-
rics more robust and advanced. By doing a proper reconstruction of the surface
in the grasping region, more accurate measures connected to gripper geometry
could be employed. The connecting line and friction cone calculations could be
further improved with knowledge of friction coefficients and a more accurate rep-
resentation of the gripper’s finger movement. Not to mention that performing a
survey of the area beforehand in order to get a better representation of the scene
from multiple angles should be prioritized for higher accuracy and less uncertainty
in the sampled grasps. An option is also to look into other methods of collision
detection. It might be worth looking into a method based on the intersection of
planes constructed by the gripper geometry and points in the closing region, such
that only a few points need to be visited, rather than the whole point cloud.

The sampling algorithms proposed use random sampling to a large extent,
in order to cover the object. However, implementing more prior information in

80 Mikael Medina: Grasp Pose Detection for AUVs

the sampling strategies could be explored. For instance, sampling orientations
around a mean pointing in the direction of the object, rather than around a neutral
orientation, might provide more viable poses. Further, introducing a method of
choosing what sample method to use based on the object geometry could help
avoid situations where many samples are infeasible, as in Figure 8.7c. In general,
investigating more sampling methods in order to provide more feasible grasps
could prove fruitful.

Chapter 10

Conclusion

This thesis has presented a full pipeline from stereo camera vision to candidate
grasp pose generation for an autonomous underwater vehicle, fully based on ge-
ometrical considerations of the perceived scene. Stereo vision is introduced as a
method of reconstructing the perceived scene as a 3D point cloud. To produce
candidate grasp poses, two grasp pose sampling strategies have been presented.
The first method uses a normal distribution with standard deviation based on the
observed object’s geometry, whilst the second method samples uniformly over the
point cloud. The two sampling methods boast properties that are advantageous
in different situations based on the observed object’s geometry.

To evaluate the candidate grasp poses, this thesis implements quality mea-
sures based on the geometrical properties of the gripper and the observed point
cloud. The suggested quality measures provide an intuitive way of measuring dif-
ferent aspects of a grasp’s quality and allow for desired properties to be priori-
tized through weighting. Two metrics that evaluate the gripper’s alignment with
the object are suggested. A scoring function is introduced to give grasping poses
with easy-to-achieve orientations better evaluations, such that the resulting grasps
are more suitable for systems unable to individually move their gripper. Collision
checking of a sampled gripper pose and the point cloud is a heavily limiting factor
concerning the efficiency of the presented method, and further work should aim
to improve this factor.

:wq

81

Bibliography

[1] G. N. Baturin, “Mineral resources of the ocean,” Lithology and Mineral Re-
sources, vol. 35, no. 5, pp. 399–424, Sep. 2000. DOI: 10.1007/bf02782727.
[Online]. Available: https://doi.org/10.1007/bf02782727.

[2] F. FAO et al., “The state of world fisheries and aquaculture,” Opportunities
and challenges. Food and Agriculture Organization of the United Nations,
2012.

[3] Petronius Compliant Tower, All Areas - SkyscraperPage.com — skyscraper-
page.com, https://skyscraperpage.com/cities/?buildingID=23522,
[Accessed 30-May-2023].

[4] E. Simetti, “Autonomous Underwater Intervention,” Current Robotics Re-
ports 2020 1:3, vol. 1, no. 3, pp. 117–122, Jun. 2020, ISSN: 2662-4087.
DOI: 10.1007/S43154-020-00012-7. [Online]. Available: https://link.
springer.com/article/10.1007/s43154-020-00012-7.

[5] R. Schettini and S. Corchs, “Underwater image processing: State of the
art of restoration and image enhancement methods,” EURASIP journal on
advances in signal processing, vol. 2010, pp. 1–14, 2010.

[6] S. Bazeille, I. Quidu, and L. Jaulin, “Color-based underwater object recogni-
tion using water light attenuation,” Intelligent Service Robotics, vol. 5, no. 2,
pp. 109–118, Jan. 2012. DOI: 10.1007/s11370-012-0105-3. [Online].
Available: https://doi.org/10.1007/s11370-012-0105-3.

[7] D. L. Rizzini, F. Kallasi, F. Oleari, and S. Caselli, “Investigation of vision-
based underwater object detection with multiple datasets,” International
Journal of Advanced Robotic Systems, vol. 12, no. 6, p. 77, Jan. 2015. DOI:
10.5772/60526. [Online]. Available: https://doi.org/10.5772/60526.

[8] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.
arXiv: 1506.02640. [Online]. Available: http://arxiv.org/abs/1506.
02640.

83

https://doi.org/10.1007/bf02782727
https://doi.org/10.1007/bf02782727
https://skyscraperpage.com/cities/?buildingID=23522
https://doi.org/10.1007/S43154-020-00012-7
https://link.springer.com/article/10.1007/s43154-020-00012-7
https://link.springer.com/article/10.1007/s43154-020-00012-7
https://doi.org/10.1007/s11370-012-0105-3
https://doi.org/10.1007/s11370-012-0105-3
https://doi.org/10.5772/60526
https://doi.org/10.5772/60526
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640

84 Mikael Medina: Grasp Pose Detection for AUVs

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11–14, 2016,
Proceedings, Part I 14, Springer, 2016, pp. 21–37.

[10] R. Mandal, R. M. Connolly, T. A. Schlacher, and B. Stantic, “Assessing fish
abundance from underwater video using deep neural networks,” in 2018
International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–6.
DOI: 10.1109/IJCNN.2018.8489482.

[11] T. Katayama, T. Song, T. Shimamoto, and X. Jiang, “GAN-based color cor-
rection for underwater object detection,” in OCEANS 2019 MTS/IEEE SEAT-
TLE, IEEE, Oct. 2019. DOI: 10.23919/oceans40490.2019.8962561. [On-
line]. Available: https://doi.org/10.23919/oceans40490.2019.8962561.

[12] S. Xu, M. Zhang, W. Song, H. Mei, Q. He, and A. Liotta, “A systematic review
and analysis of deep learning-based underwater object detection,” Neuro-
computing, vol. 527, pp. 204–232, Mar. 2023. DOI: 10.1016/j.neucom.
2023.01.056. [Online]. Available: https://doi.org/10.1016/j.neucom.
2023.01.056.

[13] R. O. Faria, F. Kucharczak, G. M. Freitas, A. C. Leite, F. Lizarralde, M. Galassi,
and P. J. From, “A methodology for autonomous robotic manipulation of
valves using visual sensing,” IFAC-PapersOnLine, vol. 48, no. 6, pp. 221–
228, 2015.

[14] N. Palomeras, A. Peñalver, M. Massot-Campos, P. Negre, J. Fernández, P.
Ridao, P. Sanz, and G. Oliver-Codina, “I-AUV docking and panel interven-
tion at sea,” Sensors, vol. 16, no. 10, p. 1673, Oct. 2016. DOI: 10.3390/
s16101673. [Online]. Available: https://doi.org/10.3390/s16101673.

[15] B. S. Zapata-Impata, P. Gil, J. Pomares, and F. Torres, “Fast geometry-based
computation of grasping points on three-dimensional point clouds,” Inter-
national Journal of Advanced Robotic Systems, vol. 16, no. 1, Jan. 2019,
ISSN: 17298814. DOI: 10.1177/1729881419831846. [Online]. Available:
https://www.researchgate.net/publication/331358070_Fast_Geometry-
based _ Computation _ of _ Grasping _ Points _ on _ Three - dimensional _
Point_Clouds.

[16] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp Pose Detection in
Point Clouds,” International Journal of Robotics Research, vol. 36, no. 13-14,
pp. 1455–1473, Jun. 2017, ISSN: 17413176. DOI: 10.48550/arxiv.1706.
09911. [Online]. Available: https://arxiv.org/abs/1706.09911v1.

[17] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control.
Wiley-Blackwell, 2021, vol. Second Edition, ISBN: 9781119575054.

[18] S. Dupré, “Inside the camera obscura: Kepler’s experiment and theory of op-
tical imagery,” Early Science and Medicine, vol. 13, no. 3, pp. 219–244, 2008.
DOI: https://doi.org/10.1163/157338208X285026. [Online]. Available:
https://brill.com/view/journals/esm/13/3/article-p219_2.xml.

https://doi.org/10.1109/IJCNN.2018.8489482
https://doi.org/10.23919/oceans40490.2019.8962561
https://doi.org/10.23919/oceans40490.2019.8962561
https://doi.org/10.1016/j.neucom.2023.01.056
https://doi.org/10.1016/j.neucom.2023.01.056
https://doi.org/10.1016/j.neucom.2023.01.056
https://doi.org/10.1016/j.neucom.2023.01.056
https://doi.org/10.3390/s16101673
https://doi.org/10.3390/s16101673
https://doi.org/10.3390/s16101673
https://doi.org/10.1177/1729881419831846
https://www.researchgate.net/publication/331358070_Fast_Geometry-based_Computation_of_Grasping_Points_on_Three-dimensional_Point_Clouds
https://www.researchgate.net/publication/331358070_Fast_Geometry-based_Computation_of_Grasping_Points_on_Three-dimensional_Point_Clouds
https://www.researchgate.net/publication/331358070_Fast_Geometry-based_Computation_of_Grasping_Points_on_Three-dimensional_Point_Clouds
https://doi.org/10.48550/arxiv.1706.09911
https://doi.org/10.48550/arxiv.1706.09911
https://arxiv.org/abs/1706.09911v1
https://doi.org/https://doi.org/10.1163/157338208X285026
https://brill.com/view/journals/esm/13/3/article-p219_2.xml

Bibliography 85

[19] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
Second. Cambridge University Press, ISBN: 0521540518, 2004.

[20] C. B. Duane, “Close-range camera calibration,” Photogramm. Eng, vol. 37,
no. 8, pp. 855–866, 1971.

[21] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–
1334, 2000. DOI: 10.1109/34.888718.

[22] A. Agrawal, S. Ramalingam, Y. Taguchi, and V. Chari, “A theory of multi-
layer flat refractive geometry,” in 2012 IEEE Conference on Computer Vision
and Pattern Recognition, 2012, pp. 3346–3353. DOI: 10.1109/CVPR.2012.
6248073.

[23] T. Treibitz, Y. Schechner, C. Kunz, and H. Singh, “Flat refractive geome-
try,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 1, pp. 51–65, Jan. 2012. DOI: 10.1109/tpami.2011.105. [Online].
Available: https://doi.org/10.1109/tpami.2011.105.

[24] T. Łuczyński, M. Pfingsthorn, and A. Birk, “The Pinax-model for accurate
and efficient refraction correction of underwater cameras in flat-pane hous-
ings,” Ocean Engineering, vol. 133, pp. 9–22, 2017, ISSN: 00298018. DOI:
10.1016/j.oceaneng.2017.01.029.

[25] A. Sedlazeck, K. Koser, and R. Koch, “3d reconstruction based on underwa-
ter video from ROV kiel 6000 considering underwater imaging conditions,”
in OCEANS 2009-EUROPE, IEEE, May 2009. DOI: 10.1109/oceanse.2009.
5278305. [Online]. Available: https://doi.org/10.1109/oceanse.2009.
5278305.

[26] M. Johnson-Roberson, O. Pizarro, S. B. Williams, and I. Mahon, “Genera-
tion and visualization of large-scale three-dimensional reconstructions from
underwater robotic surveys,” Journal of Field Robotics, vol. 27, no. 1, pp. 21–
51, Jan. 2010. DOI: 10.1002/rob.20324. [Online]. Available: https://
doi.org/10.1002/rob.20324.

[27] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors: A sur-
vey,” Foundations and Trends® in Computer Graphics and Vision, vol. 3,
no. 3, pp. 177–280, 2007. DOI: 10.1561/0600000017. [Online]. Available:
https://doi.org/10.1561/0600000017.

[28] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,
S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, Segment
anything, 2023. DOI: 10.48550/ARXIV.2304.02643. [Online]. Available:
https://arxiv.org/abs/2304.02643.

[29] C. Harris, M. Stephens, et al., “A combined corner and edge detector,” in
Alvey vision conference, Citeseer, vol. 15, 1988, pp. 10–5244.

https://doi.org/10.1109/34.888718
https://doi.org/10.1109/CVPR.2012.6248073
https://doi.org/10.1109/CVPR.2012.6248073
https://doi.org/10.1109/tpami.2011.105
https://doi.org/10.1109/tpami.2011.105
https://doi.org/10.1016/j.oceaneng.2017.01.029
https://doi.org/10.1109/oceanse.2009.5278305
https://doi.org/10.1109/oceanse.2009.5278305
https://doi.org/10.1109/oceanse.2009.5278305
https://doi.org/10.1109/oceanse.2009.5278305
https://doi.org/10.1002/rob.20324
https://doi.org/10.1002/rob.20324
https://doi.org/10.1002/rob.20324
https://doi.org/10.1561/0600000017
https://doi.org/10.1561/0600000017
https://doi.org/10.48550/ARXIV.2304.02643
https://arxiv.org/abs/2304.02643

86 Mikael Medina: Grasp Pose Detection for AUVs

[30] D. G. Lowe, “Object recognition from local scale-invariant features,” in Pro-
ceedings of the seventh IEEE international conference on computer vision, Ieee,
vol. 2, 1999, pp. 1150–1157.

[31] M. Brown, R. Szeliski, and S. Winder, “Multi-scale oriented patches,” 2004.

[32] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D.
Warner, N. Yager, E. Gouillart, and T. Yu, “Scikit-image: Image processing in
python,” PeerJ, vol. 2, e453, Jun. 2014. DOI: 10.7717/peerj.453. [Online].
Available: https://doi.org/10.7717/peerj.453.

[33] R. Szeliski, Computer Vision Algorithms and Applications. Springer London
Ltd, 2010, ISBN: 9781848829343.

[34] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and A. Bhowmik, “Intel
realsense stereoscopic depth cameras,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, Jul. 2017.

[35] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene
from two projections,” Nature, vol. 293, no. 5828, pp. 133–135, 1981.

[36] R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image Un-
derstanding, vol. 68, no. 2, pp. 146–157, Nov. 1997. DOI: 10.1006/cviu.
1997.0547. [Online]. Available: https://doi.org/10.1006/cviu.1997.
0547.

[37] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE MultiMedia, vol. 19,
no. 2, pp. 4–10, 2012. DOI: 10.1109/MMUL.2012.24.

[38] A. Reichinger, Kinect Pattern Uncovered, Apr. 2011. [Online]. Available:
https://azttm.wordpress.com/2011/04/03/kinect-pattern-uncovered/
(visited on 07/09/2017).

[39] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[40] R. A. Brown, “Building a balanced k-d tree in O(kn log n) time,” Journal of
Computer Graphics Techniques (JCGT), vol. 4, no. 1, pp. 50–68, Mar. 2015,
ISSN: 2331-7418. [Online]. Available: http : / / jcgt . org / published /
0004/01/03/.

[41] J. Viquerat, Latex_recipes, https://github.com/jviquerat/latex_recipes/,
2022.

[42] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best
matches in logarithmic expected time,” ACM Transactions on Mathematical
Software, vol. 3, no. 3, pp. 209–226, Sep. 1977. DOI: 10.1145/355744.
355745. [Online]. Available: https://doi.org/10.1145/355744.355745.

[43] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards
3d point cloud based object maps for household environments,” Robotics
and Autonomous Systems, vol. 56, no. 11, pp. 927–941, Nov. 2008. DOI:
10.1016/j.robot.2008.08.005. [Online]. Available: https://doi.org/
10.1016/j.robot.2008.08.005.

https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.1006/cviu.1997.0547
https://doi.org/10.1006/cviu.1997.0547
https://doi.org/10.1006/cviu.1997.0547
https://doi.org/10.1006/cviu.1997.0547
https://doi.org/10.1109/MMUL.2012.24
https://azttm.wordpress.com/2011/04/03/kinect-pattern-uncovered/
http://jcgt.org/published/0004/01/03/
http://jcgt.org/published/0004/01/03/
https://github.com/jviquerat/latex_recipes/
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
https://doi.org/10.1016/j.robot.2008.08.005
https://doi.org/10.1016/j.robot.2008.08.005
https://doi.org/10.1016/j.robot.2008.08.005

Bibliography 87

[44] M. A. Fischler and R. C. Bolles, “Random sample consensus,” Communica-
tions of the ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981. DOI: 10.1145/
358669.358692. [Online]. Available: https://doi.org/10.1145/358669.
358692.

[45] P. Torr and A. Zisserman, “MLESAC: A new robust estimator with applica-
tion to estimating image geometry,” Computer Vision and Image Understand-
ing, vol. 78, no. 1, pp. 138–156, Apr. 2000. DOI: 10.1006/cviu.1999.0832.
[Online]. Available: https://doi.org/10.1006/cviu.1999.0832.

[46] J. Berkmann and T. Caelli, “Computation of surface geometry and segmen-
tation using covariance techniques,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 16, pp. 1114–1116, 1994.

[47] Radu Bogdan Rusu, “Semantic 3D Object Maps for Everyday Manipulation
in Human Living Environments,” Ph.D. dissertation, Technische Universi-
taet Muenchen, Munich, Germany, Oct. 2009. [Online]. Available: https:
//mediatum.ub.tum.de/doc/800632/941254.pdf.

[48] X. Huang, G. Mei, J. Zhang, and R. Abbas, A comprehensive survey on point
cloud registration, 2021. DOI: 10.48550/ARXIV.2103.02690. [Online].
Available: https://arxiv.org/abs/2103.02690.

[49] A. Nguyen and B. Le, “3d point cloud segmentation: A survey,” in 2013 6th
IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2013,
pp. 225–230. DOI: 10.1109/RAM.2013.6758588.

[50] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka,
“Human-guided grasp measures improve grasp robustness on physical robot,”
in 2010 IEEE International Conference on Robotics and Automation, IEEE,
May 2010. DOI: 10.1109/robot.2010.5509855. [Online]. Available: https:
//doi.org/10.1109/robot.2010.5509855.

[51] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical introduc-
tion to robotic manipulation. CRC press, 1994.

[52] B. Robotics, Bluerov2, https://bluerobotics.com/store/rov/bluerov2/,
[Accessed 31-May-2023], Apr. 2023. [Online]. Available: https://bluerobotics.
com/store/rov/bluerov2/.

[53] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA), Shang-
hai, China, May 2011.

https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1006/cviu.1999.0832
https://doi.org/10.1006/cviu.1999.0832
https://mediatum.ub.tum.de/doc/800632/941254.pdf
https://mediatum.ub.tum.de/doc/800632/941254.pdf
https://doi.org/10.48550/ARXIV.2103.02690
https://arxiv.org/abs/2103.02690
https://doi.org/10.1109/RAM.2013.6758588
https://doi.org/10.1109/robot.2010.5509855
https://doi.org/10.1109/robot.2010.5509855
https://doi.org/10.1109/robot.2010.5509855
https://bluerobotics.com/store/rov/bluerov2/
https://bluerobotics.com/store/rov/bluerov2/
https://bluerobotics.com/store/rov/bluerov2/

Appendix A

Image Operations

A.1 Linear Filtering

Linear filtering on images calculates an output image pixel g(i, j) as a linear com-
bination of its neighboring intensity values f (i, j) and the weighted coefficients
h(k, l), known as the kernel.

g(i, j) =
∑

k,l

f (i − k, j − l)h(k, l) =
∑

k,l

f (k, l)h(i − k, j − l) (A.1)

Which can also be expressed as g(i, j) = (f ∗ h)(i, j) where ∗ is the convolution
operator.

A.2 Gaussian Blur

Gaussian blurring is achieved by convolving the image with a Gaussian kernel. A
two-dimensional Gaussian kernel is given by

G(x , y) =
1

p
2πσ2

e−
x2+y2

2σ2 (A.2)

where x and y represent the position relative to the center, and σ the standard
deviation. A higher σ produces a more potent blurring effect. A Gaussian kernel
of size 5 × 5 and with σ = 1 is shown in Equation (A.3), where numbers have
been rounded to integers.











1 4 6 4 1
4 16 25 16 4
6 25 40 25 6
4 16 25 16 4
1 4 6 4 1











(A.3)

89

90 Mikael Medina: Grasp Pose Detection for AUVs

A.3 Image Derivatives

The partial derivative is defined as

∂

∂ x
f (x , y) = lim

∆→0

f (x +∆, y)− f (x , y)
∆

(A.4)

which in the discrete case approximates as

∂

∂ x
f (x , y)≈

f (x +∆x , y)− f (x , y)
∆x

(A.5)

In an image, ∆x is 1, and the derivative is the difference between the current
pixel value and the direct neighbor, i.e. f (i + 1, j) − f (i, j). Thus, image partial
derivatives can be computed through convolution with the kernel k = [−1,1] for
the x-direction and k⊤ in the y-direction.

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Introduction
	Motivation
	Problem Statement
	Contributions
	Thesis Structure

	Modeling of Underwater Vehicles
	Preliminaries
	Underwater Vehicle Dynamics
	Kinematics
	Kinetics

	Robotic Vision
	Camera Modeling
	Pinhole Camera
	Distortion

	Underwater Camera Modeling
	The Pinax-model

	Feature Detection
	Properties of a Feature Detector

	A Selection of Feature Detectors
	Harris Corner Detector
	Scale-Invariant Feature Transform
	Feature Descriptors

	Feature Matching
	Stereo Cameras
	Triangulation

	RGBD Cameras
	Structured Light
	Time Of Flight

	Scene Reconstruction

	Point Clouds
	Preprocessing
	Removing Invalid Values
	k-Dimensional Tree
	Denoising
	Random Sample Consensus
	Downsampling

	Understanding the Scene
	Surface Normal Estimation
	Segmentation

	Grasp Pose Sampling
	Grasp Pose Semantics
	Uniform With Local Variation
	Using Point Cloud Characteristics

	Grasp Pose Evaluation
	Collisions
	Normal Angle Alignment
	Orientation Constraints
	Contact Point Alignment
	Inlier Count
	Final Scoring

	Implementation
	The Robot Operating System
	Gazebo
	The Point Cloud Library
	Inherent Assumptions
	Imaging and Point Cloud Construction
	Point Cloud Processing
	Grasp Pose Sampling

	Results
	Experimental Setup
	Point Cloud Processing
	Grasp Pose Sampling
	Grasp Pose Evaluation
	Final Results

	Discussion
	Sampling
	Evaluation
	Future Work

	Conclusion
	Bibliography
	Image Operations
	Linear Filtering
	Gaussian Blur
	Image Derivatives

