
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Lars Sørensen
Vegard Nyeng

The Application and Use of
Cryptographic Zero-Knowledge
Protocols

Master’s thesis in Communication Technology and Digital Security
Supervisor: Stig Frode Mjølsnes
June 2023

Lars Sørensen
Vegard Nyeng

The Application and Use of
Cryptographic Zero-Knowledge
Protocols

Master’s thesis in Communication Technology and Digital Security
Supervisor: Stig Frode Mjølsnes
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

The Application and Use of Cryptographic
Zero-Knowledge Protocols

Lars Sørensen and Vegard Nyeng

Submission date June 2023
Supervisor Professor Stig Frode Mjølsnes, NTNU

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: The Application and Use of Cryptographic Zero-Knowledge Protocols
Students: Lars Sørensen and Vegard Nyeng

Problem description:

Authentication is a process by which a prover seeks to convince a verifier of their
identity. This is considered trivial in more common full-knowledge proofs in which
the prover simply discloses some secret knowledge (such as a password) to the verifier.
However, such authentication methods are vulnerable to privacy breaches if the
secret knowledge is revealed to unauthorized parties. A zero-knowledge proof lets
a prover convince a verifier that a given statement is true without revealing any
additional information about the knowledge of the statement they possess. These
proofs commonly rely on cryptography based on mathematically hard problems, such
as integer factorization or discrete logarithms, to obfuscate the knowledge.

Given the advent of quantum computers and Shor’s algorithm, it is imperative to
develop quantum-resistant cryptography. Consequently, the objective of this thesis is
to create a zero-knowledge proof that employs cryptography believed to be resistant
to quantum attacks. Subsequently, the zero-knowledge proof will be implemented as
a zero-knowledge protocol used by a client, functioning as the prover, to authenticate
themselves to a server, functioning as the verifier. The resulting protocol will be
evaluated for its performance, security, and practicality for authentication purposes.
Overall, the objective of this thesis is to contribute to the development of secure and
efficient authentication systems that preserve the privacy of users.

Approved on: 2023-02-21
Supervisor: Professor Stig Frode Mjølsnes, NTNU

Abstract

Cryptographic systems today rely mainly on three mathematical hard
problems. With the rapid advancement of technology, these cryptosys-
tems face an imminent threat from the development of powerful quantum
computers. With the introduction of a sufficiently powerful quantum
computer, many currently deployed cryptosystems may be broken, com-
promising the security of sensitive information. To address this challenge,
post-quantum cryptography has emerged, aiming to develop cryptographic
schemes resistant to attacks by classical and quantum computers. One
promising branch of post-quantum cryptography is lattice cryptography,
which utilizes hard problems within mathematical structures in multiple
dimensions to provide strong security guarantees.

This master’s thesis focuses on implementing and analyzing a lattice-based
digital signature scheme. Digital signatures play a crucial role in ensuring
data integrity, authentication, and non-repudiation in various applica-
tions. This research aims to investigate the practicality and performance
of a lattice-based digital signature scheme within a passwordless authen-
tication system. Integrating this scheme into the authentication process
seeks to enhance security while providing a convenient and user-friendly
experience for the end users. The efficiency of the lattice-based digital
signature scheme will be reviewed through performance analysis.

The results of this thesis will contribute to the understanding of lattice-
based cryptography and its practical application in passwordless authen-
tication systems. Furthermore, the analysis of performance metrics will
shed light on the strengths and limitations of the implemented digital
signature.

Sammendrag

Kryptografiske systemer som benyttes i dag, er hovedsakelig basert på
tre matematiske problemer. Rask utvikling innen teknologi gjør at disse
systemene står i fare dersom kraftige nok kvantemaskiner blir utviklet.
Slike maskiner har egenskaper som gjør at de kan løse de underliggende
problemene som dagens kryptografiske systemer benytter. Kvantesikker
kryptografi er et felt innen kryptografi som fokuserer på kryptografiske
systemer som kan motstå angrep fra kvantemaskiner. Et lovende felt
innen kvantesikker kryptografi er kryptografi basert på gitterstruktur,
som bygger på vanskelige problemer innen matematiske strukturer i flere
dimensjoner.

Denne oppgaven ser på implementasjonen av og analyserer en digital
signatur som benytter kryptografi basert på gitterstruktur. Digitale sig-
naturer spiller en viktig rolle for å sikre dataintegritet, autentisering
og ikke-fornektelse i en rekke anvendelser. En slik digital signatur vil
bli implementert i et passordløst autentiseringssystem, hvor ytelsen til
signaturen vil bli vurdert. Målet med å integrere denne signaturen i en
autentiseringsprosess er å forbedre sikkerheten samtidig som en sømløs
og enkel brukeropplevelse tilbys. Gjennom en analyse av systemets ytelse
vil signaturens effektivitet også bli vurdert.

Resultatene fra denne oppgaven vil bidra til en dypere forståelse av
kryptografi basert på gitterstrukturer og dens praktiske implementasjon
i autentiseringssystemer. Analysen av systemets ytelse vil gi innsikt i
styrker og svakheter ved den implementerte digitale signaturen.

Preface

Through five years we persevered, side by side,
Exploring Communication Technology with pride.
At NTNU, we sought knowledge far and wide,
Equipped with our Master’s, we embark on life’s vibrant ride.

To Professor Stig Frode Mjølsnes, our guide so wise,
Your wisdom in cryptography, a beacon that flies.
Your guidance and feedback, invaluable and true,
Shaping our thesis, bringing it to breakthrough.

Our gratitude extends to friends and kin,
For the support and love that’s always been,
Countless table tennis matches, oh, what delight,
In the lounge, bringing joy, making days so bright.

With gratitude in our hearts, we end this preface,
To acknowledge those who’ve contributed to our thesis.
The culmination of knowledge, hard work, and delight,
May this journey inspire others to reach new heights.

Lars Sørensen & Vegard Nyeng
Trondheim, Norway

June 2023

Contents

List of Figures xi

List of Tables xiii

List of Listings xv

List of Algorithms xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 1
1.2 Research Scope . 2
1.3 Limitations and Challenges . 3
1.4 Research Questions . 4
1.5 Contribution . 5
1.6 Outline . 5

2 Background and Related Work 7
2.1 Zero-Knowledge Proofs . 7

2.1.1 Properties . 7
2.1.2 Interactive and Non-Interactive Zero-knowledge Proofs 8
2.1.3 Σ-Protocols . 9
2.1.4 Fiat-Shamir Transform . 9
2.1.5 The Ali Baba Cave . 10
2.1.6 Interactive Schnorr Protocol 11
2.1.7 Schnorr Signatures . 15

2.2 Post-Quantum Cryptography . 16
2.2.1 Lattice Cryptography . 16
2.2.2 Reduction of Lattice Problems 20
2.2.3 Interactive Lattice-Based Zero-knowledge Protocol 21
2.2.4 Lattice-Based Digital Signature 29

2.3 FIDO2 . 31

vii

2.3.1 Terminology . 32
2.3.2 Registration Ceremony . 33
2.3.3 Authentication Ceremony . 34
2.3.4 WebAuthn Authenticators . 36

2.4 Related Work . 36
2.4.1 NIST Post-Quantum Competition 36
2.4.2 CRYSTALS-Dilithium . 37
2.4.3 FIDO2 Implementations . 39

3 Methodology 41
3.1 The Design Cycle . 41

3.1.1 Problem Investigation . 43
3.1.2 Treatment Design . 43
3.1.3 Treatment Validation . 44

3.2 Tools and resources . 45
3.2.1 Python . 45
3.2.2 Swift . 46
3.2.3 Apple Keychain . 47
3.2.4 Xcode . 47
3.2.5 React . 47
3.2.6 MongoDB . 48
3.2.7 Git . 48

4 Proposed Solution 49
4.1 Specification . 49

4.1.1 Requirements . 49
4.1.2 Digital Signature . 50

4.2 Implementation . 55
4.2.1 Architecture . 55
4.2.2 Registration Ceremony . 64
4.2.3 Authentication Ceremony . 77
4.2.4 Process View . 89

5 Performance and Discussion 91
5.1 Performance . 91

5.1.1 Key and Signature Size . 92
5.1.2 Key Generation . 94
5.1.3 Signing . 96
5.1.4 Verification . 101
5.1.5 Requirements . 103

5.2 Research Questions . 104
5.2.1 Research Question 1 . 104

5.2.2 Research Question 2 . 105
5.2.3 Research Question 3 . 106

6 Conclusion and Future Work 107
6.1 Future Work . 107

References 111

Appendix

A Performance Data 117
A.1 Data Collection Scripts . 117
A.2 Key and Signature Sizes . 119
A.3 Key generation . 120
A.4 Signing . 120
A.5 Verification . 123

B Test Report 125
B.1 Functional Requirements . 125

List of Figures

2.1 Ali Baba Cave . 11
2.2 Sequence diagram of the interactive Schnorr protocol. 12
2.3 Extractor algorithm for interactive Schnorr. 14
2.4 Simulator algorithm for interactive Schnorr. 14
2.5 Sequence diagram of dishonest-prover interactive Schnorr protocol. . . . 15
2.6 Schnorr Signature . 16
2.7 Lattice structures in two and three dimensions. 17
2.8 Short Integer Solution . 20
2.9 Reduction of Lattice Problems . 21
2.10 Rejection Sampling . 23
2.11 Sequence diagram of dishonest-prover lattice-based zero-knowledge proto-

col. 26
2.12 Extractor algorithm for the interactive lattice-based zero-knowledge pro-

tocol. 27
2.13 Simulator in the interactive lattice-based zero-knowledge protocol. . . . 28
2.14 Sequence diagram of the lattice-based (honest-verifier) zero-knowledge

protocol. 29
2.15 Lattice-Based Digital Signature . 30
2.16 The components of the FIDO2 standard and communication protocols

between them. 31
2.17 WebAuthn Registration Ceremony. 33
2.18 WebAuthn Authentication Ceremony . 35

3.1 Engineering cycle . 42

4.1 Physical view of the proposed solution. 56
4.2 Relying Party Server - Class Diagram 58
4.3 Client Application - Class Diagram . 59
4.4 Polling Server - Class Diagram . 61
4.5 Authenticator Application - Class Diagram 63
4.6 Registration Ceremony for Proposed Solution 65
4.7 Client Interface - Registration . 66
4.8 Registration alert . 71

xi

4.9 Authentication Ceremony for Proposed Solution 79
4.10 Authentication Ceremony - Interface . 80
4.11 Authentication Process Steps . 83
4.12 Verification code displayed in the client application when authenticating. 84
4.13 Proposed Solution - Process View . 90

5.1 Key and signature sizes . 94
5.2 Average time usage (ms) for key generation 95
5.3 Average signature attempts. 97
5.4 Average signature time usage (ms). 98
5.5 Average signature attempts with β = (1, 2, . . . , 20). 100
5.6 Average verification time (ms) . 102

List of Tables

2.1 Key and signature sizes for ECDSA on NIST P-256 and Dilithium2. . . 38
2.2 Time usage in ms for ECDSA on P-256 and Dilithium2. 39
2.3 Signature attempts for Dilithium. 39

3.1 Treatment requirements. 44

4.1 Functional requirements for the test environment. 50
4.2 Quality requirements for the test environment. 50
4.3 Digital signature parameters. 54
4.4 Registration Ceremony - Message Content 64
4.5 Authentication Ceremony - Message Content 78

5.1 Size Comparison Proposed Solution and Dilithium2 92
5.2 Performance Comparison Proposed Solution and Dilithium2 92
5.3 Key and Signature Sizes for Implemented Digital Signature 93

A.1 Sizes in bytes for private key, public key, and signature. 119
A.2 Average key generation time (ms) . 120
A.3 Average signature time (ms) . 120
A.4 Average signature attempts for varying (n,m) and β 121
A.5 Average number of signature attempts for (5,4) 122
A.6 Average verification time (ms) . 123

xiii

List of Listings

4.1 API endpoint for /authenticate. 57
4.2 Method that handles incoming registration requests from client appli-

cation. 67
4.3 Parsing received response from Relying Party (RP) and generating

clientData. 67
4.4 Forward clientData to polling server. 68
4.5 Handle registration attempt from client application in polling server. 69
4.6 Function in CommunicateWithServer responsible for polling the server. 70
4.7 Method in pollingHandler.py responsible for handling incoming

polling requests from authenticators. 70
4.8 EventHandler’s method for handling registration attempts. 71
4.9 Method implementing the key generation algorithm from Algorithm

4.1. 72
4.10 Method for sampling random bytes. 73
4.11 Importing Python libraries. 73
4.12 Accessability class for the stored private key. 74
4.13 Method in pollingHandler.py that handles registration responses

from authenticators. 75
4.14 clientResponse sent by client application during registration. 75
4.15 Verification of clientData and storage of public key. 76
4.16 Handle authentication request . 81
4.17 Handle clientRequest. 82
4.18 EventHandler’s method for handling authentication attempts. . . . 85
4.19 The authors’ Swift implementation of the signature algorithm of the

digital signature scheme. 85
4.20 Method that outputs a 384-bit hash output c′ from SHAKE-256

instantiation absorbing A, t, ω, clientData, as well as the polynomial
c defined as HashToBall(c′). 86

4.21 RP: Handle authentication request 88
4.22 Implementation of verification algorithm. 89
A.1 Script for collecting size of private key, public key and signature. . . 117

xv

A.2 Script for collecting the average number of attempts until a valid
signature is generated, while varying β. (n, m) = (5, 4). 117

A.3 Script for collecting the average time usage and average number of
attempts for the signature algorithm, while varying (n, m) and β. . . 117

A.4 Script for collecting the average key generation time while varying
(n, m) and β. 118

A.5 Script for collecting the time usage for the implemented verification
algorithm. 118

List of Algorithms

4.1 Key generation algorithm . 51
4.2 Signature algorithm . 52
4.3 HashToBall algorithm. 52
4.4 Verification algorithm . 53
4.5 ExpandA . 53

xvii

List of Acronyms

AES Advanced Encryption Standard.

API Application Programming Interface.

APN Apple Push Notification Service.

AVX2 Advanced Vector Extensions 2.

BSON Binary Encoded JavaScript Object Notation.

CORS Cross-Origin Resource Sharing.

COSE CBOR Object Signing and Encryption.

CPRNG Cryptographic Pseudo-Random Number Generator.

CPU Central Processing Unit.

CRT Chinese Remainder Theorem.

CSPRNG Cryptographically Secure Pseudo-Random Number Generator.

CTAP Client to Authenticator Protocol.

CVP Closest Vector Problem.

DSA Digital Signature Algorithm.

DVCS Distributed Version Control System.

ECC Elliptic Curve Cryptography.

ECDSA Elliptic Curve Digital Signature Algorithm.

EdDSA Edwards-curve Digital Signature Algorithm.

FFT Fast Fourier Transform.

xix

FIDO2 Fast Identity Online.

HTTP Hypertext Transfer Protocol.

IDE Integrated Development Environment.

IETF Internet Engineering Task Force.

IP Internet Protocol.

IPSec Internet Protocol Security.

JSON JavaScript Object Notation.

LWE Learning With Errors.

MFA Multi-factor Authentication.

MSB Most Significant Bit.

NFC Near-Field Communication.

NIST National Institute of Standards and Technology.

NTT Number Theoretic Transform.

OS Operative System.

PIN Personal Identification Number.

PoC Proof of concept.

PoK Proof of Knowledge.

PQC Post-Quantum Cryptography.

QROM Quantum Random Oracle Model.

ROM Random Oracle Model.

RP Relying Party.

RPID Relying Party Identity.

RSA Rivest-Shamir-Adleman.

SDK Software Development Kit.

SIMD Single Instruction Multiple Data.

SIS Short Integer Solution.

SoC System on Chip.

SSH Secure Shell.

SVP Shortest Vector Problem.

TLS Transport Layer Security.

USB Universal Serial Bus.

UUID Universally Unique IDentifier.

VS Code Visual Studio Code.

W3C World Wide Web Consortium.

WebAuthn Web Authentication.

XML Extensible Markup Language.

XOF eXtendable-Output Function.

Chapter1Introduction

This introductory chapter begins by outlining the motivation behind the thesis. The
problem area this thesis seeks to contribute to is presented before a research scope
is defined. Next, possible challenges and limitations are described. The research
questions this thesis seeks to address and the research objectives are listed. Finally,
an outline of the entire thesis is presented.

1.1 Motivation

Proving identity is something many people face in their daily lives. Whether they are
logging in on their work mail or simply shopping online, a proof model is needed for
them, the prover, to prove their identity to a service, the verifier. This is traditionally
done by revealing secret information to the service, which is used to verify their
identity, e.g., a password. This is called full-knowledge proofs. Zero-knowledge proofs
allow a prover to prove that a given statement is true without revealing any additional
information about the statement beside the fact that it is true. Proving identity can
therefore be done without revealing any sensitive information, thus preserving the
user’s privacy.

Zero-knowledge protocols are often constructed using public-key cryptography,
which relies on the computational hardness of mathematical problems. Common
problems are integer factorization, used in the Rivest-Shamir-Adleman (RSA) cryp-
tosystem, discrete logarithms over finite fields, used in the Digital Signature Algorithm
(DSA), and discrete logarithms over elliptic curves, used in the Elliptic Curve Digi-
tal Signature Algorithm (ECDSA). All these problems withstand the best-known
algorithms on classical computers, but this is not the case with quantum computers
due to Shor’s algorithm [Sho97]. It is predicted that if the research and development
of quantum computers progress, the building blocks of modern cryptosystems will
break, thus also breaking common cryptographic protocols such as Transport Layer
Security (TLS), Internet Protocol Security (IPSec), and Secure Shell (SSH). The

1

2 1. INTRODUCTION

need to introduce new cryptosystems and standards that builds upon cryptography
resistant to attacks from quantum computers, i.e., quantum-resistant cryptography,
is thus present. Even though such a situation is not in the near future, one should
be prepared as developing new cryptosystems and standards is tedious. Another
reason for migrating to quantum-resistant cryptography is to protect ourselves from
“store now, decrypt later” attacks, where cryptanalysis occurs after traditional cryp-
tosystems are efficiently broken. New cryptographic algorithms need to be developed,
validated, and standardized to ensure the cryptosystems of tomorrow can withstand
quantum computers [NS22].

In 2017, the National Institute of Standards and Technology (NIST) initiated a
process to “solicit, evaluate and standardize one or more quantum-resistant public-
key cryptographic algorithms” [NIS17]. This process turned into the Post-Quantum
Cryptography Competition, which in 2022 culminated in four algorithms selected to
be standardized [NIS22].

This thesis is a combination of both theoretical and practical work. Implementing
a solution that results in a product appealed to both authors and served as a
motivation throughout the work.

1.2 Research Scope

Digital access systems today are mainly based on knowledge factors, where the user
has to provide some knowledge, e.g., a password, to gain access to a service. Textual
passwords are the most common authentication method, where the user and a service
share a secret. Such authentication methods are weak, as anyone with the correct
password can authenticate to the service. In addition, authentication methods based
on personal information require safe storage of this information. All passwords need
to be stored as hashes in a database for comparison when a user tries to authenticate.
The fact is that not all services have sufficient protection of stored user data. One
of the most known data breaches is the attack against LinkedIn in 2014, where
approximately 100 million non-hashed passwords were leaked online [Sco16]. The
leakage of passwords is the main contributor to data breaches. Verizon’s data breach
investigation report for 2022 shows that over 80% of all data breaches in the last 15
years was a result of stolen credentials [Ver22]. This demonstrates the weaknesses
and risks of using passwords as an authentication method.

Alternative solutions to passwords are heavily researched. Multi-factor Authen-
tication (MFA) is one solution to password leakages. Unfortunately, MFA is not
mandatory, and not all services implement it. MFA does not solve the aforementioned
shortcomings of passwords but merely adds a layer of security. This means that
problems like the reuse of passwords and phishing attacks still pose a threat. Adding

1.3. LIMITATIONS AND CHALLENGES 3

layers of security to existing systems is a short-term solution, as future technology
may introduce new attack vectors [NS22].

The title of this master’s thesis is “The Application and Use of Cryptographic
Zero-knowledge Protocols”, and the problem description for this thesis states the fol-
lowing: “The objective of this thesis is to create a zero-knowledge proof that employs
cryptography believed to be resistant to quantum attacks ... the zero-knowledge proof
will be implemented as a zero-knowledge protocol used by a client, functioning as the
prover, to authenticate themselves to a server, functioning as the verifier”. Based on
this, the chosen research scope for the thesis is authentication systems and the use of
zero-knowledge protocols within such systems. An understanding of zero-knowledge
protocols and relevant theory was required, which was done during the literature
study. As the goal was to construct a quantum-resistant zero-knowledge protocol used
for authentication, the authors focused on a quantum-resistant zero-knowledge digital
signature scheme used within a self-developed authentication system. The title of this
master’s thesis is “The Application and Use of Cryptographic Zero-knowledge Proto-
cols”, and the problem description for this thesis states the following: “The objective
of this thesis is to create a zero-knowledge proof that employs cryptography believed
to be resistant to quantum attacks ... the zero-knowledge proof will be implemented as
a zero-knowledge protocol used by a client, functioning as the prover, to authenticate
themselves to a server, functioning as the verifier”. Based on this, the chosen research
scope for the thesis is authentication systems and the use of zero-knowledge protocols
within such systems. An understanding of zero-knowledge protocols and relevant
theory was required, which was done during the literature study. As the goal was
to construct a quantum-resistant zero-knowledge protocol used for authentication,
the authors focused on a quantum-resistant zero-knowledge digital signature scheme
used within a self-developed authentication system. The digital signature scheme
gains its quantum-resistant property from utilizing instances of hard problems within
lattice cryptography. It was created by converting a quantum-resistant interactive
zero-knowledge protocol into a digital signature via the “Fiat-Shamir with Aborts”
technique [Lyu09]. The resulting scheme was then implemented in a passwordless
authentication system. The architecture of the authentication system is inspired by
the Fast Identity Online (FIDO2) standard [All23]. It was created by converting
a quantum-resistant interactive zero-knowledge protocol into a digital signature
via the “Fiat-Shamir with Aborts” technique [Lyu09]. The resulting scheme was
then implemented in a passwordless authentication system. The architecture of the
authentication system is inspired by the FIDO2 standard [All23].

1.3 Limitations and Challenges

Certain restrictions had to be put in place to ensure that the work with this thesis
could be completed within six months. These limitations helped to establish a clear

4 1. INTRODUCTION

scope for the thesis and define what should and should not be included. The following
limitations were placed on the thesis:

• Possible side-channel attacks against the zero-knowledge protocol are disre-
garded.

• A secure communication channel in the form of TLS between the client and RP
is assumed. This should provide encryption and integrity checks for messages
being sent.

• The authors are only developing a prototype as a Proof of concept (PoC), not
production grade software.

Before implementing the proposed authentication system, the authors envisioned
some challenges that could have an impact on the results:

• As the zero-knowledge protocol is based on lattice cryptography, it will operate
on vectors and matrices of polynomials with relatively high degrees. This
results in large key sizes, which could have a negative impact on the time and
resource consumption during key generation and storage of key pairs.

• To avoid leakage of the private key when producing signatures, a technique
called rejection sampling must be used. This could result in a negative impact
on time and resource consumption, especially on a mobile device.

1.4 Research Questions

The aforementioned motivation, problem area, and limitations and challenges result
in the following main goal for the master’s thesis:

How can we use lattice-based cryptography in a zero-knowledge
protocol to implement an efficient and quantum-resistant

authentication system?

Several sub-goals were defined to better answer the thesis’s main goal. Both the
main goal and the research questions were based on the project work conducted
during the autumn of 2022 [NS22].

RQ1 How can instances of hard problems within lattice cryptography be used to
construct a zero-knowledge protocol?

1.5. CONTRIBUTION 5

RQ2 How can such a protocol enable passwordless authentication?

RQ3 How does the performance of the implemented passwordless authentication
system, incorporating the proposed zero-knowledge protocol, compare to similar
state-of-the-art solutions?

The following objectives were pursued to help answer the research questions.

OBJ1 Construct a quantum-resistant zero-knowledge protocol.

OBJ2 Create a test environment that implements passwordless authentication.

OBJ3 Implement the constructed quantum-resistant zero-knowledge protocol in
said test environment.

OBJ4 Test and validate the implemented solution in terms of performance.

1.5 Contribution

Existing implementations of FIDO2 make use of digital signature algorithms listed
in CBOR Object Signing and Encryption (COSE), a set of cryptographic standards
defined by the Internet Engineering Task Force (IETF). Except for the hash-based
digital signature scheme HSS/LSM, defined in RFC 8708 [Hou20], none of the listed
digital signature algorithms are designed to be quantum-resistant. This master’s thesis
offers the following contribution to the research fields of passwordless authentication
and post-quantum cryptographic protocols:

Increased knowledge of the implementation of passwordless authentication through a
lattice-based zero-knowledge digital signature.

1.6 Outline

The rest of this thesis is divided into the following five chapters:

Chapter 2: Background and Related Work introduces background knowledge,
terminology, and a mathematical preliminary relevant to the proposed solution.
Lastly, relevant work within the research field is presented.

Chapter 3: Methodology describes the methodology employed by the authors to
create the final solution. This includes research study, design process, and methods
for implementing the proposed solution.

6 1. INTRODUCTION

Chapter 4: Proposed Solution presents the architecture, design choices, and
implementation of the proposed solution. Code listings for important methods
are shown and explained in detail. Lastly, the interaction between the different
components in the proposed solution is presented.

Chapter 5: Performance and Discussion presents an evaluation of the proposed
solution in terms of efficiency. Metrics such as key sizes and time usage for the
different algorithms are presented. These results are discussed and compared to the
state of the art within lattice-based digital signatures. An evaluation of the proposed
solution in light of pre-defined functional and quality requirements is then carried
out. Finally, the research questions are revisited and a discussion of how this thesis
answers them is presented.

Chapter 6: Conclusion and Future Work summarizes the thesis and presents
to which degree the proposed solution answers the problem description and research
questions. Any unfinished work on the thesis is presented, and future work is
proposed.

Chapter2Background and Related Work

This chapter will introduce relevant knowledge needed to understand the research
area. As the main research area of this thesis deals with zero-knowledge protocols and
their applications, a thorough review of zero-knowledge proofs and their properties,
as well as examples of zero-knowledge protocols, is presented. An overview of Post-
Quantum Cryptography (PQC) with a focus on instances of hard problems within
lattice cryptography will then be given. An interactive lattice-based Σ-protocol with
the zero-knowledge property is then presented. The protocol is transformed into a
lattice-based zero-knowledge digital signature. The outline of the FIDO2 standard
is followed by a discussion of related work within the field of post-quantum digital
signatures and current FIDO2 implementations.

2.1 Zero-Knowledge Proofs

A zero-knowledge proof is a method for one party, the prover, to convince another
party, the verifier, that a given statement is true without revealing any additional
information about the statement. A zero-knowledge proof must satisfy three prop-
erties, the completeness property, the soundness property, and the zero-knowledge
property.

2.1.1 Properties

Completeness A proof is complete if the statement is true and an honest verifier,
i.e., one following the protocol, is convinced by a prover that the statement is true.

Soundness A proof is sound if no dishonest prover, i.e., a prover trying to cheat
the verifier without having the required knowledge, can convince a verifier that a
false statement is true, except with some small probability. This small probability
makes all zero-knowledge proofs probabilistic.

7

8 2. BACKGROUND AND RELATED WORK

Zero-knowledge Suppose the prover provides a true statement. The proof is
zero-knowledge if the verifier learns nothing from the interaction with the prover
except that the statement is true.

In order to prove soundness, i.e., that proof is a Proof of Knowledge (PoK), a
proof demonstrating the existence of a special algorithm referred to as an “extractor”
is required [VJ14]. This extractor functions as a verifier who interacts with the prover.
If the prover successfully demonstrates knowledge of a secret, the extractor should
be able to extract that secret with a probability 1− ϵ in expected polynomial time1.
ϵ is called the soundness error. Even though the existence of an extractor contradicts
the zero-knowledge property, it is important to note that the extractor is a special
algorithm, and is not required to exist during a normal run of a zero-knowledge proof.
The proof of the existence of an extractor is accomplished by granting it certain
privileges in its interaction with the prover.

To prove zero-knowledge, it is required to present a proof that demonstrates
the existence of a special algorithm with certain properties, known as a “simulator”
[VJ14]. In contrast to an extractor, the simulator functions as a certain type of
prover, but unlike a regular prover, the simulator has no knowledge of the secret.
Nevertheless, the simulator must be able to convince any verifier that it has knowledge
of the secret while producing transcripts that are indistinguishable from genuine
zero-knowledge proofs executed with a real prover.

Since a simulator has no knowledge of the secret, it is clear that a verifier would
not be able to extract some information about the secret based on their interaction. If
a transcript from their interaction is distributed identically as a transcript from a real
proof, and a verifier is able to differentiate between a real prover and a simulator, it
would imply that the distribution is not identical. The sheer existence of a simulator
contradicts the soundness property, but as for the extractor, the simulator is not
bound to follow a normal run of the proof, hence being a special algorithm. To
prove the existence of a simulator, the normal run of a proof is executed in “reverse”.
Rewinding the proof allows for a simulator to convince a verifier.

Completeness and soundness are found in almost every general proof system, but
it is the zero-knowledge property that makes a proof system zero-knowledge.

2.1.2 Interactive and Non-Interactive Zero-knowledge Proofs

Zero-knowledge proofs can be categorized as either interactive or non-interactive.
Interactive zero-knowledge proofs require online or present interaction between both

1For an algorithm to run in expected polynomial time, it requires the existence of a polynomial
p(|s|), which ensures that for any given secret s, the upper bound of the algorithm’s expected
run-time is p(|s|). This expectation is calculated over the algorithm’s random choices.

2.1. ZERO-KNOWLEDGE PROOFS 9

parties. In non-interactive zero-knowledge proofs, the information between the prover
and the verifier can be authenticated by the prover itself. This increases performance
as multiple verifications can be made offline.

2.1.3 Σ-Protocols

A Σ-protocol is a protocol that allows for a prover to prove knowledge of various
statements without revealing any additional information by following these three
steps [HLHL10]:

Step 1. Commitment The prover commits to a value while keeping the value itself
hidden. A commitment has two properties that are essential in zero-knowledge
proofs. The hiding property ensures that the verifier learns nothing about the
committed value. The binding property ensures that the prover will not change
its mind after committing.

Step 2. Challenge The verifier responds with a challenge chosen at random after
receiving the commitment. It is essential that the commitment phase precedes
the challenge phase, otherwise, a dishonest prover could cheat.

Step 3. Opening After receiving the challenge, the prover responds with the
opening, a combination of the secret knowledge, the committed value, and the
challenge. The verifier can then use the received commitment and generated
challenge to verify the opening.

2.1.4 Fiat-Shamir Transform

Before explaining the Fiat-Shamir transform, a brief overview of the Random Oracle
Model (ROM) is given. A random oracle is a theoretical “black box” that responds
with a truly random response, chosen uniformly from the set of possible outputs to
every unique query [BR93]. The same query produces the same response, making a
random oracle deterministic. Amos Fiat and Adi Shamir demonstrated in [FS87] how
a random oracle could be utilized to eliminate the need for interaction in protocols
for the generation of signatures. This gave birth to the Fiat-Shamir transform.
The Fiat-Shamir transform is a technique used to transform an interactive proof of
knowledge into a non-interactive one. The verifier’s random challenges, explained in
Section 2.1.3, must be made public throughout the proof for the technique to work
[FS87]. The technique replaces the interactive step of generating a random challenge
with a random oracle. Often in cryptographic systems, a hash function is modeled as
a random oracle, as proof using a hash function cannot be carried out using weaker
assumptions on it. A proof relying on a random oracle is thus secure by showing
that an adversary requires impossible behavior from the oracle, or can break some
cryptographic one-way. If the interactive proof is used in identification schemes, the

10 2. BACKGROUND AND RELATED WORK

resulting non-interactive proof could be used as a digital signature by including the
message to be signed in the random oracle.

2.1.5 The Ali Baba Cave

The Ali Baba Cave [QQQ+01] presents the fundamentals of zero-knowledge proofs
in an intuitive way.

In the Ali Baba Cave, Peggy, the prover, wants to convince Victor, the verifier,
that she knows the secret code to open a gate inside a cave, without revealing the
code itself. To do so, Peggy and Victor will undergo a three-step Σ-protocol.

Interactive Zero-knowledge Proof

As illustrated in Figure 2.1, the cave has two entrances labeled “A” and “B”. Peggy
walks into the cave while Victor waits outside. While inside, Peggy randomly chooses
one entrance out of the two, and commits to that entrance by walking in, as shown
in Figure 2.1a. This commitment is hiding because once Peggy arrives at the gate
and Victor walks in, there is no way for Victor to tell which entrance Peggy has
committed to. The commitment is binding because once Victor has entered the
cave, there is no way for Peggy to change her mind. Victor enters the cave and
shouts the name of the entrance he wants Peggy to use to return, chosen at random
as the challenge. This is shown in Figure 2.1b. Finally, Peggy returns out of the
cave through the entrance challenged by Victor, as her opening. This is shown in
Figure 2.1c. Depending on Peggy’s commitment and Victor’s challenge, there are
two possibilities. The first possibility is that Peggy has to use her secret code to
return out of the cave through the challenged entrance. The other possibility is that
Peggy can return through the same entrance as she entered, thus not having to use
her secret code.

The proof is complete because Peggy convinces Victor by returning through the
challenged entrance. One will notice that a dishonest prover that could guess Victor’s
challenge would be able to convince Victor without knowing the secret code. The
protocol could therefore be repeated several times to make it harder to guess the
correct challenge for each round. A soundness error of 1

2m is achieved by repeating
the protocol m times. Finally, the proof is zero-knowledge as Victor learns nothing
about Peggy’s secret code.

2.1. ZERO-KNOWLEDGE PROOFS 11

(a) Peggy commits to an en-
trance.

(b) Victor challenges
Peggy.

(c) Peggy returns through
the challenged entrance.

Figure 2.1: Interactive zero-knowledge proof illustrated with the Ali Baba Cave.

Non-interactive Zero-knowledge Proof

The Ali Baba Cave can also be used to illustrate the fundamentals of non-interactive
zero-knowledge proofs. By applying the Fiat-Shamir transform, a hash function
H modeled as a random oracle is introduced at both sides of the gate inside the
cave. If Peggy knows the secret code to the gate inside cave C, she can use H to
output a random entrance E = H(C) for her to return through. By filming the
whole sequence, a transcript of the protocol run can be made, which can be verified
offline by Victor. Peggy can also increase the soundness of her proof by repeating
the protocol several times and including the round i in the hash function for each
round, i.e., Ei = H(C||i).

2.1.6 Interactive Schnorr Protocol

In practice, when constructing zero-knowledge protocols, cryptographic one-way
functions are used to achieve the aforementioned properties. One protocol that is
zero-knowledge is the interactive proof of knowledge of a discrete logarithm, also
called the interactive Schnorr protocol [Dam02]. The protocol is defined over a cyclic
group Gq of order q with generator g. The prover wants to prove knowledge of some
secret value s ∈ Zq. Prover and verifier first agree on a large prime q and a generator
g of the multiplicative group Zq. t = gs mod q is public information. The Schnorr
protocol is an instance of Σ-protocols. The prover starts the protocol by generating
a random value y and sending w = gy mod q as the commitment. Upon receipt,
the verifier generates a random challenge c ∈ log2 q and sends it to the prover. One
should note that for the Schnorr protocol to be resilient against a malicious verifier,
the challenge space should not exceed log2 q, as explained in [Mao03]. A challenge
space of Zq will reduce the zero-knowledge property to honest-verifier zero-knowledge,
i.e., the verifier acts according to the protocol by choosing a challenge c uniformly
at random, not adaptively dependent on any input. The reduced zero-knowledge
property will not remain if the Fiat-Shamir transform is applied to transform the
proof into a non-interactive one.

12 2. BACKGROUND AND RELATED WORK

Upon receipt of the challenge, the prover responds with z = c · s + y mod (q − 1)
as the opening. The verifier verifies the proof by checking if gz = w · tc mod q. Figure
2.2 shows each step of the protocol.

Private information: s ∈ Zq

Public information: t = gs mod q

Prover Verifier
y ← Zq

w := gy mod q

w

c← log2 q

c

z := c · s + y

z

gz ?= wtc

Figure 2.2: Sequence diagram of the interactive Schnorr protocol.

The Schnorr protocol is complete since

gz = gcs+y = gy · gsc = w · (gs)c = w · tc

The protocol has a soundness error of ϵ = 1
log2 q , as a dishonest prover has to guess

the correct challenge to prove knowledge without knowing s. If a dishonest prover
can predict the challenge value c, they can generate a random opening z ∈ {0, q − 2}
and send w′ = gzt−c as the commitment. The verifier will then respond with the
already predicted challenge c before the prover responds with the pre-generated
opening z. The verifier will be convinced by this as gz = w′ · tc = (gz · t−c) · tc = gz.
A sequence diagram of the protocol with a dishonest prover can be viewed in Figure
2.5.

In order to prove that the interactive Schnorr protocol is a PoK, the existence of
an extractor algorithm must be demonstrated. The extractor is able to retrieve the
secret s with probability 1− ϵ by rewinding the prover’s execution of the protocol.
The extractor algorithm can be viewed in Figure 2.3. The protocol follows a normal
protocol run, but after receiving the opening z, the extractor rewinds the protocol

2.1. ZERO-KNOWLEDGE PROOFS 13

and sends another randomly sampled challenge c′ ∈ log2 q. After receiving another
opening z′, the extractor can retrieve the secret s as it has received two distinct
openings to the same commitment.

gz

tc
= gz′

tc′

gz

gz′ = tc

tc′

gz−z′
= gs(c−c′)

=⇒ z − z′ = s(c− c′)

s = z − z′

c− c′

The extractor will not output the secret s if c′ is sampled such that c = c′, hence
a soundness error ϵ = 1

log2 q is achieved.

For the Schnorr protocol to be (honest-verifier) zero-knowledge, the existence of
a simulator must be demonstrated. The existence of a simulator is only possible
with a challenge space of Zq, i.e., a honest-verifier must be assumed. One should
notice that a challenge space of Zq results in the simulator algorithm not running in
the expected polynomial time. The simulator must be able to produce transcripts
of a protocol run with a distribution indistinguishable from a normal protocol run,
without having knowledge of the secret s. Such an algorithm is achieved by running
the protocol “in reverse”, as shown in Figure 2.4. As the opening z is chosen at
random, the resulting commitment w is random, thus resulting in a distribution
identical to that from a real protocol run.

14 2. BACKGROUND AND RELATED WORK

Private information: s ∈ Zq

Public information: t = gs mod q

Prover Extractor
y ← Zq

w := gy mod q

w

c← log2 q

c

z := c · s + y

z

c′ ← log2 q

c′

z′ := c′ · s + y

z′

s = z − z′

c− c′

Figure 2.3: Extractor algorithm for interactive Schnorr.

Simulator
z ← Zq

c← Zq

w := gz

tc

Output: (w, c, z)

Figure 2.4: Simulator algorithm for interactive Schnorr.

2.1. ZERO-KNOWLEDGE PROOFS 15

Public information: t = gs mod q

Dishonest prover Verifier
z ← {0, q − 2}
w′ := gz · t−c mod q

w′

c← log2 q

c

z

gz ?= w′tc

Figure 2.5: Sequence diagram of dishonest-prover interactive Schnorr protocol.

2.1.7 Schnorr Signatures

The interactive Schnorr protocol presented in Section 2.1.6 can be transformed into
a non-interactive zero-knowledge proof by utilizing the Fiat-Shamir transform. By
applying the Fiat-Shamir transform, the prover instead “simulates” the interactive
step of receiving a challenge and replaces it with a random oracle. This is done by
introducing a hash function H modeled as a random oracle. The prover can query
the oracle with public parameters and commitment w, and receive a challenge c.
This way, the prover can produce proofs that can be verified by any verifier offline.
If the protocol is utilized for identification purposes, it can also function as a digital
signature if the proof is bound to a specific message m. The signature procedure
Sig(s, g, q, m, t) for the Schnorr digital signature scheme can be viewed in Figure 2.6a.
The corresponding verification procedure Vf(g, q, t, σ, m) can be viewed in Figure
2.6b.

16 2. BACKGROUND AND RELATED WORK

Sig(s, g, q, m, t)
y ← Zq

w := gy mod q

c← H(g, t, w, m)
z := c · s + y mod (q − 1)
Output σ = (z, w, c)

(a) Signature procedure in Schnorr digital
signature scheme.

Vf(g, q, t, σ, m)
c

?= H(g, t, w, m)

gz ?= wtc

(b) Verification procedure in Schnorr digital
signature scheme.

Figure 2.6

2.2 Post-Quantum Cryptography

One of the most active fields within cryptography is PQC. PQC is the branch of
cryptography investigating cryptographic algorithms designed to withstand attacks
from quantum computers. Quantum computers leverage the information encoded
in systems that exhibit unique quantum properties [LJL+10]. The basic unit of
information in a quantum computer is called qubits. Qubits can either be 0, 1, or a
superposition of both 0 and 1 simultaneously, representing all possible configurations
of the qubit. Another fundamental part of quantum computing is entanglement,
which is when changes to one qubit directly impact another. By representing
information through qubits and leveraging the entanglement of them, complex
problems not yet solvable on classical computers can be solved on quantum computers
[IBM]. Both superposition and entanglement enable the deployment of quantum-
specific algorithms, such as Shor’s algorithm [Sho97]. Shor’s algorithm has proven to
effectively solve mathematical problems fundamental to modern cryptosystems, such
as integer factorization [Mer06], discrete logarithm over finite fields, and discrete
logarithms over elliptic curves [PZ04], which systems like TLS, SSH, IPSec etc.
builds upon. To successfully break these problems, a sufficiently powerful quantum
computer must be in place, which is not the case as of now. Nevertheless, PQC
should be in place before such an event, as the development of new cryptosystems
and standards is tedious work. So-called “store now, decrypt later” attacks are also
one of many reasons to migrate to PQC.

2.2.1 Lattice Cryptography

Lattice cryptography is one of the most prominent fields within PQC. This is reflected
by the ongoing process led by NIST to standardize quantum-resistant public-key
algorithms, where three out of four algorithms ready for standardization rely on
lattice cryptography.

2.2. POST-QUANTUM CRYPTOGRAPHY 17

A lattice is a geometric structure consisting of repeating points in multiple
dimensions. Figure 2.7 shows lattice structures in two and three dimensions. In
general, higher dimensions are used for increased security. However, increased
dimensions also result in increased computational complexity.

x

y

x

y
z

Figure 2.7: Lattice structures in two and three dimensions.

Mathematically speaking, an integer lattice is the set of all possible integer linear
combinations of basis vectors with coefficients in Z. An n-dimensional integer lattice
Λ is a subgroup of the group (Zn,+). Lattices are defined by a set of bases, where a
basis is defined as B ∈ Zn×m.

Definition 1. An integer lattice Λ generated by B is defined as

ΛB = L(b1, . . . , bm) = {
m∑

i=1
zibi : zi ∈ Z, bi ∈ B}

Definition 1 defines all possible integer lattices, but some lattices are more
interesting than others. Two groups of interesting lattices are the ideal lattice and
the q-ary lattice.

Definition 2. Given the quotient polynomial ring Z[x]/(f), where (f) is the ideal I

created by a monic2 polynomial f ∈ Z[x] of degree d. A n-dimensional ideal lattice
ΛI ⊂ Zn, corresponding to the ideal I, is defined as

ΛI =
{

(a0, . . . , an−1) :
n−1∑
i=0

aixi ∈ I

}
2A monic polynomial is a non-zero single-variable polynomial whose leading coefficient is 1.

18 2. BACKGROUND AND RELATED WORK

In cryptography, ideal lattices are particularly relevant as the number of parame-
ters required to define them can be reduced by a square root [Mic07], making them
more efficient. Examples of ideal lattices are Zn and any lattice corresponding to the
ideal R[x]/⟨Xd + 1⟩. The lattices corresponding to the ideal Zq/⟨Xd + 1⟩ where q is
prime are especially well suited for use in cryptography. The ideal Zq/⟨Xd + 1⟩ will
therefore be denoted by Rq,f for the remainder of this thesis.

The last group of interesting lattices is the q-ary lattice, which is a lattice of
all vectors z ∈ Zm where Az ≡ 0. They are of particular interest as they can be
represented by a uniformly random matrix A ∈ Zn×m

q .

Definition 3. Given a uniformly random matrix A ∈ Zn×m
q , a q-ary lattice is

defined as
Λ⊥

q (A) = {z ∈ Zm : Az ≡ 0}

Lattice Problems

Cryptographic one-way functions relying on the hardness of a set of lattice problems
are conjectured to be quantum-resistant [KP20; Pei+16]. The following presents
such lattice problems, but first, some notation is required.

Equation 2.1 shows the sampling of vector values for a vector v of length m,
where the values are drawn from the set [β]. The set [β] is defined for any positive
integer β and denotes the set [β] = {−β, . . . ,−1, 0, 1, . . . , β}.

y ← [β]m (2.1)

A way to check if all elements of a vector v lie in the interval denoted by [β] is to
take the L-infinity norm of v. The L-infinity norm is the element with the largest
absolute value in a vector. One can therefore indicate that a vector v is in [β] by
writing ||v||∞ ≤ β. The L-infinity norm may also be used to check whether a vector
v is short. To do so, one must define a maximum limit for what is considered short;
let’s call this limit L. By checking if ||v||∞ ≤ L, one has determined whether or not
v is short. The shortest vector in a lattice Λ is denoted by λ(Λ).

Shortest Vector Problem

Definition 4. Given the vector space V defined by a lattice Λ, the Shortest
Vector Problem (SVP) is to output a short non-zero vector v ∈ V in Λ such that
||v|| = λ(Λ).

One should note SVP asks for a short vector, not the short. This implies that
several vectors vi ∈ V fulfill the equation in Definition 4.

2.2. POST-QUANTUM CRYPTOGRAPHY 19

To guarantee a larger set of possible short vectors, one can use the γ-approximate
SVP, denoted by SV P γ . In SV P γ , one is asked to output a vector v ∈ V where
||v|| ≤ γ · λ(Λ), where γ ≥ 1.

Closest Vector Problem

Definition 5. Given the vector space V defined by a lattice Λ as well as a vector v
in V , but not necessarily in Λ, the Closest Vector Problem (CVP) is to output
the vector closest to v in Λ.

The γ-approximate CVP, denoted by CV P γ , asks for a vector x in Λ where
||x − v|| ≤ γ. As CVP is a generalization of SVP, it follows that the hardness of
SVP implies the hardness of CVP, as shown in [GMSS99].

The two most prominent lattice problems used in lattice-based cryptographic
schemes are the Short Integer Solution (SIS) problem and the Learning With Errors
(LWE) problem.

Short Integer Solution Problem The SIS problem was introduced in [Ajt96]
and is a hard problem within the field of lattice cryptography that involves finding a
short, non-zero vector in a defined lattice.

Definition 6. Given a matrix A ∈ Zn×m
q consisting of m uniformly random

column-vectors ai. The SIS problem is to find a vector z ∈ Λ⊥
q (A) such that

||z|| ≤ β and
Az ≡ 0

Finding a vector z that satisfies Az ≡ 0 is trivial through Gaussian elimination.
The constraint on the norm of z makes the SIS problem hard.

In the breakthrough paper of Miklós Ajtai [Ajt96], a family of one-way functions
based on SIS was presented, the most prominent one being Ajtai’s one-way function,
which relies on the hardness of SIS.

Definition 7. Given a matrix A ∈ Zn×m
q and a vector x ∈ {0, 1}m, Ajtai’s

one-way function is defined as

fA(x) = Ax mod q

Ajtai also showed in [Ajt96] that the SIS problem is secure in an average-case
scenario if SV P γ is hard in a worst-case scenario.

20 2. BACKGROUND AND RELATED WORK

Figure 2.8 shows a q-ary lattice formed by the basis B = (b1, b2). As with the
general SIS problem, the hardness lies in finding a short, non-zero vector z, which
satisfies the equation Az ≡ 0. All lattice points satisfy the equation, but only the
points within the blue circle are considered to be short.

(0,0)

b1

b2

Figure 2.8: Lattice defined by basis b1 and b2. The short solution lies within the
blue circle, defined by β.

Learning with Errors Problem The LWE problem was first introduced by Oded
Regev in 2005 [AR05], and is a way to hide a secret vector by adding noise to it.
There are two main versions of the LWE problem, search and decision LWE. These
two versions were shown to be equivalent in [Reg09].

Definition 8. Let X be a probability distribution over the additive group on reals
modulo one, denoted by T = R/Z, and let s ∈ Zn

q be a fixed vector. The search
LWE problem is to output the correct fixed vector s given access to polynomially
many samples of As,X , where a sample is a pair (a, t) such that

a $← Zn
q and

t = ⟨a, s⟩+ e mod q, where

e
X← T

Definition 9. The decision LWE problem asks to distinguish between samples
from As,X , defined in Definition 8, and uniformly random samples from the vector
space Zn

q × T.

2.2.2 Reduction of Lattice Problems

All lattice problems presented in this thesis can be reduced to the CVP in polynomial
time [TJB12]. Problem A can be reduced to problem B if any of the methods used
to solve problem B can be used to solve problem A. This means problem B is at

2.2. POST-QUANTUM CRYPTOGRAPHY 21

least as hard as problem A. This reduction between lattice problems is illustrated in
Figure 2.9, where an arrow from problem B to problem A reflects the reduction from
problem B to A.

CVP = CV P1 is known to be NP-hard [TJB12], and as seen in Figure 2.9 all
problems can be reduced to CVP. This implies that solving LWE and SIS is as hard
as solving CVP.

CV P SV P SIS LWE

Figure 2.9: Reduction of lattice problems. Inspired by [TJB12]

2.2.3 Interactive Lattice-Based Zero-knowledge Protocol

The following is a presentation of how a lattice-based digital signature can be
constructed by the use of module LWE and module SIS. Module refers to vectors of
polynomials. This is preferred as polynomials are able to represent a large amount
of information more concisely. For example, one polynomial of degree n− 1 is able
to represent a list of n integers, as shown in Equation 2.2.

cn−1xn−1 + . . . c2x2 + c1x + c0 7→ {cn−1, . . . , c2, c1, c0} (2.2)

The use of polynomials results in more efficient protocols. The soundness of
protocols working with polynomials leverages the fact that two distinct polynomials
disagree on almost all possible points in a field F [LEMT22].

The following protocols will therefore work with polynomials in the ring (Rq,f , +,×),
where Rq,f = Zq/⟨Xd + 1⟩. f ∈ Z[X] is a monic irreducible3 polynomial of degree d.
Sampling a random vector v← [β]m where v ∈ Rm

q,f means to sample a vector of m

polynomials of degree d with coefficients in [β].

The following interactive zero-knowledge protocol and digital signature scheme are
from Vadim Lyubashevsky’s survey [Lyu20]. First, a Σ-protocol that is honest-verifier
zero-knowledge, similar to the interactive Schnorr protocol from Section 2.1.6, will
be constructed. The Fiat-Shamir transform will then be applied to transform the
interactive lattice-based zero-knowledge protocol into a lattice-based digital signature
scheme.

Equation 2.3 is the one-way function to be used in the lattice-based zero-knowledge
protocol. The matrix A ∈ Rn×m

q,f defines the q-ary lattice Λ⊥
q , while s1 ∈ [β]m, s2 ∈

3An irreducible polynomial is a polynomial that cannot be factorized into the product of two
non-constant polynomials.

22 2. BACKGROUND AND RELATED WORK

[β]n are vectors of short norm polynomials4 in Λ⊥
q . The public key is (A, t), while

the private key is (s1, s2). Recovering the private key given the public key is as hard
as solving the Module LWE problem.

As1 + s2 = t ∈ Rn
q,f (2.3)

The goal of the lattice-based zero-knowledge protocol is to prove knowledge of
two vectors (s1, s2) of short norm polynomials, but this turns out to be considerably
less efficient than for Schnorr and the discrete logarithm setting. The reason for this
is that not only does one need to prove knowledge of (s1, s2) satisfying Equation
2.3, but also that the coefficients of (s1, s2) lies in a certain range. This range would
ideally be [β], but a slightly larger [β̄] is also fine [Lyu20].

The prover and verifier first agree on a dimension (n, m), as well as a degree d

and a large prime q which together define the polynomial ring Rq,f . They also agree
on the integer values β̄ and γ. Finally, they agree on a uniformly random matrix
A ∈ Rn×m

q,f . t = As1 + s2 ∈ Rn
q,f is public information.

The protocol starts with the prover sampling two vectors of polynomials y1 ∈
[γ + β̄]m, y2 ∈ [γ + β̄]n uniformly, before sending ω = H(Ay1 + y2) to the verifier as
the commitment. The verifier responds with a challenge c← C ⊂ Rq,f before prover
responds with z1 = c · s1 + y1, z2 = c · s2 + y2 as the opening. The verifier can then
verify by checking if H(Az1 + z2 − c · t) = ω and that ||z1||∞ ≤ β̄ and ||z2||∞ ≤ β̄.
A hash of Ay1 + y2 is sent as the commitment instead of the actual vector to keep
the size of the output small.

One difference between the interactive lattice-based zero-knowledge protocol and
the interactive Schnorr protocol explained in Section 2.1.6 is that (z1, z2) need to
consist of short norm polynomials. Without this constraint, forging valid (z1, z2)
would be trivial through Gaussian elimination. To countermeasure this, both the
polynomials in (y1, y2) and the challenge polynomial c must be of short norm.

Since a short-norm challenge polynomial c is needed to output (z1, z2) consisting
of short-norm polynomials, the challenge space C needs to consist of only short-norm
polynomials. According to [Lyu20], the challenge space is constructed such that
exactly η coefficients are from the set {−1, 1}, and the rest are 0. The challenge
space C is thus defined as

C = {c ∈ [1] : ||c||1 = η} (2.4)

4In a short norm polynomial, all coefficients are short, i.e., [c0, c1, . . . , cn−1] ∈ [β]n.

2.2. POST-QUANTUM CRYPTOGRAPHY 23

where ||c||1 is the L1-norm5, or Manhattan Distance, of c. η is defined as the
smallest integer such that 2η

(
d
η

)
> 2256. This way, the challenge space is larger than

the output domain of e.g. SHA-256.

Since the polynomials in (y1, y2) and the challenge polynomial c are of short
norm, the resulting (z1, z2) would “leak” information about the secret (s1, s2), as the
distribution of (z1, z2) is not uniform. To prevent this, a technique called rejection
sampling is used to ensure that the distribution of (z1, z2) are independent of (s1, s2).

Rejection Sampling is a technique used to generate samples within a target
probability distribution, by drawing samples from another known probability dis-
tribution. Generated values that fall outside the target probability distribution
are rejected, while those within are kept. The technique ensures the distribution
contains randomness, while still being true to the given probability distribution.
A practical example would be to generate samples within the normal distribution
N (σ = 1, µ = 0) by drawing samples from the uniform distribution U[a=−5,b=5]. An
illustration of how this would look like can be viewed in Figure 2.10.

REJECTED

ACCEPTED

Figure 2.10: The figure shows rejection sampling when generating random values
following a normal distribution. The majority of sampled values fall outside the
target distribution and are thus rejected.

Rejection sampling in light of the interactive lattice-based zero-knowledge protocol
will be done a little differently as the goal is not to draw samples from a given

5The L1-norm of a vector v is the sum of the magnitudes of a vector in a space.

24 2. BACKGROUND AND RELATED WORK

probability distribution, but to remove any dependency between the distribution
of the secret (s1, s2) and the opening (z1, z2). The goal is to sample (y1, y2)
from a distribution, and together with c, compute an opening (z1, z2) which has
an output distribution which is indistinguishable from the output distribution of
(y1, y2). A simple and effective way to do this is to restrain the L-infinity norm of
the polynomials that comprise z1 and z2 to [β̄]. This way, the output distribution of
e.g. z1 is independent of the output distribution of s1, due to y1 acting as a masking
vector [Lyu20].

The resulting interactive lattice-based zero-knowledge protocol after applying
rejection sampling can be viewed in Figure 2.14. Private information is s1 ∈
[β]m, s2 ∈ [β]n, while public information is A ∈ Rn×m

q,f , t = As1 + s2 ∈ Rn
q,f .

Unlike the interactive Schnorr protocol, rejection sampling is added. If the rejection
sampling algorithm rejects z1 or z2, the protocol is terminated and has to restart, thus
decreasing the overall performance of the protocol. It is important to mention that
the probability for rejection and consequently restarting the protocol is independent
of the secret (s1, s2). This is important because any dependency between run-time
and the secret would lead to the possibility of side-channel attacks where information
about the secret could be deduced by observing the run-time of the protocol [Lyu20].

The protocol is complete since

H(Az1 + z2 − c · t) = H(A(cs1 + y1) + (cs2 + y2)− c(As1 + s2))
= H(Acs1 + Ay1 + cs2 + y2 −Acs1 − cs2)
= H(Acs1 −Acs1 + cs2 − cs2 + Ay1 + y2)
= H(Ay1 + y2)
= ω

The protocol has a soundness error of ϵ = 1
|C| , where |C| is the cardinality6 of the

challenge space C. A dishonest prover who is able to guess the challenge c will be able
to prove knowledge of the secret (s1, s2) without having knowledge of it. Figure 2.11
shows how a dishonest prover who is able to guess challenge c would convince the
verifier. The prover would here sample random z1 ← [β̄]m and z2 ← [β̄]n and send
ω = H(Az1 + z2− ct) as commitment. The verifier will respond with challenge c and
prover responds with (z1, z2). The verifier is convinced as ||z1||∞ ≤ β̄, ||z2||∞ ≤ β̄

and H(Az1 + z2 − c · t) = ω.

In order to prove that the protocol is a PoK, the existence of an extractor
algorithm must be demonstrated. The extractor must be able to retrieve the secret

6The cardinality of a set is the number of elements in that set.

2.2. POST-QUANTUM CRYPTOGRAPHY 25

(s1, s2) with probability 1− ϵ. It does so in a similar manner as for the interactive
Schnorr protocol, presented in Section 2.1.6, by rewinding the protocol run. Figure
2.12 shows a sequence diagram of the extractor. If the extractor is able to receive
two different openings (z1, z2) and (z′

1, z′
2) with two different challenges c, c′ from

the same commitment ω, the following equation shows that the secret (s1, s2) can
be retrieved, unless one can find a collision in H [Lyu20].

Az1 + z2 − ct = Az′
1 + z′

2 − c′t
A(z1 − z2) + (z′

1 − z′
2) = (c− c′)t

A(z1 − z2) + (z′
1 − z′

2)
(c− c′) = t

Az1 − z2)
c− c′ + z′

1 − z′
2

c− c′ = t

=⇒
{

s1 = z1−z2
c−c′

s2 = z′
1−z′

2
c−c′

The above equation holds if c = c′, hence resulting in the protocol achieving
ϵ = 1

|C| as soundness error.

26 2. BACKGROUND AND RELATED WORK

Interactive lattice-based zero-knowledge protocol
Dishonest prover Verifier

z1 ← [β̄]m

z2 ← [β̄]n

ω := H(Az1 + z2 − ct)

ω

c← C

c

(z1, z2)

||z1||∞
?
≤ β̄

||z2||∞
?
≤ β̄

H(Az1 + z2 − c · t) ?= ω

Figure 2.11: Sequence diagram of dishonest-prover lattice-based zero-knowledge
protocol.

2.2. POST-QUANTUM CRYPTOGRAPHY 27

Interactive lattice-based zero-knowledge protocol
Prover Extractor
y1 ← [γ + β̄]m

y2 ← [γ + β̄]n

ω := H(Ay1 + y2)

ω

c← C

c

z1 := cs1 + y1

z2 := cs2 + y2

if z1 /∈ [β̄]mor z2 /∈ [β̄]n :
(z1, z2) :=⊥

(z1, z2)

c′ ← C

c′

z′
1 := c′s1 + y1

z′
2 := c′s2 + y2

if z′
1 /∈ [β̄]mor z′

2 /∈ [β̄]n :
(z′

1, z′
2) :=⊥

(z′
1, z′

2)

s1 = z1 − z′
1

c− c′

s2 = z2 − z′
2

c− c′

Figure 2.12: Extractor algorithm for the interactive lattice-based zero-knowledge
protocol.

In order to prove that the protocol is (honest-verifier) zero-knowledge, a proof
showing that the probability of ⊥ is the same for all (s1, s2) where ||si||∞ ≤ β and
that the distribution of (z1, z2) are independent of (s1, s2) must be provided. Lemma
4 in [Lyu20] provides both, where the following probability for not rejecting (z1, z2)
is also given:

28 2. BACKGROUND AND RELATED WORK

Pr
y1,y2

[(z1, z2) ̸=⊥] =
(

2β̄ + 1
2(β̄ + γ) + 1

)d(m+n)

(2.5)

The protocol is (honest-verifier) zero-knowledge since a simulator is able to
produce transcripts with output distribution indistinguishable from real transcripts.
Equation 2.5 must be used for a simulator to produce a valid transcript. A random
oracle query on w, H(w), is simulated by checking whether or not a value for w
is assigned, and if not, samples a random value ω ← {0, 1}256 and sets H(w) = ω

as the output from the random oracle. A valid transcript is simulated by the
simulator outputting (ω ← {0, 1}256, c← C,⊥) with probability 1 - Pr

y1,y2
[(z1, z2) ̸=⊥].

Otherwise, with probability Pr
y1,y2

[(z1, z2) ̸=⊥], the simulator does the same as the
simulator in Figure 2.4 and runs the protocol in “reverse”. The simulator samples
z1 ← [β̄]m, z2 ← [β̄]n, c ← C, ω ← {0, 1}256, programs ω = H(Az1 + z2 − ct) and
outputs (ω, c, z1, z2). Figure 2.13 shows the steps performed by the simulator.

Simulator
With prob. 1− Pr

y1,y2
[(z1, z2) ̸=⊥] :

ω ← {0, 1}256

c← C
Output: (ω, c,⊥)

With prob. Pr
y1,y2

[(z1, z2) ̸=⊥] :

z1 ← [β̄]m

z2 ← [β̄]n

c← C
ω := H(Az1 + z2 − ct)
Output: (ω, c, z1, z2)

Figure 2.13: Simulator in the interactive lattice-based zero-knowledge protocol.

2.2. POST-QUANTUM CRYPTOGRAPHY 29

Interactive lattice-based zero-knowledge protocol
Prover Verifier
y1 ← [γ + β̄]m

y2 ← [γ + β̄]n

ω := H(Ay1 + y2)

ω

c← C

c

z1 := cs1 + y1

z2 := cs2 + y2

if z1 /∈ [β̄]mor z2 /∈ [β̄]n :
(z1, z2) :=⊥

(z1, z2)

||z1||∞
?
≤ β̄

||z2||∞
?
≤ β̄

H(Az1 + z2 − c · t) ?= ω

Figure 2.14: Sequence diagram of the lattice-based (honest-verifier) zero-knowledge
protocol.

2.2.4 Lattice-Based Digital Signature

The following presents a lattice-based digital signature scheme. The combination of
rejection sampling and the Fiat-Shamir transform forms a paradigm called “Fiat-
Shamir with Aborts”, which is used to “transform an interactive identification
protocol that has a non-negligible probability of aborting into a signature by repeating
executions until a loop iteration does not trigger an abort” [DFPS23]. The paradigm
was first introduced by Vadim Lyubashevsky in [Lyu09]. The variant of “Fiat-Shamir
with Aborts” used to transform the interactive lattice-based zero-knowledge protocol
presented in Section 2.2.3 into a digital signature scheme is simplified in comparison
to the version explained in [Lyu09].

The step where the prover sends a commitment ω to the verifier and receives
a challenge c is replaced by a quantum random oracle. In the case of classical
computers, i.e., ROM, an adversary can make queries to the random oracle on any
combination of inputs. However, in the case of quantum computers and Quantum

30 2. BACKGROUND AND RELATED WORK

Random Oracle Model (QROM), an adversary can also make quantum queries on
the oracle, i.e., querying the oracle on a superposition of the inputs, as shown in
[BDF+11]. Traditionally, random oracles are modeled with the use of cryptographic
hash functions, but the security proofs for ROM do not automatically apply to
QROM. However, the recent works of [DFG13; Unr17; DFMS19; LZ19] show that
as long as hash functions with the recommended quantum security are used, no
successful attacks on the ROM exist when the adversary is given the added quantum
capability, i.e., querying on a superposition of the inputs. The recommended hash
functions for 128-bit quantum security are 256-bit outputs for 2nd-preimage resistance
and 384-bit outputs for collision resistance [Lyu20].

The quantum random oracle used in the digital signature scheme is modeled
by a hash function H, which outputs a polynomial c ∈ C. The protocol acts as a
digital signature if the proof is bound to a specific message µ. Figure 2.15a and
2.15b present the signature and verification procedure respectively for the lattice-
based digital signature. While the interactive protocol restarts if (z1, z2) =⊥, the
signing procedure in the digital signature scheme can run in a loop until the rejection
sampling algorithm “accepts” the opening (z1, z2) and outputs the signature σ.

Sig(q, n, m, γ, β̄, f, s1, s2, A, t, µ)
while true :

y1 ← [γ + β̄]m

y2 ← [γ + β̄]n

ω := H(Ay1 + y2)
c← H(A, t, ω, µ)
z1 := cs1 + y1

z2 := cs2 + y2

if z1 ∈ [β̄]m and z2 ∈ [β̄]n :
Output σ = (z1, z2, ω, c)

(a) Signature procedure in the lattice-based
digital signature scheme.

Vf(q, n, m, β̄, f, A, t, σ, µ)
c

?= H(A, t, ω, µ)

||z1||∞
?
≤ β̄

||z2||∞
?
≤ β̄

H(Az1 + z2 − c · t) ?= ω

(b) Verification procedure in the lattice-based
digital signature scheme.

Figure 2.15

The signature procedure in Figure 2.15a resembles “Bernoulli trials”, i.e., repeated
independent trials with exactly two possible outcomes. The probability of both
z1 ∈ [β̄]m and z2 ∈ [β̄]n can be written as P(z1 ∈ [β̄]m∩z2 ∈ [β̄]n). The probability of
P(z1 ∈ [β̄]m∩z2 ∈ [β̄]n) is equivalent to the probability in Equation 2.5. (z1, z2) ̸=⊥
is defined as “success”, while (z1, z2) =⊥ is defined as “failure”. X is defined as
the number of signature attempts until a valid signature is produced, including the

2.3. FIDO2 31

attempt where the valid signature is produced. According to [PU02], the expected
number of attempts E[X] until a valid signature is produced, i.e., (z1, z2) ̸=⊥, is
given by

E[X] = 1
Psuccess

By substituting Psuccess with Equation 2.5, the following expression gives the
expected number of signature attempts until a valid signature is produced

E[X] = 1(
2β̄+1

2(β̄+γ)+1

)d(m+n) (2.6)

As pointed out by the authors of [Lyu20], the presented lattice-based digital sig-
nature scheme is fairly similar to the digital signature scheme CRYSTALS-Dilithium,
which is to be presented in Section 2.4.2. The schemes differ in Dilithium’s focus
on reducing the public key and signature size, as well as the performance of the key
generation, signature, and verification algorithms.

2.3 FIDO2

The path towards a passwordless future is being paved, with FIDO2 being the
standard opted for by industry leaders. FIDO2 is an umbrella term that covers
multiple specifications. Two of these are Client to Authenticator Protocol (CTAP)
and Web Authentication (WebAuthn), which are two specifications defining the
communication between the components in the FIDO2 standard. CTAP is a protocol
for secure communication between authenticators and clients, while WebAuthn defines
a protocol specification for communication between clients and RPs. Figure 2.16
illustrates the relationship between the components and the different communication
protocols defined in the FIDO2 standard.

Figure 2.16: The components of the FIDO2 standard and communication protocols
between them.

32 2. BACKGROUND AND RELATED WORK

2.3.1 Terminology

Some protocol-specific terminology is needed before diving into specifics of FIDO2.

• Client Application An intermediary entity typically implemented in the user
agent. Responsible for communication with the RP server and authenticator
[Con19].

• Relying Party The server that processes register and authentication requests.
It also handles user data such as public keys and is responsible for creating
challenges for users authenticating towards the service [Con19].

• Authenticator A cryptographic entity used by a FIDO2 client to generate a
public key credential and register it with an RP, as well as authenticating by
verifying the user. The authenticator handles the cryptographic signing of the
challenge received from RP [Con19].

• Test of User Presence A test of user presence is a simple form of authorization
gesture and technical process where a user interacts with an authenticator,
yielding a boolean result. Note that this does not constitute user verification
as a user presence test, by definition, is not capable of biometric recognition,
nor does it involve the presentation of a shared secret such as a password or
Personal Identification Number (PIN) [Con19].

• User Verification The technical process by which an authenticator verifies the
user registering or authenticating towards the RP server. User verification may
be instigated through various authorization gesture modalities, e.g., through a
touch plus PIN code, password entry, or biometric recognition, e.g., presenting
a fingerprint. The intent is to distinguish individual users [Con19].

• Relying Party Identity (RPID) A unique ID used for identifying a specific
RP. The ID is used in various verification checks throughout the protocol
[Con19].

The WebAuthn specification defines two ceremonies, registration and authen-
tication. Both of these are passwordless, a user only needs to enter their unique
username and have an authentication method (authenticator app, physical security
key, or biometrical identification) ready. There are three main components in the
specification, RP, a browser + RP JavaScript Application, hereinafter referred to as
client application, and an authenticator. The following two sections will explain in
detail the key steps in each of the two ceremonies.

2.3. FIDO2 33

2.3.2 Registration Ceremony

The WebAuthn documentation by World Wide Web Consortium (W3C) [Con19]
defines the registration ceremony as follows: “The ceremony where a user, a Relying
Party, and the user’s client (containing at least one authenticator) work in concert to
create a public key credential and associate it with the user’s Relying Party account.
Note that this includes employing a test of user presence or user verification.” Most
of this process is hidden from the user’s perspective, the user only needs to enter a
unique username and use an authenticator to register an account. Figure 2.17 shows
the registration ceremony as described by the WebAuthn documentation. A user
registering for a service will use a browser to visit the webpage. This webpage will
be running the JavaScript Application, which is responsible for communicating with
the RP server.

Figure 2.17: WebAuthn Registration Ceremony [Con19].

There are seven main steps in the WebAuthn registration ceremony. Figure 2.17
shows the steps as well as the message flow between the three main components in
the protocol.

0. A user enters their username. A request for registration is sent from the client
application to the RP server

1. When the RP server receives the username, a unique challenge, user info, and
RP information is sent to the client application.

2. The client application forwards this information to the authenticator, together
with clientDataHash. The clientDataHash is a hash of the challenge con-
catenated with the RPID, i.e., clientDataHash = H(challenge + RPID).

34 2. BACKGROUND AND RELATED WORK

3. On reception, the authenticator requires to verify user presence or user verifica-
tion. After this is completed, a new key pair and credential ID are generated,
together with attestation data7. The private key is stored with a mapping to
the credential ID on the authenticator.

4. From the key pair, the public key is retrieved and sent to the client application
together with credential ID and attestation data.

5. The public key and credential data are concatenated into one object called
clientDataJSON. This object and the attestation data are sent to the RP
server

6. RP server runs a series of verification checks on the received data before the
public key is stored together with the user ID for use in the authentication
ceremony.

2.3.3 Authentication Ceremony

The WebAuthn documentation by W3C [Con19] defines the authentication ceremony
as follows: “The ceremony where a user, and the user’s client (containing at least one
authenticator) work in concert to cryptographically prove to a Relying Party that the
user controls the credential private key associated with a previously-registered public
key credential. Note that this includes a test of user presence or user verification.”
As stated in the documentation, the overall goal of the authentication ceremony is to
cryptographically prove to the RP server that the user is in possession of the correct
private key corresponding with the public key stored by the RP server. The only
actions needed from the user are providing their username and a user verification or
test of user presence, which are both described in Section 2.3.1.

7Attestation data is the generated public key signed with the attestation certificate, which is
built into the authenticator when manufacturing it. The attestation certificate is specific to a model
[Con23].

2.3. FIDO2 35

Figure 2.18: WebAuthn Authentication Ceremony [Con19].

Similar to the registration ceremony, the authentication ceremony consists of
seven main steps. These are all presented in Figure 2.18.

0. A user enters their username. A request for authentication is sent from the
client application to the RP server.

1. If the RP server has an entry for the received username, the corresponding
credential ID, as well as a challenge, are sent as a response.

2. The client application sends the RPID and clientDataHash to the authentica-
tor.

3. After receiving the request from the client application, the authenticator does a
lookup on the received RPID and credential ID. If it finds a private key stored
with that specific mapping, it asks the user to consent to the authentication
attempt before it signs the received clientDataHash with the retrieved private
key. It generates the authenticator data which is the hash of the RPID, i.e.,
authenticatorData = H(RPID).

4. The authenticator returns the signature and authenticator data to the client
application.

5. Client application creates a new data object called clientDataJSON, which is
sent to the RP server together with the signature and authenticator data.

6. RP server conducts a series of verification checks, including verification of the
received signature by the use of the corresponding public key received during

36 2. BACKGROUND AND RELATED WORK

registration. If all verification checks are passed, the client is successfully
authenticated.

2.3.4 WebAuthn Authenticators

During the registration and authentication ceremony in WebAuthn, an authenticator
needs to be used. There are two groups of authenticators, roaming and platform
authenticators. Roaming authenticators are devices separate from the client, such
as security keys and smartphones. A platform authenticator is located on the same
device as the client, such as on-device biometrical authentication. Common for
these authenticators is that they are responsible for generating cryptographic key
pairs during the registration ceremony, and responsible for producing legitimate
signatures during the authentication ceremonies. Per the WebAuthn documentation,
there are four digital signature algorithms that must be implemented by an RP
server: the ECDSA on the NIST curve P-256, the RSA signature algorithm with
SHA-256, the RSASSA-PSS8 with SHA-256 and Edwards-curve Digital Signature
Algorithm (EdDSA) with 256-bit keys [Con15]. Note, all these signature algorithms
are based on underlying problems in cryptography that are considered unsafe with
the introduction of a sufficiently powerful quantum computer.

2.4 Related Work

Exploring existing literature relevant to the master’s thesis is essential to identify any
gaps our thesis may fill. The following presents the current state of research within
the field of post-quantum cryptography, as well as the inner workings of existing
authenticators that function as key components in WebAuthn.

2.4.1 NIST Post-Quantum Competition

The foreseen realization of a sufficiently efficient and powerful quantum computer,
that is able to run Shor’s algorithm, is heavily debated. Nevertheless, it is crucial
to have cryptosystems and standards that can withstand quantum computers in
place prior to such an occurrence. Developing and implementing new cryptographic
standards is tedious work. The ongoing process to “solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptographic algorithms” is led by NIST,
and has culminated in four candidates chosen for standardization, CRYSTALS-Kyber,
CRYSTALS-Dilithium, Falcon, and SPHINCS+ [NIS17]. CRYSTALS-Kyber is the
only public-key encryption key-establishment algorithm, while the other three are
digital signature algorithms. The security of both Dilithium and Falcon relies on
the hardness of lattice problems, explained in Section 2.2.1, while SPHINCS+ is
a stateless hash-based signature algorithm [BHH+15]. Dilithium and Falcon are

8RSASSA-PSS is a probabilistic version of RSA.

2.4. RELATED WORK 37

the most efficient algorithms, and NIST have chosen Dilithium as the primary one.
Falcon is to be used by applications in need of smaller signatures than those offered
by Dilithium. SPHINCS+ was included as a backup option as its security relies on
another mathematical hard problem than the other three algorithms. This section
will focus on Dilithium, as it is considered by NIST as the primary digital signature,
as well as being the digital signature most similar to the digital signature presented
in Section 2.2.4.

2.4.2 CRYSTALS-Dilithium

CRYSTALS-Dilithium [DKL+18] is a digital signature scheme that relies on the
hardness of LWE and SIS over module lattices. The scheme is constructed by
transforming an interactive zero-knowledge proof into a non-interactive proof, with
the use of “Fiat-Shamir with Aborts”.

The authors of Dilithium claim that the scheme is easy to implement. A direct
cause of this is that sampling of vectors is done following a uniform distribution
instead of a Gaussian distribution, as is the case for the digital signature scheme
Falcon [FHK+18]. The implementation of sampling from a Gaussian distribution is
much more complex and error-prone, and can easily lead to implementation errors,
especially if the scheme is deployed in a larger system containing several nuances.
Secure implementation of such sampling protected against side-channel attacks is
also highly non-trivial, as pointed out by [GHLY16].

The public key size of Dilithium is claimed to be reduced by a factor of 2.5
compared to the previously most efficient lattice-based signatures schemes that also
sample from a uniform distribution. This shrinkage is done at the expense of signature
size, which increases by roughly 150 bytes for the recommended security level.

Another improvement by the authors of Dilithium is the improved implementation
of the Number Theoretic Transform (NTT), which is the main component in lattice-
based schemes. NTT is the most efficient method for multiplying two polynomials
of high degree with integer coefficients [LZ22], and is a key component in modern
cryptosystems that operates on polynomials. For the Advanced Vector Extensions 2
(AVX2) implementation of Dilithium, an improvement by a factor of 2 is achieved
compared with similar solutions. AVX2 is an extension for vectorization in the Intel
x86 instruction set, allowing for the execution of Single Instruction Multiple Data
(SIMD) instructions on 256-bit vectors [AS20].

With the assumption that LWE and SIS are resistant to quantum algorithms,
Dilithium is designed to achieve long-term security against such threats. The creators
of DIlithium have therefore assumed a very favorable viewpoint for the adversaries
which have access to quantum algorithms that require virtually as much space as time.

38 2. BACKGROUND AND RELATED WORK

At the moment, the space required for these algorithms is not feasible, and there are
significant obstacles to overcome. However, Dilithium is designed to overcome the
challenge of possible future enhancements.

A popular digital signature scheme in use is ECDSA on NIST curve P-256.
ECDSA rely on the hardness of finding a discrete logarithm over a group defined by
points on an elliptic curve. ECDSA is widely used mainly due to its efficiency, offering
shorter keys and signatures, and faster signature generation than most schemes. For
example, it allows for the public key to be extracted by the signature itself. ECDSA
is a fast, compact, and secure scheme, but this is not the case if quantum computers
get sufficiently efficient and powerful. Shor’s algorithm is capable of finding solutions
to hard problems within Elliptic Curve Cryptography (ECC) in polynomial time
[Sho97], effectively breaking all cryptosystems that rely on ECC. This is not the case
with post-quantum schemes like Dilithium.

Table 2.1 shows the different key and signature sizes for ECDSA on NIST curve
P-256 and Dilithium2. This specific ECDSA instance provides 128-bit security against
classical computers, while Dilithium2 offers the same security level against the same
adversary given quantum capabilities, i.e., 128-bit quantum security. The data is
from [PKLN22]. It is clear that ECDSA offer key and signature sizes far smaller
than Dilithium for the same security level on classical computers.

Table 2.2 shows the performance for ECDSA on P-256 and Dilithium2, i.e., the
time spent in milliseconds to perform key generation, signing, and verification. The
data is from [PKLN22]9. It can be observed that ECDSA outperforms Dilithium on
all procedures except verification. Signing with Dilithium is notably slower than with
ECDSA, which is a direct consequence of the signature procedure running in a loop
until a valid signature is produced. It is worth mentioning that ECDSA on curve
P-256 is the product of years of research and that the performance of post-quantum
schemes like Dilithium likely will improve over time.

Table 2.1: Key and signature sizes in bytes for ECDSA on NIST P-256 and
Dilithium2. Data is from [PKLN22].

Algorithm Public key Private key Signature
ECDSA P-256 65 32 73

Dilithium2 1312 2544 2420

9The tests were carried out on embedded systems with resource constraints, i.e., a Raspberry Pi.

2.4. RELATED WORK 39

Table 2.2: Time usage in milliseconds for ECDSA on P-256 and Dilithium2 to
generate key pairs, signatures, and verification. Data is from [PKLN22].

Algorithm Key generation Signing Verification
ECDSA P-256 1.52 1.94 4.85

Dilithium2 2.04 11.9 2.21

Dilithium’s authors use “Fiat-Shamir with Aborts” to transform an interactive
zero-knowledge protocol into a non-interactive zero-knowledge protocol and bind
it to a message m for it to become a digital signature scheme. As a consequence,
rejection sampling is performed before outputting a valid signature. If the rejection
sampling algorithm rejects a signature, the signature procedure has to restart. The
expected number of attempts before outputting a valid signature can be viewed in
Table 2.3. The data is from [BNG22] and shows the expected number of attempts for
three different Dilithium implementations corresponding to different security levels.

Table 2.3: The expected number of signature attempts before outputting a valid
signature. Covers three different implementations of Dilithium corresponding to
three different security levels. Data is from [BNG22].

Algorithm Attempts
Dilithium2 4.25
Dilithium3 5.1
Dilithium5 3.85

2.4.3 FIDO2 Implementations

FIDO2 is already widely adopted by several services ranging from small start-ups to
large-scale enterprises. Microsoft is one of the largest companies marking its spot
as a leader in fully adopting the FIDO2 standards for passwordless authentication.
Microsoft introduced browser support for fully passwordless authentication with
FIDO2 in 2018 [Din]. Users can now authenticate to Azure Active Directory10 using
FIDO2 authenticators, explained in Section 2.3.4. Some other large-scale enterprises
that have applied the FIDO2 standard are Amazon Web Services [Ama] and eBay
[20a]. eBay has made their RP server open-source to promote open collaboration
among the technological community to specify the requirements for secure online
service authentication.

10Azure Active Directory is Microsoft’s identity management system within their cloud service
Microsoft Azure.

40 2. BACKGROUND AND RELATED WORK

Authenticators

Authenticators within FIDO2 are categorized based on security level, with Universal
Serial Bus (USB) tokens offering the highest level of security. USB tokens are small
devices with a USB port that essentially works like a keychain 11. USB tokens are
hardware-based keychains, thus not vulnerable to malicious applications designed to
exploit software implementations. The private key is never exposed in USB tokens,
as key generation, signing, and storage of private keys are hardware implemented.
Some of the commercially available USB tokens are YubiKey developed by Yubico,
Solo developed by SoloKeys, and SafeNet eToken developed by the Thales Group.
SoloKeys differs from the rest by being open-source [20c], thus appearing more
trustworthy than competitors that are not open-source. SoloKeys even offers USB
tokens for people to hack. These tokens are flashable, meaning that any firmware
update can be installed, and they offer the possibility of installing any unsigned
application and enabling debugging on the device.

In early 2023, Apple, Google, and Microsoft announced that they were working
on integrating passkeys in their solutions [All]. Passkeys are here referred to as the
private key used to create legitimate signatures. They aim to offer passwordless
authentication with increased usability compared to e.g., USB tokens. They are
using copyable passkeys rather than hardware-based ones to provide the possibility of
synchronizing passkeys across devices. This broadens the attack surface, potentially
reducing security while enhancing usability.

Common for both passkeys and USB tokens is that they only support the digital
signature algorithms listed in COSE. Except for HSS/LSM [Hou20], none of the
digital signature algorithms listed in COSE are believed to be quantum-resistant,
thus compromising passwordless authentication through the FIDO2 standards with
the arrival of quantum-capable adversaries.

11A keychain is a collection that securely stores and manages a user’s digital credentials, such as
passwords, private keys, and encryption keys, for convenient and secure access.

Chapter3Methodology

The following chapter presents the methodology used to answer the research questions
presented in Section 1.4. A design cycle is conducted in order to achieve the main
goal of the master’s thesis. Each step of the conducted design cycle will be explained
and the chosen research methods will be further explained and justified. Chosen
research methods will also be linked to the research objectives presented in Section
1.4. A summary of the resources and tools used to achieve the master’s thesis’ main
goal will also be provided. The function and purpose of each resource within the
context of the thesis will also be described.

3.1 The Design Cycle

A design cycle, as described by Wieringa [Wie14], is the process of developing an
artifact and the desired interaction between the artifact and the problem context,
i.e., the treatment. An artifact “is something created by people for some practical
purpose” [Wie14]. The developed artifact, in the context of this master’s thesis, is the
authentication system that enables passwordless authentication through the use of a
quantum-resistant digital signature. The design cycle is a subset of the engineering
cycle. “The engineering cycle is a rational problem-solving process” consisting of five
steps [Wie14]:

Step 1. Problem investigation The investigation of a problem and possible
improvement before an artifact is designed. The goal is to improve a problematic
situation, where problem investigation helps to identify, describe, explain, and
evaluate the problem to be treated.

Step 2. Treatment design Specification of the requirements of the artifact and
how the defined requirements contribute to the goals. The design process either
consists of utilizing available treatments or designing new ones.

41

42 3. METHODOLOGY

Problem
Investigation

Treatment
Validation

Treatment
Design

Treatment
Implementation

Figure 3.1: The four steps in the engineering cycle defined by Wieringa [Wie14]

Step 3. Treatment validation This involves showing how a designed treatment
would help achieve the goals of the stakeholders if applied to a situation where
an actual problem exists. This requires the aforementioned requirements to be
specified and justified in order to validate that a treatment meets the defined
requirements. Due to the lack of an available real-world problem context, one
conducts treatment validation. It aims to predict the outcomes of a treatment
implementation.

Step 4. Treatment implementation The application of the treatment in the
original problem context. This involves deploying the developed artifact to a
real-world problem context.

Step 5. Implementation evaluation: The investigation of how the deployed
artifact interacts with the real-world problem context. The outcome of this
evaluation can often result in a new engineering cycle.

The engineering cycle is iterative when the outcome of the implementation
evaluation results in a new problem investigation. This iterative process is the reason
why it is called a “cycle”. Figure 3.1 shows how the engineering cycle can be an
iterative process.

The design cycle consists of the three first steps in the engineering cycle, i.e.
problem investigation, treatment design, and treatment validation. The result of
a design cycle is the treatment, while the engineering cycle on the other hand
encompasses the transfer of the treatment to a real-world problem context. Only a
design cycle is conducted in this master’s thesis. That is because the master’s thesis
does not indulge in the deployment of the developed artifact and the application of the
designed treatment in a real-world problem context, i.e. treatment implementation,
and consequently the evaluation of such an implementation, i.e. implementation
evaluation. A design cycle, like the engineering cycle, may also be iterative. In a

3.1. THE DESIGN CYCLE 43

design science project, researchers often iterate over the three steps in a design cycle
many times [Wie14].

A design cycle is conducted in this master’s thesis in order to achieve the main
goal for the master’s thesis, “How can we use lattice-based cryptography in a zero-
knowledge protocol to implement an efficient and quantum-resistant authentication
system?”. The following sections present how each step of the design cycle is
conducted.

3.1.1 Problem Investigation

The goal of problem investigation is to improve a problematic situation, where
it helps to identify, describe, explain, and evaluate the problem to be treated.
Therefore, insight into the existing solutions and their characteristics need to be
obtained. A study of the problems within the research scope was conducted, which
resulted in knowledge about authentication systems in use today. Common for most
authentication systems is the use of textual passwords, which affects both the security
and usability of authentication systems. The study of existing solutions revealed the
use of cryptosystems vulnerable to quantum adversaries. Furthermore, there is a
lack of zero-knowledge protocols used in authentication systems.

After having researched the problem area, a literature study was conducted to
identify key aspects of a potential artifact. One goal during the literature study
is to identify stakeholders for the artifact, while another is to specify the goals of
the system. Before the authors could create the artifact, further knowledge of its
composition had to be obtained. This included a literature review of theoretical
concepts such as zero-knowledge protocols, lattice cryptography, and FIDO2. These
are all concepts that could be utilized to construct a solution to the problems
identified during problem investigation. One goal of the chosen methodology is to
answer the research questions defined in Section 1.4. Literature study of relevant
research helps answer RQ1, as it answers how instances of hard problems within
lattice cryptography could be utilized in a zero-knowledge protocol.

3.1.2 Treatment Design

A treatment is a desired interaction between the artifact and the problem context
[Wie14]. The design of this treatment involves specifying requirements and further
explaining how these requirements contribute to the overall goal of the design
cycle. This thesis aims to develop a passwordless authentication system that is both
quantum-resistant and zero-knowledge. As a result, a new treatment design is created
in lieu of utilizing available treatments. The desired treatment is an interaction where
the developed authentication system makes authentication user-friendly through
passwordless authentication. The interaction should also be secure against quantum

44 3. METHODOLOGY

adversaries as well as leak no information about the private key used to authenticate,
i.e., the protocol used to authenticate must be zero-knowledge.

In order to design the desired treatment, requirements that encapsulate the desired
properties of the treatment must be specified. These are presented in Table 3.1. The
requirements aim to motivate the research questions that were defined in Section 1.4.
Requirement 1 describes that the interaction with the artifact, i.e., the authentication
system, is pleasant and easy for the end-user while delivering a seamless experience.
Pursuing research objectives 2 and 4, from Section 1.4, will have an impact on whether
or not requirement 1 is fulfilled. Requirement 2 encapsulates that the system must be
fast and efficient when authenticating, thus implying the same requirements on the
underlying primitives at work, i.e., the digital signature scheme. Achieving research
objective 4 will answer whether or not requirement 2 is reached. Requirement 3
captures how the artifact removes the real-world problem of authentication through
passwords. This requires that both research objective 2 and 3 is achieved, as either
one alone is not enough in order to fulfill requirement 3. Requirement 4 conveys
how the underlying digital signature scheme in the artifact provides end-users with a
way to identify themselves towards a service. This requires the pursuit of research
objective 3 but also requires that research objective 1 is achieved. Requirement
5 encapsulates the zero-knowledge property of the artifact. Research objective 1
needs to be achieved in order to fulfill this requirement. Requirement 6, covers that
the underlying protocol must make use of PQC. This solves the potential future
problem of a quantum adversary. Similar to requirement 5, this requires the pursuit
of research objective 1, as the resulting protocol needs to be quantum-resistant.

Table 3.1: Treatment requirements.

ID Description
R1 The system must be usable, i.e., easy to use for end-user
R2 The system must be efficient and fast
R3 The system must remove the need for a password to authenticate
R4 The underlying protocol must function as an identification scheme
R5 The underlying protocol must leak no sensitive information about the user
R6 The underlying protocol must use quantum-resistant cryptography as building block

3.1.3 Treatment Validation

As the treatment is not to be implemented in this thesis, validation is the last step
of the iterative cycle. The goal of this process is to “justify that it would contribute
to stakeholders’ goals if implemented” [Wie14]. A key part of this process is to
investigate the effects and evaluate if they satisfy the requirements specified during
treatment design. A model of the problem context will be established, and the
interaction between a prototype of the artifact and the problem context will be

3.2. TOOLS AND RESOURCES 45

studied. To validate the treatment, this thesis will create a model of the problem
context similar to the real-world implementation. The implementation would be
to deploy the authentication system to a service, where interaction between users
and the system could be conducted. This is emulated by the authors by viewing
the developed artifact as a test environment. This enables the authors to test the
interaction between the authentication system and the problem context.

By comparing the results of the validation with both the stakeholder goals and
the requirements presented in Table 3.1, one is able to determine a design theory.
This theory may then be used to predict what an implementation would look like.
This will be done by completing research objective 4. The objective states “Test
and validate the implemented solution in terms of performance.”. If the stakeholder
goals or the requirements are not satisfied, new iterations of the design cycle can be
initiated until the desired results are reached. As the problem context is emulated,
the goal of the validation is to simulate the outcome of applying the treatment in a
real-world situation. Thus, having clear requirements is a prerequisite for evaluating
the outcome.

3.2 Tools and resources

This section will explore tools and resources to be used when creating the envisioned
artifact, i.e. the authentication system. Both software and hardware will be presented,
along with an explanation of why specific tools are chosen.

3.2.1 Python

The authors chose Python as the main programming language for the test environment.
It is a high-level programming language with a focus on readability and simplicity.
It is an interpreted language, which allows for easy prototyping. Python was
chosen because of the vast amount of libraries available, in addition to both authors
being familiar with it. Python version 3.11.2 was used along with the Integrated
Development Environment (IDE) Visual Studio Code (VS Code). A range of Python
libraries were used as building blocks during the development. Below follows a list of
the most important ones along with a short explanation of them.

Python Libraries

Flask [Pal23] A framework for developing web applications. Used for Hypertext
Transfer Protocol (HTTP) handling and routing requests to correct Application
Programming Interface (API).

46 3. METHODOLOGY

JavaScript Object Notation (JSON) [Pyt23b] Used as the format for all data
sent between components in the test environment. Enables encoding and decoding
of data in a simple manner.

PyMongo [Mon23] Allows a Python application to interact with the database
MongoDB.

NumPy [Num23] The main Python library in the proposed solution. It is used
for numerical computing and enables key functionality such as array and matrix
operations on both integers and polynomials.

Hashlib [Pyt23a] Gives access to various cryptographic hashing algorithms, including
popular ones like SHA-256, SHAKE-256, etc.

os [Pyt23c] Gives Python the ability to interact with the operating system.

time [23b] A time measurement tool in Python. May be used to measure the time
between two time instances with nanosecond precision.

3.2.2 Swift

Swift is a high-level, general-purpose compiled programming language developed by
Apple. To run Swift programs, the Objective-C run-time library is still used, which
allows for C, C++, Objective-C, and Swift to run together in the same program [23g].
Swift was chosen as a programming language because it is the preferred language for
iOS development, and is actively developed and maintained by Apple. It was chosen
since the authors were familiar with it. Swift has the option of downloading and
utilizing reusable components known as Swift packages. Below follows a list of the
Swift packages used along with an explanation of them.

Swift Packages

NumPy-iOS [Ahn23a] A package that enables the use of the NumPy library,
explained in Section 3.2.1, in iOS applications.

Python-iOS [Ahn23b] A package that enables use of Python modules in iOS
applications. This is the underlying software used by NumPy-iOS to enable the use
of NumPy.

PythonKit [Vie22] A Swift framework that enables interaction between a Swift
program and the local Python interpreter. Python-iOS, thus also NumPy-iOS, relies
on PythonKit for NumPy, and other Python libraries, to be used in iOS applications.

3.2. TOOLS AND RESOURCES 47

3.2.3 Apple Keychain

The Apple Keychain, hereinafter denoted as keychain, is an SQLite database offered
by Apple to securely store keychain objects, i.e., passwords, security keys, or any
other sensitive data. These objects are either stored locally on the Apple device
or on the iCloud1 keychain, which makes keychain objects accessible to all Apple
devices synchronized to iCloud. Two separate AES-256-GCM2 keys are used to store
keychain objects securely. Both keys are protected by Secure Enclave which is a
reserved, secure subsystem integrated into Apple’s System on Chip (SoC) 3, isolated
from the main processor to provide an extra layer of security. Apple Keychain was
chosen by the authors to store the user’s private key securely.

Keychain objects are classified into accessibility classes. The strictest class,
denoted by the global variable kSecAttrAccessibleWhenPasscodeSetThisDe-
viceOnly [23d], restricts access to the keychain object only when the application is
in the foreground and when the device is unlocked. This class is only available for
devices that have enabled passcode. If the passcode is removed or disabled, both
security keys tied to the keychain object are deleted, making the keychain object
virtually useless. Keychain objects stored in this class are not synchronized to the
iCloud keychain and are not included in security backups.

3.2.4 Xcode

Xcode is Apple’s IDE for macOS, mainly used for the development of macOS, iOS,
iPadOS, tvOS, and watchOS applications. Xcode supports multiple programming
languages, such as Swift, Objective-C, Python, Java, etc. The authors chose Xcode
as one of the IDEs used for developing the test environment, mainly because Xcode
is the only IDE that supports compilation and building iOS applications through the
iOS Software Development Kit (SDK) [23i].

3.2.5 React

React is an open-source front-end JavaScript library used for web development,
maintained by Meta Platforms, Inc. [23e]. React uses components, which are
independent and reusable bits of code, to create user interfaces. The authors chose
React when developing the client application because it is a well-documented front-end
library that the authors were already relatively familiar with.

1iCloud is Apple’s cloud service which enables users to store and synchronize data across Apple
devices.

2AES-256-GCM is the symmetric-key encryption scheme “Advanced Encryption Standard” with
256-bit key and Galois counter mode as mode of operation.

3An integrated circuit where multiple components, i.e., the application processor, Secure Enclave,
etc., are combined on a single Central Processing Unit (CPU) chip.

48 3. METHODOLOGY

3.2.6 MongoDB

MongoDB is a NoSQL4 database that is document-oriented. Data is stored in
documents similar to JSON and allows for high performance, a flexible schema, and
scalability. Along with easy setup, initialization, and interoperability with Python,
this resulted in MongoDB database being chosen for the test environment. MongoDB
follows a document data model. Data is stored in flexible documents rather than
fixed columns and rows. The database is built of collections, which contains groups
of documents. A collection is often used to group documents with similar contents,
but there are no requirements that the documents must have the same fields. A
document is an entry in the database that stores data in field-value pairs. JSON
is the most used format for documents, but others like Binary Encoded JavaScript
Object Notation (BSON) and Extensible Markup Language (XML) are supported.

3.2.7 Git

Git is a Distributed Version Control System (DVCS) which enables authors to track
changes during software development. The authors chose GitHub for this task.
GitHub allows for easy collaboration on the same software development project, code
review, and serves as backup of source code.

4Non-relational

Chapter4Proposed Solution

This chapter presents the proposed solution developed by the authors. The solution
consists of a post-quantum digital signature scheme and a test environment. The test
environment is an authentication system inspired by FIDO2, where an instance of
the digital signature scheme presented in Section 2.2.4 will facilitate authentication.
Functional and quality requirements for the proposed solution will be presented,
alongside a specification of the digital signature from Section 2.2.4. The architecture
of the test environment will then be presented before its components and their
function in the system are explained.

4.1 Specification

4.1.1 Requirements

To perform tests and validate the digital signature, a test environment is needed.
This test environment will enable the authors to implement the digital signature in a
system that emulates a real-world system. To facilitate development and create a
clear path toward the goals of this thesis, a set of requirements is defined. These are
split between functional and quality requirements. A functional requirement defines
the behavior and features the system possesses, while quality requirements describe
characteristics the system should have. This could be aspects such as usability,
security, performance, etc.

49

50 4. PROPOSED SOLUTION

Functional requirements

Table 4.1: Functional requirements for the test environment.

ID Requirement
FR1 The user interface should be simple and intuitive. Users should be

able to register an account without a password.
FR2 Users should be able to authenticate themselves without a password,

using the provided authenticator iOS application.
FR3 Users should not be able to register an account with a username

already in use.
FR4 Multiple users should not be able to share the same authenticator

for the same RP.

Quality requirements

Table 4.2: Quality requirements for the test environment.

ID Requirement
QR1 The system should implement strong security measures to prevent

unauthorized access to user data.
QR2 The system should be able to handle multiple concurrent users

without this affecting the performance of the system.
QR3 The system should provide fast and seamless authentication for the

user.

4.1.2 Digital Signature

The quantum-resistant zero-knowledge digital signature scheme, presented in Section
2.2.4, will facilitate the authentication on behalf of the user. It will do so by
proving knowledge of the private key corresponding to the public key generated
during the registration ceremony, presented in Section 2.3.2. To prove knowledge
of the private key, the user will, with the help of an authenticator, produce valid
signatures on random messages chosen by the RP. The test environment requires
three algorithms from the digital signature scheme, the key generation algorithm, the
signature algorithm, and the verification algorithm. The key generation and signature
algorithm will reside in the authenticator, while the verification algorithm resides
in the RP server. Algorithm 4.1 presents the key generation algorithm. A 256-bit
seed ζ is sampled to further generate two seeds (ρ, ρ′) needed to generate the secret
(s1, s2) and the matrix A. The algorithm outputs (sk = (s1, s2, ρ′), pk = (ρ′, t)),
where t = As1 + s2.

4.1. SPECIFICATION 51

The functions ExpandS and ExpandA share similarities with the corresponding
functions in Dilithium specification version 3.1 [DKL+21] and the original Dilithium
specification [DKL+18] respectively. The goal of ExpandS is to map the input seed
ρ to the secrets (s1, s2) ∈ Rm

q,f , while the goal of ExpandA is to map the input
seed ρ′ to a matrix A ∈ Rn×m

q,f . This is done differently by the two functions,
but the overall methodology is similar. Both functions generate the coefficients
of the polynomials they comprise, based on the input seed. The input seed along
with a counter is absorbed by an eXtendable-Output Function (XOF). A block of
bytes returned from the XOF is then interpreted in a specific way to represent an
integer in a given range. Algorithm 4.5 shows how this works for mapping the
seed ρ′ to a matrix A ∈ Rn×m

q,f . A is initialized as m column vectors of length
n. H is instantiated as SHAKE-128. b′

2 is b2 with Most Significant Bit (MSB)
equals to 0. Polynomial(coefs) maps a list of coefficients to a polynomial, i.e.
p(c) = cdxd−1 + cd−1xd−2 + . . . c3x2 + c2x + c1, c ∈ (c1, . . . , cd).

Algorithm 4.1 Key generation algorithm
1: KeyGen
2: ζ ← {0, 1}256

3: (ρ, ρ′) ∈ {0, 1}512 × {0, 1}256 := H(ζ) ▷ H is instantiated as SHAKE-256
4: (s1, s2) ∈ Rm

q,f ×Rn
q,f := ExpandS(ρ)

5: A ∈ Rn×m
q,f := ExpandA(ρ′)

6: t = As1 + s2
7: return (sk = (s1, s2, ρ′), pk = (ρ′, t))

The signature algorithm, shown in Algorithm 4.2, regenerates A with the use
of ExpandA and ρ′, before sampling a random 512-bit seed ρ. This seed, to-
gether with κ, is mapped to the two masking vectors (y1, y2) with the use of
ExpandMask. ExpandMask share similarities with the corresponding function in the
original Dilithium specification [DKL+18], and operates similarly as ExpandS and
ExpandA. HashToBall maps the hash digest c′ to a polynomial c ∈ C, presented in
Equation 2.4. Algorithm 4.3 shows pseudo-code for HashToBall. The rest of the
algorithm resembles the general signing procedure given in Section 2.2.4. The hash
digest c′ and ω are included in σ instead of c and Ay1 + y2 respectively, to keep the
output small.

Similar to the signature algorithm, the verification algorithm, shown in Algorithm
4.4, starts with regenerating A with the use of ExpandA and ρ′. The challenge
polynomial c is then regenerated with the hash digest c′′, and the same checks as
given in Section 2.2.4 are made.

The three functions ExpandS, ExpandA, and ExpandMask, used for generating the
secret (s1, s2), the matrix A, and the masking vectors (y1, y2) respectively, require

52 4. PROPOSED SOLUTION

Algorithm 4.2 Signature algorithm
1: Sign(sk = (s1, s2, ρ′), µ)
2: A ∈ Rn×m

q,f := ExpandA(ρ′)
3: t = As1 + s2
4: ρ← {0, 1}512

5: κ := 0, (z1, z2) :=⊥
6: while (z1, z2) :=⊥ do
7: (y1, y2) ∈ Rm

q,f ×Rn
q,f := ExpandMask(ρ, κ)

8: ω ∈ {0, 1}384 := H(Ay1 + y2) ▷ H is instantiated as SHAKE-256
9: c′ ∈ {0, 1}384 := H(A || t || ω || µ)

10: c ∈ C ⊂ Rq,f := HashToBall(c′)
11: z1 = cs1 + y1
12: z2 = cs2 + y2
13: if ||z1||∞ > β̄ or ||z2||∞ > β̄ then
14: (z1, z2) :=⊥
15: end if
16: κ = κ + n
17: end while
18: return σ = (z1, z2, c′, ω)

Algorithm 4.3 HashToBall algorithm.
1: HashToBall(c′)
2: c := (c1, . . . , cd)
3: s ∈ {0, 1}η := H(c′) ▷ H is instantiated as SHAKE-256
4: for i = d− η to d do
5: j ← {0, . . . , i} := H(c′||i)
6: c[i] := c[j]
7: c[j] := −1s[i−d+η]

8: end for
9: return Polynomial(c)

an input seed that is truly random. The sampling of a truly random seed takes place
in the authenticator, which is an iOS application written in Swift. The developed
iOS application will be implemented and tested on an iPhone XR running iOS 16.3
as Operative System (OS). The recommended approach to sample random bytes
securely is through the Swift function SecRandomCopyBytes(_:_:_:), which returns an
array of cryptographically secure random bytes [23f]. If kSecRandomDefault is passed
as the argument, Apple’s kernel Cryptographic Pseudo-Random Number Generator
(CPRNG) is used, which is the Cryptographically Secure Pseudo-Random Number
Generator (CSPRNG) called Fortuna [FS03]. Fortuna produces cryptographically
secure pseudo-random numbers by seeding itself during boot and throughout the
device’s lifetime with multiple high-quality entropy sources. These entropy sources

4.1. SPECIFICATION 53

are accessed by using the kernel APIs getrandom(2) [20b] and /dev/random [19].
Another kernel API is /dev/urandom, which functions similar to /dev/random, but
with one key difference. /dev/random will block access to the kernel’s entropy pool
if sufficient entropy is not gathered, and only return a number of bytes within the
estimated number of bits of noise in the entropy pool [19]. /dev/urandom on the
other hand, does not block access, making it susceptible to theoretical cryptographic
attacks prior to boot up. /dev/urandom is therefore secure enough for emphemeral
randomness, but /dev/random is preferred when generating long term keys. The
authors have therefore concluded that the use of SecRandomCopyBytes(_:_:_:) in the
digital signature scheme is secure.

Algorithm 4.4 Verification algorithm
1: Verify(pk = (ρ′, t), µ, σ = (z1, z2, c′, ω))
2: A ∈ Rn×m

q,f := ExpandA(ρ′)
3: c′′ ∈ {0, 1}384 := H(A || t || ω || µ) ▷ H is instantiated as SHAKE-256
4: c ∈ C ⊂ Rq,f := HashToBall(c′′)
5: ω′ ∈ {0, 1}384 := H(Az1 + z2 − ct)
6: return [[ω′ = ω]] and [[c′′ = c′]] and [[||z1||∞ ≤ β̄]] and [[||z2||∞ ≤ β̄]]

Algorithm 4.5 ExpandA

1: ExpandA(ρ′)
2: A := (a1, . . . , am) ▷ ai = (ai,1, . . . , ai,n)
3: counter := 0
4: for i = 1 to n do
5: for j = 1 to m do
6: coefs := (c1, . . . , cd)
7: k = 1
8: while k < d do
9: b0, b1, b2 ∈ {0, 1}8 × {0, 1}8 × {0, 1}8 ← H(ρ′||counter)

10: ▷ H is instantiated as SHAKE-128
11: candidate ∈ {0, 223 − 1} := b′

2 · 216 + b1 · 28 + b0
12: if candidate < q then
13: ck := candidate
14: k := k + 1
15: end if
16: counter := counter + 1
17: end while
18: ai,j := Polynomial(coefs)
19: end for
20: end for
21: return A

The parameters for all three algorithms are listed in Table 4.3. The digital

54 4. PROPOSED SOLUTION

signature scheme presented in this thesis is very similar to Dilithium. Modulus q

and the degree d remains unchanged in Dilithium across security levels. The authors
of this thesis have not implemented the NTT, which essentially is the Fast Fourier
Transform (FFT) over Z∗

q , to allow for more efficient polynomial multiplication, which
is the most expensive operation in the digital signature scheme. Nevertheless, q and d

have still been chosen to allow for the possibility of an efficient NTT implementation
in the future. q = 223 − 213 + 1 = 8380417 and d = 256 enables the possibility of
an efficient NTT implementation as it allows for a 512th root of unity r mod q to
exists, e.g. r = 1753. X256 + 1 can thus be written as (x− r)(x− r3) · · · (x− r2d−1),
allowing for a polynomial a ∈ Rq,f to be written as a = (a(r), a(r3), . . . , a(r2n−1))
with the Chinese Remainder Theorem (CRT). Polynomial multiplication can then be
done pointwise [Lyu20] [DKL+18].

As the digital signature scheme relies on the hardness of both Module LWE and
Module SIS, it makes sense to choose n ̸= m. (n, m) is therefore chosen as (5, 4)
[Lyu20]. The choice of β impact the security of the scheme, as an increased β makes
LWE harder while making SIS easier. β = 5 is chosen to make LWE and SIS equally
hard [Lyu20].

As explained in Section 2.2.3 and given in Equation 2.4, the challenge space C is
chosen to consist of all polynomials with η coefficients from the set {0, 1} and the rest
equal to 0. η is chosen as the smallest integer such that C consist of more than 2256

polynomials, i.e. 2η
(

d
η

)
> 2256. As d = 256, we get η = 60 as the smallest integer.

The values for γ and β̄ is from [Lyu20], and results in a scheme instance with
128-bit quantum security.

Table 4.3: Values used for the parameters in the implemented digital signature
scheme with 128-bit quantum security [Lyu20].

Parameter Value
q 223 − 213 + 1
d 256

f(X) Xd + 1
(n, m) (5, 4)

η 60
C {c ∈ [1] : ||c1|| = η}
γ 275
β̄ q − 1/16

In order to achieve the aforementioned 128-bit quantum security, 384-bit and

4.2. IMPLEMENTATION 55

256-bit outputs have been chosen for collision resistance and 2nd-preimage resistance
respectively, as explained in Section 2.2.4.

4.2 Implementation

This section will present the proposed solution, whose task is to enable testing of
the digital signature presented in Section 4.1.2. The source code for the proposed
solution is published on GitHub1. The architecture of the test environment and its
components will be introduced. Lastly, the registration and authentication ceremonies
will be presented in detail to explain how each component serves its purpose to enable
passwordless authentication with standards from FIDO2.

4.2.1 Architecture

To facilitate for passwordless authentication, a software architecture suited for this
task had to be chosen. The authors chose an architecture inspired by FIDO2,
presented in Section 2.3. To ensure that authentication is zero-knowledge as well
as quantum-safe, the digital signature instance presented in Section 4.1.2 is used.
The architecture consists of four main components: the RP server, which is a Flask
application written in Python, the client application, which is a React application
written in JavaScript, the polling server, a Flask application written in Python, and
the authenticator application, which is an iOS application written in Swift. Figure
4.1 presents the physical view of the test environment. One thing to notice is that
the authors have chosen to not deploy the proposed solution, and instead test the
proposed solution by hosting the RP server, client application, and polling server
locally, as well as building the authenticator application on the same computer.
The following subsections present all four components that comprise the proposed
solution.

1https://github.com/larsore/TestPlatform

https://github.com/larsore/TestPlatform
https://github.com/larsore/TestPlatform

56 4. PROPOSED SOLUTION

Figure 4.1: Physical view of the proposed solution.

RP Server

The RP server is responsible for handling registration and authentication, which
includes handling user data and associated public keys, and verifying signatures
generated by the authenticator. The verification is done by implementing the
verification algorithm given in Algorithm 4.4. As the authors were mostly interested in
the overall architecture of FIDO2 and used the system primarily as a test environment
for the digital signature, communication via HTTP was chosen between the client
application and RP server. To store usernames and public keys for registered users,
the RP server utilizes a database, in this case, a local MongoDB instance.

The server consists of a Flask application, introduced in Section 3.2.1, and a
handler class. The Flask application, located in rpServer.py, is responsible for three
things: defining the API for the RP server, loading updated Internet Protocol (IP)
address and digital signature parameters, presented in Section 4.1.2, and instantiating
the handler class with the correct parameters. In the original WebAuthn specification
[All23], the RP and authenticator negotiate which digital signature instance to use.
As the proposed solution realizes a test environment for one digital signature scheme,
this negotiation is omitted and replaced by storing the digital signature parameters
in para.txt, a file located in the folder Authenticator/Authenticator/Model.
Authenticator and RP server read the updated parameters from this file, thus
eliminating the need for negotiating which digital signature instance to use. The
updated IP address needs to be loaded and specified in the Flask application to
enable Cross-Origin Resource Sharing (CORS).

4.2. IMPLEMENTATION 57

The API for the RP consists of six endpoints which all allow HTTP POST
requests: three for registration and three for authentication. The Flask framework
checks if incoming HTTP requests have the correct path and method. All API
endpoints defined in rpServer.py essentially perform the same tasks on incoming
requests: checking if the request has payload keys matching a predefined set, and
if that holds, delegates the handler class to handle the request. This can be seen
in Listing 4.1, which is the API endpoint /authenticate, that handles incoming
authentication requests from the client application. rpServer.py reads the updated
digital signature parameters and instantiates the handler class with the correct
parameters by reading the contents from para.txt and calling a setter method in
the handler class.

The handler class, named Handler, located in rpHandler.py, is delegated by
rpServer.py to handle and act on incoming requests. This includes updating
the state of all users during registration and authentication attempts, storing and
retrieving user information from a local MongoDB instance, and verifying signatures
generated by authenticators on behalf of users. In production-grade software, these
responsibilities would ideally be split up and delegated among several modules,
thus increasing the modularity of the software and decreasing cohesion between the
different modules. The goal of the authors was to quickly create a test environment
where the digital signature scheme could be tested in a practical FIDO2 inspired
environment, functioning as a PoC. As a result, the handler class takes up a lot of
responsibility that ideally would be separated and distributed among several modules.
Figure 4.2 shows a class diagram for the RP server.

104 # TestPlatform/rp-server/rpServer.py
105 @app.route("/authenticate", methods=['POST'])
106 @cross_origin(origins=[macClientUrl, iPhoneClientUrl, "http://localhost:3000"])
107 def clientLogin():
108 body = request.json
109 for key in body.keys():
110 body[key] = str(body[key])
111 requiredKeys = ["username"]
112 if not checkKeys(requiredKeys, list(body.keys())):
113 return json.dumps("The provided key is not correct. The correct key is " + ' '.join(requiredKeys))
114 response = responseHandler.handleLogin(body)
115 return response

Listing 4.1: API endpoint for /authenticate.

58 4. PROPOSED SOLUTION

Figure 4.2: Class diagram for the RP server.

Client Application

The client application is the interface towards the users, and is accessed through
a user agent, i.e., a browser, and is where registration and authentication requests
reside from. The application consists of a React application which serves as a gateway
between the RP and the authenticator. The client application has three main react
class components: App located in App.jsx, Register located in register.jsx, and
Login located in login.jsx. App is responsible for coordinating and managing the

4.2. IMPLEMENTATION 59

main user interface, allowing users to toggle between registration and login, which
is done by the method changeState(). Register and Login are responsible for the
registration and login interface as well as handling registration and authentication
attempts. The attempts are handled in handleRegister() and handleLogin(). A
class diagram for the client application can be viewed in Figure 4.3.

Figure 4.3: Class diagram for the client application.

Polling Server

This is the only component in the test environment that is not included in the
FIDO2 specification. The reason for including this is a workaround to bypass Apple’s
Developer Program and its restrictions. Ideally, the client application should directly
communicate with the authenticator application via CTAP. The authors chose to omit
the use of CTAP and instead communicate directly with the authenticator through
the Apple Push Notification Service (APN). However, to achieve this, one must be a
part of the Apple Developer Program. Since the authors are not part of this program,
a polling server was developed and placed between the client application and the
authenticator as an intermediary. Communication between the client application
and authenticator, via the polling server, is done through HTTP. The polling server

60 4. PROPOSED SOLUTION

has two responsibilities: queueing requests sent from the client application until the
authenticator associated with the request polls the server, and forwarding requests
sent from the authenticator to the client application.

The polling server consists of a Flask application located in pollingServer.py
and a handler class located in pollingHandler.py. The Flask application is respon-
sible for defining the API for the polling server and loading the updated IP address
to enable CORS for the client application. The API consists of eight endpoints which
all allow HTTP POST methods: four endpoints dedicated to requests from the client
application and four endpoints dedicated to requests from the authenticator. All
API endpoints perform the same tasks as the API endpoints in the RP server, i.e.,
checking if incoming requests have payload keys matching a predefined set, and if
that holds, delegate the handler class to handle the request. How this is done for a
given API endpoint in this Flask application is similar to Listing 4.1.

Upon the arrival of incoming HTTP requests, the Flask application delegates the
handler class to handle the request and provide it with the correct response. The
handler class is responsible for coordinating and updating the state of authentication
and registration attempts from the client application destined for specific authenti-
cators. It also stores the authenticators and which RPs they are registered to in a
local MongoDB instance. This responsibility is handled alone by the handler class at
the expense of modularity, as the goal of the authors was to quickly establish a test
environment for the digital signature scheme. Figure 4.4 shows a class diagram for
the polling server.

Authenticator

The authenticator’s main responsibilities is to generate key pairs during registration
and authenticate users by signing challenges generated by the RP with the secret
key. Key generation is done by implementing the key generation algorithm given
in Algorithm 4.1, while signing is done by implementing the algorithm given in
Algorithm 4.2. Figure 4.5 shows a class diagram for the authenticator application.

The struct AuthenticatorApp includes the entry point for the application, de-
noted by @main, and is responsible for the start-up of the application. It dis-
plays the view defined in the struct authenticatorView on the device display.
authenticatorView is responsible for the visual part of the application, i.e., render-
ing the user interface based on user interaction, as well as scheduling a timer that
polls the polling server for pending registration or authentication attempts via the
EventHandler. It is also responsible for updating polling server via EventHandler
with the current one-time code.

The class EventHandler is responsible for handling all events by the instruction

4.2. IMPLEMENTATION 61

Figure 4.4: Class diagram for the polling server.

of authenticatorView. These events include polling the polling server for incoming
registration or authentication attempts, updating the polling server with current
one-time code, handle registration or authentication in the case where the user accepts
the attempt, as well as handling the event where a user dismisses a registration or
authentication attempt. EventHandler does not carry out any of these tasks itself,
but delegates and coordinates other classes to perform the tasks in a certain sequence
on behalf of EventHandler. The class is also responsible for reading the updated IP
address and digital signature parameters from para.txt, to make network requests to
the polling server and instantiate the digital signature implementation with updated
parameters.

Everything related to performing network requests is delegated to the class
CommunicateWithServer. It includes the public methods of sending the current
one-time code, polling the polling server for incoming registration or authentication
attempts, sending the response for either of the two cases, as well as sending a
response in the case where a user chooses to dismiss the attempt. The actual payload
for these responses is provided by EventHandler.

Everything related to the digital signature is delegated to the class DilithiumLite.
It includes the public methods implementing the key generation algorithm, shown
in Algorithm 4.1, and the signature algorithm, shown in Algorithm 4.2, as well as

62 4. PROPOSED SOLUTION

private methods acting as support modules for the two public methods. Another pub-
lic method in DilithiumLite is getSecretKeyAsData(secretKey: SecretKey), which
outputs an object of type Data. The type Data allows a simple byte buffer in memory
to take on the behavior of Foundation objects [23a], i.e., objects of types defined in
the Foundation framework, which is a framework that lets an application “access
essential data types, collections, and operating-system services to define the base
layer of functionality” [23c]. In order to store the private key in the keychain, the
EventHandler needs to encode the private key, defined by the struct SecretKey, as
an object of type Data.

The last class, AccessKeychain, is responsible for interacting with the keychain.
This includes storing objects on the keychain, as well as retrieving them. Objects to
be stored on the keychain needs to be of type Data, as well as being mapped to an
account and a service. The EventHandler therefore encodes the private key as an ob-
ject of type Data with the use of getSecretKeyAsData(secretKey: SecretKey), before
passing the encoded object to AccessKeychain’s public method saveItem(account:
String, service: String, item: Data). This method stores the private key mapped
to a newly generated credential ID as the account, and the RPID as the service. For
the EventHandler to retrieve a private key from the keychain, the corresponding
credential ID and RPID needs to be included in a query in AccessKeychain’s public
method getItem(account: String, service: String), which returns the correspond-
ing private key of type Data, which EventHandler decodes and uses to produce
signatures.

4.2. IMPLEMENTATION 63

Figure 4.5: Class diagram for the authenticator application.

64 4. PROPOSED SOLUTION

4.2.2 Registration Ceremony

The FIDO2 registration ceremony, as described in Section 2.3, comprises seven steps.
These are all implemented in the test environment. Some simplifications are made,
specifically related to the content of messages sent, as parts of the original messages
were not considered relevant to the proposed solution. The flow of messages is still
true to the specification. Figure 4.6 shows the registration ceremony for the proposed
solution. The key generation algorithm in Algorithm 4.1 is used by the authenticator
to generate a new key pair, where the public key is transmitted back to the RP and
stored in a local MongoDB database.

The authors have decided to split up the ceremony into four phases to make it
easier to follow and more readable. Phase 1 covers the initial registration request
made by the client application and the subsequent response from the RP. Phase
2 entails the client application’s creation of clientData. The phase also covers
the transmission of the request containing clientData and additional information,
as well as the handling of this request by the polling server. Phase 3 focuses
on the activities of the authenticator, which involves polling the polling server to
retrieve pending registration requests, generating a new key pair, and storing the
private key securely on the device’s keychain. Additionally, this phase includes the
transmission of the public key and additional information from the authenticator
to the polling server. Lastly, Phase 4 encompasses the polling server’s reception of
the response from the authenticator, it’s forwarding of this information to the client
application, the client application’s subsequent forwarding of this data to the RP,
the RP’s verification of received clientData and storage of public key, and the RP’s
communication of result back to the client application. Details for the messages sent
are omitted in Figure 4.6 to increase readability, but an overview of each message
can be seen in Table 4.4.

Table 4.4: An overview of messages sent in the registration ceremony for the
proposed solution.

Message Content
RPresponse {challenge, rp_id, timeout}
clientRequest {otp, rp_id, client_data, timeout, username}
pollingResult {credential_id, rp_id, client_data, username,

random_int}}
authenticatorResponse {public_key, credential_id, rp_id, client_data,

authenticator_id}
pollingResponse {public_key, credential_id, client_data,

authenticator_id}
clientResponse {public_key, credential_id, client_data, username,

authenticator_id}

4.2. IMPLEMENTATION 65

Figure 4.6: Registration ceremony for the proposed solution.

Phase 1

Phase 1 starts with the client application collecting username and a one-time code
from the user, and forwarding the username to the RP. The one-time code can be
seen on the authenticator application, as shown in Figure 4.7b. The client application
collects username and one-time code through the user interface shown in Figure 4.7a.
The username is chosen by the user and has to be unique. The one-time code is
a random integer between 1 and 999999 inclusively, which is changed every 60th
seconds. The authors chose a one-time code as an easy and intuitive way for the
user to associate an authenticator with the client application during registration.

66 4. PROPOSED SOLUTION

Associating an authenticator to the client application in FIDO2 is done through
CTAP, which relies on Near-Field Communication (NFC), USB, or Bluetooth to
communicate. As CTAP was not implemented by the authors, a one-time code
became a reasonable option. The username has to be unique and is ensured by the
RP during each registration attempt.

(a) Registration user interface.

(b) One-time code
displayed in the authen-
ticator application.

Figure 4.7

On reception of the registration request, rpServer.py receives a username and
delegates the handler class to handle the request and provide rpServer.py with
the correct response. The method handleRegister(cls, body), shown in Listing 4.2,
handles the request. The key takeaways from this method is the generation of a
random 64 byte challenge and a timer, counting down from 30 seconds, getting
started. The generation of a random 64 byte challenge happens on line 130 in
Listing 4.2. Here, the static method Handler.getChallenge() is used, which returns
os.urandom(64).hex(). The method os.urandom(N) is a method in the OS library,
presented in Section 3.2.1, that samples N random bytes from the OS specific
randomness source [Pyt23c]. The authors have developed and tested the RP server
on Macbook Pros running macOS Ventura version 13.4. As a result, os.urandom(N)
samples N random bytes via the file /dev/urandom [Pyt23c], which, as explained in
Section 4.1.2, produces bytes random enough for ephemeral use. The bytes sampled
with os.urandom(N) are thus secure enough as the challenge is only valid for a
short timeout period, i.e., 30 seconds. If Windows had been used rather than macOS,

4.2. IMPLEMENTATION 67

sampling random bytes with os.urandom(N) would be insecure. This is due to
os.urandom(N) sampling via the deprecated function CryptGenRandom(), which is
not beneficial as it is not regularly updated and revised, and may include dormant
insecurities.

Line 143 instantiates a timer associated with a user, while line 144 starts the
timer. The timer is instantiated with a 30 seconds timeout, denoted by cls.timeout,
which is the maximum duration of both registration and authentication attempts.
Line 145-149 returns the response to rpServer.py, which forwards it to the client
application. The response is denoted as “RPresponse” in Figure 4.6. This concludes
phase 1 of the registration ceremony.

126 # TestPlatform/rp-server/rpHandler.py
127 def handleRegister(cls, body):
. . . # Line 128-129: Make sure the username is not already registered.
. . .
130 challenge = Handler.getChallenge()
. . .
. . . # Line 131-142: Create a dictionary to keep track of the user's state
. . .
143 cls.timers[body["username"]] = Timer(cls.timeout, cls.handleTimeout, args=(body["username"], True ,))
144 cls.timers[body["username"]].start()
145 return json.dumps({
146 "challenge": challenge,
147 "rp_id": cls.RPID,
148 "timeout": cls.timeout
149 })

Listing 4.2: Method that handles incoming registration requests from client
application.

Phase 2

Upon receipt of RPresponse, there are per the specification two tasks to be performed
by the client application. One is to create the object clientData and send this to
the polling server. clientData is defined as the hash of the concatenation of RPID
and challenge, i.e., H(RP_ID||challenge), where H is instantiated as SHA-256. It is
the clientData the authenticator signs during authentication, and it is used by both
the authenticator and RP throughout the registration and authentication ceremony.
The other task is to verify the origin of the request, by checking if the HTTP Origin
header matches the RPID. This check is not performed in the proposed solution, as
the origin of the request varies from time to time due to it being tested locally. If the
components were to be deployed, thus getting static IP-addresses, this check could
be implemented. Listing 4.3 presents how the client receives this message, stores the
content in variables, and creates the clientData.

48 // TestPlatform/client/src/components/login/register.jsx
49 const RPresponse = await fetch(Register.RPUrl+'/register', RPrequestOptions);
50 const RPdata = await RPresponse.json();

. . .

. . . //Line 52-56: Error handling and updating user interface of current progression in registration attempt

. . .

68 4. PROPOSED SOLUTION

59 const rp_id = RPdata["rp"]["id"];
60 const challenge = RPdata["challenge"];
61 const timeout = RPdata["timeout"];
62
63 var clientData = sha256.create();
64 clientData.update(rp_id);
65 clientData.update(challenge);
66 clientData = clientData.hex();

Listing 4.3: Parsing received response from RP and generating clientData.

Line 67-77 in Listing 4.4 crafts the HTTP POST request to be sent to the polling
server. This request is denoted as “clientRequest” in Figure 4.6. As seen on line 78,
the request is sent to the API-endpoint /client/register.

66 // TestPlatform/client/src/components/login/register.jsx
67 const pollingRequestOptions = {
68 method: 'POST',
69 headers: { 'Content-Type': 'application/json' },
70 body: JSON.stringify({
71 "otp": otp,
72 "rp_id": rp_id,
73 "client_data": clientData,
74 "timeout": timeout,
75 "username": username
76 })
77 };
78 const pollingResponse = await fetch(Register.pollingUrl+'/client/register', pollingRequestOptions);

Listing 4.4: Forward clientData to polling server.

This request is received by the defined API endpoint for /client/register in
pollingServer.py, which like the RP delegates the handler class in
pollingHandler.py to handle incoming requests and return the correct response.
The method handlePOSTClientRegister(cls, registerRequest), shown in Listing 4.5,
is responsible for handling the request.

The first action is to check whether or not the received one-time code is valid. The
polling handler keeps track of the current mapping of one-time code and authenticator
ID, which is an alphanumeric Universally Unique IDentifier (UUID) string that
uniquely identifies an authenticator. The authenticator ID is used by the authenticator
to poll the polling server for pending requests. As the current one-time code changes
every 60th second, the authenticator sends a HTTP POST request to the polling
server’s API endpoint /authenticator/update, which ensures that the polling server
has the correct and updated mapping between one-time code and authenticator ID.
If the received one-time code is valid, the polling server retrieves the authenticator
ID currently mapped to the one-time code, before conducting a set of verification
checks. If the checks hold, a dictionary holding the state for each authenticator is
updated with a new key-value pair. The content of the request is stored in a queue in
activeRequests on lines 57-63. As the response returned by this method is dependent
on the actions of the user with the authenticator, a countdown from 30 seconds is

4.2. IMPLEMENTATION 69

started on line 71. This countdown checks two things every 0.5 second: if there lies a
response from the authenticator ready to be sent to the client application, or if the
authenticator chose to dismiss the registration attempt, shown on lines 77 and 74
respectively. If neither of these checks holds after 30 seconds, the authenticator is
removed from the dictionary holding the state and a response indicating a timeout
is returned to the client application. This concludes phase 2 of the registration
ceremony.

39 # TestPlatform/polling-server/pollingHandler.py
40 def handlePOSTClientRegister(cls, registerRequest):

. . . #Line 41-55: Retrieving the authenticator ID mapped to the received one-time code and checking if the
authenticator is already registered or in the middle of a registration attempt. A dictionary holding
the state for each authenticator is initialized if the checks hold.

. . .
56 if len(cls.activeRequests[authID]["R"]) == 0:
57 cls.activeRequests[authID]["R"].append({
58 "credential_id": "",
59 "rp_id": registerRequest["rp_id"],
60 "client_data": registerRequest["client_data"],
61 "username": registerRequest["username"],
62 "random_int": ""
63 })

. . .

. . . #Line 64-67: Updating the state for the authenticator.

. . .
68 timeout = int(registerRequest["timeout"])
69 waitedTime = 0
70 interval = 0.1
71 while waitedTime <= timeout:
72 waitedTime += interval
73 time.sleep(interval)
74 if cls.activeRequests[authID]["dismissed"]:
75 cls.activeRequests.pop(authID, None)
76 return json.dumps("Authenticator chose to dismiss the registration attempt")
77 if authID in list(cls.responseToClient.keys()):
78 response = cls.responseToClient.pop(authID, None)
79 cls.isActive[authID]["R"] = False
80 return json.dumps(response)
81 cls.activeRequests.pop(authID, None)
82 cls.isActive.pop(authID, None)
83 return json.dumps("Timeout")
84 return json.dumps("Pending registration already exists for the given authenticator")

Listing 4.5: Handle registration attempt from client application in polling server.

Phase 3

Phase 3 is initiated by the authenticator polling the polling server for pending
registration requests. The authenticator polls the polling server every second by
calling the function startTimer() when the application starts. This function schedules
a timer that performs the same task every second. The task is to call the function
pollServerFromView(), that instructs EventHandler to poll the polling server via
the function pollServer() in CommunicateWithServer, shown in Listing 4.6. The
polling is a HTTP POST request with the hashed authenticator ID as payload. The
polling server delegates the method handlePOSTAuthenticator(cls, body), shown in
Listing 4.7, to handle the request upon receival of it. The polling server first checks

70 4. PROPOSED SOLUTION

if the authenticator is registered on line 131, before retrieving the state stored for the
specific authenticator on line 133. It then checks if the queue holding registration
requests are non-empty, and returns a response, denoted as “pollingResult” in
Figure 4.6, which includes an empty credential ID. An empty credential ID and
random integer are included for pollingResult to be identical when registering and
authenticating, making it easier for the authenticator to differentiate between them.
The authenticator checks whether or not the value for the credential ID is empty,
which indicates a registration attempt. Line 134-136 checks if the authenticator
has a pending registration request and returns it. Line 137-139 does the same for
authentication requests.

34 // TestPlatform/Authenticator/Authenticator/Model/communicateWithServer.swift
35 static func pollServer(hashedDeviceID: String) async throws -> GetMessage? {
36 guard let baseUrl = CommunicateWithServer.baseURL else {
37 print("BaseUrl not set")
38 return nil
39 }
40 guard let url = URL(string: baseUrl + "/poll") else {
41 throw CommunicationError.InvalidURL
42 }
43 let body: [String: Any] = [
44 "authenticator_id":hashedDeviceID
45]
46 guard let data = try await CommunicateWithServer.post(url: url, body: body) else {
47 print("Unable to get response from server")
48 return nil
49 }
50 return try JSONDecoder().decode(GetMessage.self, from: data)
51 }

Listing 4.6: Function in CommunicateWithServer responsible for polling the server.

129 # TestPlatform/polling-server/pollingHandler.py
130 def handlePOSTAuthenticator(cls, body):
131 if body["authenticator_id"] not in list(cls.activeRequests.keys()):
132 return json.dumps("Authenticator with specified ID has not been registered")
133 activeRequests = cls.activeRequests[body["authenticator_id"]]
134 if len(activeRequests["R"]) != 0:
135 request = activeRequests["R"].pop()
136 return json.dumps(request)
137 elif len(activeRequests["A"]) != 0:
138 request = activeRequests["A"].pop()
139 return json.dumps(request)
140 return json.dumps("No pending requests for authenticator")

Listing 4.7: Method in pollingHandler.py responsible for handling incoming
polling requests from authenticators.

Figure 4.8 shows the alert that pops up when the authenticator polls the polling
server and receives a registration request as a response. The user can either dismiss the
registration attempt or accept it, denoted by the two choices Dismiss and Register.
If the user chooses to dismiss the registration attempt, a response indicating dismissal
is sent from the authenticator to the polling server, which will update the state for
the authenticator. If this is done within the timeout period, the method in Listing
4.5 will notice the change in state for the authenticator and return a response to the

4.2. IMPLEMENTATION 71

client application. The client application will then send a HTTP request to the API
endpoint /authenticator/register/failed in the RP server to notify the RP of
failed registration.

Figure 4.8: Alert that pops up when a user tries to register with an authenticator.

In the case where the user accepts the registration attempt, the authenticatorView
in the authenticator application calls the method handleRegistration(RP_ID: String,
clientData: String) in EventHandler, shown in Listing 4.8. This method performs
the following four tasks: generating a key pair and a credential ID, storing the private
key on the keychain, and sending the response to the polling server, denoted as
“authenticatorResponse” in Figure 4.6. This response includes the generated public
key and credential ID, the received clientData, as well as the hashed authenticator
ID and RPID. Generation of a new key pair is done on line 95 by calling the method
generateKeyPair() in DilithiumLite, shown in Listing 4.9, which returns a KeyPair.
This method is the authors’ implementation of the key generation algorithm shown
in Algorithm 4.1.

93 // TestPlatform/Authenticator/Authenticator/Model/eventHandler.swift
94 func handleRegistration(RP_ID: String, clientData: String) {
95 guard let keyPair = dilithiumLite.generateKeyPair() else {
96 print("Unable to generate keypair...")
97 return
98 }
99 let credential_ID = UUID().uuidString

100 let encodedSecretKey = DilithiumLite.getSecretKeyAsData(secretKey: keyPair.secretKey)!
101 do {
102 try AccessKeychain.saveItem(account: credential_ID,
103 service: RP_ID,

72 4. PROPOSED SOLUTION

104 item: encodedSecretKey)
105 } catch {
106 print(error)
107 return
108 }
. . .
. . . // Line 109-120: Instructing CommunicateWithServer to send response to the polling server.
. . .
121 }

Listing 4.8: EventHandler’s method for handling registration attempts.

200 // TestPlatform/Authenticator/Authenticator/Model/SignatureAlgs/dilithiumLite.swift
201 public func generateKeyPair() -> KeyPair? {
202 guard let zeta = self.getRandomBytes(count: 32) else {
203 print("Unable to sample zeta with getRandomBytes")
204 return nil
205 }
. . .
. . . // Line 206-219: Generating the three seeds needed to generate the secrets (s1, s2) and the matrix A.
. . .
220 let s1 = self.expandS(seed: Python.str(rho1).encode(), noOfPoly: self.m)
221 let s2 = self.expandS(seed: Python.str(rho2).encode(), noOfPoly: self.n)
222 let sk = SecretKey(
223 s1Coeffs: self.getCoefficients(polyList: s1),
224 s2Coeffs: self.getCoefficients(polyList: s2),
225 Aseed: rhoprime
226)
227 let A = self.expandA(seed: Python.str(sk.Aseed).encode())
228 let t = self.getLatticePoint(A: A, s: s1, e: s2)
229 let pk = PublicKey(
230 Aseed: sk.Aseed,
231 tCoeffs: self.getCoefficients(polyList: t)
232)
233 return KeyPair(secretKey: sk, publicKey: pk)
234 }

Listing 4.9: Method implementing the key generation algorithm from Algorithm
4.1.

The method starts with sampling the seed ζ, denoted by the variable zeta.
This is done through the method getRandomBytes(count: Int) shown in Listing
4.10, which uses the function SecRandomCopyBytes() to return an array of crypto-
graphically secure random bytes [23f]. The default random number generator is
used for this, as specified by passing kSecRandomDefault as an argument on line
192. The authors have considered this to be secure for generating key pairs, as ex-
plained in Section 4.1.2. The method generateKeyPair() then generates three 256-bit
seeds used in expandS(seed: PythonObject, noOfPoly: Int) to generate s1, s2 and in
expandA(seed: PythonObject) to generate A. These seeds are generated by absorbing
ζ in an XOF instantiated as SHAKE-256 and outputting 768 bits. expandS(seed:
PythonObject, noOfPoly: Int) and expandA(seed: PythonObject) is the implementa-
tion of the corresponding functions in Algorithm 4.1. expandS(seed: PythonObject,
noOfPoly: Int) outputs a NumPy array of noOfPoly NumPy polynomials ∈ [β], where
β is denoted as the variable self.beta. expandA(seed: PythonObject) outputs an
n×m NumPy array consisting of NumPy polynomials ∈ Rq,f .

4.2. IMPLEMENTATION 73

189 // /TestPlatform/Authenticator/Authenticator/Model/SignatureAlgs/dilithiumLite.swift
190 private func getRandomBytes(count: Int) -> [Int8]? {
191 var bytes = [Int8](repeating: 0, count: count)
192 let status = SecRandomCopyBytes(kSecRandomDefault, bytes.count, &bytes)
193 if status == errSecSuccess {
194 return bytes
195 } else {
196 print("Unable to sample random bytes")
197 return nil
198 }
199 }

Listing 4.10: Method for sampling random bytes.

The authors chose to implement mathematical operations between vectors and
matrices of polynomials with NumPy arrays and NumPy polynomials since they are
fast and effective. To access these libraries from the iOS application, the packages
NumPy-iOS, Python-iOS, and PythonKit, presented in Section 3.2.2, had to be
used. These packages are wrappers that provide access to Python libraries, including
NumPy, hashlib, os, etc. Python libraries can thus be imported in any Swift file,
as shown for the class DilithiumLite in Listing 4.11. Objects instantiated with
imported Python libraries are all of the type PythonObject. Swift has no knowledge
of the rules guarding such objects, thus no additional type safety is ensured by XCode
when performing actions on PythonObjects.

29 // TestPlatform/Authenticator/Authenticator/Model/SignatureAlgs/dilithiumLite.swift
30 PythonSupport.initialize()
31 NumPySupport.sitePackagesURL.insertPythonPath()
32 self.np = Python.import("numpy")
33 self.os = Python.import("os")
34 self.hashlib = Python.import("hashlib")

Listing 4.11: Importing Python libraries.

The secret (s1, s2) is generated on line 220 and 221 in Listing 4.9. A SecretKey
struct containing the coefficients of s1 and s2, as well as ρ′, denoted by rhoprime, is
created on line 222-226. The coefficients of s1 and s2 are included in the struct instead
of the NumPy polynomials because Swift has to have full knowledge of the type in
order to encode and decode it. ρ′ is included instead of A to reduce the size of the
private key, thus generating A on demand. It must be included to be able to calculate
the public lattice point t ∈ Λ⊥

q (A), i.e. t = As1 + s2, when producing signatures.
Line 227 and 228 generates A and t with the help of expandA(seed: PythonObject)
and getLatticePoint(A: PythonObject, s: PythonObject, e: PythonObject) respec-
tively. Lastly, line 229-233 creates a PublicKey struct consisting of ρ′ and the
coefficients of t and outputs a KeyPair struct consisting of the private and public key.

The next task for EventHandler is to generate a random credential ID, which
is done on line 99 in Listing 4.8. To do this, a UUID struct is instantiated and the
variable UUID().uuidString is accessed, which produces a random UUID string. The

74 4. PROPOSED SOLUTION

EventHandler encodes the newly generated private key as Data with the use of
getSecretKeyAsData(secretKey: SecretKey) in DilithiumLite. The private key is
stored on the keychain with AccessKeychains method saveItem(account: String,
service: String, item: Data) on line 107-114. A key takeaway from
AccessKeychain is the variable access shown in Listing 4.12. This variable is
included when storing and subsequently retrieving the private key from the keychain
and specifies the access control for the keychain object. As explained in Section 3.2.3,
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly denotes the strictest class and
restricts access to the keychain object only when the application is in the foreground
and when the device is unlocked. The flag .userPresence means that the keychain
object can only be retrieved if Face ID or passcode is provided on demand, thus
realizing user verification, presented in Section 2.3.1, in the proposed solution.

11 // TestPlatform/Authenticator/Authenticator/Model/accessKeychain.swift
12 private static let access = SecAccessControlCreateWithFlags(nil, // Use the default allocator.
13 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,
14 .userPresence,
15 nil) // Ignore any error.

Listing 4.12: Accessability class for the stored private key.

The last task for the EventHandler is to send the newly generated public key
and credential ID, as well as the clientData, RPID, and authenticator ID to
the polling server. This is done on lines 109-120 in Listing 4.8, which instructs
CommunicateWithServer to send the response as a JSON object to the polling server.
The transmission of this response concludes phase 3.

Phase 4

Phase 4 is initiated by the polling server’s receipt of the authenticatorResponse, which
is sent to the API endpoint /authenticator/register. The polling server dele-
gates the method handlePOSTAuthenticatorRegister(cls, registerRequest), shown
in Listing 4.13, to handle the response. The method starts with checking whether
or not the registration attempt has timed out. It updates the dictionary holding
the state for the authenticator with the newly registered RP on line 160 if this
is not the case. It then updates a dictionary holding the response for each au-
thenticator with a pollingResonse on lines 162-168. This is the same dictionary
that handlePOSTClientRegister(cls, registerRequest) checks if contains a response
on line 77 in Listing 4.5. The method handlePOSTAuthenticatorRegister(cls,
registerRequest) then queries the MongoDB instance for the document storing
information for the authenticator on line 169. If the document exists, it is updated
with the RPID of the RP on line 171. This realizes that an authenticator may be
registered to multiple RPs. As the authors have not implemented an additional RP,
this code will never be executed, but it was included to illustrate the possibility
for an authenticator to register to multiple RPs. If the document does not exist, a

4.2. IMPLEMENTATION 75

new document is created and inserted into the collection on lines 173-177, before
returning a response indicating success to the authenticator.

156 # TestPlatform/polling-server/pollingHandler.py
157 def handlePOSTAuthenticatorRegister(cls, registerRequest):
. . . # Line 158-159: Check if the registration attempt has timed out.
. . .
160 cls.activeRequests[registerRequest["authenticator_id"]]["RPs"].append(registerRequest["rp_id"])
161 if registerRequest["authenticator_id"] not in list(cls.responseToClient.keys()):
162 cls.responseToClient[registerRequest["authenticator_id"]] = {
163 "credential_id": registerRequest["credential_id"],
164 "public_key_t": registerRequest["public_key_t"],
165 "public_key_seed": registerRequest["public_key_seed"],
166 "client_data": registerRequest["client_data"],
167 "authenticator_id": registerRequest["authenticator_id"]
168 }
169 docs = cls.authenticatorCollection.find({"_id": registerRequest["authenticator_id"]})
170 if len(list(docs)) > 0:
171 cls.authenticatorCollection.update_one({"_id": registerRequest["authenticator_id"]}, {"$push": {"RPs",

registerRequest["rp_id"]}})
172 else:
173 newDoc = {
174 "_id": registerRequest["authenticator_id"],
175 "RPs": [registerRequest["rp_id"]]
176 }
177 cls.authenticatorCollection.insert_one(newDoc)
178 return json.dumps({"success": "NS Auth Reg"})

Listing 4.13: Method in pollingHandler.py that handles registration responses
from authenticators.

Line 77 in Listing 4.5 makes sure that the response, denoted as “pollingResponse”
in Table 4.4, is forwarded to the client application. The client application’s main
task is to forward this to the RP. Listing 4.14 shows what the client application
does when receiving the response from the polling server. If the user dismissed the
registration attempt, the client application will send a request to the RP indicating
this, or that an error occurred, on line 89. If the response is not erroneous, an
HTTP POST request containing the pollingResponse and the username, denoted as
“clientResponse” in Figure 4.6, is crafted and forwarded to the RP on line 96-108.

78 // TestPlatform/client/src/components/login/register.jsx
79 const pollingData = await pollingResponse.json();

. . .

. . . // Line 81-93: Checks if the response indicates a dismissal or an error, and crafts a HTTP POST requests to
be sent to RP server. Logging and updating the user interface

. . .
96 const RPresponseOptions = {
97 method: 'POST',
98 headers: { 'Content-Type': 'application/json' },
99 body: JSON.stringify({

100 "username": username,
101 "credential_id": pollingData["credential_id"],
102 "public_key_t": pollingData["public_key_t"],
103 "public_key_seed": pollingData["public_key_seed"],
104 "client_data": pollingData["client_data"],
105 "authenticator_id": pollingData["authenticator_id"]
106 })
107 };
108 const RPresponseResponse = await fetch(Register.RPUrl+'/authenticator/register', RPresponseOptions);

Listing 4.14: clientResponse sent by client application during registration.

76 4. PROPOSED SOLUTION

When the RP receives the final request from the client application, it has two tasks:
verify the correctness of clientData and store the received public key, credential
ID, username, and authenticator ID in the user collection. Listing 4.15 presents the
method handleRegisterResponse(cls, body), which is responsible for carrying
out the two tasks. Before any of the two tasks can be initiated, the method checks
whether or not the registration attempt has timed out. To verify the correctness
of clientData, the RP first need to create the expected value of clientData.
During the first part of the registration attempt, a challenge was created by the
RP server. A hash of the concatenation of challenge and rpid defines the variable
clientData, i.e. H(challenge||RPID), where H was instantiated as SHA-256. This
expected value is created in Listing 4.15 on lines 188-190, while the comparison
with the received clientData takes place on line 191. In the event that these two
values differ, it signifies tampering with the received variable at some point during
the registration attempt. Consequently, the registration attempt is terminated,
and an error message is transmitted back to the client application on line 219. If
the verification of clientData holds, the received public key is stored along with
username, authenticator ID, and credential ID, as seen on lines 195-204. A response
indicating successful registration is returned to rpServer.py, which in turn sends
this to the client application which displays this to the user. This concludes the
registration ceremony.

180 # TestPlatform/rp-server/rpHandler.py
181 def handleRegisterResponse(cls, body):
. . .
. . . # Line 182-187: Checks if the registration attempt has timed out and updates the user state if this is not

the case.
. . .
188 expectedHash = sha256()
189 expectedHash.update(cls.RPID.encode())
190 expectedHash.update(cls.credentials[body["username"]]["challenge"].encode())
191 if expectedHash.hexdigest() == body["client_data"]:
192 cls.timers[body["username"]].cancel()
193 docs = cls.credentialCollection.find({"username": body["username"]})
194 if len(list(docs)) == 0:
195 doc = {
196 "username":body["username"],
197 "authenticator_id":body["authenticator_id"],
198 "credential_id":body["credential_id"],
199 "pubKey":{
200 "t": json.loads(body["public_key_t"]),
201 "Aseed": str(body["public_key_seed"])
202 }
203 }
204 cls.credentialCollection.insert_one(doc)
. . .
. . . # Line 205-211: Updates the state for the newly registered user.
. . .
212 return json.dumps(body["username"]+" is now registered!")
213 cls.credentials.pop(body["username"], None)
214 return json.dumps({
215 "msg": "User already registered for some reason",
216 "reason": "userAlreadyRegistered"
217 })
218 cls.credentials.pop(body["username"], None)
219 return json.dumps({
220 "msg": "Not the same clientData!",

4.2. IMPLEMENTATION 77

221 "reason": "cryptoVerificationFailure"})

Listing 4.15: Verification of clientData and storage of public key.

4.2.3 Authentication Ceremony

Figure 4.9 shows the authentication ceremony. Like the registration ceremony, the
content of messages is simplified to only contain information relevant to the proposed
solution. The figure gives insight into the responsibilities each component has during
authentication. The signature algorithm in Algorithm 4.2 is used by the authenticator
during the authentication ceremony to produce signatures, while the verification
algorithm in Algorithm 4.4 is used by the RP to verify them. Figure 4.9 shows the
authentication ceremony for the proposed solution.

The authentication ceremony has been divided into four phases, similar to the
registration ceremony. Phase 1 covers the initial authentication request initiated by
the client application and the subsequent response received from the RP. Phase 2
focuses on the reception of this response and the creation of clientData. Additionally,
this phase involves the transmission of clientRequest by the client application and
its subsequent receipt by the polling server. Phase 3 revolves around the activities
of the authenticator, including polling for authentication requests, the signing of
clientData using the securely stored private key, and the transmission of the
authenticatorResponse to the polling server. Finally, Phase 4 encompasses the
polling server’s receipt of the authenticatorResponse and the subsequent transmission
of a response back to the client application. This phase also covers the forwarding
of this response from the client application to the RP, the RP’s verification of the
signature, and the communication of the result back to the client application. As for
the registration ceremony, details for the messages sent during the authentication
ceremony are omitted in Figure 4.9 to increase readability, but an overview of each
message can be seen in Table 4.5.

78 4. PROPOSED SOLUTION

Table 4.5: An overview of messages sent in the authentication ceremony for the
proposed solution.

Message Content
RPresponse {challenge, rp_id, timeout, authenticator_id,

credential_id, random_int}
clientRequest {authenticator_id, rp_id, client_data, timeout,

username, credential_id, random_int}}
pollingResult {credential_id, rp_id, client_data, username,

random_int}}
authenticatorResponse {signature, authenticator_data, client_data,

authenticator_id, random_int}}
pollingResponse {signature, authenticator_data, client_data,

random_int}}
clientResponse {signature, authenticator_data, client_data,

username}

4.2. IMPLEMENTATION 79

Figure 4.9: Authentication ceremony for the proposed solution.

Phase 1

Figure 4.10 presents the user interface used during authentication, which only requires
the username from the user. After entering their unique username, an authentication
request is sent to the RP.

80 4. PROPOSED SOLUTION

Figure 4.10: Authentication user interface.

Listing 4.16 shows the method of handling incoming authentication requests on
behalf of the RP server. When the RP receives the request, it needs to check whether
or not this user has previously registered to the RP and if the user is currently in the
middle of another authentication attempt. If these checks hold, a response is built and
returned to the client application. This starts with generating a new 64-byte random
challenge by calling Handler.getChallenge() on line 80, which is the same method
called by the RP during the registration ceremony. The method updates the state of
the user with the newly generated challenge on line 81, thus being able to retrieve this
when verifying the received clientData in the last request from the client application,
denoted as “clientResponse” in Figure 4.9. The credential ID and authenticator ID
stored with the user during registration is retrieved on line 82 and 83. The method
then updates the state of the user to reflect an active authentication attempt before
the response on lines 88-95, denoted as “RPresponse”, is returned to rpServer.py,
which forwards it to the client application. A random integer is also returned to
the client application. This is used as a countermeasure against session hijacking,
as the proposed solution is vulnerable to this as a consequence of the authenticator
and client application communicating via HTTP. In FIDO2, the communication
between the authenticator and the client application is handled by CTAP, which
eliminates the possibility of session hijacking by restricting the physical distance

4.2. IMPLEMENTATION 81

between the authenticator and the client application. This is not the case with the
proposed solution, where the authenticator and client application can communicate
from anywhere in the world via HTTP. As a result, a random integer must be passed
back to the client application and relayed to the authenticator. Both the client
application and authenticator can then display this integer to ensure the user that
the correct client is authenticated when accepting the authentication requests in the
authenticator application. This concludes phase 1 of the authentication ceremony.

74 # TestPlatform/rp-server/rpHandler.py
75 def handleLogin(cls, body):

. . .

. . . # Line 76-79: Check that the user with the given username is registered and that the user is not in the
middle of another authentication procedure.

. . .
80 challenge = Handler.getChallenge()
81 cls.credentials[body["username"]]["challenge"] = challenge
82 credID = cls.credentials[body["username"]]["A"]["credential_id"]
83 authID = cls.credentials[body["username"]]["authenticator_id"]
84 cls.timers[body["username"]] = Timer(cls.timeout, cls.handleTimeout, args=(body["username"], False ,))
85 cls.timers[body["username"]].start()

. . .

. . . # Line 86-87: Updates the state of the user.

. . .
88 return json.dumps({
89 "rp_id":cls.RPID,
90 "challenge":challenge,
91 "credential_id":credID,
92 "timeout":cls.timeout,
93 "authenticator_id":authID,
94 "random_int": str(np.random.randint(low=1, high=100000))
95 })

Listing 4.16: Handle authentication request

Phase 2

Upon receipt of the RPresponse, the client application generates clientData in the
same way as during the registration ceremony, shown in Listing 4.3. After this, it
forwards a request to the polling server, denoted as “clientRequest” in Figure 4.9.
The request is forwarded to the API endpoint /client/authenticate in the polling
server.

The method handlePOSTClientAuthenticate(cls, authenticateRequest)
handles clientRequest on behalf of pollingServer.py. This method runs a series
of checks to verify that the user and authenticator are registered to the given RP
and that the given authenticator is not in an ongoing authentication procedure. If
these checks hold, a polling response, denoted as “pollingResult” in Figure 4.9, is
queued on line 95-101. A timer counting down from 30 seconds, i.e., the received
timeout duration, is started in the same way as for a registration attempt. Similar
to registration attempts, this timer checks if the authenticator has dismissed the
attempt on line 110, or if a response from the authenticator has been received on line
113. If the latter holds, a response, denoted as “pollingResponse” in Figure 4.9, is

82 4. PROPOSED SOLUTION

returned to the client application, which takes place on line 116. The polling server’s
handling of clientRequest concludes phase 2 of the authentication ceremony.

86 # TestPlatform/polling-server/pollingHandler.py
87 def handlePOSTClientAuthenticate(cls, authenticateRequest):

. . . # Line 88-93: Checks if the authenticator is in the middle of an ongoing authentication attempt, if the
authenticator has registered, and if the authenticator is registered to the given RP.

. . .
94 if len(cls.activeRequests[authenticateRequest["authenticator_id"]]["A"]) == 0:
95 cls.activeRequests[authenticateRequest["authenticator_id"]]["A"].append({
96 "credential_id": authenticateRequest["credential_id"],
97 "rp_id": authenticateRequest["rp_id"],
98 "client_data": authenticateRequest["client_data"],
99 "username": authenticateRequest["username"],

100 "random_int": authenticateRequest["random_int"]
101 })
. . .
. . . # Line 102-103: Updating the state of the user currently in an ongoing authentication attempt.
. . .
104 timeout = int(authenticateRequest["timeout"])
105 waitedTime = 0
106 interval = 0.1
107 while waitedTime <= timeout:
108 waitedTime += interval
109 time.sleep(interval)
110 if cls.activeRequests[authenticateRequest["authenticator_id"]]["dismissed"]:
111 cls.activeRequests[authenticateRequest["authenticator_id"]]["dismissed"] = False
112 return json.dumps("Authenticator chose to dismiss the authentication attempt")
113 if authenticateRequest["authenticator_id"] in list(cls.responseToClient.keys()):
114 response = cls.responseToClient.pop(authenticateRequest["authenticator_id"], None)
115 cls.isActive[authenticateRequest["authenticator_id"]]["A"] = False
116 return json.dumps(response)
. . .
. . . # Line 117-119: Updating the state of the user if the authentication attempt timed out.
. . .
120 return json.dumps("Timeout")
121 return json.dumps("Pending authentication request already exists for the given authenticator")

Listing 4.17: Handle clientRequest.

Phase 3

Phase 3 is initiated with the authenticator polling the polling server for pending
registration or authentication requests. The authenticator instructs a scheduled timer
to poll the polling server every second, as explained in Section 4.2.2. As polling is
done regardless of whether or not a registration or authentication request is pending,
the same method in the polling server is delegated by pollingServer.py to handle
the polling request from the authenticator, which can be viewed in Listing 4.7. If the
queue mapping authenticator IDs to pending authentication attempts are filled with a
pending authentication attempt, the queue mapping to pending registration attempts
will always be empty, as it is not possible to receive a registration request from
the client application if a user has already registered with the given authenticator.
The check on line 138 in Listing 4.7 therefore holds, and an authentication request
is returned to the authenticator. As mentioned in Section 4.2.2, the key values in
the payload of the response from the polling server are identical when returning a
registration or authentication request. One difference is whether or not a credential

4.2. IMPLEMENTATION 83

ID is filled with a value or empty, where a value for the credential ID indicates an
authentication request. The authenticator application will notice that the value for
credential ID is non-empty, thus displaying an alert notifying the user about this, as
shown in Figure 4.11a. The displayed alert also includes the received random integer.
The user can then verify that the received integer is the same as the integer shown
in the user interface for the client application, as shown in Figure 4.12. A user can
either dismiss the authentication attempt, denoted by Dismiss or allow it, denoted
by Authenticate.

(a) (b) (c)

Figure 4.11: The steps of an authentication process. (a) Verify one-time code
and accept authentication attempts. (b) User verification with biometrics. (c)
Authentication completed.

84 4. PROPOSED SOLUTION

Figure 4.12: Verification code displayed in the client application when authenticat-
ing.

If a user chooses to allow and click on Authenticate, the authenticatorView will
delegate EventHandler’s method handleAuthentication(credential_ID: String,
RP_ID: String, clientData: String, randomInt: String), shown in Listing 4.18, to
handle the event. This method performs the most crucial task in the proposed
solution, i.e., facilitates authentication by signing clientData with the stored pri-
vate key corresponding to the public key stored by the RP during the registration
ceremony. To do this, the method first has to retrieve the stored private key, by
calling the method getItem(account: String, service: String) defined by the class
AccessKeychain on line 124-126. This method queries the keychain for a keychain
object stored with the RPID as service, and the received credential ID as account.
The method also queries with the same accessibility class defined when storing
the private key, presented in Section 4.2.2. As explained, this class requires user
verification to retrieve the stored keychain object. This is shown in Figure 4.11b,
where biometric authentication, i.e., Face ID, is required to retrieve the private key.
If FaceID is not an option on the iPhone, the application will prompt the user to
type in their passcode. The method returns the retrieved private key as an object
of type Data and decodes it to the format defined by the struct SecretKey on lines
131-134.

4.2. IMPLEMENTATION 85

122 // TestPlatform/Authenticator/Authenticator/Model/eventHandler.swift
123 func handleAuthentication(credential_ID: String, RP_ID: String, clientData: String, randomInt: String) {
124 guard let data = AccessKeychain.getItem(
125 account: credential_ID,
126 service: RP_ID
127) else {
128 print("Failed to read secret key from keychain")
129 return
130 }
131 guard let secretKey = try? JSONDecoder().decode(DilithiumLite.SecretKey.self, from: data) else {
132 print("Unable to decode secret key")
133 return
134 }
135 let sig = dilithiumLite.sign(sk: secretKey, message: clientData)
136
137 guard let authenticatorData = String(hashlib.sha256(Python.str(RP_ID).encode()).hexdigest()) else {
138 print("Unable to convert authenticatorData python hash to a SWIFT String")
139 return
140 }
. . .
. . . // Line 141-153: Instructing CommunicateWithServer to post the authenticatorResposne to the polling server.
. . .
154 }

Listing 4.18: EventHandler’s method for handling authentication attempts.

The next action for the EventHandler is to sign the received clientData with
the newly retrieved and decoded private key. The method sign(sk: SecretKey,
message: String), shown in Listing 4.19, defined by the class DilithiumLite is
responsible for this. This method is the authors’ implementation of Algorithm 4.2.
The method starts with transforming the coefficients of s1, s2 to vectors of polynomials
on lines 328 and 329, with the helper method coeffsToPolynomial(listOfCoeffs:
[[Int]]). The matrix A is then generated on line 330 by inputting the seed
ρ′, denoted as sk.Aseed, into expandA(seed: PythonObject), and the public lattice
point t is calculated with getLatticePoint(A: PythonObject, s: PythonObject, e:
PythonObject) on line 331. According to Algorithm 4.2, a random 512-bit random
seed ρ is sampled to generate the two masking vectors y1 and y2. This seed is
denoted as rho1 and rho2 on lines 332 and 333, and are they 32 bytes, i.e. 256
bits. These seeds are sampled with getRandomBytes(count: Int) shown in Listing
4.10, and their randomness is explained in Section 4.1.2. κ, denoted as kappa, is
then defined on line 348 and ensures that a new commitment is generated in each
loop by including it in the method expandMask(seed: PythonObject, kappa: Int,
noOfPoly: Int). Said loop starts on line 336 and continues until a valid signature is
generated, i.e., the rejection sampling algorithm “accepts” the opening (z1, z2). The
first step of this loop is to generate the two masking vectors y1 and y2 by the use
of expandMask(seed: PythonObject, kappa: Int, noOfPoly: Int), which in a similar
manner as expandA and expandS maps a random seed to a vector of polynomials
∈ [γ + β̄]. A commitment ω, denoted as omega, is then generated by calculating
ω ∈ {0, 1}384 := H(Ay1 + y2) on line 340, where H is instantiated as SHAKE-256.

326 // TestPlatform/Authenticator/Authenticator/Model/SignatureAlgs/dilithiumLite.swift
327 func sign(sk: SecretKey, message: String) -> Signature {

86 4. PROPOSED SOLUTION

328 let s1 = self.coeffsToPolynomial(listOfCoeffs: sk.s1Coeffs)
329 let s2 = self.coeffsToPolynomial(listOfCoeffs: sk.s2Coeffs)
330 let A = self.expandA(seed: Python.str(sk.Aseed).encode())
331 let t = self.getLatticePoint(A: A, s: s1, e: s2)
332 let rho1 = self.getRandomBytes(count: 32)
333 let rho2 = self.getRandomBytes(count: 32)
334 var kappa = 0
335 var k = 1
336 while true {
337 let y1 = self.expandMask(seed: self.np.array(rho1).tobytes(), kappa: kappa, noOfPoly: self.m)
338 let y2 = self.expandMask(seed: self.np.array(rho2).tobytes(), kappa: kappa, noOfPoly: self.n)
339 let w = self.getLatticePoint(A: A, s: y1, e: y2)
340 let omega = self.hashlib.shake_256(self.np.array(self.getCoefficients(polyList: w)).tobytes())
341 let c = self.getChallenge(A: A, t: t, omega: omega.hexdigest(48).encode(), message:

Python.str(message).encode())
342 var z1: [PythonObject] = []
343 for i in 0..<Int(s1.size)! {
344 z1.append(self.np.polynomial.Polynomial(
345 self.np.polynomial.polynomial.polydiv(
346 self.np.inner(c.challengePolynomial,s1[i]).coef, self.f.coef)[1])+y1[i])
347 }
348 var z2: [PythonObject] = []
349 for i in 0..<Int(s2.size)! {
350 z2.append(self.np.polynomial.Polynomial(
351 self.np.polynomial.polynomial.polydiv(
352 self.np.inner(c.challengePolynomial,s2[i]).coef, self.f.coef)[1])+y2[i])
353 }
354 if rejectionSampling(z1: self.np.array(z1), z2: self.np.array(z2)) {
355 return Signature(
356 z1Coeffs: self.getCoefficients(polyList: self.np.array(z1)),
357 z2Coeffs: self.getCoefficients(polyList: self.np.array(z2)),
358 cHex: c.challengeHex,
359 omega: String(omega.hexdigest(48))!
360)
361 }
362 k += 1
363 kappa += self.n
364 }
365 }

Listing 4.19: The authors’ Swift implementation of the signature algorithm of the
digital signature scheme.

The matrix A, the public lattice point t, the commitment ω, and the clientData,
denoted as message, is included as input in the method getChallenge(A: PythonObject,
t: PythonObject, omega: PythonObject, message: PythonObject), shown in Listing
4.20, to generate a challenge, denoted as c. The output of this method is a Challenge
struct, which defines c′ ∈ {0, 1}384 := H(A ||t ||ω ||µ) from Algorithm 4.2, where
c′ is denoted as challengeHex and µ is the clientData, denoted as message. The
struct also defines the challenge polynomial c ∈ C ⊂ Rq,f := HashToBall(c′) from
Algorithm 4.2, where c is denoted as challengePolynomial. HashToBall is denoted
as the method hashToBall(seed: PythonObject), and is the implementation of Algo-
rithm 4.3, which maps a seed c′ to a polynomial ∈ C with η coefficients ∈ {−1, 1}
and the rest equal to 0. The coefficients of A and t, the commitment ω and the
message to be signed are absorbed by SHAKE-256 on line 289-302 in Listing 4.20,
before the variable challengeHex, i.e., c′, is defined on line 303. A Challenge struct
is returned on lines 304-307.

4.2. IMPLEMENTATION 87

286 // TestPlatform/Authenticator/Authenticator/Model/SignatureAlgs/dilithiumLite.swift
287 func getChallenge(A: PythonObject, t: PythonObject, omega: PythonObject, message: PythonObject) -> Challenge {
288 let h = self.hashlib.shake_256()
. . .
. . . // Line 289-302: The hash function h absorbs the coefficients of A and t, the commitment omega and the

message to be signed, i.e. clientData.
. . .
303 let challengeHex = String(h.hexdigest(48))!
304 return Challenge(
305 challengeHex: challengeHex,
306 challengePolynomial: self.hashToBall(seed: h.hexdigest(48).encode())
307)
308 }

Listing 4.20: Method that outputs a 384-bit hash output c′ from SHAKE-256
instantiation absorbing A, t, ω, clientData, as well as the polynomial c defined as
HashToBall(c′).

The signature implementation on Listing 4.19 continues with calculating the open-
ing (z1, z2) with the newly generated challenge polynomial, where z1 = c · s1 + y1
and z2 = c · s2 + y2 on line 342-353, before checking if z1 or z2 has a coefficient > β̄.
This check is carried out by the method rejectionSampling(z1: PythonObject, z2:
PythonObject). If that is the case, the loop continues until rejectionSampling(z1:
PythonObject, z2: PythonObject) “accepts” the opening (z1, z2), which upon a
Signature struct containing the coefficients of z1 and z2, as well as the hash
outputs c′ and ω is returned to the EventHandler. The coefficients of z1 and z2 are
returned instead of the polynomials for Swift to be able to encode them and transmit
them to the polling server.

After a signature is generated by sign(sk: SecretKey, message: String) on be-
half of the EventHandler, the authenticator data, defined in Section 2.3.3, is gener-
ated as the SHA-256 hash output of the RPID on line 137-140. The EventHandler in-
structs CommunicateWithServer to send the signature, authenticator data, clientData,
random integer, and authenticator ID, denoted as “authenticatorResponse” in Figure
4.9 on line 141-153 in Listing 4.18. This concludes the actions of the authenticator
during an authentication attempt, and therefore also phase 3.

Phase 4

When the polling server receives the authenticatorResponse, it first verifies that the
authentication attempts have not timed out. If this is not the case, a response is
added to a dictionary holding responses ready to be sent back to the client application.
The response is sent when the countdown in Listing 4.17 notices that a response from
the given authenticator is received. The client application will forward the response
from the polling server as well as the username back to the RP upon reception of
pollingResponse.

88 4. PROPOSED SOLUTION

The RP has the following responsibilities when receiving the clientResponse:
verify the correctness of received clientData and authenticator data, and verify
the signature. The method shown in Listing 4.21 does this. The correctness of
clientData can be verified by creating the expected hash output, as presented in
Section 4.2.2. The expected hash output is generated on lines 105-107 in Listing 4.21
and compared on line 119. The received authenticator data is also compared with
the SHA-256 hash of the RPID the RP has access to on line 119.

97 # TestPlatform/rp-server/rpHandler.py
98 def handleLoginResponse(cls, body):

. . .

. . . # Line 99-104: Check that the authentication attempt has not timed out, and update the user state if this is
not the case.

. . .
105 expectedHash = sha256()
106 expectedHash.update(cls.RPID.encode())
107 expectedHash.update(cls.credentials[body["username"]]["challenge"].encode())
108 pubKey = cls.credentials[body["username"]]["A"]["pubKey"]
109 pubKeyVerify = {
110 "t": Handler.coeffsToPolynomial(np.array(pubKey["t"])),
111 "Aseed": pubKey["Aseed"]
112 }
113 signature = {
114 "omega": str(body["omega"]),
115 "c": str(body["c"]),
116 "z1": Handler.coeffsToPolynomial(np.array(json.loads(body["z1"]), dtype=int)),
117 "z2": Handler.coeffsToPolynomial(np.array(json.loads(body["z2"]), dtype=int))
118 }
119 if expectedHash.hexdigest() == body["client_data"] and sha256(cls.RPID.encode()).hexdigest() ==

body["authenticator_data"] and Handler.verifySig(pubKey=pubKeyVerify, sig=signature,
clientData=expectedHash.hexdigest()):

120 cls.timers[body["username"]].cancel()
121 return json.dumps("Successfully logged in as "+body["username"])
122 return json.dumps({
123 "msg": "clientDataJSON, authData or signature failed!",
124 "reason": "cryptoVerificationFailure"})

Listing 4.21: RP: Handle authentication request

Lastly, the received signature needs to be verified. To do this, the public key
associated with the user has to be retrieved. The retrieved public key component
t consists of the coefficients of the polynomials that comprise t. Before verifying
the signature, t has to be transformed into a vector of polynomials based on its
coefficients, which is done on line 110. The same goes for z1 and z2 in the received
signature, which happens on lines 116 and 117. The signature is now ready to
be verified by the method verifySig(cls, pubKey, sig, clientData), which is the
authors’ implementation of Algorithm 4.4.

The method verifySig(cls, pubKey, sig, clientData) can be seen in Listing
4.22. The RP also need an implementation of ExpandA from Algorithm 4.5, as the
stored public key only includes ρ′. The matrix A ∈ Rn×m

q,f := ExpandA(ρ′) is generated
on line 286 by the method expandA(cls, seed), which maps the seed ρ′ to a matrix ∈
Rn×m

q,f . To verify the signature, the RP needs to perform three checks. It has to check
if the received challenge hash output c is correct by computing its own and comparing

4.2. IMPLEMENTATION 89

it to the received one. It has to make sure that both z1 and z2 consist of short-norm
polynomials, i.e., ≤ β̄. Lastly, it has to verify the correctness of the signature by
making sure the received commitment ω equals H(Az1 + z2 − ct) ∈ {0, 1}384. The
method starts with RP generating c′′, denoted as expectedHash.hexdigest(48), which
happens on line 298-302 and compares it to the received challenge c′ ∈ {0, 1}384,
which happens on line 303. If this comparison holds, a challenge polynomial c ∈ C,
denoted as cPoly, is generated on line 305 with the use of RPs own implementation
of HashToBall. The RP then calculates ω′ := H(Az1 + z2 − ct) on line 306-308 and
compares it to the received commitment ω on line 309. Lastly, the RP concatenates
the coefficients of z1 and z2 into a single list and checks if the absolute value of
any of them is larger than β̄, denoted by cls.approxBeta. If these three checks
hold, verifySig(cls, pubKey, sig, clientData) will output true, indicating that
this is a valid signature on clientData with the private key corresponding to the
public key received when registering. The method handleLoginResponse(cls, body)
in Listing 4.21 will then return the result to be sent back to the client application,
which indicates successful authentication for the user. This concludes phase 4 and
the authentication ceremony.

284 # TestPlatform/rp-server/rpHandler.py
285 def verifySig(cls, pubKey, sig, clientData):
286 A = cls.expandA(pubKey["Aseed"].encode())
. . .
. . . # Line 287-297: Assigning the components of the signature and public lattice point t to variables, as well as

extracting the coefficients of the polynomials in A and storing them in the list ACoeffs.
. . .
298 expectedHash = shake_256()
299 expectedHash.update(np.array(ACoeffs).tobytes())
300 expectedHash.update(np.array(Handler.polynomialToCoeffs(t)).tobytes())
301 expectedHash.update(omega.encode())
302 expectedHash.update(clientData.encode())
303 if expectedHash.hexdigest(48) != c:
304 return False
305 cPoly = cls.hashToBall(expectedHash.hexdigest(48).encode())
306 ct = np.array([cPoly*p for p in t])
307 omegaprime = np.inner(A, z1)+z2-ct
308 omegaprime = np.array([Polynomial((p % cls.f).coef % cls.q) for p in omegaprime])
309 if not shake_256(np.array(Handler.polynomialToCoeffs(omegaprime), dtype=int).tobytes()).hexdigest(48) ==

omega:
310 return False
311 concatenatedList = np.array(Handler.polynomialToCoeffs(z1) + Handler.polynomialToCoeffs(z2)).flatten()
312 if np.any(np.absolute(concatenatedList) > cls.approxBeta):
313 return False
314 return True

Listing 4.22: Implementation of verification algorithm.

4.2.4 Process View

Figure 4.13 presents a high-level complete process view, which includes all possible
actions and subsequent reactions in the proposed solution. The figure focuses on
the run-time behavior of the system, the processes within the system, and how
components communicate.

90 4. PROPOSED SOLUTION

Figure 4.13: Process View for the proposed solution.

Chapter5Performance and Discussion

This chapter presents the performance of the proposed solution introduced in Chapter
4. The performance is evaluated against a set of metrics, including key and signature
sizes, as well as efficiency. The proposed solution will be compared to similar existing
state-of-the-art solutions on the measured metrics. The functional and quality
requirements from Section 5.1.5 will be revisited and reviewed. Lastly, a discussion
on how this master’s thesis answers the research questions defined in Section 1.4 is
carried out.

5.1 Performance

The evaluation of the proposed solution focuses on the performance of the implemented
digital signature scheme from Section 2.2.4. The authors have tested how different
values for the dimension (n, m) affect the key and signature sizes of the scheme, as
well as the performance of the implemented digital signature algorithms from Section
4.1.2. (n, m) was chosen because it directly affects the performance of the scheme by
governing the number of operations performed when multiplying and adding matrices
and vectors of polynomials. It was also chosen since it affects the hardness of the
underlying hard problems, i.e., LWE and SIS, thus affecting the overall security of
the scheme. Different values for β were also tested when evaluating the performance
of the signature algorithm, to identify any dependencies between β, i.e., the secret
(s1, s2), and the run-time of the signature algorithm.

The following presents the results from each test and discusses them in light of
the presented background and related work from Chapter 2. The digital signature
implemented by the authors in the proposed solution will be compared with the
state of the art within lattice-based zero-knowledge digital signatures, i.e., Dilithium,
which was presented in Section 2.4.2. Table 5.1 and 5.2 shows a comparison of key
and signature size in bytes, and the performance respectively, between Dilithium2,
an instance of Dilithium with equivalent security, i.e., 128-bit quantum security, and

91

92 5. PERFORMANCE AND DISCUSSION

the digital signature implemented in the proposed solution. The data for Dilithium2
is gathered from Table 2.1 and 2.2 in Section 2.4.2, while the data for the digital
signature implemented in the proposed solution is gathered from Table A.1, A.2, A.4,
A.3, and A.6 in Appendix A, which contains the test results. In Table 5.2, the key
generation algorithm is denoted as KeyGen, the signature algorithm is denoted as
Sign, and the verification algorithm is denoted as Verify. The authors have decided
that the measurements of performance should include the average time usage for
all three algorithms. The average number of attempts before a valid signature is
produced will also be measured for the signature algorithm. The key generation and
signature algorithm were tested in a Swift program executed on an iPhone XR with
an A12 Bionic chip, as these algorithms are to be executed by the authenticator
during registration and authentication. The verification algorithm was tested with a
Python script running on a Macbook Pro 2017 with a 2.3 GHz dual-core Intel Core
i5.

Table 5.1: A comparison of key and signature sizes, in bytes, between the imple-
mented digital signature and Dilithium2.

Private key Public key Signature
Dilithium2 2544 1312 2440

Proposed solution 5645 10102 15179

Table 5.2: A comparison of performance between the implemented digital signature
and Dilithium2.

KeyGen (ms) Sign Verify (ms)
Attempts Time (ms)

Dilithium2 2.04 4.25 11.9 2.21
Proposed solution 349.63 3.12 431.17 19.36

5.1.1 Key and Signature Size

Key and signature sizes of the scheme were evaluated in the test environment presented
in Chapter 4. The key and signature sizes have therefore been evaluated by a Swift
program added to the authenticator, which instructed the class DilithiumLite to
generate new key pairs and sign a standardized message of type String. The test
program can be viewed in Listing A.1 in Appendix A. The authors implemented two
additional methods in DilithiumLite to encode PublicKey and Signature structs as
objects of type Data, similar to getSecretKeyAsData(secretKey: SecretKey). After
encoding key pairs and signatures as objects of type Data, their sizes in bytes can be
accessed through Data.count. Table 5.3 shows the size of private keys, public keys,
and signatures with (n, m) = {(4, 3), (5, 4), (6, 5)}.

5.1. PERFORMANCE 93

Table 5.3: Sizes in bytes for the private key, public key, and signature for the
implemented digital signature.

(n, m) Private Key Size Public Key Size Signature Size
(4, 3) 4405 8090 11471
(5, 4) 5645 10102 15179
(6, 5) 6870 12098 18899

Table 5.3 illustrates a rather obvious fact for the keys and signature, their size
increases linearly as (n, m) increase, as shown in Figure 5.1. The data used to
generate this plot can be viewed in Table A.1 in Appendix A. The private key
implemented in the proposed solution consists of two lists, s1Coeffs and s2Coeffs,
containing the coefficients for the polynomials that comprise s1 and s2, as well as a
256-bit seed ρ′, which is used to generate the matrix A. The size of ρ′ will remain
unchanged independent of (n, m), while the total number of lists of coefficients will
be n + m. The linear increase in private key size as a function of (n, m) is the result
of the increase in the number of lists of coefficients for s1 and s2.

The public key used in the proposed solution consists of a list, tCoeffs, containing
n lists of d coefficients for the polynomials that comprise t = As1 + s2, as well as the
seed ρ′, used to generate the matrix A. The number of lists in tCoeffs will increase
as n increases, while ρ′ will remain unchanged independent of (n, m). As a result,
the public key size increase linearly as (n, m) increase.

The signature implemented in the proposed solution consists of two lists z1Coeffs
and z2Coeffs, as well as two hash outputs cHex and omega. The two lists are the
list of coefficients for the polynomials that comprise z1 and z2 respectively. The
two hash outputs are the 384-bit hash digest c′ and the 384-bit commitment ω,
presented in Algorithm 4.2. The hash digest c′ and commitment ω remain unchanged
independent of (n, m), while z1Coeffs and z2Coeffs increase linearly as a function
of (n, m). The total number of lists of coefficients in a signature is n + m.

One should notice from Table 5.3 and Figure 5.1 that even though the private
key contains m more lists of coefficients than the public key, the size of the public
key is ≈1.8 times larger than the private key. This indicates that the size of the
coefficients plays an important role when encoding them, as β << q. The same goes
for the size of the signature, which contains m + n list of relatively large coefficients,
i.e., β << β̄. The signature is ≈1.5 times larger than the public key and ≈2.7 times
larger than the private key.

Table 5.1 shows a comparison of key and signature size between the implemented
digital signature and Dilithium2. From the table, it can be read that for Dilithium2,

94 5. PERFORMANCE AND DISCUSSION

the private key is the largest, ≈1.9 larger than the public key and slightly larger than
the signature. This is due to techniques explained in [Lyu20] and [DKL+18] that
reduce the size of the public key and the proof of the underlying Σ-protocol. As a
result, the private key for the digital signature implemented in the proposed solution
is ≈2.22 larger than the private key used in Dilithium2. As for the public key and
signature implemented in the proposed solution, their size is substantially larger
than the public key and signature used in Dilithium2, ≈7.7 and ≈6.3 times larger
respectively. This is expected as the techniques presented in [Lyu20] and [DKL+18]
were not part of the digital signature scheme implemented in the proposed solution.

(3,
 2)

(4,
 3)

(5,
 4)

(6,
 5)

(7,
 6)

(8,
 7)

(9,
 8)

(10
, 9

)

(11
, 1

0)

(12
, 1

1)

(13
, 1

2)

(14
, 1

3)

(15
, 1

4)

(n, m)

10000

20000

30000

40000

50000

Si
ze

 (b
yt

es
)

Private key
Public Key
Signature

Figure 5.1: The size of the private key, public key, and signature with β = 5 and
(n, m) = ((3, 2), . . . , (15, 14)).

5.1.2 Key Generation

The key generation algorithm was evaluated in a similar manner as for key and
signature sizes of the digital signature scheme, i.e., a Swift program was added to the
authenticator iOS application. The program instructed DilithiumLite to generate
key pairs via the method generateKeyPair() while varying (n, m) and β. The time
spent on executing the method was measured. The program can be viewed in Listing
A.4 in Appendix A. 100 key pairs were generated for each value of (n, m, β) to get
an average with minimized variance. Time measurements were implemented with
DispatchTime.now().uptimeNanoseconds [23b] [23h], an instance property returning
the number of nanoseconds since system boot. Figure 5.2 shows a plot of the average

5.1. PERFORMANCE 95

time spent, in milliseconds, to generate keys with (n, m) = ((3, 2), (4, 3), . . . , (15, 14))
for β = 5. The data set used to generate the plot can be viewed in Table A.2 in
Appendix A.

(3,
 2)

(4,
 3)

(5,
 4)

(6,
 5)

(7,
 6)

(8,
 7)

(9,
 8)

(10
, 9

)

(11
, 1

0)

(12
, 1

1)

(13
, 1

2)

(14
, 1

3)

(15
, 1

4)

(n, m)

0

500

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e

ke
y

ge
ne

ra
tio

n
tim

e
(m

s)

= 5
14n2

Figure 5.2: Average time in milliseconds needed to generate key pairs.

From each plot, it can be observed that the average time needed to generate a new
key pair tends to grow polynomially as (n, m) increases. As presented in Algorithm
4.1, key generation includes sampling a seed ζ to further generate the two seeds ρ, ρ′,
which are used to generate the secret (s1, s2) and the public matrix A respectively.
The last step is to calculate the public lattice point t = As1+s2, which is an expensive
operation in the key generation algorithm, especially as NTT was not implemented
by the authors. Acquiring the asymptotic run-time complexity of the key generation
algorithm involves inspecting the operations executed. In all tests carried out by the
authors, (n, m) is such that m = n− 1. The run-time complexity of generating the
secret (s1, s2) from ζ is O(n + m) = O(n + (n − 1)) = O(2n), while the run-time
complexity of sampling the matrix A is O(n·m) = O(n·(n−1)) = O(n2). The last step,
calculating the public lattice point, requires n ·m polynomial multiplications and n ·m
polynomial additions. This is due to A · s1 involving n ·m polynomial multiplications
and n(m−1) polynomial additions, while adding As1 with s2 involves n additions. A
total amount of n·m polynomial multiplications and n(m−1)+n = n·m−n+n = n·m
polynomial additions are needed to calculate t, resulting in a run-time complexity of

96 5. PERFORMANCE AND DISCUSSION

O(n2). An upper bound for the run-time complexity of the key generation algorithm
is thus O(2n)+O(n2)+O(n2) = O(2n2 +2n) = O(n2). The plot for 14 ·n2 is plotted
in Figure 5.2, and shows that the time usage grows polynomially.

Table 5.2 shows a comparison of performance between Dilithium2 and the imple-
mented digital signature. The average time usage of the key generation algorithm for
Dilithium2 is 2.04 ms, while the average time usage for the implemented digital signa-
ture is 349.63 ms, which is more than for Dilithium2 by a factor of ≈171. One reason
for this difference is the authors’ inefficient implementation of the functions expandS
and expandA, which are used to generate the secret (s1, s2) and A respectively. In
the implemented solution, coefficients are generated sequentially by interpreting bytes
from a SHAKE instance as integers. The authors of Dilithium have implemented
this in a vectorized form, allowing multiple coefficients to be generated in parallel
[DKL+18]. In Dilithium specification 3.1 [DKL+21], the authors have opted to use
Advanced Encryption Standard (AES) in expandS and expandA, allowing already
made hardware implementations of AES to be utilized for an additional speed-up.
Another reason for the difference in performance is the fact that the digital signature
in the proposed solution was implemented in Swift, which is a high-level language. As
a high-level language, developers are not granted fine-grained access to hardware, as
in low-level programming languages such as C or Assembly. Low-level programming
languages grant developers direct access to hardware resources, allowing them to take
advantage of low-level optimization which high-level languages such as Swift simply
cannot do. The performance metrics presented in Table 5.2 are for an optimized
implementation of Dilitihum written in C [pq-17].

The authors have not considered the time usage for key generation as a large prob-
lem, as the use case for the implemented digital signature is to facilitate passwordless
authentication. A time variance in the range of a couple of hundred milliseconds is
not noticeable for the end user, especially when the key generation algorithm is only
executed for a user when registering to a service.

5.1.3 Signing

The evaluation of the signature algorithm was carried out in a similar manner as for
the key generation algorithm. The test aimed to reflect the real-life performance of
the signature algorithm when authenticating to a service with the authenticator, and
a Swift program was therefore added to the iOS application. The program instructed
dilithiumLite to generate a key pair and sign a message. The time used to sign the
message with the newly created private key was then measured in a similar manner
as for the key generation algorithm. The number of attempts needed to produce
a valid signature was also measured, as the time usage for the signature algorithm
heavily depends on the number of attempts. The parameters (n, m) and β were

5.1. PERFORMANCE 97

changed, and 50 tests were executed for each combination of (β, n, m) to minimize
the variance of the estimated average. The authors chose to only execute 50 tests,
as the tests became time-consuming when (n, m) approached (8, 7). The program
implemented to test the signature algorithm is presented in Listing A.3 in Appendix
A.

Figure 5.3 and 5.4 shows plots for the average number of signature attempts needed
until a valid signature was generated, and the average time used, in milliseconds, for
the signature algorithm respectively. The plots in Figure 5.3 were generated with the
data set from Table A.4 in Appendix A, while the plots in Figure 5.4 were generated
with the data set from Table A.3 in Appendix A. Both figures show the average
number of attempts and the average time usage for (n, m) = ((3, 2), . . . , (15, 14)),
and both figures include 5 plots each for β = (3, 4, 5, 6, 7).

(3,
 2)

(4,
 3)

(5,
 4)

(6,
 5)

(7,
 6)

(8,
 7)

(9,
 8)

(10
, 9

)

(11
, 1

0)

(12
, 1

1)

(13
, 1

2)

(14
, 1

3)

(15
, 1

4)

(n, m)

0

20

40

60

80

Av
er

ag
e

sig
na

tu
re

 a
tte

m
pt

s

= 3
= 4
= 5
= 6
= 7

e d(n + m)/

Figure 5.3: Average signature attempts.

98 5. PERFORMANCE AND DISCUSSION

(3,
 2)

(4,
 3)

(5,
 4)

(6,
 5)

(7,
 6)

(8,
 7)

(9,
 8)

(10
, 9

)

(11
, 1

0)

(12
, 1

1)

(13
, 1

2)

(14
, 1

3)

(15
, 1

4)

(n, m)

0

5000

10000

15000

20000

Av
er

ag
e

sig
na

tu
re

 ti
m

e
(m

s)

= 3
= 4
= 5
= 6
= 7

250e d(n + m)/

Figure 5.4: Average signature time usage (ms).

Figures 5.3 and 5.4 illustrate how the time usage for the signature algorithm is
dominated by the number of attempts needed before a valid signature is generated.
Equation 2.5 shows the probability for a signature to be accepted by the rejection
sampling algorithm. As shown in [Lyu20], the probability of accepting a signature
can be approximated in the following way:

(
2β̄ + 1

2(β̄ + γ) + 1

)d(m+n)

>

(
β̄

β̄ + γ

)
=

(
1 + γ

β̄

)−d(n+m)
≈ e

− γd(n+m)
β̄ (5.1)

The implemented signature procedure resembles “Bernoulli trials”, as mentioned
in Section 2.2.4. X is defined as the number of signature attempts until a valid
signature is produced, including the attempt to produce the valid signature. Equation
2.6 shows the expected number of attempts before a valid signature is produced.
Substituting the probability for success with the approximate probability of success
given in Equation 5.1 yields an approximated expected number of attempts.

5.1. PERFORMANCE 99

E[X] = 1
Pr

y1,y2
[(z1, z2) ̸=⊥]

E[X] = 1(
2β̄+1

2(β̄+γ)+1

)d(m+n)

E[X] ≈ 1

e
− γd(n+m)

β̄

= e
γd(n+m)

β̄ (5.2)

The number of signature attempts grows exponentially following Equation 5.2
when (n, m) increases. This is illustrated in Figure 5.3, where eγd(n+m)/β̄ is plotted
alongside the other plots. In this specific plot, the authors chose the same values for
the parameters as presented in Section 4.1.2, i.e., γ = 275, d = 256, β̄ = q−1

16 , where
q = 8380417.

As the time usage for the signature procedure is heavily dominated by the number
of signature attempts, time usage also grows exponentially following c·eγd(n+m)/β̄ , c ∈
R+. This is illustrated in Figure 5.4, where 250eγd(n+m)/β̄ is plotted alongside the
other plots.

Equation 5.2, which governs the number of signature attempts, and thus also
the time usage for the signature procedure, does not depend on the value of β. The
plots in Figures 5.3 and 5.4 illustrate this, as no significant patterns emerge for
different β values. As mentioned in Section 2.2.3, this is an important property as
any dependency between the secret (s1, s2) and the run-time of the algorithm would
lead to the possibility of side-channel attacks. This is further illustrated in Figure
5.5, which includes a scatter plot for the average number of attempts needed to
generate a valid signature for β = (1, 2, . . . , 20), as well as a linear graph generated
by applying linear regression on the test results. To produce this, the authors chose
(n, m) = (5, 4) and generated 100 signatures for each value of β. Listing A.2 in
Appendix A shows the test program implemented on the authenticator, while Table
A.5 in Appendix A shows the test results used to generate the plots in Figure 5.5.
The linear graph emerging from applying regression is −0.0037 · β + 3.39. A slope
as close to 0 as −0.0037 indicates that no dependency between the value of β and
the number of attempts exists. Repeating the test N = ∞ times would result in
the graph 0 · β + E[X] after applying linear regression, where X is the number of
attempts before a valid signature is produced.

100 5. PERFORMANCE AND DISCUSSION

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00

1

2

3

4

5

6

Si
ng

at
ur

e
at

te
m

pt
s

Test result
0.0037 + 3.39
[X] = 3.35

Figure 5.5: Scatter plot and linear regression graph for the average number of
attempts needed before an accepted signature is produced for β = (1, 2, . . . , 20).

Table 5.2 shows that the Dilithium instance with a similar security level, i.e.,
Dilithium2, needs an average of 4.25 attempts to produce a valid signature. The
expected number of attempts for the implemented scheme can be calculated by
substituting the (n, m) in Equation 5.2 with (5, 4), resulting in E[X] ≈ 3.35. In-
specting Table 5.2 shows that the average number of attempts achieved from the
test of the implemented algorithm, i.e., (n, m) = (5, 4), β = 5, is 3.12. This is the
only test parameter where the implemented scheme outperforms Dilithium. The
average number of attempts for Dilithium is the result of an increase in efficiency by
reducing the size of the public key and signature [DKL+18]. This is also presented in
[Lyu20] and compared to the implemented scheme. The slight increase in the number
of attempts needed to produce a valid signature is compensated by the decreased
time usage for the signature algorithm, which for Dilithium2 is 11.9 ms, as shown
in Table 5.2. This is the most time-consuming procedure for Dilithium, similar to
the digital signature implemented in the proposed solution, which on average uses
431.17 ms to produce a signature. This is larger than the average time usage for
Dilithium2 by a factor of ≈36. The main reason for this difference is the difference
in implementation language and Dilithium’s focus on low-level optimizations by
implementing the scheme in C [pq-17]. Another reason for the time difference is
the lack of NTT in the authors’ implementation. This affects the performance of

5.1. PERFORMANCE 101

polynomial multiplication when regenerating the public lattice point t = As1 + s2,
when generating the commitment H(Ay1 + y2), and when generating the opening
(z1 = cs1 + y1, z2 = cs2 + y2). The last reason is the inefficient implementation of
expandMask compared with Dilithium’s implementation, which utilizes a vectorized
implementation of expandMask to speed up the generation of (y1, y2).

The authors have deemed that the signature algorithm performs at a satisfactory
level, given the use case for the digital signature scheme. The digital signature is
implemented in a proposed solution to facilitate authentication, thus operating in
an environment not sensitive to time variances in the range of a couple of hundred
milliseconds.

5.1.4 Verification

The authors chose to evaluate the performance of the verification algorithm by testing
it in a similar environment as presented in Chapter 4. The test was implemented as
a Python script executing the verification algorithm implemented on the RP server.
The test involved measuring the time usage of the implemented verification algorithm,
which can be viewed in Listing A.5 in Appendix A. 100 tests were executed for each
value of (n, m) to get an estimated average value of time usage with minimized
variance. The time usage for the verification algorithm was then measured via the
Python library time, introduced in Section 3.2.1, and the method time.time_ns()
was used to output the number of nanoseconds used to execute the verification
algorithm. The test results can be viewed in Table A.6 in Appendix A, and Figure
5.6 illustrates how the time usage grows as a function of (n, m).

102 5. PERFORMANCE AND DISCUSSION

(3,
 2)

(4,
 3)

(5,
 4)

(6,
 5)

(7,
 6)

(8,
 7)

(9,
 8)

(10
, 9

)

(11
, 1

0)

(12
, 1

1)

(13
, 1

2)

(14
, 1

3)

(15
, 1

4)

(n, m)

0

50

100

150

200

Av
er

ag
e

ve
rif

ica
tio

n
tim

e
(m

s)

= 5
0.76n2

Figure 5.6: Average verification time (ms)

Figure 5.6 indicates that the average time usage for executing the verification
algorithm grows polynomially as (n, m) increases. The steps involved with verification
can be observed in Algorithm 4.4. The computation of ω′ = H(Az1 +z2−ct) and the
regeneration of the public matrix A via expandA are the steps that depend on (n, m).
The run-time complexity for regenerating A with expandA is O(n ·m), but since
the value of m is such that m = n− 1, a run-time complexity of O(n2) is obtained.
Computing ω′ requires n · m + n polynomial multiplications and n(m − 1) + 2n

polynomial additions. As the value of m is such that m = n− 1, the resulting run
time complexity is O(n2 + n + n2 + 2n) = O(n2). This results in a total run-time
complexity of O(n2) for the verification algorithm. This is illustrated in Figure 5.6,
where 0.76n2 is plotted along with the average time usage.

Table 5.2 shows a comparison of Dilithium2 and the implemented digital signature
in terms of verification performance. The time usage for Dilithium2 is 2.21 ms
compared to 19.35 ms in the authors’ implementation. That is a difference by a
factor of ≈8.76. Dilithium has a more efficient implementation of expandA, which
results in a faster generation of A. Operations involving polynomial multiplication
are more efficient due to Dilithium’s optimized implementation of NTT, whereas the
authors’ implementation on the other hand is relatively computationally expensive as
it lacks an implementation of NTT. Lastly, the creators of Dilithium have focused on

5.1. PERFORMANCE 103

an implementation in a low-level language, which increases the overall performance
of the scheme.

5.1.5 Requirements

In Chapter 4, a set of functional and quality requirements were presented. The
goal of these was to act as guidelines during development and set clear goals for
the proposed solution. Now that the proposed solution is created, a review of these
requirements will be carried out.

Table 4.1 lists four functional requirements the system should possess. These
requirements relate to the behavior of the system and actions a user should be
able to complete. A test report is created for the functional requirements, which
presents the results, time usage, and additional comments regarding the test. This is
located in Appendix B. FR1 and FR2 relate directly to actions the user should be
able to perform. Testing these two requirements involve registering a new user, and
authenticating this user without the use of passwords. User testing revealed that
the user interface is not as intuitive as desired, but the core functionality is present
in the system. Both registration and authentication are carried out without the
use of passwords with the help of the authenticator iOS application. The last two
functional requirements, FR3 and FR4, encompass desired system behavior. Such
logic is handled by the RP server, which has access to the user database. These
requirements were tested as described in Appendix B.

The three quality requirements, listed in Table 4.2, relate to system characteristics.
These are not testable in the same manner as the functional requirements, but a
review of them will be carried out nonetheless. QR1 relates to the stored user data,
which in the case of the proposed solution is stored in a local MongoDB instance. By
default, this data is not encrypted, but MongoDB does provide the opportunity to
do so with an enterprise version of its platform. The information stored by the RP
is username, hashed authenticator ID, credential ID, and public key for registered
users, thus not storing any sensitive information such as full names, passwords, or
any other identifiable information. It should be mentioned that the research scope for
this thesis focuses on implementing a lattice-based zero-knowledge digital signature
and evaluating it in a passwordless authentication system, not the encryption of
stored data. Anyway, secure storage of any user data is recommended.

The proposed solution does handle multiple concurrent users, but to what degree
the performance is affected by this is not measured. Thus, QR2 is partly achieved.
However, deploying the proposed solution in the real world requires additional
modifications to the RP and polling server to handle scalability, as this was not a
design goal defined by the authors. This is covered more in future work presented
in Section 6.1. The last quality requirement, QR3, states that the system should

104 5. PERFORMANCE AND DISCUSSION

provide fast and seamless authentication for the user. The proposed solution is
more time-consuming than traditional authentication with the use of usernames
and passwords, but it provides authentication in a similar time frame compared to
authentication methods that involve authenticators, e.g. MFA systems. The action
carried out by the authenticator during authentication, i.e., signing clientData, is
done in less than 0.5 seconds. The additional time usage stems from propagating
messages between the components in the system, as well as waiting for user input.
Anyway, the whole authentication sequence is completed within the limit set by the
RP.

5.2 Research Questions

At the start of this thesis, three research questions were defined, along with four
objectives. A review of how this thesis answered the proposed research questions is
presented below.

5.2.1 Research Question 1

How can instances of hard problems within lattice cryptography be
used to construct a zero-knowledge protocol?

By following the work of [Lyu20] and [DKL+18], the authors were able to utilize
two instances of hard problems within lattice cryptography to construct a Σ-protocol
that is zero-knowledge. The instances are SIS and LWE, which together provided
the authors with the following one-way function

As1 + s2 = t (5.3)

where (s1, s2) served as private information and (A, t) served as public information.
The one-way function was employed in a protocol similar to the interactive Schnorr
protocol, presented in Section 2.1.6, enabling a prover to prove knowledge of a relaxed
solution to Equation 5.3, i.e., proving knowledge of (s̄1, s̄2) in a somewhat larger
interval than β [Lyu20]. The protocol differs from interactive Schnorr by introducing
rejection sampling. This technique is vital in the protocol as it ensures the opening
(z1, z2) does not leak any information about the secret (s1, s2), as explained in
Paragraph 2.2.3.

The interactive Σ-protocol served as a zero-knowledge proof as it satisfied all
three properties, correctness, soundness, and zero-knowledge, as explained in Section
2.2.3. With this, research question 1 was answered through the realization of research
objective 1.

5.2. RESEARCH QUESTIONS 105

5.2.2 Research Question 2

How can such a protocol enable passwordless authentication?

To answer this question, research objectives 2 and 3 had to be achieved. Research
objective 2 pursued the creation of “a test environment which implements passwordless
authentication”. Section 2.3 presents the FIDO2 standard, which defines multiple
protocol specifications for enabling passwordless authentication. Chapter 4 presents
the development and implementation of a proposed solution inspired by the overall
architecture and message exchange presented in FIDO2. The proposed solution
comprised four components: an RP server, a client application, an authenticator,
and a polling server, which worked together in order to authenticate a user, without
the need for a password.

Research objective 3 pursued the implementation of “the constructed quantum-
resistant zero-knowledge protocol in said test environment”. The proposed solution
resembling FIDO2 laid the groundwork for passwordless authentication by introducing
secure and convenient authentication methods. However, to fully enable passwordless
authentication, the implementation of a digital signature was necessary, to ensure
the integrity and non-repudiation of user credentials. Section 2.2.3 presented a
lattice-based interactive zero-knowledge protocol designed for a prover to prove
knowledge of a secret (s1, s2). However, for the protocol to enable passwordless
authentication, it needed to be transformed into a digital signature scheme. Section
2.1.4 presents the Fiat-Shamir transform, which is a technique used to transform an
interactive proof of knowledge into a non-interactive one, by replacing step 2 in an
interactive Σ-protocol with the prover instead querying a random oracle. Section
2.2.4 presents a combination of rejection sampling and the Fiat-Shamir transform
called “Fiat-Shamir with Aborts”, which was used to transform the interactive
lattice-based zero-knowledge protocol into a non-interactive one. The non-interactive
protocol could then be used as a digital signature by including the message to be
signed in the random oracle, as shown in Section 2.2.4. An instance of the digital
signature scheme introduced in Section 2.2.4 with 128-bit quantum security [Lyu20]
is presented in Section 4.1.2, while the implementation of this scheme is presented
in Section 4.2.2 and 4.2.3. With this, research objective 3 was achieved. A user
could now authenticate without the need for a password by demonstrating possession
of the private key (s1, s2, ρ′) associated with a specific public key (t, ρ′). This is
achieved by generating signatures on the random messages generated by the RP
using the private key corresponding to the public key, effectively proving ownership
and enabling authentication without the need for further interactive exchanges. With
research objectives 2 and 3 achieved, research question 2 was answered.

106 5. PERFORMANCE AND DISCUSSION

5.2.3 Research Question 3

How does the performance of the implemented passwordless authenti-
cation system, incorporating the zero-knowledge protocol, compare
to similar state-of-the-art solutions?

The authors chose to focus on the implemented lattice-based digital signature
when evaluating the performance of the proposed solution. This evaluation was
carried out and presented in Section 5.1, thus achieving research objective 4. Section
2.4.2 presents the state of the art within the lattice-based digital signature, i.e.,
Dilithium, which resembles the implemented digital signature scheme, as both rely
on the hardness of SIS and LWE. The performance of Dilithium is presented and
includes the metrics used when comparing the performance of Dilithium with the
digital signature scheme implemented by the authors. The comparison is presented
alongside the performance evaluation of the implemented scheme in Section 5.1, and
reveals that even though the implemented scheme is outperformed by Dilithium in
terms of performance, it is more than efficient enough for the specific use case that is
passwordless authentication. With this, research question 3 was answered.

Chapter6Conclusion and Future Work

This thesis aimed to develop a PoC for a passwordless authentication system using
a lattice-based digital signature. The proposed solution successfully achieved this
objective by implementing a digital signature based on the combination of SIS and
LWE. An in-depth literature study explored the use of lattice-based zero-knowledge
protocols and digital signatures.

Passwordless authentication was realized by creating a test environment inspired
by FIDO2. This test environment utilizes the lattice-based digital signature to
facilitate authentication. The digital signature was transformed from an interactive
lattice-based zero-knowledge protocol with the use of “Fiat-Shamir with Aborts”.
This resulted in the proposed solution, whose performance was to be tested. The
experimental evaluation of the proposed solution demonstrated its effectiveness
in terms of key sizes, signature size, and the performance of the key generation,
signature, and verification algorithms. The tests indicated that the implemented
digital signature is feasible in a passwordless authentication system.

In conclusion, this thesis successfully demonstrated the feasibility of a passwordless
authentication system based on a lattice-based digital signature. The system’s ability
to authenticate users without traditional passwords enhances user convenience and
reduces the risk of password-related vulnerabilities, such as phishing attacks and
password breaches. Further improvements and refinements, as outlined in the
following Section, would contribute to a more robust and efficient system suitable for
real-world implementation.

6.1 Future Work

The following presents the future work recommended by the authors.

TLS Per the WebAuthn specification, communication between the client application
and RP should be protected by TLS. In the proposed solution, this communication

107

108 6. CONCLUSION AND FUTURE WORK

is carried out over HTTP for simplicity. For the proposed solution to follow the
WebAuthn specification more closely, the implementation of TLS is recommended,
as it provides key security features such as encryption, data integrity, and mutual
authentication.

CTAP FIDO2 defines CTAP as the application layer protocol in charge of com-
munication between the client application and the authenticator. This protocol is
not implemented in the proposed solution. The use of CTAP ensures secure and
standardized communication between the two components and mitigates several
possible vulnerabilities. As CTAP works on top of transport protocols such as NFC
and Bluetooth, this ensures that the authenticator and client are in close proximity
to each other, thus mitigating the possibility of e.g., session hijacking.

NTT A key element to making lattice-based protocols efficient is NTT, as it provides
an efficient way to multiply polynomials, which is one of the most computationally
expensive operations in lattice-based schemes. An efficient implementation of NTT
is present in Dilithium, which is part of the reason why Dilithium is one of the most
efficient post-quantum schemes [DKL+18]. As the digital signature implemented in
the proposed solution works with vectors and matrices of polynomials, implementing
NTT would be a natural next step to improve performance.

AES The authors of this thesis took inspiration from the authors of Dilithium and
implemented the three algorithms expandS, expandA, and expandMask for expanding
the secret vectors (s1, s2), the public matrix A, and the two masking vectors (y1, y2)
from three randomly sampled seeds. The implementation of these algorithms in the
proposed solution is not as efficient as Dilithiium’s implementation, as Dilithium
employs a vectorized representation of the XOF SHAKE, which allows them to
sample multiple coefficients in parallel [DKL+18]. As presented in the Dilithium
specification 3.1 [DKL+21], these algorithms have been implemented to support
the use of AES to generate the coefficients of the polynomials instead of an XOF
instantiated as SHAKE. This way, already made hardware implementations of AES
could be utilized for an additional speed up for these algorithms. The implemented
authenticator iOS application runs on iPhones, which grants them access to Apple’s
Secure Enclave AES Engine, a hardware block designed to execute operations based
on AES [22]. Implementing expandS, expandA, and expandMask to utilize Secure
Enclave’s AES Engine would result in increased performance of the implemented
digital signature scheme.

Parameters When evaluating the implemented scheme, the focus was to investi-
gating how the parameters (n, m) and β affected its performance. For future work,
testing the parameters γ and β̄ is recommended. Given Equation 5.2, it is clear how

6.1. FUTURE WORK 109

these parameters affect the performance of the signature algorithm. However, further
testing would unveil the optimal parameter values that provide the highest security
level without significantly reducing the efficiency of the scheme.

Scalability For this system to be implemented in the real world setting, the server
should be able to handle a vast amount of concurrent requests. As of now, the
proposed solution includes two servers, i.e., RP server and polling server, created
using Flask. The servers are not designed to scale well and handle large amounts
of simultaneous requests, as it falls outside the scope of the thesis. However, future
work on the proposed solution should include further development of the RP server
to able it to handle a higher amount of concurrent requests. This is not the case
with the polling server, as it is obsolete if CTAP is implemented in future work with
the system.

Converging Towards Dilithium The digital signature implemented in the pro-
posed solution resembles Dilithium but lacks the optimized implementations presented
in [Lyu20] and [DKL+18]. The authors recommend implementing Dilithium as the
digital signature scheme of choice in the proposed solution, as it is the result of years
of research and is soon to be standardized by NIST [NIS22].

References

[19] Random – the entropy device, Online; accessed 2-June-2023, FreeBSD Docu-
mentation Project, 2019.

[20a] Ebay’s journey to passwordless with fido, https://media.fidoalliance.org/wp-c
ontent/uploads/2021/02/Fido-ebay.pdf, Online; accessed 24-May-2023, FIDO
Alliance, 2020.

[20b] Getrandom – get random data, FreeBSD System Calls Manual, FreeBSD
Documentation Project, 2020. [Online]. Available: %5Curl%7Bhttps://man.fr
eebsd.org/cgi/man.cgi?query=getrandom&sektion=2&n=1%7D (last visited:
Jun. 4, 2023).

[20c] Solokeys, https : / / github . com / solokeys, Online; accessed 25-May-2023,
SoloKeys, 2020.

[22] Apple platform security, https://help.apple.com/pdf/security/en_US/apple-p
latform-security-guide.pdf, Online; accessed 16-May-2023, Apple Inc., 2022.

[23a] Data, https://developer.apple.com/documentation/foundation/data, Online;
accessed 2-June-2023, Apple Inc., 2023.

[23b] Dispatchtime, https://developer.apple.com/documentation/dispatch/dispatch
time, Online; accessed 12-June-2023, Apple Inc., 2023.

[23c] Foundation, https://developer.apple.com/documentation/foundation, Online;
accessed 2-June-2023, Apple Inc., 2023.

[23d] Ksecattraccessiblewhenpasscodesetthisdeviceonly, https://developer.apple.com
/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly,
Online; accessed 16-May-2023, 2023.

[23e] React - the library for web and native user interfaces, https://react.dev, Online;
accessed 16-May-2023, Meta Open Source, 2023.

[23f] Secrandomcopybytes(:::), https://developer.apple.com/documentation/securi
ty/1399291-secrandomcopybytes, Online; accessed 4-June-2023, Apple Inc.,
2023.

[23g] Swift, https://developer.apple.com/swift/, Online; accessed 16-May-2023,
Apple Inc., 2023.

111

https://media.fidoalliance.org/wp-content/uploads/2021/02/Fido-ebay.pdf
https://media.fidoalliance.org/wp-content/uploads/2021/02/Fido-ebay.pdf
%5Curl%7Bhttps://man.freebsd.org/cgi/man.cgi?query=getrandom&sektion=2&n=1%7D
%5Curl%7Bhttps://man.freebsd.org/cgi/man.cgi?query=getrandom&sektion=2&n=1%7D
https://github.com/solokeys
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://developer.apple.com/documentation/foundation/data
https://developer.apple.com/documentation/dispatch/dispatchtime
https://developer.apple.com/documentation/dispatch/dispatchtime
https://developer.apple.com/documentation/foundation
https://developer.apple.com/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly
https://developer.apple.com/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly
https://react.dev
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/swift/

112 REFERENCES

[23h] Uptimenanoseconds, https://developer.apple.com/documentation/dispatch
/dispatchtime/2300047-uptimenanoseconds, Online; accessed 12-June-2023,
Apple Inc., 2023.

[23i] Xcode ide, https://developer.apple.com/xcode/features/, Online; accessed
16-May-2023, Apple Inc., 2023.

[Ahn23a] C. Ahn, Numpy-ios, https://github.com/kewlbear/NumPy- iOS, Online;
accessed 16-May-2023, 2023.

[Ahn23b] C. Ahn, Python-ios, https://github.com/kewlbear/Python- iOS, Online;
accessed 16-May-2023, 2023.

[Ajt96] M. Ajtai, «Generating hard instances of lattice problems», in Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, 1996,
pp. 99–108.

[All] F. Alliance, Apple, google, and microsoft are pushing passkeys: Password-less
future?, https://fidoalliance.org/tech-times-apple-google-and-microsoft-are-p
ushing-passkeys-password-less-future/, Online; accessed 25-May-2023.

[All23] F. Alliance, Fido2: Web authentication (webauthn), https://fidoalliance.org/fi
do2-2/fido2-web-authentication-webauthn/, [Online; accessed 13-April-2022],
2023.

[Ama] I. Amazon Web Services, Enabling a fido security key (console), https://docs
.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_fido
.html, Online; accessed 24-May-2023.

[AR05] D. Aharonov and O. Regev, «Lattice problems in np∩ conp», Journal of the
ACM (JACM), vol. 52, no. 5, pp. 749–765, 2005.

[AS20] H. Amiri and A. Shahbahrami, «Simd programming using intel vector exten-
sions», Journal of Parallel and Distributed Computing, vol. 135, pp. 83–100,
2020.

[BDF+11] D. Boneh, Ö. Dagdelen, et al., «Random oracles in a quantum world», in
Advances in Cryptology–ASIACRYPT 2011: 17th International Conference
on the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings 17, Springer, 2011, pp. 41–69.

[BHH+15] D. J. Bernstein, D. Hopwood, et al., «Sphincs: Practical stateless hash-based
signatures», in Advances in Cryptology–EUROCRYPT 2015: 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34, Springer,
2015, pp. 368–397.

[BNG22] L. Beckwith, D. T. Nguyen, and K. Gaj, «High-performance hardware im-
plementation of lattice-based digital signatures», Cryptology ePrint Archive,
2022.

[BR93] M. Bellare and P. Rogaway, «Random oracles are practical: A paradigm for
designing efficient protocols», in Proceedings of the 1st ACM Conference on
Computer and Communications Security, 1993, pp. 62–73.

https://developer.apple.com/documentation/dispatch/dispatchtime/2300047-uptimenanoseconds
https://developer.apple.com/documentation/dispatch/dispatchtime/2300047-uptimenanoseconds
https://developer.apple.com/xcode/features/
https://github.com/kewlbear/NumPy-iOS
https://github.com/kewlbear/Python-iOS
https://fidoalliance.org/tech-times-apple-google-and-microsoft-are-pushing-passkeys-password-less-future/
https://fidoalliance.org/tech-times-apple-google-and-microsoft-are-pushing-passkeys-password-less-future/
https://fidoalliance.org/fido2-2/fido2-web-authentication-webauthn/
https://fidoalliance.org/fido2-2/fido2-web-authentication-webauthn/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_fido.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_fido.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_fido.html

REFERENCES 113

[Con15] W. W. W. Consortium, Fido 2.0: Key attestation format, https://www.w3.o
rg/Submission/2015/SUBM-fido-key-attestation-20151120/%23signaturef,
[Online; accessed 26-April-2022], 2015.

[Con19] W. W. W. Consortium, Web authentication: An api for accessing public key
credentials, https://www.w3.org/TR/webauthn-2/, [Online; accessed 13-April-
2022], 2019.

[Con23] M. Contributors, Attestation and assertion, 2023. [Online]. Available: %5Curl
%7Bhttps://developer.mozilla.org/en-US/docs/Web/API/Web_Authentica
tion_API/Attestation_and_Assertion%7D (last visited: Jun. 7, 2023).

[Dam02] I. Damgård, «On Σ-protocols», Lecture Notes, University of Aarhus, Depart-
ment for Computer Science, p. 84, 2002.

[DFG13] Ö. Dagdelen, M. Fischlin, and T. Gagliardoni, «The fiat–shamir transformation
in a quantum world», in Advances in Cryptology-ASIACRYPT 2013: 19th
International Conference on the Theory and Application of Cryptology and
Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part
II 19, Springer, 2013, pp. 62–81.

[DFMS19] J. Don, S. Fehr, et al., «Security of the fiat-shamir transformation in the
quantum random-oracle model», in Advances in Cryptology–CRYPTO 2019:
39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18–22, 2019, Proceedings, Part II 39, Springer, 2019, pp. 356–383.

[DFPS23] J. Devevey, P. Fallahpour, et al., A detailed analysis of fiat-shamir with aborts,
Cryptology ePrint Archive, Paper 2023/245, https://eprint.iacr.org/2023/245,
2023. [Online]. Available: https://eprint.iacr.org/2023/245.

[Din] P. Dingle, All about fido2, ctap2 and webauthn, https://techcommunity.micro
soft.com/t5/security-compliance-and-identity/all-about-fido2-ctap2-and-we
bauthn/ba-p/288910, Online; accessed 24-May-2023.

[DKL+18] L. Ducas, E. Kiltz, et al., «Crystals-dilithium: A lattice-based digital signa-
ture scheme», IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 238–268, 2018.

[DKL+21] L. Ducas, E. Kiltz, et al., Crystals-dilithium, algorithm specifications and
supporting documentation (version 3.1), 2021.

[FHK+18] P.-A. Fouque, J. Hoffstein, et al., «Falcon: Fast-fourier lattice-based compact
signatures over ntru», Submission to the NIST’s post-quantum cryptography
standardization process, vol. 36, no. 5, 2018.

[FS03] N. Ferguson and B. Schneier, Practical cryptography. Wiley New York, 2003,
vol. 141.

[FS87] A. Fiat and A. Shamir, «How to prove yourself: Practical solutions to identi-
fication and signature problems», in Advances in Cryptology—CRYPTO’86:
Proceedings 6, Springer, 1987, pp. 186–194.

https://www.w3.org/Submission/2015/SUBM-fido-key-attestation-20151120/%23signaturef
https://www.w3.org/Submission/2015/SUBM-fido-key-attestation-20151120/%23signaturef
https://www.w3.org/TR/webauthn-2/
%5Curl%7Bhttps://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API/Attestation_and_Assertion%7D
%5Curl%7Bhttps://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API/Attestation_and_Assertion%7D
%5Curl%7Bhttps://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API/Attestation_and_Assertion%7D
https://eprint.iacr.org/2023/245
https://eprint.iacr.org/2023/245
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/all-about-fido2-ctap2-and-webauthn/ba-p/288910
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/all-about-fido2-ctap2-and-webauthn/ba-p/288910
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/all-about-fido2-ctap2-and-webauthn/ba-p/288910

114 REFERENCES

[GHLY16] L. Groot Bruinderink, A. Hülsing, et al., «Flush, gauss, and reload–a cache
attack on the bliss lattice-based signature scheme», in Cryptographic Hardware
and Embedded Systems–CHES 2016: 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings 18, Springer, 2016, pp. 323–
345.

[GMSS99] O. Goldreich, D. Micciancio, et al., «Approximating shortest lattice vectors is
not harder than approximating closest lattice vectors», Information Processing
Letters, vol. 71, no. 2, pp. 55–61, 1999.

[HLHL10] C. Hazay, Y. Lindell, et al., «Sigma protocols and efficient zero-knowledge»,
Efficient Secure Two-Party Protocols: Techniques and Constructions, pp. 147–
175, 2010.

[Hou20] R. Housley, Use of the HSS/LMS Hash-Based Signature Algorithm in the
Cryptographic Message Syntax (CMS), RFC 8708, Feb. 2020. [Online]. Available:
https://www.rfc-editor.org/info/rfc8708.

[IBM] IBM, What is quantum computing?, https://www.ibm.com/topics/quantum-c
omputing, Online; accessed 21-May-2023.

[KP20] M. Kumar and P. Pattnaik, «Post quantum cryptography (pqc)-an overview»,
in 2020 IEEE High Performance Extreme Computing Conference (HPEC),
IEEE, 2020, pp. 1–9.

[LEMT22] M. Levent Doğan, A. A. Ergür, et al., «The multivariate schwartz–zippel
lemma», SIAM Journal on Discrete Mathematics, vol. 36, no. 2, pp. 888–910,
2022.

[LJL+10] T. D. Ladd, F. Jelezko, et al., «Quantum computers», nature, vol. 464, no. 7285,
pp. 45–53, 2010.

[Lyu09] V. Lyubashevsky, «Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures», in Advances in Cryptology–ASIACRYPT 2009:
15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings 15,
Springer, 2009, pp. 598–616.

[Lyu20] V. Lyubashevsky, Basic lattice cryptography: Encryption and fiat-shamir sig-
natures, https://drive.google.com/file/d/1JTdW5ryznp-dUBBjN12QbvWz9
R41NDGU/view, Online; accessed 27-April-2023, 2020.

[LZ19] Q. Liu and M. Zhandry, «Revisiting post-quantum fiat-shamir», in Advances
in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part II 39,
Springer, 2019, pp. 326–355.

[LZ22] Z. Liang and Y. Zhao, «Number theoretic transform and its applications
in lattice-based cryptosystems: A survey», arXiv preprint arXiv:2211.13546,
2022.

[Mao03] W. Mao, Modern cryptography: theory and practice. Pearson Education India,
2003.

https://www.rfc-editor.org/info/rfc8708
https://www.ibm.com/topics/quantum-computing
https://www.ibm.com/topics/quantum-computing
https://drive.google.com/file/d/1JTdW5ryznp-dUBBjN12QbvWz9R41NDGU/view
https://drive.google.com/file/d/1JTdW5ryznp-dUBBjN12QbvWz9R41NDGU/view

REFERENCES 115

[Mer06] D. Mermin, «Breaking rsa encryption with a quantum computer: Shor’s fac-
toring algorithm», Lecture notes on Quantum computation, pp. 481–681, 2006.

[Mic07] D. Micciancio, «Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions», computational complexity, vol. 16, pp. 365–411, 2007.

[Mon23] MongoDB, Mongo python driver, https://github.com/mongodb/mongo-pytho
n-driver, 2023.

[NIS17] NIST, Post-quantum cryptography standardization, https://csrc.nist.gov/Proje
cts/post-quantum-cryptography/post-quantum-cryptography-standardizati
on, [Online; accessed 3-November-2022], 2017.

[NIS22] NIST, Selected algorithms 2022, https://csrc.nist.gov/projects/post-quantum-
cryptography/selected-algorithms-2022, [Online; accessed 19-May-2023], 2022.

[NS22] V. Nyeng and L. Sørensen, «The implementation and use of cryptographic
zero-knowledge protocols», Norwegian University of Science and Technology,
Project report in TTM4502, Dec. 2022.

[Num23] NumPy, Numpy, https://github.com/numpy/numpy, 2023.

[Pal23] Pallets, Flask, https://github.com/pallets/flask, 2023.

[Pei+16] C. Peikert et al., «A decade of lattice cryptography», Foundations and Trends®
in Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2016.

[PKLN22] S. Paul, Y. Kuzovkova, et al., «Mixed certificate chains for the transition to
post-quantum authentication in tls 1.3», in Proceedings of the 2022 ACM on
Asia Conference on Computer and Communications Security, 2022, pp. 727–
740.

[pq-17] pq-crystals, Dilithium, , Online; accessed 16-May-2023, 2017.

[PU02] A. Papoulis and S. Unnikrishna Pillai, Probability, random variables and
stochastic processes. 2002.

[Pyt23a] Python, Hashlib, https://docs.python.org/3/library/hashlib.html, 2023.

[Pyt23b] Python, Json, https://docs.python.org/3/library/json.html, 2023.

[Pyt23c] Python, Os, https://docs.python.org/3/library/os.html, 2023.

[PZ04] J. Proos and C. Zalka, Shor’s discrete logarithm quantum algorithm for elliptic
curves, 2004.

[QQQ+01] J.-J. Quisquater, M. Quisquater, et al., «How to explain zero-knowledge proto-
cols to your children», in Advances in Cryptology—CRYPTO’89 Proceedings,
Springer, 2001, pp. 628–631.

[Reg09] O. Regev, «On lattices, learning with errors, random linear codes, and cryp-
tography», Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40, 2009.

[Sco16] C. Scott, Protecting our members, https://blog.linkedin.com/2016/05/18/prot
ecting-our-members, [Online; accessed 4-November-2022], 2016.

https://github.com/mongodb/mongo-python-driver
https://github.com/mongodb/mongo-python-driver
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://github.com/numpy/numpy
https://github.com/pallets/flask
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/os.html
https://blog.linkedin.com/2016/05/18/protecting-our-members
https://blog.linkedin.com/2016/05/18/protecting-our-members

116 REFERENCES

[Sho97] P. W. Shor, «Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer», SIAM Journal on Computing, vol. 26,
no. 5, pp. 1484–1509, 1997. [Online]. Available: https://doi.org/10.1137/S0097
539795293172.

[TJB12] L. Thijs, v. d. P. Joop, and d. W. Benne, Solving hard lattice problems and
the security of lattice-based cryptosystems, Cryptology ePrint Archive, Paper
2012/533, https://eprint.iacr.org/2012/533, 2012. [Online]. Available: https:
//eprint.iacr.org/2012/533.

[Unr17] D. Unruh, «Post-quantum security of fiat-shamir», in Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applica-
tions of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I 23, Springer, 2017, pp. 65–95.

[Ver22] Verizon, «Data breach investigations report», 2022, [Online; accessed 3-November-
2022], p. 37.

[Vie22] P. J. P. Vieito, Pythonkit, https://github.com/pvieito/PythonKit, Online;
accessed 16-May-2023, 2022.

[VJ14] H. C. Van Tilborg and S. Jajodia, Encyclopedia of cryptography and security.
Springer Science & Business Media, 2014.

[Wie14] R. J. Wieringa, «Design science methodology for information systems and
software engineering», in R. J. Wieringa, Ed. Berlin, Heidelberg: Springer
Berlin, Heidelberg, 2014, p. 27. [Online]. Available: https://doi.org/10.1007/9
78-3-662-43839-8.

https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://eprint.iacr.org/2012/533
https://eprint.iacr.org/2012/533
https://eprint.iacr.org/2012/533
https://github.com/pvieito/PythonKit
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

AppendixAPerformance Data

This appendix contains the scripts used to collect data used in the evaluation of the
performance of the proposed solution, and the data collected. The plots presented in
Chapter 5 are plotted based on this data.

A.1 Data Collection Scripts
1 for i in 3...15 {
2 print("Sizes for (n,m) = (\(i), \(i-1))")
3 dilithiumLite.changeNM(n: i, m: i-1)
4 let keypair = dilithiumLite.generateKeyPair()
5 print("Secret key: \(DilithiumLite.getSecretKeyAsData(secretKey: keypair!.secretKey)?.count)")
6 print("Public key: \(DilithiumLite.getPublicKeyAsData(publicKey: keypair!.publicKey)?.count)")
7 let sig = dilithiumLite.sign(sk: keypair!.secretKey, message: "SFM's disciples")
8 print("Signature: \(DilithiumLite.getSignatureAsData(signature: sig)?.count)")
9 }

Listing A.1: Script for collecting size of private key, public key and signature.

1 let tests = 100
2 for beta in 1...20 {
3 dilithiumLite.changeBeta(beta: beta)
4 let n = 5
5 let m = 4
6 print("Testing for beta = \(beta)")
7 dilithiumLite.changeNM(n: n, m: m)
8 var attempts: [Int] = []
9 for _ in 1...tests {

10 let keypair = dilithiumLite.generateKeyPair()
11 let sig = dilithiumLite.sign(sk: keypair!.secretKey, message: "SFM's disciples")
12 attempts.append(sig.attempts)
13 }
14 print("Average attempts: \(attempts.reduce(0, +)/attempts.count)")
15 print()
16 }

Listing A.2: Script for collecting the average number of attempts until a valid
signature is generated, while varying β. (n, m) = (5, 4).

1 let tests = 50
2 for beta in 3...7 {
3 dilithiumLite.changeBeta(beta: beta)
4 var n: Int

117

118 A. PERFORMANCE DATA

5 var m: Int
6 for i in 3...15 {
7 n = i
8 m = i-1
9 print("Testing for (n, m, beta) = (\(n), \(m), \(beta))")

10 dilithiumLite.changeNM(n: n, m: m)
11 var sigTimes: [Int] = []
12 var attempts: [Int] = []
13 for _ in 1...tests {
14 let keypair = dilithiumLite.generateKeyPair()
15 let startSig = DispatchTime.now()
16 let sig = dilithiumLite.sign(sk: keypair!.secretKey, message: "SFM's disciples")
17 let stopSig = DispatchTime.now()
18 sigTimes.append(Int(stopSig.uptimeNanoseconds-startSig.uptimeNanoseconds))
19 attempts.append(sig.attempts)
20 }
21 print("Average attempts sign: \(attempts.reduce(0, +)/attempts.count)")
22 print("Average time sign: \(sigTimes.reduce(0, +)/sigTimes.count)")
23 print()
24 }
25 }

Listing A.3: Script for collecting the average time usage and average number of
attempts for the signature algorithm, while varying (n, m) and β.

1 let tests = 100
2 for beta in 3...7 {
3 dilithiumLite.changeBeta(beta: beta)
4 var n: Int
5 var m: Int
6 for i in 3...15 {
7 n = i
8 m = i-1
9 print("Testing for (n, m, beta) = (\(n), \(m), \(beta))")

10 dilithiumLite.changeNM(n: n, m: m)
11 var keyGenTimes: [Int] = []
12 for _ in 1...tests {
13 let startKeyGen = DispatchTime.now()
14 let keypair = dilithiumLite.generateKeyPair()
15 let stopKeyGen = DispatchTime.now()
16 keyGenTimes.append(Int(stopKeyGen.uptimeNanoseconds-startKeyGen.uptimeNanoseconds))
17 }
18 print("Average time keygen: \(keyGenTimes.reduce(0, +)/keyGenTimes.count)")
19 print()
20 }
21 }

Listing A.4: Script for collecting the average key generation time while varying
(n, m) and β.

1 def test():
2 print("TESTING STARTED")
3 tests = 100
4 for i in range(3,8):
5 for j in range(3,16):
6 print("Testing for beta = "+str(i)+", n = "+str(j)+", m = "+str(j-1))
7 times = []
8 for q in range(tests):
9 kp = keyGen(i, j, j-1)

10 sk = kp[0]
11 pk = kp[1]
12 message = "SFM's disciples"
13 sig = sign(sk, message, j, j-1)
14 start = time.time_ns()
15 verifySig(pubKey=pk, sig=sig, clientData=message, n=j, m=j-1)
16 times.append(time.time_ns()-start)

A.2. KEY AND SIGNATURE SIZES 119

17 print("Average time: "+str(np.average(np.array(times))))
18 print()
19 print("TESTING DONE")

Listing A.5: Script for collecting the time usage for the implemented verification
algorithm.

A.2 Key and Signature Sizes

Table A.1: Sizes in bytes for private key, public key, and signature.

(n, m) Private Key Size Public Key Size Signature Size
(3, 2) 3133 6090 7741
(4, 3) 4405 8090 11471
(5, 4) 5645 10102 15179
(6, 5) 6870 12098 18899
(7, 6) 8067 14102 22722
(8, 7) 9285 16125 26480
(9, 8) 10577 18132 30060
(10, 9) 11790 20142 33881
(11, 10) 13048 22124 37730
(12, 11) 14293 24119 41320
(13, 12) 15522 26182 45034
(14, 13) 16723 28165 48813
(15, 14) 17996 30209 52591

120 A. PERFORMANCE DATA

A.3 Key generation

Table A.2: Average key generation time (ms)

(n, m) β = 3 β = 4 β = 5 β = 6 β = 7
(3,2) 130.57 143.16 132.46 134.23 120.45
(4,3) 226.81 246.28 231.21 235.46 212.31
(5,4) 350.18 390.71 349.63 367.79 327.50
(6,5) 496.61 538.77 499.62 503.64 466.08
(7,6) 676.40 700.66 672.34 670.57 636.85
(8,7) 883.20 894.93 888.63 856.46 841.74
(9,8) 1116.19 1127.25 1147.23 1087.25 1052.71
(10,9) 1369.36 1364.01 1363.59 1531.21 1292.58
(11,10) 1647.19 1646.91 1627.85 1611.15 1652.95
(12,11) 1952.07 1945.12 1937.79 1887.86 1944.03
(13,12) 2279.65 2281.80 2301.95 2188.01 2369.22
(14,13) 2638.84 2648.87 2831.75 2565.86 2654.40
(15,14) 3107.22 3015.45 3156.46 2940.96 3030.88

A.4 Signing

Table A.3: Average signature time (ms)

(n, m) β = 3 β = 4 β = 5 β = 6 β = 7
(3,2) 131.31 140.42 140.60 143.46 145.55
(4,3) 248.09 261.05 272.54 253.08 275.83
(5,4) 432.74 406.32 431.17 478.79 416.27
(6,5) 775.55 661.51 713.10 674.05 680.49
(7,6) 1003.54 981.36 1115.22 1142.55 1129.25
(8,7) 1303.50 1363.01 1563.68 1512.24 1411.70
(9,8) 1975.78 1974.99 1928.60 2106.15 1853.62
(10,9) 2648.48 2634.71 3011.58 2951.92 2777.47
(11,10) 3538.44 3638.07 3904.50 3106.28 3708.05
(12,11) 5249.34 6329.85 4797.03 5587.59 6332.86
(13,12) 7177.48 5878.73 7617.43 5852.59 6469.68
(14,13) 8009.11 9081.39 10537.19 9124.83 11297.02
(15,14) 12419.83 13473.25 12534.46 10698.88 12704.96

A.4. SIGNING 121

Table A.4: Average signature attempts for varying (n,m) and β

(n, m) β = 3 β = 4 β = 5 β = 6 β = 7
(3,2) 2.10 1.98 1.86 1.92 2.02
(4,3) 2.54 2.52 2.62 2.16 2.82
(5,4) 2.68 2.90 3.12 3.90 3.00
(6,5) 5.00 4.36 4.76 4.24 4.58
(7,6) 5.50 5.82 7.14 7.22 7.78
(8,7) 6.98 7.26 8.90 8.40 7.94
(9,8) 10.66 10.28 9.26 10.80 9.32
(10,9) 13.00 12.66 14.98 14.60 13.92
(11,10) 16.62 16.90 18.22 12.42 17.36
(12,11) 24.00 31.20 20.38 25.34 29.32
(13,12) 31.94 24.00 33.08 22.78 24.74
(14,13) 31.46 36.56 44.26 36.46 46.26

122 A. PERFORMANCE DATA

Table A.5: Average number of signature attempts for different β values with
(n, m) = (5, 4).

β Attempts
1 2.98
2 3.46
3 3.55
4 3.67
5 3.50
6 3.73
7 2.77
8 2.86
9 3.69
10 3.36
11 3.45
12 3.64
13 3.58
14 3.13
15 3.11
16 2.82
17 3.44
18 3.58
19 3.27
20 3.39

A.5. VERIFICATION 123

A.5 Verification

Table A.6: Average verification time (ms)

(n, m) β = 3 β = 4 β = 5 β = 6 β = 7
(3,2) 7.35 8.49 7.40 7.48 7.38
(4,3) 12.47 16.76 12.58 12.59 12.79
(5,4) 21.53 19.31 19.36 19.37 19.45
(6,5) 32.62 31.07 27.72 27.60 28.26
(7,6) 38.75 39.37 37.63 37.82 37.78
(8,7) 54.27 52.66 50.15 48.62 48.62
(9,8) 78.05 68.83 64.87 61.08 61.44
(10,9) 86.74 86.74 76.86 76.12 76.12
(11,10) 116.40 103.24 107.99 92.25 92.25
(12,11) 128.94 120.34 109.18 113.07 111.40
(13,12) 151.99 136.22 128.30 128.35 127.43
(14,13) 183.95 162.89 148.45 159.69 154.39
(15,14) 173.10 190.64 171.81 171.70 184.60

AppendixBTest Report

This appendix contains the test reports for the functional requirements.

B.1 Functional Requirements

FR1: The user interface should be simple and intuitive. Users
should be able to register an account without a password
Executor: VN
Date: 14.06.2023
Time used: <1 minute
Evaluation: Success
Comment: When accessing the client website, two options are presented:

register and login. After choosing register, a unique username
and one-time code is required to fill in. After clicking “Register”,
an alert for registration pops up on the authenticator app. Upon
accepting this, registration is completed.

FR2: Users should be able to authenticate themselves without a
password, using the provided authenticator application
Executor: VN
Date: 14.06.2023
Time used: <1 minute
Evaluation: Success
Comment: After choosing login, your username is required. Entering this

and clicking “Login” results in a pop-up alert shown on the au-
thenticator app. After accepting this request for authentication,
authentication is completed and the client website communi-
cates this to the user.

125

126 B. TEST REPORT

FR3: Users should not be able to register an account with a
username already in use
Executor: VN & LS
Date: 14.06.2023
Time used: 2 minutes
Evaluation: Success
Comment: First registering user_1 to the RP, and afterwards trying to

register a user with the same username using another authenti-
cator. An alert from the client responds with “user_1 already
registered”.

FR4: Multiple users should not be able to share the same authen-
ticator for the same Relying Party
Executor: VN & LS
Date: 14.06.2023
Time used: 2 minute
Evaluation: Success
Comment: Registered user_1 to the RP with authenticator_1. Next,

user_2 tried to register with the RP using authenticator_1.
Received the following feedback from the client: “Authenticator
is already registered to another user”.

	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	List of Acronyms
	Introduction
	Motivation
	Research Scope
	Limitations and Challenges
	Research Questions
	Contribution
	Outline

	Background and Related Work
	Zero-Knowledge Proofs
	Properties
	Interactive and Non-Interactive Zero-knowledge Proofs
	-Protocols
	Fiat-Shamir Transform
	The Ali Baba Cave
	Interactive Schnorr Protocol
	Schnorr Signatures

	Post-Quantum Cryptography
	Lattice Cryptography
	Reduction of Lattice Problems
	Interactive Lattice-Based Zero-knowledge Protocol
	Lattice-Based Digital Signature

	FIDO2
	Terminology
	Registration Ceremony
	Authentication Ceremony
	WebAuthn Authenticators

	Related Work
	NIST Post-Quantum Competition
	CRYSTALS-Dilithium
	FIDO2 Implementations

	Methodology
	The Design Cycle
	Problem Investigation
	Treatment Design
	Treatment Validation

	Tools and resources
	Python
	Swift
	Apple Keychain
	Xcode
	React
	MongoDB
	Git

	Proposed Solution
	Specification
	Requirements
	Digital Signature

	Implementation
	Architecture
	Registration Ceremony
	Authentication Ceremony
	Process View

	Performance and Discussion
	Performance
	Key and Signature Size
	Key Generation
	Signing
	Verification
	Requirements

	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3

	Conclusion and Future Work
	Future Work

	References
	Performance Data
	Data Collection Scripts
	Key and Signature Sizes
	Key generation
	Signing
	Verification

	Test Report
	Functional Requirements

