
Blockchain as an activity tracker to
prevent greenwashing

Udnes, Henrik

Submission date: June 2023
Main supervisor: Prof. Gligoroski, Danilo, NTNU
Co-supervisor: Assoc. Prof. Kralevska, Katina, NTNU

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: Blockchain as an activity tracker to prevent greenwashing
Student: Udnes, Henrik

Problem description:

In recent years, greenwashing has become ever more widespread among companies
that sell their products to consumers. The background for this increase is the
shift in focus towards sustainability. Investors and consumers have become more
concerned with spending their money on sustainable products and brands that
promote sustainable behavior. In order to maximize profitability and ethos among
consumers, companies have employed the use of greenwashing. The global community
has agreed that action needs to be taken in order to preserve the planet and the
quality of life for future generations. Blockchain technology has seen a great evolution
and adoption in different industries. More and more applications and use cases for
this technology is being uncovered. This project explores the use cases for blockchain
technology for tracking the activities within the value chain and their impact on
the environment. The result of this thesis will be a proof-of-concept solution that
will attempt to address the problems consumers are facing in a convoluted market
consisting of many actors with varying intentions. The end goal is to propose a
solution that will aid in bringing transparency to the consumer and other actors such
as governments, investors and non-government organizations in order to discourage
and prevent the act of greenwashing among companies. Relevant questions to be
addressed are: Is blockchain technology a viable solution as a way to track and record
activities in the value chain? What are the main drawbacks and possible difficulties
in adopting such a solution?

Approved on: 2023-03-22
Main supervisor: Prof. Gligoroski, Danilo, NTNU
Co-supervisor: Assoc. Prof. Kralevska, Katina, NTNU

Abstract

In the past decade, there has been a global shift towards focusing on
sustainability due to the climate crisis that we are facing. New regulations
and measures have been implemented with the aim of promoting sustain-
able behavior among consumers and businesses. Investors prioritize green
investments, and consumers, especially among the younger generations,
have become more concerned with the impact the products and services
they purchase have on sustainability.

Greenwashing is the act of misleading consumers regarding the environ-
mental practices of a company or the environmental benefits of a product
or a service. Following the socioeconomic shift towards sustainability,
greenwashing has become more widespread. The purpose of greenwashing
is to achieve increased ethos among consumers and investors, leading
to increased sales and a stronger brand. Unfortunately, due to the lack
of transparency in the supply chain, it is hard to detect and evaluate
potential instances of greenwashing.

Blockchain technology has evolved rapidly in the past years, and there
has been great interest in exploring its use for the supply chain. In this
thesis, we explore how blockchain can be used for sustainability report-
ing in order to bring transparency to the supply chain, and thus make
it possible to detect and hinder greenwashing. First, we determine the
requirements and needs based on the background research. Then we intro-
duce our proof-of-concept implementation, Gaia, which is a sustainability
reporting application running on Hyperledger Fabric, an industry-oriented
blockchain system. Finally, we evaluate the implementation based on the
requirements and address the barriers and challenges of adopting it in
practice.

Our findings show that the proof-of-concept could be used to detect
greenwashing if used by parties along the supply chain. It also addresses
the absence of a standardized system for exchanging sustainability data.
Despite the potential benefits, there are numerous barriers and challenges
we need to overcome for the solution to be viable for use in practice.

i

Abstrakt

I de siste tiårene, har det foregått et globalt skifte for fokuset på
bærekraft som følge av den pågående klimakrisen. Nye lover og tiltak
har blitt innført der hensikten er å få fobrukere og bedrifter til å handle
bærekraftig. Investorer prioriterer å gi ut grønne lån, og forbukere, spesielt
blant den yngre generasjonen, har blitt mer opptatt av påvirkingen varer
og tjenester de kjøper har på bærekraft.

Grønnvasking er en bevisst villeding av forbrukeres oppfattelse av
miljøpraksisen en bedrift har, eller de miljømessige fordelene av varer
og tjenester de selger. Som følge av det sosioøkonomiske fokuset på
bærekraft, har grønnvasking blitt stadig mer utbredt. Hensikten med
grønnvasking er å oppnå økt etos blant forbrukere og investorer, noe
som leder til et sterkere merkevare og økt salg. Mangelen på åpenhet i
forsyningskjeden, gjør det vanskelig å oppdage og vurdere hva som er
grønnvasking.

Blokkjedeteknologi har utviklet seg enormt de siste årene, og forskn-
ingsmiljøet har hatt stor interesse for anvendelser av denne teknolo-
gien innenfor forsyningskjeden. I denne oppgaven, utforsker vi hvordan
blokkjedeteknologi kan brukes til bærekraftsrapportering i forsyningskje-
den, noe som vil gi åpenhet og muligheten til å avdekke og forhindre
grønnvasking. Vi starter med å gjøre et literaturstudie for å fastslå krav
og behov til løsningen. Deretter, introduserer vi vår prototype løsning,
Gaia, som er et bærekraftsrapporteringsprogram som kjører på Hyper-
ledger Fabric, et industrirettet blokkjedesystem. Til slutt, gjør vi en
vurdering av sluttløsningen med hensyn på de opprinnelige kravene, og
vi diskuterer hindringer og utfordringer rundt bruk av systemet.

Resultatetene våre viser at løsningen vår kan brukes til å oppdage
grønnvasking, om den brukes av partene i forsyningskjeden. Den utgjør
også en løsning på mangelen på et standardisert system for utveksling
av bærekraftsdata. Til tross for de potensielle fordelene ved løsningen,
er det flere hindringer og utfordringer vi må overkomme for at løsningen
skal være gunstig å bruke i praksis.

ii

Preface

This thesis concludes my five-year study journey at NTNU in Commu-
nication Technology and Digital Security. I am grateful for these amazing
years that have provided me with lots of great experiences and memories
I will never forget. I have been lucky to meet some amazing people and
made new friends for life. Now my next adventure begins; finally, I can
commit myself fully to my job at Kvist.

iii

Acknowledgements

I would like to thank everyone who has assisted me in the thesis work.
In particular, I would like to thank my supervisors Danilo Gligoroski
and Katina Kralevska for providing guidance and support. I would like
to thank NTNU for providing me with an amazing program of study,
with a wonderful staff. Also, I would like to extend my gratitude to my
colleagues at Kvist. Thank you all for your unconditional support.

v

Contents

Contents vii

List of Figures xi

List of Tables xiii

List of Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Methodology . 2

1.2.1 Literature studies: Sustainability reporting and greenwashing 2
1.2.2 Modeling of the problem domain and determining requirements 3
1.2.3 Experimental implementation 3
1.2.4 Evaluation . 5

1.3 Contributions . 5
1.4 Outline . 6

2 Background 7
2.1 Sustainability . 7

2.1.1 UN Sustainability Development Goals 8
2.1.2 European Green Deal . 8

2.2 Sustainability reporting . 9
2.2.1 EU Requirements . 9

2.3 Tracking emissions . 10
2.3.1 Categorizing emissions by scope 10
2.3.2 Supply chain data sharing . 12

2.4 Greenwashing . 13

3 Theoretical preliminaries 15
3.1 Cryptographic concepts . 15

3.1.1 Hash functions . 15
3.1.2 Public-key encryption . 16

vii

3.1.3 Digital signatures . 17
3.1.4 Public key infrastructure (PKI) 17
3.1.5 Multi-party computation (MPC) 19
3.1.6 Multi-input functional encryption (MIFE) 19
3.1.7 AdHoc MIFE . 20

3.2 Blockchain . 20
3.2.1 Data structure . 20
3.2.2 Decentralization . 21
3.2.3 Smart contracts . 22
3.2.4 Storing data off-chain . 22
3.2.5 Permissioned versus permissionless 23

3.3 Hyperledger Fabric . 23
3.3.1 Network architecture . 24
3.3.2 Identity management . 24
3.3.3 Ledger . 26
3.3.4 Transaction architecture . 28
3.3.5 Chaincode . 29
3.3.6 Privacy . 31

4 Modeling and requirements 33
4.1 Stakeholders and concerns . 33

4.1.1 Developers . 33
4.1.2 Organizations . 33
4.1.3 System operators . 34
4.1.4 Non-governmental organizations 34
4.1.5 Consumers . 34

4.2 Business requirements . 34
4.3 Trust model . 36
4.4 Functional Requirements . 36
4.5 Domain model . 40
4.6 Quality requirements . 43

4.6.1 Security scenarios . 43
4.6.2 Extensibility scenarios . 44
4.6.3 Modifiability scenarios . 45
4.6.4 Usability Scenarios . 46
4.6.5 Availability Scenarios . 46
4.6.6 Recoverability scenarios . 47
4.6.7 Deployability scenarios . 47
4.6.8 Scalability scenarios . 48

4.7 Architecturally significant requirements 48
4.8 Architectural drivers . 48

4.8.1 Business requirements . 48

viii

4.8.2 Functional requirements . 49
4.8.3 Quality requirements . 50

5 Experimental implementation: Gaia 53
5.1 Description . 53
5.2 Blockchain selection . 53

5.2.1 Cost . 54
5.2.2 Sustainability . 54
5.2.3 Security . 55
5.2.4 Scalability . 55
5.2.5 Programming capabilities . 56

5.3 Chaincode . 56
5.3.1 Domain layer . 57
5.3.2 Contract layer . 59
5.3.3 Infrastructure layer . 59

5.4 Architectural tactics . 60
5.4.1 Security . 60
5.4.2 Modifiability . 63
5.4.3 Extensibility . 63

5.5 Hyperledger Fabric . 64
5.5.1 Network architecture . 64
5.5.2 Endorsement policy . 64
5.5.3 World-state database . 65

5.6 Scenarios . 66
5.6.1 Scenario 1: Registering a business activity 66
5.6.2 Scenario 2: Two parties performing an interaction with the

transfer of assets . 66

6 Evaluation and discussion 75
6.1 Functional requirements . 75
6.2 Quality requirements . 77

6.2.1 Extensibility . 77
6.2.2 Modifiability . 77
6.2.3 Deployability . 78
6.2.4 Scalability . 79
6.2.5 Security . 79

6.3 Application for greenwashing . 80
6.3.1 Product-level greenewashing 80
6.3.2 Organization-level greenwashing 83

6.4 Barriers . 86
6.5 Challenges . 88
6.6 Discussion . 89

ix

7 Conclusion 91
7.1 Future work . 92

References 95

x

List of Figures

1.1 Flow chart illustrating the methodology of the thesis. 2

2.1 Greenhouse gas emission scopes. Source: Figure 1.1 of [IfS11] 11
2.2 Entities and relationships in the greenwashing domain. 14

3.1 Chain of trust in public-key infrastructure. 18
3.2 Fabric network architecture for an example network consisting of three

organizations. Source: [Foua] . 25
3.3 Membership service providers in a Fabric Network. Source: [Foub] . . . 26
3.4 Blockchain data structure in Fabric. Source: [Fouc] 27
3.5 Transaction structure in Hyperledger Fabric. Source: [Foud] 28
3.6 Sequence diagram of execute-order-validate architecture. Source: [Foue] 30
3.7 Private data collections are bound to organizations and are stored off-chain.

Source: [Fouf] . 32

4.1 Trust model for the implementation. 37
4.2 Model of the sustainability reporting domain. 42

5.1 Chaincode software architecture . 58
5.2 Class diagram of the domain layer. 58
5.3 Class diagram of the infrastructure layer. 60
5.4 Secure decentralized data aggregation. 62
5.5 Configured network architecture for Hyperledger Fabric. 65
5.6 Scenario 1: Business activity details submitted in the registration. . . . 67
5.7 Scenario 1: Registering business activity that produces three assets. . . 68
5.8 Code snippet: registerActivity implementation. 69
5.9 Scenario 2: Two parties performing an interaction with the transfer of

assets. 70
5.10 Code snippet: Scenario 2 – proposeInteraction implementation. . . . 71
5.11 Code snippet: Scenario 2 – confirmInteraction implementation. . . . 72
5.12 Code snippet: Scenario 2 – verifyProvidedInteraction implementation. 73

6.1 The supply chain of Yogoa. 81

xi

6.2 Organization-level greenwashing: Total CO2 emissions of Saastastic. . . 85
6.3 Organization-level greenwashing: CO2 emissions of Saastastic, excluding

office operation. 87

xii

List of Tables

4.1 Functional requirements for the application 38
4.2 Explanation for the domain model components presented in Figure 4.2. 41
4.3 Security scenario 1: Registering reporting data securely 43
4.4 Security scenario 2: Secure data aggregation 44
4.5 Security scenario 3: Privacy preservation after asset transfer. 44
4.6 Extensibility scenario 1: Add new sustainability outcome type. 44
4.7 Extensibility scenario 2: Implement a new query 45
4.8 Extensibility scenario 3: Add a new contract 45
4.9 Modifiability scenario: Modify existing command by introducing the new

business rule. 45
4.10 Usability scenario 1: Enroll in the blockchain network. 46
4.11 Blockchain node failure. 46
4.12 Recoverability scenario: Transient network failure 47
4.13 Deployability scenario: Deploy a new version of blockchain application. 47
4.14 Scalability scenario: Deploy a new version of blockchain application. . . 48
4.15 List of architecturally significant requirements and explanations. 49

6.1 Product-level greenwashing scenario: Registered business activities. . . . 81
6.2 Product-level greenwashing scenario: Registered interactions. 82
6.3 Organization-level greenwashing: Registered activities. 85
6.4 Organization-level greenwashing scenario: Registered interactions. . . . 87

xiii

xv

List of Acronyms

API Application programing intrface.

ASR Architecturally significant requirement.

B2B Business-to-business.

B2C Business-to-consumer.

CA Certificate authority.

DDD Domain-driven design.

DTO Data transfer object.

FR Functional requirement.

HTTP Hypertext transfer protocol.

M:M Many-to-many.

MIFE Multi-input functional encryption.

MPC Multi-party computation.

NGO Non-governmental organization.

PDC Private data collection.

PKE Public-key encryption.

PKI Public-key infrastructure.

QR Quality requirement.

REST Representational state transfer.

xvii

SDG Sustainable Development Goal.

SHA Secure Hash Algorithm.

TLS Transport Layer Security.

xviii

Chapter1Introduction

1.1 Motivation

The idea for this Master’s thesis started with my interest in the domain of sustain-
ability and how technology may help society. In recent years we have become more
aware of the term "greenwashing". According to Miriam Webster Dictionary, it is
"the act or practice of making a product, policy, activity, etc. appear to be more
environmentally friendly or less environmentally damaging than it really is". The
American Heritage Dictionary of the English Language describes greenwashing as
"the dissemination of misleading information that conceals abuse of the environment
in order to present a positive public image". Similarly, Investopedia defines it as "the
act of providing the public or investors with misleading or outright false information
about the environmental impact of a company’s products and operations".

Greenwashing is something that, unfortunately, many consumers are exposed
to, which is the reason why I found this problem so motivating, given its potential
impact. Also, in the past two years, my work has been focusing on the construction
industry through my job as a systems architect in Kvist Solutions, which is digitizing
the process of environmental certifications to promote and facilitate sustainable
construction. This thesis is a collaboration with this company, and the resulting
work will potentially be of value in the future as we may look to further build on
this work.

Greenwashing has become ever more widespread among companies that sell their
products to consumers. The background for this increase is the shift in focus toward
sustainability. Investors and consumers have become more concerned with spending
their money on products and businesses that focus on sustainability. In order to
maximize profitability and ethos among consumers, businesses have employed the
use of greenwashing. Unfortunately, due to the lack of transparency, it is hard to
separate truth from fiction and hold businesses accountable for their claims.

1

2 1. INTRODUCTION

Figure 1.1: Flow chart illustrating the methodology of the thesis.

Blockchain technology has seen a great evolution and adoption in different in-
dustries. More and more applications and use cases for this technology are being
uncovered. What is special about blockchain is how the data is stored immutably
as a sequence of transactions. By doing so, the entire history of the blockchain is
preserved. This gives rise to various applications where transparency and auditability
are key requirements. This leads to the idea of exploring blockchain for sustainability
reporting as a way to bring transparency to the supply chain and thus aid in exposing
and preventing greenwashing.

1.2 Methodology

The methodology of this thesis can be divided into four stages, as displayed by the
flow chart in Figure 1.1.

1.2.1 Literature studies: Sustainability reporting and
greenwashing

In the first phase of the thesis, a literature study was conducted in order to establish
an overview of the sustainability and greenwashing domain from a societal perspective.
Google Scholar1 was used extensively in this phase which aided in finding reliable and
up-to-date information from the experts in the field. The result from this work served

1https://scholar.google.com

https://scholar.google.com

1.2. METHODOLOGY 3

as the background for understanding the problem domain. This domain knowledge is
the foundation for the high-level models and set of requirements that were produced
in the modeling phase of the thesis.

Following the initial academic research at the conceptual level, we studied specific
sustainability reporting frameworks that are in use today to better understand the
details and nuances of these different standards. The goal of this research was to
better understand the process and requirements of sustainability reporting.

1.2.2 Modeling of the problem domain and determining
requirements

As a way to structure and gather an overview of the concepts that we learned from
the literature studies, we took a model-driven approach. The modeling process was
concerned with extracting and understanding the high-level concepts relating to the
problem and then translating these concepts into a high-level entity-relationship view
model of greenwashing and sustainability reporting with a societal perspective.

Using this model and the obtained domain knowledge from the research into
sustainability reporting, we created a software requirement specification in which
we determined the needs of the different stakeholders which we used to establish
the requirements for the implementation. From these requirements, we created a
software model of the domain that would be the foundation for the business logic of
the implementation.

1.2.3 Experimental implementation

The implementation process was the most complex part of the work conducted. A
systematic approach using the methodologies from the field of software engineering
was taken. After establishing a clear understanding of the problem domain, and the
business requirements for the solution, we translated this into a set of functional and
non-functional requirements. The requirements were then analyzed to determine
their impact on the architecture. Once a clear understanding of the architectural
drivers was established, we began designing the architecture of the solution. We
started with the overall system architecture by determining which blockchain to use.
Then we moved on to designing the software architecture, and we ended up with
a layered architecture. For the core layer of the application, which constitutes the
entities and business logic, we followed the principles of domain-driven design based
on the domain model we created in Chapter 4.

4 1. INTRODUCTION

Domain-Driven Design

Domain-Driven design (DDD) [Eva04] is a software design approach that has become
very popular for enterprise application development. DDD focuses on designing
software that models the domain; classes, variables, and methods should all be
named according to the domain language. Technical details should be left out,
and only concepts that exist within the domain should be considered. This way, it
becomes easier to learn and conceptualize the domain by modeling with the same
language that the domain experts use. The domain language is also referred to as
the ubiquitous language as the language is ubiquitous to the domain experts. In
cases where the model is large, different subdomains can have concepts that use the
same language, leading to ambiguities in the semantics of the model. To deal with
this problem, a strategic pattern by domain-driven design is to create several models,
with an unambiguous domain language, bounded to a specific context, referred to
as the bounded context. Numerous tactical patterns have since been introduced,
with the key concepts being entities, value objects, and domain events. Entities
represent objects that have a life cycle with a unique identity. They usually have
methods defining behavior that the entity can perform. Invoking such a method
may change the state of the entity as well as emit domain events. An example of
an entity could be a Customer in a banking domain. Value objects, on the other
hand, are immutable and represent value concepts of the domain. Sticking with the
banking domain, there could be a value object called Money, representing an amount
of currency. Events of the banking domain could be related to Account objects, such
as AccountOpened, AccountMoneyWithdrawn, AccountMoneyDeposited, and so on.
Using these tactical building blocks, it is easier to systematically implement the
domain logic of an application, which is the reason DDD has become so popular.

Tools

The following tools were used for the implementation:

– Visual Studio Code: Code editor

– GitHub: Code hosting and version control with Git.

– Hyperledger Fabric: Blockchain operating system that our solution runs on.

– TypeScript: Programming language used for the implementation.

– Awilix: Dependency container used to dynamically register and resolve depen-
dencies in run-time.2

2https://github.com/jeffijoe/awilix

1.3. CONTRIBUTIONS 5

1.2.4 Evaluation

Following the implementation, we carried out an evaluation of the resulting solution
according to the requirements that we started with. The purpose of the evaluation
was to determine which requirements had not been fulfilled and ways to address
them. In addition to evaluating the requirements, we examine the potential barriers
and challenges of using the solution in practice.

1.3 Contributions

There are several contributions in this thesis, with the primary contribution being
the proof of concept implementation.

Proof-of-concept implementation The proof-of-concept implementation is a
blockchain application that is developed on top of the Hyperledger Fabric blockchain
operating system. The application implements a sustainability reporting system that
can be used to record business activities along with their associated sustainability
impact. It also provides the ability to register assets that belong to the reporting
business. The last and major use case is the ability for businesses to register
interactions between them. An interaction can be used to model the usage of a
service provided by a service provider or the purchase of goods from a supplier,
causing a transfer of asset ownership.

The code of the implementation is published openly on GitHub and can be found
at https://github.com/udnes99/Gaia. Since the implementation chapter was written,
we have refactored the architecture by decoupling the business logic from Hyperledger
Fabric altogether; the interface towards Fabric is only used as a data access layer.
The code that is of relevance to Chapter 5 is located at the master-thesis branch3.

Additional contributions While the implementation is the main contribution,
there are additional contributions that we have made in the process of building the
implementation:

– Domain modeling: We have used modeling extensively as part of the thesis
work, and we produced two models:

◦ Societal model of the greenwashing domain is constructed from the knowl-
edge gathered during literature studies.

◦ High-level domain model for the software implementation.

3https://github.com/udnes99/Gaia/tree/master-thesis

https://github.com/udnes99/Gaia

6 1. INTRODUCTION

– Software requirements specification: A specification of the requirements
created based on domain knowledge obtained from the background research.

– Evaluation of end solution: An evaluation of the end solution concerning
the requirements to determine satisfaction.

– Secure data collaboration proposal: As part of the implementation, we
propose a protocol by which data can be securely used for collaboration when
computing aggregated data such as emissions along the supply chain.

1.4 Outline

The thesis is comprised of seven chapters. Chapter 1 introduces the thesis—the
motivation behind it, the methodology of the process, and its contributions. Chapter
2 provides background material that is related to the problem and research questions.
Chapter 3 introduces theoretical material that is required for understanding the
tools and concepts that are applied. In Chapter 4, we conduct preliminary work that
involves modeling and establishing the requirements of the proof of concept solution.
Then in Chapter 5, we describe the design and implementation process that is based
on the requirements and drivers established in Chapter 4. Chapter 6 consists of
evaluating the resulting solution and discussing results in light of the background
material and the requirements that are defined in Chapter 4, and we evaluate its
efficacy in the context of greenwashing. Finally, Chapter 7 concludes the thesis by
answering the research questions and presenting future work.

Chapter2Background

Before we can start designing a solution, we need a clear understanding of the problem
domain, which are the domains of sustainability reporting and greenwashing. A
literature study was conducted on these topics. We will now present the findings
obtained from the study.

2.1 Sustainability

Sustainability refers to the ability of human society and the natural environment
to coexist in a way that meets the needs of the present without compromising the
ability of future generations to meet their own needs. It involves balancing economic,
social, and environmental considerations to create a sustainable and resilient system.

The concept of sustainability emerged in the 1980s as a response to growing
concerns about the impact of human activities on the environment. Since then,
sustainability has become a major global issue, and rightfully so. If we want future
generations to be able to thrive on this planet as we have, action must be taken in
order to prevent irreversibly damaging our environment.

Since the first use of the word sustainability in the context of the environment,
the concept has been extended with two additional dimensions: social and economic.
Hence, sustainability is often framed in terms of the "three pillars" of sustainability.
The environmental pillar focuses on protecting natural resources, ecosystems, and
biodiversity, while the economic pillar seeks to create a sustainable economy that
meets the needs of all people without depleting natural resources or creating inequality.
The social pillar aims to promote social justice and equity, ensuring that everyone
has access to the resources and opportunities they need to thrive.

Sustainability is important because it is essential for ensuring the long-term well-
being of both human society and the natural environment. By promoting sustainable
practices, we can help reduce the impact of human activities on the environment,

7

8 2. BACKGROUND

ensure that natural resources are used responsibly, and create a more equitable and
just society for all.

Following the introduction of the concept of sustainability, it has become a
major focus point of the international community. Developed nations, in particular,
have made great strides to implement a strategy with the intention of reaching the
established sustainability goals.

This has resulted in numerous governing agencies coming up with protocols and
goals. As a result, ever stricter laws and requirements are being introduced and
imposed on businesses that incentivize sustainable behavior.

2.1.1 UN Sustainability Development Goals

As a result of the global alignment on sustainability, the UN introduced the sustainabil-
ity development goals (SDGs) during the UN conference on sustainable development
in 2012.1

The UN has defined 17 goals that address sustainable development [UN]. Among
these, goals 92 and 123 are of relevance to this thesis. Goal 9 is concerned with
innovation that will aid in sustainable development. Goal 12 focuses on sustainable
consumption and production patterns within the supply chain, something the work
of this thesis may contribute to.

2.1.2 European Green Deal

On December 11, 2019, the European Commission introduced the European Green
Deal. It is a roadmap for how to make Europe climate-neutral by 2050, in which all
sectors of the economy are covered. The key goals of the European Green Deal are:

– Europe becoming climate neutral by 2050;

– 3 billion trees planted by 2030;

– At least 55% less greenhouse gas emissions compared to 1990 by 2030.

In order to achieve these goals, the European Green Deal gradually rolls out
new laws and regulations that are covering businesses and countries of the EU.
These address a whole range of sustainability aspects such as toxic waste pollution,

1https://www.undp.org/sdg-accelerator/background-goals
2SDG 9: Build resilient infrastructure, promote inclusive and sustainable industrialization and

foster innovation
3SDG 12: Ensure sustainable consumption and production patterns

https://www.undp.org/sdg-accelerator/background-goals

2.2. SUSTAINABILITY REPORTING 9

deforestation, achieving a circular economy, and the development of new sustainable
technologies, to name a few. The European Climate Law [21] was introduced by the
European Commission as part of the European Green Deal and writes into law the
climate objectives for the goal of becoming climate neutral by 2050. Imposed by this
law is the requirement of member countries to reduce their greenhouse gas emissions
by at least 55% relative to 1990.

Since the European Green Deal brings new laws and regulations imposed on the
member countries of the EU, domestic laws and regulations will therefore follow. To
ensure and encourage the regional and local authorities within the EU, the European
Committee of the Regions launched the initiative Green Deal Going Local [Eur].

2.2 Sustainability reporting

Sustainability reporting is the disclosure of business activities and their impact
that are relevant to the three pillars of sustainability. There are several benefits of
sustainability reporting. First of all, is an increase in company reputation by being
transparent, which in turn can greater investments from investors and increased
ethos towards the customers, resulting in more sales. Not only is the practice of
sustainability reporting beneficial towards external relations, but it can lead to
a better relationship between the employees and the business due to the values
sustainability focus displays.

External relations are not the only benefit of practicing sustainability reporting; it
helps businesses gain insight into their resource usage, which can be used to identify
improvement potentials, such as replacing inefficient legacy equipment with new,
more efficient options or identifying ways to improve business operations.

New reporting requirements have followed the new laws and regulations that have
been introduced to tackle the sustainability problem the world is facing. EU law
requires all large companies as well as smaller enterprises to disclose information
about the risks and opportunities for social and environmental issues, as well as their
environmental and societal impact.

2.2.1 EU Requirements

On the 5th of January 2023, the Corporate Sustainability Reporting Directive (CSDR),
introduced in the EU, came into effect [Com]. The directive made sustainability
reporting mandatory for a broader set of large and small companies, approximately
50 000 companies in total. The year 2024 is the first year in which the new reporting
requirements must be adhered to, and the reported data for 2024 will be published
in 2025. The companies that are subject to following the reporting directive will

10 2. BACKGROUND

need to report in accordance with the European Sustainability Reporting Standards
(ESRS). In addition to following the guidelines of the ESRS, it is mandatory for the
reporting companies to have an audit of the reported sustainability information.

The ESRS has not yet been fully developed and is currently being drafted by
the private association EFRAG, which was appointed to be the technical advisor of
the ESRS for the commission as part of the CSDR. [EFR]. The ESRS defines a set
of standards, which are either cross-cutting or topical. The cross-cutting standards
define requirements that apply to all reporting entities, regardless of industry.

The topical standards are concerned with different aspects of sustainability and
are grouped into environmental, social, and governance categories. In particular, the
ESRS standard E1 is related to climate change and defines reporting requirements
for greenhouse gas emissions and measures taken to reach the climate goals of the
European Green Deal.

2.3 Tracking emissions

Tracking emissions is not a trivial task for a business, and several frameworks have
been developed in the past decades to aid in estimating with greater accuracy. The
problem with tracking emissions associated with any particular business is the origin
of the emissions. It is not enough to consider the direct emissions that a business
generates on-site, as it would give a skewed image based on the type of business being
assessed. Consider a business whose core activity is renting out cars; this business
is not directly causing any emissions if we assume that renting out cars is the only
activity they do and they never drive their own cars. However, if we consider the
downstream activity, which in this case is the driving of rented cars performed by
their customers, the image is entirely different. Looking the other way, i.e. upstream,
there are also the emissions caused by the production and delivery of the car to the
rental company. Clearly, they are facilitating those emissions.

2.3.1 Categorizing emissions by scope

To understand the bigger picture of the environmental impact of a business, we need
a way to systematize emissions. We classify the different types of emissions into
scopes 1, 2, and 3. This classification was introduced by the GHG protocol [Pro11],
which is the world’s most widely used greenhouse gas accounting standard. Figure
2.1 illustrates the scope classification system for the supply chain. The scopes range
from the most direct to indirect.

Scope 1 emissions are emissions that are caused directly by the activities of the
business in question. These could be emissions generated from an industrial process

2.3. TRACKING EMISSIONS 11

Figure 2.1: Greenhouse gas emission scopes. Source: Figure 1.1 of [IfS11]

or from fuel combustion in a motorized vehicle.

Scope 2 emissions are the emissions caused indirectly through the consumption of
energy sources that the business purchases to enable their business activities, such as
electricity and heating. Both scope 1 and 2 emissions are controlled by the business
directly and can be measured.

On the other hand, downstream and upstream emissions, referred to as scope 3
emissions, are much harder to keep track of, as they are indirect emissions and are not
directly controlled by the reporting business. Upstream emissions are the emissions
involved in producing a good or service that a business purchases from a supplier.
For example, the emissions generated from the outsourcing of manufacturing of a
product would count as upstream scope 3 emissions. Downstream emissions can, for
instance, be life cycle related, such as the emissions caused by end-of-life treatment
of sold goods or the sale or renting out of equipment that generates emissions. It is
clear that we need transparency in order to determine the total scope of 3 emissions
accurately. The problem is there is no open and standardized system through which
this information can be stored and computed in a secure manner.

To further motivate the importance of accurately knowing the scope 3 emissions,

12 2. BACKGROUND

let us look at the distribution of the emission scopes in the global economy. According
to [HW18], which conducted an economy-wide analysis on the share of the different
emission scopes and their growth trajectory by dividing the global economy into five
sectors - energy supply, transport, industry, buildings, and agriculture and forestry,
defined by the Intergovernmental Panel on Climate Change. Their findings show
that global scopes 1, 2, and 3 emissions grew by 47%, 78%, and 84%, respectively,
between 1995 and 2015, with the majority of the growth occurring in developing
countries. They also found the industry sector to be the sector with the highest share
of scope 3 emissions relative to the other two scopes while also being the sector with
the highest growth of total (including all scopes) emissions.

Today, scope 3 emissions are not measured directly but rather estimated based
on quantitative models based on industry standards and reference values. The only
internationally accepted standard for carrying out scope 3 accounting is the Scope
3 standard created by the Greenhouse Gas Protocol [IfS11]. Unfortunately, these
estimates are inherently uncertain to varying extents depending on the available data
and the model being used. The model used for a calculation depends on the type
of service or good being estimated. For instance, there are models for estimating
transportation emissions based on parameters such as fuel consumption or distance
traveled. Whereas another model used to estimate emissions of purchased goods take
the composition of raw materials of the end product into consideration.

2.3.2 Supply chain data sharing

To accurately calculate scope 3 emissions and not rely on quantitative models that
estimate based on reference values, the different actors of the supply chain need
to collaborate by sharing data. A paper by Stenzel et al. [SW23] looks into the
possibility of achieving this. They explore the benefits of sharing data, the obstacles of
data sharing, and ways of overcoming them. Their work presents the following issues:
lack of legal clarity and regulatory concerns, lack of data and action interoperability,
and the high risk of sharing sensitive data.

Lack of legal clarity and regulatory concerns is a primary obstacle that needs to
be addressed. Today, organizations are limited in their ability to re-share data that
includes emission data received by their partners in the supply chain. Furthermore,
more and more countries have started to implement data localization measures that
impose restrictions on where data can be transferred. In addition, the data can
include additional information that may be relevant to competitors. Overcoming
these challenges will require governmental agencies, such as the United Nations and
the European Union, to remove the legal barriers to data sharing.

Another obstacle that needs to be addressed is interoperability. According to the
paper, the lack of interoperability is twofold. Firstly, a lack of standards to measure

2.4. GREENWASHING 13

GHG emissions. Secondly, there is no standardized IT infrastructure that can be
used to share data.

The final obstacle they address is the risk involved in sharing sensitive data.
Emission data can be used to perform reverse engineering that can reveal information
about production processes and other corporate secrets. The authors propose using
cryptographic schemes such as homomorphic encryption and secure multi-party
computation to securely compute an aggregated result over private data without
revealing the data itself.

2.4 Greenwashing

Following the increase in focus on new regulations for sustainability, the concept of
greenwashing has become ever more prominent. Greenwashing is the act of misleading
consumers regarding the environmental practices of a company (organization-level
greenwashing) or the environmental benefits of a product or a service (product-
level greenwashing) [DB11]. The end goal for greenwashing is an increased ethos
which in turn leads to increased profitability. In particular, this has become more
widespread within business-to-consumer markets in the past decades. This may
come in several different shapes. For instance, unverifiable goals and claims are
one example. Another is misleading statements regarding the production process
for a given product that may implicate environmental friendliness, while in reality,
information about the upstream business production processes is undisclosed, leading
to a false impression in the consumer. Another example of misleading marketing is
through numbers: a manufacturer could claim that their product is made of 50%
additional recycled material when in reality, the total share of recycled material
has increased from 2% to 3%. While technically true, this reveals no information
about the product’s eco-friendliness, and consequently, it is misleading the consumer.
Another important issue is the impact of sourcing recycled material, which could
be costly for the environment. These are all forms of greenwashing, and there is
no way for consumers alone to verify and assess these claims. There are indeed
Non-Government Organizations (NGOs) that try their best to uncover and disclose
greenwashing to the public. Despite their best efforts, the underlying problem of
traceability and lack of resources means they can only really uncover the tip of the
iceberg of greenwashing.

Figure 2.2 is a conceptual model illustrating the domain of greenwashing using
the involved entities and their relationships. Arrows between entities represent rela-
tionships, where the entity from which the arrow originates is the subject responsible
for forming the relationship. This model serves as the foundation for understanding
the greenwashing domain and is the basis for the implementation.

14 2. BACKGROUND

Figure 2.2: Entities and relationships in the greenwashing domain.

Chapter3Theoretical preliminaries

In this section, we will present the relevant theoretical background that the experi-
mental results build upon. In particular, the domain of sustainability reporting and
tracking is the core domain of our implementation providing solutions. At the techni-
cal level, we will be using tools and theories from the field of cryptography in order
to address the information security requirements of the experimental implementation
which itself is an implementation of a permissioned blockchain.

3.1 Cryptographic concepts

The presented solution employs the use of many different cryptographic concepts. In
this section, we will briefly describe some of those concepts and their relationships.
For an extensive overview of the use of cryptography in blockchain systems, we
suggest the reader consult [RGK19].

3.1.1 Hash functions

Hash functions are one of the most important cryptographic primitives. It provides
the basis for digital signatures and other cryptographic schemes. A hash function is a
one-way function that takes in an input of variable length and outputs a deterministic
fixed-length bit string, referred to as the fingerprint of the input.

More formally, we define a hash function as follows:

Definition Let H : {0, 1}∗ → {0, 1}k be a function from the set of all possible
binary strings to the set of all binary strings of length k. H is a hash function if for
all input messages M , H(M) is deterministic, i.e. the computation H(M) always
yields the same output.

A trivial example of this would be the function

H(M) = 1

15

16 3. THEORETICAL PRELIMINARIES

This function is deterministic, as it is always defined to output the value 1.
However, this is not a cryptographically secure hash function. For that, we require
our hash function to have the additional properties:

1. Collision resistance: It is infeasible to find two distinct messages M1 and M2
such that H(M1) = H(M2). If the output is the hash function is uniformly
distributed, and the length of the hash is k bits, we have collision resistance
for up to k/2 length bit strings. This result follows from the solution to the
birthday paradox, assuming a uniformly distributed output.

2. Pre-image resistance: Given the hash H(M), it is computationally infeasible
to find an input M ′ such that H(M ′) = H(M)

3. Second pre-image resistance: Given the input message M , it is computationally
infeasible to find another message M ′ ̸= M such that H(M ′) = H(M)

The secure hash algorithms (SHA) are a family of cryptographic hash functions
that have been published by the National Institute of Standards and Technology
(NIST). They have gone through extensive auditing to ensure the security require-
ments are met. Hence, they are the most widely used in practice.

Use cases Cryptographic hash functions have a wide variety of use cases. A simple
use case is integrity protection which is achieved by running a hash function on
an unverified input whose expected hash fingerprint is known. If the hash of the
computed input does not match the expected fingerprint, we can be sure that the
input is not equal to the expected value. This is used all throughout communication
protocols where the integrity of the exchanged data must be protected and any
corruption or tampering must be detected.

Importantly, cryptographic hash functions serve as cryptographic primitives which
can be used to construct advanced cryptographic schemes such as digital signatures,
message authentication codes, and zero-knowledge proofs, to name a few.

3.1.2 Public-key encryption

Public-key encryption (PKE), otherwise known as asymmetric encryption, is a
cryptosystem in which pairs of related keys are used for encryption and decryption.
The encryption key, which is referred to as the public key, is used to encrypt data
and can be made publicly available. Anyone can encrypt data using the public key.
On the other hand, the corresponding private key is kept secret so that encrypted
messages can only be decrypted by the owner of the private key.

3.1. CRYPTOGRAPHIC CONCEPTS 17

Contrary to asymmetric encryption, regular symmetric encryption uses a shared
key for both encryption and decryption. Encryption and decryption using symmetric
schemes are more efficient in terms of speed and space complexity, but we need
some way to establish a shared secret key in a secure manner. Therefore, public key
encryption and symmetric encryption are often used complementary, where PKE is
used to provide a secure way to establish ephemeral keys for the communications
session. One of the most widely used key exchange protocols today that accomplishes
this is the Diffie-Hellman protocol. ([DH76])

3.1.3 Digital signatures

A digital signature scheme is a protocol that provides functionality to digitally
sign and verify data. Digital signature schemes are a specific type of public key
cryptosystem, where pairs of private (signing) and public (verification) keys are used.
A signer uses their private signing key, ks, in order to generate a signature on a given
message M . The verifier can then verify the signature for the provided message using
the public key, kv.

In general, the message that is being signed is the hash fingerprint of the data
that is actually being signed. This is in practice equivalent to signing the data itself,
as long as we are using a cryptographically secure hash function, as described in the
section about hash functions. By signing the hash of the data instead of the data
itself, the signatures are more efficient to generate and also more space-conserving.

3.1.4 Public key infrastructure (PKI)

Public key infrastructure is a key management architecture in which cryptographic
keys and digital certificates are managed in a hierarchical trust model. A digital
certificate is a data structure representing the public information associated with
its related private key. In addition to the public key, a certificate can also contain
identifying information, such as the organization to which it belongs, domain names,
etc. This makes digital certificates a great way to implement authenticated encryption.

In PKI, one or more parties provide a source of trust by serving as a certificate
authority (CA). The responsibility of a CA is the issuance and management of
certificates. In order for a CA to issue a new certificate, it does so by either signing
a provided certificate or generating a new one, with its own private signing key. The
signature serves as a stamp of validity. During the signing procedure, an expiration
timestamp is also supplied, as certificates should not remain valid forever. If an
unexpired certificate issued gets compromised, or if the issuance was incorrect, the CA
can revoke the issued certificate by adding the certificate to a certificate revocation
list (CLR) which it will sign to ascertain that the updated list is correct.

18 3. THEORETICAL PRELIMINARIES

Figure 3.1: Chain of trust in public-key infrastructure.

A certificate authority can be the authority of another (smaller) certificate
authority. A non-root CA is referred to as an intermediary CA. CAs form a hierarchy
of trust, where the CA at the top of the hierarchy is referred to as the root CA.
Every CA in the chain of trust is responsible for certifying and issuing certificates to
parties of the next level in the trust hierarchy. This chain of trust is represented in
figure 3.1; the highest level of trust is at the root level where the root CAs reside.
Each subsequent level below is either an intermediary CA or an end user, and their
certificates are signed by a CA in the level above.

Every certificate issued by a CA will be indirectly endorsed by central authorities
higher up in the hierarchy because their certificates have been signed by those
above, except for the certificate of the root CA. This allows us to segment the CA
architecture based on different use cases, where the highest level of trust is at the
top of the chain.

By segmenting trust this way, we only need to store the certificate of a few root
CAs instead of all certificates that we are going to use. This is exactly how web
browsers work when displaying the green padlock for a website it deems trusted; upon
visiting a website, the web server will send its certificate to the browser. Subsequently,
the browser will inspect the signatures that are present in the certificate and check

3.1. CRYPTOGRAPHIC CONCEPTS 19

to see that a signature issued by a trusted CA is present. If so, the web browser will
display a green padlock, otherwise, the site is deemed untrusted.

While it is advantageous to have a trust model that creates a hierarchy of trust
from a usability and scalability perspective, it comes with the cost of introducing
central points of attack. If a CA gets compromised, then the validity of the descendant
certificates is compromised. There have been demonstrated numerous instances in
which a CA has issued a certificate with the wrong claims to the wrong subject. This
can have dramatic consequences from a security perspective. For example, when
Microsoft publishes new software for the Windows operating system such as updates
or drivers, these are all signed by Microsoft in order to authenticate the origin of
the software. Windows will deny the installation of unsigned drivers. However, if
a certificate claiming the identity of a trusted provider gets into the wrong hands,
it can be used to circumvent the security protocol and install malicious software
for the time being until the security breach has been discovered, at which point the
certificate will be revoked by the CA.

3.1.5 Multi-party computation (MPC)

Multi-party computation (MPC) is a set of protocols that allow multiple interacting
parties to collaborate on computing a joint result based on inputs that are supplied
by each party, while the individual inputs preserve confidentiality. There are several
ways of constructing an MPC scheme. In general, MPC relies on the assumption of
having a stable communication channel between the involved parties. One common
approach is for each party to divide their input into several shares, and then distribute
these to the other parties in a randomized fashion. Then each party locally computes
the partial result and the full result is obtained by combining the partial results.

3.1.6 Multi-input functional encryption (MIFE)

Multi-input functional encryption (MIFE) is a type of cryptographic scheme that
allows multiple parties to compute specific functions over multiple encrypted inputs,
without revealing the inputs.MIFE builds on the concepts of functional encryption,
which is a generalization of traditional public-key encryption that allows authorized
parties to compute a specific function over encrypted data without revealing the data
itself. MIFE extends this concept to multiple inputs, enabling the computation of a
function over multiple encrypted inputs while preserving the privacy of the inputs
and the function being computed. An example of such as use case would be a set of
competitors wanting to learn about the market they share. Instead of relying on a
trusted third party, or each other, and risking confidential data being leaked, they
can use MIFE.

20 3. THEORETICAL PRELIMINARIES

3.1.7 AdHoc MIFE

Adhoc MIFE [ACF+19] further builds on MIFE and addresses the limitations of
traditional MIFE. While traditional MIFE requires that the function, f , is fixed
as well as the number of inputs of f , the arity of f is set a priori. This limits the
encrypted data only to be used for a particular computation with a fixed number of
inputs. Consequently, it is not well suited for a decentralized environment where we
want to reuse the same encrypted data for different computations involving different
participants. Adhoc MIFE, on the other hand, is a scheme that uses a combination
of MIFE and two-round MPC to obtain a construct that addresses the limitations
of traditional MIFE. The setup step of ad-hoc MIFE, which generates a master
secret key, is performed independently by each party. Each party then encrypts its
data using its own master key. Upon the need to perform a joint computation on
encrypted data provided by a set of participants, each participant issues a decryption
key derived from the master key as well as the specific function that is used for
the computation. This decoupling between encryption and computation is the key
contribution of ad-hoc MIFE, and it opens up the possibility for exciting use cases
in decentralized situations.

3.2 Blockchain

The issues that need to be addressed are clear from the research into greenwashing
and sustainability reporting. We need a way to achieve traceability and transparency
within the supply chain. The research question is "How can we achieve this?". Our
solution requires a way to store the information from the supply chain in a secure
manner. To be secure, it, first of all, needs to be integrity-protected. In other words,
the information must be tamper-proof after it has been recorded. Secondly, we need a
way to verify the source of the information, by some sort of authentication mechanism.
Finally, the information needs to be stored in a resilient and reliable manner in
order for us to achieve durability. These requirements should sound familiar to a
particular technology that originated in 2008 and has become widely adopted since—
Blockchain. Blockchain technology is fundamentally based on the use of cryptographic
hash structures combined with digital signatures. Since its introduction, it has been
widely used in agriculture [LTIW23], supply chain [LHK+22], education [HKGF21]
and healthcare [RGK+20; HWH+20; HKG+20] to mention some.

3.2.1 Data structure

A blockchain is a distributed information ledger composed of blocks that are crypto-
graphically chained together through the use of hash functions. This chain of blocks
can be viewed as a singly linked list in which each record points to the previous one.
The link between the blocks is formed using hash functions. Every block, except for

3.2. BLOCKCHAIN 21

the genesis block—the first block in the chain—includes the hash fingerprint of the
previous block as part of its data. By doing so, the hash of a block is recursively
dependent upon the hash of all the previous blocks. This ingenious way of employing
hash functions makes it impossible to modify a block without needing to sequentially
recompute the hash of every subsequent block in the chain, thus providing integrity
guarantees. As a result, the longer the chain succeeding the block we wish to modify,
the more resources and time it requires to perform the modification.

At the block level, each block is composed of a set of transactions that contain a
set of instructions describing the changes the transaction introduces. Transactions
are signed before being included in a block using the private key of the transactor.
This way, we can authenticate and validate that a transaction is correct with respect
to the transactor. The signature provides integrity protection for the transaction and
makes the transaction immutable because any modification would require computing
a new signature, which would require access to the private key used to sign the
transaction.

To summarize, the chain formed by the block hashes provides immutability for
the entire ledger and its history, where every new block contributes to the integrity
protection of past blocks. Whereas digital signatures authenticate and protect the
integrity of the individual transactions contained within a block. Combining hash
functions and digital signatures in this way is the breakthrough blockchain made and
is the defining characteristic of a blockchain.

3.2.2 Decentralization

As mentioned, a blockchain is a distributed information ledger, meaning it is stored
and distributed among multiple nodes participating in the network. This is referred
to as decentralization because the blockchain is not stored at a single, central
node. Through decentralization, we obtain another defining property of blockchain,
durability. Durability means that the network is able to withstand faults and errors
that could occur at a node, such as a natural disaster or hardware breakdown,
without taking down the entire network. Durability is not the only quality attribute
that decentralization provides; we also achieve increased availability, because there
are multiple nodes that provide access to the blockchain. Contrary to centralized
databases, all of the participants of the blockchain, hold the data, which yields
transparency and verifiability.

The problem of achieving consensus In a decentralized system where nodes
collaborate on maintaining the state of the blockchain, how do we come to an
agreement on what the correct state is? A distributed system is chaotic in nature;
communication will be unreliable, clocks will be out of sync, and in an open network,

22 3. THEORETICAL PRELIMINARIES

some nodes can be malicious while masquerading as legitimate, and nodes go down
unexpectedly. How do we resolve race conditions? For example, if two new blocks
are simultaneously proposed to the network. These are all problems that are related
to the problem of achieving consensus among the nodes of the network.

Different blockchain implementations solve consensus in different ways. The
first blockchain implementation called Bitcoin, used to proof-of-work (PoW) as its
consensus mechanism ([Nak09]). In essence, PoW defines the basis for consensus
through computational work. Every block that is added to the chain, needs to
satisfy a puzzle that determines how much computational work is on average needed
to produce a valid block. Since every block is linked to the previous block, the
computational work that went into a particular block is tied to all its predecessors.
This way, proof-of-work can determine the correct and valid chain to be that which
is the longest in terms of cumulative proof-of-work. However, the biggest problem
with this consensus mechanism is that it can consume an enormous amount of power.
Other mechanisms such as proof-of-stake and proof-of-space are other consensus
mechanisms intended to lower the energy consumption required to secure the network.

3.2.3 Smart contracts

Smart contracts are an essential part of modern blockchains. The term smart
contract was coined by Nick Szabo in 1994 [Sza96]. He defined a smart contract as a
computerized transaction protocol that executes the terms of a contract. The purpose
of a smart contract is to automate processes according to the rules defined by the
contract. In blockchain technology, smart contracts are containers of executable code
that are stored on the blockchain. Contracts are executed as part of transactions.
The underlying blockchain technology defines the capabilities of smart contracts.
Bitcoin introduced a simple scripting language that could be used to run smart
contracts. However, Bitcoin only allowed the deployment of simple and stateless
smart contracts. Ethereum [But+14] is a blockchain that was created for running
sophisticated smart contracts. It implements a logical computer running on the
decentralized blockchain called the Ethereum Virtual Machine (EVM). This virtual
machine is stateful and its state is derived from the transaction log. By running smart
contracts in a stateful virtual machine, smart contracts on Ethereum can read and
persist state, opening up the possibility to create stateful smart contracts. The advent
of Ethereum revolutionized smart contracts, opening up many new possibilities which
have led to numerous applications of decentralized applications.

3.2.4 Storing data off-chain

Storing data off-chain is sometimes necessary due to privacy or confidentiality concerns.
Even though data is not stored in the blockchain, we can still get some of the benefits

3.3. HYPERLEDGER FABRIC 23

of the immutability property of blockchains. Instead of storing confidential data
on-chain, we store the hash of the data which serves as proof of existence at the
point in time the transaction was added to the ledger. In case we need to verify that
the confidential data in fact existed in the past, for example for auditing purposes,
the hash of the original data can be recomputed and compared against the hash
on-chain. Matching hashes indicate that the provided data was the data originally
used in the transaction.

3.2.5 Permissioned versus permissionless

The initial implementations of blockchain technology were so-called permissionless
blockchains. This means that any entity could join the blockchain network anony-
mously without the need for a regulating central authority. Major drawbacks of
having an open network are that we need a stringent consensus mechanism in order
to protect against dishonest participants and the lack of coordination due to the
entire network being decentralized and homogeneous limits the scalability of the
network as well as reducing cost efficiency.

Permissioned blockchains, on the other hand, are blockchains in which the partic-
ipants of the network are regulated by one or more central authorities. This allows
for a much more flexible trust model as well as a more optimized network structure.
For this, we need a way to authenticate the members of the network. In general, this
can be solved through the use of PKI. The operator of the network issues digital
certificates to each member organization to grant access at the organization level.
Then, an organization will further issue digital certificates to its members in order to
provision access to the network

In a permissioned network, nodes need not be homogeneous; they can be des-
ignated for particular functions, and coordinate amongst themselves to a greater
extent, yielding a much more efficient and scalable network. By regulating the
participants of the network, they are incentivized to be honest because of the reper-
cussions that could follow from acting maliciously. This allows for a less stringent
consensus mechanism, which allows for a more performant and cost-effective network.
Therefore, permissioned blockchains are great for collaboration within industries and
B2B situations, or for applications where regulation and authentication of members
are a requirement, such as online banking.

3.3 Hyperledger Fabric

Hyperledger Fabric1 is an open-source blockchain operating system part of the
Hyperledger Foundation. The Hyperledger Foundation is an open-source collaboration

1https://www.hyperledger.org

https://www.hyperledger.org

24 3. THEORETICAL PRELIMINARIES

foundation that is hosted by the Linux Foundation. Their mission is to create open-
source enterprise-grade blockchain solutions. They host numerous blockchain projects
and manage their life cycles. Projects that are classified as graduated are well-defined
and actively maintained.

Hyperledger Fabric is one of their graduated projects, which is regarded as
the first truly extensible blockchain system for running distributed applications
[ABB+18]. What makes Fabric unique, is its flexibility by supporting modular
consensus protocols. This allows the system to be customized for specific use cases
and trust models. The flexibility enables Fabric to be used for a wide variety of
applications, making it the de facto standard for industry solutions. One of the key
properties of Fabric is its ability to run distributed applications written in traditional
general-purpose programming languages. Thus applications that are developed for
Fabric can be done so in a traditional way with languages and tools developers are
familiar with.

3.3.1 Network architecture

Fabric networks are composed of one or more channels. A channel can be regarded as
a subnet of the entire network, and only authorized organizations are allowed to join.
Each channel has its own ledger, which is comprised of the channel blockchain and
state database. In each channel, there are one or more peer nodes which are nodes
that are running chaincode and maintaining the state of the ledger. Each peer node
belongs to a single organization. In addition to peer nodes which are stateful, there
is another kind of network entity called the ordering service, which is stateless. The
job of the ordering service is to order transactions that are going to be committed
to the ledger. Finally, we have the certificate authorities which are network entities
that manage the certificates of the channel members. They serve as the source of
trust in the network.

An example of a network architecture is given in figure 3.2. In this instance, we
have three organizations, R0, R1, and R2. Each of these organizations has its own
certificate authority, CA0, CA1, and CA2 that is responsible for issuing credentials in
the form of digital certificates to the peers belonging to their organization. Depicted
in the figure is the channel, C1, which all of the organizations have joined. CC1 refers
to the channel configuration of channel 1, which we can see is agreed upon and shared
by all of the organizations in the network. Only organizations R1 and R2 have peers

3.3.2 Identity management

Intrinsic to permissioned blockchains is the need for identity management and access
control. In order to secure the network to ensure that only authorized entities are
able to join and participate in the network, we need an authority that issues valid

3.3. HYPERLEDGER FABRIC 25

Figure 3.2: Fabric network architecture for an example network consisting of three
organizations. Source: [Foua]

identity proofs. In Fabric, this is implemented using digital certificates (X.509) with
traditional public-key infrastructure. There are many different kinds of entities in a
Fabric network. Some are internal and serve specific functionality to keep the network
up and running such as machine entities like peers and orderers, and humans such
as administrators. Others are external and interact with the network such as client
applications that consume services provided by chaincode. In any case, every entity
must hold a valid certificate used for identification as well as additional metadata
such as roles and permissions used for authorization. Because Fabric uses PKI, the
trust model can be configured according to the needs of the network. Some networks
may have one root CA per organization, while others may have a common root CA
with intermediary CAs for each organization.

While PKI is used to provision and manage the digital identities of the entities
within the network, the membership service provider (MSP) is responsible for deciding
which identities are allowed to join a specific trust domain. In addition, the MSP is
also responsible for mapping identities to their respective role in the trust domain.
Fabric has two types of MSPs that differ in their scope and way of implementation,
the local MSP and the channel MSP.

Local MSPs are implemented at every node and are defined for clients and nodes
of the network. They are implemented as a set of configuration files stored locally at
nodes they apply to in the local file system. It defines who is allowed to operate on a

26 3. THEORETICAL PRELIMINARIES

Figure 3.3: Membership service providers in a Fabric Network. Source: [Foub]

particular node, for example, who is a peer administrator.

The channel MSPs, on the other hand, are defined globally in the channel
configuration. They define privileges at the channel level, such as permission to
participate in the channel, as well as perform administrative actions. Consequently,
every organization that participates in the network must have its own channel MSP.

Figure 3.3 illustrates an example network in which we have two organizations
that are part of the same channel. Both ORG1 and ORG2 have their own channel
MSP and each uses their own CA for identity management. ORG1 owns the ordering
node, whereas ORG2 owns the peer node, as indicated by the local MSPs of the
nodes.

3.3.3 Ledger

In Hyperledger Fabric, the ledger refers to both the blockchain and the world state.
The blockchain is an append-only log containing a chain of blocks that are linked
together immutably using hash functions. Because the blockchain is an append-only
log of blocks and transactions where writes are the primary operation, it is stored as
a regular file. Each of the blocks contains a header that includes the block number,
the hash of the block data, as well as the hash of the previous block header. The
block data contains a list of transactions that have been ordered by the ordering
service. Finally, there is a section of the block that is reserved for metadata and
is not included in the hash computations. The metadata contains the certificate
and signature of the block creator, along with a bitmap containing a valid/invalid
indicator for each of the transactions in the block. The metadata also includes a
hash of the cumulative state updates up until and including the block which is used
to detect forks in the world state.

3.3. HYPERLEDGER FABRIC 27

Figure 3.4: Blockchain data structure in Fabric. Source: [Fouc]

Transactions are historic records that capture the changes to the world state.
They are the source of truth for the world state; should the need arise, the world
state can be reconstructed by applying the transactions of the blockchain in order.
Figure 3.5 displays the transaction format in Fabric. Let us break down each of the
fields. Similarly to the block format, every transaction contains a header, which
contains metadata about the context of execution, such as the name and version of
the chaincode that proposed the transaction. The signature field contains a digital
signature of the transaction details that was generated by the client application
invoking the chaincode. Since the signature was generated using the private key of the
client application, it provides integrity protection, protecting the transaction against
tampering. Input parameters that were supplied to the chaincode that generated the
transaction are stored in the proposal field. After the chaincode has been executed,
the content of the response field is generated. It contains the read-write set (rw-set)
which describes the world state before and after the execution of the chaincode.
Finally, the endorsements field contains a list of signed transaction responses from
the endorsers. It is used to check that the endorsement policy of the involved keys is
satisfied.

The world state represents the current state of each of the keys up until and
including the transactions from the latest block. In other words, the world state is a
projection of the sequence of transactions in the blockchain. It is stored separately in a
key-value database outside of the blockchain. The reason for storing the current state
in a separate key-value database is for improved performance as well as the possibility
of storing off-chain data, which we will look further into when discussing privacy
features. When chaincode is executed, it uses the world state when performing

28 3. THEORETICAL PRELIMINARIES

Figure 3.5: Transaction structure in Hyperledger Fabric. Source: [Foud]

data reads and writes, which is much more efficient using a database optimized
for key-based lookups instead of the blockchain. Fabric natively supports either
using CouchDB [23a] or LevelDB [23b] for the world state. CouchDB provides more
advanced indexing functionality than LevelDB, which can be used perform to complex
queries.

3.3.4 Transaction architecture

The transaction architecture of Hyperledger Fabric is the major differentiator of
Fabric compared to prior blockchains. Historically, all blockchains have used a
order-execute transaction architecture. As the name implies, transactions are first
ordered, then they are executed and state changes are persisted. There are major
drawbacks to this architecture. Since transactions are ordered before being executed,
the transactions have to be deterministic and executed sequentially at every node.
Consequently, we are not able to parallelize transactions and hence we cannot scale
horizontally.

Fabric introduces a new transaction architecture called execute-order-validate.
In contrast to order-execute, transactions are executed by first being simulated at
a set of required nodes, called the endorsing nodes, defined by the endorsement
policy. The transaction simulation results in a read-write set that contains the sets of
keys that are read and written by the chaincode. These read-write sets are digitally
signed using the private key of the endorsing peers, which ensures the integrity and
authenticity of the transaction simulation. Each endorsing node sends its rw-set to
the ordering service for ordering. After ordering has been completed, the ordering

3.3. HYPERLEDGER FABRIC 29

service broadcasts the rw-set along with the digital signatures of the endorsing nodes
to all peers of the network. Finally, each peer validates the transaction by ensuring
there are no conflicts in the rw-set provided by each endorsing peer, as well as
validating that the endorsement policy has been met by examining the provided
signatures. Once validated, the state of the ledger is updated in each node according
to the rw-set.

Figure 3.6 illustrates the execute-order-validate architecture of Fabric. In this
example, there is one client that begins the transaction flow by submitting a proposal,
three endorsing peers that are responsible for transaction simulation, one ordering
node, and one committing peer. We will now give a detailed explanation of each
step:

1. Signed client proposal is sent to each of the endorsing peers.

2. The result from the simulation executed at each endorsing peer is sent back to
the client, and the endorsements are collected according to the endorsement
policy.

3. Final endorsements are broadcast to the ordering service.

4. Ordering service orders the transaction into a block and broadcasts the block
to all peers. Each peer individually verifies that the endorsement policy is
satisfied, and appends the block to their copy of the blockchain. Finally, the
readset is validated and not in conflict with other transactions, the writeset
changes are committed to the world state database.

By decoupling the transaction execution from ordering, transactions can be
executed in parallel, resulting in the ability to scale the network horizontally. This
allows Fabric to scale to thousands of transactions per second, depending on the
configuration, making it a great blockchain for industry solutions.

3.3.5 Chaincode

Chaincode refers to an application that is deployed to a Fabric network. Specifically,
it is a program written in one of the supported languages that have been packed
inside a docker image and deployed to a specific channel of the network. Every peer
that is a part of the channel, runs their own instance of the chaincode within a
docker container. Chaincode is the business logic of the blockchain application and
is analogous to what is usually referred to as smart contracts in other traditional
blockchains. Traditional blockchain systems are usually limited to simple domain-
specific languages that provide simple instruction sets. Programs written and stored

30 3. THEORETICAL PRELIMINARIES

Figure 3.6: Sequence diagram of execute-order-validate architecture. Source: [Foue]

3.3. HYPERLEDGER FABRIC 31

on these blockchains, often referred to as scripts, are usually very expensive to execute,
often relying on cryptocurrency as the means of paying for program execution. In
addition to being expensive, scripts are limited in their size and must be composed of
relatively few instructions, compared to traditional programming languages, due to
the need for sequential execution at every node. Fabric, on the other hand, supports
general-purpose programming languages such as JavaScript, Go, and Java, to name
a few. This is thanks to Fabric’s architecture and protocol for executing transactions.
Complex blockchain applications are no longer a luxury or impossibility, but cheap
and efficient to implement on Fabric.

3.3.6 Privacy

Since Fabric is a blockchain for industry applications where different entities that do
not necessarily trust each other may be participating, privacy preserve features are a
big part of the toolkit provided by Fabric. Two key privacy features provided are
called private data collections and transient data.

Private data collection (PDC) Private data collections are collections of data
that are stored off-chain, while the hash of the data is stored on-chain serving as a
proof of existence at the point in time. If the need should arise, the pre-image of
the hash can be revealed and the hash can be recomputed and we can verify that
it matches the hash that is on-chain. PDCs are bound to organizations, meaning
that the data of a PDC is only stored in the nodes belonging to the owners of the
PDC—as illustrated by figure 3.7. Consequently, in order to modify or query the
data stored in a PDC, the peer must belong to an organization with access to the
PDC. Each organization has a built-in PDC, that requires no additional configuration
or setup, referred to as the implicit private data collection.

Another feature that Fabric provides is the ability to prune private data collections.
Pruning a key that is stored in a PDC means removing the state associated with
the key. This is useful if we need to remove sensitive or personal information due to
compliance. Even though the state is permanently removed, the hashes of the state
are still a part of the blockchain.

Transient data Often used in combination with private data collections is the
concept called transient data. When invoking a chaincode function, a field called
transient can be sent along with the regular function arguments. Unlike the regular
arguments, the value of the transient field is not included in the transaction and
is thus not stored on-chain. The data is only available during the execution of the
chaincode. During a chaincode call, the transient data is only available to the peers
that are endorsing the transaction and is never persisted. This, combined with using

32 3. THEORETICAL PRELIMINARIES

Figure 3.7: Private data collections are bound to organizations and are stored
off-chain. Source: [Fouf]

private data collection for storage, enables us to write confidential data to Fabric,
without revealing it to other network participants.

Chapter4Modeling and requirements

Before embarking on the journey of implementing the end solution, we first need to
establish the needs and requirements that are expected to be met. In this section, we
will define the relevant stakeholders and their concerns which will set the guidelines
for the requirements. Some of these requirements will be architectural drivers that
will impact the system architecture.

4.1 Stakeholders and concerns

Stakeholders constitute the different actors that are involved in a software project.
They have different roles, incentives and perspectives of the resulting product, and
their needs and concerns are translated into functional and quality requirements
of the system. The stakeholders that we present in this section follow from the
background research into the greenwashing domain and sustainability reporting, as
illustrated in Figure 2.2.

4.1.1 Developers

The developers are those who contribute to the solution by writing and maintaining
the code. Their primary concern is modifiability and extensibility. As the functional
requirements evolve and new features are requested, the solution should be easy to
extend to fulfil the new requirements. When existing requirements change leading to
the need to modify existing functionality, this should be as frictionless as possible; i.e.,
the functionality should be packed into cohesive software components in a well-defined
architecture, thereby minimizing coupling and maximizing modifiability.

4.1.2 Organizations

Organizations, specifically reporting businesses, are the primary users of the blockchain
solution. Their primary concern is the security of the system, due to the nature of
the data that they are recording in the system. Corporate secrets and data that

33

34 4. MODELING AND REQUIREMENTS

can reveal competitive edges must be protected against other actors, especially from
competitors. The system is intended to be used by multiple types of businesses
within different industries with varying degrees of technical competence. Usability is
therefore an important focus point. Because the system is decentralized and each
reporting business runs their own instance of the blockchain, the deployability of
the system is also an important aspect that must be addressed, to ensure the lowest
barrier to entry.

4.1.3 System operators

The system operators are the providers and administrators of the blockchain solution.
Their primary role is management of the members of the network. This involves
issuing, revoking and renewing digital certificates used to authenticate and identify the
network participants. Operators could be governments at the national or international
level. Their primary concern is first and foremost the security of the system. The
confidentiality of the private data must be maintained, and the integrity of the
recorded data must be maintained. In the event of a partial loss of nodes in the
network, the system should endure, and no data is lost. This property of survival
is referred to as durability. If the system is intended for use by a large quantity of
businesses, it is vital that the network is able to scale with the increase in users.

4.1.4 Non-governmental organizations

Non-governmental organizations (NGOs) are potential users of the blockchain that
will not necessarily use it to record business activities and report sustainability
information. They are more concerned with being passive observers in the network,
such as looking at the environmental footprint of a business or products they sell.
Their primary concern is the integrity of the data they are presented.

4.1.5 Consumers

Consumers are the people that are purchasing goods and services from businesses.
Similarly to the NGOs, they are merely observers and not submitting any data
directly to the system. Consequently, they are also primarily concerned with the
correctness and integrity of the data, such as the environmental impact of a particular
product. The general public does not possess the technical competence to use a
low-level blockchain application. Hence they will need some other party to implement
a frontend through which blockchain data can be accessed.

4.2 Business requirements

Business requirements are the highest level requirements from which the functional
and quality requirements follow. They take into account the different stakeholders, the

4.2. BUSINESS REQUIREMENTS 35

product vision, and other business-related aspects such as cost and time to market. In
this project, we are the "business", and the product is the experimental implementation
we are developing. The experimental solution aims to bring transparency to the
supply chain and create the basis for a standardized system with which businesses
can report on sustainability. We envision an open system that is not owned by any
single entity but rather maintained and operated democratically by system operators.
It would be done using an open-source model, where everyone could contribute and
potentially positively impact sustainability. Any reporting business enrolled in the
system can use it to report business activities, register assets, and their interactions
with other companies. The data reported by any business must be protected and
impossible to access neither by other companies nor by the system operators. We
need a way to jointly compute aggregated data using data from multiple companies in
order to calculate upstream and downstream sustainability impact while maintaining
the confidentiality of the individual data inputs.

In the ideal world, every business in every part of the supply chain uses a
shared system to track its sustainability impact. If that were the case, we could
accurately determine the sustainability impact of products and services businesses
provide. This would be helpful in both business-to-business and business-to-consumer
cases—businesses could get insights that would help them make sustainable choices,
investors could make better decisions by investing in more sustainable companies,
and consumers could gain insight into the environmental impact of end products
and services they purchase. As a result, it would be hard for businesses to perform
greenwashing.

The idea of having an open system that every business would use is impossible to
realize in practice. Nevertheless, it is not unlikely that there will come a time when
most industrial countries require accurate reporting by the majority of businesses,
and not only the biggest enterprises, which is the case today within the EU. If we
are going to have a system that is feasible to use on a large scale, it needs to be
cost-efficient, highly scalable and reliable, and easy to integrate. Of course, it will
never be the case that every small business would be able to integrate directly with
such a system. However, this could open up future business opportunities where
some specialize in providing sustainability reporting as a service by reporting into
the shared system on behalf of smaller businesses. Larger enterprises would likely
prefer integrating directly with the system to ensure their data is secured without
relying on a trusted third party.

36 4. MODELING AND REQUIREMENTS

4.3 Trust model

The solution is not intended to be used by a single governing agency. Therefore,
we propose a trust model in which multiple independent parties—be it national or
international governing agencies—collaborate on operating the blockchain. This is
implemented by having one root CA for each operator. Subsequently, each operator
can decide on the trust model in their own trust scope. A network operator must
invite every organization that wishes to join the network. They will have their own
CA validated by the CA of the operator to which they belong. The operators are
responsible for authenticating the business wishing to join through external means
outside the system. Businesses are free to select further their trust model, which is
scoped at the organization level. This is especially useful for larger organizations that
want to subdivide their trust hierarchy based on departments within the business.
Ultimately, we have a flexible trust model bound to a single central authority but
a decentralized collaboration. Figure 4.1 displays an example trust hierarchy with
three operators that follows the proposed trust model.

4.4 Functional Requirements

The functional requirements refer to requirements that define the behavior and use
cases of the system. Functional requirements are user oriented and their goal is solving
user needs and business problems. These requirements are based on the background
research that we conducted during the early phase of the thesis work. From it, we
gained an understanding of the domain of sustainability reporting. The most central
concern for our solution is environmental reporting, specifically the reporting of
greenhouse gases. We also looked into existing corporate sustainability reporting
standards to understand how they define the reporting process. With our solution,
we want to obtain the greatest level of accuracy, which is achieved by granularity,
reporting at the business activity level instead of the holistic organizational level.

This solution also tries to address the problem of tracking emissions downstream
and upstream within the supply chain by allowing users to register mutual inter-
actions between businesses and linking assets to the activities they were produced
from, consumed by, and involved in. By doing so, we can establish a relationship
between assets and their usage, which forms an activity log that can be used to link
sustainability impact to assets across the supply chain. It also provides an audit
trail for each asset, from the sourcing of raw materials to the finished end product,
referred to as cradle-to-gate. The implementation of this functionality is entirely
hypothesis based as there does not seem to be any existing solution that provides
this way of tracking emissions at this level of granularity between multiple actors in
the supply chain.

4.4. FUNCTIONAL REQUIREMENTS 37

Figure 4.1: Trust model for the implementation.

38 4. MODELING AND REQUIREMENTS

Table 4.1: Functional requirements for the application

ID Requirement Comments
FR1 Reporting business should be able to reg-

ister business activities and their associ-
ated environmental sustainability impact
defined as a set of outcomes.

This is the core use case.

FR 1.1 When registering a business activity, assets
that were produced from the activity can
be specified. These assets will subsequently
be recorded in the system and associated
with production activity.

FR 1.2 When registering a business activity, assets
that were consumed or partially consumed
can also be specified. This will update the
associated assets and register the consump-
tion activity.

FR 1.3 An activity can be composed of other ac-
tivities to represent a larger process. Thus,
sub-activities can also be specified during
the registration.

FR2 Reporting business should be able to reg-
ister business assets.

FR2.1 If the business asset is composed of other
assets, component assets can be specified
(either as a fraction or as a whole), which
will consume the provided assets (FR7).

In the case where the pro-
vided components have al-
ready been consumed, the
registration fails.

FR2.2 The business activity that produced the
asset can be specified, which will be added
to the asset record.

FR2.3 During asset registration, activities that
the asset has been a part of can be speci-
fied.

FR2.4 Activity(ies) that have (partially) con-
sumed the asset can be specified, which
will be added to the asset record.

FR3 Two organizations are able to register an
interaction between them.

Required for establishing
links between organiza-
tions.

4.4. FUNCTIONAL REQUIREMENTS 39

ID Requirement Comments
FR3.1 Either of the organizations involved in the

interaction can re-propose the interaction
with different details to resolve errors.

FR3.2 Only the organization that received the last
proposal is able to confirm the interaction.

For example, if A pro-
poses to B, then B is only
able to confirm the inter-
action unless B issues a
re-proposal, in which case
A can confirm, but B can-
not anymore.

FR3.3 Before the interaction has been confirmed,
the party who did not propose the last
proposal can decline the proposal.

FR3.4 Before the interaction has been confirmed,
the proposer can cancel their proposal.

FR3.5 Transfer of assets can be specified in the
interaction.

Interactions can be used
for any type of business
interaction, such as a
trade, sale, or donation,
where the transfer of as-
sets could happen.

FR4 Asset ownership can be transferred to an-
other organization.

Ownership management
of assets is not a high pri-
ority.

FR5 View all interactions. Organizations should
only be able to view
interactions they are a
part of.

FR5.1 View incomplete interactions.
FR6 View business activities. Organizations can only

view their own activities.

40 4. MODELING AND REQUIREMENTS

ID Requirement Comments
FR7 Assets can be consumed by activities or

upon registering a composite asset.
Assets consumed by ac-
tivities can be used to
model the processing of
materials into a new end
product, in which case
new assets are produced.
Composite assets are as-
sets that are composed
of other assets, for exam-
ple, a computer contain-
ing computer parts.

FR8 View total sustainability impact. Details about what is
indirect (upstream/down-
stream) should also be re-
turned.

FR9 View asset sustainability impact. The asset sustainability
impact is calculated by
taking the average of the
impacts of each activity
the asset (and its compo-
nent assets) has been in-
volved in along the supply
chain.

4.5 Domain model

Before starting to implement the code of the solution, we are going to take a model-
driven approach using domain-driven design. We start by identifying the entities and
their relationships based on the functional requirements that were defined previously
(see Table 4.1). From this, we have constructed a high-level model reflecting the
domain model which is required to implement the business logic defined by the
requirements.

We present the model in Figure 4.2. Each circle represents an entity or a value
object, whereas the diamond represents a relationship between entities. A detailed
view of the components displayed in the model is given in Table 4.2, which lists each
component, its type, and the description of what it represents.

4.5. DOMAIN MODEL 41

Table 4.2: Explanation for the domain model components presented in Figure 4.2.

Component Type Description
Organization Entity Reporting organization that is registered

in the system.
Activity Entity Entity representing a business activity be-

longing to one or more organizations.
Outcome Value object Model of an outcome related to sustainabil-

ity. The set of outcomes for a particular
activity represents the total impact an ac-
tivity has. There are different types of
outcomes representing events such as the
emission of greenhouse gases, the consump-
tion of electricity, and so on.

Asset Entity Representation of an asset owned by a busi-
ness, whose ownership can be transferred.
An asset can either be atomic or composed
of multiple constituent assets.

Interacts Relationship Represents an interacts relationship be-
tween two organizations. Cardinality is
Many-to-many (M:M).

Involves Relationship As part of an interaction between two orga-
nizations, we can define activities that are
part of the interaction, which will subse-
quently be registered at both organizations.
Used to represent a collaboration activity.
Cardinality is 1:M

Produces Relationship When registering an Activity, we can spec-
ify assets that were produced by the activ-
ity. An asset can only be produced by one
production activity, hence cardinality 1:M

Uses Relationship Represents the use (not consumption) of
an asset in a business activity, e.g. a diesel
engine to perform work.

Consumes Relationship Some activities, such as production or end-
of-life activities, may require the consump-
tion of assets, for example, the processing
of raw materials that result in a new prod-
uct.

42 4. MODELING AND REQUIREMENTS

Figure 4.2: Model of the sustainability reporting domain.

4.6. QUALITY REQUIREMENTS 43

4.6 Quality requirements

Quality requirements are nonfunctional requirements for the system. Unlike functional
requirements, they do not define business logic requirements that solve problems
related to the domain. Instead, they define requirements for the quality attributes of
the system, usually related to performance, security, and availability. The quality
requirements follow directly from the needs defined by the involved stakeholders.
Different stakeholders have different roles and responsibilities for the system and are
therefore concerned with different aspects of the system.

Developers are concerned with all of the requirements defined because they are the
ones that are making architectural choices that can impact the ability to satisfy the
requirements. Whereas the stakeholders responsible for system operation are more
concerned with the quality attributes related to cost, scalability, and the security of
the system. Meanwhile, the users that will be inputting data into the system, i.e. the
reporting businesses, are mostly concerned with the security, reliability, and usability
of the system. In this section, we will present the quality attribute requirements by
defining quality scenarios.

4.6.1 Security scenarios

Table 4.3: Security scenario 1: Registering reporting data securely

ID S1
Source Reporting business
Stimulus Submits reporting data to the system
Artifacts Blockchain application, client, internet connection
Environment Runtime
Response Data is encrypted in transit using authenticated

encryption. The confidential data is stored off-chain
(hash of data stored on-chain), only accessible to
the reporting business

Response value Confidentiality, availability, and integrity main-
tained.

44 4. MODELING AND REQUIREMENTS

Table 4.4: Security scenario 2: Secure data aggregation

ID S2
Source Reporting business
Stimulus Wants to perform a use case which requires aggre-

gating data across their supply-chain
Artifacts Blockchain application, client
Environment Runtime
Response Relevant data is shared by each organization along

the supply chain. The provided data is encrypted
and unavailable by itself. The encrypted data is
aggregated using a mechanism that preserves the
constituent data.

Response value Confidentiality is maintained.

Table 4.5: Security scenario 3: Privacy preservation after asset transfer.

ID S2
Source Reporting business
Stimulus Transfer asset to another business in the system
Artifacts Blockchain application, client
Environment Runtime
Response Asset record is added to the new owner and is

only accessible to the new owner. Activity records
belonging to the previous owner is not passed on
to the new owner.

Response value Confidentiality, integrity, and availability main-
tained.

4.6.2 Extensibility scenarios

Table 4.6: Extensibility scenario 1: Add new sustainability outcome type.

ID E1
Source Developer, System operator
Stimulus Wants to add a new sustainability outcome type
Artifacts Code
Environment Development time
Response New value class is implemented
Response measure Minutes to implement

4.6. QUALITY REQUIREMENTS 45

Table 4.7: Extensibility scenario 2: Implement a new query

ID E2
Source Developer, System operator
Stimulus Wants to add a new query to an existing smart

contract
Artifacts Smart contract code
Environment Development time
Response New function is implemented and tested
Response measure Minutes to implement and test

Table 4.8: Extensibility scenario 3: Add a new contract

ID E3
Source Developer, System operator
Stimulus Wants to implement a new smart contract
Artifacts New contract code
Environment Development time
Response New contract is implemented and tested
Response measure Hours to implement

4.6.3 Modifiability scenarios

Table 4.9: Modifiability scenario: Modify existing command by introducing the
new business rule.

ID M1
Source Developer
Stimulus Wants to add a new business rule to existing com-

mand due to new business requirement
Artifacts Command code in smart contract
Environment Development time
Response Existing command behavior is modified to satisfy

new requirement
Response measure Minutes to modify and test new behavior

46 4. MODELING AND REQUIREMENTS

4.6.4 Usability Scenarios

Table 4.10: Usability scenario 1: Enroll in the blockchain network.

ID U1
Source Reporting business
Stimulus Business wishing to join the network is able to

read the technical documentation and enroll in the
network after being issued credentials from their
operator.

Artifacts Blockchain solution and documentation.
Environment Run-time
Response Provide user with well written documentation.
Response measure Hours to setup and enroll.

4.6.5 Availability Scenarios

Table 4.11: Blockchain node failure.

ID A1
Source Node
Stimulus A node part of hosting the blockchain fails and

becomes unusable.
Artifacts Node
Environment Normal operation; runtime
Response Other nodes provide redundancy and keeps the net-

work operational, and the broken node is replaced.
Response value No downtime

4.6. QUALITY REQUIREMENTS 47

4.6.6 Recoverability scenarios

Table 4.12: Recoverability scenario: Transient network failure

ID R1
Source Node
Stimulus Network connection is lost
Artifacts Network Interface Card (NIC) in blockchain node.
Environment During runtime
Response Node is on stand-by until network connectivity is

regained. Once back online, the node will recover
by synchronizing with the rest of the nodes.

Response value Recovery is successful within hours, depending on
the duration of the failure.

4.6.7 Deployability scenarios

Table 4.13: Deployability scenario: Deploy a new version of blockchain application.

ID D1
Source System operator
Stimulus Wishes to deploy a new version of the blockchain

application.
Artifacts Blockchain application, blockchain network
Environment During runtime
Response New version of blockchain application is deployed

to the network and the old version is not used
anymore.

Response measure Minutes to deploy new version.

48 4. MODELING AND REQUIREMENTS

4.6.8 Scalability scenarios

Table 4.14: Scalability scenario: Deploy a new version of blockchain application.

ID SC1
Source System operator
Stimulus Wishes to deploy a new version of the blockchain

application.
Artifacts Blockchain application, blockchain network
Environment During runtime
Response New version of the blockchain application is de-

ployed to the network and the old version is not
used anymore.

Response measure Minutes to deploy new version

4.7 Architecturally significant requirements

Architecturally significant requirements (ASR) are the requirements, functional or
quality attribute related, that impact the system architecture. They need to be
uncovered in order to establish the architectural drivers for our solution. Usually,
of most concern to the system architecture, are the quality requirements, which we
defined in terms of the quality attribute scenarios. However, functional requirements
can also have a significant impact. We present the ASRs for our implementation
in Table 4.15. The ID of the first column corresponds to the ID of the requirement
as presented in the overview of functional requirements (Table 4.1) and the quality
scenarios (Tables 4.3-4.14).

4.8 Architectural drivers

Architectural drivers constitute the requirements that force us to make decisions
for the architecture in the early phase of the design process. It is paramount to
map these out accurately so that we can make informed decisions, avoiding costly
mistakes. We are going to list the drivers from each category of requirements, in the
order from most high-level—the business requirements—to the low-level —quality
requirements.

4.8.1 Business requirements

The business requirements that have a great impact on the architecture, are mostly
concerned with the system architecture. As we are going to be implementing a
solution using blockchain technology for the domain of sustainability reporting, it is

4.8. ARCHITECTURAL DRIVERS 49

Table 4.15: List of architecturally significant requirements and explanations.

Requirements Explanation
S1, S2 For us to be able to preserve confidentiality and let each

reporting business store their confidential data off-chain
and be able to retrieve it seamlessly, we need a blockchain
that supports this type of data model. Furthermore, each
business needs to provide its own nodes that will store
confidential data.

E1, E2, E3 In order to have the application be extensible, we need a
software architecture that allows to seamlessly add new
functionality without additional overhead.

D1 There are many different kinds of blockchains that differ
in how they implement the deployment, especially rede-
ployment/upgrade of smart contracts. This requirement
requires us to select a blockchain that allows for ease of
deployment.

SC1 The scalability requirement imposes restrictions on what
blockchain we are able to use. Most blockchains struggle
with scalability due to the nature of how the blockchain
state is maintained.

important that we select a blockchain that is sustainable. This means we cannot use
a blockchain that uses consensus mechanisms that require lots of resources, such as
proof-of-work, which is not energy efficient.

Not everyone is going to have access to the system; only verified businesses
performing sustainability reporting, system operators as well as NGOs. Consequently,
we must have a system that authenticates its users, limiting us to the class of
permissioned blockchains. Furthermore, based on the trust model we have defined,
we need a system that is able to fulfill this requirement.

Perhaps the most important business requirement we need to fulfill in order for
the possibility of the solution to be adapted en masse is the metric all businesses are
concerned with—cost. If the system is costly to use, it will be hard to incentivize
businesses to use the solution, which is in direct contradiction to the economic pillar
of sustainability, making the solution itself unsustainable.

4.8.2 Functional requirements

Functional requirements define the complexity of the business logic that our solution
is going to implement. Since this business logic will be implemented using smart
contracts on a blockchain, it sets requirements for the programming model of the

50 4. MODELING AND REQUIREMENTS

selected blockchain. We cannot use a blockchain that is overly restrictive in its ability
to implement smart contracts. That would constitute both a short-term risk for
the implementation of the current functionality (Table 4.1) as well as in the long
term. It is hard to predict the evolution of the solution in the future as new needs
and requirements may arise. Thus, we need a blockchain that allows us to scale
our application complexity. Moreover, our application is stateful, which means our
blockchain should provide the ability to query and persist state.

4.8.3 Quality requirements

Notorious for having a great impact on the architecture are the quality requirements.
As they are cross-cutting concerns, they usually impact both the system architecture
as well as the software architecture. We previously defined the quality requirements
of most significance in our uncovering of the architecturally significant requirements
(Table 4.15). They are, by definition, architectural drivers. However, the ASRs are
not the only quality requirements that drive the resulting architecture. We are going
to walk through each quality attribute whose defined requirement scenarios impact
the architectural decisions.

Modifiability and extensibility Starting out with the quality attributes that
impact the software architecture, are modifiability and extensibility. In order for
us to satisfy the requirements defined in Tables 4.9 and 4.6-4.8, we need a software
architecture that is organized in a clear structure that minimizes coupling and maxi-
mizes cohesion. In addition to implementing the appropriate software architecture,
we can use design patterns at the component level to further improve the structure
of the code.

Security The security requirements are cross-cutting and impact both the system
architecture as well as parts of the software implementation. We will walk through
the affected areas, going from the lowest-level details upwards, starting out with the
network communications.

Network traffic that leaves the trust boundary of the system and is transmitted over
the internet has to be encrypted and authenticated. Otherwise, we are vulnerable to
various attacks such as man-in-the-middle and wiretapping, which would compromise
confidentiality, and tampering which would compromise the integrity of the data.

Because a blockchain is a distributed ledger that is replicated to all participating
nodes, we cannot store confidential data directly in the public ledger, as it would
be available to everyone. Hence, we need a mechanism by which we can selectively
store confidential data off-chain, while still achieving the cryptographic properties
provided by the blockchain. This can be achieved by using a separate data store

4.8. ARCHITECTURAL DRIVERS 51

for off-chain data while storing the hash of the confidential data on-chain as proof
of existence. Another way is to store the data encrypted on the blockchain, but
unfortunately, this will make it hard to query the data.

Scalability One of the most criticized points of the current widely used blockchains
is their ability to scale. Two of the most successful blockchains today, Bitcoin and
Ethereum, only have a throughput of 3-4 and 15 transactions per second (TPS),
respectively. Furthermore, the read performance of blockchain databases is worse
than that of non-blockchain databases like YouTube and Google. The reason for
the challenges in scalability is the trade-off between performance, security, and trust
[SC21]. These findings are concerned with public and open blockchains. However, as
we are going to be using a permissioned blockchain, we have greater flexibility for
the trust assumptions that heavily influence the scalability.

Chapter5Experimental implementation: Gaia

In this section, we will present the experimental implementation that has been the
main contribution of this thesis. The name of the implementation is Gaia.1 We will
start by presenting a high-level description of what the implementation provides
and the process through which it was developed. The code is hosted at GitHub:
https://github.com/udnes99/Gaia/tree/master-thesis. There, the reader can also
find technical documentation. The master branch contains the most up-to-date code,
and the master-thesis branch contains the code from the thesis.

5.1 Description

The solution we present is a sustainability reporting application running on the
Hyperledger Fabric blockchain operating system. The main features of the application
are the ability to record business activities and their environmental impact. These
activities can also be associated with the production and consumption of assets
belonging to the business. Using this information, we can calculate the average
emissions for a given asset. Another feature this solution provides is the ability for
businesses to collaborate by registering interactions between them. This could be
used to register involvement in an activity that is performed by another organization,
such as the usage of a service like transportation. By recording the trail of activities
each asset is involved in, we can calculate both the upstream and downstream impact
for an asset.

5.2 Blockchain selection

In the previous chapter we established the requirements for our solution, and we
determined which were architectural drivers. Many of these drivers imposed re-
quirements on the blockchain of choice. The methodology for the selection process

1Gaia is a goddess in Greek mythology that resembles the personification of the earth.

53

https://github.com/udnes99/Gaia/tree/master-thesis

54 5. EXPERIMENTAL IMPLEMENTATION: GAIA

was researching the current state-of-the-art of permissioned blockchains and look-
ing at the potential candidates. From our research, we found Hyperledger Fabric
by the Hyperledger Foundation to be the most promising candidate. Fabric is an
open-source blockchain operating system that can be used to deploy distributed
ledger applications implemented in familiar general-purpose languages. This stands
in great contrast to most blockchains that provide a limited programming ability. Its
innovative transaction architecture offers performance at scale, as well as supports
a flexible trust model through its network architecture that uses the public-key
infrastructure for identity management. To ensure that Fabric is indeed the correct
choice, we will examine its ability to fulfill the requirements.

5.2.1 Cost

Since Fabric is a blockchain operating system and not a public blockchain that relies
on a native cryptocurrency to pay for the execution of smart contracts, the cost is
inherently the cost of the infrastructure. The cost of executing a transaction depends
on the resources used to carry out the execution, and it scales with the complexity
of the business logic. In that sense, it is similar to a regular distributed application.
Unlike a normally distributed application, however, the transaction log is replicated
and stored at every peer that is a part of the network. The transaction log is stored
as a regular file, and the space complexity is O(n) where n is the total number of
transactions that have been executed. In addition to the transaction log, the world
state also needs to be persisted at every node. Luckily, storage is inexpensive, but in
a scenario where the network grows large, we risk the barrier for some businesses to
directly join the network to become too large. However, if some decide to join as
reporting service providers, they can provide access on behalf of several businesses,
which removes infrastructure-related barriers.

5.2.2 Sustainability

Sustainability is a primary concern that the selected blockchain needs to fulfill, other-
wise, we compromise the intent of the solution, to begin with. Because Fabric makes
trust assumptions, unlike open blockchains, our consensus mechanism does not need
to rely on resource-demanding algorithms for security. Traditional cryptocurrencies
that use proof-of-work, have had an exponential increase in the power consumption
required for mining, due to their competitive nature. In Fabric, however, the resource
usage scales in a similar fashion to regular distributed applications; linear in the
throughput of the system. However, unlike regular distributed applications that
are often deployed to the cloud, where the region of deployed nodes can be decided
based on factors like carbon footprint, the nodes in Fabric are provisioned by the
participants of the network. This means that the sustainability impact of each node
varies with its location and underlying infrastructure, which in turn determines the

5.2. BLOCKCHAIN SELECTION 55

source of electricity and energy efficiency. This is the best we can hope for in a
decentralized environment.

5.2.3 Security

The security of the system is paramount; the network needs to be secure, and
confidential data cannot be stored on-chain. In Fabric, every entity that interacts
with the network, either from within or outside, is authenticated using digital
certificates. The security of this scheme depends on the underlying trust model which
is implemented using PKI. Network traffic is encrypted using TLS, preventing data
from being compromised in transit. Organizations using the solution will be recording
their business activities and assets, as well as interactions with other organizations.
In other words, highly confidential data. This data cannot be stored on-chain, as
it would be accessible to everyone in the network. Fabric was designed with these
kinds of use cases in mind and provides privacy features to address this. Private data
collections allow organizations to store their private data off-chain in the world-state
database of the organization’s peers. This is inaccessible to other organizations unless
they connect to a peer belonging to the owner and are explicitly granted access. In
conclusion, Fabric satisfies our security requirements.

5.2.4 Scalability

Fabric is intended for use in enterprise-grade applications that must perform at scale.
This is made possible by its unique transaction architecture, which is one the biggest
differentiators of Fabric compared to prior blockchains. The execute-order-validate
architecture allows transactions to be executed in parallel by a subset of the nodes of
the network as defined by the endorsement policies. In other words, the transactions
are sharded based on the endorsement policy. As a result, transaction throughput
scales horizontally with the number of nodes in the network.

Transaction throughput is not the only aspect of scalability; we also need to
consider storage. As we explained in the cost discussion, both the transaction log of
the blockchain and the world state are stored at every node. While the transaction
log is stored as a single file, the world state is stored in a traditional NoSQL key-value
database that natively scales horizontally. As the size of the transaction log grows,
each node will either need to vertically scale its storage capacity as the hardware
capacity is exceeded, or use a distributed file system. Additionally, private data is
only stored at nodes of the organization to which the data belongs, which further
partitions the world state. Thus organizations that record a lot of data in the
system, will require greater storage capacity than those with less. Storage is very
inexpensive, so this should not be a big problem, as a lot of organizations already
store unstructured data on-premises.

56 5. EXPERIMENTAL IMPLEMENTATION: GAIA

5.2.5 Programming capabilities

Programming on blockchains has traditionally been quite cumbersome due to the
inherent restrictions of the transaction architecture and consensus models. Pro-
grams deployed to traditional blockchains have to be implemented using restricted
blockchain-specific programming languages in order to ensure the consistency of the
blockchain state when the program is executed at every node within the network.
Because every node has to execute the program, the programs are also limited in their
size and number of instructions per transaction in order to evenly share resources
and prevent denial of service attacks. Fabric is unique in its ability to deploy smart
contracts written in traditional languages such as JavaScript, Go, and Java. The
development process is similar to the development of regular applications and devel-
opers need not worry about restrictions on the size and number of instructions per
transaction. This also means that our application can evolve as time goes on without
us having to worry about reaching a limit in complexity. The only caveat is that
the code cannot rely on in-deterministic functions (e.g., random number generators)
when generating state, as this would lead to conflicts between the peers that are
executing the transactions. This is not really a problem though, as such data can
be generated client-side and supplied during the invocation of the smart contract
function.

5.3 Chaincode

The chaincode refers to the application that is deployed to Fabric. Our chaincode is
implemented in TypeScript 2. TypeScript is an extension to JavaScript that has the
same syntax but with added type support, which makes it both safer and easier to
use. Since TypeScript compiles JavaScript, it runs in the same run time environments
and has the same characteristics. The single-threaded asynchronous programming
model means developers need not worry about synchronization and other semantics
required by multi-threaded languages, which are often sources of bugs.

One of the most important aspects of software development is having a clearly
defined architecture. The software architecture defines the structure of an application
by setting the rules and conventions that the developers must follow. Rules can
be which types of software entities are allowed to interact, and what modules
and components are allowed to have a dependency relationship; i.e., clear system
boundaries. The primary goal of our architecture is for the code to be modifiable and
extendable without causing too many side effects, as defined in our quality attribute
requirements (E1-E3, M1). This is achieved by having an architecture where we
focus on maximizing cohesiveness and minimizing coupling.

2https://www.typescriptlang.org

5.3. CHAINCODE 57

In our solution, we have opted for a layered architecture. A layered architecture
is an architecture where components are arranged into clearly defined layers. Each
layer serves a specific role. Importantly, in our layered architecture, the level of
abstraction increases further in the layer. The three layers of our architecture are,
from the highest to the lowest level of abstraction: domain layer, contract layer, and
infrastructure layer. Figure 5.1 is a visual representation of the described architecture.

In order to reduce coupling and not break abstraction, our rule for coupling
is that a layer cannot depend on a layer that is further out. For example, the
domain layer cannot depend on the contract layer, but both the contract layer and
the infrastructure layer can depend on the domain layer. By following this simple
rule, we can ensure some level of predictability for the consequences of modifying a
particular layer. Intuitively, when we modify the highest-level code, i.e., the domain
layer, that contains the central business logic, we expect the changes to affect the
other lowe level layers. On the other hand, if we were to modify the infrastructure
layer, which contains low-level components, our business logic will not be affected.
This dependency rule and order of abstraction between the layers, align with this
expectation.

5.3.1 Domain layer

The domain layer is the innermost layer, and is the layer where all business entities
and rules live. It has the highest level of abstraction and the most pure code. Only
concepts from the domain model should be reflected in the code; i.e., class names,
methods, and variable names must belong to the ubiquitous language of the domain.
When designing and implementing this layer, we are following the principles of
domain-driven design. This means that the relationships and business logic realized
by the code should be real concepts that exist in the domain. Methods should
be behavior-oriented and reflect real actions. For example, an Asset entity with a
method used to change its owner, should have the method named transferTo instead
of setOwnerId to better capture the domain.

Our implementation of the domain layer is based on the domain model (figure
4.2) we constructed during the preliminary research into sustainability reporting.
The resulting implementation is visualized using a class diagram in figure 5.2. It
is not that much different from the conceptual model, and this view has a higher
level of detail. Note that the arrows represent direct class dependencies and not
general relationships. Most of the relationships of the domain model are implemented
referentially by storing identifiers of the referenced entity instead of referencing the
actual instance. This is the reason why there seem to be fewer relationships than in
the original model.

58 5. EXPERIMENTAL IMPLEMENTATION: GAIA

Figure 5.1: Chaincode software architecture

Figure 5.2: Class diagram of the domain layer.

5.3. CHAINCODE 59

5.3.2 Contract layer

For us to be able to interact and perform actions within our application, we need
someplace where the use cases of our application are implemented. Since our solution
is a blockchain application that is composed of multiple smart contracts that actually
contain the use cases, we decided on naming it the Contract layer.

A use case can be any interaction the user of the application wants to perform,
which is either a command or a query. While a command is an action that has
side effects causing changes to the state of the system, a query is merely a request
to read some data, causing no changes in the system. In order for a command or
query to be carried out, the application layer will interact with the domain layer by
retrieving the entities necessary to carry out the use case. Then the use case logic
will perform the required operations on the entities that are involved in the operation
through their defined methods and save the updated entities. In addition to having
business rules within the domain layer that are bound to domain entities, additional
use-case-specific business rules are present within the application layer. These rules
are implemented and enforced within each specific use case.

5.3.3 Infrastructure layer

While both the domain and contract layers implement business logic and provide
value to the end user, the infrastructure layer is where all the low-level details lie.
The entire goal of the infrastructure layer is to implement functionality that supports
the business logic. We can view the infrastructure layer as the glue of the application.
An analogy would be the room of a house, which serves a specific purpose— business
logic. For the room to function, we need to have the supporting infrastructure in
place, such as the door, isolation, plumbing, etc.—the infrastructure.

The system boundary begins at this layer, i.e. at the door; all external com-
munications arrive here first and can be further delegated to the contract layer to
perform business logic. For example, a web application with a REST API would
have an HTTP server component in this layer. Other examples of infrastructure
components could be related to validation, monitoring, databases, security, low-level
cryptographic libraries, and so on.

In our solution, we use the infrastructure layer primarily to perform the task
of validation and mapping between data transfer objects (DTOs) and the corre-
sponding software entities. To decouple the contracts from specific mappers, we
have implemented a generic abstract service called ISerializer which delegates the
mapping operation to the correct mapper based on the type that is being serialized
or deserialized.

60 5. EXPERIMENTAL IMPLEMENTATION: GAIA

Figure 5.3: Class diagram of the infrastructure layer.

An overview of the infrastructure components is presented in Figure 5.3. We have
omitted the data transfer object interfaces from this diagram to make the illustration
more readable.

5.4 Architectural tactics

Architectural tactics are the architectural decisions made with the goal of satisfying
one or more quality requirements. While the architectural drivers and the ASRs
can affect the entire architecture by forcing major architectural decisions concerned
with the architectural patterns early on in the project, the architectural tactics are
actions taken for specific quality requirements that are less impactful to the overall
architecture.

5.4.1 Security

S1: Storing reported data securely In order to satisfy security scenario 1, we
use Hyperledger Fabric’s privacy features. The implicit private data collection of the
reporting business is used to store the private data off-chain, and we use the transient
data feature to transmit the arguments of the invoked chaincode. The transient data
will not be included in the ledger, and will only remain available to the endorsing
peers of the organization registering the data.

5.4. ARCHITECTURAL TACTICS 61

S2: Securely aggregating private data Aggregating private data is required
for multiple use cases in the system. FR8 and FR9 rely on aggregating private data
from multiple organizations in order to obtain the total downstream and upstream
sustainability impact.

The first and most straightforward way to obtain aggregated data from the
different data sources is to have a central decryptor that is queried on-demand
whenever a computation needs to be performed. While simple to implement, having
a central decryptor requires all of the participants to place their trust in one party.
This would be seen as too great of a risk for many firms. It also raises the question
of who should be this central decryptor, which could be impossible to agree on in
an environment where multiple system operators are involved. Trust is not the
only issue; if we want to use a central decryptor, confidential data will need to be
stored encrypted on-chain so that it is accessible to the decryptor. Having a central
decryptor constitutes a single point of attack for an adversary, and if the decryption
keys are compromised, the private data that is stored on-chain will be revealed to
the attack.

Instead of having a central decryptor, we can employ a decentralized setup. The
cryptographic scheme adhoc MIFE allows organizations to collaborate by sharing
encrypted sustainability secured with encryption keys only they have access to. To
perform a computation on data belonging to multiple organizations, the peers of
each organization will need to be queried in order to retrieve the required data as it
is stored in private data collections.

Collaboration is required in order to determine and query the relevant organiza-
tions. This is due to the lack of a holistic view of the supply chain; every organization
only knows about its direct interactions with its partners. Thus in order to obtain
data from organizations upstream and downstream, each organization in the supply
chain network will need to query their partners. Figure 5.4 illustrates an example
of the described process. A user belonging to Organization 1 wants to perform an
aggregation query to obtain information across the supply chain. Actors denoted
by P, correspond to partners between organizations across the supply chain. P1 is a
direct partner of ORG1 and P1.1 is a partner of P1, and so on. First, the user queries
a peer belonging to its own organization. It then sets up a functional encryption
scheme and the parameters are sent to the partners. The process is then repeated
recursively for the partners and encrypted data from each individual actor is finally
returned to organization 1. Finally, Organization 1 performs the computation on the
encrypted data using functional encryption, and the obtained result is returned to
the user.

Included in the query is information about the function which is being computed

62 5. EXPERIMENTAL IMPLEMENTATION: GAIA

Figure 5.4: Secure decentralized data aggregation.

and the set of activities whose sustainability data is needed. The peer will then query
its own world state for the relevant data, and encrypt it before returning the result.
Along with the encrypted data, partial decryption keys are provided which are used
to calculate the result without revealing the actual data inputs. As a result, there
is no centralized security risk, and organizations can decide to whom and what to
share when generating partial decryption keys.

S3: Preserving privacy when transferring asset Our solution provides the
ability to transfer assets between organizations. Each asset registered in the system
stores information about the asset such as its composition (if composed of other
assets), what activities the asset has been a part of, as well as additional metadata.
This information is stored in the private data collection of the owner of the asset.
When transferring an asset to another organization, we cannot copy this information
to the record added to the new owner’s private data collection. Instead, we store
the previous owner along with any other data the new owner wishes to provide. The
record of the previous owner is updated to include information about the new owner.
By storing owner information, we have a trail of owners associated with the given
asset, but at the same time, we maintain privacy, since any given historic owner only
knows the previous owner and the next owner.

5.4. ARCHITECTURAL TACTICS 63

5.4.2 Modifiability

Modifiability refers to the amount of work required to modify existing software
components to introduce or remove functionality. We can measure modifiability in
terms of the coupling and cohesion of the software components. Thus the tactics we
have selected are intended to increase cohesion and reduce coupling.

Maintaining semantic coherence Semantic coherence means that modules that
are coupled together, must be coherent in their responsibilities. This means that
the modules should only be coupled if their responsibilities work together and are
related. The aim is to have these responsibilities work together to achieve a broader
goal. Maintaining semantic coherence thereby increases the cohesion of the software
components. Our layered architecture defines clear responsibilities of their constituent
components, which helps us maintain semantic coherence.

Abstract common service Instead of depending on a particular implementation
of a service, we can define an abstraction and use polymorphism. A concrete
example of this tactic in our solution is when to serializing and deserializing objects.
Different objects will require different logic to perform serialization and deserialization.
However, we do not want to couple our code directly to these components. Instead, we
have defined an abstract service called ISerializer, whose contract provides methods
to perform serialization and deserialization. The component which implements the
ISerializer service, will internally use the concrete mappers used to convert between
objects and their serialized format.

Encapsulation Encapsulation is the restricting of access to the state of a com-
ponent for outside components. From a modifiability perspective, the purpose of
encapsulation is to reduce coupling by preventing coupling to the internal details of
a component; instead, we define public methods and properties that form a contract.
Now external components are only coupled to the contract, hence it should remain
as stable as possible to prevent cascading changes when modifying the component.

5.4.3 Extensibility

Extensibility refers to the ability to extend the existing functionality of the system
without needing to modify existing code. Both modifiability and extensibility are
aspects of the maintainability of the code.

Inheritance Inheritance is a technique in object-oriented programming that is
used to define an abstraction for a common set of classes using a base class. This
class defines a common interface for each of the inheriting subclasses. Subclasses can
in turn be inherited, forming an object inheritance hierarchy. Using inheritance, we

64 5. EXPERIMENTAL IMPLEMENTATION: GAIA

get polymorphism which lets us write code that relies on the abstract superclass.
This lets us add new subclasses that inherit from the abstraction without needing
to modify code that only relies on the abstraction. The drawback of inheritance is
that it couples the sub-classes to the abstraction. Therefore it is important that
the inheritance relationship is semantically correct, to make sure our inheritance
relationships are cohesive.

Composition Composition is orthogonal to inheritance and is a different method
to obtain extensible code. Instead of creating abstractions using base classes with
common functionalities, for then to extend the functionality using specialized sub-
classes, we can use composition. With composition, we create constituent classes
with clearly defined responsibilities and relationships. Then, in order to achieve the
functionality of the whole, we compose the functionality by letting classes use other
classes within the composition to obtain the required behavior. Classes that use
other classes in the composition will be coupled, and it is important they have high
cohesion.

Note that inheritance and composition are not mutually exclusive. They can be
used together if it is suitable for the given problem.

5.5 Hyperledger Fabric

The backbone of our solution is the blockchain operating system, Hyperledger Fabric.
Fabric is modular which allows it to be customized to each use case. In this section,
we will discuss the decisions we have made for the configuration of Fabric.

5.5.1 Network architecture

The configured network architecture is displayed in figure 5.5. We use one channel
where the blockchain application is deployed, which is shared by all of the participants
in the network. Each member organization provides its own peers, CA, and ordering
service. The world state is the same for all peers in an organization but differs
between organizations due to private data.

5.5.2 Endorsement policy

The endorsement policy defines the set of required nodes that have to simulate
the execution of a transaction in order for the transaction to be considered valid
and committed to the blockchain. In applications where there are different parties
involved in a shared process where the state of the process should be accessible to
every party, it could be useful to define a custom endorsement policy, for example

5.5. HYPERLEDGER FABRIC 65

Figure 5.5: Configured network architecture for Hyperledger Fabric.

requiring two out of three parties to endorse the transaction. This ensures that even
if one of the parties is dishonest, it can be detected by the other endorsement party.

In our case, most of the data to be inputted into the system is private to the
provider of the data. Hence, our endorsement policy needs only be confined to one
endorser—the peer for whom the chaincode was first invoked. The only exception is
the use case where two parties register a joint interaction. Luckily, Fabric handles
this for us; by default, if a transaction is written to a private data collection, it must
be endorsed by the organizations that have access to the private data collection.
Thus in the interaction use cases, where we write to the private data collection of
both participants, Fabric requires both to endorse the transaction, which is exactly
what we want in a scenario where we cannot assume both parties trust each other.

5.5.3 World-state database

Fabric comes with support for using either CouchDB or LevelDB as the world-
state database out of the box. Both are key-value stores, that are optimized for
key-based lookups. While LevelDB is a barebone simple key-value store that only
supports key-based queries, CouchDB provides additional features such as indexing
and parameterized queries. As a proof-of-concept, with a small world state, we

66 5. EXPERIMENTAL IMPLEMENTATION: GAIA

do not need this advanced querying, and performing key-based lookups is enough.
Considering that LevelDB requires no additional setup with Fabric, we have decided
on keeping things simple and opted for LevelDB as our world-state database.

5.6 Scenarios

We will now present a selection of use case scenarios to demonstrate the flow of
action in the implementation. For each scenario, we will provide a sequence diagram
that demonstrates the interaction between the different components of the system.
Relevant code will be presented to aid in the explanation.

5.6.1 Scenario 1: Registering a business activity

The main use case that is used to report sustainability information is the registration of
business activities. This is implemented by the ActivityContract. An organization
registers a business activity. The registered activity is a business activity that
produces phones. In this instance, three phones are produced, and as an example,
the environmental impact of the activity is the emission of 40kg of CO2.

Organization 1 issues the registerActivity with the arguments in figure 5.6.
The scenario is displayed in figure 5.6. Org1 invokes the registerActivity command
of the ActivityContract. Then the data is deserialized into an ActivityRegistration
object. It then checks to make sure that there is no existing activity with the same
ID. Because this activity produces three assets, the ActivityContract invokes the
registerAssets command of the AssetContract. The AssetContract performs
similar validation and upon the successful registration of the produced assets, the
new activity is saved in the system.

5.6.2 Scenario 2: Two parties performing an interaction with the
transfer of assets

An important use case scenario that is needed to establish links between the orga-
nizations and assets throughout the supply chain is the recording of interactions.
InteractionContract implements the business logic for performing interactions. It
provides methods to propose, query and confirm pending interactions. As part of an
interaction, we can also include transfers of assets. The asset transfer functionality is
implemented by the AssetContract, which is invoked by the InteractionContract.

In our scenario, organization 1 proposes an interaction with Organization 2, which
includes the transfer of some assets from Organization 1. This interaction represents
a transaction between the two parties, where Organization 2 becomes the new owner
of the provided assets.

5.6. SCENARIOS 67

{
"id": "123",
"type": "PhoneProduction",
"outcome":
[

{
"type": "GreenhouseGasEmitted",
"gas_type": 0,
"unit": 1,
"magnitude": 40

}
],

"assets":
{

"produced":
[

{
"id": "1",
"type": "Phone",
"fractional": false,

},
{

"id": "2",
"type": "Phone",
"fractional": false,

},
{

"id": "3",
"type": "Phone",
"fractional": false,

}
]

}
}

Figure 5.6: Scenario 1: Business activity details submitted in the registration.

68 5. EXPERIMENTAL IMPLEMENTATION: GAIA

Figure 5.7: Scenario 1: Registering business activity that produces three assets.

Figure 5.9 illustrates the flow of interactions between the involved components.
Note that this scenario is composed of two separate transactions; one in which
Organization 1 proposes the interaction, and the other where Organization 2 confirms
the interaction which subsequently transfers the assets.

The code implementations of proposeInteraction and confirmInteraction
can be seen in figures 5.10 and 5.11, respectively. Since this use case involves more
than one private data collection, we are only able to read the on-chain hashes of the
private data and not the data itself. To ensure that both parties agree on the final
interaction when it is being confirmed, we compare the hash of the latest interaction
state which is provided by the confirmer. This is implemented by the helper method
verifyProvidedInteraction which can be seen in figure 5.12. In this method, we
compute the SHA256 hash of the state of the provided object and compare it to the
private data hash.

5.6. SCENARIOS 69

if(await this.exists(ctx, registration.id))
throw new Error("An activity with the provided id already exists.")

if(registration.activities && !((await
Promise.all(registration.activities.map(x => this.exists(ctx,
x)))).every(x => x)))

↪→

↪→

throw new Error("Unknown activity specified");

let assetCount = 0;

if(registration.assets)
{

if(registration.assets.produced)
{

await AssetContact.getInstance().registerAsset(ctx, new
AssetRegistration(registration.assets.produced.map(x => ({id:
x.id, type: x.type, fractional: x.fractional, composedOf:
x.composedOf, activities: [new
ActivityRecord((<ActivityRegistration>registration).id,
true)]}))));

↪→

↪→

↪→

↪→

↪→

assetCount += registration.assets.produced.length;
}

if(registration.assets.consumed)
{

await AssetContact.getInstance().consumeAssets(ctx, new
ConsumptionRegistration(registration.assets.consumed,
registration.id));

↪→

↪→

assetCount += Object.keys(registration.assets.consumed).length;
}

if(registration.assets.involved)
{

await AssetContact.getInstance().registerInvolvement(ctx, new
InvolvementRegistration(registration.assets.involved,
registration.id));

↪→

↪→

assetCount += registration.assets.involved.length;
}

}
const newActivity = Activity.registerNew(registration.id,

registration.type, registration.outcome, registration.description,
assetCount,registration.data, registration.activities);

↪→

↪→

await this.saveActivity(ctx, newActivity);
return {activity: Serializer.getInstance().serializeJSON(newActivity)};

Figure 5.8: Code snippet: registerActivity implementation.

70 5. EXPERIMENTAL IMPLEMENTATION: GAIA

Figure 5.9: Scenario 2: Two parties performing an interaction with the transfer of
assets.

5.6. SCENARIOS 71

public async proposeInteraction(ctx: Context, interactionProposal:
InteractionProposal)↪→

{

const interaction = Interaction.create(interactionProposal.id,
ctx.clientIdentity.getMSPID(), interactionProposal.to,
interactionProposal.activities, interactionProposal.transfers);

↪→

↪→

const [hash1, hash2] = await
Promise.all([ctx.stub.getPrivateDataHash(`_implicit_org_${interaction.from}`,
`interaction-${interaction.id}`),
ctx.stub.getPrivateDataHash(`_implicit_org_${interaction.to}`,
`interaction-${interaction.id}`)])

↪→

↪→

↪→

↪→

if(hash1?.length !== 0 || hash2?.length !== 0)
throw new Error("An interaction with the given ID already

exists.");↪→

await this.saveInteraction(ctx, interaction);
}

Figure 5.10: Code snippet: Scenario 2 – proposeInteraction implementation.

72 5. EXPERIMENTAL IMPLEMENTATION: GAIA

public async confirmInteraction(ctx: Context, interaction: Interaction)
{

await this.verifyProvidedInteraction(ctx, interaction);
if(interaction.completed)

throw new Error("Interaction has already been completed and
cannot be modified.");↪→

const confirmer = ctx.clientIdentity.getMSPID();

if((confirmer === interaction.to && interaction.state ===
INTERACTION_STATE.RECEIVER_REPROPOSAL) || (confirmer ===
interaction.from && interaction.state ===
INTERACTION_STATE.SENDER_REPROPOSAL))

↪→

↪→

↪→

throw new Error("The interaction cannot be confirmed by the last
party that proposed it.")↪→

interaction.confirm();
await this.saveInteraction(ctx, interaction);
if(Object.keys(interaction.transfers).length > 0)
{

await Promise.all(Object.keys(interaction.transfers).map(x =>
(async () =>↪→

{
const to = x === interaction.from ? interaction.to :

interaction.from;↪→

await AssetContact.getInstance().transferAsset(ctx, new
TransferRequest(to, interaction.transfers[x], x));↪→

})()));
}

}

Figure 5.11: Code snippet: Scenario 2 – confirmInteraction implementation.

5.6. SCENARIOS 73

private async verifyProvidedInteraction(ctx: Context, interaction:
Interaction)↪→

{
const clientMsp = ctx.clientIdentity.getMSPID();
if(![interaction.to,

interaction.from].includes(ctx.stub.getMspID()))↪→

throw new Error("The executing peer is not allowed to endorse
this.");↪→

if(![interaction.to, interaction.from].includes(clientMsp))
throw new Error("The client with msp " + clientMsp + " does not

belong to an MSP involved in the provided interaction");↪→

const sha256 = createHash("sha256");
sha256.update(this.serializer.serializeJSON(interaction));
const providedInteractionHash = sha256.digest();

const [hash1, hash2] = await
Promise.all([ctx.stub.getPrivateDataHash(`_implicit_org_${interaction.from}`,
`interaction-${interaction.id}`),
ctx.stub.getPrivateDataHash(`_implicit_org_${interaction.to}`,

↪→

↪→

↪→

`interaction-${interaction.id}`)]);

if(!providedInteractionHash.equals(hash1) ||
!providedInteractionHash.equals(hash2))↪→

throw new Error("The provided hash does not match the hash of the
current interaction state.");↪→

}
}

Figure 5.12: Code snippet: Scenario 2 – verifyProvidedInteraction implemen-
tation.

Chapter6Evaluation and discussion

6.1 Functional requirements

FR1: Register business activities This core use case has been implemented
according to the requirements. When registering an activity, one or more sustainability
outcomes can be included. Currently, the solution only supports a selection of a few
kinds of outcomes. However, it is very easy to extend by implementing additional
outcome value objects. Aside from this, every other requirement and sub-requirement
has been fulfilled. However, further investigation is needed to determine whether there
is a need for the ability to register activities that are composed of other activities. It
was hypothesized that this would be a useful feature, but it remains to be confirmed.

FR2: Register business assets The implemented functionality to fulfill FR2
seems to be a good approach to modeling how assets can be described in the real
world. With the ability to specify whether an asset is fractional or not, we can
support the registering and tracking of assets whose consumption pattern can be
continuous, which can be the case for fungible assets such as raw materials. On the
other hand, assets that are not fractional, are either not consumed or consumed in
their entirety. This can be used to model the end-of-life of manufactured products, or
the embedding of processed goods within a composite end-product, such as sensors
in cars.

FR3: Register interaction between two organizations FR3 is realized by
the InteractionContract The intention of the interaction registration is to provide
the ability to track the exchange of goods and services between businesses. This is
needed if we want to track the indirect sustainability impact of such transactions.
The resulting implementation lets the users associate an interaction with one or more
activities to indicate participation in the activity. If the interaction is an exchange of
goods, the transfer of assets can be included in the interaction. Currently, interactions
are limited to two parties. This means that a real-world interaction between more

75

76 6. EVALUATION AND DISCUSSION

than two parties must be registered as multiple two-way interactions between the
participants. Should the need arise, it could be extended to an arbitrary number of
parties.

FR4: Transfer asset ownership The implementation of asset ownership transfer
is implemented as a standalone feature in the AssetContract. Initially, it seemed
practical to provide the user the ability to transfer asset ownership directly. Later we
realized this can be problematic for the tracking of the assets. Instead, it seems more
sound to require the transfer of assets to be done as part of an interaction (FR3).

FR5: View all interactions A simple method to retrieve all interactions and
proposals from the system is provided to the end user. In the future, additional
querying capabilities should be implemented to give users the ability to filter out,
sort, and retrieve a subset of the interactions that are of relevance. Pagination must
also be implemented in order to support a large number of interactions.

FR6: View business activities Similarly to FR5, the current feature for retriev-
ing business activities is simple and only retrieves the entire collection of activities.
We propose the same measures; querying capabilities with filtering and sorting, and
pagination.

FR7: Consume assets The purpose of supporting the registration of asset
consumption is to provide a way to represent the usage of assets such as activities
where a business uses assets to produce other assets as well as the combustion of
materials. The implementation allows assets that are registered as fractional to be
consumed in fractional amounts, whereas non-fractional assets must be consumed in
their entirety. Modeling consumption this way seems to be a good fit for the real-life
scenarios we have foreseen.

FR8: View total sustainability impact Calculating the total sustainability
impact of an organization requires traversing the supply chain for each asset they
own and have owned. Additionally, it also requires traversing the activities they
have registered and their interconnections in the supply chain. In other words, this
is a complex and resourceful computation to carry out. Unfortunately, due to time
constraints, we have not been able to implement this feature.

FR9: View sustainability impact of asset Similarly to FR8, we have not been
able to implement this feature as the same issues with FR8 will need to be addressed.

6.2. QUALITY REQUIREMENTS 77

6.2 Quality requirements

6.2.1 Extensibility

For our solution to be able to handle future requirements, and for the complexity of
the application to scale well, it must be extensible. We have employed a combination
of composition and inheritance to facilitate this.

Composition is used extensively in the contract layer where the use cases for
the system are implemented. Some of the use cases rely on invoking existing use
cases. This is where composition comes to the rescue; instead of duplicating the logic
across the use cases, we compose the functionality by letting the contracts re-use
logic from one another where needed. An example of the use of composition is in
the registerActivity use case implemented by the ActivityContract. During
activity registration, the user can also provide information about assets that were
involved in the activity. However, this can also be done separately after the activity
has been registered and has been implemented as a use case by the AssetContract.
Thus we reuse this functionality, by having the ActivityContract invoke relevant
functions implemented by the AssetContract.

Inheritance, on the other hand, is only used a few times. To avoid the need
to reimplement cross-cutting concerns in each contract, we have defined a base
class AbstractContract which implements deserialization of the arguments that are
provided to the invoked chaincode. Additional functionality that needs to be added
to all contracts can be implemented using the base class.

Our use of composition and inheritance has proved to facilitate a code base that
is easily extensible. We employed these modifiability tactics from the beginning of
the implementation, and building on the solution has been an unencumbered process.

6.2.2 Modifiability

Ensuring high modifiability is important to minimize friction that could arise in the
event that changing existing functionality is necessary. The tactics we have applied
have proven successful in this task.

Maintaining semantic coherence has been a primary concern from the beginning
of implementation, and only software components that have related responsibilities
are allowed to be coupled. For the layered architecture, we decided on implementing
further semantic cohesion by defining clear boundaries between the different classes
of software components. Additionally, the dependency rule which states that layers
can only depend on layers further in, reduces the level of coupling. As a result, we
have a code base that has a high level of cohesion and low coupling.

78 6. EVALUATION AND DISCUSSION

Encapsulation further reduces the possibility of tightly coupling modules together
by hiding internal implementation details. As the implementation is developed in an
object-oriented programming language, we have built-in support for encapsulation
through access modifiers and classes. The contracts in our contract layer, for example,
have private helper methods that are used internally, and public methods that let
other modules call them. These methods have clearly defined names that state their
intent; their internal implementation is not important to the user of the method as
long as its functionality is correct. We have used this extensively to compose and
re-use business logic, by letting the different contracts call each other.

6.2.3 Deployability

Deploying a new version of a decentralized system is quite similar to traditional
applications, with some additional administrative overhead. First, the new chaincode
is packaged and prepared for deployment by an organization. Then the chaincode
will have to be manually installed by each organization.

Because the installation of the new chaincode is done independently by each
organization, it requires a way by achieving consensus upon the proposal of a new
deployment to ensure that all nodes commit to using the new deployment. In the
channel definition, we can define the application life cycle endorsement policy, which
governs the consensus of the chaincode life cycle. The endorsement policy defines the
number of required organizations that need to approve the new chaincode deployment.
In the event that an organization is unwilling to accept and install the new chaincode
definition on their peers, even though the endorsement policy is satisfied, they will
be unable to use the chaincode of the channel.

Additionally, we can require that a set of predetermined organizations provide
a signature for the new chaincode definition that is going to be deployed. These
organizations can act as administrators of the chaincode and govern its business
logic. This configuration aligns well with our proposed organizational structure for
the operation of the system, which involves having governing agencies act as system
operators that manage the network.

Other than the need to coordinate the member organizations during the deploy-
ment process, Fabric is built to fully handle the life cycle of the chaincode which
makes deploying the application to a Fabric Network seamless. The manual installa-
tion of new chaincode in each member organization can further be automated by the
use of automation tools such as scripts. Thus the administrative overhead can be
reduced to a minimum.

6.2. QUALITY REQUIREMENTS 79

6.2.4 Scalability

The scalability of the solution is fully determined by the Fabric network, which
in turn depends on how it is configured and the usage patterns of the deployed
application. The configured endorsement policy along with the transaction logic, will
determine which peers are required to endorse (i.e. execute) the transaction.

Since our solution mostly involves one organization in each transaction, except
for the use cases where two organizations interact, the transaction throughput is
bound locally to each organization. These scalability properties are favorable because
organizations contribute to the scaling of the network according to their own needs;
organizations that require a large throughput are most likely larger enterprises that
have the resources to provision the required infrastructure. By contrast, smaller
organizations will not be performing that many transactions, and hence will not be
required to provision many resources to participate in the network. Thus the costs
of scaling are distributed fairly among the participants.

6.2.5 Security

Ensuring that the implementation satisfies the security requirements is paramount.
Thanks to the privacy features of Hyperledger Fabric, we have been able to success-
fully implement secure storage of reported data; the private data is siloed at the
organizational level since the private data collections are bound to each organization.
Of course, if the peers themselves are compromised, the data can be obtained. Hence
the security of the private data is the responsibility of the organization to which it
belongs.

The most challenging security requirement is the secure aggregation of data from
multiple organizations. While we have not implemented a solution to the problem,
we explored two potential ways of achieving this; either using a central trusted
aggregator or by means of decentralized collaboration using functional encryption.
While using a central aggregator is simple to implement, it does not provide strong
enough security guarantees due to the centralized risk and trust requirements.

Decentralized collaboration using functional encryption, on the other hand, seems
like a promising solution to the problem that fits well within a decentralized environ-
ment. It is, however, more difficult to implement, and requires further research in
order to set up a secure protocol. Additionally, it requires different organizations
to talk to each other’s peers, which could introduce additional networking overhead.
Despite this, it seems to be the most viable solution from a security perspective.

Preserving privacy when moving data between organizations is a necessity. The
only current use case where this applies is the transfer of asset ownership. Our

80 6. EVALUATION AND DISCUSSION

solution is to not copy all of the information about an asset when transferring it to
another organization. Instead, we let the historic owners have their own view of the
asset. Each owner can have their own private data in their asset record. Upon the
transfer of an asset, the previous owner records the new owner in their private data,
and conversely, the new owner records the previous owner. This way, we can preserve
the ownership trail while preserving privacy because the record of ownership is only
known between parties that have exchanged the asset.

6.3 Application for greenwashing

We will now explore the application of the solution to scenarios of greenwashing.
Although the current implementation does not provide the means to share data
between organizations, we will assume access to all data, to demonstrate the potential
uses.

6.3.1 Product-level greenewashing

As an example, we are going to simulate a scenario of product-level greenwashing.
The scenario is as follows. Yogoa is a producer of yogurt that sells its products to
grocery stores. Yogoa and all of the other suppliers along their supply chain are using
Gaia to track and record their assets and business activities. Yogoa’s supplier just
started selling recycled plastic, at a higher price compared to non-recycled plastic.
Even though the price for recycled plastic was higher, Yogoa decided to make a switch
and use it in their carton. To promote this change, they changed the packaging
and added a green label stating "Now made with recycled plastic.", as it would be
good marketing. The question is—has the environmental impact of the product been
reduced?

We will assume that Yogoa processes its own carton packaging at its facilities
during the manufacturing of its yogurt products. We will assume the constituents
of the carton to be paper and plastic. For this example, we will only consider the
packaging of the finished product and not the yogurt itself. The supply chain is
shown in Figure 6.1. Each batch of yogurt produces 50000 units and requires 1 metric
tonne of paper and 10kg of plastic.

Table 6.1 shows the business activities that each actor has recorded from January
to March. The transactions between Yogoa and its suppliers have been recorded in
Gaia as interactions, which are shown in Table 6.2.

Calcuating the impact Let us look at the environmental impact of the packaging
before and after making the switch to recycled plastic. The total impact of the first
batch produced with non-recycled plastic, which includes the upstream emissions, is

6.3. APPLICATION FOR GREENWASHING 81

Figure 6.1: The supply chain of Yogoa.

Table 6.1: Product-level greenwashing scenario: Registered business activities.

Date Organization Activity Impact
January
2023

Paper Supplier Production of 1 tonne of
paper - batch #45602.

1500kg CO2.

January
2023

Plastic Supplier Production of 1 tonne
of plastic - batch
#WX5831.

1600kg CO2

February
2023

Yogoa Production of 50000 pack-
ages.

100kWh electricity

February
2023

Paper Supplier Production of 1 tonne of
paper - batch #46010.

1500kg CO2.

February
2023

Plastic Supplier Production of 1 tonne
of plastic - batch
#WX5832.

1600kg CO2

February
2023

Plastic Supplier Production of 1 tonne of
recycled plastic - batch
#ZX1003.

2100kg CO2

March
2023

Yogoa Production of 50000 pack-
ages using recycled plas-
tic.

100kWh electricity

82 6. EVALUATION AND DISCUSSION

Table 6.2: Product-level greenwashing scenario: Registered interactions.

Date Organization 1 Organization 2 Description
January
2023

Yogoa Paper supplier Purchase of 1
tonne of paper.

January
2023

Yogoa Plastic supplier Purchase of 100kg
of non-recycled
plastic.

February
2023

Yogoa Paper supplier Purchase of 1
tonne of paper.

February
2023

Yogoa Plastic supplier Purchase of 100kg
of recycled plastic.

given by
I1 = Ipaper + Iplastic + Iproduction

Each impact component is obtained from the registered business activities in table
6.1. Since Yogoa has purchased an entire batch of paper, we have

Ipaper = 1500CO2kg

, which is the full impact of the paper production activity.

On the other hand, Iplastic is the fraction of the batch that is processed, which is
10kg out of 1000kg. Thus

Iplastic = 1600kgCO2

1000kg
· 10kg = 16kgCO2

The final component, which is the impact of the processing of the paper and plastic,
turning it into the final packaging, is measured in terms of consumed electricity. In
order to obtain the emissions in CO2, we will convert the consumed electricity using
the average emissions per kWh at the location of the processing facility, which we
are going to assume to be 35gCO2/kWh.

Iproduction = 10kWh · 35gCO2

kWh · 50kWh = 1750g = 1.75kg

In total, the impact of the packaging is

I1 = Ipaper + Iplastic + Iproduction

= 1500kgCO2 + 16kg + 1.75kg
= 1517.75CO2kg

6.3. APPLICATION FOR GREENWASHING 83

Thus the average environmental impact for each unit of packaging, using non-
recycled plastic, is 1517.75/50000 = 30.3gCO2.

Let us perform the same calculations for the second batch, which uses recycled
plastic instead.

I2 = Ipaper + Irecycled plastic + Iproduction

Irecycled plastic = 1600kgCO2

2100kg
· 10kg = 21kgCO2

The impacts of the paper and processing were the same compared to the previous
batch, so the calculated impact is

I = Ipaper + Irecycled plastic + Iproduction

= 1500kgCO2 + 21kgCO2 + 1.75kgCO2

= 1522.75kgCO2

Which per unit corresponds to 1522.75/50000 = 30.5gCO2, which is more than
when using non-recycled plastic! What we have just demonstrated is the ability to
reveal greenwashing using Gaia.

6.3.2 Organization-level greenwashing

We will now look at an example of using Gaia for organization-level greenwashing.
In this example, we will assume the following scenario. Saastastic is a software-as-a-
service (SaaS) business that provides software to its customers. Their profile is green
and their core values are sustainability-oriented, and they claim to be committed to
finding the most sustainable partners.

Saastastic has been using the cloud provider called JediCloud to host their SaaS
application. JediCloud is a cloud provider that focuses on low carbon emissions
and sustainable infrastructure. For this reason, their infrastructure is located in
countries whose energy primarily comes from renewable sources. JediCloud is quite
a bit more expensive than its competitors due to the added costs of the location of
its infrastructure.

Unfortunately, Saastastic has been struggling with its operational costs and is
hardly turning a profit. In a recent meeting, the administration determined that
they need to use a cheaper hosting provider. They decided on using another cloud

84 6. EVALUATION AND DISCUSSION

provider called SithCloud, which provides the same services as JediCloud, but at less
than half the price.

Let us examine the impact this has had on the environmental footprint of
Saastastic. We are going to assume that Saastatic and its supply chain have recorded
their business activities in Gaia for the past six months, with the change of cloud
provider occurring at the end of March 2023. Tables 6.3 and 6.4 list all the business
activities that have been recorded in the past six months. Currently, there is no
support for the ability to specify the amount an organization participates in another
organization’s activity, which could be used to model the individual organizations’
utilization of a shared service. Nevertheless, we will assume this feature has been
implemented. The interactions include the percentage of utilization of the purchased
cloud service relative to the total utilization of all the customers. To obtain the total
environmental footprint of Saastastic, we will consider the footprint of the cloud
services they have purchased and footprint of the their offices. The impact for a
given month k is given by

Ik = Ikoffice + Ikcloud

Where Ikoffice is obtained directly from the registered office operation activities,
and converted to CO2 equivalent.

Ikcloud is a bit more nuanced to calculate since it is a shared service provided to
several users. However, the share of the service utilization is specified in the list of
interactions. Hence, the impact associated with Saastastic for the cloud service is
given by

Ikcloud = Utilization · Total impact of cloud service

The total CO2 emissions of Saastastic in the past six months are plotted in Figure
6.2. As we can see, their emissions increased after March, which is due to the switch
to SithCloud. The emissions include the office operation, which actually decreased
in the first half of the six-month period, due to warmer weather. If we only consider
the emissions from the cloud provider, the increase becomes even more apparent, as
can be seen in Figure 6.3

6.3. APPLICATION FOR GREENWASHING 85

Figure 6.2: Organization-level greenwashing: Total CO2 emissions of Saastastic.

Table 6.3: Organization-level greenwashing: Registered activities.

Date Organization Activity Impact
January 2023 JediCloud Cloud hosting, region 1. 1000kg CO2
January 2023 JediCloud Cloud hosting, region 2. 1100kg CO2
January 2023 SithCloud Cloud hosting, region 1. 1810kg CO2
January 2023 SithCloud Cloud hosting, region 2. 2170 CO2
January 2023 Saastastic Office operation 908 kWH
February 2023 JediCloud Cloud hosting, region 1. 950kg CO2
February 2023 JediCloud Cloud hosting, region 2. 1220kg CO2
February 2023 SithCloud Cloud hosting, region 1. 1920kg CO2
February 2023 SithCloud Cloud hosting, region 2. 2120kg CO2
February 2023 Saastastic Office operation 1020 kWH
March 2023 JediCloud Cloud hosting, region 1. 1150kg CO2
March 2023 JediCloud Cloud hosting, region 2. 1250kg CO2

86 6. EVALUATION AND DISCUSSION

Date Organization Activity Impact
March 2023 SithCloud Cloud hosting, region 1. 1973kg CO2
March 2023 SithCloud Cloud hosting, region 2. 2080kg CO2
March 2023 Saastastic Office operation 860 kWH
April 2023 JediCloud Cloud hosting, region 1. 1030kg CO2
April 2023 JediCloud Cloud hosting, region 2. 1170kg CO2
April 2023 SithCloud Cloud hosting, region 1. 2021kg CO2
April 2023 SithCloud Cloud hosting, region 2. 2200kg CO2
April 2023 Saastastic Office operation 740 kWH
May 2023 JediCloud Cloud hosting, region 1. 1050kg CO2
May 2023 JediCloud Cloud hosting, region 2. 1200kg CO2
May 2023 SithCloud Cloud hosting, region 1. 2010kg CO2
May 2023 SithCloud Cloud hosting, region 2. 1980kg CO2
May 2023 Saastastic Office operation 650 kWH
June 2023 JediCloud Cloud hosting, region 1. 950kg CO2
June 2023 JediCloud Cloud hosting, region 2. 1200kg CO2
June 2023 SithCloud Cloud hosting, region 1. 1900kg CO2
June 2023 SithCloud Cloud hosting, region 2. 2000kg CO2
June 2023 Saastastic Office operation 600 kWH

6.4 Barriers

Self-hosting Perhaps the greatest barrier against adoption is the need to self-host
and set up the infrastructure required to join the blockchain network. Consequently,
the organization will need to maintain additional IT infrastructure which will lead
to costs, and administration requirements that can be beyond their technical capa-
bilities. A potential solution to the problem is having intermediaries that connect
to the blockchain on behalf of other organizations to offload the technical overhead.
Unfortunately, this requires trust in a third party, as they will need to handle the
data of the reporting organization. Another perspective is that this could lead to
business opportunities for service providers that could provide services for on-premises
setup and maintenance of the blockchain infrastructure. This would cost money, but
remove the technical requirements.

6.4. BARRIERS 87

Figure 6.3: Organization-level greenwashing: CO2 emissions of Saastastic, excluding
office operation.

Table 6.4: Organization-level greenwashing scenario: Registered interactions.

Date Organization 1 Organization 2 Description
January
2023

Saastastic JediCloud Purchase of cloud services.
(Region 1, 0.1% utilization)

February
2023

Saastastic JediCloud Purchase of cloud services.
(Region 1, 0.12% utilization)

March
2023

Saastastic JediCloud Purchase of cloud services.
(Region 1, 0.12% utilization)

April 2023 Saastastic SithCloud Purchase of cloud services.
(Region 2, 0.16% utilization)

May 2023 Saastastic SithCloud Purchase of cloud services.
(Region 2, 0.18% utilization)

June 2023 Saastastic SithCloud Purchase of cloud services.
(Region 2, 0.17% utilization)

Skepticism and ignorance towards blockchain Blockchain is still perceived
as novel technology even though it has been around since 2008. Very few people

88 6. EVALUATION AND DISCUSSION

actually understand the properties and therefore the value of blockchain technol-
ogy. This makes it harder to convince people of the reasons to it should be used.
Furthermore, the first application of blockchain technology which was its inception
was in a cryptocurrency. Since then, a vast number of cryptocurrencies have been
launched. Unfortunately, due to the lack of regulation in the cryptocurrency space,
numerous scams have been conducted through sham cryptocurrencies, which has
further worsened the public’s perception of blockchain. Blockchain has also been
associated with criminal usage, especially in the dark web. In reality, the majority
of cryptocurrency users are merely investing with the hopes of earning a profit.
Nevertheless, the actions of the minority have led to skepticism.

Regulations The use cases that involve the sharing of data from multiple actors
across the supply chain could be impossible to implement due to regulations that
impose restrictions on what data can be shared with whom. It could also restrict the
duration for which certain data can be saved. Regulations could be different across
the nations involved in a supply chain, where some are stricter than others. Thus
in some cases, not all the data for performing aggregated computations is available.
Further research into the legal concerns of sharing and storing data will need to be
conducted.

6.5 Challenges

There are numerous challenges that need to be solved before a system of this nature
is feasible to use in practice.

Decentralized administration The nature of having a decentralized system
in which there is no single regulator, requires the operators of the network to
be aligned when implementing changes. Different governing agencies could have
different requirements for the system, which means that it could be hard to have
one deployment of the network. In theory, separate versions of the solution could be
deployed to separate networks, with their own blockchain ledgers and state. In order
to collaborate across the different network instances, integration through a common
agreed-upon interface could be a way to solve this.

Data accuracy If the calculations made by the system are going to provide value,
they need to be as accurate as possible. This is entirely determined by the accuracy
of the data that is reported into the system. Unfortunately, the world is imperfect;
people make mistakes, some are dishonest, and faulty equipment can give inaccurate
readings. One of the key properties of the system is the ability to perform audits on
the data that has been recorded in the system, which could make it possible to uncover
erroneous reporting. Of course, it is not feasible to perform an audit of each and

6.6. DISCUSSION 89

every organization using the system, but the audit requirements could be determined
by the size of the organization. As the sustainability impact is proportional to the
size of the organization, performing audits on the biggest organizations, would be
the most impactful to the overall accuracy of the data in the system.

Collaboration The premise for having the ability to calculate the downstream and
upstream emissions along the supply chain for a particular good or service is having
the different organizations involved collaborate on the calculation by providing the
relevant data. To secure the confidentiality of the data, we propose using a functional
encryption scheme, which makes it possible to exchange encrypted data to be used
for a particular calculation, while not revealing the data itself. However, since the
data is entirely in the hands of each organization, as it is stored off-chain in their
own nodes, they could in theory refuse to collaborate. The only way collaboration
could be forced would be through regulations and laws. The problem is that the
supply chain is global and is not bound to any single government, which means that
it is hard, if not impossible, to adopt and enforce such a law.

6.6 Discussion

The primary objective of implementing the proof-of-concept was to determine if
using blockchain for sustainability reporting could aid in preventing or revealing
greenwashing by making it possible to determine the sustainability impact of the
goods and services sold by businesses. Does the solution provide the functionality
to achieve this? In theory, if every organization along the supply chain accurately
reported their business activities, assets, and their associated sustainability impact,
we would have the data required to calculate the emissions associated with a product
or service throughout the entire supply chain.

Unfortunately, it is infeasible to realize this in practice. It would require far
too many resources to enforce its usage at the global scale unless some other non-
regulatory incentive existed that made businesses use the system voluntarily. As
climate change increases and the consequences become even more impactful, the
world may become even more united in the effort against climate change. Should the
world ever implement a ubiquitous requirement for sustainability reporting to fight
climate change, our implementation could serve as a potential inspiration.

Although it is unrealistic that this system could be implemented globally it could
still provide value; sustainability impact could be reported to the system using
a combination of today’s approximation methods when required. Organizations
that use the system are able to accurately determine their scope 1 and 2 emissions,
which they will report when registering business activities. In case their suppliers or
customers do not use the system they cannot register their interactions that serve as

90 6. EVALUATION AND DISCUSSION

the basis for scope 3 emissions. Instead, they can fall back to the traditional methods
for approximating.

Chapter7Conclusion

This thesis has been an exploration into the potential application of blockchain for
sustainability reporting as a way to prevent greenwashing. Our hypothesis was that
the properties of blockchain technology would facilitate a solution that provides
transparency and auditability to the supply chain when used by its actors.

The main contribution of this thesis is a proof of concept application that imple-
ments sustainability reporting running on top of the Hyperledger Fabric blockchain
operating system. Fabric implements a permissioned blockchain that is designed
for industry applications at scale. It provides privacy features that we have used
extensively in our solution that ensure that the reported sustainability data is stored
securely, and only accessible to the organization to which it belongs. The private
data is stored off-chain at the nodes of the organization, and the hash of the data
is recorded on-chain which serves as immutable evidence, which can be used for
auditing purposes.

An open system that is industry-agnostic could help us achieve interoperability
throughout the supply chain by providing a common interface for sustainability
reporting. Having interoperability lets us exchange information in a standardized
way, which opens up the possibility for collaboration. We propose to explore the use of
functional encryption as a secure way for actors in the supply chain to collaborate by
exchanging data in an encrypted format that can be used for computing aggregated
data while preserving confidentiality. This could in theory be used to accurately
calculate scope 3 emissions, as opposed to estimating using quantitative models
and reference values. Vendors could hypothetically provide accurate sustainability
information to consumers for the products and services they were selling, which could
greatly reduce the occurrence of greenwashing.

Unfortunately, the idea of having a standard system used globally is an unachiev-
able goal. Currently, there are far too many barriers. There is a lack of regulation,
which would be required to impose the use of a standard system. The difference

91

92 7. CONCLUSION

in technical competence and infrastructure is far too great between nations, and
there needs to be an incentive for businesses to use such a system. While the system
could be used at the national level, the interconnectedness of the world economy
means that the lack of information from the rest of the supply chain would render
the collaborative aspect greatly impaired.

Despite the barriers, our proposed solution could one day be feasible to implement.
The world is changing rapidly, and one of our greatest challenges is climate change.
Perhaps someday, the world would be aligned and technologically mature enough
that a system of this nature could be used.

7.1 Future work

Data removal The key defining property of the blockchain is immutability, which
means that once data has been added to the ledger, it cannot be removed. This
can be problematic if the data that is stored in the ledger needs to be deleted due
to external factors such as regulations. If a business located in the EU inputs data
that is considered personal information, it will need to be compliant with GDPR.
Consequently, the personal data cannot be stored in their systems indefinitely. Luckily,
Hyperledger Fabric has built-in functionality that lets us prune data that is stored
off-chain, while the only thing remaining is the hash of the data on-chain. The
problem with data removal is that it could lead to holes in the data set required to
carry out calculations. However, it could be implemented in a way that preserves
sustainability data which would not constitute personal data.

Testing Testing is an important methodology in software engineering that help us
ensure that business logic is implemented correctly and that the system is working
as intended. In our solution, business logic can be tested by writing tests for each
of the implemented methods of the contracts. Since the contracts interact with the
domain layer, this will also test the behavior of the domain entities. Mocks should be
used in place of infrastructure code such as Hyperledger SDKs in order to isolate the
tested functionality. Since the solution is implemented in TypeScript, we propose
using the popular testing framework JEST 1.

Extending sustainability outcome support The sustainability impact that is
associated with a business activity is modeled as a set of outcomes in our domain
model. In the code, the set of outcomes is the set of value objects that extend the
Outcome base class. Currently, the solution provides very limited support for outcome
types: ElectricityConsumed, ElectricityProduced, and GreenhouseGasEmitted.

1JEST is an open-source testing framework: https://jestjs.io/

https://jestjs.io/

7.1. FUTURE WORK 93

Further research into the three pillars of sustainability and potential ways to model
outcomes of business activities that affect aspects of them should be explored.

Fractional participation in activity We discovered a new requirement during
the evaluation. Currently, it is not possible to specify the amount of participation
in an activity. This is needed if we for example want to model a shared service
consumed by multiple customers, e.g. cloud computing, but the amount of resource
utilization by each customer is not the same.

Secure data sharing The key value proposition of the solution is to provide insights
into the supply chain by means of aggregating the data in the system. Functional
requirements FR8 and FR9 are examples of scenarios where this functionality is
needed. Our proposal is to traverse the organizations along the supply chain which
hold data required for the given calculation. This requires us to implement a protocol
that lets data be shared for use in aggregation calculations while protecting the data.
We propose exploring the use of functional encryption which seems to be a good fit
for the described protocol.

CouchDB as world-state database Because calculating the total sustainability
impact requires aggregating all business activities and assets that are present along
the supply chain of the organization in question, it can potentially require performing
many database reads. Without the ability to perform parameterized queries on
the entities in the world-state database, a full scan of the entire database along
with filtering implemented in the application is required every time we wish to
obtain a subset of the entities based on some predicate or to perform aggregation.
The world state database, CouchDB, provides indexing features that allow us to
perform parameterized queries and optimize performance. Instead of using LevelDB,
CouchDB should be used. A mapping of the data access pattern should be conducted
to establish what indices are needed; unnecessary indexing should be avoided, as it
will degrade write performance and take up unnecessary storage.

User-facing frontend Since our application is intended to be used by consumers
and NGOs to help them detect greenwashing, a publicly accessible frontend should
be developed and deployed. This can be a traditional web application that is hosted
in the cloud. The backend of the web application will be needed to integrate and
connect to our blockchain application and will serve as the facade.

References

[21] Regulation (EU) 2021/1119 of the European Parliament and of the Council of
30 June 2021 establishing the framework for achieving climate neutrality and
amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European
Climate Law’), Jul. 2021. [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:32021R1119.

[23a] «Apache couchdb». Online; accessed 15-May-2023, The Apache Software
Foundation. (2023).

[23b] «Google/leveldb leveldb: Is a fast key-value storage library written at google
that provides an ordered mapping from string keys to string values». Online;
accessed 15-May-2023, Google. (2023).

[ABB+18] E. Androulaki, A. Barger, et al., «Hyperledger fabric: A distributed operating
system for permissioned blockchains», in Proceedings of the thirteenth EuroSys
conference, 2018, pp. 1–15.

[ACF+19] S. Agrawal, M. Clear, et al., Ad hoc multi-input functional encryption, Cryp-
tology ePrint Archive, Paper 2019/356, https://eprint.iacr.org/2019/356,
2019. [Online]. Available: https://eprint.iacr.org/2019/356.

[But+14] V. Buterin et al., «A next-generation smart contract and decentralized appli-
cation platform», white paper, vol. 3, no. 37, pp. 2–1, 2014.

[Com] E. Commission. [Online]. Available: https://finance.ec.europa.eu/capital-mar
kets-union-and-financial-markets/company-reporting-and-auditing/compa
ny-reporting/corporate-sustainability-reporting_en.

[DB11] M. A. Delmas and V. C. Burbano, «The drivers of greenwashing», California
Management Review, vol. 54, no. 1, pp. 64–87, 2011. [Online]. Available:
https://doi.org/10.1525/cmr.2011.54.1.64.

[DH76] W. Diffie and M. Hellman, «New directions in cryptography», IEEE Transac-
tions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[EFR] EFRAG, First set of draft esrs. [Online]. Available: https://www.efrag.org/la
b6.

[Eur] European Committee of the Regions, Green Deal Going Local. [Online]. Avail-
able: https://cor.europa.eu/en/engage/Pages/green-deal.aspx?utm_source
=SharedLink&utm_medium=ShortURL&utm_campaign=Green
+Deal+Going+Local.

95

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119
https://eprint.iacr.org/2019/356
https://eprint.iacr.org/2019/356
https://finance.ec.europa.eu/capital-markets-union-and-financial-markets/company-reporting-and-auditing/company-reporting/corporate-sustainability-reporting_en
https://finance.ec.europa.eu/capital-markets-union-and-financial-markets/company-reporting-and-auditing/company-reporting/corporate-sustainability-reporting_en
https://finance.ec.europa.eu/capital-markets-union-and-financial-markets/company-reporting-and-auditing/company-reporting/corporate-sustainability-reporting_en
https://doi.org/10.1525/cmr.2011.54.1.64
https://www.efrag.org/lab6
https://www.efrag.org/lab6
https://cor.europa.eu/en/engage/Pages/green-deal.aspx?utm_source=SharedLink&utm_medium=ShortURL&utm_campaign=Green+Deal+Going+Local
https://cor.europa.eu/en/engage/Pages/green-deal.aspx?utm_source=SharedLink&utm_medium=ShortURL&utm_campaign=Green+Deal+Going+Local
https://cor.europa.eu/en/engage/Pages/green-deal.aspx?utm_source=SharedLink&utm_medium=ShortURL&utm_campaign=Green+Deal+Going+Local

96 REFERENCES

[Eva04] E. Evans, Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional, 2004.

[Foua] H. Foundation. [Online]. Available: https://hyperledger-fabric.readthedocs.io
/en/release-2.5/network/network.html.

[Foub] H. Foundation. [Online]. Available: https://hyperledger-fabric.readthedocs.io
/en/release-2.5/membership/membership.html.

[Fouc] H. Foundation. [Online]. Available: https://hyperledger-fabric.readthedocs.io
/en/release-2.5/membership/ledger.html#ledger.

[Foud] H. Foundation. [Online]. Available: https://hyperledger-fabric.readthedocs.io
/en/release-2.5/ledger/ledger.html#transactions.

[Foue] H. Foundation. [Online]. Available: https://hyperledger-fabric.readthedocs.io
/en/release-2.5/txflow.html.

[Fouf] H. Foundation. [Online]. Available: https://hyperledger-fabric.readthedocs.io
/en/release-2.5/private-data/private-data.html.

[HKG+20] A. Hasselgren, K. Kralevska, et al., «Blockchain in healthcare and health
sciences—a scoping review», International Journal of Medical Informatics,
vol. 134, p. 104 040, 2020. [Online]. Available: https://www.sciencedirect.com
/science/article/pii/S138650561930526X.

[HKGF21] A. Hasselgren, K. Kralevska, et al., «Medical students’ perceptions of a
blockchain-based decentralized work history and credentials portfolio: Quali-
tative feasibility study», JMIR Form Res, vol. 5, no. 10, e33113, Oct. 2021.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/34677137.

[HW18] E. G. Hertwich and R. Wood, «The growing importance of scope 3 greenhouse
gas emissions from industry», Environmental Research Letters, vol. 13, no. 10,
p. 104 013, Oct. 2018. [Online]. Available: https://dx.doi.org/10.1088/1748-93
26/aae19a.

[HWH+20] A. Hasselgren, P. K. Wan, et al., «GDPR compliance for blockchain applica-
tions in healthcare», arXiv preprint arXiv:2009.12913, 2020.

[IfS11] W. R. Institute and W. B. C. for Sustainable Development, Greenhouse gas
protocol: Corporate value chain (scope 3) accounting and reporting standard:
Supplement to the GHG protocol corporate accounting and reporting standard,
en. 2011.

[LHK+22] S. Liu, G. Hua, et al., «What value does blockchain bring to the imported
fresh food supply chain?», Transportation Research Part E: Logistics and
Transportation Review, vol. 165, p. 102 859, 2022.

[LTIW23] Y. Li, C. Tan, et al., «Dynamic blockchain adoption for freshness-keeping in
the fresh agricultural product supply chain», Expert Systems with Applications,
p. 119 494, 2023.

[Nak09] S. Nakamoto, «Bitcoin: A peer-to-peer electronic cash system», May 2009.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf.

https://hyperledger-fabric.readthedocs.io/en/release-2.5/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/membership/ledger.html#ledger
https://hyperledger-fabric.readthedocs.io/en/release-2.5/membership/ledger.html#ledger
https://hyperledger-fabric.readthedocs.io/en/release-2.5/ledger/ledger.html#transactions
https://hyperledger-fabric.readthedocs.io/en/release-2.5/ledger/ledger.html#transactions
https://hyperledger-fabric.readthedocs.io/en/release-2.5/txflow.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/txflow.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/private-data/private-data.html
https://www.sciencedirect.com/science/article/pii/S138650561930526X
https://www.sciencedirect.com/science/article/pii/S138650561930526X
http://www.ncbi.nlm.nih.gov/pubmed/34677137
https://dx.doi.org/10.1088/1748-9326/aae19a
https://dx.doi.org/10.1088/1748-9326/aae19a
http://www.bitcoin.org/bitcoin.pdf

REFERENCES 97

[Pro11] G. G. Protocol, «Greenhouse gas protocol», Sector Toolsets for Iron and
Steel-Guidance Document, 2011.

[RGK+20] J.-A. H. Rensaa, D. Gligoroski, et al., «Verifymed-a blockchain platform for
transparent trust in virtualized healthcare: Proof-of-concept», in Proceedings
of the 2nd International Electronics Communication Conference, 2020, pp. 73–
80.

[RGK19] M. Raikwar, D. Gligoroski, and K. Kralevska, «SoK of used cryptography in
blockchain», IEEE Access, vol. 7, pp. 148 550–148 575, 2019.

[SC21] A. I. Sanka and R. C. Cheung, «A systematic review of blockchain scalability:
Issues, solutions, analysis and future research», Journal of Network and
Computer Applications, vol. 195, p. 103 232, 2021.

[SW23] A. Stenzel and I. Waichman, «Supply-chain data sharing for scope 3 emissions»,
npj Climate Action, vol. 2, no. 1, p. 7, 2023.

[Sza96] N. Szabo, «Smart contracts: Building blocks for digital markets», EXTROPY:
The Journal of Transhumanist Thought,(16), vol. 18, no. 2, p. 28, 1996.

[UN] UN, THE 17 GOALS | Sustainable Development, [Online]. Available: https:
//sdgs.un.org/goals, (last visited: Nov. 15, 2022).

https://sdgs.un.org/goals
https://sdgs.un.org/goals

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Methodology
	Literature studies: Sustainability reporting and greenwashing
	Modeling of the problem domain and determining requirements
	Experimental implementation
	Evaluation

	Contributions
	Outline

	Background
	Sustainability
	UN Sustainability Development Goals
	European Green Deal

	Sustainability reporting
	EU Requirements

	Tracking emissions
	Categorizing emissions by scope
	Supply chain data sharing

	Greenwashing

	Theoretical preliminaries
	Cryptographic concepts
	Hash functions
	Public-key encryption
	Digital signatures
	Public key infrastructure (PKI)
	Multi-party computation (MPC)
	Multi-input functional encryption (MIFE)
	AdHoc MIFE

	Blockchain
	Data structure
	Decentralization
	Smart contracts
	Storing data off-chain
	Permissioned versus permissionless

	Hyperledger Fabric
	Network architecture
	Identity management
	Ledger
	Transaction architecture
	Chaincode
	Privacy

	Modeling and requirements
	Stakeholders and concerns
	Developers
	Organizations
	System operators
	Non-governmental organizations
	Consumers

	Business requirements
	Trust model
	Functional Requirements
	Domain model
	Quality requirements
	Security scenarios
	Extensibility scenarios
	Modifiability scenarios
	Usability Scenarios
	Availability Scenarios
	Recoverability scenarios
	Deployability scenarios
	Scalability scenarios

	Architecturally significant requirements
	Architectural drivers
	Business requirements
	Functional requirements
	Quality requirements

	Experimental implementation: Gaia
	Description
	Blockchain selection
	Cost
	Sustainability
	Security
	Scalability
	Programming capabilities

	Chaincode
	Domain layer
	Contract layer
	Infrastructure layer

	Architectural tactics
	Security
	Modifiability
	Extensibility

	Hyperledger Fabric
	Network architecture
	Endorsement policy
	World-state database

	Scenarios
	Scenario 1: Registering a business activity
	Scenario 2: Two parties performing an interaction with the transfer of assets

	Evaluation and discussion
	Functional requirements
	Quality requirements
	Extensibility
	Modifiability
	Deployability
	Scalability
	Security

	Application for greenwashing
	Product-level greenewashing
	Organization-level greenwashing

	Barriers
	Challenges
	Discussion

	Conclusion
	Future work

	References

