
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Erik Turøy Midtun

Bootstrapping decentralized overlay
networks

Master’s thesis in Communication Technology and Digital Security
Supervisor: Lasse Øverlier
June 2023

Erik Turøy Midtun

Bootstrapping decentralized overlay
networks

Master’s thesis in Communication Technology and Digital Security
Supervisor: Lasse Øverlier
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Bootstrapping decentralized overlay networks
Student: Midtun, Erik Turøy

Problem description:

Decentralized overlay networks offer a robust, scalable, and fault-tolerant way of
creating distributed applications. They can be constructed on top of existing networks,
thereby inheriting the underlying network’s properties. This was done in a previous
master’s thesis where an overlay network was built on the anonymous Tor network,
thus providing the overlay network with anonymity.

Bootstrapping is the mechanism that involves discovering, initiating, and establishing
connections between nodes in a network. Creating such mechanisms can be a
significant challenge, particularly depending on the network’s required properties.

This thesis aims to provide an overview of the challenges associated with bootstrapping
networks, examine how these issues were resolved in other networks, and then create
an improved bootstrapping mechanism for the decentralized overlay network built
on top of Tor.

Approved on: 2023-02-16
Supervisor: Øverlier, Lasse, NTNU

Abstract

This master’s thesis is a continuation of the groundwork established
in a prior thesis by Fallang [1], where most of the fundamental building
blocks for an anonymous, decentralized Peer-to-peer (P2P) overlay net-
work were constructed and evaluated. Despite its potential, Fallang’s
prototype was limited by its need for substantial manual input and pre-
requisite knowledge among users for effective network creation. In this
thesis, the focus is on exploring different approaches to bootstrapping
networks, meaning how to facilitate the incorporation of new users into a
network. An extensive overview of the frequently encountered bootstrap-
ping challenges is compiled, and potential solutions are presented. These
ideas are then applied in combination with our own to experiment with
bootstrapping the small-scale peer-to-peer decentralized overlay network
created on top of Tor.

Two autonomous bootstrapping mechanisms are implemented: One
utilizing the recently deprecated InterPlanetary File System (IPFS) Pub-
lish/Subscribe (Pub/Sub) system, and the other leveraging Tor Onion
services. Both mechanisms utilize public key signing algorithms for peer
identification. They also provide publicly accessible communication inter-
faces for each peer as well as automate the establishment and termination
of direct connections between network peers. The comprehensive evalua-
tion based on criteria such as performance, reliability, design, security,
and anonymity revealed that the Tor Onion service-based bootstrapper
outperforms its IPFS counterpart in most aspects. This suggests its suit-
ability for small-scale anonymity networks. The finding from this thesis
has implications for the ease of deployment and efficiency of anonymous
decentralized P2P networks.

Sammendrag

Denne masteroppgaven er en fortsettelse av det grunnarbeidet som
ble gjort i den tidligere masteroppgaven av Fallang [1], hvor de fleste
av de grunnleggende byggesteinene for et anonymt, desentralisert like-
mannsnettverk ble konstruert og evaluert. Til tross for sitt potensiale, var
Fallangs prototype begrenset av behovet for en betydelig mengde manuelt
arbeid og forhåndskunnskap blant brukerne for å opprette slike nettverk.
I denne oppgaven fokuseres det på å utforske forskjellige tilnærminger til
å “bootstrappe” nettverk, altså hvordan etablere og integrere nye brukere
inn i et nettverk. Det ble laget en omfattende oversikt over utfordringene
ved bootstrapping, og mye brukte løsninger er presentert. Disse ideene
blir deretter brukt sammen med nye idéer for å eksperimentere med
bootstrapping av Fallangs småskala desentraliserte likemannsnettverk
som er laget på toppen av Tor nettverket.

Det har blitt utviklet to autonome bootstrapping-mekanismer: en
som utnytter det nylig foreldede IPFS Publiser/Abonner-systemet, og
den andre som bruker Tor sine “Onion tjenester”. Begge mekanismene
bruker offentlige nøkkelsignaturalgoritmer for identifikasjon av brukere og
lager et offentlig tilgjengelige kommunikasjonsgrensesnitt for hver bruker,
samt automatiserer etableringen og opphørelsen av direkte forbindelser
mellom brukere i nettverket. Den omfattende evalueringen basert på
kriterier som ytelse, pålitelighet, design, sikkerhet og anonymitet viste at
den Tor Onion-tjenestebaserte bootstrapperen overgår sin IPFS-motpart
i de fleste aspekter. Dette antyder at den er egnet for småskala ano-
nymitetsnettverk. Funnene fra denne oppgaven har implikasjoner for
utrullingen, etableringen og effektiviteten av anonyme desentraliserte
likemannsnettverk.

Preface

This thesis was submitted to finalize my master’s degree in Communi-
cation Technology and Digital security at the Norwegian University of
Science and Technology. The thesis is a continuation of the pre-project
conducted in the fall of 2022, and the master’s thesis itself was completed
in the summer of 2023.

I want to thank my supervisor, Lasse Øverlier, for his guidance during
the pre-project and while writing this thesis. I also want to thank all the
great people I have enjoyed getting to know and collaborating with during
my four years at Studentmediene in Trondheim. In particular, I owe
much to the IT department, which has made my time in Trondheim not
only rewarding and educational, but also thoroughly enjoyable. Lastly, a
heartfelt thanks go to my family, friends, and my better half, Astrid, for
all the love and support they have given me during these years.

Contents

List of Acronyms xi

1 Introduction 1
1.1 Keywords . 2
1.2 Motivation . 2
1.3 Objective . 2
1.4 Research questions . 2
1.5 Scope and contributions . 3
1.6 Limitations . 3
1.7 Thesis outline . 4

2 Background 5
2.1 Overlay networks . 5
2.2 Tor . 8
2.3 A decentralized P2P overlay network built on top of Tor 10
2.4 Bootstrapping . 11
2.5 Efficient message-delivery mechanisms 13

3 Methodology 15
3.1 Overview of the state of Bootstrapping 15
3.2 Exploring and implementing bootstrapping mechanisms 16

4 The challenges of bootstrapping 19
4.1 Networking . 19

4.1.1 Finding the first peer . 19
4.1.2 Churn . 23
4.1.3 Small networks . 24
4.1.4 Hidden and unreachable peers 24

4.2 Security and privacy . 26
4.2.1 Anonymity . 26
4.2.2 Censorship . 27
4.2.3 Sybil-attacks . 28

vii

4.2.4 Denial of Service . 29

5 Experiment 33
5.1 Software . 33
5.2 Bootstrapping requirements and restrictions 33
5.3 The user . 35
5.4 Anonymous peer identifiers . 36
5.5 Rendezvous chooser function with asymmetric cryptography 36
5.6 Connection handler . 39
5.7 The Pub/Sub bootstrapper . 39
5.8 Onion-type bootstrapper . 45
5.9 Tests . 48

6 Results 51
6.1 Implementation . 51
6.2 Test results . 51
6.3 Base connection tests . 53
6.4 Bootstrapping results . 54

6.4.1 Time before ready to accept connections 54
6.4.2 Time until first connection 56

7 Discussion 57
7.1 General . 57

7.1.1 Overview . 57
7.1.2 Unoptimized software . 58
7.1.3 An exploration of techniques 58

7.2 Experiment . 59
7.2.1 Time before ready to accept connections 60
7.2.2 Time until first connection 62
7.2.3 Comparison based on performance metrics 64

7.3 Design and architecture . 64
7.3.1 Pub/Sub architecture . 65
7.3.2 Onion-type architecture . 66

7.4 Security and anonymity . 68
7.4.1 Rendezvous chooser security 68
7.4.2 Security of the Pub/Sub bootstrapper 69
7.4.3 Security of the Onion bootstrapper 70
7.4.4 Group secret sharing . 73

7.5 Overall comparison . 74

8 Conclusion 75

9 Future Work 77

References 79

List of Acronyms

BRB Bramble Rendezvous Protocol.

CID Content Identifiers.

DA Directory Authority.

DH Diffie-Hellman.

DHCP Dynamic Host Configuration Protocol.

DHT Distributed Hash Table.

DNS Domain Name System.

DoS Denial of Service.

IoT Internet of Things.

IP Internet Protocol.

IPFS InterPlanetary File System.

IRC Internet Relay Chat.

ISP Internet Service Provider.

LAN Local Area Network.

NAT Network Address Translation.

NKN New Kind of Network.

P2P Peer-to-peer.

PoW Proof of Work.

Pub/Sub Publish/Subscribe.

xi

QOS Quality of Service.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

VPN Virtual Private Network.

Chapter1Introduction

In the realm of network communications, Peer-to-peer (P2P) overlay networks serve
as integral frameworks. This enables the formation of networks independent from
their underlying network topology and without centralized entities. Bootstrapping,
which involves the initialization of networks, the discovery of participating peers
within such networks, and the automatic establishment of direct communication links
among them, is a challenge with no straightforward solutions for all networks.

To begin, a comprehensive review of the literature on existing approaches is
undertaken, explaining how the process of bootstrapping in P2P networks and
services has been proposed and is currently employed. This review aspires to gather
a thorough understanding of the associated challenges, particularly in relation to
network operations and security. Furthermore, it aims to shed light on existing
solutions to these issues and those currently deployed.

Subsequently, two distinct bootstrapping mechanisms are designed and imple-
mented specifically for an overlay network created on top of Tor. While one mechanism
offers anonymity, the other does not. By leveraging established technologies such
as Tor onion services and the InterPlanetary File System (IPFS)’s decentralized
Publish/Subscribe (Pub/Sub) architecture, cryptographic identifiers of already par-
ticipating peers in the network can be distributed. The same technologies facilitate
publicly accessible communication interfaces tied to these identifiers for both sce-
narios. These mechanisms aim to empower users to establish connections among
themselves seamlessly and autonomously in a decentralized manner.

Empirical measures of network performance and failure instances are ultimately
collected and analyzed. This quantitative evaluation and discussion of the design
and security attributes contribute to a better understanding of these bootstrapping
mechanisms’ overall efficiency and real-world applicability.

1

2 1. INTRODUCTION

1.1 Keywords

Bootstrapping, decentralized, overlay networks, peer-to-peer, Tor, Onion services,
IPFS, publish-subscribe, anonymity.

1.2 Motivation

Numerous anonymous P2P systems are already in existence, with Fallang’s[1] pro-
totype leading the way as the first to harness the Tor network as an anonymous
transport. This facilitates a P2P network that can transport almost any type of
traffic while providing anonymity. As proof of concept, their network is commend-
able; however, improved bootstrapping methods are one of the essential changes
needed to transform this into a practical, user-centric anonymous service. Though
functional, the prototype’s bootstrapping mechanism requires users to pre-share their
identifiers and consent to establish a connection within a brief time interval. A fresh
agreed-upon time must be set in case of a failed connection. The complexity and
inconvenience of these procedures render the system unattractive and burdensome
for potential users.

In response to these challenges, the aim of this thesis is to devise an autonomous
solution requiring minimal pre-shared information, easing the user experience while
also being secure. Additionally, it sought to explore new bootstrapping strategies,
considering that this area remains a pressing issue yet to be resolved within the
realm of decentralized P2P overlay networks.

1.3 Objective

The main objective of this thesis is to explore techniques and improve upon the
bootstrapping of the Tor overlay network. The steps will be to explore bootstrapping
in decentralized overlay networks and then create an autonomous bootstrapping
mechanism that makes establishing and joining the P2P network fast and easy, with
the least amount of pre-known information. The bootstrapping mechanism does not
have to be decentralized, but it would be preferable due to its potential beneficial
properties. To solve these objectives, the following research questions are defined:

1.4 Research questions

Drawing parallels with the preceding project to this thesis [2], the research questions
are constructed based on the objectives and are as follows:

RQ1 What are the challenges of bootstrapping communications, and what are the
most common approaches to overcome them?

1.5. SCOPE AND CONTRIBUTIONS 3

RQ2 What techniques are most suited for bootstrapping an overlay network, e.g.,
built on top of Tor?

1.5 Scope and contributions

This thesis mainly contributes to two parts of the research domain. The first
is an overview of the most prevalent challenges with bootstrapping in existing
computer networks, mostly focusing on P2P overlay networks. The overview includes
bootstrapping of modern P2P networks as well as industry-established solutions.
Some of these networks are not widely studied, and this will provide insights for
further research on the topic.

The second major contribution of this thesis is the formulation of two unique
autonomous bootstrapping mechanisms designed specifically for the Tor P2P overlay
network. The first is utilizing an existing decentralized P2P overlay with Pub/Sub
functionalities to provide a peer discovery and communication channel. We have
not seen Pub/Sub systems used for this purpose in prior research or in other net-
works. The second mechanism expands upon previous bootstrapping mechanisms by
applying them in combination with Tor Onion services and does not introduce new
dependencies. However, these techniques are combined to solve the requirements
that an autonomous bootstrapping mechanism in the Tor P2P overlay requires and
evaluated in terms of performance, design, and security.

1.6 Limitations

Overlay networks and services that require some form of bootstrapping are replaced
faster than the research community around it can investigate them. These systems
are not always open-source; if they are, their documentation may be lacking or
dispersed around on Wiki pages, forum posts, and software repositories. Additionally,
it might also be outdated because of its rapid development schedule. This makes the
investigation into these systems hard and forces us to rely on potential non-credible
sources. Whenever possible, we try to cross-check the statements across multiple
sources.

In Fallang’s [1] initial design, the routing components between peers were omitted
and simplified through the utilization of OpenVPN. We will maintain this simplified
approach as the implementation of these routing aspects would demand significant
additional effort while not directly enhancing the network’s bootstrapping process.

4 1. INTRODUCTION

1.7 Thesis outline

Chapter 1: Provides an introduction to the research domain and problem. Includes
objectives, research questions, motivation, scope, and limitations.

Chapter 2: Introduces necessary background information for the thesis, such as
bootstrapping, overlay networks, Tor, and publish-subscribe.

Chapter 3: Details the research methodology, justifying its adoption, explaining
the literature review and software development approaches.

Chapter 4: Summarizes literature review findings on bootstrapping challenges and
solutions.

Chapter 5: Outlines bootstrapping requirements and how the software is designed
and implemented.

Chapter 6: Presents key results in the form of quantifiable performance metrics.

Chapter 7: Analyzes and discusses the results, architectural choices, and security
aspects.

Chapter 8: Gives a conclusion that summarizes the study and its key findings.

Chapter 9: Suggests potential areas for future research based on the study’s findings.

Chapter2Background

This chapter outlines the concepts and technologies explored in this thesis. The focus
will be on overlay networks and bootstrapping, including a presentation of funda-
mental ideas necessary for understanding the design of bootstrapping mechanisms,
which will be presented in later chapters.

The term "centralization" applies not to the underlying system architecture
but rather to the management and control of said systems [3]. In contrast, a
"decentralized" system is one in which control is not confined to a limited group of
actors but rather distributed throughout the entire system. While "distributed" is
often used interchangeably with "decentralized," it denotes a system where various
components are located in separate physical locations [3].

2.1 Overlay networks

Overlay networks, or overlays, are computer networks built on top of another network
[4]. The definition is broad, encompassing all networks that abstract away the
underlying networks, also called underlays, and can route independently of the
network they are built upon. Overlay networks are utilized to facilitate new features
or services without requiring a complete network overhaul. These networks can
provide new functionality and extend the underlay networks’ feature sets with their
own. Initially, the Internet was an overlay network, as it was built on top of the
telephone network [4]. Today, overlay networks are in various application domains
ranging from IoT to 5G mobile networks.

P2P overlay networks allow peers to locate each other through logical identifiers
rather than IP addresses [5]. These networks offer several benefits over client-server
systems; they do not have a single point of failure and are more resilient and scalable.
These overlay networks can also provide users with better reliability, routing, and
security. Historically, P2P overlays have been used for distributed storage, file sharing,
and real-time data and communication streaming applications [5]. In the last decade,

5

6 2. BACKGROUND

it has become substantially more used with the rise of decentralized technologies like
blockchains and Web 3.0 [6].

P2P networks can be categorized into two distinct types of overlays: structured
and unstructured. Galuba et al. [5] describe unstructured overlay as arbitrary
network topology formed by peers often chosen randomly. Although these networks
exhibit considerable resilience to failures, their operational efficiency and performance
level are comparatively inferior to the structured alternatives. On the other hand,
structured overlays employ more efficient routing strategies, and the selection of peer
neighbors is often based on factors such as proximity and available bandwidth.

Distributed Hash Tables

Zhang et al. [7] explain Distributed Hash Table (DHT) as decentralized structured
overlay networks that provide a distributed key-value store abstraction for large-scale
distributed systems. DHTs are common usage for P2P networks [7]. They can be
utilized to build complex distributed services, including overlay multicast, anycast,
Content Delivery Networks (CDNs), and distributed Domain Name System (DNS).
They also address practical problems like load balancing, distributed storage, search,
and communication. Several DHT implementations share a basic set of atomic
functions, including GET and PUT data operations. Similar to regular hash tables,
data is stored in a key-value manner, where the keys are hashes built for efficient
lookup. Unlike regular hash tables, these are distributed among all participating
peers in a P2P network. However, the implementations of these DHTs differ in their
routing structure, data storage, retrieval mechanisms, peer management, and the
information each peer needs to know about.

Figure 2.1: Chord DHT showing how to lookup the values at Peer0 from Peer2
going through Peer6 in a DHT with eight peers. It also shows the finger table
assignments for the three first peers.

2.1. OVERLAY NETWORKS 7

In the simple DHT implementation Chord, the DHT is visualized as a one-
dimensional ring structure with consistent hashing. Each node has a unique node ID
and is ordered in the ring by these [7]. Nodes maintain their own "finger table," in
which they store a subset of all nodes in the Chord network. This is shown in Figure
2.1. Every node in the network retains the data with IDs falling within the range
bounded by its own ID and the ID of its predecessor. Kademlia, the most popular
P2P storage DHT alternative, introduces an XOR distance metric between peers
allowing for more efficient lookup and storage by placing peers in different buckets. It
has been adopted by many P2P applications, especially for file distribution services
[7].

File distribution networks

P2P networks have gained recognition for their decentralized file-sharing capabilities,
with numerous versions of such networks existing [8]. Among them, BitTorrent stands
out as the most widely acknowledged and utilized variant. BitTorrent is a protocol
aimed at efficiently distributing substantial volumes of data while circumventing the
need for extensive server bandwidth resources. Through BitTorrent, an unstructured
P2P overlay network is established for each torrent or collection of files being
distributed, enabling a newly joined peer to simultaneously download the torrent
from multiple peers. Upon acquiring a portion of the data, the freshly integrated
peer can also actively distribute said data to other peers.

InterPlanetary File System (IPFS) is an open-sourced, P2P structured overlay
network that provides free, decentralized, and reliable distributed storage of files [9].
It seeks to provide a globally distributed file system, connecting all computing devices
to the same system of files. IPFS uses its Content Identifiers (CID) to uniquely
identify data by a multihash checksum. This gives every version of a file a unique
CID. If a file is too big, it is split into multiple CIDs linked together. CIDs are stored
in a Kademlia-based DHT with reference to the peers it is stored at. IPFS has many
use cases, and it is popular amongst decentralized Web3 applications for off-chain
storage.

NKN

The New Kind of Network (NKN) represents a novel Web3 decentralized P2P
overlay network constructed on top of the Internet. As described by the NKN
whitepaper [10], it stands out as a new generation of self-incentivized blockchain
network infrastructure characterized by its high scalability and self-evolving capacity.
A proprietary cryptocurrency, NKN coin, is employed within the network utilizing
a Proof of Work (PoW) mechanism, which avoids wasting resources and ensures
network connectivity and data capacity. Furthermore, NKN deploys its own Chord
DHT implementation hosted on the NKN network to establish its network topology.

8 2. BACKGROUND

The NKN network is partitioned into two types of participants, namely nodes,
which undertake the task of data relaying, and clients that do not engage in such
activity. Clients interact with the network by transmitting their data via nodes using
their NKN address, which abstracts away the location of the device [11] and allows
communication between clients, even behind Network Address Translation (NAT)
restricted networks.

2.2 Tor

"The Onion Router," commonly known as Tor, is an overlay network designed to
provide anonymity and to circumvent censorship of Transmission Control Protocol
(TCP)-based internet services such as web browsing, instant messaging, and secure
shell [12]. Tor is a distributed network intended to anonymize and protect users’
privacy. It is inspired by the concept of onion routing from the mid-1990s, where
traffic is routed through a network of proxy servers or relays, where each proxy only
knows the previous and the next proxy in the chain. Before the traffic enters the
network, it is encrypted multiple times, creating layers like the layers of an onion,
hence the name [13]. Each server in the network removes one layer of encryption to
reveal the address of the next server in the chain until the traffic reaches its final
destination. Tor elaborates on this paradigm by incorporating circuits in which the
initiating entity establishes session keys with each subsequent router of the circuit.
This method serves to inhibit the decryption of previously transmitted data [12].

When a client and a server interact using an encrypted channel with Tor, only
limited information can be gleaned by third parties capable of intercepting the traffic.
These third parties may include the client’s Internet Service Provider (ISP) or those
with wiretapping abilities. They can only see that the sender is using Tor and nothing
more. However, they will be unable to decipher the transmitted content or identify
the recipient of the communication. It is possible for an observer who can view both
the client and the destination website or the Tor exit node to correlate the timings
of the client’s traffic as it enters the Tor network and exits [14]. This illustrates that
no perfect anonymity is possible but makes it significantly harder for someone to
obtain information about the users when using an anonymous network like Tor.

In the present day, the Tor software has been made freely available and is subject to
ongoing development and maintenance by the Tor Project, a non-profit organization.
The project’s guiding principle is encapsulated in the phrase, "Defend yourself against
tracking and surveillance. Circumvent censorship." [14] The Tor network presently
consists of thousands of servers dispersed worldwide and is operated by volunteers.
The list of currently available relays is called the "Consensus" and is updated every
hour. This update is carried out by Directory Authority (DA), a small list of trusted
Tor project participants who have undergone vetting processes. Periodically, each

2.2. TOR 9

DA generates a view of all the available relays, which they sign and send to the other
DAs. The DAs carry out a majority vote on the views received, and the resulting
consensus is signed by all of them and used as the current consensus for the next
hour [14]. Tor users request the updated consensus periodically from the DAs.

As stated, one of Tor’s main goals is to circumvent censorship. When it works,
Tor disguises all relayed internet traffic as Tor traffic, thus offering protection against
traffic monitoring and surveillance [15]. To prevent censorship of Tor itself, Tor
introduces the concepts of bridges and pluggable transports. They disguise Tor traffic
by masking it to look like regular TLS traffic, making it difficult to identify with deep
packet inspection methods. Tor hides its bridges’ IPs, but techniques are accessible
for finding these [15].

Onion services

The Tor Project also provides a means of anonymity for servers through Onion
services, which were formerly known as hidden services. With Onion Services, TCP-
based internet services, like Web servers, can use Tor to anonymize the location of
their servers. These services are identified by their onion address, which for the
current version (v3), comprises a 56-character long string that ends with ".onion."
As depicted in Figure 2.2, these 56 characters are a Base32 representation of the
onion service’s self-generated Ed25519 public key, version number, and checksum.
An onion address lookup is not resolved by the Domain Name System (DNS) but
rather through Tor Hidden Service Descriptors. These descriptors are first made
when the onion service is created and then updated daily. The onion service specifies
randomly selected relays as introduction points and includes their public key in the
descriptor. The descriptor is then signed with the onion service’s Ed25519 private
signing key and uploaded to a DHT in the Tor network for others to access. At this
point, the Onion service is reachable by clients if they know the public key [16].

Figure 2.2: Building blocks of Tor v3 onion addresses

When a client intends to establish a connection with an Onion service, it initiates
a request to Tor DHT by using the Onion address’s public key as the lookup key.
The DHT responds with a signed descriptor corresponding to the specified onion

10 2. BACKGROUND

address. The client validates the descriptor’s authenticity by utilizing the public key
encoded within the onion address. This provides a guarantee of authentication from
the server to the client. Subsequently, the client selects a random Tor relay to serve
as its rendezvous point and initiates a circuit to it. The client then uses one of the
onion service’s introduction points to request the establishment of a Tor circuit at
the rendezvous point, through which the client can access the onion service. This
way, the client and the server can communicate anonymously without either being
able to identify the other’s network identities. Both the server and the client have a
three-hop circuit to the rendezvous point, making the final established circuit consist
of 6 relays [16].

2.3 A decentralized P2P overlay network built on top of Tor

Figure 2.3: Illustrates the layers of encryption and the different nodes used in an
established tunnel in Fallangs prototype. This illustration is based on Figure 4.8 in
Fallangs thesis [1].

Fallang [1] developed a decentralized overlay network prototype that utilizes the
Tor infrastructure as an underlay in his recent thesis. The network inherits Tor’s
anonymity properties, rendering it an anonymous, decentralized, peer-to-peer overlay
network. The prototype enables two peers to establish a direct link via a series of Tor
relay nodes. OpenVPN is implemented atop the Tor Socket to simplify routing and
allow traffic other than TCP, which is the only transport Tor Sockets allow. During
the connection setup, one peer assumes the role of a server, and the other acts as a
client. The server creates the initial Tor circuit using a two-hop relay chain, with the
client subsequently connecting through a single relay. The prototype is extendable to
incorporate additional hops, potentially enhancing anonymity. Figure 2.3 illustrates
the different layers of encryption used to mask the traffic in Fallang’s prototype, as

2.4. BOOTSTRAPPING 11

well as the two-hop relay chain from the server’s perspective, Peer1, through the
Guard Node (GN) and the Rendezvous Point (RP). A rudimentary, non-autonomous
bootstrapping mechanism was also implemented, allowing peers to establish this
connection, albeit requiring significant prior knowledge and manual work to connect.
Coordination between users is essential for successful connections.

2.4 Bootstrapping

Although the term may have different meanings based on the context, the pro-
cess of joining a computer network is commonly referred to as bootstrapping. In
most instances, the process is straightforward, with the responsibility of facilitating
the bootstrapping often delegated to servers and transport primitives. However,
these servers’ nature and specific roles depend on the network’s properties and the
abstraction layer on which they are built.

Figure 2.4: LAN Bootstrapping: Upon a new computer’s integration into a LAN
router, it engages the router to broadcast for and locate a DHCP server, initiating
an exchange of messages that results in the acquisition of an IP address and network
configurations. The new computer employs network discovery mechanisms such as
Address Resolution Protocol (ARP) or multicast DNS (mDNS) for identifying other
computers within the LAN.

For instance, when we consider Local Area Network (LAN) - among the simplest
network setups - bootstrapping a new computer into the network is shared between
the router and the Dynamic Host Configuration Protocol (DHCP) server. This is
illustrated in Figure 2.4, where a new computer device will broadcast a request to
join the network and request information from the current DHCP server. The router
facilitates this message broadcasting. The DHCP server maps the client’s unique
Media Access Control (MAC) address to an unused IP address, leading to a series

12 2. BACKGROUND

of messages between the new client and the DHCP server resulting in a successful
network bootstrapping. Although this example is straightforward, it illustrates some
necessary components for a successful bootstrapping mechanism, as there is a need
for an initial connection point, a way of getting configuration information, and a way
of discovering other participants on the network.

However, the task of bootstrapping is not always straightforward. This is partic-
ularly true for networks with decentralized components, such as in some P2P overlay
networks. In P2P networks, bootstrapping is also referred to as peer discovery. And
when it needs to be decentralized it is called the bootstrapping problem. According to
Knoll et al. [17], a complete bootstrapping mechanism facilitates the integration of
new peers into the network, even in situations with few or no existing peers. Knoll
outlines five essential requirements that must be satisfied by a robust bootstrapping
mechanism to qualify as decentralized. The first requirement, Robustness against
failure, mandates that all components are decentralized and free of single points of
failure. The second requirement, Robustness against security appliances, requires
users to be able to communicate with each other and traverse firewalls and Network
Address Translation (NAT). The third requirement, Robustness against external
interference, necessitates complete decentralization of all components to prevent
any authority from shutting down the network. The fourth requirement, Efficiency,
ensures that the bootstrapping process is expeditious and involves the least amount of
network traffic possible. Finally, the fifth requirement, Scalability, stipulates that the
bootstrapping mechanism should not limit the number of users in the system. Doyle
[18] suggests a sixth possible requirement: Lawfulness and Ethical Use. He argues
that the bootstrapping protocol shouldn’t violate any rules or policies. Furthermore,
it should not misuse any existing technology, as such an approach would only offer
quick but unsustainable, or ’dirty,’ solutions to the bootstrapping problem.

While certain overlay networks are decentralized, their bootstrapping method
need not invariably align with this decentralized approach. Rather, whether to
use a centralized or decentralized bootstrapping mechanism usually hinges on the
rationale behind the network’s creators’ adoption of a decentralized infrastructure.
Should the motivation come from distrusting central authorities among the network’s
intended users, a decentralized bootstrapping approach would be the more favorable
option. Additionally, the choice of a centralized bootstrapping method often rests
upon considerations of operational costs, the network’s scalability, robustness, and
level of complexity. It is worth noting that while many decentralized networks
utilize a semi-centralized bootstrapping approach, there are examples of decentralized
approaches as well.

2.5. EFFICIENT MESSAGE-DELIVERY MECHANISMS 13

2.5 Efficient message-delivery mechanisms

Figure 2.5: Contrast between IP Multicasting and Centralized Pub/Sub Systems:
In the scenario of IP multicasting, every member of a common multicast group within
a LAN is the recipient of packets addressed to the multicast destination. Notably,
IP multicast tends to be obstructed at ISP routers. On the other hand, messages
from a Pub/Sub system are disseminated to all participants, extending even beyond
the boundaries of the LAN. However, the Pub/Sub system duplicates packets at the
provider’s end and dispatches them individually to each subscriber.

Multicast is a packet delivery design pattern for efficient one-to-many data transfer
applications [19]. It allows the decoupling of the amount of information each network
node needs to have from the network to send data to multiple devices. Multicasting
can be divided into two broad categories based on the networking layer on which
they operate. Network-layer multicast is the first, and because of its broad mentions
in the literature, it will be rendered synonymous with the IP multicast protocol. IP
multicast has been regarded as a great, best-effort, large-scale multi-point content
delivery protocol which is bandwidth efficient [20]. IP multicast is, however, broadly
limited to networks under single administrative control, such as LANs and enterprise
networks. ISP usually stops multicast traffic in order to protect against unwanted
traffic and reduce router load. This is shown in Figure 2.5. This severely reduces its
applicability on the Internet. To combat these ISP restrictions and provide a similar
feature set as IP multicast, multicast systems can be built on the application layer
instead. Application-layer Multicast can be overlay-based, and instead of replicating
data at network routers, it is replicated on end systems, also known as end-system
multicast.

Publish/Subscribe (Pub/Sub) systems provide similar features as multicast. It’s
a well-established solution for facilitating decoupled and many-to-many messaging
[21]. There exist numerous diverse implementations of the Pub/Sub model. Despite
their varying nature, all such systems are designed to offer the ability to subscribe
to specific topics. In practice, this means that whenever a message is published

14 2. BACKGROUND

pertaining to a subscribed topic, the system endeavors to deliver this message to all
parties that have subscribed to that particular topic. Other features message delivery
guarantees or authorization. The Pub/Sub model has mostly been used in the
Internet of Things (IoT) domain for applications such as real-time data collection and
distributed messaging [21]. MQTT and DDS are commonly used Pub/Sub protocols
for IoT applications [22]. MQTT uses centralized servers called brokers that manage
topic subscriptions, receive published messages, and redistribute messages to the
subscribers of the given topics. An example of a centralized Pub/Sub system is
shown in Figure 2.5. DDS manages an overlay network to route its users’ published
messages to the subscribers. It does not have a broker, but it still upholds different
Quality of Service (QOS) guarantees [22], like MQTT.

As described in Section 2.1, IPFS and NKN are examples of new decentralized
P2P services. Although these services are structured to serve distinct functionalities,
they both incorporate a Pub/Sub mechanism within their respective overlay networks.
This Pub/Sub model, being entirely distributed and decentralized, circumvents the
necessity of a centralized broker to facilitate the distribution of published messages
to subscribed topics.

Reviewing the repository of the Go-language implementation of IPFS, known
as Kubo [23], reveals that IPFS essentially functions as a wrapper around the
libp2p [24] Pub/Sub functionality. Furthermore, IPFS employs two unique routing
strategies, each of which creates a distinct P2P overlay network corresponding to
each subscribed topic. The part that distinguishes these strategies lies in their
approaches toward routing between peers associated with a specific topic. The
initial strategy, namely FloodSub, espouses the naive approach of flooding the
entire network with published messages. However, the most recent and now default
approach, referred to as GossipSub, leverages a gossip-based method for routing
messages, adding scalability to their Pub/Sub model. These topic-focused overlay
networks necessitate the existence of peer discovery mechanisms to identify other peers
within the network. In this context, the IPFS Pub/Sub employs diverse strategies,
ranging from bootstrapping servers to Local Area Network (LAN) multicasting.

In contrast, NKN employs a distinctly different strategy in shaping its Pub/Sub
architecture. Its implementation capitalizes on its proprietary blockchain to store
subscribed topics, thereby making them retrievable and searchable by other entities.
An incidental result of this approach is the requirement for users to utilize a blockchain
wallet to authenticate and store subscriptions in transactions. In this case, the NKN
network assumes responsibility for the routing and subsequently serves as a highly
efficient system for message propagation with its milliseconds’ end-to-end latency
[25].

Chapter3Methodology

This chapter outlines the strategy for answering the two research questions presented
in Chapter 1.4 and discusses and justifies the choice of methodology.

The thesis will answer the questions sequentially, as the answer to Research
Question 2 (RQ2) depends on Research Question 1 (RQ1). The justification for this
is that RQ1 will provide insight into some of the issues that will later be encountered
when attempting to tackle RQ2. RQ2 will, however, receive most of the time and
focus since it is the most time-consuming part of the thesis as it involves development.
It will bring more insight and creativity to the field’s ongoing study.

When addressing RQ1, an overview will be created of the problems associated
with bootstrapping different P2P networks. These problems will be considered while
designing, implementing, and evaluating different approaches on top of Fallang’s
prototype in RQ2.

3.1 Overview of the state of Bootstrapping

To address RQ1, an overview of the leading problems associated with bootstrapping
in both classical and new P2P networks will be presented. In recent years, research
institutions and the industry have investigated many of the associated challenges,
which can be employed to improve the insight into the presented research questions.
At the time of starting the thesis, a list of relevant literature is already acquired. A
literature review will be conducted, and the following steps will be taken:

1. Utilize standard resources and search engines like the university’s library’s
search portal, Google Scholar, connected papers, and the normal Google search
engine.

15

16 3. METHODOLOGY

2. Use relevant keywords such as "bootstrapping," "decentralized," "peer-to-peer,"
"overlay network," "ad-hoc networking," "distributed applications," "pervasive
computing," "peer discovery," and "distributed computing" in searches.

3. Create a list of existing P2P applications and overlay networks, examine their
approaches to bootstrapping, see if they approach bootstrapping in novel ways,
and pick out a few interesting ones. The initial selection criteria are if they have
either a lot of current practical usages or are mentioned a lot in the literature.
Other services that include special properties like anonymity will also be looked
at.

4. Organize the different approaches of bootstrapping based on the challenges
they are trying to overcome, and if they are networking or security and privacy
related.

This method is similar to the one proposed method in the project leading up
to the thesis [2]. At the end of the literature review, the overview will serve as the
basis for tackling the second research question. The literature review is presented in
Chapter 4 as it serves as a standalone part of both the background material and the
results of this thesis.

3.2 Exploring and implementing bootstrapping mechanisms

To address RQ2, an exploratory approach will be undertaken. The goal is to
enhance the decentralized Tor overlay prototype by Fallang[1] with the creation of an
autonomous bootstrapping mechanism that prioritizes ease of use and security. This
overlay network provides the unique property of transport anonymity using the Tor
Network as a substrate for the overlay. Its current non-autonomous bootstrapping
mechanism requires that two peers know their peer’s self-given id and try to connect
relatively quickly. To create a connection between two peers, one peer must act as a
server and the other as a client. Additionally, there is a requirement for the peer
acting as a server to be the first to establish their part of the tunnel. The pre-shared
information is used to choose which Tor Rendezvous point they intend to use to start
a relaying connection between them. This mechanism will serve as the foundation,
with further development branching out in various directions. The aim is to discover a
superior method of deriving a shared secret to facilitate rendezvous selection between
peers. Ultimately, the intention is to devise a bootstrapping mechanism that either
inherits the transport anonymity of the network or possesses the capability to provide
it.

3.2. EXPLORING AND IMPLEMENTING BOOTSTRAPPING MECHANISMS 17

Development methodology

Given that the existing Tor overlay prototype is implemented in Python, it has
been determined that continuing with this established codebase would be beneficial.
This decision is partially due to Python’s renowned capacity for rapid development
and facilitation of prototyping [26], which aligns seamlessly with the project’s goals.
However, it is also acknowledged that some alterations to the existing code are re-
quired. Undertaking these changes in a different language would introduce additional
overhead and strengthen the choice of persisting with Python.

The planned development methodology encompasses a fusion of the waterfall and
the iterative software development models [27]. This results in a development process
that involves requirement gathering, while also allowing for adjustments whenever
the requirements are found to be unsuitable. By merging elements from both models,
the intention is to achieve enhanced flexibility and adaptability while maintaining
the importance of upfront planning and requirement gathering. The decision to
adopt this particular approach is largely guided by the team size, which in this case,
includes just the author. More intricate development methodologies like Agile are
typically designed for collaborative teams. Therefore, in this context, these complex
strategies are deemed unnecessary. Furthermore, the intention to explore the domain
through the creation of prototypes, and the acknowledgment of the potential gaps
in our initial understanding of the problem, justifies the incorporation of iterative
aspects into the methodology.

The initial step involves the identification of the prospective user base and the
elicitation of the software’s requirements. Simultaneously, outlining the restrictions
and limitations arising from reliance on chosen software platforms will be necessary.
This aligns well with the first steps of a waterfall model.

The ideation phase will pivot around these established requirements and restric-
tions, promoting iterative brainstorming to ensure all proposed concepts align with
these parameters. The intention is to utilize sequence diagrams to facilitate the
communication of our proposed software design and improve our understanding in a
visual manner. These diagrams will undergo iterative refinement to best reflect the
intended design.

The methodology incorporates the use of state machines and components in the
design and development of the software. State machines will be used to clarify system
behavior by representing different components as discrete states and transitions. This
approach facilitates decoupling an event’s originator from its responder [28], thereby
enabling different components to transmit events amongst themselves in a well-defined
manner. Utilizing state machines can effectively streamline the debugging process,
reduce the design’s complexity, and enhance our comprehension of communicating

18 3. METHODOLOGY

concurrent software components [28]. Another important attribute of state machines
is their contribution to the maintenance of documentation, as the plan is to update
the diagrams representing them prior to their implementation. This enables a visual
design process and ensures consistency between documentation and implementation.

Once a satisfactory level of understanding and confidence in the proposed design
is achieved, the software development phase will commence. Nevertheless, software
development projects often necessitate revisions in response to emerging insights and
additional requirements. Therefore, there is an anticipation of revising diagrams
and adapting the software to these changing circumstances, ensuring that the final
prototypes meet the current requirements. The final requirements and designs will
be presented in Chapter 5.

Assessment

To evaluate the effectiveness of the bootstrapping mechanisms, there is an intent to
analyze their performance with regard to speed as the time to establish a network
and the time to join an established network. The occurrences of connection attempts
and failures will also be measured. These quantifiable metrics offer clear data points
for measurements and facilitate meaningful comparisons. The outcomes of these
empirical investigations will be presented in Chapter 6. However, the main results are
the bootstrapping mechanism themselves; evaluating these and resolving the second
research question necessitates a more thorough analysis. Chapter 7, undertakes an
analysis and comparative assessment of these mechanisms. Their respective security,
anonymity, and usability attributes will be considered, with the overview from RQ1
serving as guidance.

Chapter4The challenges of bootstrapping

This chapter aims to provide an overview of the main challenges involved in the
bootstrapping of pre-existing computer networks in response to Research Question
1. Considering their extensive coverage in prior research, the focus predominantly
rests on P2P overlay networks. The challenges looked at are grouped into two basic
categories: Networking, security and anonymity. For each challenge, the issue is
clarified, and theoretical approaches along with established solutions in existing
networks are presented if they exist.

4.1 Networking

Bootstrapping computer networks incorporates challenges that are strictly network
related. This section presents a set of networking problems and ways of solving them.

4.1.1 Finding the first peer

One of the foremost challenges associated with bootstrapping arises in scenarios
where the network is decentralized. Frequently, there is a desire for the associated
bootstrapping process to be decentralized as well. As elaborated upon in Chapter 2,
electing to employ a decentralized architecture frequently leads to the conundrum of
finding the first peer, referred to as the bootstrapping problem [29]. This challenge
asserts the following requirements; that the network is of a peer-to-peer nature
and that all peers can bootstrap further peers, provided they are both known and
reachable. This problem has been researched extensively, as there is no solution that
works for all networks.

Bootstrapping servers, nodes, and DNS seeds are the predominately used
solution to the problem of finding the first peer. This refers to the different cases
where the network’s creators host a set of bootstrapping servers and, in some cases,
allow anyone or trusted parties to host their own. Hence, it’s up to the users to
configure the bootstrapping servers they want to use. Still, the default set of servers is

19

20 4. THE CHALLENGES OF BOOTSTRAPPING

usually highly reliable servers configured and maintained by the network creators. It
also refers to cases where the servers are changed out with established long-lived peers
in the network. This is the case for the popular distributed storage and file-sharing
applications IPFS [30], and BitTorrent [31]. These networks use a Kademlia DHT
and require peer bootstrapping, meaning new users must be incorporated into the
network by other peers. Their client software uses hardcoded DNS seeds and highly
available IP addresses of established peers as the first-time bootstrapping mechanisms.
The DNS seeds let the developers hard-code a set of domains, thus extracting the
node lookup into DNS. This makes it easier for them to replace the bootstrapping
servers without making the network’s users update their software when they fail or
get new identifiers. Hard-coded IP addresses are used as a fallback for these DNS
seeds in the case of DNS failure. When queried, the DNS seeds provide a set of
bootstrapping nodes or servers that will either bootstrap them into the network or
provide active peers in the network upon request.

NKN implements a similar bootstrapping approach. However, NKN’s architecture
utilizes a Chord DHT [11] and incorporates distinct bootstrapping mechanisms for
their relaying nodes and their clients. The bootstrapping process for nodes is more
intricate than that of clients, but both rely on bootstrapping servers to get the initial
list of nodes in the network. NKN nodes must maintain lists of their successors,
predecessors, neighbors, and connected clients. The former three are first populated
in the bootstrapping procedure and continually updated while in the network. This is
accomplished by initially requesting a list of other nodes from a bootstrapping server
and subsequently joining the DHT by contacting either of these. In contrast, clients
request a list of NKN relaying nodes from the bootstrapping server and connect to
another node assigned by one of the retrieved nodes.

IPFS and NKN links a user’s verifiable public key to their node identifier to
provide authenticity and integrity for their users. This also helps remove the need to
know a peer’s IP and their physical location. Both allow multiple ways of reaching
the same peer by their id, for example, when a user has multiple devices. IPFS does
this through their "multiaddr" address scheme, and NKN uses their NKN addresses
which can act similarly to subdomains.

The P2P networks that underlie most of the current digital cryptocurrencies
also share the use of distributed bootstrapping nodes. Loe and Quaglia [6] surveyed
the bootstrapping mechanisms for all of the mineable top 100 cryptocurrencies in
2019. Their findings show that all but one of these P2P networks use either DNS
seeds, hard-coded bootstrapping servers, or a combination of the two as their main
peer-discovery mechanisms. Multiple implementations of P2P networks exist, whereas
some implementations utilize DHT to maintain their networks. This holds for the
two most popular cryptocurrencies, Bitcoin and Ethereum, built upon their P2P

4.1. NETWORKING 21

networks named "the Bitcoin network" [32] and "devp2p" [33] respectively. Like IPFS
and BitTorrent, Ethereum’s devp2p protocol, use a Kademlia DHT to create and
maintain its network topology, using a proprietary addressing scheme. On the other
hand, the Bitcoin network uses no form of DHT for its P2P network and relies on
full nodes having a list of most of the available peers. These lists are populated with
Gossip protocols, which facilitate the efficient distribution of information across the
network by allowing peers to "gossip" or share information with their neighbors in a
decentralized way[34].

Caching previously known peers is a bootstrapping technique employed in most
large-scale P2P networks. Each client must locally cache a database of peers retrieved
from another bootstrapping mechanism or after joining the network. It cannot work
as a standalone bootstrapping mechanism [18] and has to be used in addition to
other methods presented in this chapter. The latency of the bootstrapping process
can be substantially decreased when the cache is retrieved recently, diminishing
the load burden on other bootstrapping mechanisms. Noteworthy, the approach of
caching recently known peers is highly scalable, but it may not yield optimal results
in small-scale P2P networks, as outlined by Doyle [18] and Knoll [17]. Furthermore,
the duration since the last update of the peer cache is proportional to the likelihood
of the peers in the cache being offline. Should the cache become entirely stale,
signifying that there are no active peers within the network, its functionality would
be compromised and deemed completely ineffective. Furthermore, this scenario would
reduce the efficiency of the bootstrapping process, even when compared to instances
where no cache system has been implemented. In stale cache scenarios, the user must
fall back to other bootstrapping strategies.

The caching approach is great in cases with temporary disconnections from a
network, letting the disconnected user connect to the network without going through
another bootstrapping mechanism. [18]

Using external services for bootstrapping is frequently suggested in the literature.
The external services are usually decentralized or distributed. Examples of these are
using Internet Relay Chat (IRC) [29] and DNS [17] [35], or even recently, blockchain
technologies [36] [37]. Knoll, Wacker, Scheile, and Weis [17] introduced the concept
of using IRC for bootstrapping in 2007, and it got was utilized as one of the peer
discovery mechanisms of the early Bitcoin network [38]. It gave the network a
decentralized method of bootstrapping when the pool of static IPs in the network
where insufficient and changed frequently. With IRC bootstrapping, each peer
encoded their own IP into an IRC nickname, then they randomly would join an
IRC channel named between #Bitcoin00 and #Bitcoin99, issued an IRC WHO
command, and decoded the IP addresses from the nicknames listed. The addresses
found would be other peers already bootstrapped and could be used to join the

22 4. THE CHALLENGES OF BOOTSTRAPPING

network. The feature was a temporary solution and was removed in 2013 as part of
Bitcoin’s peer-discovery mechanisms [38]. Many alternative cryptocurrencies are forks
of Bitcoin and may still use this method as one of their bootstrapping approaches.

Bitcoin itself has been proposed as an external service usable for bootstrapping.
Matzutt et al. [36] created a prototype for an anonymous bootstrapping mecha-
nism named AnonBoot, by encoding periodic peer advertisements into the 80 bytes
OP_RETURN field of Bitcoin transactions. The method is not restricted to Bitcoin
and works on all blockchain technologies that enable arbitrary data storage in its
transactions. New peers need to solve a small PoW puzzle in order to advertise
themselves on the Bitcoin blockchain. Similarly, a bootstrapping mechanism using
Ethereum Smart Contracts where proposed by Scutz et al. [37] in order to join
a trackless DHT-based BitTorrent network. Although using blockchains for boot-
strapping seems promising, neither of these approaches is used in currently deployed
networks.

A problem with using external services as bootstrapping mechanisms is that the
network using them will depend on that service’s reliability. Additionally, if a peer
needs to be bootstrapped into that external service, the problem is just shifted to
let the external service deal with it. For IRC bootstrapping, one relies on the IRC
servers continuing to operate and might be a central point of failure. When the
network grows, the bootstrapping mechanism will impose a greater load on the IRC
servers, which might not align with the IRC servers’ owners’ intended purpose for
that service.

Using broadcast or multicast primitives such as IP multicast for bootstrapping
is a well-researched topic. As described in Chapter 2, IP multicast is not usable on
the Internet as it tends to be blocked on the ISP level. However, IP multicast can
locate peer nodes in local networks participating in the same overlay network [39].
This requires all the participants in the overlay to join the multicast group. New
nodes or peers can query the multicast group for the IP addresses of the bootstrapped
participants [40]. Using multicast in such a way could impose a height amount of
traffic in the network, and the multicast search should be performed using techniques
like expanding ring search [40]. Like peer cache bootstrapping mechanism approaches,
multicast usually needs to be used in addition to other approaches.

IPFS uses multicast DNS (mDNS) as one of its bootstrapping mechanisms in
LANs. It provides an efficient means of finding other peers, even without being
connected to the internet or relying on IPFS’s bootstrapping nodes [41]. Similarly,
the P2P dataset synchronization protocol Dat previously used mDNS as one of its
bootstrapping mechanisms, or source discovery as they called it [42]. It also only
worked on LANs.

4.1. NETWORKING 23

Probing IP addresses refers to a collection of different methods proposed in the
literature. These include random scanning of IPv4 addresses aiming at finding a
peer in the network and using statics to improve upon these scans. The bigger the
network, the greater the chance of finding a peer. Loe et al. [6] used 10 GBit network
cards to scan the entire IPv4 address space with ZMap to bootstrap blockchain
networks. Even though this method requires no centralized resources and is inherently
censorship-resistant, they conclude it is not a realistic method of bootstrapping due to
the high bandwidth requirements and low success rate. Although they found hundreds
of IPs using the same ports as the blockchain P2P networks they surveyed, none
successfully bootstrapped them into the networks. Ethereum-based P2P networks
were not compatible with this search as they use dynamically allocated ports, and
they were thus unable to consistently identify whether IPs belonged to peers in these
networks.

Other IP probing mechanisms like random address probing [43] and locality-
aware address probing [40] have been proposed in the literature. To the best of
our knowledge, none of these mechanisms have seen practical usage in current P2P
overlay networks.

4.1.2 Churn

Churn refers to the dynamics of peer participation within P2P networks. It specifically
refers to the impact that the rapid influx and departure of numerous peers within
a limited time frame have on the network [44]. This phenomenon is primarily an
architectural concern inherent to P2P systems, and its implications extend beyond the
challenges in the bootstrapping of these networks. Consequently, churn is addressed
in this context due to its influence on the selection of bootstrapping mechanisms and
its profound implications for the reliability and scalability of such networks. Churn
predominantly poses difficulties in large-scale P2P networks, whereas its effects on
smaller-scale networks are more manageable. Within the realm of bootstrapping,
churn introduces various issues, including the hindrance of peer discovery due to
the potential absence of previously known peers within the network [40]. Moreover,
it frequently disrupts the network’s topology, thereby diminishing the efficiency
of routing and resource allocation, necessitating potential resolution within the
bootstrapping mechanism itself. Furthermore, churn impacts the scalability of the
network, demanding that the bootstrapping mechanism possess the capacity to
accommodate a substantial influx of new users and maintain up-to-date lists of active
peers and their identifiers within the network. According to Stutzback and Rejaie
[44], churn "must be taken into account in both the design and evaluation of any
P2P application."

Caching long-lived peers is an approach by Stutzback and Rejaie [44] that

24 4. THE CHALLENGES OF BOOTSTRAPPING

aims to enable the successful bootstrapping of all peers within a large-scale network
without relying on centralized addresses while dealing with the peer discovery problem
introduced by churn. Although it is merely a caching strategy, it can effectively reduce
the burden on other bootstrapping mechanisms after the initial successful bootstrap.
The concept is relatively straightforward: each peer maintains a sufficiently large
cache of long-lived peers. Through their analysis of various large networks, the
researchers observed that approximately 20-30% of peers exhibit an uptime exceeding
one day. Consequently, these long-lived peers should be given priority in the caching
process.

4.1.3 Small networks

Wolinsky et al. [45] discusses the bootstrapping challenges of small-scale overlay
networks. Because of these networks’ limited set of peers, all bootstrapping techniques
used in large-scale P2P networks might be ineffective for these networks. Small
networks usually have two problems; the creators lack competency in maintaining
reliable dedicated bootstrapping services, and the operation costs of these services
may get too high as the number of users increases [45]. These networks tend to have
no existing peers in the network, which is a scenario large-scale P2P networks do not
have to worry about.

Using existing services such as public overlays is a method that is both discussed
in the literature and used in small-scale networks. Wolinsky et al. [45] propose the
Extensible Messaging and Presence Protocol (XMPP), an open standard distributed
chat protocol, as one of the potential existing distributed services exploitable for the
purpose of bootstrapping small networks.

This method may also serve as an intermediate approach, facilitating progression
from small-scale to medium-scale networks. This was exemplified by Bitcoin’s use of
an IRC-bootstrapping technique. Our belief is that this strategy was designed to
function solely as a bootstrapping mechanism during the network’s early stage when
there were insufficient consistently active, long-term peers within the network.

4.1.4 Hidden and unreachable peers

Despite the increase in the number of internet-connected devices employing IPv6, a
significant portion of these devices remains inaccessible directly through the Internet
due to the utilization of NAT or firewall restrictions. Consequently, the utilization
of certain P2P networks is rendered challenging, as devices situated behind NAT
are restricted to establishing outgoing connections and cannot be contacted directly
unless they initiate the conversation. While this limitation tends not to pose a
problem for large-scale P2P networks wherein a new peer will have a sizeable pool
of contactable peers, certain networks still need to facilitate the bootstrapping of

4.1. NETWORKING 25

peers. This is exemplified with anonymity-providing networks discussed in 4.2.1.
This issue exhibits a substantial correlation to the challenge discussed in Section 4.1.3
as it predominantly manifests itself within such networks. Hence, the first proposed
approach is employed to address both problems.

Using existing services such as public overlays is once again used as an
approach for a bootstrapping problem. It can be used as a means of bootstrapping
unreachable peers into networks. Wolinsky et al. [45] present a set of three essential
properties that an overlay network must possess to serve as a viable mechanism
for bootstrapping such networks. Firstly, the public overlay used must incorporate
a mechanism for obtaining global IP or peer identifiers, referred to as Reflection.
Secondly, the overlay should enable users to exchange arbitrary data, even in the
absence of a direct IP communication channel, a property termed Relaying. Lastly,
the overlay must be used to identify peers interested in the same P2P service, known
as Rendezvous. As an illustration, they identified which existing networks that
provide all of these properties, and as mentioned in Section 4.1.3, they proposed
XMPP as an external service that fulfills these requirements. Each user in XMPP
has a unique identifier in a similar form to email addresses; "username@domain."
This gives XMPP the reflection property, decoupling their physical location, via their
IP, from their username. They were able to add the relaying property by extending
the XMPP protocol, and the rendezvous property was fulfilled by peers advertising
their P2P service usage in a hashed resource identifier accessible to all users.

The utilization of IRC as a means of bootstrapping in the context of Bitcoin
was addressed in Sections 4.1.1 and 4.1.3. While the original intent of Bitcoin’s
IRC-bootstrapper design did not specifically cater to the issue of unreachable nodes,
it possesses the necessary capabilities to fulfill the three essential properties required
for this purpose. The IRC nicknames can be employed to encode users’ IP addresses,
as exemplified in the Bitcoin IRC bootstrapper, thereby satisfying the reflection
property. Furthermore, the rendezvous property is ensured through the utilization
of the IRC WHO command, which enables the listing of all users connected to
the channel, thus facilitating the advertisement of their identifier. Lastly, users
can transmit arbitrary data through the IRC channel in the form of text, thereby
satisfying the relaying requirement.

Relaying data through other peers or nodes is a method employed by some
networks to address the unreachable peer problem. NKN assigns joining peers to
their decentralized and distributed relaying nodes which will handle the routing of
data between peers and circumvent the NAT problems [10].

26 4. THE CHALLENGES OF BOOTSTRAPPING

4.2 Security and privacy

Security and privacy are crucial considerations in bootstrapping computer networks
due to their critical role in protecting information integrity, confidentiality, and
availability. Due to their decentralized architectures, the P2P model is also exposed
to these threats. This section presents some common attacks and privacy-related
problems within the context of bootstrapping.

4.2.1 Anonymity

Privacy has become a bigger part of people’s digital life in recent years. Users want
to be able to control who has access to their data. For differing reasons, people
do not want to be identifiable by any means. Although most people believe that
complete anonymity is infeasible on the Internet [46], some networks and services
promise varying levels of anonymity for their users. We advocate the notation that
if the bootstrapping mechanisms in anonymity networks fail to ensure anonymity,
it poses a considerable risk to users. This is because the data used to join the
network could be used to correlate and identify individuals, thus compromising
their anonymity. Therefore, we emphasize the crucial role of these bootstrapping
mechanisms in establishing and maintaining robust anonymity within such networks.

Using an anonymous transport like Tor is the identified main method capable of
providing autonomous and anonymous bootstrapping for existing networks. Many
cryptocurrencies allow proxying with Tor to bootstrap into their blockchain P2P
networks [6]. However, doing so for these networks is usually not recommended
because of the vast amount of data needed to download their blockchains. This can
result in worse Tor performance for other Tor applications. Besides its relatively low
level of bandwidth, this makes Tor impractical for bootstrapping most blockchain
networks. Research shows that bootstrapping cryptocurrencies with Tor may not
provide the levels of anonymity one would desire [6]

The Verge cryptocurrency is an example of a blockchain capable of utilizing both
Tor and I2P to provide anonymity for their users. Tor is used as an IP obfuscation
tool for Verge’s end users [47]. Additionally, it is the default underlying transport
for contacting bootstrapping servers hosted with onion services [6].

There are multiple communication protocols and services promising anonymity
for their users. The Briar project [48] is an entirely decentralized, secure messaging
service. It can use a variety of networking transports to create ad-hoc mesh networks
in infrastructure-less environments, such as during crises. Furthermore, it can protect
its users from surveillance on top of the internet. For the latter, Briar outlines their
Bramble Rendezvous Protocol (BRB) [49] as a Tor-enabled bootstrapping protocol
for its P2P network. Using BRP, two peers with previously exchanged X25519 public

4.2. SECURITY AND PRIVACY 27

keys can connect to each other using their peers’ public keys and their own private
keys in a Diffie-Hellman (DH) exchange to derive a shared secret among them. Using
the shared secret, they derive a rendezvous key using a Key Derivation Function
(KDF) on their derived shared secret. Both peers generate ED25519 key seeds by
first using the KDF on the rendezvous key and then piping it into a stream cipher.
This results in both peers having their own set of ED25519 keys which they use to
set up Onion services. These Onion services act as anonymous public interfaces for
peers, letting them communicate without others knowing.

Speek Secure Messaging [50] is a more secure and anonymity-focused messaging
application than the Briar project. Although they provide much the same functional-
ity, Speek only addresses censorship resistance and anonymity compared to Briar’s
additional ad-hoc mesh networking focus. Speek uses Tor Onion services to provide
an instant messaging system between its users’ contacts. It provides an end-to-end
encrypted communication channel between two parties that want to talk. Like Briar,
it uses Tor Onion services as anonymous, publicly available user interfaces. Speek is
P2P in the sense that connections are made directly to their recipient and routed
through the Tor network without going through any other peers or servers. For the
bootstrapping mechanism in this service, users must know the Speek id for the users
they would like to establish a connection and communication channel. These Speek
ids are shared through other means without them telling you how.

4.2.2 Censorship

Most nations impose some form of restriction or censorship on their citizens’ internet
traffic, thereby inhibiting the usage of certain applications deemed undesirable by
those in power. This practice is not confined solely to nations with authoritarian
regimes [51]. Cryptocurrencies are examples of P2P applications that are being
censored by certain countries [6]. Censoring the bootstrapping mechanism can
effectively censor the whole network, as new users are unable to join.

Utilizing Tor as a transport is, similarly to providing anonymity, a prevalent
strategy for circumventing censorship during the bootstrapping stages of P2P appli-
cations. The cryptocurrency bootstrapping survey by Loe and Quaglia [6] outlines
the adoption of Tor as one of two censorship-mitigated bootstrapping techniques
deployed in current cryptocurrency networks. Given that some of the internet traffic
is uncensored, all P2P traffic assumes the appearance of Tor traffic by employing
Tor, effectively evading the censorship imposed on such P2P networks. However, as
described in Chapter 2.2, this method becomes ineffective if the Tor network becomes
subject to censorship. Pluggable transports and Tor Bridges can be used to obfuscate
and disguise Tor traffic as regular TLS traffic [6]. This poses yet another problem:
Discovering and configuring these private Tor bridges. The same predicament arises if

28 4. THE CHALLENGES OF BOOTSTRAPPING

anyone, including the authorities responsible for the censorship, can easily locate the
private Tor bridges. The extent to which these authorities are willing to enforce their
censorship may vary, and the finding and censoring of these Tor bridges might be
considered too much work for some of them, rendering it a viable but not universally
accessible method for users wanting to use these cryptocurrencies.

Out-of-band peer id exchange is a method many P2P networks support. The
idea is that users would exchange peer ids physically or in other communication
channels. As long as communication with that peer is not inherently censored, the
new user could be bootstrapped by contacting that peer. This is censorship-resistant
but requires manual work. The other peer must be available at the time of joining
the network, and their IP or contact info must not change. This is frequently used
for bootstrapping many censorship-resisting networks and services like Briar [49],
Speek [50], Freenet [52] and the Tor overlay network by Fallang [1]. In its application
design, Briar integrates the use of Quick Response (QR) codes, which users can
physically scan to add peers to their respective contact lists [48].

IP scanning methods stand as the only genuinely censorship-resistant autonomous
bootstrapping techniques identified. However, as described in Section 4.1.1, these
techniques are not a suitable option for all P2P networks due to some networks uti-
lizing dynamically created ports for their peers, making it extremely time-consuming
to find other peers. Furthermore, a network needs to be of sufficient size to be able
to realistically find other peers.

4.2.3 Sybil-attacks

Sybil attacks are a type of attack on P2P overlay networks where malicious users
generate a vast number of node identifiers to get a disproportionally large influence
on the network or to disrupt the availability and integrity of said network [53]. It is
strictly not just a challenge associated with just bootstrapping. Still, the problem
arises in the bootstrapping mechanisms when there are no barriers to joining the
network, and assignments of node identifiers are done in a decentralized fashion by the
users themselves. This allows malicious peers to masquerade themselves as multiple
different peers. It is considered one of the most challenging attacks to prevent in
structured P2P overlay networks [53], and could lead to network partitioning, Denial
of Service (DoS) attacks, unfair resource allocation, and removing data redundancy
of distributed file storage. In P2P networks utilizing consensus vote mechanisms, like
blockchain technologies, these attacks threaten the validity of the consensus’s end
result [54].

Resource testing techniques aim to reduce the presence of fraudulent nodes owned
by malicious actors. These techniques involve tasks that impose computational
demands on individual nodes within a specific time frame and evaluate their storage

4.2. SECURITY AND PRIVACY 29

and network capabilities. By testing the resources of these nodes and comparing
them to what would be expected if they were independent, the goal is to detect
and mitigate the influence of malicious actors [55]. Numerous proposals for these
techniques are suggested in the literature [56]. It has been recommended as a minimal
defense strategy against Sybil attacks to reduce the risk and consequence instead of
trying to remove the problem [54].

Analysis of social relationships between peers in a network is a form of Sybil
detection utilized in anonymous and censorship-resistant systems [57]. In centralized
anonymous communication systems and decentralized P2P overlays, the risk of Sybil
attacks can greatly be mitigated by only forming communication channels with users
they trust in the real world. The id of their anonymous identity must be shared
out-of-band either in a communication channel they trust or physically. Many of
these services only allow new users by invitation. Sybil identities can be found in
these systems by analyzing the social graph of their identity and comparing it to
the graphs of known honest nodes. The malicious identities will likely have very few
connections to honest nodes or none at all. This can be used to detect potential
Sybil nodes.

Payment for registration is an approach that aims to mitigate Sybil-attacks
in large-scale networks. The concept behind this approach is that in order for a
malicious actor to gain control over a significant portion of the network, they would
have to incur a substantial financial cost. By imposing a payment required for each
registration or identity in the network, legitimate participants in the network would be
willing to pay the registration fee as they have genuine reasons to join and contribute.
However, for attackers who seek to create numerous fake identities to manipulate
the network, the cost of registration would become prohibitively expensive if they
want to control a significant portion of the network. Thus, it acts as a disincentive
for attackers by increasing the cost and effort required to launch a successful Sybil
attack. This approach is, however, not suited for small to medium-sized networks as
the payment amount would not be large enough to disincentivize malicious actors to
pay for a proportionally large amount of identities [58].

4.2.4 Denial of Service

Denial of Service attacks are problems most publicly available computer networks
must consider. These attacks refer to various ways that malicious actors can deny
access to networks ranging in severity from denying a single user to all users of
the system. Network layer DoS attacks typically involve flooding their victims
with network traffic, thus overwhelming the victim’s resource capacity [59]. In
application-level DoS attacks, attackers can misuse protocols in order to prevent the
service from functioning correctly [59]. P2P overlays inherently offer some resilience

30 4. THE CHALLENGES OF BOOTSTRAPPING

from certain DoS attacks as they are distributed and thus are mostly free of single
points of failure. However, DoS attacks can also be planned to target key peers and
nodes to deny a certain file or peer from being distributed in the network. Some
bootstrapping mechanisms are easily targeted by DoS attacks, especially in networks
using bootstrapping servers and DNS seeds, which account for most P2P overlay
networks. DoS attacks can also be made on massive scales via attacker-controlled
botnets, giving them the name of Distributed Denial of Service (DDoS) attacks.
DDoS prevention approaches are included in this section as DDoS and DoS are
often used interchangeably. The rest of this section is dedicated to presenting DoS
prevention techniques for bootstrapping mechanisms

Horizontal scaling, when applied to bootstrapping servers and DNS seeds, can
effectively enhance resistance to DoS attacks. The rationale behind this approach is
straightforward: Greater numbers of available servers translate into a higher number
of servers that would need to be targeted to successfully execute a service denial.
In effect, horizontal scaling involves supplementing the existing infrastructure with
additional servers, aiming to distribute the workload more evenly, improve system
redundancy, and bolster overall robustness.

In the study by Loe and Quaglia [6], it was observed that DNS seeds are employed
as the primary peer discovery mechanisms in the majority of blockchain networks.
Alarmingly, it was discovered that 32% of the networks tested only use one DNS
provider for their DNS seeds, making them incredibly susceptible to DNS service
denial. In the same study, however, many networks showcased their adoption of
horizontal scaling via the availability of bootstrapping peers. Specifically, Bitcoin’s
DNS seeds resolved 44,077 unique IP addresses. Even though it remains uncertain if
all these addresses could be used for bootstrapping, the sheer resources needed to
deny service to all these peers would be considerable. Nonetheless, integrating more
servers comes with its own challenges, such as increased operating expenses, system
complexity, and maintenance demands.

Proof of Work (PoW) puzzles is a highly researched and used set of techniques
capable of mitigating the effects of DoS attacks [60]. They represent a specific
implementation of resource testing techniques, which are discussed in detail in
Section 4.2.3. These techniques necessitate a new participating peer’s device to
autonomously solve a computationally intensive cryptographic puzzle. The time
it takes to solve such puzzles differs substantially. However, it is crucial that the
process of verifying the puzzle’s solution requires minimal computational effort from
the verifier’s side. This approach is designed to prevent the potential DoS threat that
could be triggered by the influx of numerous puzzle solutions for verification [60].

NKN is an example of a system that employs PoW cryptographic puzzles in the

4.2. SECURITY AND PRIVACY 31

registration process for its nodes. It is an integral component of the ID generation
procedure during the bootstrap phase. This action was strategically implemented as
a countermeasure to combat a vast amount of spam user creations. These entities
were effectively inducing an application-level DoSattack on the registration process
for other participants. By incorporating a PoW mechanism, new nodes are obligated
to generate hashed IDs that fall below a predetermined threshold, thereby compelling
them to cycle through a multitude of hash possibilities until an ID that satisfies the
set criteria is discovered. The validation of an ID’s legitimacy is a straightforward,
non-computational hard task. However, the overall procedure for joining clients may
necessitate a time span extending up to several minutes. [61]

Chapter5Experiment

This chapter outlines the steps involved in the process of requirement elicitation,
design, and implementation of two new bootstrapping mechanisms. Furthermore,
measures undertaken to evaluate these mechanisms will be elucidated, thus facilitating
a response to the research question posed as RQ2.

5.1 Software

The bootstrapping mechanisms will be constructed on top of Fallang’s prototype of
the decentralized Tor overlay network [1]. Their prototype was created in Python
using a self-altered fork of the Python Tor package, "TorPy." The prototype uses
OpenVPN to tunnel and create easy-to-use IP interfaces between peers. Before
beginning the development of the bootstrapping mechanisms in this thesis, Fallang’s
prototype was forked, refactored, and documented for use in the following Gitlab
repository:
https://gitlab.com/tor-overlay-network/tor-overlay-base

The software developed during this thesis is open-sourced and available in Gitlab at:
https://gitlab.com/tor-overlay-network/tor-overlay-bootstrapping

It is not intended for production use as it lacks stability. Additionally, there’s
no assurance that it can effectively safeguard users’ integrity and confidentiality.
Nevertheless, it serves as a valuable proof of concept and can be utilized by others
for future enhancements and advancements.

5.2 Bootstrapping requirements and restrictions

The prerequisites for bootstrapping the Tor overlay network are distinct from the
majority of P2P overlay networks. In general, for P2P networks, all you need to
know is the identification of a peer node or the method to establish a connection with
a bootstrapping node. However, these conditions do not apply to the Tor network

33

https://gitlab.com/tor-overlay-network/tor-overlay-base
https://gitlab.com/tor-overlay-network/tor-overlay-bootstrapping

34 5. EXPERIMENT

in the same way. The overlay uses Tor relays as its substrate and can not connect
through users’ regular IP addresses. This overlay network requires each pair of users
wanting to establish a direct connection to create a relaying connection between
them. For such a relaying connection to work, both parties must know about the
same relay to connect through and have the same rendezvous cookie. These two
pieces of information can be derived from a shared secret between the two peers.
The rendezvous cookie can only be used if there is no established connection on the
same relay with the same cookie. A connection can be open as long as the relay
and the peers are available [1]. The peer acting as the server must connect to the
relay first and create a circuit for the connection to be successfully established. In
practice, two people wanting to connect must know a shared secret, their peer’s
current internal IP, and establish a connection within the same 30-second interval.
There are multiple dimensions to the bootstrapping of this network. An attempt will
be made to improve the bootstrapping mechanism by making it autonomous and
eliminating the requirement to know a peer’s internal IP address. The mechanism
should handle when and where to set up a relay. Efforts will be made to minimize or
eliminate the need for pre-known information, making the network easier to use and
set up. The network’s anonymity characteristic should ideally be preserved by the
bootstrapping procedures as well.

The Tor overlay prototype reserves separate tunnels for each pair of directly
connected peers, producing a lot of overhead for the host machines as well as the
Tor network [1]. This will restrict the number of possible users in the network.

Routing between non-directly connected established peers will not be addressed
as this problem is entirely different. Only direct connections between pairs will
be created, and they will act as if all peers can reach each other even though
they do not have a direct link. This imposes further restrictions like using DHT-
based bootstrapping approaches, heavily limiting the pool of available bootstrapping
approaches from Chapter 4. However, which peers each new peer will try to create
direct links with will need to be defined. This will define the overlay topology of the
network. Since the routing capabilities are not present, peers will be chosen as in an
unstructured overlay by connecting to peers randomly or to the first available.

The routing between established peers, which enables communication among
indirectly connected users, will not be addressed in this thesis, as it entails an entirely
different set of problems. The focus will solely be on establishing direct connections
between pairs of peers, ignoring connectivity between all peers. This imposes further
restrictions like using DHT-based bootstrapping approaches, heavily limiting the
pool of available bootstrapping approaches from Chapter 4. However, it is essential
to determine the specific peers with which each new peer will attempt to establish
direct links, as this will define the overlay topology of the network. Due to the

5.3. THE USER 35

absence of routing capabilities, the overlay will be unstructured, thus either choosing
peers by connecting randomly from a list or to the first available peer.

This results in the following requirements for the bootstrapping mechanisms:

1. The bootstrapping mechanism should be autonomous; in other words, when
given the set of necessary details and pre-shared information, all users sharing
that information should automatically establish a P2P network and sustain
connections.

2. The bootstrapping mechanism should accommodate scenarios wherein no other
peers exist within the network

3. The amount of pre-shared information needed to join the network should be
minimized.

4. The mechanism should have the capacity to facilitate anonymous transports or
offer built-in anonymity.

5. Each user should have a unique identifier decoupled from their location and
the host device.

6. Every peer within the network should be reachable via a public interface
associated with their respective identifier. This requires some sort of relaying
of data.

7. Users should possess the means to authenticate their identities while preventing
imposters from assuming their personas.

8. Each new peer joining the network should be assigned a unique internal IP
address.

9. Ideally, the bootstrapping mechanism should be fully decentralized, obviating
the need for users to place trust in any central authority.

10. When joining the network, the new peer will try to connect to any peer in the
network.

5.3 The user

As for all software development projects, it is helpful to define the intended usage
and users of the software. This will help set the scope and build the best solutions to
the problems. The requirements of a bootstrapping mechanism for the Tor overlay
network and its restrictions are defined in Section 5.2. Based on these requirements,
the users can be defined as a small group of individuals, between 2 and 10, who

36 5. EXPERIMENT

wish to create an anonymous P2P network, thus providing location and transport
confidentiality between them. They should only need to know a shared secret, like a
passphrase, to be able to join the overlay, and the bootstrapping mechanism should
handle the rest.

5.4 Anonymous peer identifiers

Various approaches will be investigated to facilitate peer discovery while ensuring the
authenticity and integrity of users. It is crucial to prevent users from impersonating
others. To address this concern, public key signing algorithms will be employed.
Each user who wishes to join the network will generate their own Ed25519 signing
and verification keys in a random manner. The Ed25519 verification key will serve
as their unique identifier within the network. By utilizing randomly and locally
generated Ed25519 keys, it is anticipated that no personally identifiable information
will be disclosed while still enabling the establishment of authenticity and integrity
across multiple sessions and potentially public channels.

5.5 Rendezvous chooser function with asymmetric
cryptography

There exist various ways to establish a shared confidential state between two entities.
One such approach involves the utilization of asymmetric cryptography, which
employs private/public key pairs. This technique lets a pair of peers derive a shared
confidential piece of information by employing a customary key agreement algorithm
like Diffie-Hellman (DH). The process involves the exchange of public keys between
the peers and the utilization of their corresponding private keys in conjunction with
the received public keys. It is worth noting that the public keys can be transmitted
via any publicly accessible medium, still rendering it computationally unfeasible for
unauthorized parties to derive the same shared state. In the experiments, Elliptic
Curve X25519 will be employed. It is also known as Curve25519 and provides DH
functionality, offering 128 bits of security with a key length of 256 bits (32 bytes). This
elliptic curve cryptography scheme affords substantial security despite its relatively
compact key length, making it suitable for experimental purposes.

Utilizing the X25519 function and feeding it with the private key from one peer
and the public key from the other, the two peers, having already exchanged their
public keys can derive a confidentially shared piece of information. Importantly, this
function consistently produces the same output when supplied with identical inputs.

The intention is to extend the non-autonomous bootstrapping mechanism pro-
posed and implemented by Fallang, which involved the utilization of a dynamic
timestamp changing every 30 seconds, the network’s name, and the self-chosen in-

5.5. RENDEZVOUS CHOOSER FUNCTION WITH ASYMMETRIC CRYPTOGRAPHY
37

ternal IDs of the peers. These components were concatenated into a string such
as "2022-03-02T12:00defaultpeer1peer2". Subsequently, this string was piped into
a SHA256 hash function for conversion into a hexadecimal representation of that
hash. The hexadecimal value was then converted into an integer value to be used
as an index for selecting one relay from a predefined list of available relays. The
list of relays came from the Tor consensus. To ensure synchronization of the relay
options, it is necessary to periodically download the new Tor consensus, which is
updated hourly. Every peer in the network needs to have the exact list of relays
for a successful connection establishment. This consensus retrieval was performed
manually in Fallang’s prototype, but an automatic approach was needed for the
specific requirements. Fallang termed their rendezvous chooser function the "pairwise
algorithm," shown in Figure 5.1.

K = "2022-03-02T12:00defaultpeer1peer2"
hash = sha256(k).hex
index = int(hash) % num_relays
selected_relay = all_relays[index]

Figure 5.1: Fallang’s "pairwise" rendezvous chooser and bootstrapping mechanism.
Shown as pseudo-code

A Tor rendezvous cookie is determined per the hash shown in Figure 5.1. The
initial 20 characters of the hash are employed as the rendezvous cookie.

The "pairwise algorithm" proposed by Fallang is altered, aiming to overcome the
limitations associated with its fixed 30-second time intervals. Drawing inspiration
from the Briar Bramble protocol and leveraging public key cryptography utilizing
X25519 keys [49], modifications are introduced that essentially achieve the same
objective as the "pairwise algorithm," albeit substituting the concatenated shared
string with a shared secret derived from X25519 private/public key pairs. The
outcome of the DH key exchange is a shared secret jointly held by the two parties.
Subsequently, it undergoes a SHA256 hash operation and is transformed into its
hexadecimal representation. The remaining components of the public-key rendezvous-
chooser function align with those of the pairwise rendezvous-chooser. While different
cryptographic algorithms can be employed to attain specific levels of security, the
ones outlined here are deemed suitable for the purposes of the experiments. Figure
5.2 shows the public-key rendezvous-chooser function.

38 5. EXPERIMENT

My_private_key // 32 byte X25519 value
Peer_public_key // 32 byte X25519 value

secret = My_private_key.exchange(Peer_public_key)
hash = sha256(secret).hex
index = int(hash) % num_relays
selected_relay = all_relays[index]

Figure 5.2: The "public-key" rendezvous chooser function based on asymmetric DH
cryptography. Shown as pseudo-code

By implementing this change in the rendezvous function, the requirement for
simultaneous initiating circuit establishment by two peers within a 30-second time
interval is obviated. Instead, it introduces the challenge of exchanging their respective
X25519 public keys. These keys are generated randomly for each connection attempt,
serving as ephemeral session keys valid only for a single direct connection between
two peers. It should be noted that despite this modification, one of the peers
involved in the connection still assumes the role of the server and is responsible
for establishing the circuit prior to the client peer’s connection to the rendezvous
point. This alteration does not eliminate the necessity for proper timing of circuit
establishment in the correct order. Additionally, opting to continue using the indexing
of relaying approach as the means of deriving a rendezvous allows the network itself
to add filtration rules for its list of relays, potentially removing known malicious
relays or letting the network choose geographically beneficial relays for a performance
gain, albeit in the potential cost of anonymity-level [1].

5.6. CONNECTION HANDLER 39

5.6 Connection handler

Creating an autonomous bootstrapping mechanism requires a dedicated software
component to manage the creation, maintenance, and destruction of direct relay
connections between peers. This software component will be called a connection
handler. When provided with the proper secrets and information, this connection
handler should be able to establish a new direct connection by creating a subprocess
for each of them. Additionally, it should automate the maintenance and monitoring
of the number of active connections. It must execute concurrently and not obstruct
the operation of other software components. The connection handler will help each
peer combat stale connections and churn. Moreover, a connection process should be
removed and terminated in the following cases;

1. A failed attempt to connect results in a timeout.

2. An established link is no longer active.

3. There is a connection failure.

4. The internal IP or id of a peer changes.

5. User wants to disconnect from the network.

5.7 The Pub/Sub bootstrapper

Publish subscribe systems as bootstrappers

As shown in the overview presented in Chapter 4, the ability to use multicast would
ease bootstrapping. Exploring alternatives seems prudent given the lack of support
for IP-multicast over the Internet and its absence of transport anonymity. It’s feasible
to move up an abstraction level and utilize decentralized application-level multicast
systems instead. As described in Chapter 2, Pub/Sub systems are end-system
multicast alternatives often used in distributed systems and IoT. They can abstract
away the underlying network and let devices communicate through subscriptions of
topics. Publish/Subscribe is an architecture where one can subscribe to data via
topics. When you are subscribed to a topic, you should get all the data sent to
that topic without having to be connected to the publisher. This aligns well with
the anonymity requirement for the bootstrapping mechanisms, as Pub/Sub systems
decouple the sender and receiver of a message from another, making the transport of
the messages an implementation detail.

40 5. EXPERIMENT

Figure 5.3: Sequence diagram of how the Pub/Sub bootstrapper should work.
"A_<Priv/Pub>" means Alice’s private or public key Ed25519. If it contains a DH,
it means X25519 keys. KAF means Key Agreement Function. The "Pub" and "Sub"
functions are publish and subscribe commands.

In Figure 5.3, the utilization of a general Pub/Sub system for bootstrapping in
the Tor overlay network is shown. The underlying Pub/Sub system is abstracted
away, and only verify-keys are relied upon to prove who the message’s sender is.
In the figure, Alice is assumed to be already in the network, and Bob wants to

5.7. THE PUB/SUB BOOTSTRAPPER 41

connect to the network. The two users only know about the name of the global
topic channel and have no other information about the network when they want
to join. Alice may have been the first user in the network and thus might have
waited for a timeout without no messages in the global topic channel before declaring
themselves bootstrapped. When a user is bootstrapped, they should be subscribed
to the global channel to create new connections automatically. They should also be
subscribed to their own private channel, identified by the user’s personal Ed25519
public key, to listen and respond to new users’ connection requests. The subscriptions
are shown in steps 1 and 3 in the figure. These private channels would let anyone
read and publish to them but would function as an interface for communicating with
a specific user. Each message is hashed and signed to ensure that a particular user
is the message’s sender. In step 4, the bootstrapped peer, Alice, is illustrated by
periodically publishing their public key, along with a nonce and a signed hash in the
global channel. Since Bob is also subscribed to the global channel, he will receive
this message, validate it and subscribe to Alice’s private channel, as depicted in steps
5-6. Steps 7-9 show that for Bob to create a connection, he will generate DH keys
and publish them to Alice’s private channel. The Pub/Sub-system will transport the
message for him. In step 10-12, Alice gets the message, validates it, generates her
own DH keys, and publishes it to her private channel, but also includes Bob’s public
key. Alice and Bob thus have their respective peer’s public DH keys and can use the
public-key rendezvous function to derive the intended rendezvous point to connect
through. When they have a shared state, they can initiate the connection. Bob will
be bootstrapped after a successful connection establishment and can unsubscribe to
Alice’s private channel and subscribe to his own, as depicted in steps 13-14.

Decentralized IPFS publish-subscribe bootstrapper

Experimenting with a decentralized Pub/Sub system as the base transport for a
bootstrapping mechanism involved considering the choice between IPFS Pub/Sub
and NKN Pub/Sub. Although NKN’s alternative offer a more mature and reliable
architecture, IPFS Pub/Sub was chosen because it is fully decentralized and could,
in theory, be run over Tor, thus providing anonymity [62]. This feature is not present
in NKN. In Figures 5.4, 5.5, 5.6 and 5.7, six state machine diagrams is depicting
how this bootstrapper, built on IPFS Pub/Sub, would work. Figure 5.4 shows the
main bootstrapper thread, which is the machine that starts the other state machines.
It only has three states and controls whether it is bootstrapped into the network.
When the state machine starts, it will get or create Ed25519 keys, which will be used
for authentication and integrity for all messages sent. Then it will start the global
listener state machine, which will be on for the entire session.

The global listener depicted in Figure 5.5 listens to the shared global channel for
periodically sent messages by peers in the network. When a message is received, the

42 5. EXPERIMENT

Figure 5.4: Pub/Sub Bootstrapper state machine. The send functions send events
to the state machines in Figure 5.5 and 5.7

corresponding public verify key should be added to a list in a first-in-first-out fashion,
which the connecter depicted in Figure 5.6 periodically checks. If the connection
handler is configured to want more connections than it currently has, the connecter
will start the peer channel state machine shown in the exact figure. This peer channel
state machine will subscribe to the peer’s channel and publish a connection request
unless the channel is too busy. When the peer channel machine gets a response
from the peer, it will attempt to open a direct connection to that peer. If the state
machine never gets an answer, it will timeout, unsubscribe to the channel topic and
terminate itself. There could be multiple peer channel state machines running in
tandem.

5.7. THE PUB/SUB BOOTSTRAPPER 43

Figure 5.5: Pub/Sub Global listener state machine. It is listening for public keys
sent in the global channel. The send functions send events to the state machines in
Figures 5.6 and 5.4

Figure 5.6: Peer channel [left] and connecter [right] state machines. The connecter
is in control of starting Peer channel state-machines with the "start_peer_stm"
function.

44 5. EXPERIMENT

Figure 5.7: Private listener state machine [left] and the Global advertiser state
machine [right]. Both are controlled by the Bootstrapper state machine depicted in
Figure 5.3

When the first direct connection to another peer is established, or no message is
published on the global topic within some pre-defined time frame, the bootstrapper
machine should go to the bootstrapped state. It will then start two other state
machines depicted in Figure 5.7. The first is the private listener. It subscribes to
the user’s private channel and responds to connection requests sent by other peer’s
peer channel state machines. The second is the global advertiser, which periodically
publishes the user’s verify key in the global channel, letting others know that they
are in the network.

Each peer needs unique internal IPs in the network to establish a connection
between themselves. In this system, where there is no authority to regulate IP
address allocation, a deterministic mapping of users’ verify keys to internal IPs can
be achieved by converting the verify key to an integer and performing a modulo
operation with the number of possible addresses. Fallang’s prototype uses OpenVPN
and requires each user to set their own and their peer’s IP address on connection
establishment and allocate a port for each OpenVPN process. To reduce the likelihood
that a port is already used, the ports allocated for Dynamic and/or Private Ports
are in the range 49152-65535 can be used. This will give around 16383 free ports,
thus 16383 possible addresses. The chance of any two users with different verify keys

5.8. ONION-TYPE BOOTSTRAPPER 45

getting the same IP is

1 − (16383 − 0)
16383 · (16383 − 1)

16383 ≈ 0.0061% ≈ 1
16393

Since the userbase is defined to be a small group of users of up to ten users, the
following probability that at least two users get the same IP address for a network
size of 5 can be calculated:

1 − (16383 − 0)
16383 · (16383 − 1)

16383 · ... · (16383 − 4)
16383 ≈ 0.061% ≈ 1

1639
and for 10 users:

1 − (16383 − 0)
16383 · (16383 − 1)

16383 · ... · (16383 − 9)
16383 ≈ 0.26% ≈ 1

385

Although the probabilities of IP collisions in the scheme are not ideal, they
are suitable for the purposes of small experiments. Further enhancements to this
approach and different versions are discussed in detail in Section 7.3.

5.8 Onion-type bootstrapper

An additional autonomous bootstrapping mechanism is needed to be able to compare
with the Pub/Sub bootstrapper. Since the network is already dependent on Tor,
Tor’s Onion services could be utilized to make a publicly accessible interface for each
peer in the network. This can make it possible to bootstrap anonymously by only
knowing a peer’s onion address, allowing the network to bootstrap by peers. Onion
services could alternatively be used to host bootstrapping servers to make them
anonymous.

As mentioned in Chapter 2, a Tor V3 onion services address is a Base32 encoded
representation of an Ed25519 public key. This implies that it is possible to program-
matically create an onion service for any Ed25519 private-and-public key pairs to
which we have access. Furthermore, shared onion services can be designed, allowing
anyone in a group with access to the same pre-shared secret to initialize and control
them. This could be done by hashing a passphrase with SHA256 and using the hash
as the Ed25519 signing key. The Ed25519 verify key can then be derived from the
signing key, and an associated onion address would be derivable to all users with the
passphrase. The security implications of this are discussed in Section 7.4.3.

With the principles discussed above in mind, an autonomous bootstrapper will
be created and named; the "onion-type bootstrapper." In Figure 5.8, the sequence

46 5. EXPERIMENT

diagram demonstrated how the desired functionality of the onion-type bootstrapper
will work. In this bootstrapper, each peer in the network will have their own separate
private onion service, which they fully control. Since each user creates their own
Ed25519 keys, no one else should be able to masquerade as them without knowing
their private Ed25519 signing key. If users know about their peers’ verify keys, they
also know their associated onion addresses. Knowing the onion address of another
peer, they can establish connections using the private onion services as publicly
available interfaces, even behind NAT.

The establishment of the network is initiated by the first peer, who is then
responsible for the configuration of the collective "Group onion" service. This Group
onion will function as the initial point of contact for new users and function much
like a DHCP server. Subsequent peers utilize the Group onion to register their public
key and retrieve an internal IP in the network. Following the registration, peers
may periodically query the Group onion for a map of peers and their IPs. In the
event that the user in charge of the Group Onion becomes unavailable or offline,
another peer will observe that it is no longer responding and can assume control.
The peer taking over would add its latest cache of registered users as a foundation
for subsequent registrations. The Group onion could alternatively be implemented
as a static, central bootstrapping server to expedite the initial peer’s bootstrapping
process and minimize potential disruptions induced by their departure. This is
discussed in Chapter 7.3.2.

In Figure 5.8, steps 1 to 5, Alice is the first peer in the network and initiates the
Group onion service. The Group onion is depicted in Figure 5.8 as the "Group onion"
and would exist in addition to each peer’s private onion services, shown in the same
Figure as "Alice onion" and "Bob onion." As mentioned, the Group onion controls
registrations of new peer public key pairs. It maps them to internal IP addresses in a
manner similar to how DHCP manages and assigns IP addresses to MAC addresses.
As a result, there are no IP collisions and only one user per internal IP address. One
may query it for a list of all registered peers, and it will respond with the mapping
between public keys and internal IPs for each registered peer. This is shown in steps
16-17 in the figure. Although it is not illustrated, users must renew their registration
within a specified time window to remove stale registrations from the network.

5.8. ONION-TYPE BOOTSTRAPPER 47

Figure 5.8: Sequence diagram of how the onion-type bootstrapper should work for
the two first peers in the networks. Alice is the first to join the network and gets
additional capabilities as the owner of the group onion. Bob uses the group onion to
bootstrap himself into the network. Bob’s actions also represent all subsequent peers
in the network.

48 5. EXPERIMENT

Following is a set of state machine diagrams. Figure 5.9 and 5.10 illustrate how
such a bootstrapping mechanism could be implemented using state machines. In the
first diagram, Figure 5.9, The main bootstrapping logic is depicted into five distinct
states with defined transition events between them. The logic for the private and
group onions is not depicted since they should be implemented as standard HTTP
web servers using Tor Onion services.

Figure 5.9: Bootstrapper state machine for the onion bootstrapper. The send
functions send events to the state machines in Figure 5.10.

Figure 5.10: Onion bootstrapper helper state machines. The Renewer is in control
of renewing registration. The Connecter regularly fetches the participants list and
will try to connect to some participants if needed.

5.9 Tests

To start answering RQ2, empirical measurements of the mechanisms’ bootstrapping
speed and the amount of failed connection and bootstrapping attempts are needed.

5.9. TESTS 49

The speed is easy to measure and will tell a lot about the usability of the mechanisms.

To get some context on the rest of the tests, a baseline of the connection speeds
will be undertaken by measuring how long it takes two peers to connect without
the software as well as with the public key rendezvous chooser function and the
connection handler.

In order to provide context for the remaining tests, a baseline for the connection
speeds will be established. This will involve measuring the time it takes for two peers
to connect without the autonomous bootstrapping mechanism. The measurements
will utilize the public key rendezvous chooser function and the connection handler.

Regarding the speed of bootstrapping, the time it takes for the first peer in the
network to be ready to establish new connections will be measured. Additionally, the
waiting time for subsequent peers to successfully bootstrap into the network will also
be measured. The duration before a user is ready to accept a connection request in
the bootstrapping mechanisms will vary depending on whether it is the first peer in
the network. This measurement will be conducted for network sizes of 0 and 1.

To obtain the main speed results, the time required for a new peer to connect
with one of the peers in established networks of 1, 3, and 5 peers will be measured.
Additionally, the number of failed connections and bootstrapping attempts will be
recorded.

Chapter6Results

This chapter provides an overview of the parameters utilized in our experiments
and the performance outcomes obtained from the two bootstrapping mechanisms
developed in this thesis.

6.1 Implementation

The connection handler and the two proposed bootstrapping mechanisms introduced
in Chapter 5 were successfully created. During the development of the bootstrapping
mechanisms, IPFS Pub/Sub was marked as deprecated by the IPFS Kubo team [63].
It did, however, continue to function for our experiments but will be entirely removed
in later versions.

To programmatically create and destroy Tor onion services, the official Tor
python controller library, "Stem" version 1.8.1 [64], is used. It is mostly unmaintained
but offers the most comprehensive set of tools for Onion service establishment,
maintenance, and monitoring. It is also compatible with the current version of Tor
Onion Services, version 3.

6.2 Test results

The experiments were done on Kali Linux (5.9.0-kali1-amd64) virtual machines
through the Oracle VM VirtualBox virtualizer on a single desktop computer. Each
virtual machine was given 2048 MB of RAM and 1 CPU thread from an AMD Ryzen
5 5600X 3.70 GHz 6-Core Processor. Each peer in the test was running on separate
virtual machines, up to 6 virtual machines in the most comprehensive tests.

All tests were done on the live Tor network, with fresh Tor consensus lists
automatically fetched every hour. The number of relays may change every hour, but
the number of relays to choose from in our tests was always around 5600 +- 10 after
filtering out all the Tor relays without nicknames. Fallangs two-hop architecture is

51

52 6. RESULTS

still used for the server peer and one-hop for the client peer. The guard nodes in
the two-hop circuits were chosen uniformly at random from the same list of filtered
available Tor relays.

Configuration

Figure 6.1: One possible outcome of a four-peer network with a minimum of 2
connections per peer. RP is Rendezvous Point. GP is Guard Node. All onions depict
a separate Tor relay. RPs are chosen with DH key exchange. GN is chosen uniformly
at random

The connection handler for both bootstrapping mechanisms was configured with a
preferred and maximum amount of direct connections. In these tests, the preferred
amount of direct connections to different peers is 2, and the maximum is 4, which
means that the bootstrapper will try to create two direct links whenever possible.
It will never attempt to create two direct links to the same peer. After that, it can
create two more links if someone needs to connect to them, but it will not actively
seek out new connections. This is depicted in Figure 6.1, where four peers have
formed a network. In this network, peer4 will not try to connect to peer3 as both
have enough connections. This spreads the connection load across all peers and
creates a more robust network. If a peer goes offline, it should not take down the
whole network.

6.3. BASE CONNECTION TESTS 53

6.3 Base connection tests

Figure 6.2: Circuit establishment for the server peer. The server peer must first
establish a circuit to the Guard node and then to the Rendezvous Point.

Figure 6.2 depicts the steps needed for the results in Table 6.1. Based on the data in
Table 6.1, the client wait time will be set to 10 seconds for the cases when the client
and server are started simultaneously. This is to set up the connections in the correct
order, as the server must connect to the rendezvous before the client and establish a
circuit. This should result in a successful connection for most connection attempts.

Table 6.1: Time until the peer acting as a server is ready to create a connection
after establishing a circuit via a Tor guard node and a rendezvous point. Guard and
rendezvous points were randomly chosen from the list of all available relays.

Average 7.356926489
Min 6.096928
Max 10.649285
Stdev 1.018973182
Percent failures 6.0%

54 6. RESULTS

Figure 6.3: Steps needed for connection establishment and first ping between two
peers. This does not include the automatic fetching of the Tor consensus list each
hour.

Table 6.2 contains the results of how long it took to connect to a peer without the
overhead of the bootstrappers. Figure 6.3 shows the steps needed for this. Both the
connection handler and the public key rendezvous chooser function were utilized in
these tests. The timings are given in seconds, started from the connection handler’s
creation, and run until the first successful ping between the peers. The server and
client were given their respective public keys and started simultaneously. The client
had a 10-second wait time meaning that the server had 10 seconds to do steps 1 and
2 before the client peer did step 3 in the figure.

Table 6.2: Time to connect/until the first ping between two peers by only using
the public-key rendezvous chooser and the connection handler

Average 26.73255327 s
Min 17.667069 s
Max 44.060099 s
Stdev 5.099299275
Percent failures 8.0%

6.4 Bootstrapping results

The following presents the results gathered from our two bootstrapping mechanisms.

6.4.1 Time before ready to accept connections

The data presented in Tables 6.3 and 6.4 shows the duration required for a new
peer to become capable of accepting incoming connection requests. This measures

6.4. BOOTSTRAPPING RESULTS 55

the two bootstrapping mechanisms when the peer intends to join a network with
either no pre-existing members or just one member, shown as "0 peers" and "1 peer,"
respectively. Notably, when the network has no existing peers, the incoming peer
becomes the network’s initial member and should behave differently than if it were
not the case.

In the experiments done on the onion-type bootstrapper, referenced in Table 6.3,
distinct network passphrases were employed for every test. This approach facilitated
the generation of a new onion service descriptor for each measurement, thereby
ensuring that any pre-existing descriptors would not influence the test outcomes.

Table 6.3: Time until a new peer is ready to accept connections request with the
Onion-type bootstrapper for a network with no existing peers and a network with
one existing peer

0 peers 1 peer
Avarage 75.441 s 12.353 s
Min 22.184 s 5.0728 s
Max 207.883 s 24.927 s
Stdev 64.867 s 7.109 s

Table 6.4: Time until a peer is ready to accept connections request with the IPFS
Pub/Sub bootstrapper for a network with no existing peers and a network with one
existing peer. The timeout for not seeing any public keys in the global channel and
declaring themselves as the first peer was set to 3· GLOBAL-INTERVAL = 21s.

0 peers 1 peer
Avarage 21.926 s 14.062 s
Min 21.847 s 3.157 s
Max 21.985 s 22.123 s
Stdev 0.053 s 8.558 s

56 6. RESULTS

6.4.2 Time until first connection

Table 6.5: Time until first successful connection measured from starting the onion-
type bootstrapper until first successful ping to another peer in an established network
of different sizes. Includes the number of failed connection attempts and the number
of measurements that do not result in a successful bootstrapping procedure.

Network size 1 peers 3 peers 5 peers
Avarage 46.309 s 49.919 s 43.361 s
Min 22.0158 s 30.432 s 30.430 s
Max 160.362 s 77.525 s 77.451 s
Stdev 40.564 s 15.415 s 15.108 s
Average failures be-
fore connecting

0.2 0.4 0.4

Never connected 0.0% 0.0 % 0.0 %

All bootstrapping attempts with the onion bootstrapper were successful, even though
every connection attempt was not.

Table 6.6: Time until first successful connection measured from starting the Pub/Sub
bootstrapper until first successful ping to another peer in an established network of
different sizes. Includes the number of failed connection attempts and the number of
measurements that do not result in a successful bootstrapping procedure.

Network size 1 peers 3 peers 5 peers
Avarage 90.715 s 34.748 s N/A
Min 32.173 s 18.346 s N/A
Max 180.265 s 78.641 s N/A
Stdev 49.516 s 24.146 s N/A
Average failures be-
fore connecting

1.5 0.5 N/A

Never connected 10.0% 0.0 % N/A

The Pub/Sub bootstrapper speed results are shown in Table 6.6. Measurements
for the network with 5 peers could not be obtained due to the inability to create a
stable network using this bootstrapper. In the case of the network with only one
existing peer, attempts to bootstrap into the network for all measurements were
unsuccessful even after waiting for 5 minutes.

Chapter7Discussion

The experiments yielded results for our bootstrapping mechanisms presented in the
previous chapter. This chapter will discuss the findings as sufficient statistical data
has been collected to make certain generalizations. Furthermore, the mechanisms
will be examined in terms of their architecture, security, and level of anonymity.

7.1 General

Before continuing the discussion, some general aspects of the thesis and our imple-
mentations must be addressed.

7.1.1 Overview

In the referenced Chapter 4, an exploration of the difficulties inherent in overlay
networks was presented, incorporating a collection of techniques and strategies to
address these issues. This overview was framed as a response to RQ1. No new ap-
proaches were discovered during the course of the thesis that was previously unknown.
However, a deeper understanding of the reasons behind existing approaches was
gained. The insights obtained from this review aided in designing and implementing
the two bootstrapping mechanisms.

As previously acknowledged in Chapter 1.6, the quality of several references
enlisted to facilitate our literature review leaves room for improvement. This deficiency
is particularly evident in the case of the references about Bitcoin, IPFS, and NKN’s
implementations, where their documentation is dispersed across diverse platforms
such as forum threads, wiki pages and articles, and GitHub repositories. Despite the
aforementioned limitations, the confidence in the quality of these sources remains
intact due to the consistency observed between the information presented and the
actual open-source codebases. Verification of the codebases has been conducted to
support this assurance.

57

58 7. DISCUSSION

7.1.2 Unoptimized software

The Fallang prototype, which is unoptimized and not designed for speed, primarily
serves as a proof of concept [1]. Our implementation builds upon this unoptimized
prototype and includes our own slow code. Rewriting the software in languages like
C++, Rust, or Go-lang would increase the performance of the application client
and could reduce the number of resources needed to run it. There are a lot of local
code optimizations possible that could make the Python code faster. For example,
switch to queues instead of periodically checking for new public keys in Figure 5.10.
However, the software relies on external API calls, and the Tor network and circuit
establishments would still be our main performance bottleneck.

After implementing the bootstrapping mechanisms, several improvements were
considered to the onion-type bootstrapper. Firstly, the first peer’s group onion
check could be expedited by initially verifying the availability of the group onion’s
hidden service descriptor before proceeding. If the descriptor is unavailable, the
first peer can immediately set up the group onion instead of waiting for a timeout.
Secondly, the architecture could be modified to make the group onion a static
server, or bootstrapping node, that can be shared amongst different networks. To
improve performance and robustness, the Python library Onionbalance [65] could
be utilized for load-balancing across multiple duplicate onion services, albeit at
the cost of some centralization. Thirdly, Web-sockets could be integrated with the
Onion-type bootstrapper, thus eliminating the need for the static 10 seconds waiting
time found in Table 6.1, and using the minimum amount of time possible. Finally,
instead of sending a new connection request through the private onion services or
private Pub/Sub channels, the connection handler for a peer client could attempt to
connect multiple times to a server-peer. These alterations were regarded as potential
enhancements. However, the development phase had to be concluded due to time
constraints, preventing their implementation.

7.1.3 An exploration of techniques

The primary objective of this thesis has been to explore various approaches to boot-
strapping a particular P2P network. This research has resulted in a comprehensive
exploration of various technologies, although only the Onion-type and Pub/Sub
bootstrappers are explicitly mentioned and had practical implementations. In this
context, our endeavors concerning the design of bootstrapping mechanisms utilizing
blockchains to distribute peer identifiers in a decentralized and pseudo-anonymous
approach are worth highlighting. Unfortunately, due to the relatively small scale of
our projected user base, these designs did not progress to the implementation stage.

Several alternative bootstrapping mechanisms are envisioned that would utilize
publicly accessible blockchains for the registration of users’ peer identifiers within

7.2. EXPERIMENT 59

their transactions or through smart contract scripts. To minimize the risk of platform
deprecation, a certain level of popularity would be needed for a blockchain to be
suitable. It turns out that this approach is predominantly suitable for medium to
large networks because of the excessive volume of transactions within such systems
while not overloading the network with bootstrapping-related transactions. This
considerable transaction throughput with long block times causes an increase in
the time to search for peer identifiers. Consequently, the bootstrapping duration
could be prohibitively lengthy if used for smaller networks. Furthermore, the level of
knowledge required for each peer to register their public keys on a blockchain without
facilitating easy traceability back to them is markedly high, exemplified through the
exchange of real money for cryptocurrency. This led to the choice of proceeding
with the two approaches present in Chapter 5 instead, as they were deemed to be
more practical alternatives within the intended scale of our network. However, this
approach should be further researched for larger networks.

7.2 Experiment

The evaluation of our base connection tests, as described in Section 6.3, was limited
to 50 measurements. These were conducted to determine the optimal wait time for
clients during the connection process. The sample size was deemed sufficient for
the choice of configuration time, as no significant variations were observed. For the
remaining tests presented in Section 6.4, the number of measurements had to be
limited to ten per test due to the need for concurrent execution on up to six virtual
machines and manual execution and readout of the software. Despite the low number
of measurements, the findings offer valuable insights, which will be discussed later.
However, automating the setup and tear-down of these networks posed technical
challenges. The creation of a separate API for coordinating the process of devices
may have impacted the test results and added further development overhead. As
a result, the decision was made to develop two distinct bootstrapping mechanisms
instead of focusing on a single mechanism for in-depth testing. This approach was
considered advantageous as it allowed for the exploration of different technologies
and ideas.

According to the results presented in Table 6.1, the average time required for a
server peer to establish a circuit to which the client peer can connect was approxi-
mately 7.35 seconds with a standard deviation of approximately 1.02 seconds. This
mostly explored the existing prototype, with our small alteration of the rendezvous
chooser function. Based on this finding, it was decided to set the client’s wait time
to 10 seconds, which is less than the maximum connection time observed but allows
for additional time needed for the client to connect to the circuit. To avoid the need
for a more complex implementation requiring an open communication channel like
WebSockets, the decision to employ a waiting time scheme for the peer connection

60 7. DISCUSSION

process was driven by the challenges encountered in establishing consistent func-
tionality with Onion services. Alternatively, an invitation system could have been
implemented, but this would have introduced a lot of complexity and extended the
development process. This would, however, be needed if the number of hops in the
Tor circuit would be altered.

In Table 6.1, a 6% failure rate in circuit establishment attempts was observed.
Fallang did not examine this particular finding, but it is believed that the cause
of this phenomenon is likely attributable to the arbitrary selection of defective or
overloaded relay nodes. The server client is required to establish a circuit between
itself, a randomly selected Guard node, and the rendezvous point. Both Tor relays are
chosen randomly, albeit one is chosen combined with another peer via a DH exchange.
Either of these relays might become unavailable after the latest Tor consensus update,
and currently, no fallback mechanism is in place to address this issue.

7.2.1 Time before ready to accept connections

Section 6.4.1 details the performance metrics associated with the duration required for
a new user to begin receiving incoming network connection requests in two different
scenarios. The first scenario involves the user joining a network with no other peers,
and the second situation occurs when a peer is already present in the network. For
both bootstrapping mechanisms, this process requires the establishment of a public
interface that can be reached using the peer’s public key.

Onion-type results

Table 6.3 depicts the findings associated with the onion-type bootstrapper. In the
initial scenario, where no pre-existing peers inhabit the network, a new peer must
determine the availability of the Group Onion and initiate it if absent. Both scenarios
include initializing their private onion service and registering their public key to the
Group onion. Although not explicitly mentioned in the results, the observed time
consumption associated with setting up the onion services is minimal and consistent;
the bulk of the time consumption arises from the confirmation of the onion service’s
availability, leading to a considerable discrepancy in setup times. The observed
variability is largely due to the time it takes to retrieve an onion service’s descriptor,
establish Tor circuits, and initiate the first connection to the onion service. This
process can be quite lengthy, considering the numerous steps involved, each of which
can require a substantial amount of time.

A user must first establish a connection with the Tor network and subsequently
query the directory servers, the HSDirs. However, a single HSDir lacks a compre-
hensive view of all accessible onion services, necessitating lookups in their collective
DHT of descriptors [14]. Nevertheless, this process can also prove relatively swift,

7.2. EXPERIMENT 61

with the minimum time recorded being approximately 22 seconds in the conducted
test; this includes the Group Onion’s successful response to an HTTP GET request.

The mere existence of an onion service descriptor does not suffice as definitive
proof of the availability of the respective onion service. The service could have
been operational in the recent past but may not be currently active, necessitating
a comprehensive series of steps before confirming its availability. As referenced in
Section 7.1.2, employing this initial existence check can expedite the verification
process for the first peer, but this is not implemented.

Our implementation includes the utilization of multiple connection threads,
which are engaged concurrently to probe the availability of the onion service. The
bootstrapper proceeds by either confirming a positive response to the first successful
GET request or awaiting the lapse of their respective time-out periods. As the results
show, this leads to a substantial extension in the maximum duration, which can
extend to 207 seconds. This prolonged duration is attributable to the necessity of
waiting for all the connection threads routed via Tor to reach their time-out limit in
the absence of a response.

The considerable time duration is only part of the scenarios with no existing
network peers. It is observed in the column named "1 peer" that there is a substantial
enhancement in speed when an additional peer wants to join the network and
successfully locates an available Group onion. Therefore, the process of confirming an
onion service’s availability tends to be a lot quicker when the outcome is affirmative
rather than negative. This latter scenario represents all subsequent peers joining
the network. It involves checking for the availability of the group onion, registering
themselves to the group onion, and initiating their private onion service.

Pub/sub results

Table 6.4 presents measurements for the condition "0 peers", where the recorded times
are and should be nearly identical for each observation. This is given the fact that the
first peer will subscribe to the global channel and, given a pre-set timeout interval of
21 seconds, will not detect any messages as there are no other bootstrapped peers in
the channel. The necessity for this timeout lies in its preventative measure; without
it, incoming peers could establish connections with other incoming peers, potentially
forming isolated, smaller networks within the larger pool of peers intending to join
the same network. The slight time discrepancies measured can be attributed to
variations in the execution times and the somewhat dynamic resources available for
each program execution. These variations influence all of our tests, yet their impact
remains insubstantial, as evidenced by these results.

The specific timeout duration of 21 seconds is set somewhat arbitrarily, yet a

62 7. DISCUSSION

tripling of the public key advertisement interval was selected based on two con-
siderations. Firstly, this choice serves as a method for minimizing the connection
time in scenarios where the first two peers join the network nearly simultaneously;
hence both would need to endure the entire timeout duration prior to discovering
each other. Secondly, it acknowledges the reality that the IPFS Pub/Sub overlay
requires some time to discover other peers subscribed to the global channel, during
which packet loss may occur. Thus, the time duration set is believed to be a good
compromise optimized for these two scenarios. Nevertheless, an investigation of the
network deployed in a real-world context would be needed in order to confirm this.

The maximal duration expended for scenario "1 peer", with a pre-existing peer in
the network, is depicted in Table 6.4, registering at 22.12 seconds. This duration is
expectantly close to the instance with no pre-existing peers, given that the identical
procedure has been executed due to the absence of other discoverable peers. The
reason is the challenge of identifying other peers has been delegated to the IPFS’s
Pub/Sub peer-discovery mechanism. This mechanism does not consistently succeed
in locating other peers who subscribe to the same topic and, at times, exhibit lengthy
discovery. As previously indicated, it remains uncertain how much the deprecation
of the Pub/Sub feature contributes to these results. Nonetheless, it is believed that
similar results would have been obtained even without the deprecation. This belief is
supported by an issue thread, dated before the deprecation, which indicates that the
IPFS Pub/Sub peer discovery mechanism has historically been fragile [66]. This is
also outlined in the deprecation warning [63]. Unfortunately, this was not discovered
while initially investigating the software and might result in a different direction for
the implementation.

7.2.2 Time until first connection

In Section 6.4.2, we presented the duration from the initial execution of a bootstrapper
by a new user to the successful transmission and reception of the first ping between
them and another peer. This data is illustrated in Table 6.5 and 6.6. Additionally,
the frequency of connection failures and the count of measurements that did not
result in the peer successfully being bootstrapped into the network are included.

Onion-type results

Table 6.5 demonstrates a consistent average connection time for the onion-type
bootstrapper across various network sizes. This consistency holds particularly true
for the largest two networks examined, those of sizes 3 and 5, yielding almost
indistinguishable results on all statistics presented. However, a divergent pattern
emerges in the network of size 1. In this instance, the maximum connection duration
was observed to be more than twice that of the others, which is attributable to the
number of possible parallel connections pre-set in our connection handler. Given

7.2. EXPERIMENT 63

that the smallest network has only one other peer to connect with, the joining peer
lacks the opportunity to speed up the bootstrapping process through simultaneous
connection requests to connect with multiple peers.

The reason behind the observation that the minimum connection time in the
network of size one is lesser than that of sizes 3 and 5 could be explained by two
potential factors. One possible explanation could be statistical randomness, which
might have been overlooked in our measurements due to the limited sample size. The
more plausible explanation is related to the behavior of the initial peer in the network,
who will attempt to connect to the joining peer immediately after registration, driven
by their own desire to establish connections with others. This behavioral pattern
is not replicated in the larger networks, as the initial peer has already reached the
capacity of their preferred connection pool.

The aforementioned reasoning may also explain why the average count of failed
attempts before successful connections is lower for a network of size 1 compared
to networks of sizes 3 and 5. More specifically, increased connection attempts
naturally imply a higher probability of connection failures. Thus, the more limited
opportunities for connection attempts within the smaller network inherently result
in fewer overall connection failures.

Pub/sub results

The results presented in Table 6.5 are not as favorable as anticipated. The networks
created by this bootstrapper are unstable; the lack of results for the network of size
5 confirms this. Even with more than double the amount of network establishment
attempts than that of the onion bootstrapper, consistent and stable connections
could not be achieved for this network size. This is believed to be primarily due to a
flawed state machine design and implementation, which could not be resolved within
the time constraints of this thesis. It is not attributed to the poor peer-discovery
mechanism in IPFS Pub/Sub. This is evident from the consistent connections
established in networks with 3 peers. This network size showed a great improvement
for all statistics compared to the network of size 1.

In the network of size 1, the faults of the IPFS Pub/Sub peer-discovery mechanism
can be observed. During 10% of our conducted tests, the two peers involved failed to
receive any published messages about the global topic they were both subscribed
to, leading to their inability to establish a connection. In the remaining 90 % of
the measurements, a significant number of unsuccessful connection attempts were
observed, resulting in high average and maximum values for the bootstrapping
speed. Although not explicitly depicted in the results, it was observed that the
failed connection attempts were attributed to the server peer’s rendezvous circuit
not being established prior to the client peer’s circuit, indicating that the wait time

64 7. DISCUSSION

of 10-seconds determined in Section 6.3 is unsuitable for this particular bootstrapper.
The observed phenomenon can be hypothesized to be attributed to the impact of
high resource utilization by the IPFS Pub/Sub process on the establishment of Tor
circuits. This is because the server peer necessitates the establishment of a circuit to
an extra Tor relay compared to the client peer. In situations where the processes
responsible for circuit establishment lack the necessary resources, the server circuit
process would experience greater time-related delays due to the additional steps it
must undertake.

7.2.3 Comparison based on performance metrics

In Table 6.3 and 6.4, although the results for the first peer are substantially better
for the Pub/Sub bootstrapper than the onion-type bootstrapper, this is mostly
attributed to the architecture and the introduction of the group onion functioning
as the entry point and authority in the onion bootstrapper. This makes the onion-
type bootstrapper robust against IP collisions, which is a feature the Pub/Sub
bootstrapper does not provide.

Moreover, it is worth mentioning that our original idea of utilizing IPFS Pub/Sub
in the Pub/Sub bootstrapper was predicated on its operation over the Tor network,
which would enhance anonymity. However, implementing this feature proved chal-
lenging due to a lack of documentation and the potential need for a central server
as the interface between IPFS and the Tor network. If such functionality could be
realized, it is anticipated that the Pub/Sub bootstrapper would introduce an increase
in all of our speed measurements taken. This would be especially the case for the
initial bootstrapping phase of our network, as it would include delays from the Tor
circuit establishment.

Based on the performance and fault statistics presented in Chapter 6.4, the
Onion-type bootstrapper is clearly the greater choice of the two presented prototypes
for our small set of intended users. It has a longer initial initialization phase for the
first peer joining the network, but the reliability and consistent low bootstrapping
speed for subsequent peers it provides far outweigh this downside for one peer.

7.3 Design and architecture

Although two bootstrapping prototypes were created and some performance results
were gathered, they are not without their flaws. This section will address the
architectural issues encountered during the design and development process and
suggest ways to address these flaws in future revisions.

7.3. DESIGN AND ARCHITECTURE 65

7.3.1 Pub/Sub architecture

IPFS

The Pub/Sub bootstrapper, while providing an alternative approach to bootstrapping,
has the downside of introducing additional external services, such as the IPFS network.
This goes against Doyle’s proposed sixth decentralized bootstrapping requirement
as described in Section 2.4. Still, it is believed believe that the choice of utilizing
external services is warranted because of the small size of the intended networks.
As described in Section 4.1.3, this is an approach used in some P2P networks as
a temporary solution to facilitate reliable and decentralized bootstrapping while
growing the user base.

In this implementation, reliance is placed on the up-time and performance of the
IPFS Pub/Sub system. However, as observed with the deprecation of the Pub/Sub
feature as well as the unreliable topic peer-discovery, this approach can be risky.
Moreover, the results obtained from this bootstrapping approach indicate that it
may not always be able to receive published messages, even when subscribed to the
correct topic at the correct time. Given that the IPFS Pub/Sub feature is currently
deprecated and will be removed from the IPFS platform, future revisions of this
bootstrapping approach require a different Pub/Sub-provider. This was considered
while implementing the prototype, abstracting away most of the underlying IPFS
Pub/Sub API, which should make the replacement of the Pub/Sub provider a
fairly low-hanging fruit. Still, it was not deemed appropriate to implement other
Pub/Sub providers during the implementation period of this thesis because of the
other problems that will be mentioned in this section and based on the beliefs that the
bootstrapper is unreliable because of our implementation. As an experimental thesis,
the objective was to test various bootstrapping approaches and identify suitable
methods, rather than striving to make a single approach flawless.

IP collisions

IP collisions are a big problem that was not properly addressed in the Pub/Sub
implementation. It arises because the network is built on top of a network, the Tor
network, that does not provide an addressing scheme. The lack of a satisfactory
solution to this problem further reinforced our decision not to switch out the Pub/Sub
provider. Instead, the focus was primarily on the onion-type bootstrapper. Section
5.7 shows that a network with 10 users has approximately a 1/385 chance of at
least one IP collision. Although no collisions occurred in any of our measurements,
this is an unacceptable height chance if it should have any real-world applications,
especially since there is no well-defined strategy for dealing with these collisions. The
probability could be significantly improved by allowing more ports and changing how
ports are allocated. However, this does not fix the problem; it only moves it to a

66 7. DISCUSSION

greater scale. The more users that are in the network, the greater the chance of an
IP collision.

Alternatively, a decentralized allocation strategy could be implemented, introduce
an authority to the system as was done in the onion bootstrapper, or have a consensus
mechanism from the users already in the network.

The issue at hand could be entirely removed by eliminating the use of IP addresses
for message routing and applying concepts analogous to IPFS and NKN. Peer
identifiers, which have already been developed using Ed25519 public keys, could be
used in a similar manner to the addressing schemes utilized by IPFS and NKN. This
could be achieved by incorporating a DHT specifically for this purpose. However,
the design and implementation of such a routing mechanism fall beyond the scope of
this thesis.

Alternatively, potential IP collisions would not be an issue if P2P applications
are constructed on the Internet instead of an anonymous overlay like the Tor overlay.
Therefore, a similar Pub/Sub bootstrapping strategy could be suitable for small
decentralized P2P applications that don’t require anonymity, such as multiplayer
gaming, collaboration tools, or file-sharing applications. These networks could utilize
ISP-allocated IPv6 addresses, eliminating the problem altogether while still enabling
direct communications between peers. With IPv6, the need for private channels
in our Pub/Sub design would be obsolete, and only the global channel would be
necessary to distribute IPv6 addresses.

7.3.2 Onion-type architecture

Group onion

Contrary to the Pub/Sub bootstrapper, the Onion-type bootstrapper bestows a
significant advantage of anonymity and removes issues of IP collisions. Despite this
advantage, the onion-type bootstrapper introduces the necessary cost of single-peer
centralization and vulnerability to a single point of failure. The design of this
system is such that a single peer exercises control at any particular time while all
peers possess the potential to command the Group onion. Although this approach
is not very scalable, it is effective for our intended small-scale networks, offering
comprehensive control to the system users.

An alternative approach that was considered involves delegating the responsibili-
ties of the Group onion across a centralized, yet load-balanced, set of onion services.
Such services could be accommodated on robust and performant servers. Under this
model, peers would not directly control the Group onion; rather, they would interact
with a similar API to that of the current system. In the instance a peer decides

7.3. DESIGN AND ARCHITECTURE 67

to join the network using a pre-known passphrase, or network name, they would
contact the centralized servers, which are accessible via a static onion address, and
supply their network passphrase along with their self-generated Ed25519 public key
for each request. It would be possible for different networks to utilize the same set
of Group onion servers for bootstrapping by providing different passphrases. This
alternate solution could adhere to the current system’s register and peer-list retrieval
procedures.

This alternative model may be more desirable in situations where there is a lack
of trust among network peers, for example, when the network passphrase is shared
online on a closed forum. This is because it eliminates the current opportunity for
malicious peers to seize control of the group onion by only acquiring the passphrase.
However, this model does heighten the risk of existing threats, such as DoS attacks,
and introduces new threats, such as the potential for attackers to compromise the
onion service and enumerate the list of all established networks. Under this scenario,
a DoS attack could impact not just one but all networks using the same Group onion.
Consequently, the Group onion’s function in this design should be strictly limited to
a signaling server, facilitating communication among other entities while minimizing
its own operational workload and data storage requirements.

IP storage

The existing method of storing mappings between peers’ public keys and their
respective internal network IPs does not result in IP collisions. However, it imposes
significant computational responsibilities on the peer functioning as the Group onion.
Furthermore, a comprehensive strategy for addressing the departure of the group
onion-controlling-peer is not yet outlined. Under the present system, the first peer
that identifies the Group onion as unresponsive or offline attempts to seize control of
it. In case of a successful acquisition, this peer employs its most recent peer cache to
avoid complete network disruption. Nevertheless, this rarely culminates in the ideal
outcome: a peer gaining control and possessing a cache equivalent to the departed
group onion’s database. One proposal suggests the inclusion of a mechanism allowing
the group onion to notify another peer of its impending departure and coordinate
a transfer procedure. This, however, would not rectify instances of unintentional
disconnections. Another proposal would be for the Group onion to designate a set of
inheritors they would need to communicate with. How to best select these inheritors
poses new questions, and newly joining peers could easily side-step them in the queue.
The proposed shift from a peer-controlled group onion addresses this concern but
also raises additional issues.

A plausible solution could involve altering the internal IPs’ storage strategy and
employing a DHT that ensures redundancy. In this context, the group onion would

68 7. DISCUSSION

retain the IP correlations within the network as opposed to a localized database.
This alteration could enhance network robustness and facilitate an improved recovery
pathway for instances where the group onion departs from the network. This would
permit other peers to assume control of the group onion, thereby reducing the risk of
data loss when the previous controller disconnects. Additionally, it would decrease
the server load on the group onion, as peers already integrated into the network
would not need to directly query the group onion for other network peers. Instead,
they could query the DHT, distributing the load across all network peers. However,
this design was not implemented due to the absence of a routing strategy among
non-directly connected peers. Without such a strategy, the DHT would not scale
effectively. Every peer would necessitate a direct link to all other peers, negating
some of the advantages provided by a P2P network.

7.4 Security and anonymity

Quantifying the security of our bootstrapping mechanisms is challenging; thus, an
examination and discussion of their security features and flaws will be conducted
instead.

7.4.1 Rendezvous chooser security

The "public key rendezvous chooser function" has been selected for utilization in the
bootstrapping mechanisms, as described in Section 5.5.

While it may be deemed unnecessary for the onion-type bootstrapper, which
operates on an end-to-end encrypted channel, the utilization of the public key relay
chooser function can help mitigate a specific form of attack. This attack involves
one peer attempting to manipulate the other into selecting a rendezvous relay under
their control. Therefore, despite the alternative option of having one peer directly
send the relay information to the other, it is believed that employing the public key
relay chooser function is a sensible measure.

In a two-hop architecture, such an attack could result in the deanonymization of
one of the users. By leveraging the public key relay chooser function, it would be
significantly more difficult for a malicious peer to influence which rendezvous point
is selected, as they would need to generate numerous Curve25519 keys, undergo the
exchange process with the peer’s public key, and identify a key that computes to
their own relay. Given the brief validity period of these DH keys in the connection
requests, such an endeavor would be prohibitively challenging.

If the pairwise rendezvous chooser were employed in our Pub/Sub bootstrapper, it
would introduce a vulnerability to man-in-the-middle attacks due to the transmission

7.4. SECURITY AND ANONYMITY 69

of all data through a public channel. In this scenario, an adversary could exploit the
situation by impersonating either of the peers involved or DoS their rendezvous point,
utilizing the information readily available from the public channel. However, the
threat is effectively mitigated by transitioning to our public-key rendezvous chooser.
This is achieved by making it computationally challenging for an attacker to derive
the rendezvous point and cookie for the connecting peers when they lack knowledge
of their private keys. Furthermore, since all messages are signed with Ed25519,
tampering with the DH keys sent is practically infeasible for an attacker without also
modifying the public key and signature.

7.4.2 Security of the Pub/Sub bootstrapper

Lack of anonymity

As previously mentioned, our initial concept for this bootstrapper involved the
application of IPFS Pub/Sub in our bootstrapper, grounded on the premise of
its functional integration over the Tor network, which would add a certain level
of anonymity. However, the realization of this feature posed challenges due to the
scarcity of documentation and the necessity of a centralized server serving as a conduit
between IPFS and the Tor network. If the Tor integration had been implemented,
it would remove the existing bootstrapping system’s primarily decentralized and
distributed character.

Because of this lack of anonymity, the existing architecture of the Pub/Sub
bootstrapper has inherent limitations that severely compromise the security and
privacy of the entire network. Due to its transparency, the current system con-
figuration effortlessly allows a prospective surveillance entity to obtain an IPFS
Pub/Sub peer’s IP address. This would provide them with complete visibility into
the network interactions of each peer. Consequently, this exposure would undermine
the network’s foundational principles and diminish its utility. This flaw effectively
deems the Pub/Sub bootstrapper ill-equipped as a solution, particularly within the
context of the Tor overlay network.

In retrospect, given the decision between employing either NKN or IPFS as our
publish/subscribe (Pub/Sub) provider, our preference should have gravitated towards
NKN. Although NKN does not provide optimal anonymity, its architecture affords
a higher level of anonymity than IPFS. This is attributed to NKN’s design, where
users depend on their respective relays, which creates difficulty in determining a
user’s IP address and identity. As elucidated in Chapter 2, NKN provides a time
guarantee, on the order of milliseconds, for their Pub/Sub system. An additional
consideration is that subscribing to topics in NKN involves a blockchain transaction
fee, which may not be desirable for all networks. However, as discussed in 4.2.3, this
transaction fee serves as a deterrent against Sybil attacks, a prevalent threat in such

70 7. DISCUSSION

networks. Thus, despite the associated costs, this could offer a valuable security
advantage for some networks. However, an NKN-based Pub/Sub bootstrapper would
not be suitable for deployment in a Tor overlay network due to its strong anonymity
requirements. Nonetheless, it could be a viable option to consider for networks that
do not have strong anonymity requirements.

Potential attacks

An analysis of the security dimensions of the Pub/Sub bootstrapper, setting aside
anonymity concerns, reveals considerable vulnerabilities to DoS and Replay attacks.
IPFS Pub/Sub does not incorporate measures to regulate the number of messages
published to a topic, presenting a potential threat vector. With a single attack
surface, attackers could swarm the network with a flood of messages, leading to the
potential destruction of the network. Individual peers may also be susceptible to
DoS attacks due to their subscriptions to private channels, which could just as easily
be targeted.

Switching to the NKN network would offer certain advantages, principally the
distribution of subscribed users into multiple buckets. This system enhances network-
wide resilience. However, individual subscribers within the same bucket could still
be overwhelmed with messages and be DoS-ed.

The IPFS Pub/Sub system upholds data integrity, employing digital signatures for
all messages while assigning unique IDs and timestamps. These measures effectively
remove man-in-the-middle attacks. Nevertheless, our bootstrapper implementation
houses all its data within the data field of each published message without examining
other parts of these messages. This strategy facilitates the interchangeability of
the Pub/Sub-provider, which enhances system flexibility. It does, however, come at
a cost; although our bootstrapper mitigates man-in-the-middle attacks by signing
each message, it lacks the inclusion of timestamps or IDs, rendering the system
susceptible to Replay attacks. Attackers could disseminate previously published
messages, potentially leading to a lot of unanswered messages and failed connections.
Implementing timestamps and restricting the use of a message for connection attempts
to only those recently transmitted could effectively neutralize such an attack.

7.4.3 Security of the Onion bootstrapper

Security through obscurity

The onion-type bootstrapper employs the principle of security through obscurity,
sacrificing certain aspects of its security in favor of enhanced ease of use. The concept
around these networks revolves around the notion that a peer can establish or join
a network by solely possessing the passphrase. This approach poses vulnerabilities,

7.4. SECURITY AND ANONYMITY 71

as malicious actors can exploit various means to infiltrate the network with the
intention of deanonymizing peers, seizing control, or destroying the network. The
most obvious method is to acquire the passphrase employed to establish and join the
network. When only utilizing a passphrase amongst the users that are going to form
an anonymous network, the network is based on a high level of trust amongst those
peers. If peers disclose the passphrase to unauthorized individuals or the passphrase
is somehow leaked, the network’s security drastically decreases. With knowledge of
the passphrase, an attacker can seize control over the group onion, thereby exerting
effortless dominance over the entire network.

Another method for attackers to join the network is to obtain the group onion
address. Currently, there are no preventive measures to hinder the admission
of peers who know about the group onion address but lack the passphrase for
joining. Consequently, the network becomes susceptible to unauthorized entry if
the onion address is leaked or randomly guessed. To address this vulnerability, the
implementation of a moving target scheme could be included, where the onion address
for the group onion is periodically altered. For instance, one approach is to add the
current hour and day in the hashing process of the passphrase. Tor also offers the
capability to encrypt the descriptor for an onion service, necessitating the possession
of a password or private key to gain access [16]. A separate derived key through a
one-way function from the network password could then be used as the descriptor
password. Employing these two mitigation strategies concurrently would significantly
reduce the likelihood of malicious actors discovering and infiltrating the network.

In the process of deriving the Ed25519 keys for the group onion, the initial step
involves hashing the pre-shared passphrase, subsequently utilizing the hash as the
private key for the onion service. From this private key, the corresponding public
key is derived. This approach is necessitated by the requirement for the private
key to adhere to a 256-bit format and to be deterministic for all users within the
network. This ensures that any user has the capacity to verify the group onion’s
availability and assume control if deemed necessary. However, this mechanism
presents a potential vulnerability. Should the group onion’s address become known,
yet the passphrase remains undisclosed, an adversary may speed up the process of
deducing the Ed25519 private keys from the public keys. This could be achieved by
brute forcing or by correlating pre-computed rainbow tables containing commonly
used hashed passphrases and their associated public keys. As a countermeasure to
this potential threat, the usage of a passphrase of substantial length is recommended.
While the likelihood of a successful attack is extremely low, it may be feasible under
certain conditions, especially if attackers are aware that the passphrase’s length is
only a few characters long. It can also be mitigated by introducing salts to the
hashing of the passphrases.

72 7. DISCUSSION

DoS attacks on onion services

It is believed that the principle of security through obscurity plays a substantial
role in mitigating the frequency of DoS attacks. The difficulty in executing such an
attack is compounded when the attacker is oblivious to the targeted onion service.
Additionally, the architecture of Tor is purposefully designed to ensure that the
discovery of an onion service is challenging without knowledge of the onion address.
Despite the existence of these measures, the Group onion remains vulnerable to
DoS attacks in the event of their address being uncovered. This vulnerability stems
from the likely limited computing power of the computers hosting it, which would
be regular computers rather than powerful servers. To address this vulnerability,
potential measurements for DoS mitigation are available in the Tor network, such
as introduction point rate-limiting and the ability to define a maximum number of
concurrent streams [16]. However, these measures alone may not completely stop a
determined attacker from overwhelming the group onion with queries. To further
enhance resilience against DoS attacks, implementing rate-limiting at the server level
of the group onion can be valuable. This can be achieved by integrating a reverse
proxy with built-in rate-limiting capabilities, such as Nginx. By employing such a
setup, the group onion can effectively control and limit the rate of incoming requests,
mitigating the impact of DoS attacks. Additionally, optimizing the performance of
the group onion server client can help maximize the available computing resources.
One approach is to rewrite the server using a more efficient programming language,
moving away from Python to a language that is known for better performance, such
as Rust or C++. This enhancement would help alleviate the strain on Group onion’s
resources and enhance its overall responsiveness to requests. The same techniques
could be utilized to achieve DoS mitigation for private onion services, but this is not
deemed as important.

Anonymity provided by the Tor Onion services

By utilizing Tor onion services for our onion-type bootstrapper, the aim is to achieve
a high degree of anonymity equivalent to the level offered by Onion services. The
Onion Services establish a three-step relay chain to a rendezvous point for both
the client connecting and the onion services. This process incorporates more relays
compared to the connections between peers, suggesting that it is more difficult to
breach user anonymity through the bootstrapping process as compared to direct peer-
to-peer connections, which presently only involve two relays. This robust anonymity
assurance is based on the premise that no personally identifiable information is shared
or unintentionally revealed in the bootstrapping mechanism.

Despite the inability to extract user identity insights from our own server im-
plementations, there is a recognition of the potential for data leakage, particularly
given our current use of the Python Flask development server for running onion

7.4. SECURITY AND ANONYMITY 73

services. While advantageous for error identification and debugging in developmental
contexts, development servers may inadvertently expose system information, creating
information-gathering opportunities for potential attackers. Furthermore, since the
servers operate on individual peers’ personal computers, a successful compromise of
the onion services by an unidentified exploit could conceivably result in an attacker
assuming control of a peer’s computer. Therefore, a comprehensive security review of
the server and API should be undertaken if our software is to be further developed or
used in a production setting. Running the onion services in a segregated environment,
such as a container, is recommended to minimize the impact of a potential breach
scenario. This approach confines potential compromise to only the servers, thus
safeguarding the rest of the computer and the user’s personal files.

While Tor can provide substantial anonymity for its users, it is prone to human
error, as users may deliberately or inadvertently disclose their identity or location.
Tor’s level of provided anonymity is considerable, yet it is not infallible as discussed
in Chapter 2; existing methods can be used to deanonymize Tor users, such as
traffic correlation analysis. Nevertheless, such attempts necessitate significant effort,
particularly for Onion services, and would be simpler to execute on the actual direct
peer connections within the Tor overlay network.

One potential measure users could adopt to operate Tor over a Virtual Private
Network (VPN), which would substantially complicate traffic correlation at the
ISP level. However, this approach would likely lead to an increase in software
latency. While this latency increase may not significantly impact the bootstrapping
mechanism, it could diminish the efficacy of the applications users seek to operate
atop this network.

7.4.4 Group secret sharing

While the Pub/Sub bootstrapper did not incorporate it, both of our initially proposed
designs involved the necessity of sharing a group secret, such as a passphrase or
network name, prior to establishing connections between users aiming to form an
anonymous and concealed network. The specific applications to be executed on this
P2P network are yet to be determined, though communication and file sharing are
potential functionalities.

In the case of our onion-type bootstrapper, sharing a passphrase among all users
seeking to join the network is the only requirement. This approach presents two
distinct network types. The first and more probable type pertains to private networks,
where the passphrase is exchanged among users who possess mutual knowledge and
trust. While this kind of network does not ensure anonymity between its users,
it enables the creation of a hidden virtual private P2P network, safeguarding the
anonymity of participating peers from external observers and eliminating the need

74 7. DISCUSSION

for reliance on centralized services. The passphrase can be shared physically or
transmitted through trusted end-to-end encrypted channels to establish a network
with the desired individuals.

The second network type is where neither of the users knows the identities of
the others. Within this network, the level of trust among peers is significantly low,
making the employment of the centralized Group onion server approach, as discussed
in Section 7.3.2, more preferable. In this scenario, the passphrase could be publicly
disclosed by an individual unconcerned about their own identity or shared within an
online forum or anonymous group channel. Such networks could cater to individuals
with similar objectives or interests who desire to maintain anonymity throughout
their interactions.

7.5 Overall comparison

Based on the analysis of performance and reliability metrics presented earlier in
Section 7.2, as well as the comprehensive examination of the design and security
features associated with the two bootstrapping mechanisms discussed, our assertion
is that the onion-type bootstrapper is the optimal choice among the two alternatives
considered. The conventional bootstrapping approaches typically utilized in large-
scale peer-to-peer networks are unsuitable for satisfying the unique requirements and
limitations of the Tor overlay network. This unsuitability primarily arises from the
network’s limited scale of users, the essential need for preserving anonymity, and the
absence of an appropriate routing protocol.

Chapter8Conclusion

This thesis examines existing solutions of bootstrapping approaches while also detail-
ing the principal challenges and potential solutions. We provide a structured overview
of these challenges and their solutions, even though they appear to be mostly static
since the proliferation of P2P networks in the early years of this millennium. Yet,
innovative P2P applications continue to emerge. This overview serves as a guide for
new P2P networks electing their bootstrapping mechanisms based on the challenges
in their respective networks.

Fallang’s anonymous P2P overlay network is built on top of Tor, and despite
its inherent constraints, it serves as an effective proof-of-concept. Building on this
foundational prototype, we have developed two distinctive autonomous bootstrapping
mechanisms, each enabling peers to be contacted externally. The first mechanism was
built utilizing the decentralized IPFS Pub/Sub system. A deprecation notice for the
IPFS Pub/Sub system came when implementing the bootstrapper, and our attempts
to enable this mechanism to operate on an anonymous transport were unsuccessful.
The final bootstrapper managed to establish network connections among peers, but
the system’s reliability fell short of our expectations. This can be attributed to a
combination of flawed design and an inappropriate choice of the Pub/Sub system.
However, the concept may remain viable in certain network environments where
anonymity is not a prerequisite. It must be mentioned that this viability would
entail a thorough reevaluation of the Pub/Sub provider. These insights provide an
opportunity for future research to improve upon these findings, seeking to uncover
new methodologies and designs that can bring us closer to realizing the full potential
of such mechanisms.

Our second bootstrapping mechanism offers a reliable and anonymous alternative,
capable of significant enhancements and additional functionality, which could make
it a fitting choice for this network despite its centralized approach. It employs Tor
onion services for each peer and implements security through obscurity, relying on
the network passphrase to circumvent notable attacks such as DoS. It is noteworthy

75

76 8. CONCLUSION

that before deploying this mechanism as a credible means of ensuring integrity and
confidentiality in a real-world P2P environment, a comprehensive security audit
should be conducted.

Chapter9Future Work

One of the primary challenges in developing the bootstrapping mechanisms for this
thesis was the lack of an appropriate network routing strategy. OpenVPN tunnels
were used in the prototype, allowing manual Linux routing via other peers. Yet, a
routing strategy based on peer identifiers is crucial for practical usability. We propose
using a Distributed Hash Table (DHT) for this, as it offers efficient and scalable
routing independent of a physical location with minimal network overhead. This
DHT-based approach would address the issue of assigning internal IP addresses in
the Pub/Sub bootstrapper and enable Peer-to-peer bootstrapping in the Onion-type
bootstrapper, thereby decentralizing the network. A robust open-sourced protocol
suite like libp2p [24] could be examined for this purpose.

Although it did not work well with our network, we believe that a Pub/Sub
solution to bootstrapping could be further explored in other small-scale to medium-
scaled networks as a free, decentralized bootstrapping alternative. A stable and
decentralized Pub/Sub-provider like NKN [25] could be tested for this purpose.

Transitioning to a system of centralized, load-balanced Group onion servers has
been thoroughly discussed. This idea serves as an alternative to the current model
for establishing public anonymous networks that operate under conditions of minimal
trust between peers. It warrants further exploration to determine the robustness of
this approach, particularly in its capacity to support the bootstrapping of multiple
parallel and separate networks. Moreover, it could be interesting to explore how
decentralized naming services, such as Namecoin [67] or Ethereum Name Service
(ENS) [68], might be leveraged to facilitate the resolution of human-readable Tor
.onion domains for these bootstrapping servers. This could potentially function in a
manner similar to how DNS seeding is utilized in existing networks.

77

References

[1] F. Fallang, «Security of dark net overlay networks», M.S. thesis, Department of
Information Security, Communication Technology, NTNU – Norwegian University of
Science, and Technology, Jun. 2022.

[2] E. T. Midtun, «TTM4502 - Bootstrapping decentralized overlay networks», De-
partment of Information Security, Communication Technology, NTNU – Norwegian
University of Science, and Technology, Norway, Trondheim, Tech. Rep., Nov. 2022.

[3] J. P. Vergne, «Decentralized vs. Distributed Organization: Blockchain, Machine
Learning and the Future of the Digital Platform», Organization Theory, vol. 1, no. 4,
pp. 263 178 772 097 705–, 2020, Publisher: SAGE Publications.

[4] «Overlay Networks: An Akamai Perspective», in Advanced Content Delivery, Stream-
ing, and Cloud Services, M. Pathan, R. K. Sitaraman, and D. Robinson, Eds., Hoboken,
NJ, USA: John Wiley & Sons, Inc., Oct. 2014, pp. 305–328.

[5] W. Galuba and S. Girdzijauskas, «Peer-to-Peer Overlay Networks: Structure, Routing
and Maintenance», in Encyclopedia of Database Systems, New York, NY: Springer,
2018, pp. 2707–2713.

[6] A. F. Loe and E. A. Quaglia, «You Shall Not Join: A Measurement Study of Cryp-
tocurrency Peer-to-Peer Bootstrapping Techniques», in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, London United
Kingdom: ACM, Nov. 2019, pp. 2231–2247.

[7] H. Zhang, Y. Wen, et al., Distributed Hash Table: Theory, Platforms and Applications
(SpringerBriefs in Computer Science). New York, NY: Springer, 2013.

[8] H. Yu, J. Buford, and X. Shen, Handbook of Peer-to-Peer Networking, 1. Aufl. New
York, NY: Springer-Verlag, 2010, vol. 1.

[9] J. Benet, «IPFS - Content Addressed, Versioned, P2P File System», Jul. 2014.

[10] N. Lab, NKN: A Scalable Self-Evolving and Self-Incentivized Decentralized Network,
Mar. 2018. [Online]. Available: https ://nkn.org/wp- content/uploads/2020/10
/NKN_Whitepaper.pdf (last visited: May 10, 2023).

[11] Y. Zhang and L. Grondin, Tech Design Doc: Distributed Data Transmission Network
(DDTN), Apr. 2022. [Online]. Available: https://github.com/nknorg/nkn/wiki/Tech-
Design-Doc:-Distributed-Data-Transmission-Network-(DDTN) (last visited: May 10,
2023).

79

https://nkn.org/wp-content/uploads/2020/10/NKN_Whitepaper.pdf
https://nkn.org/wp-content/uploads/2020/10/NKN_Whitepaper.pdf
https://github.com/nknorg/nkn/wiki/Tech-Design-Doc:-Distributed-Data-Transmission-Network-(DDTN)
https://github.com/nknorg/nkn/wiki/Tech-Design-Doc:-Distributed-Data-Transmission-Network-(DDTN)

80 REFERENCES

[12] R. Dingledine, N. Mathewson, and P. Syverson, «Tor: The Second-Generation Onion
Router:» Defense Technical Information Center, Fort Belvoir, VA, Tech. Rep., Jan.
2004.

[13] M. Reed, P. Syverson, and D. Goldschlag, «Anonymous connections and onion
routing», IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 482–
494, May 1998, Conference Name: IEEE Journal on Selected Areas in Communications.

[14] Dir-spec.txt - Tor directory protocol, version 3, en, Jan. 2023. [Online]. Available:
https://gitlab.torproject.org/tpo/core/torspec/-/blob/main/dir-spec.txt (last visited:
May 8, 2023).

[15] S. Matic, C. Troncoso, and J. Caballero, «Dissecting Tor Bridges: A Security Evalua-
tion of Their Private and Public Infrastructures», in Proceedings 2017 Network and
Distributed System Security Symposium, San Diego, CA: Internet Society, 2017.

[16] Rend-spec-v3.txt - torspec - Tor’s protocol specifications, en, Mar. 2023. [Online].
Available: https://gitlab.torproject.org/tpo/core/torspec/-/blob/main/rend-spec-v3.t
xt (last visited: May 5, 2023).

[17] M. Knoll, A. Wacker, et al., «Decentralized Bootstrapping in Pervasive Applications»,
in Fifth Annual IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PerComW’07), White Plains, NY, USA: IEEE, Mar. 2007,
pp. 589–592.

[18] R. C. Doyle, «Distributed Bootstrapping of Peer-to-Peer Networks», 2008.

[19] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, «Scalable application layer multi-
cast», eng, ser. SIGCOMM ’02, Book Title: Applications, Technologies, Architectures,
and Protocols for Computer Communication: Proceedings of the 2002 conference on
Applications, technologies, architectures, and protocols for computer communications;
19-23 Aug. 2002, ACM, 2002, pp. 205–217.

[20] C. K. Yeo, B.-S. Lee, and M. H. Er, «A survey of application level multicast tech-
niques», Computer communications, vol. 27, no. 15, pp. 1547–1568, 2004.

[21] T. Zaarour, A. Bhattacharya, and E. Curry, «OpenPubSub: Supporting Large Se-
mantic Content Spaces in Peer-to-Peer Publish/Subscribe Systems for the Internet of
Multimedia Things», IEEE internet of things journal, vol. 9, no. 18, pp. 17 640–17 659,
Sep. 2022.

[22] S. Profanter, A. Tekat, et al., «OPC UA versus ROS, DDS, and MQTT: Performance
Evaluation of Industry 4.0 Protocols», in 2019 IEEE International Conference on
Industrial Technology (ICIT), ISSN: 2643-2978, Feb. 2019, pp. 955–962.

[23] Protocol Labs, IPFS/Kubo, original-date: 2014-06-26T08:14:34Z, May 2023. [Online].
Available: https://github.com/ipfs/kubo (last visited: May 21, 2023).

[24] Libp2p specification, original-date: 2016-09-13T15:45:30Z, Jun. 2023. [Online]. Avail-
able: https://github.com/libp2p/specs (last visited: Jun. 12, 2023).

[25] Yilun Zhang, Introducing Decentralized Pub/Sub Based on NKN, Apr. 2019. [Online].
Available: https://forum.nkn.org/t/introducing-decentralized-pub-sub-based-on-nkn
/355 (last visited: Mar. 28, 2023).

https://gitlab.torproject.org/tpo/core/torspec/-/blob/main/dir-spec.txt
https://gitlab.torproject.org/tpo/core/torspec/-/blob/main/rend-spec-v3.txt
https://gitlab.torproject.org/tpo/core/torspec/-/blob/main/rend-spec-v3.txt
https://github.com/ipfs/kubo
https://github.com/libp2p/specs
https://forum.nkn.org/t/introducing-decentralized-pub-sub-based-on-nkn/355
https://forum.nkn.org/t/introducing-decentralized-pub-sub-based-on-nkn/355

REFERENCES 81

[26] A. Zeller, «Academic prototyping (invited tutorial)», in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2022, New York, NY, USA: Association for
Computing Machinery, Nov. 2022, p. 4.

[27] M. Samadi, «Waterative Model: An Integration of the Waterfall and Iterative Software
Development Paradigms», Database Syst. J, vol. 10, pp. 75–81, Aug. 2019.

[28] K. A. Gary and M. B. Blake, «C-PLAD-SM: Extending Component Requirements
with Use Cases and State Machines», in Software Engineering Research, Management
and Applications, ser. Studies in Computational Intelligence, R. Lee, Ed., Springer
International Publishing, Jun. 2018, pp. 93–106.

[29] M. Knoll, M. Helling, et al., «Bootstrapping Peer-to-Peer Systems Using IRC», in
2009 18th IEEE International Workshops on Enabling Technologies: Infrastructures
for Collaborative Enterprises, ISSN: 1524-4547, Jun. 2009, pp. 122–127.

[30] Modify the bootstrap list | IPFS Docs, Jul. 2022. [Online]. Available: https://docs.ipfs
.tech/how-to/modify-bootstrap-list/ (last visited: May 10, 2023).

[31] Bittorrent/bootstrap-dht, original-date: 2013-11-01T22:51:57Z, Aug. 2017. [Online].
Available: https://github.com/bittorrent/bootstrap-dht (last visited: May 10, 2023).

[32] P2P Network. [Online]. Available: https://developer.bitcoin.org/devguide/p2p_netw
ork.html (last visited: May 12, 2023).

[33] Ethereum/devp2p - specifcication, Apr. 2023. [Online]. Available: https://github.com
/ethereum/devp2p/blob/master (last visited: May 10, 2023).

[34] G. Dán, N. Carlsson, and I. Chatzidrossos, «Efficient and highly available peer
discovery: A case for independent trackers and gossiping», in 2011 IEEE International
Conference on Peer-to-Peer Computing, ISSN: 2161-3567, Aug. 2011, pp. 290–299.

[35] D. Boldt, F. Kaminski, and S. Fischer, «Decentralized Bootstrapping for WebRTC-
based P2P Networks», The Fifth International Conference on Building and Exploring
Web Based Environments (WEB2017), pp. 17–23, 2017.

[36] R. Matzutt, J. Pennekamp, et al., «Utilizing Public Blockchains for the Sybil-Resistant
Bootstrapping of Distributed Anonymity Services», in Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security, Taipei Taiwan: ACM,
Oct. 2020, pp. 531–542.

[37] P. Schutz, S. Gal, et al., «Decentralizing indexing and bootstrapping for online
applications», IET Blockchain, vol. 1, no. 1, pp. 3–15, 2021.

[38] Satoshi Client Node Discovery - Bitcoin Wiki, Dec. 2017. [Online]. Available: https:
//en.bitcoin.it/wiki/Satoshi_Client_Node_Discovery#IRC_Addresses (last visited:
May 14, 2023).

[39] J. W. Lee, H. Schulzrinne, et al., «Bootstrapping large-scale DHT networks», en, in
Proceedings of the 2007 ACM CoNEXT conference on - CoNEXT ’07, New York,
New York: ACM Press, 2007, p. 1. [Online]. Available: http://portal.acm.org/citation
.cfm?doid=1364654.1364731 (last visited: Apr. 2, 2023).

https://docs.ipfs.tech/how-to/modify-bootstrap-list/
https://docs.ipfs.tech/how-to/modify-bootstrap-list/
https://github.com/bittorrent/bootstrap-dht
https://developer.bitcoin.org/devguide/p2p_network.html
https://developer.bitcoin.org/devguide/p2p_network.html
https://github.com/ethereum/devp2p/blob/master
https://github.com/ethereum/devp2p/blob/master
https://en.bitcoin.it/wiki/Satoshi_Client_Node_Discovery#IRC_Addresses
https://en.bitcoin.it/wiki/Satoshi_Client_Node_Discovery#IRC_Addresses
http://portal.acm.org/citation.cfm?doid=1364654.1364731
http://portal.acm.org/citation.cfm?doid=1364654.1364731

82 REFERENCES

[40] C. Cramer, K. Kutzner, and T. Fuhrmann, «Bootstrapping locality-aware P2P net-
works», in Proceedings. 2004 12th IEEE International Conference on Networks (ICON
2004) (IEEE Cat. No.04EX955), vol. 1, Nov. 2004, pp. 357–361.

[41] How IPFS works - IPFS Docs, May 2023. [Online]. Available: https://docs.ipfs.tech
/concepts/how-ipfs-works/ (last visited: May 30, 2023).

[42] M. Ogden, K. McKelvey, and M. B. Madsen, «Dat-distributed dataset synchronization
and versioning», Open Science Framework, 2017. [Online]. Available: https://github.c
om/dat-ecosystem-archive/whitepaper/blob/master/dat-paper.pdf.

[43] J. Dinger and O. P. Waldhorst, «Decentralized Bootstrapping of P2P Systems: A
Practical View», in NETWORKING 2009: 8th International IFIP-TC 6 Networking
Conference, Aachen, Germany, May 11-15, 2009. Proceedings 8, Springer Berlin
Heidelberg, 2009, pp. 703–715.

[44] D. Stutzbach and R. Rejaie, «Understanding churn in peer-to-peer networks», in Pro-
ceedings of the 6th ACM SIGCOMM conference on Internet measurement, Association
for Computing Machinery, Oct. 2006, pp. 189–202.

[45] D. I. Wolinsky, P. S. Juste, et al., «Addressing the P2P Bootstrap Problem for Small
Networks», in IEEE Tenth International Conference on Peer-to-Peer Computing
(P2P), IEEE, Apr. 2010.

[46] R. Lee, S. Kiesler, et al., «Anonymity, privacy, and security online», Pew Research
Center, vol. 5, 2013.

[47] CryptoRekt, «Official Verge Blackpaper 5.0», no. 5, Jan. 2019. [Online]. Available:
https://vergecurrency.com/static/blackpaper/verge-blackpaper-v5.0.pdf.

[48] Home · Wiki · briar / briar, en, Feb. 2023. [Online]. Available: https://code.briarpr
oject.org/briar/briar/-/wikis/home (last visited: Jun. 9, 2023).

[49] Bramble Rendezvous Protocol, version 0 - Briar Project, Jun. 2022. [Online]. Available:
https://code.briarproject.org/briar/briar-spec/blob/master/protocols/BRP.md (last
visited: Feb. 16, 2023).

[50] Speek-App/Speek - protocol specification, May 2023. [Online]. Available: https://githu
b.com/Speek-App/Speek/blob/main/doc/protocol.md (last visited: May 14, 2023).

[51] L. M. Tanczer, R. J. Deibert, et al., «Online Surveillance, Censorship, and Encryption
in Academia», International studies perspectives, vol. 21, no. 1, pp. 1–36, 2020,
Publisher: Wiley.

[52] I. Clarke, O. Sandberg, et al., «Freenet: A Distributed Anonymous Information
Storage and Retrieval System», ser. Lecture Notes in Computer Science, vol. 2009,
Berlin, Heidelberg: Springer Berlin Heidelberg, Mar. 2001, pp. 46–66.

[53] Z. Trifa and M. Khemakhem, «Sybil Nodes as a Mitigation Strategy Against Sybil
Attack», Procedia computer science, vol. 32, pp. 1135–1140, 2014, Publisher: Elsevier
B.V.

[54] R. John, J. P. Cherian, and J. J. Kizhakkethottam, «A survey of techniques to prevent
sybil attacks», in 2015 International Conference on Soft-Computing and Networks
Security (ICSNS), IEEE, Feb. 2015, pp. 1–6.

https://docs.ipfs.tech/concepts/how-ipfs-works/
https://docs.ipfs.tech/concepts/how-ipfs-works/
https://github.com/dat-ecosystem-archive/whitepaper/blob/master/dat-paper.pdf
https://github.com/dat-ecosystem-archive/whitepaper/blob/master/dat-paper.pdf
https://vergecurrency.com/static/blackpaper/verge-blackpaper-v5.0.pdf
https://code.briarproject.org/briar/briar/-/wikis/home
https://code.briarproject.org/briar/briar/-/wikis/home
https://code.briarproject.org/briar/briar-spec/blob/master/protocols/BRP.md
https://github.com/Speek-App/Speek/blob/main/doc/protocol.md
https://github.com/Speek-App/Speek/blob/main/doc/protocol.md

REFERENCES 83

[55] Z. Trifa and M. Khemakhem, «Mitigation of Sybil attacks in Structured P2P Overlay
Networks», in 2012 Eighth international conference on semantics, knowledge and
grids, IEEE, Jan. 2012, pp. 245–248.

[56] K. Haribabu, C. Hota, and Saravana, «Detecting Sybils in Peer-to-Peer File Repli-
cation Systems», in Information Security and Digital Forensics: First International
Conference, ISDF 2009, London, United Kingdom, September 7-9, 2009, Revised
Selected Papers 1, D. Weerasinghe, Ed., vol. 41, Springer Berlin Heidelberg, 2010,
pp. 123–134.

[57] W. Zang, P. Zhang, et al., «Detecting Sybil Nodes in Anonymous Communication
Systems», Procedia Computer Science, vol. 17, pp. 861–869, 2013, Publisher: Elsevier
B.V.

[58] M. Castro, P. Druschel, et al., «Secure routing for structured peer-to-peer overlay
networks», ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 299–314,
2002.

[59] B. Awerbuch and C. Scheideler, «A Denial-of-Service Resistant DHT», in Proceedings
of the twenty-sixth annual ACM symposium on Principles of distributed computing,
ser. Lecture Notes in Computer Science, vol. 4731, Springer Berlin Heidelberg, 2007,
pp. 370–371.

[60] H. M. J. Almohri, M. Almutawa, et al., «A Client Bootstrapping Protocol for DoS
Attack Mitigation on Entry Point Services in the Cloud», Security and Communication
Networks, vol. 2020, pp. 1–12, Jul. 2020.

[61] Yilun Zhang, [NKP-0014] Use PoW to prevent generate ID txn spam, Aug. 2019.
[Online]. Available: https://forum.nkn.org/t/nkp-0014-use-pow-to-prevent-generate-
id-txn-spam/1668 (last visited: May 23, 2023).

[62] Lesson: Run IPFS over Tor transport (experimental), Mar. 2020. [Online]. Available:
https://dweb-primer.ipfs.io/avenues-for-access/tor-transport (last visited: May 30,
2023).

[63] Deprecate then Remove /api/v0/pubsub/* RPC API and ‘ipfs pubsub‘ Commands ·
Issue #9717 · ipfs/kubo, Mar. 2023. [Online]. Available: https://github.com/ipfs/ku
bo/issues/9717 (last visited: May 2, 2023).

[64] Stem 1.8.1 Docs, Sep. 2022. [Online]. Available: https://stem.torproject.org/ (last
visited: May 8, 2023).

[65] Onionbalance 0.2.1 documentation. [Online]. Available: https://onionbalance.readthe
docs.io/en/latest/ (last visited: May 9, 2023).

[66] Pubsub does not always find other peers · Issue #3745 · ipfs/kubo, Mar. 2017.
[Online]. Available: https://github.com/ipfs/kubo/issues/3745 (last visited: May 25,
2023).

[67] Namecoin. [Online]. Available: https://www.namecoin.org/ (last visited: Mar. 15,
2023).

[68] Introduction - ENS Documentation. [Online]. Available: https://docs.ens.domains/
(last visited: Mar. 15, 2023).

https://forum.nkn.org/t/nkp-0014-use-pow-to-prevent-generate-id-txn-spam/1668
https://forum.nkn.org/t/nkp-0014-use-pow-to-prevent-generate-id-txn-spam/1668
https://dweb-primer.ipfs.io/avenues-for-access/tor-transport
https://github.com/ipfs/kubo/issues/9717
https://github.com/ipfs/kubo/issues/9717
https://stem.torproject.org/
https://onionbalance.readthedocs.io/en/latest/
https://onionbalance.readthedocs.io/en/latest/
https://github.com/ipfs/kubo/issues/3745
https://www.namecoin.org/
https://docs.ens.domains/

	List of Acronyms
	Introduction
	Keywords
	Motivation
	Objective
	Research questions
	Scope and contributions
	Limitations
	Thesis outline

	Background
	Overlay networks
	Tor
	A decentralized P2P overlay network built on top of Tor
	Bootstrapping
	Efficient message-delivery mechanisms

	Methodology
	Overview of the state of Bootstrapping
	Exploring and implementing bootstrapping mechanisms

	The challenges of bootstrapping
	Networking
	Finding the first peer
	Churn
	Small networks
	Hidden and unreachable peers

	Security and privacy
	Anonymity
	Censorship
	Sybil-attacks
	Denial of Service

	Experiment
	Software
	Bootstrapping requirements and restrictions
	The user
	Anonymous peer identifiers
	Rendezvous chooser function with asymmetric cryptography
	Connection handler
	The Pub/Sub bootstrapper
	Onion-type bootstrapper
	Tests

	Results
	Implementation
	Test results
	Base connection tests
	Bootstrapping results
	Time before ready to accept connections
	Time until first connection

	Discussion
	General
	Overview
	Unoptimized software
	An exploration of techniques

	Experiment
	Time before ready to accept connections
	Time until first connection
	Comparison based on performance metrics

	Design and architecture
	Pub/Sub architecture
	Onion-type architecture

	Security and anonymity
	Rendezvous chooser security
	Security of the Pub/Sub bootstrapper
	Security of the Onion bootstrapper
	Group secret sharing

	Overall comparison

	Conclusion
	Future Work
	References

