
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

M
as

te
r’s

 t
he

si
s

Espen Samuelsen Skiri

Numerical model of moment
resisting connection using threaded
rods and steel coupling parts in tall
timber building

Master’s thesis in Civil and Environmental Engineering
Supervisor: Kjell Arne Malo
Co-supervisor: Saule Tulebekova
June 2023

Espen Samuelsen Skiri

Numerical model of moment resisting
connection using threaded rods and
steel coupling parts in tall timber
building

Master’s thesis in Civil and Environmental Engineering
Supervisor: Kjell Arne Malo
Co-supervisor: Saule Tulebekova
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering

Department of Structural Engineering
Faculty of Engineering
NTNU- Norwegian University of Science and Technology

MASTER THESIS 2023

SUBJECT AREA:

Timber Structures

DATE:

June 26, 2023

NO. OF PAGES:

53 (Thesis) + 42 (Appendix)

TITLE:

Numerical model of moment resisting connection using threaded rods and
steel coupling parts in tall timber building

Numerisk modell av momentstive treforbindelser med gjengestenger og
stålforbindende deler

BY:

Espen Samuelsen Skiri

RESPONSIBLE TEACHER: Kjell Arne Malo

SUPERVISOR(S): Kjell Arne Malo, Saule Tulebekova

CARRIED OUT AT: Department of Structural Engineering, NTNU

SUMMARY:

WoodSol is a research project by Sintef and NTNU, aiming for new and environmentally friendly solutions for
tall timber buildings. Among their projects, one is to develop timber frames which also provide horizontal
stabilisation without diagonal stiffeners. A necessary condition is therefore to have an adequate moment-
resisting beam-to-column connection, and such a connection is under development at NTNU.

Preliminary numerical and experimental tests have been carried out by earlier works. In this thesis,
techniques for making a simplification of a detailed and costly numerical model are investigated, in order to
make a model of the connection suitable for a numerical model of an entire tall timber building. The chosen
approach is to use connector zones, where the cross-section properties are modified in the beam region
located closest to the column, in order to imitate the behaviour of the connection.

Using a connector zone with constant stiffness properties has difficulties imitating the connection precisely.
The main reason for this is the varying bending stiffness in the connection zone and the beam located closest
to it showed in experimental tests, while the chosen connector zone has constant properties over its length.
Thus, the chosen connector zone is the one best representing the connection in the distant part of the beam,
hence accepting incorrect deformations in the connector zone.

In the second part of the thesis, a model of the frame of a tall timber building with moment-resisting
connections was created. The connector zone from the first part is utilised for connections between columns
and beams. The purpose for this model is to show how to use connector zones in a numerical model of an
entire building, and there has not been performed further investigations on the building model. The model is
parameterised in order to make it easy to implement into a numerical model for a later tall timber building
project.

ACCESSIBILITY

OPEN

Preface

This thesis is carried out during the last semester at a five year long Master’s degree in
Civil and Environmental Engineering at NTNU in Trondheim. The thesis is written for the
Timber construction group at the Department of Structural Engineering, as a contribution
to the WoodSol project by Sintef and NTNU.

During this semester, I have been given the opportunity to immerse myself into numerical
modelling and analysis, an opportunity which has rewarded me with new knowledge and
skills I am gratefully to posses in the continuation.

To carry out the work, I have had good guidance from my supervisor professor Kjell Arne
Malo, for whom I am grateful for insight in relevant background theory and for interesting
discussions during the process Additionally, PhD Candidate Saule Tulebekova has been of
great help, patiently guiding me through the parametric modelling process.

Espen Samuelsen Skiri

Trondheim, June 2023

i

ii

Abstract

WoodSol is a research project by Sintef and NTNU, aiming for new and environmentally
friendly solutions for tall timber buildings. Among their projects, one is to develop timber
frames which also provide horizontal stabilisation without diagonal stiffeners. A necessary
condition is therefore to have an adequate moment-resisting beam-to-column connection, and
such a connection is under development at NTNU.

Preliminary numerical and experimental tests have been carried out by earlier works. In this
thesis, techniques for making a simplification of a detailed and costly numerical model are
investigated, in order to make a model of the connection suitable for a numerical model of
an entire tall timber building. The chosen approach is to use connector zones, where the
cross-section properties are modified in the beam region located closest to the column, in
order to imitate the behaviour of the connection.

Using a connector zone with constant stiffness properties has difficulties imitating the connec-
tion precisely. The main reason for this is the varying bending stiffness in the connection zone
and the beam located closest to it showed in experimental tests, while the chosen connector
zone has constant properties over its length. Thus, the chosen connector zone is the one
best representing the connection in the distant part of the beam, hence accepting incorrect
deformations in the connector zone.

In the second part of the thesis, a model of the frame of a tall timber building with moment-
resisting connections was created. The connector zone from the first part is utilised for
connections between columns and beams. The purpose for this model is to show how to use
connector zones in a numerical model of an entire building, and there has not been performed
further investigations on the building model. The model is parameterised in order to make
it easy to implement into a numerical model for a later tall timber building project.

iii

iv

Sammendrag

WoodSol er et forskningsprosjekt av Sintef og NTNU, hvor målet er å utvikle nye og miljøvennlige
løsninger for høye bygninger utført av trekonstruksjoner. Et av delprosjektene er å utvikle
rammekonstruksjoner av tre med tilstrekkelig kapasitet mot sideveis belastning, slik at det
ikke er behov for skr̊astag i konstruksjonen. En bjelke-søyle-forbindelse med tilstrekkelig
momentstivhet er derfor nødvendig i en slik rammekonstruksjon, og en slik forbindelse er
under utvikling p̊a NTNU n̊a.

I tidligere arbeider er de første numeriske og eksperimentelle forsøkene utført p̊a denne forb-
indelsen. I denne oppgaven blir det undersøkt ulike teknikker for å lage en forenklet utgave
av en eksisterende detaljert og kostbar numerisk modell av forbindelsen. Hensikten er å ha
en modell som er tilstrekkelig lite kostbar, samtidig som den er tilstrekkelig nøyaktig, slik at
forbindelsen kan brukes i en numerisk modell av en hel bygning, som gjennomg̊aende er bygd
opp av rammekonstruksjoner med denne forbindelsen. Den valgte modelleringsteknikken er
å benytte et s̊akalt forbindelsesomr̊ade (eng.: connector zone). Det innebærer at tverrsnitt-
segenskapene endres i et omr̊ade av bjelken nærmest forbindelsen, slik at denne delen av
bjelken etterligner oppførselen til forbindelsen.

Denne teknikken har imidlertid vist seg å ha noen utfordringer med å etterligne oppførselen til
forbindelsen eksakt. Hoved̊arsaken til dette er at eksperimentelle forsøk viser at bøyestivheten
er varierende innad i forbindelsesomr̊adet, mens forbindelsesomr̊ade i den numeriske modellen
har konstante egenskaper langs hele sin utstrekning. Det valgte forbindelsesomr̊ade er derfor
det som gir de beste resultatene lengre unna forbindelsen, slik at avvik i faktisk deformasjon
i bjelken helt nærmest søylen må aksepteres.

I den andre delen av denne oppgaven er en numerisk modell av en rammekonstruksjon
utarbeidet. Den best̊ar av søyler og bjelker som er forbundet ved den nevnte forbindelsen,
og forbindelsesomr̊adet fra den første delen av oppgaven er benyttet for å modellere dette.
Hensikten med denne delen er å vise hvordan forbindelsesomr̊ader kan enkelt implementeres
i en modell av en større bygning. Det har derfor ikke blitt utført noen videre undersøkelser
p̊a denne bygningen, men modellen er parametrisert, slik at den kan benyttes som grunnlag
for fremtidige numeriske undersøkelser p̊a høye bygninger utført i tre.

v

vi

Contents

Preface i

Abstract iii

Sammendrag v

Contents vii

Figures x

Tables xii

Acronyms xiii

1 Introduction 1

1.1 WoodSol . 1

1.2 Description of thesis . 1

1.3 Limitations of thesis . 2

2 Theory 3

2.1 Timber material . 3

2.1.1 Mechanical properties . 3

2.1.2 Timber and environment . 4

2.1.3 Glued laminated timber . 4

vii

2.2 Moment resisting frame systems . 5

2.3 Threaded rods . 6

2.4 Rotational stiffness of a semi-rigid connection 7

2.5 Abaqus CAE . 8

2.5.1 Element types . 8

2.5.2 Scripting in Abaqus . 9

3 Moment resisting connection 10

3.1 One-sided connection . 11

3.1.1 Timber parts . 11

3.1.2 Steel parts . 11

3.2 Two-sided connection . 12

3.2.1 Timber parts . 13

3.2.2 Steel parts . 13

4 Numerical model of connection 16

4.1 Choice of software . 16

4.2 Choice of approach to create the model . 17

4.3 Model overview . 18

4.4 Parameter values . 21

5 Numerical model of tall timber building 24

5.1 Model overview . 24

5.2 Parameter values . 28

6 Results and discussion 29

6.1 Numerical model of connection . 29

6.1.1 Results . 29

6.1.2 Discussion . 30

viii

6.2 Numerical model of tall timber building . 33

6.2.1 Results . 33

6.2.2 Discussion . 33

7 Conclusion and recommendations for further work 35

7.1 Conclusion . 35

7.2 Recommendations for further work . 35

Bibliography 37

Appendix 39

A Parameters of single MRC numerical model 39

B Parameters of tall timber building model . 42

C Script of single MRC numerical model . 45

D Script of tall timber building numerical model 57

ix

Figures

2.1 A timber cell (a) and the orientations of timber (b) 4

2.2 Bracing systems for high storey timber buildings 6

2.3 Specimen of threaded rod . 6

2.4 Principle of how to calculate the relative rotation between column and beam 8

3.1 The MRCs used in this thesis . 10

3.2 Overview of steel parts included in the MRC. The illustrations distinguish
between red and blue rods and brackets, as the ones with same colour are
placed on the same side of the steel plate . 12

3.3 Overview of steel plate, brackets and prestressed bolts. 13

3.4 Steel bracket. The left-hand hole is for the prestressed bolt, while the right-
hand hole is for the threaded rod . 13

3.5 Orientation of beam rods . 14

3.6 Orientation of column rods in the one-sided MRC 14

3.7 Orientation of column rods in the two-sided MRC 15

4.1 Example of connector element arrangement 18

4.2 Overview of beam-to-column model with global axis 19

4.3 The three initial parts, and their location in the assembly 20

4.4 Loading and boundary conditions in the beam-to-column model 21

4.5 Deformations in original model . 22

4.6 The two measure points . 23

x

5.1 Overview of tall timber building model with global axis 25

5.2 Cross-sections of corner columns and end columns 26

5.3 Cross-section of internal columns. The columns connecting the beams in X-
axis are coloured grey, while the column connecting the beams in Z-direction
is coloured purple. In reality, the grey column should be split in two and be
located on each of the purple column’s surface 27

5.4 Orientation of columns in the assembly, if two beam spans are assumed in
both X and Z-directions . 27

6.1 Comparison of deformation patters between original and simplified model . . 32

xi

Tables

2.1 Material properties for glulam GL30c . 5

2.2 Engineering constants for GL30c used by Grytbakk et al. 5

2.3 Parameters of threaded rods . 7

3.1 Beam and column cross-sections investigated by Grytbakk et al. 11

4.1 Units used in numerical models . 19

6.1 Results from original model . 29

6.2 Results from simplified model . 30

A.1 Parameters of single MRC model. 39

B.3 Parameters of tall timber building model. 42

xii

Acronyms

DOF Degree of freedom . 8

Glulam Glued laminated timber . 4

HSFG High strength friction grip bolts . 11

MRC Moment resisting connection . 5

MRFS Moment resisting frame systems . 5

FEA Finite element analysis . 8

xiii

Chapter 1

Introduction

1.1 WoodSol

WoodSol is a research programme by NTNU and SINTEF. Their field of research is urban
buildings up to ten stories, such as office and apartment buildings, with timber frames as
the main load carrying system. Multiply aspects are studied in the programme, but one of
the most important is how to use rigid beam-to-column connections in frame structures for
horizontal stabilisation. To achieve this, it is essential to develop a sufficient moment-stiff
connection, which is a major limitation in today’s timber constructions [1].

1.2 Description of thesis

This master’s thesis is divided into two main parts. Firstly, different techniques for making
a simple, yet efficient, numerical model of a proposed configuration for a semi-rigid moment-
stiff beam-to-column connection are investigated, and a finished model is provided. This
model is parameterised, in order to ensure implementations of future modifications on the
connection. The base for making the simplified model is the work carried out by Grytbakk
et al. [2] in 2022, where a detailed numerical model of the connection was carried out.

The reason for making a simplified model, is the second part of this thesis. The detailed
model is too complicated to be used in an analysis of an entire high-storey building. In the
second part, the frame of such a building is created with use of the simplified connection
model created in the first part.

1

1.3 Limitations of thesis

The thesis is limited to describe the two models that ended up being created. During the
process, a number of different approaches to answer the problem was investigated. The ones
that was most involved, but not used, are briefly described, as well as discussions on why
they were discarded.

The tall timber building model in the second part of the thesis is only described, and is not
used in any structural analysis. The frame that is created is the first step on creating a model
that could be used in such an analysis, but this will have to wait for a future project.

2

Chapter 2

Theory

This chapter presents relevant background information relevant to the thesis. The theory
chapter is mainly based on the project thesis by Fisk̊a and Skiri [3] in the autumn of 2022.

2.1 Timber material

2.1.1 Mechanical properties

Being a natural composite, timber is made up from 50% carbon, 44% oxygen and 6% carbon.
As shown in figure 2.1a, the material mainly consists of longitudinal oriented fibres. The fibre
is made up of a cavity surrounded by a cellwall. A natural matrix called lignin is binding
the structure together [4].

On microlevel, timber material is considered an anisotropic material, due to this complex
structure, meaning it has unique mechanical properties in an arbitrary direction . However,
on macrolevel, timber material is considered orthotropic, meaning it has constant properties
in the three directions pointing perpendicular to each other. These directions are referred to
as longitudinal, radial and tangential, as shown in figure 2.1b. This directions are also denoted
direction 1, 2 and 3, respectivetly. The longitudinal direction is the one parallel to the fibres,
and are also labeled the direction parallel to grain. In order to reduce the computational
complexity in the design process, the properties in the radial and tangential direction are
considered the same. Therefore, the two sets of mechanical properties are the ones parallel
to the grain, the 0-direction, and the ones perpendicular to grain, the 90-direction [4]. In a
variety of figures in this thesis, the 0-direction is symbolised by ⇌, where the arrows point
in the 0-direction.

3

(a) Wood cell with cavity and cell wall
[5].

(b) Orientation of material axis for tim-
ber [3].

Figure 2.1: A timber cell (a), and the orientations of timber (b).

2.1.2 Timber and environment

Timber is a renewable material. In addition, a living tree binds CO2 that will keep being
bonded as long as the material is not charred or rotten, e.g. if the timber is used in con-
structions [4]. In order to reduce the carbon footprint of a high-rise building, replacing steel
and concrete with timber can be a effective solution [4]. However, as addressed later in sec-
tion 2.2, timber has some severe disadvantages compered to the other to materials in such
constructions.

2.1.3 Glued laminated timber

Glued laminated timber (Glulam) is and engineering wood product made up of long timber
laminations glued together. Glulam is used for beams and columns, as all the laminations
having their 0-direction oriented parallel. Additionally, the laminations can possible be longer
than ordinary solid wood, as the solid wood parts can be finger-jointed together. Thus,
glulam provide longer and stronger beams and columns. Prefabrication of such elements
make their mechanical properties more reliable, resulting in less timber used for a given
strenght, compared to solid timber [4].

Glulam is provided in different strenght classes, one such being the GL30c. The properties
of this glulam class are provided in tables 2.1 and 2.2. The former table gives characteristic
strengths for GL30c. Note that some properties distinguish between whether the loading is
parallel or perpendicular to the grain. As described in section 2.1.1, notation 0 and 90 are
used for the to directions. Table 2.2 provides the engineering constants for GL30c, i.e. the
material properties used to describe elastic deformations of timber [4]. In this table, the

4

different directions are denoted 1, 2 and 3 as described in section 2.1.1. Even though three
directions are given, direction 2 and 3 still have the same properties.

Table 2.1: Characteristic strengths for glulam GL30c [6].

.

Srenght type Symbol Value Unit
Bending strength fm,g,k 30 N/mm2

Tensile strength
ft,0,g,k 19.5 N/mm2

ft,90,g,k 0.5 N/mm2

Compression strength
fc,0,g,k 24.5 N/mm2

fc,90,g,k 2.5 N/mm2

Shear strength fv,g,k 3.5 N/mm2

Table 2.2: Engineering constants for GL30c used by Grytbakk et al. [2].

Engineering constant Symbol Value Unit
Density ρ 4.3 · 10−9 ton/mm3

Longtudinal E-modulus E1 13 000 N/mm2

Radial E-modulus E2 410 N/mm2

Tangential E-modulus E3 410 N/mm2

Poisson’s ratios ν12 = ν13 = ν23 0.6 -
Shear modulus G12 = G13 760 N/mm2

Rolling shear modulus G23 30 N/mm2

2.2 Moment resisting frame systems

Timber is a light-weighted material, resulting in two serviceability requirements are more
challenging and decisive for high-rise timber buildings than in similar steel or concrete con-
structions. Those requirements are namely the lateral displacements and the wind-induced
accelerations [7]. In high-storey timber buildings, two solutions are commonly applied to deal
with this today [8]. This are either the use of shear walls made of CLT panels or the use of
diagonal stiffeners. This are shown as a) and b) in figure 2.2, respectively. Common for both
solutions is lack of architectural freedom, as a) gives a box-like layout and b) gives restrictions
on where to place windows and doors in the outer walls. Therefore, a solution with Moment
resisting frame systems (MRFS) is under development. The principle is shown as c) in figure
2.2. Here, the connections between column and beams need to be sufficient stiff, or moment
resisting, in order for the frame construction to withstand lateral loading. Such a connection
is called an Moment resisting connection (MRC). The main challenge is to provide such an
MRC, as a fully moment-stiff connection is not possible in timber structures [8]. A semi-rigid
connection is therefore necessary, i.e. a connection that can transfer moment, but unlike
a rigid connection, it yields rotation of the connection itself while transferring the moment

5

[9]. Vilguts et al. [8] showed that for an eight-storey frame structure made of timber, the
required rotational stiffness of the beam-to-column connections needs to be at least 12 000
kNm/rad.

Figure 2.2: Bracing systems for multi-storey timber buildings subjected to wind load: a)
CLT panels as shear walls, b) post-and-beam system with diagonal stiffeners and c) moment
resisting frame system [2].

2.3 Threaded rods

Threaded roads are a connector type that is characterised by their long length. The connector
has both axial and lateral stiffness, whereas the former is dominant [10]. As the Eurocodes
lack design rules for threaded rods [11], they are not used widely in timber structures [10].
Stamatopoulos and Malo [10] have shown that the connector may be used in semi-rigid
timber-to-timber connections. An example specimen of a threaded road is shown in figure
2.3.

Figure 2.3: Specimen of a threaded rod [12].

In the next chapter, a layout of a proposed MRC is presented. This connection utilises
threaded rods similar to that in figure 2.3, and has geometrical and mechanical properties
as presented in table 2.3. Stamatopoulos and Malo [10] showed that the withdrawal stiffness
of such a threaded rod is a non-linear function of its penetration length. However, an upper
limit for the withdrawal stiffness is reached when the penetration length passes 300 mm [13].

6

Table 2.3: Parameters of threaded rods [12].

Data parameter Symbol Value
Diameter, outer d 22.4 mm
Diameter, inner d1 16.9 mm

Effective diameter def 18.6 mm
Area, inner As 22.4 mm2

Length l 1000 mm
Young’s Modulus E 210 000 N/mm2

Characteristic stress, tensile fu,k,g 952 N/mm2

Characteristic stress, yielding fy,k,g 872 N/mm2

2.4 Rotational stiffness of a semi-rigid connection

As described in section 2.2, a semi-rigid MRC yields relative rotation between the timber
parts it connects. A simple and good estimation of the rotational stiffness of a beam-to-
column connection is derived below [14].

The principle is to measure the relative difference in horizontal displacements when the
connection is loaded with a moment M . Both the relative difference between the top and
bottom of the beam tip as well as the relative horizontal displacement over the corresponding
length in the column’s centre line are to be measured. From this, the rotation angle in both
the beam and column is calculated independently. Those are denoted αbeam and αcolumn,
respectively, and are calculated as shown in equations (2.1) and (2.2). The input here is
shown in figure 2.4, except for z, the vertical distance between the measure points, i.e. the
beam height.

αbeam =
∆x, u, beam−∆x, l, beam

z
(2.1)

αcolumn =
∆x, u, column−∆x, l, column

z
(2.2)

Furthermore, the relative angle between beam and column is calculated according to equation
(2.3). This angle, denoted α, is called the displaced rotation angle.

α = αbeam − αcolumn (2.3)

Finally the rotational stiffness, Krot, is computed as shown in equation (2.4). Remember
that M denotes the moment the connection is loaded with.

7

Krot =
M

α
(2.4)

Figure 2.4: Principle of how to calculate the relative rotation between column and beam
[2].

2.5 Abaqus CAE

Abaqus CAE is a Finite element analysis (FEA) programme commonly used in structural
engineering, and is propitiate for a wide range of different problem types, including mech-
anical and dynamic ones. The user define the geometry of the problem, and assign different
properties to the model, as material, boundary conditions and loading. To solve the problem,
it is necessary to divide the model into a finite number of element and define the interpol-
ation rules for the elements. Thereafter, the computer utilises its processors to calculate
desired results, as deformations, stresses and strains, as well as dynamic properties. To en-
sure reliable results, the user must self assure to use reasonable assumptions when modelling
[15].

2.5.1 Element types

The choice of element types in an FEA model is crucial for the result of the analysis. An
Abaqus element is characterised by family, order, Degree of freedom (DOF), number of
nodes and integration rules [15]. Here, element families are for instance shell elements, solid
elements or beam elements. The element order means the order of the interpolation field

8

of internal strains within the element, e.g. linear interpolation or quadratic interpolation
[15]. The DOFs define how the element nodes are allowed to translate, while the integration
rules distinguish between full and reduced integration [15]. Full integration utilises as many
integration points as the element has DOFs, while reduced integration uses less integration
points. When correctly adapted, reduced integration both reduced computational costs and
solves unfortunate spurious strains in elements, that corrupts the results [15]. However,
reduced integration may introduce so-called hourglass modes, i.e. non-physical deformation
modes that occurs without corresponding strains. Suitable hourglass control avoids hourglass
modes from developing, and is therefore in general recommended [15].

2.5.2 Scripting in Abaqus

Abaqus provides two ways of modelling, either by using the graphic user interface inside
the Abaqus programme, or by letting Abaqus read scripts [16]. The method with reading
scripts is useful for parametric modelling, i.e. the model is determined by a given set of
parameter the user can control and change. This is useful for instance when making a model
of a structure whose layout is not entirely decided, where changing the parameters is by far
less comprehensive than adapting the entire model to a small change in the user interface.
Abaqus reads script written in the Python programming language [16].

9

Chapter 3

Moment resisting connection

As part of the WoodSol project, NTNU professor Kjell Arne Malo has developed an MRC
for beam-to-column connections in timber constructions. The layout presented in this thesis
is the latest configuration, as the connection is still under development [2].

This thesis is based on the MRC denoted as configuration 2 in the master’s thesis carried
out by Grytbakk et al. [2]. The description in this paper is therefore based on said master’s
thesis, as it also was in the project thesis of Fisk̊a and Skiri [3].

Two versions of the connection are separately described below, both a one-sided connection
and a two-sided connection. The former is used when connecting one beam end to a column,
while the latter is connecting two beams that are jointed with the same column between the
two beams’ ends. Both connections are illustrated in figure 3.1.

(a) One-sided MRC. (b) Two-sided MRC.

Figure 3.1: The MRCs used in this thesis [2].

10

3.1 One-sided connection

3.1.1 Timber parts

The one-sided connection is designed to connect a beam to a column. The only source for
verifying behaviour of this connection is the numerical and experimental models carried out by
Grytbakk et al. [2], who did so with both beam and column of glulam quality GL30c, whose
material quality is given in tables 2.1 and 2.2. Grytbakk et al. [2] also only investigated
one specific cross-section for the beam and one specific cross-section for the column, and
those dimensions are therefore also used in this thesis. The dimensions are given in table 3.1.
Figure 3.1a illustrates how the beam and column cross-section dimensions are oriented, with
the height being the in-plane dimension and the width being the out-of-plane dimension.

Table 3.1: Beam and column cross-sections investigated by Grytbakk et al. [2].

Part Height Width
Beam 405 mm 140 mm
Column 450 mm 140 mm

3.1.2 Steel parts

Except for the beam and column, the entire connection is made up of different steel parts.
The different steel parts include threaded rods, a steel plate and brackets. The steel parts
are shown isolated in figure 3.2a and within the timber parts in figure 3.2b. To distinguish
between rods located in the different half of the timber part width, rods are even denoted
blue side rods or red side rods. This is also illustrated in figure 3.2.

The steel plate has dimensions TxWxH = 20x220x540 mm, where T, W and H denote
thickness, width and height, respectively. The material quality is S355. The steel plate has
six holes, and the location of these holes are shown in figure 3.3a. Each hole allows a pair of
steel brackets to be connected to the plate by prestressed bolts, as shown in figure 3.3b [2].

The brackets have dimensions TxWxL = 30x60x80 mm and are made of steel quality S460.
They have two holes, one with diameter of 33 mm going through the entire bracket, used to
connect the brackets to the plate with prestressed bolts. The other hole is designed to fit the
M20 sized threaded rods, connecting each bracket to one rod [2]. The bracket and its holes
are shown in figure 3.4.

The six bolts are so-called High strength friction grip bolts (HSFG) with diameter d = 30
mm and steel quality 12.9 [2]. As mentioned, the bolts are prestressed, so that they tightly
connect the threaded rods to the steel plate. The pretension force was by Grytbakk et al. [2]
calculated to be 357 kN. Thus, the brackets are unable to rotate relative to the steel plate.
The bolts are illustrated with yellow colour in figure 3.3b.

11

(a) Steel parts isolated from timber parts.
(b) Steel parts location
within timber parts.

Figure 3.2: Overview of steel parts included in the MRC. The illustrations distinguish
between red and blue rods and brackets, as the ones with same colour are placed on the same
side of the steel plate [2].

The threaded rods used in this thesis are the same as used by both Grytbakk et al. [2] and
Mestvedthagen and Vasland [12], and except for the length, they have properties according
to table 2.3. The one-sided MRC consists of 12 threaded rods, one fastened to each of the 12
brackets, as illustrated in figure 3.2. Four of the rods are used to connect the beam. They
are oriented with an angle of 10° compared to the beam’s length axis, and are all 1000 mm
long. This is shown in figure 3.5. The remaining eight rods are connected to the column, and
have angles compared to the column’s length axis varying from 55° to 80°. The reason for
the varying orientations is to make it possible for the connection to be two-sided [2], and will
be further addressed in section 3.2. To avoid unfortunate stress concentrations at the rod
tips, the column rods all have a length so that they penetrates through the entire column [2].
Thus, the length of the column rods are different, depending on the angle. This is illustrated
in figure 3.6.

3.2 Two-sided connection

The two-sided connection is essentially the same as the one-sided connection. The difference
is, as the name indicates, that two beams are connected to the same column, instead of
only one beam. Thus, only a short description of the two-sided connection highlighting the
differences is provided below. An overview of the two-sided configuration was given in figure
3.1b.

12

(a) Steel plates with location of holes.
The holes are placed symmetrical over the
plate height’s centre line.

(b) Steel plate with brackets and
prestressed bolts.

Figure 3.3: Overview of steel plate, brackets and prestressed bolts [2].

Figure 3.4: Steel bracket. The left-hand hole is for the prestressed bolt, while the right-
hand hole is for the threaded rod [2].

3.2.1 Timber parts

The material properties and cross-section dimensions of the timber parts, i.e. the column
and the beams, are identical as those given for the one-sided configuration in section 3.1.1.

3.2.2 Steel parts

The steel parts’ dimensions and properties are, as well as the timber parts, identical in both
the one-sided and two-sided connection. However, the two-sided configuration includes a
double set of every steel part. Consequently, threaded rods will enter the column from both
side in the connection, and in order to ensure space for this, this is the main reason for the
threaded rod angles [2]. The arrangement of threaded rods are showed in figure 3.7. The rods
embedded in the beams are similar as for the one-sided configuration, and was illustrated in
figure 3.5.

13

(a) Blue side beam rods.

(b) Red side column rods.

Figure 3.5: Orientation of beam rods [2].

(a) Blue side column rods. (b) Red side column rods.

Figure 3.6: Orientation of column rods in the one-sided MRC [2].

14

(a) Blue side column rods. (b) Red side column rods.
(c) Side view of column
rods.

Figure 3.7: Orientation of column rods in the two-sided MRC [2].

15

Chapter 4

Numerical model of connection

The first of the two important objectives of this thesis is to develop a simple, yet accurate,
numerical model of the MRC described in chapter 3. This numerical model should be so cost-
efficient that it is suitable to use in a larger numerical model of an entire timber building, as
the Abaqus model of the connection carried out by Grytbakk et al. [2] is far too computational
expensive to be used in such a global building model. Further in this chapter, the detailed
model of Grytbakk et al. will be addressed as the original model, while the new model carried
out in this chapter will be addressed as the simplified model.

The chosen finite element analysis FEA software is Abaqus CAE [16], and the model input
is a script written in programming language Python [17]. The user can easily change the
input parameters in the script, and a customised model can be created without much insight
in the Python language.

All parameters are given and explained in appendix A, while the full script is provided in
appendix C.

4.1 Choice of software

Abaqus is generalised FEA software, thus having few restrictions on the modelling [18].
Furthermore, Abaqus is widely used among master’s students in structural engineering at
NTNU, including Grytbakk et al. [2]. One of the goals with the numerical modelling, is to
recreate a simplified version of their Abaqus model of the MRC. Thus, utilising the same FEA
programme is appropriate to compare the models and their results. Moreover, Abaqus has
two ways of creating models, either the graphic user interface inside the programme, or by
running Pyhton scripts [16]. The Python language is suitable for making a parametric script,
thus making the scripting approach of Abaqus modeling a well fitted method of creating a
paramteric FEA model.

16

4.2 Choice of approach to create the model

The most comprehensive part of creating this model, was to find a method which was suitable
for representation of the original numerical model. Three approaches were investigated,
namely with use of connector elements, with use of other interaction constraints in Abaqus
and with use of connector zones. Following, the approaches are described. Ultimately, the
latter approach was chosen, and the reason for this is discussed in section 6.1.2.

Connector elements

The use of connector elements was also the objective of the project thesis of Fisk̊a and Skiri
[3], and was therefore a natural first approach to simulate the connection behaviour also when
using one-dimensional beam elements instead of two-dimensional shell elements, as done in
the named project thesis. Connector elements are one-dimensional wire elements connecting
two nodes in the model, and allows the user to define a wide spectre of behaviour properties
between those two nodes [15]. Connector elements are different from regular part instances
in the model, as connector elements are not considered physical parts of the model; they
simply are constraints between two nodes, defining how those two nodes should interact, i.e.
how forces and displacements of the first node should affect the other node [15].

Most relevant for this model, are the stiffness properties the connector elements hold, as axial,
transversal and rotational stiffness. As in the project thesis by Fisk̊a and Skiri [3], mainly
adjusting the axial and lateral stiffness of the connector elements, as well as different wire
layouts (i.e. how many connector elements and how they are arranged), were investigated.
An example of this is shown in figure 4.1, where three connector elements are connecting the
column to the beam.

Other interaction constraints

Abaqus also provides other interaction constraints, where it is possible to define how the
interaction between part instances in the model should be. For instance, it is possible to create
a tie connection between two nodes. This could for instance be used to create a connection
between a beam and a column, such that the connection is fully rigid [15]. However, it lacks
the possibility to make it semi-rigid. Other constraint options includes couplings and defining
equations, but as none of these were found usefull for this thesis, they will not be further
discussed in this thesis.

Connection zones

The idea of a connection zone is inspired by the numerical model carried out by Reed and
Wiig [18]. The idea is that a certain part of the beam, closest to the column it is connected

17

Figure 4.1: Example of connector element arrangement. The solid lines are regular part
instances, the vertical being the column and the horizontal being the beam. The dashed lines
are five connector elements, one horizontal and four diagonals. Note that the figure only shows
a cut of the model, the connector elements’ size are small compared to the regular elements.

to, have modified properties, such that this part of the beam will behave as the connection.
Thus, the beam now will be represented by two different parts physically connected together
in one point. Also the end point of the connector section that should be connected to the
column will be in physical contact with the column. This is illustrated in figure 4.3. The
connector element has fully rigid connections to both the column and the regular beam
part. As this modelling approach eventually was chosen, a more detailed description of the
connection zone is described in the following section.

4.3 Model overview

The beam-to-column model is carried out in order to compare the connection behaviour
between this model and the one by Grytbakk et al. [2]. The principle of the model is to use
a connection zone to simulate the effects of the semi-rigid MRC. The connection zone is part
of the beam closest to the column, where the structural properties of this part is adjusted
in order to simulate the MRC. The length of the connection zone, i.e. the distance from the
column along the beam axis in which the properties are modified, is among the parameters
the user is free to decide, so are the structural properties of the connection zone. This section
will briefly describe which parameters are editable to the user, but all parameters are filled
in in the script. The parameter values provided in appendix A are reasoned in section 4.4.

18

Units

Abaqus is not bounded to any units, and all input and output values are given without units.
Thus, the user is free to use their preferred set of units, but also demands the user to be
consistent on the units. This model utilises standard SI units, which are provided in table
4.1. Note that angles here also include rotations.

Table 4.1: Units used in numerical models.

Length Force Mass Time Stress Energy Density Angle
m N kg s Pa J kg/m3 rad

Coordinate system

The horizontal plane is defined as the XZ-plane, while the Y-axis the vertical axis. Positive
Y is pointing upwards. Both the column and beam lie in the XY-plane, The column’s length
axis is located aligned to the global Y-axis, with the bottom tip of the column being located
in the global origin. The beam’s lenght axis is parallel to the global X-axis. The beam is
a cantilever connected to the column at the column’s midpoint. This is illustrated in figure
4.2.

Figure 4.2: Overview of beam-to-column model with global axis.

Parts and assembly

The first step in creating an Abaqus model is to create parts. In this model, three parts
are initially created, namely the column, the beam and a connection zone. As previously
mentioned, the connection zone is the region of the beam closest to the column. These parts
are wire parts, meaning they only has one editable parameter, namely their length. The
wires are created in 3D space. The parts are thereafter, before assigned properties, inserted
into an assembly, as illustrated in figure 4.3. This assembly is then merged into one, new

19

part, in order to connect the model together. The initial part instances are deleted from the
assembly, which now only consists of this one, merged part. By doing this, the beam is now
a fixed cantilever connected with to the column, and the connection between them is fully
rigid, as described in section 2.2.

The length of the three parts are parameterised and editable. Their location in the assembly
are, however, fixed, as the only purpose of this model is to make it comparable to the one of
Grytbakk et al. [2].

Figure 4.3: The three initial parts, and their location in the assembly. Green is column,
blue is regular beam and grey is connection zone.

Properties

Most properties regarding material and cross-sections of the model are parameterised. The
parameters provided, makes both column and regular beam of glulam of strength class GL30c.
These properties are provided in table 2.2. The cross-sections are according to table 3.1. The
connector section is made up of a generalised section. This means that that cross-section
dimensions are not assigned, instead the properties that decides the bending, stresses and
strains are assigned directly [15]. This includes the cross-section area (A), the three moments
of inertia (I11, I12 and I22) and the torsional constant (J). To make the scripting easier to
interpret, the script do not require the user to provide these values directly. However, the
input are calculated as fractions of the regular beam cross-section, and the parameters the
user is asked to fill inn are these fractions.

Loading and boundary conditions

The model has three boundary conditions, in accordance with the model by Grytbakk et al.
Both the top and bottom tip of the column are assigned pinned connections, i.e. these two
nodes are prevented from displacement, but are free to rotate. The third boundary condition
is applied at the beam’s tip, where it is restrained from displacement in the Z-direction. This
is also done in the model by Grytbakk et al., and is done in order to make the loading and

20

load reaction in-plane [2]. The load is the same as for Grytbakk et al., namely a downward-
pointing concentrated force at the beam’s tip. The value of this point load is parameterised,
but the value filled in is according to the previous model. The load and boundary conditions
are shown in figure 4.4. The boundary conditions are applied in the initial time step in
Abaqus, while the loading is applied in a following static step, see the next section.

Figure 4.4: Loading and boundary conditions.

Analysis

All Abaqus models have an initial time step. In addition, the model has a following static
time step named Step-stat. The script also has the possibility to have a frequency time step
if desired, but it is not created by default.

The meshing parameters are possible for the user to control, but in most cases, Abaqus is
able to recommend a reasonable meshing [15]. The model uses the B32 element, which is
a beam element used in a three-dimensional environment. It has quadratic interpolation of
displacements, and is based on the Timoshenko beam theory [15]. This means the analysis
takes into account the shear deformations, which is crucial for timber structures, where the
shear deformations often are too large to be neglected [4].

At last, a job is created and run. This provides a job file that can be examined in Abaqus’
visualisation tab, where, amongst others, displacements, stresses and strains are visualised.

4.4 Parameter values

As the objective for this model is to recreate a model in a simplified version, most parameters
in the simplified model are taken directly from the original model by Grytbakk et al. [2].
This includes geometry, materials, loading and boundary conditions. These parameters were
described in the previous section 4.3. The parameters that are not directly taken from the

21

original model are the ones regarding the connection zone. Inspiration is taken from Reed
and Wiig [18], i.e. using a generalised cross-section with fractions of the stiffness of the
regular beam material.

The length of the the connector zone is starting at the column’s length axis, and follows the
beam’s length axis through the steel plate at to some point inside the beam. Reed and Wiig
[18] used the largest of the two cross-section heigths, i.e. either the column’s or the beam’s.
This thesis, on the other hand, uses approximately half the heights of both the column and
the beam’s cross-section, plus the length of the steel plate. This is shown in equation (4.1),
and is done in order to take account of larger differences between the two cross-sections.
When observing the deformation pattern of the original model, see figure 4.5, it is clear that
around the steel plate, the rotations are larger than elsewhere in the beam. In order for the
model to behave as desired, the connector zone needs to take account for this effect. The
connector zone is therefore decided to have a length of 0.663 m.

Lconnecorzone ≈
hcolumn

2
+ Lsteelplate +

hbeam

2
(4.1)

Figure 4.5: Deformations in original model [2].

When using a generalised section, material properties are not assigned by choosing among
the defined materials, but by also filling in these values directly. The necessary input is the
Young’s modulus (E), the shear modulus (G), the Poisson’s ratio (ν) and the density (ρ).
Thus, it is not possible to have a generalised section of orthotropic material. The standard
input for the model is therefore decided to be the glulam GL30c’s E11 and G12 for E
and G, respectively. Furthermore, Abaqus demands the Poisson’s ratio to be less than 0.5,
and therefore 0.49 is set by default. The density of the connection zone is set to be equal
the density of the physical MRC’s steel plate, which was described in section 3.1.2. It had

22

dimensions TxWxH = 0.020x0.220x0.540 m, and its density is 7850 kg/m3 [2], which is the
typical construction steel density [19]. However, as the cross-section area of the steel plate is
not necessarily equal to the cross-section area of the connector element (see next paragraph),
this density is automatically transformed by the script in order to obtain the correct mass
per unit length connector zone.

Thus, the parameters that are yet to decide, are the the ones giving the fractions of the
regular beam cross-section to be assigned to the connector section. It is chosen to define two
fractions in the script, one defining the connector section’s cross-section area (denotet XA),
and one defining the connector section’s moments of inertia (denotetXI). These two fractions
are decided by a try and fail principle, where the model is run with different values until
the model’s deformation pattern is sufficiently similar to the one in the original model. In
order to measure this, four values have been selected as measurement points, namely vertical
deflection in the end of the connector zone and beam tip (point A), as well as rotation about
the out-of-plane axis, e.i. the Z-axis, in those two points (point B). Figure 4.6 illustrates the
measure points’ locations.

Figure 4.6: The two measure points.

As a consequence, the stress and strain distribution is not used as a consideration when these
parameters are decided. This is discussed in section 6.1.2.

23

Chapter 5

Numerical model of tall timber

building

The second part of this thesis is to create a model of an entire building, build up by beam
and column frames, connected by the MRC described in chapter 3. Due to limited time in
this thesis, the model is limited to only consisting of the frame and its connections. Thus,
this chapter described a script that can be used as a base when making a model that can be
used in structural analyses of tall timber buildings with semi-rigid connections.

As this model is a continuation of the model described in chapter 4, also this model is created
by Python scripting in Abaqus. The units used are according to table 4.1.

All parameters are given and explained in appendix B, while the full script is provided in
appendix D.

5.1 Model overview

Type of building

The objective of this numerical model is to create a simple and user friendly generic multi-
storey timber building. In order to obtain a user friendly layout of the script, limitations
on what kind of building it is possible to create using the script is necessary. As stated by
Reed and Wiig [18], an arbitrary timber building would be easier to build up from scratch
in Abaqus’ user interface, rather than having a parametric model that generalised it could
create it.

The model creates the framework of a building consisting of columns and beams. The columns
are distributed outwards in the horizontal plane in a rectangular pattern, with horizontal
beams connecting the columns. The model opens up for different span lengths in the two

24

horizontal directions, but it is assumed that the columns.

The illustrations in this chapter are created with the predefined parameter values presented
in appendix B.

Coordinate system

The XZ-plane is the horizontal plane of the model, while the Y-axis is the vertical axis, with
its positive axis pointing upwards and Y-value equal to zero is the ground floor. One of
the corner columns (see the following subsection for description of the different parts of the
model) is placed with its bottom in the global origin. The beams are either parallel to the
global X-axis or Z-axis. The model is shown together with global coordinate axis in figure
5.1. Note that the axis shown in this figure are only meant to point out the direction of X,
Y and Z, and are not located in the global origin. The loaction of the global origin in the
XZ-plane is illustrated in figure 5.4.

Figure 5.1: Overview of tall timber building model with global axis.

Parts, assembly and properties

A similar approach as described in chapter 4 is used when creating the assembly in the model.
Firstly individual parts are created, secondly the parts are assembled, then finally the entire
assembly is merged into one, single part. The original assembly is thereafter deleted and
replaced by an assembly consisting of the single, merged part.

In total, there are eight original parts, four different corner parts and four different beam
parts.

25

The columns will be connecting two, three or four beams together in one section. Thus, one of
the column in the model consists in reality of at least two columns with the same rectangular
cross section. These columns are assumed to be block glued together, thus acting as one, fully
tied together. All jointed columns’ length axis are located in intersection of the belonging
beams’ length axis.

The corner column part is used in the four corners of the structure, and has a L-formed
cross-section, as it physically speaking consists of two columns, rotated 90 degrees compared
to each other. This is illustrated in figure 5.2a. The corner column are assumed to connect
the two meeting beams using two one-sided MRCs, one in each of the physical rectangular
columns. All the corner columns are oriented such that the beams in the X-direction are
connected to the physical corner that is not located in the jointed column’s lenght axis (i.e.
the right part of figure 5.2a are parallel to the X-axis).

The end column part is used along the perimeter of the building in the XZ-plane, lining
up between the corner columns. These columns have a T-section. It is assumed that the
two perimeter beams (i.e. the beams situated in a plane between two corner columns) are
connected using a two-sided MRC, while the last beam is connected with a one-sided MRC.
The cross-section is illustrated in figure 5.2b.

(a) Corner column. (b) End column.

Figure 5.2: Cross-sections of corner columns and end columns.

The internal columns are a little more complicated to model, as Abaqus do not provide an
X-shaped cross section [15]. Therefore, for simplicity, the internal columns are created by
two columns parts in Abaqus, and then jointed together with a tie constraint as described
in section 4.2, so that they act like one. The beams parallel to the Z-axis is assumed to
be connected to one column with a two-sided MRC, while the beams parallel to the X-axis
are assumed to be one-sided MRCs, both connected to its own physical column. This is
illustrated in figure 5.3.

There are four beam parts in the model. Two parts represents the regular beams, but in
order to make it possible for different span lengths in X and Z-direction, there is one part
for regular beams in X-direction and one part for regular beams in Z-direction. Similar, the
connector zone parts are divided into X-direction parts and Z-direction parts, even though
these two parts are identical. The cross-section and its properties for both the regular beam
and the connector section beam are similar to the ones presented in chapter 4.

26

Figure 5.3: Cross-section of internal columns. The columns connecting the beams in X-axis
are coloured grey, while the column connecting the beams in Z-direction is coloured purple.
In reality, the grey column should be split in two and be located on each of the purple
column’s surface.

The assembly is thereafter generated automatically by the script, as described earlier. The
orientation of the columns are shown in figure 5.4, illustrated if the model is generated with
two beam spans in each horizontal direction.

Figure 5.4: Orientation of columns in the assembly, if two beam spans are assumed in both
X and Z-directions.

27

Loading and boundary conditions

This model is not developed enough to be used in a structural analysis. However, the script
provides both a load and boundary conditions in order to verify that the model do not include
any flaws that prevent the model from being able to run a job in Abaqus. Therefore, a single
point load is applied in the top of the corner column located with its base in the global origin.
This point load has a predefined amplitude of 100 kN and is pointing in X-direction.

The boundary conditions of the model is applied to the bottom of every column, i.e. where
columns are connected to the ground. All these corner bottoms are clamped, i.e. restrained
from translation and rotation in all the three global directions.

Analysis

As for the model in chapter 4, the model includes three steps, namely an initial step where
the boundary conditions are applied, a static step where the point load is applied, and a
third step that allows the user to control the dynamic modes of the structure. The meshing
in this model is also according to the first model carried out in this thesis, and are possible
for the user to adjust in the script. Finally, the script creates and runs a job.

5.2 Parameter values

The parameters that coincide with parameters in the chapter 4 are kept the same also in
this model. The model is meant to imitate a generic tall timber building, and therefore
most other parameters are arbitrary, but realistic, meant to be edited when used later. All
predefined parameter values are provided in appendix B.

28

Chapter 6

Results and discussion

In this chapter, the results from the numerical model of the single connection is presented and
compared with the original detailed model carried out by Grytbakk et al. [2]. Thereafter,
the tall timber building model’s behaviour will be presented, followed by ideas on how to
further develop the model in order to obtain a model that can be used in structural analyses
on tall timber buildings.

6.1 Numerical model of connection

6.1.1 Results

This section presents the results from the numerical model of the MRC described in chapter
4.

As addressed in section 4.4, the four measure points used to compare the simplified model
to the original model are vertical displacements (denoted w) and in-plane rotations of two
points (denoted α), namely the node connecting the connector zone to the regular beam and
the outermost node at the beam’s tip. These points are referred to as point A and point B,
respectivetly, see figure 4.6. The values from the original model is carried out by the method
presented in section 2.4, and are given in table 6.1.

Table 6.1: Results from original model [2]. Deflections (w) in mm and rotations (α) in
rad·10−3.

Point A Point B
wA αA wB αB

1.35 4.11 12.9 6.14

The results from the simplified model are given in table 6.2 for selected values of XI , i.e.

29

the reduction factor for the moments of inertia, together with its error from the value in
table 6.1. The best performances of the model was given for XA, i.e. the reduction factor
for cross-section area, equal to one, meaning the cross-section area is not reduced in the
connector zone.

Table 6.2: Results from simplified model for selected values for XI in points A and B. The
percentage in brackets is the error compared to the original model. Deflections (w) in mm
and rotations (α) in rad·10−3.

Point A Point B
XI wA αA wB αB

0.050 1.70 (26%) 4.10 (0%) 10.3 (10.3%) 4.20 (21%)
0.040 2.10 (56%) 5.00 (22%) 12.4 (4%) 5.30 (14%)
0.038 2.20 (56%) 5.30 (29%) 12.9 (0%) 5.50 (10%)

As seen in the two tables, it is difficult to obtain the desired results for all the measure points,
but as the global effects of the MRC are most important, XI equal to 0.038 is chosen. This
is further elaborated in the following section 6.1.2.

6.1.2 Discussion

In this section, the choices made regarding modelling method are discussed, as well as dis-
cussions on the reliability of the model.

Choice of approach to create the model

Different approaches to model the semi-rigid MRC were investigated in this thesis. Those
were presented in section 4.2. This section discusses why connector elements were chosen. As
stated in section 4.2, only connector elements and connector zones were found adequate, as
the methods earlier described as other interaction constraints were insufficient to this task.

If only one connector element was used, a regular beam element could do the same job. In
the connector zone that ended up being using in the model, the properties of the connector
zone need to be constant, e.g. the bending stiffness of the connector zone is the same over
its entire length. This results in problems having the deflection and rotation of the beam
correct in the entire beam, as table 6.2 shows. The motivation for investigating the use of
connector elements, was that a connector elements could be attached to different nodes in the
beam, as illustrated in figure 4.1, where the connector elements are attached to two different
locations in the beam. The intention was that this should take account for the varying
stiffness in the part of the beam close to the column. Unfortunately, this method is hard
to parameterise, which is a requirement for the model. The load transfer of the connector
elements are hard to control, as they are not physical elements, just interaction constraints

30

between the column and the beam. For the user of the script, it is therefore not intuitive
how changing the stiffness parameters of the connector elements will adjust the connection.
On the other hand, the connector zone is quite easy to understand for a user with basic
structural engineering knowledge, as this only includes reducing the cross-section.

Another aspect that favoured the use of connector zone, was that the stress distribution was
problematic when using connector elements. The nodes in which the connector elements
were connected, experienced large local stress concentrations. In some of the analyses that
were tested with connector elements in this thesis, these stress concentrations caused element
distortions and problems obtaining running the analysis.

On the other hand, the connector zone approach was found intuitive for parametric model-
ling, yet with challenges regarding accurate results. These aspects will be addressed in the
following section.

Connector zone results

In this section, the results presented in section 6.1.1 are discussed. To aspects need to be
addressed. Firstly, possible reasons why the connector zone is not capable of representing the
connector zone over its entire length, i.e. having all the four measure points with sufficient
low error. Next, a discussion on why the chosen values of XI and XA are chosen.

As shown in table 6.2, obtaining the correct deformation pattern along the entire beam, in-
cluding the connector zone, was not managed to be solved in this thesis. Figure 6.1 illustrates
the differences between the original model (a) and the simplified model (b). As seen in the
figure, the deformations are somewhat similar, but are not the same. The column in the
original model has more of an S-bow locally near the connection, while it in the simplified
model is more straight. Also, the connector zone in the simplified model more rapidly reaches
the same rotation as the beam’s tip, while in the original model the beam rotation are more
irregular. The steel plate rotates more than the corresponding part of the connector zone.
In the beam region where the threaded rods are, the original model is more stiff than the
simplified. In the outer part of the beam, outside the reach of the threaded rods, the de-
formations are more alike. This is expected, as both models here simply consist of a regular
glulam beam subjected to bending.

As earlier addressed, this deformation differences are caused by the non-linear bending prop-
erties of the original model. This effects are not possible to take account for in a linear
connector zone with constant properties over its length. In the end of this section, possible
solutions to improve the connector zones are suggested. However, utilising more complicated
connector zones comes with a cost. In a tall timber building model, there will be a great
number of connector zones. If those were more cost extensive than simple, regular connector
zone, it may be damaging on the efficiency of the model. Therefore, this thesis chooses the
connector zone described in the results section, see section 6.1.1.

The connector zone follows Timoshenko beam theory, as stated in section 4.3. This means

31

(a) Original model [2]. (b) Simplified model.

Figure 6.1: Comparison of deformation patters between original and simplified model. The
vertical line in the middle of the beam in (a) indicates how far into the beam the threaded
rods reach. The inner part of the beam in (b), where the beam cross-section differs from the
rest of the beam, indicates where the connector zone is.

that both bending deformations and shear deformations are taken account for. By distin-
guishing between reducing the cross-section area and the moments of inertia, it is possible
to separate those two deformations [4], and was the motivation behind having two reduction
factors. However, the shear deformations had little impact on the results, and XA was there-
fore set to be equal to one. Thus, only modifying XI , in combination with different lengths
for the connector zone, controls the behaviour.

The objective of this numerical model is to be used in a larger model of an entire building.
Therefore, the deformations in the outer part of the beam are of more interest than those
locally in the connector zone. Therefore, XI equal to 0.038 was chosen, as this value was
most accurate at the beam tip. However, the error is still significant, with a 10% error in
the rotation at the beam tip. Unfortunately, the original model carried out by Grytbakk et
al. [2] is the only source on how this connection behaves. Therefore, it is not possible to tell
how this will affect the results when the beam spans are longer and the MRC is used in a
frame structure. In order to verify the results of this simplified model, more knowledge on
the connection in other configurations are needed.

Use of stress and strain distributions for model verification

Normally when creating a simplification of an already existing numerical model, studying the
stress and strain field occurring in the two models would be a natural measurement of how
well the models coincide. This is not possible when using connector zones with generalised
cross-section, as Abaqus is not able to produce strains and stresses with this kind of cross-
section [15]. Therefore, strains and stresses are not used to verify the model. Consequently,

32

this leads to more uncertainty on the model’s reliability.

There are some possible ways to improve the accuracy of the connector zone, that was not
elaborated in detail in this thesis. Nevertheless, the suggestions can be useful for future pro-
jects. The first possibility is to include two different connector zone with different properties,
one used to model the steel plate and one to model the timber beam part embedding the
threaded rods. This would not be a too expensive implementation, but could solve the issue
with deviant deformation pattern inside the connector zone region of the beam. Another
possibility is to use varying cross-section properties over the connector zone length. How-
ever, this would make the parameters of the connector sections less intuitive for the user, as
the original model showed irregular stiffness variation in the connector zone.

6.2 Numerical model of tall timber building

6.2.1 Results

As the objective of this model only was to show how the simplified MRC could be implemented
into an entire building, there are no other results to show other than that the model exists
and is running.

6.2.2 Discussion

This section discusses aspects regarding modelling approach of the tall timber building.

The script has some strict limitations on what kind of building it is possible to create. Firstly,
it is only possible to make a rectangular-shaped building. This is considered a reasonable
assumption, since most office and apartment buildings of this size are rectangular. One
important improvement on the model that was not found time for in this thesis, is the
possibility to add and remove single beams and columns from the layout. It is unrealistic
that the entire building follows the same, regular beam and column pattern in the entire
structure. For instance should there been a possibility to add shafts for lifts and stairs. This
is done in the tall timber building by Reed and Wiig [18], and should also be possible to
implement into this model.

One important simplification that is done, is that the columns connect the beams in X-
direction do not include the gap for the column connecting the beams in Z-direction. In
Abaqus, it is not possible either to make cross-sections with gaps [15], but one possibility is to
make a cross-section with varying width, making the width in the region that should be a gap
very small. However, this solution is not considered reasonable, as the stress distribution in
the column would be heavily affected. Another solution is to make a generalised cross-section
for the entire internal column, as it was for the connector zone cross-section. As previously

33

established, it would in that case not be possible to make the material of the internal column
orthogonal. This is regarded a larger source of error than having two separate columns for
each of the two X and Z-directions. Furthermore, stress distributions would not be provided
if the cross-section is a generalised type. If the beam spans both are 10 m, and the gap that
is missing is equal to the column cross-section width (0.140 m), the extension of the beams
are 1.4%, which is assumed negligible, and thus considered acceptable. The further effects of
the merged cross-section is not further discussed in this thesis, but should be investigated in
more detail if the model should be used in a structural analysis.

Another simplification that is done, is that the same connector zone is used for one-sided con-
nections as for two-sided connections. As shown by Grytbakk et al. [2], the differences in in
deformations are not particularly large, except for the fact that the loading and deformations
double. The stress distribution, on the other hand, differs between the two configurations.
The model carried out in this thesis is not able to study the stress distributions locally inside
the connections, and it is therefore some uncertainty related to the assumption that the same
connector zone is used for both one- and two-sided MRCs.

The script also set limitations on what cross-sections is possible to make. All beams are
rectangular, and all columns are made up from an assembly of two to four rectangular
columns, as illustrated in figure 5.4. In a future project, it may be desirable to have different
cross-sections, but at the time of this thesis, only the configuration with this types of beams
have been verified by a detailed numerical and experimental analysis, namely in the works
of Grytbakk et al. [2]. If other cross-sections are desired, only basic Abaqus knowledge is
necessary to adjust the model script, and it was therefore not found necessary to parameterise
the cross-section shapes in this thesis. The cross-section dimensions (i.e. height and width
of rectangular section), however, are parameterised, as seen in appendix B.

Further development of the model also requires floors and walls to be added, as well as
adequate loading. If this is done generalised, they could be implemented into the script, and
would be one of the natural next steps in a future project on semi-rigid MRCs in tall timber
buildings.

34

Chapter 7

Conclusion and recommendations for

further work

7.1 Conclusion

Different modelling techniques were investigated in order to make a simplified version of a
detailed numerical model of the one-sided MRC. The use of connector zone, i.e. modifying
the properties of the part of the beam situated closest to the connection, was found most
adequate. A numerical model that approximately simulated the deformation was carried out,
by reducing the beam’s moments of inertia with a reduction factor of 0.038. This connector
zone still has flaws, at it is not able to represent deformation and stresses accurately in the
connector zone, but shows better performance in the areas located further away from the
connection. The main reason for the connector zone is less accurate near the connection, is
because the MRC has varying bending stiffness in the steel plate, the transition between steel
plate and beam and in the part of the beam embedding the threaded rods. The connector
zone utilised in this project should be as simple, and was therefore given constant properties
over its length.

In the second part of the thesis, a parametric model of the frame in a tall timber building
was carried out. In this model, connector zones similar to the one described in the first part
were utilised to connect beams and columns. This model needs further development in order
to be useful in a structural analysis, which is further addressed in the following section.

7.2 Recommendations for further work

The single connection model can be further developed in order to make it more accurate. One
possibility is to make two consecutive connector zones between the column and the regular
beam part, simulating the difference in properties between steel plate and timber containing

35

threaded rods.

A future project could also delve deeper into to two-sided connection, as this thesis neglected
the differences between one- and two-sided configurations and used the same connector ele-
ment in both cases.

The tall timber building was not finished with walls, floors, loading and boundary conditions.
This is necessary to use the model in an analysis, and is a natural next step in a future project.
With the aforementioned implementations, for instance mode shapes of the building could be
investigated, as well as how wind loads affects the building. With such a parametric model,
more knowledge on what requirements is necessary for semi-rigid connections in timber frame
buildings may be obtained.

36

Bibliography

[1] SINTEF. Woodsol. Visited on 23/06/23. 2021. url: https://www.sintef.no/prosjekter/
2016/woodsol/.

[2] A. Grytbakk, M. Tanum and K. Tran. ‘Numerical and experimental analysis of one-
and two-sided moment-resisting timber connection using threaded rods and steel coup-
ling parts’. MA thesis. Department of Structural Engineering, Norwegian University of
Science and Technology, Trondheim, 2022.

[3] T. Fisk̊a and E.S. Skiri. ‘Simplified numerical model of one-sided moment resisting tim-
ber connection using threaded rods and steel coupling parts’. MA thesis. Department of
Structural Engineering, Norwegian University of Science and Technology, Trondheim,
2022.

[4] K. Bell. Dimensjonering av trekonstruksjoner. Fagbokforlaget, 2017.

[5] E. Skaug. Trevirkets oppbygging og egenskaper. Visited on 26/10/22. 2018. url: http:
//www.trefokus.no/resources/filer/fokus-pa-tre/40-Trevirkets-oppbygging-og-egenskaper.
pdf.

[6] Timber structures - Glued laminated timber and glued solid timber - Requirements.
Standard. Standard Norge, 2016.

[7] H. Stamatopoulos, K.A. Malo and A. Vilguts. ‘Moment-resisting beam-to-column tim-
ber connections with inclined threaded rods: Structural concept and analysis by use of
the component method’. In: Construction and Building Materials 322 (2022), p. 126481.
issn: 0950-0618. doi: https://doi.org/10.1016/j.conbuildmat.2022.126481.

[8] A. Vilguts, H. Stamatopoulos and K.A. Malo. ‘Parametric analyses and feasibility study
of moment-resisting timber frames under service load’. In: Engineering Structures 228
(2021), p. 111583. issn: 0141-0296. doi: https://doi .org/10.1016/j .engstruct .2020.
111583.

[9] S.W. Jones, P.A. Kirby and D.A. Nethercort. ‘The analysis of frames with semi-rigid
connections — A state-of-the-art report’. In: Journal of Constructional Steel Research
3.2 (1983), pp. 2–13. issn: 0143-974X. doi: https://doi.org/10.1016/0143-974X(83)
90017-2.

[10] H. Stamatopoulos and K.A. Malo. ‘On strength and stiffness of screwed-in threaded
rods embedded in softwood’. In: Construction and Building Materials 261 (2020),
p. 119999. issn: 0950-0618. doi: https://doi.org/10.1016/j.conbuildmat.2020.119999.

37

https://www.sintef.no/prosjekter/2016/woodsol/
https://www.sintef.no/prosjekter/2016/woodsol/
http://www.trefokus.no/resources/filer/fokus-pa-tre/40-Trevirkets-oppbygging-og-egenskaper.pdf
http://www.trefokus.no/resources/filer/fokus-pa-tre/40-Trevirkets-oppbygging-og-egenskaper.pdf
http://www.trefokus.no/resources/filer/fokus-pa-tre/40-Trevirkets-oppbygging-og-egenskaper.pdf
https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.126481
https://doi.org/https://doi.org/10.1016/j.engstruct.2020.111583
https://doi.org/https://doi.org/10.1016/j.engstruct.2020.111583
https://doi.org/https://doi.org/10.1016/0143-974X(83)90017-2
https://doi.org/https://doi.org/10.1016/0143-974X(83)90017-2
https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119999

[11] Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules

for buildings. Standard. Standard Norge, 2010.

[12] J. Mestvedthagen and K. Vasland. ‘Moment resisting timber connection using threaded
rods and steel coupling parts’. MA thesis. Department of Structural Engineering, Nor-
wegian University of Science and Technology, Trondheim, 2021.

[13] Haris Stamatopoulos and Kjell Arne Malo. ‘Withdrawal stiffness of threaded rods
embedded in timber elements’. In: Construction and Building Materials 116 (2016),
pp. 263–272.

[14] Aitziber Lopez, Iñigo Puente and Hodei Aizpurua. ‘Experimental and analytical studies
on the rotational stiffness of joints for single-layer structures’. In: Engineering Structures
33.3 (2011), pp. 731–737.

[15] Dassault Systems. Abaqus analysis user’s guide, version 6.14. Visited 26/10/22. 2014.
url: http://130.149.89.49:2080/v6.14/books/usb/default.htm.

[16] ABAQUS Inc. Abaqus scripting user’s guide, version 6.6. Visited 22/05/23. 2006. url:
https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/
cmd/pt02ch04.html.

[17] G. Van Rossum and F. L. Drake Jr. Python reference manual. Centrum voor Wiskunde
en Informatica Amsterdam, 1995.

[18] D.H. Reed and L.H. Wiig. ‘A Parametric Study of Tall Timber Buildings’. MA thesis.
Department of Structural Engineering, Norwegian University of Science and Techno-
logy, Trondheim, 2020.

[19] P.K. Larsen. Dimensjonering av st̊alkonstruksjoner. Fagbokforlaget, 2020.

38

http://130.149.89.49:2080/v6.14/books/usb/default.htm
https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/cmd/pt02ch04.html
https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/cmd/pt02ch04.html

Appendix

A Parameters of single MRC numerical model

In the following appendix, the parameters for the single MRC numerical model are given in
tabular form, in table A.1. In the script, all the parameters are easily defined in the first part
of the script, and they come in an order that is according to normal modelling in the Abaqus
graphic user interface. The following table gives the parameters in order of appearance in
the script. Beside the parameter name, a description of each parameter is provided, as well
as information on what input the script expects. The predefined value of each parameter is
also given, and this is the value that is used when carrying out this thesis

Table A.1: Parameters of single MRC model.

Parameter name Description Type Unit Predefined

restart model
If True, all existing models
are deleted and a new
model is created

Boolean - True

run setup
Basic set up and geometry
commands, should be True

Boolean - True

run parts If True, new parts are created Boolean - True
run step If True, new steps are created Boolean - True

run assembly
If True, a new assembly is
created

Boolean - True

run property
If True, new cross-section
properties are created

Boolean - True

run mesh If True, new mesh is created Boolean - True

run load
If True, new loads and
boundary conditions are
created

Boolean - True

run job
If True, new job is created
and run

Boolean - True

39

modelname Name of the model String - ’Single
MRC’

partname frame Name of the frame part String - ’Part-
frame’

workdir name Name of the work directory String -
column l Length of column Float m 2.75

column h
Cross-section heigth of
column

Float m 0.450

column b
Cross-section width of
column

Float m 0.140

beam l
Length of beam, including
connector zone

Float m 2.525

beam h
Cross-section heigth of
beam

Float m 0.405

beam b
Cross-section width of
beam

Float m 0.140

fic beam l Length of connector zone Float m 0.663

E1
Young’s modulus in
direction 1

Float Pa 13e10

E2
Young’s modulus in
direction 2

Float Pa 410e6

E3
Young’s modulus in
direction 3

Float Pa 410e6

Nu12 Poisson ratio in plane 12 Float - 0.6
Nu13 Poisson ratio in plane 13 Float - 0.6
Nu23 Poisson ratio in plane 23 Float - 0.6
G12 Shear modulus in plane 12 Float Pa 760e6
G13 Shear modulus in plane 13 Float Pa 760e6
G23 Shear modulus in plane 23 Float Pa 30e6
density Timber material’s density Float kg/m3 430

fic beam I factor
Reduction factor for moments
of inertia in connector zone

Float - 0.038

fic beam A factor
Reduction factor for cross-
section area in connector
zone

Float - 1

E fic beam
Young’s modulus for
connector zone material

Float Pa 13e10

G fic beam
Shear modulus for
connector zone material

Float Pa 760e6

Nu fic beam
Poisson ratio for
connector zone material

Float - 0.49

40

create freq step
If True, model creates
a frequency time step

Boolean - False

max eigenvalues
Maximum number of
eigenvalues to be
analysed

Int - 5

column mesh size Mesh size in column Float m 0.1375

fic beam mesh size
Mesh size in
connector zone

Float m 0.1105

reg beam mesh size
Mesh size in regular
beam part

Float m 0.12625

column element type
Element type in
column

- - B32

fic beam element type
Element type in
connector zone

- - B32

reg beam element type
Element type in
regular beam part

- - B32

pointload vector
Load amplitude
of point load

List N [0,-13e3,0]

41

B Parameters of tall timber building model

In the following appendix, the parameters for the tall timber building model are given in
tabular form, in table B.3. The layout is the same as presented in appendix A.

Table B.3: Parameters of tall timber building model.

Parameter name Description Type Unit Predefined

restart model
If True, all existing models
are deleted and a new
model is created

Boolean - True

run setup
Basic set up and geometry
commands, should be True

Boolean - True

run parts If True, new parts are created Boolean - True
run step If True, new steps are created Boolean - True

run assembly
If True, a new assembly is
created

Boolean - True

run property
If True, new cross-section
properties are created

Boolean - True

run mesh If True, new mesh is created Boolean - True

run load
If True, new loads and
boundary conditions are
created

Boolean - True

run job
If True, new job is created
and run

Boolean - True

modelname Name of the model String - ’Single
MRC’

partname frame Name of the frame part String - ’Part-
frame’

workdir name Name of the work directory String -

storey heigth
Heigth between floors in
building

Int m 4.00

number of floors
Number of floors in building,
including the ground floor

Int - 8

number of spans x
Number of beam spans in
X-direction

Int - 5

number of spans z
Number of beam spans in
Z-direction

Int - 3

span length x
Beam span length in
X-direction

Float m 10

42

span length z
Beam span length in
Z-direction

Float m 10

column h
Cross-section heigth of
column

Float m 0.450

column b
Cross-section width of
column

Float m 0.140

beam h
Cross-section heigth of
beam

Float m 0.405

beam b
Cross-section width of
beam

Float m 0.140

fic beam l Length of connector zone Float m 0.663

E1
Young’s modulus in
direction 1

Float Pa 13e10

E2
Young’s modulus in
direction 2

Float Pa 410e6

E3
Young’s modulus in
direction 3

Float Pa 410e6

Nu12 Poisson ratio in plane 12 Float - 0.6
Nu13 Poisson ratio in plane 13 Float - 0.6
Nu23 Poisson ratio in plane 23 Float - 0.6
G12 Shear modulus in plane 12 Float Pa 760e6
G13 Shear modulus in plane 13 Float Pa 760e6
G23 Shear modulus in plane 23 Float Pa 30e6
density Timber material’s density Float kg/m3 430

fic beam I factor
Reduction factor for moments
of inertia in connector zone

Float - 0.038

fic beam A factor
Reduction factor for cross-
section area in connector
zone

Float - 1

E fic beam
Young’s modulus for
connector zone material

Float Pa 13e10

G fic beam
Shear modulus for
connector zone material

Float Pa 760e6

Nu fic beam
Poisson ratio for
connector zone material

Float - 0.49

max eigenvalues
Maximum number of
eigenvalues to be
analysed

Int - 5

fic beam mesh size
Mesh size in
connector zone

Float m 0.221

reg beam mesh size
Mesh size in regular
beam part

Float m 1.00

43

column mesh size Mesh size in column Float m 0.50

fic beam element type
Element type in
connector zone

- - B32

reg beam element type
Element type in
regular beam part

- - B32

column element type
Element type in
column

- - B32

44

C Script of single MRC numerical model

In this appendix, the entire script for the single MRC numerical model is provided. In
order to run the model, simply copy the code below and paste it into an empty Python file.
Thereafter, run the script in Abaqus.

1

2 import numpy as np

3 import os

4

5 from part import *

6 from material import *

7 from section import *

8 from assembly import *

9 from step import *

10 from interaction import *

11 from load import *

12 from mesh import *

13 from optimization import *

14 from job import *

15 from sketch import *

16 from visualization import *

17 from connectorBehavior import *

18

19

20 # What to run (0=False, 1=True)

21

22 restart_model = 1

23

24 run_setup = 1

25 run_parts = 1

26 run_step = 1

27 run_assembly = 1

28 run_property = 1

29 run_interaction = 1

30 run_mesh = 1

31 run_load = 1

32 run_job = 1

33

34

35

36 # Parameters

37

38 ## General

39

40 modelname = 'Single MRC'

41 partname_frame = 'Part-frame'

42 workdir_name = 'C:\\Users\\espen\\Box\\Masteroppgave\\Single MRC\\'

43

44

45

45

46 ## Geometryrestart

47

48 column_l = 2.750

49 column_h = .450

50 column_b = .140

51

52 beam_l = 2.525

53 beam_h = .405

54 beam_b = .140

55

56 fic_beam_l = 0.663

57

58

59

60 ## Property

61

62 ### Property for GL30c

63

64 E1 = 13e10

65 E2 = 410e6

66 E3 = 410e6

67 Nu12 = 0.6

68 Nu13 = 0.6

69 Nu23 = 0.6

70 G12 = 760e6

71 G13 = 760e6

72 G23 = 30e6

73

74 density = 430

75

76 ### Property for fictitious beam material

77

78 fic_beam_I_factor = 0.038

79 fic_beam_A_factor = 1

80

81 E_fic_beam = 13e10

82 G_fic_beam = 760e6

83 Nu_fic_beam = 0.49

84

85

86

87 ## Step

88

89 create_freq_step = False

90 max_eigenvalues = 5

91

92

93

94 ## Assembly

95

96

97

98 ## Mesh

46

99

100 column_mesh_size = 0.1375

101 fic_beam_mesh_size = 0.1105

102 reg_beam_mesh_size = 0.12625

103

104 column_element_type = B32

105 fic_beam_element_type = B32

106 reg_beam_element_type = B32

107

108

109

110 ## Load

111

112 pointload_vector = [0,-13e3,0]

113

114

115

116

117

118 # Global functions

119

120

121 def change_model_name(newname):

122 '''

123 Assumes only one model in database

124 '''

125 oldname = mdb.models.keys()[0]

126 mdb.models.changeKey(fromName=oldname, toName=newname)

127

128 def change_instance_name(newname):

129 '''

130 Assumes only one instance in model

131 '''

132 oldname = a.instances.keys()[0]

133 mdb.models.changeKey(fromName=oldname, toName=newname)

134 a.features.changeKey(fromName=oldname,

135 toName=newname)

136

137 def Create_Node_Set_ByBoundingBox(partname, x1, y1, z1, x2, y2, z2, set_name):

138 p = m.parts[partname]

139 n = p.nodes

140 nodes = n.getByBoundingBox(x1,y1,z1,x2,y2,z2)

141 p.Set(nodes=nodes, name=set_name)

142

143 def Create_Surface_Set_ByBoundingBox(partname, x1, y1, z1, x2, y2, z2, set_name):

144 p = m.parts[partname]

145 s = p.edges

146 edges=s.getByBoundingBox(x1,y1,z1,x2,y2,z2)

147 p.Set(edges=edges, name=set_name)

148

149 def Create_Node_Set_ByBoundingBox_from_Instance(instancename, x0, y0, z0,\

150 limit, set_name):

151

47

152 x1 = x0-limit

153 y1 = y0-limit

154 z1 = z0-limit

155 x2 = x0+limit

156 y2 = y0+limit

157 z2 = z0+limit

158

159 a.Set(name=set_name, nodes=

160 a.instances[instancename]

161 .nodes.getByBoundingBox(x1,y1,z1,x2,y2,z2))

162

163

164

165

166

167

168

169

170 # Restart model

171

172 if restart_model:

173

174 mdb.Model(modelType=STANDARD_EXPLICIT, name='New_model')

175

176 for oldmodelname in mdb.models.keys():

177 if oldmodelname != 'New_model':

178 del mdb.models[oldmodelname]

179

180

181

182

183

184

185

186

187

188

189 # Set up

190

191 if run_setup:

192

193 ## General

194

195 change_model_name(modelname)

196 os.chdir(workdir_name)

197

198

199

200 ## Global variables

201

202 m = mdb.models[modelname]

203 a = m.rootAssembly

204 instancename_frame = partname_frame+'-1'

48

205

206

207

208 ## Geometry variables

209

210 reg_beam_l = beam_l-fic_beam_l

211

212 column_coords = [0,0,0,

213 0,column_l,0]

214 fic_beam_coords = [0,column_l/2,0,

215 fic_beam_l,column_l/2,0]

216 reg_beam_coords = [fic_beam_l,column_l/2,0,

217 fic_beam_l+reg_beam_l,column_l/2,0]

218

219 fic_beam_area = beam_h*beam_b*fic_beam_A_factor

220 fic_beam_i11 = beam_h**3*beam_b*fic_beam_I_factor/12

221 fic_beam_i12 = 0

222 fic_beam_i22 = beam_h*beam_b**3*fic_beam_I_factor/12

223 if beam_h > beam_b:

224 fac_a = beam_h/2

225 fac_b = beam_b/2

226 else:

227 fac_a = beam_b/2

228 fac_b = beam_h/2

229 fic_beam_j = fac_a*fac_b**3*\

230 (16/3-3.36*fac_b/fac_a*\

231 (1-fac_b**4/(12*fac_a**4)))*fic_beam_I_factor

232

233 def set_fic_beam_density(connector_zone_area):

234 steel_plate_area = 0.540*0.020

235 steel_density = 7850

236 transformed_density = steel_density*\

237 steel_plate_area/connector_zone_area

238 return transformed_density

239

240 density_fic_beam = set_fic_beam_density(fic_beam_area)

241

242

243

244

245

246

247

248

249

250

251

252 # Parts

253

254 if run_parts:

255

256 ## Create column parts

257

49

258 def create_part(partname,length_x,length_y):

259 '''

260 Creates wire part.

261 Assumes either lenght_x or length_y to be zero.

262 '''

263

264 if length_x > length_y:

265 sheetsize = 2*length_x

266 else:

267 sheetsize = 2*length_y

268

269 m.ConstrainedSketch(name='__profile__', sheetSize=sheetsize)

270 m.sketches['__profile__'].Line(point1=(0, 0), point2=(

271 length_x, length_y))

272 if length_x > length_y:

273 m.sketches['__profile__'].HorizontalConstraint(

274 addUndoState=False, entity=

275 m.sketches['__profile__'].geometry[2])

276 else:

277 m.sketches['__profile__'].VerticalConstraint(

278 addUndoState=False, entity=

279 m.sketches['__profile__'].geometry[2])

280 m.Part(dimensionality=THREE_D, name=partname, type=

281 DEFORMABLE_BODY)

282 m.parts[partname].BaseWire(sketch=

283 m.sketches['__profile__'])

284 del m.sketches['__profile__']

285

286

287 create_part('Part-column',0,column_l)

288 create_part('Part-fic_beam',fic_beam_l,0)

289 create_part('Part-reg_beam',reg_beam_l,0)

290

291

292

293

294

295

296

297

298

299 # Step

300

301 if run_step:

302

303 def create_step(stepname,previousstep,steptype,\

304 maxeigenvalues=max_eigenvalues):

305

306 if steptype == 'Static':

307 m.StaticStep(name=stepname, previous=previousstep)

308 elif steptype == 'Frequency':

309 m.FrequencyStep(name=stepname, numEigen=maxeigenvalues, previous=

310 previousstep)

50

311

312 create_step('Step-stat', 'Initial', 'Static')

313 if create_freq_step:

314 create_step('Step-freq', 'Step-stat', 'Frequency')

315

316

317

318

319

320

321

322

323

324 # Assembly

325

326 if run_assembly:

327

328 ## Create instances

329

330 list_of_instances = []

331

332 def instance_to_list(instancename):

333 list_of_instances.append(instancename)

334

335 def create_instance(partname,basecoords):

336

337 x0,y0,z0 = basecoords[0],basecoords[1],basecoords[2]

338 instancename = partname+'-1'\

339

340 a.DatumCsysByDefault(CARTESIAN)

341 a.Instance(dependent=OFF, name=

342 instancename, part=

343 m.parts[partname])

344

345 a.translate(instanceList=(

346 instancename,), vector=(x0, y0, z0))

347

348 instance_to_list(instancename)

349

350 create_instance('Part-column',column_coords)

351 create_instance('Part-fic_beam',fic_beam_coords)

352 create_instance('Part-reg_beam',reg_beam_coords)

353

354

355

356 ## Merge instances to one part

357

358 SingleInstances_List = a.instances.keys()

359 a.InstanceFromBooleanMerge(name=partname_frame,\

360 instances=([a.instances[SingleInstances_List[i]]

361 for i in range(len(SingleInstances_List))]), mergeNodes=ALL,

362 keepIntersections=ON, domain=GEOMETRY, originalInstances=DELETE)

363

51

364

365

366 ## Change name of instance

367

368 oldname_instance = a.instances.keys()[0]

369

370 #a.features.changeKey(fromName=oldname_instance,

371 # toName=instancename_frame)

372

373

374

375

376

377

378

379

380

381

382 # Property

383

384 if run_property:

385

386 ## Create GL30c material

387

388 m.Material(name='Material-GL30c')

389 m.materials['Material-GL30c'].Elastic(table=((E1, E2,

390 E3, Nu12, Nu13, Nu23, G12, G13, G23),), type=ENGINEERING_CONSTANTS)

391 m.materials['Material-GL30c'].Density(table=((density,

392),))

393

394

395

396 ## Create set for each original instance in new merged part

397

398 def create_edge_set(setname,coords):

399

400 x0,y0,z0 = coords[0],coords[1],coords[2]

401 x1,y1,z1 = coords[3],coords[4],coords[5]

402

403 m.parts[partname_frame].Set(edges=

404 m.parts[partname_frame].edges.

405 getByBoundingBox(x0,y0,z0,x1,y1,z1), name=setname)

406

407 create_edge_set('Set-column',column_coords)

408 create_edge_set('Set-fic_beam',fic_beam_coords)

409 create_edge_set('Set-reg_beam',reg_beam_coords)

410

411

412

413 ## Create sections

414

415 def create_rectangular_section(sectionname,materialname,section_h,section_b):

416

52

417 profilename = sectionname.replace('Section-','Profile-')

418

419 m.RectangularProfile(a=section_b, b=section_h, name=profilename)

420 m.BeamSection(consistentMassMatrix=False, integration=

421 DURING_ANALYSIS, material=materialname, name=sectionname,

422 poissonRatio=0.0, profile=profilename, temperatureVar=LINEAR)

423

424 create_rectangular_section('Section-column','Material-GL30c',column_h,column_b)

425 create_rectangular_section('Section-reg_beam','Material-GL30c',beam_h,beam_b)

426

427 m.GeneralizedProfile(area=fic_beam_area, gammaO=0.0, gammaW=0.0,

428 i11=fic_beam_i11, i12=fic_beam_i12, i22=fic_beam_i22, j=fic_beam_j, name=

429 'Profile-fic_beam')

430 m.BeamSection(alphaDamping=0.0, beamShape=CONSTANT,

431 betaDamping=0.0, centroid=(0.0, 0.0), compositeDamping=0.0,

432 consistentMassMatrix=False, density=density_fic_beam, dependencies=0,\

433 integration=

434 BEFORE_ANALYSIS, name='Section-fic_beam', poissonRatio=Nu_fic_beam, profile=

435 'Profile-fic_beam', shearCenter=(0.0, 0.0), table=((E_fic_beam, G_fic_beam),),

436 temperatureDependency=OFF, thermalExpansion=OFF)

437

438

439

440 ## Assign beam orientation and section

441

442 def assign_beam_orientation(setname,vector):

443

444 m.parts[partname_frame].assignBeamSectionOrientation(method=

445 N1_COSINES, n1=vector, region=

446 m.parts[partname_frame].sets[setname])

447

448 def assign_section(set_name,section_name):

449

450 m.parts[partname_frame].SectionAssignment(offset=0.0,

451 offsetField='', offsetType=MIDDLE_SURFACE, region=

452 m.parts[partname_frame].sets[set_name],

453 sectionName=section_name, thicknessAssignment=FROM_SECTION)

454

455 column_orientation = [0,0,1]

456 fic_beam_orientation = [0,0,-1]

457 reg_beam_orientation = [0,0,-1]

458

459 assign_beam_orientation('Set-column',column_orientation)

460 assign_beam_orientation('Set-fic_beam',fic_beam_orientation)

461 assign_beam_orientation('Set-reg_beam',reg_beam_orientation)

462

463 assign_section('Set-column','Section-column')

464 assign_section('Set-fic_beam','Section-fic_beam')

465 assign_section('Set-reg_beam','Section-reg_beam')

466

467

468

469

53

470

471

472

473

474

475

476 # Mesh

477

478 if run_mesh:

479

480

481

482 def create_mesh(coords,elementsize,elementtype):

483

484 x0,y0,z0 = coords[0],coords[1],coords[2]

485 x1,y1,z1 = coords[3],coords[4],coords[5]

486

487 m.parts[partname_frame].seedEdgeBySize(constraint=FINER,

488 deviationFactor=0.1, edges=

489 m.parts[partname_frame].edges.

490 getByBoundingBox(x0,y0,z0,x1,y1,z1), size=elementsize)

491

492 m.parts[partname_frame].setElementType(elemTypes=(ElemType(

493 elemCode=elementtype, elemLibrary=STANDARD),), regions=(

494 m.parts[partname_frame].edges.

495 getByBoundingBox(x0,y0,z0,x1,y1,z1),))

496

497 m.parts[partname_frame].generateMesh()

498

499 create_mesh(column_coords,column_mesh_size,column_element_type)

500 create_mesh(fic_beam_coords,fic_beam_mesh_size,fic_beam_element_type)

501 create_mesh(reg_beam_coords,reg_beam_mesh_size,reg_beam_element_type)

502

503

504

505

506

507

508

509

510

511

512 # Load

513

514 if run_load:

515

516 def create_displace_BC(setname,BCname,stepname,tieddofs):

517

518 U1,U2,U3,UR1,UR2,UR3 = UNSET,UNSET,UNSET,UNSET,UNSET,UNSET

519

520 if 'u1' in tieddofs:

521 U1=SET

522 if 'u2' in tieddofs:

54

523 U2=SET

524 if 'u3' in tieddofs:

525 U3=SET

526 if 'ur1' in tieddofs:

527 UR1=SET

528 if 'ur2' in tieddofs:

529 UR2=SET

530 if 'ur3' in tieddofs:

531 UR3=SET

532

533 m.DisplacementBC(amplitude=UNSET, createStepName=stepname,

534 distributionType=UNIFORM, fieldName='', localCsys=None, name=BCname,

535 region=

536 a.instances[instancename_frame].sets[setname]

537 , u1=U1, u2=U2, u3=U3, ur1=UR1, ur2=UR2, ur3=UR3)

538

539 def create_point_load(setname,loadname,stepname,magnitudevector):

540

541 m.ConcentratedForce(cf1=magnitudevector[0], cf2=magnitudevector[1],\

542 cf3=magnitudevector[2],

543 createStepName=stepname,

544 distributionType=UNIFORM, field='', localCsys=None, name=loadname, region=

545 a.instances[instancename_frame].sets[setname])

546

547

548

549 ## Hinged connections at bottom and top of column

550

551 tieddofs_hinges = ['u1','u2','u3']

552

553 Create_Node_Set_ByBoundingBox(partname_frame,

554 column_coords[0],column_coords[1],column_coords[2],

555 column_coords[0],column_coords[1],column_coords[2],

556 'Set-column_bottom')

557

558 Create_Node_Set_ByBoundingBox(partname_frame,

559 column_coords[3],column_coords[4],column_coords[5],

560 column_coords[3],column_coords[4],column_coords[5],

561 'Set-column_top')

562

563 create_displace_BC('Set-column_bottom','BC-column_bottom','Initial',tieddofs_hinges)

564 create_displace_BC('Set-column_top','BC-column_top','Initial',tieddofs_hinges)

565

566

567

568 ## Point load at beam's tip

569

570 Create_Node_Set_ByBoundingBox(partname_frame,

571 reg_beam_coords[3]-0.001,reg_beam_coords[4]-0.001,reg_beam_coords[5]-0.001,

572 reg_beam_coords[3]+0.001,reg_beam_coords[4]+0.001,reg_beam_coords[5]+0.001,

573 'Set-beam_tip')

574

575 create_point_load('Set-beam_tip','Load-point','Step-stat',pointload_vector)

55

576

577 ## Prevent transversal displacement at beam's tip

578

579 tieddofs_pointload = ['u3']

580

581 create_displace_BC('Set-beam_tip','BC-beam_tip','Initial',tieddofs_pointload)

582

583

584

585

586

587

588

589

590

591

592 # Job

593

594 if run_job:

595

596 def create_and_run_job(jobname='Job-Single_MRC', run=True, nCpu=1, desc=''):

597 '''

598 Creates a job and deletes any previous job with same name

599

600 nCpu = Number of processors [int]

601 dec = Description of job [str]

602 '''

603

604 if os.path.exists(jobname+'.lck'):

605 os.remove(jobname+'.lck')

606

607 mdb.Job(name=jobname, model=modelname, numCpus=nCpu, numDomains=nCpu,\

608 description=desc)

609 if run:

610 mdb.jobs[jobname].submit(consistencyChecking=OFF)

611 mdb.jobs[jobname].waitForCompletion()

612

613 create_and_run_job()

614

615

56

D Script of tall timber building numerical model

In this appendix, the entire script for the tall timber building numerical model is provided.
In order to run the model, simply copy the code below and paste it into an empty Python
file. Thereafter, run the script in Abaqus.

1

2 import numpy as np

3 import os

4

5 from part import *

6 from material import *

7 from section import *

8 from assembly import *

9 from step import *

10 from interaction import *

11 from load import *

12 from mesh import *

13 from optimization import *

14 from job import *

15 from sketch import *

16 from visualization import *

17 from connectorBehavior import *

18

19

20 # What to run (0=False, 1=True)

21

22 restart_model = 1

23

24 run_setup = 1

25 run_parts = 1

26 run_step = 1

27 run_assembly = 1

28 run_property = 1

29 run_interaction = 1

30 run_mesh = 1

31 run_load = 1

32 run_job = 1

33

34

35

36 # Parameters

37

38 ## General

39

40 modelname = 'Tall_timber_building'

41 partname_frame = 'Part-frame'

42 workdir_name = 'C:\\Users\\espen\\Box\\Masteroppgave\\Numerisk modell\\Tall timber

building\\'→֒

43

44

57

45

46 ## Geometry

47

48 storey_height = 4.00

49 number_of_floors = 8

50 number_of_spans_x = 5

51 number_of_spans_z = 3

52 span_length_x = 10

53 span_length_z = 10

54

55 column_h = 0.450

56 column_b = 0.140

57

58 beam_h = 0.405

59 beam_b = 0.140

60

61 fic_beam_l = 0.663

62

63

64

65 ## Property

66

67 ### Property for GL30c

68

69 E1 = 13e10

70 E2 = 410e6

71 E3 = 410e6

72 Nu12 = 0.6

73 Nu13 = 0.6

74 Nu23 = 0.6

75 G12 = 760e6

76 G13 = 760e6

77 G23 = 30e6

78

79 density = 430

80

81 ### Property for fictitious beam material

82

83 fic_beam_I_factor = 0.038

84 fic_beam_A_factor = 1

85

86 E_fic_beam = 13e10

87 G_fic_beam = 760e6

88 Nu_fic_beam = 0.49

89

90

91

92 ## Step

93

94 max_eigenvalues = 5

95

96

97

58

98 ## Assembly

99

100

101

102 ## Mesh

103

104 fic_beam_mesh_size = 0.221

105 reg_beam_mesh_size = 1.00

106 column_mesh_size = 0.50

107

108 fic_beam_element_type = B32

109 reg_beam_element_type = B32

110 column_element_type = B32

111

112

113

114

115

116 # Global functions

117

118

119 def change_model_name(newname):

120 '''

121 Assumes only one model in database

122 '''

123 oldname = mdb.models.keys()[0]

124 mdb.models.changeKey(fromName=oldname, toName=newname)

125

126 def change_instance_name(newname):

127 '''

128 Assumes only one instance in model

129 '''

130 oldname = a.instances.keys()[0]

131 mdb.models.changeKey(fromName=oldname, toName=newname)

132 a.features.changeKey(fromName=oldname,

133 toName=newname)

134

135 def Create_Node_Set_ByBoundingBox(partname, x1, y1, z1, x2, y2, z2, set_name):

136 p = m.parts[partname]

137 n = p.nodes

138 nodes = n.getByBoundingBox(x1,y1,z1,x2,y2,z2)

139 p.Set(nodes=nodes, name=set_name)

140

141 def Create_Surface_Set_ByBoundingBox(partname, x1, y1, z1, x2, y2, z2, set_name):

142 p = m.parts[partname]

143 s = p.edges

144 edges=s.getByBoundingBox(x1,y1,z1,x2,y2,z2)

145 p.Set(edges=edges, name=set_name)

146

147 def Create_Node_Set_ByBoundingBox_from_Instance(instancename, x0, y0, z0, limit,\

148 set_name):

149

150 x1 = x0-limit

59

151 y1 = y0-limit

152 z1 = z0-limit

153 x2 = x0+limit

154 y2 = y0+limit

155 z2 = z0+limit

156

157 a.Set(name=set_name, nodes=

158 a.instances[instancename]

159 .nodes.getByBoundingBox(x1,y1,z1,x2,y2,z2))

160

161 def find_instance_coord(partname,instancename):

162

163 '''

164 Returns coordinates xpos,ypos,zpos of instance.

165 For beam elements, the x and z coordinates represent the lowest

166 x and z coordinate of the instance.

167 For column elements, the y coordinate represents the lowest y

168 coordinate of the instance, i.e. y=0.

169 '''

170

171 if partname == 'Part-corner_column':

172

173 cornernumber = int([x for x in instancename][-1])

174

175 if cornernumber==1:

176 xpos = 0

177 zpos = 0

178 elif cornernumber==2:

179 xpos = 0

180 zpos = number_of_spans_z*span_length_z

181 elif cornernumber==3:

182 xpos = number_of_spans_x*span_length_x

183 zpos = number_of_spans_z*span_length_z

184 elif cornernumber==4:

185 xpos = number_of_spans_x*span_length_x

186 zpos = 0

187

188 ypos = 0

189

190 elif partname == 'Part-end_column':

191

192 sidenumber = int([x for x in instancename][-3])

193 instancenumber = int([x for x in instancename][-1])

194

195 if sidenumber == 1:

196 xpos = 0

197 zpos = instancenumber*span_length_z

198 elif sidenumber == 2:

199 xpos = instancenumber*span_length_x

200 zpos = span_length_z*number_of_spans_z

201 elif sidenumber == 3:

202 xpos = span_length_x*number_of_spans_x

203 zpos = instancenumber*span_length_z

60

204 elif sidenumber == 4:

205 xpos = instancenumber*span_length_x

206 zpos = 0

207

208 ypos = 0

209

210 elif partname == 'Part-internal_column_x' or partname == 'Part-internal_column_z':

211

212 xnumber = int([x for x in instancename][-3])

213 znumber = int([x for x in instancename][-1])

214

215 xpos = xnumber*span_length_x

216 ypos = 0

217 zpos = znumber*span_length_z

218

219 elif partname == 'Part-beam_x':

220

221 xnumber = int([x for x in instancename][-3])

222 ynumber = int([x for x in instancename][-5])

223 znumber = int([x for x in instancename][-1])

224

225 xpos = (xnumber-1)*span_length_x+fic_beam_l

226 ypos = ynumber*storey_height

227 zpos = (znumber-1)*span_length_z

228

229 elif partname == 'Part-beam_z':

230

231 xnumber = int([x for x in instancename][-3])

232 ynumber = int([x for x in instancename][-5])

233 znumber = int([x for x in instancename][-1])

234

235 xpos = (xnumber-1)*span_length_x

236 ypos = ynumber*storey_height

237 zpos = (znumber-1)*span_length_z+fic_beam_l

238

239 elif partname == 'Part-fic_beam_x':

240

241 letter = [x for x in instancename][-1]

242 xnumber = int([x for x in instancename][-5])

243 ynumber = int([x for x in instancename][-7])

244 znumber = int([x for x in instancename][-3])

245

246 if letter == 'a':

247

248 xpos = (xnumber-1)*span_length_x

249 ypos = ynumber*storey_height

250 zpos = (znumber-1)*span_length_z

251

252 elif letter == 'b':

253

254 xpos = xnumber*span_length_x-fic_beam_l

255 ypos = ynumber*storey_height

256 zpos = (znumber-1)*span_length_z

61

257

258 elif partname == 'Part-fic_beam_z':

259

260 letter = [x for x in instancename][-1]

261 xnumber = int([x for x in instancename][-5])

262 ynumber = int([x for x in instancename][-7])

263 znumber = int([x for x in instancename][-3])

264

265 if letter == 'a':

266

267 xpos = (xnumber-1)*span_length_x

268 ypos = ynumber*storey_height

269 zpos = (znumber-1)*span_length_z

270

271 elif letter == 'b':

272

273 xpos = (xnumber-1)*span_length_x

274 ypos = ynumber*storey_height

275 zpos = znumber*span_length_z-fic_beam_l

276

277 return xpos, ypos, zpos

278

279

280

281

282

283

284

285

286 # Restart model

287

288 if restart_model:

289

290 mdb.Model(modelType=STANDARD_EXPLICIT, name='New_model')

291

292 for oldmodelname in mdb.models.keys():

293 if oldmodelname != 'New_model':

294 del mdb.models[oldmodelname]

295

296

297

298

299

300

301

302

303

304

305 # Set up

306

307 if run_setup:

308

309 ## General

62

310

311 change_model_name(modelname)

312 os.chdir(workdir_name)

313

314

315

316 ## Global variables

317

318 m = mdb.models[modelname]

319 a = m.rootAssembly

320 instancename_frame = partname_frame+'-1'

321

322

323

324 ## Geometry variables

325

326 total_height = storey_height*(number_of_floors-1)

327 beam_x_total_l = span_length_x

328 beam_z_total_l = span_length_z

329 beam_x_l = beam_x_total_l - 2*fic_beam_l

330 beam_z_l = beam_z_total_l - 2*fic_beam_l

331

332 fic_beam_area = beam_h*beam_b*fic_beam_A_factor

333 fic_beam_i11 = beam_h**3*beam_b*fic_beam_I_factor/12

334 fic_beam_i12 = 0

335 fic_beam_i22 = beam_h*beam_b**3*fic_beam_I_factor/12

336

337 if beam_h > beam_b:

338 fac_a = beam_h/2

339 fac_b = beam_b/2

340 else:

341 fac_a = beam_b/2

342 fac_b = beam_h/2

343 fic_beam_j = fac_a*fac_b**3*\

344 (16/3-3.36*fac_b/fac_a*\

345 (1-fac_b**4/(12*fac_a**4)))*fic_beam_I_factor

346

347 def set_fic_beam_density(connector_zone_area):

348 steel_plate_area = 0.540*0.020

349 steel_density = 7850

350 transformed_density = steel_density*\

351 steel_plate_area/connector_zone_area

352 return transformed_density

353

354 density_fic_beam = set_fic_beam_density(fic_beam_area)

355

356

357

358

359

360

361

362

63

363

364

365

366 # Parts

367

368 if run_parts:

369

370 ## Create column parts

371

372 def create_column_parts(partname):

373

374 m.ConstrainedSketch(name='__profile__', sheetSize=total_height*2)

375 m.sketches['__profile__'].Line(point1=(0.0, 0.0), point2=(

376 0.0, total_height))

377 m.sketches['__profile__'].VerticalConstraint(addUndoState=

378 False, entity=m.sketches['__profile__'].geometry[2])

379 m.Part(dimensionality=THREE_D, name=partname, type=

380 DEFORMABLE_BODY)

381 m.parts[partname].BaseWire(sketch=

382 m.sketches['__profile__'])

383 del m.sketches['__profile__']

384

385 create_column_parts('Part-corner_column')

386 create_column_parts('Part-end_column')

387 create_column_parts('Part-internal_column_x')

388 create_column_parts('Part-internal_column_z')

389

390

391

392 ## Create beam parts

393

394 m.ConstrainedSketch(name='__profile__', sheetSize=beam_x_l)

395 m.sketches['__profile__'].Line(point1=(0, 0.0),

396 point2=(beam_x_l, 0.0))

397 m.sketches['__profile__'].HorizontalConstraint(

398 addUndoState=False, entity=

399 m.sketches['__profile__'].geometry[2])

400 m.Part(dimensionality=THREE_D, name='Part-beam_x', type=

401 DEFORMABLE_BODY)

402 m.parts['Part-beam_x'].BaseWire(sketch=

403 m.sketches['__profile__'])

404 del m.sketches['__profile__']

405

406 m.ConstrainedSketch(name='__profile__', sheetSize=beam_z_l)

407 m.sketches['__profile__'].Line(point1=(0, 0.0),

408 point2=(beam_z_l, 0.0))

409 m.sketches['__profile__'].HorizontalConstraint(

410 addUndoState=False, entity=

411 m.sketches['__profile__'].geometry[2])

412 m.Part(dimensionality=THREE_D, name='Part-beam_z', type=

413 DEFORMABLE_BODY)

414 m.parts['Part-beam_z'].BaseWire(sketch=

415 m.sketches['__profile__'])

64

416 del m.sketches['__profile__']

417

418

419

420 ## Create fictitious beam part

421

422 m.ConstrainedSketch(name='__profile__', sheetSize=fic_beam_l)

423 m.sketches['__profile__'].Line(point1=(0, 0.0),

424 point2=(fic_beam_l, 0.0))

425 m.sketches['__profile__'].HorizontalConstraint(

426 addUndoState=False, entity=

427 m.sketches['__profile__'].geometry[2])

428 m.Part(dimensionality=THREE_D, name='Part-fic_beam_x', type=

429 DEFORMABLE_BODY)

430 m.parts['Part-fic_beam_x'].BaseWire(sketch=

431 m.sketches['__profile__'])

432 del m.sketches['__profile__']

433

434 m.ConstrainedSketch(name='__profile__', sheetSize=fic_beam_l)

435 m.sketches['__profile__'].Line(point1=(0, 0.0),

436 point2=(fic_beam_l, 0.0))

437 m.sketches['__profile__'].HorizontalConstraint(

438 addUndoState=False, entity=

439 m.sketches['__profile__'].geometry[2])

440 m.Part(dimensionality=THREE_D, name='Part-fic_beam_z', type=

441 DEFORMABLE_BODY)

442 m.parts['Part-fic_beam_z'].BaseWire(sketch=

443 m.sketches['__profile__'])

444 del m.sketches['__profile__']

445

446

447

448

449

450

451

452

453

454 # Step

455

456 if run_step:

457

458 def create_step(stepname,previousstep,steptype,\

459 maxeigenvalues=max_eigenvalues):

460

461 if steptype == 'Static':

462 m.StaticStep(name=stepname, previous=previousstep)

463 elif steptype == 'Frequency':

464 m.FrequencyStep(name=stepname, numEigen=maxeigenvalues, previous=

465 previousstep)

466

467 create_step('Step-stat', 'Initial', 'Static')

468 create_step('Step-freq', 'Step-stat', 'Frequency')

65

469

470

471

472

473

474

475

476

477

478 # Assembly

479

480 if run_assembly:

481

482 list_of_instances = []

483

484 def instance_to_list(instancename):

485 list_of_instances.append(instancename)

486

487 ## Corner columns

488

489 def create_instance_corner_column(cornernumber):

490

491 instancename = 'Part-corner_column-'+str(cornernumber)

492 instance_to_list(instancename)

493 rotationangle = 90.0*(cornernumber-1)

494 partname = 'Part-corner_column'

495 xpos, ypos, zpos = find_instance_coord(partname,instancename)

496

497 a.DatumCsysByDefault(CARTESIAN)

498 a.Instance(dependent=OFF, name=

499 instancename, part=

500 m.parts['Part-corner_column'])

501

502 a.rotate(angle=rotationangle, axisDirection=(0.0, 1.0,

503 0.0), axisPoint=(0.0, 0.0, 0.0), instanceList=(instancename,))

504

505 a.translate(instanceList=(

506 instancename,), vector=(xpos, ypos, zpos))

507

508 for i in range(1,5):

509 create_instance_corner_column(i)

510

511

512

513 ## End columns

514

515 def create_instance_end_column(sidenumber):

516

517 partname = 'Part-end_column'

518 rotationangle = 90.0*(sidenumber-1)

519

520 if sidenumber == 1 or sidenumber == 3:

521 numberofspans = number_of_spans_z

66

522 elif sidenumber == 2 or sidenumber == 4:

523 numberofspans = number_of_spans_x

524

525

526 for i in range(1,numberofspans):

527

528 instancename = 'Part-end_column-'+str(sidenumber)+'-'+str(i)

529 instance_to_list(instancename)

530 xpos,ypos,zpos = find_instance_coord(partname,instancename)

531

532 a.Instance(dependent=OFF, name=

533 instancename, part=m.parts['Part-end_column'])

534

535 a.rotate(angle=rotationangle, axisDirection=(0.0, 1.0,

536 0.0), axisPoint=(0.0, 0.0, 0.0), instanceList=(instancename,))

537

538 a.translate(instanceList=(

539 instancename,), vector=(xpos, ypos, zpos))

540

541 for i in range(1,5):

542 create_instance_end_column(i)

543

544

545

546 ## Internal columns

547

548 for i in range(1,number_of_spans_x):

549 for j in range(1,number_of_spans_z):

550

551 instance_name_x = 'Part-internal_column_x-'+str(i)+'-'+str(j)

552 instance_name_z = 'Part-internal_column_z-'+str(i)+'-'+str(j)

553

554 instance_to_list(instance_name_x)

555 instance_to_list(instance_name_z)

556

557 surface_name_x = 'Surf-internal_column_x-'+str(i)+'-'+str(j)

558 surface_name_z = 'Surf-internal_column_z-'+str(i)+'-'+str(j)

559

560 constraint_name = 'Constraint-internal_column-'+str(i)+'-'+str(j)

561

562 xpos = i*span_length_x

563 ypos = 0

564 zpos = j*span_length_z

565

566 # Create and translate both a x-column and a z-column

567

568 a.Instance(dependent=OFF, name=

569 instance_name_x, part=

570 m.parts['Part-internal_column_x'])

571 a.translate(instanceList=(

572 instance_name_x,), vector=(xpos, ypos, zpos))

573

574 a.Instance(dependent=OFF, name=

67

575 instance_name_z, part=

576 m.parts['Part-internal_column_z'])

577 a.translate(instanceList=(

578 instance_name_z,), vector=(xpos, ypos, zpos))

579

580

581

582

583 ## Beam parts x direction

584

585 for i in range(1,number_of_spans_x+1):

586 for j in range(1,number_of_spans_z+2):

587 for k in range(1,number_of_floors):

588

589 instance_name_x = 'Part-beam_x-'+str(k)+'-'+str(i)+'-'+str(j)

590 instance_name_fic_x_a = \

591 'Part-fic_beam_x-'+str(k)+'-'+str(i)+'-'+str(j)+'-a'

592 instance_name_fic_x_b = \

593 'Part-fic_beam_x-'+str(k)+'-'+str(i)+'-'+str(j)+'-b'

594

595 instance_to_list(instance_name_x)

596 instance_to_list(instance_name_fic_x_a)

597 instance_to_list(instance_name_fic_x_b)

598

599 translate_beam_x_x = fic_beam_l + span_length_x*(i-1)

600 translate_beam_x_y = storey_height*k

601 translate_beam_x_z = span_length_z*(j-1)

602

603 translate_fic_beam_x_a = span_length_x*(i-1)

604 translate_fic_beam_y_a = storey_height*k

605 translate_fic_beam_z_a = span_length_z*(j-1)

606

607 translate_fic_beam_x_b = span_length_x*i - fic_beam_l

608 translate_fic_beam_y_b = storey_height*k

609 translate_fic_beam_z_b = span_length_z*(j-1)

610

611 # Create regular beam in x-direction:

612

613 a.Instance(dependent=OFF, name=

614 instance_name_x, part=

615 m.parts['Part-beam_x'])

616 a.translate(instanceList=(

617 instance_name_x,), vector=(translate_beam_x_x, translate_beam_x_y,

618 translate_beam_x_z))

619

620 # Create fictitious beams in x-direction:

621

622 a.Instance(dependent=OFF, name=

623 instance_name_fic_x_a, part=

624 m.parts['Part-fic_beam_x'])

625 a.translate(instanceList=(

626 instance_name_fic_x_a,), vector=(translate_fic_beam_x_a,

translate_fic_beam_y_a,→֒

68

627 translate_fic_beam_z_a))

628

629 a.Instance(dependent=OFF, name=

630 instance_name_fic_x_b, part=

631 m.parts['Part-fic_beam_x'])

632 a.translate(instanceList=(

633 instance_name_fic_x_b,), vector=(translate_fic_beam_x_b,

translate_fic_beam_y_b,→֒

634 translate_fic_beam_z_b))

635

636

637 ## Beam parts z direction

638

639 for i in range(1,number_of_spans_x+2):

640 for j in range(1,number_of_spans_z+1):

641 for k in range(1,number_of_floors):

642

643 instance_name_z = 'Part-beam_z-'+str(k)+'-'+str(i)+'-'+str(j)

644 instance_name_fic_z_a = \

645 'Part-fic_beam_z-'+str(k)+'-'+str(i)+'-'+str(j)+'-a'

646 instance_name_fic_z_b = \

647 'Part-fic_beam_z-'+str(k)+'-'+str(i)+'-'+str(j)+'-b'

648

649 instance_to_list(instance_name_z)

650 instance_to_list(instance_name_fic_z_a)

651 instance_to_list(instance_name_fic_z_b)

652

653 translate_beam_z_x = span_length_x*(i-1)

654 translate_beam_z_y = storey_height*k

655 translate_beam_z_z = fic_beam_l + span_length_z*(j-1)

656

657 translate_fic_beam_x_a = span_length_x*(i-1)

658 translate_fic_beam_y_a = storey_height*k

659 translate_fic_beam_z_a = span_length_z*(j-1)

660

661 translate_fic_beam_x_b = span_length_x*(i-1)

662 translate_fic_beam_y_b = storey_height*k

663 translate_fic_beam_z_b = span_length_z*j - fic_beam_l

664

665 # Create regular beam in z-direction:

666

667 a.Instance(dependent=OFF, name=

668 instance_name_z, part=

669 m.parts['Part-beam_z'])

670 a.rotate(angle=270.0, axisDirection=(0.0, 1.0,

671 0.0), axisPoint=(0.0, 0.0, 0.0), instanceList=(instance_name_z,))

672 a.translate(instanceList=(

673 instance_name_z,), vector=(translate_beam_z_x, translate_beam_z_y,

674 translate_beam_z_z))

675

676 # Create fictitious beams in z-direction:

677

678 a.Instance(dependent=OFF, name=

69

679 instance_name_fic_z_a, part=

680 m.parts['Part-fic_beam_z'])

681 a.rotate(angle=270.0, axisDirection=(0.0, 1.0,

682 0.0), axisPoint=(0.0, 0.0, 0.0),

683 instanceList=(instance_name_fic_z_a,))

684 a.translate(instanceList=(

685 instance_name_fic_z_a,), vector=(translate_fic_beam_x_a,

686 translate_fic_beam_y_a, translate_fic_beam_z_a))

687

688 a.Instance(dependent=OFF, name=

689 instance_name_fic_z_b, part=

690 m.parts['Part-fic_beam_z'])

691 a.rotate(angle=270.0, axisDirection=(0.0, 1.0,

692 0.0), axisPoint=(0.0, 0.0, 0.0),

693 instanceList=(instance_name_fic_z_b,))

694 a.translate(instanceList=(

695 instance_name_fic_z_b,), vector=(translate_fic_beam_x_b,

696 translate_fic_beam_y_b, translate_fic_beam_z_b))

697

698

699

700 ## Merge instances to one part

701

702 SingleInstances_List = a.instances.keys()

703 a.InstanceFromBooleanMerge(name=partname_frame,

704 instances=([a.instances[SingleInstances_List[i]]

705 for i in range(len(SingleInstances_List))]), mergeNodes=ALL,

706 keepIntersections=ON, domain=GEOMETRY, originalInstances=DELETE)

707

708

709

710 ## Change name of instance

711

712 oldname_instance = a.instances.keys()[0]

713

714 a.features.changeKey(fromName=oldname_instance,

715 toName=instancename_frame)

716

717

718

719

720

721

722

723

724

725

726 # Property

727

728 if run_property:

729

730 ## Create GL30c material

731

70

732 m.Material(name='Material-GL30c')

733 m.materials['Material-GL30c'].Elastic(table=((E1, E2,

734 E3, Nu12, Nu13, Nu23, G12, G13, G23),), type=ENGINEERING_CONSTANTS)

735 m.materials['Material-GL30c'].Density(table=((density,

736),))

737

738

739

740 ## Create set for each original instance in new merged part

741

742 corner_column_sets = []

743 end_column_sets = []

744 internal_column_x_sets = []

745 internal_column_z_sets = []

746 beam_x_sets = []

747 beam_z_sets = []

748 fic_beam_x_sets = []

749 fic_beam_z_sets = []

750

751 def create_edge_set(x0,y0,z0,x1,y1,z1,setname):

752 m.parts[partname_frame].Set(edges=

753 m.parts[partname_frame].edges.

754 getByBoundingBox(x0,y0,z0,x1,y1,z1), name=setname)

755

756 def create_edge_set_column(orig_partname,orig_instancename):

757 iso_name = orig_instancename.replace('Part-','')

758 setname = 'Set-'+iso_name

759 xpos,ypos,zpos = find_instance_coord(orig_partname,orig_instancename)

760 create_edge_set(xpos,ypos,zpos,xpos,total_height,zpos,setname)

761 return setname

762

763 def create_edge_set_corner_column(orig_partname,orig_instancename):

764 setname = create_edge_set_column(orig_partname,orig_instancename)

765 corner_column_sets.append(setname)

766

767 def create_edge_set_end_column(orig_partname,orig_instancename):

768 setname = create_edge_set_column(orig_partname,orig_instancename)

769 end_column_sets.append(setname)

770

771 def create_edge_set_internal_column_x(orig_partname,orig_instancename):

772 setname = create_edge_set_column(orig_partname,orig_instancename)

773 internal_column_x_sets.append(setname)

774

775 def create_edge_set_internal_column_z(orig_partname,orig_instancename):

776 setname = create_edge_set_column(orig_partname,orig_instancename)

777 internal_column_z_sets.append(setname)

778

779 def create_edge_set_regular_beam(orig_partname,orig_instancename):

780 iso_name = orig_instancename.replace('Part-','')

781 setname = 'Set-'+iso_name

782 x0,y0,z0 = find_instance_coord(orig_partname,orig_instancename)

783 x1,y1,z1 = x0,y0,z0

784 direction = orig_partname[-1]

71

785 if direction == 'x':

786 x1 += beam_x_l

787 elif direction == 'z':

788 z1 += beam_z_l

789 create_edge_set(x0,y0,z0,x1,y1,z1,setname)

790 return setname

791

792 def create_edge_set_beam_x(orig_partname,orig_instancename):

793 setname = create_edge_set_regular_beam(orig_partname,orig_instancename)

794 beam_x_sets.append(setname)

795

796 def create_edge_set_beam_z(orig_partname,orig_instancename):

797 setname = create_edge_set_regular_beam(orig_partname,orig_instancename)

798 beam_z_sets.append(setname)

799

800 def create_edge_set_fic_beam(orig_partname,orig_instancename):

801 iso_name = orig_instancename.replace('Part-','')

802 setname = 'Set-'+iso_name

803 x0,y0,z0 = find_instance_coord(orig_partname,orig_instancename)

804 x1,y1,z1 = x0,y0,z0

805 direction = orig_partname[-1]

806 if direction == 'x':

807 x1 += fic_beam_l

808 elif direction == 'z':

809 z1 += fic_beam_l

810 create_edge_set(x0,y0,z0,x1,y1,z1,setname)

811 return setname

812

813 def create_edge_set_fic_beam_x(orig_partname,orig_instancename):

814 setname = create_edge_set_fic_beam(orig_partname,orig_instancename)

815 fic_beam_x_sets.append(setname)

816

817 def create_edge_set_fic_beam_z(orig_partname,orig_instancename):

818 setname = create_edge_set_fic_beam(orig_partname,orig_instancename)

819 fic_beam_z_sets.append(setname)

820

821 ### Corner columns

822

823 for i in [1,2,3,4]:

824 orig_partname = 'Part-corner_column'

825 orig_instancename = 'Part-corner_column-'+str(i)

826 create_edge_set_corner_column(orig_partname,orig_instancename)

827

828

829 ### End columns

830

831 for i in [1,2,3,4]:

832 if i==1 or i==3:

833 numberofspans = number_of_spans_z

834 elif i==2 or i==4:

835 numberofspans = number_of_spans_x

836 for j in range(1,numberofspans):

837 orig_partname = 'Part-end_column'

72

838 orig_instancename = 'Part-end_column-'+str(i)+'-'+str(j)

839 create_edge_set_end_column(orig_partname,orig_instancename)

840

841 ### Internal columns

842

843 for i in range(1,number_of_spans_x):

844 for j in range(1,number_of_spans_z):

845 orig_partname = 'Part-internal_column_x'

846 orig_instancename = 'Part-internal_column_x-'+str(i)+'-'+str(j)

847 create_edge_set_internal_column_x(orig_partname,orig_instancename)

848 orig_partname = 'Part-internal_column_z'

849 orig_instancename = 'Part-internal_column_z-'+str(i)+'-'+str(j)

850 create_edge_set_internal_column_z(orig_partname,orig_instancename)

851

852

853 ### Regular beams in x-direction

854

855 for i in range(1,number_of_spans_x+1):

856 for j in range(1,number_of_spans_z+2):

857 for k in range(1,number_of_floors):

858 orig_partname = 'Part-beam_x'

859 orig_instancename = 'Part-beam_x-'+str(k)+'-'+str(i)+'-'+str(j)

860 create_edge_set_beam_x(orig_partname,orig_instancename)

861

862 ### Regular beams in z-direction

863

864 for i in range(1,number_of_spans_x+2):

865 for j in range(1,number_of_spans_z+1):

866 for k in range(1,number_of_floors):

867 orig_partname = 'Part-beam_z'

868 orig_instancename = \

869 'Part-beam_z-'+str(k)+'-'+str(i)+'-'+str(j)

870 create_edge_set_beam_z(orig_partname,orig_instancename)

871

872 ### Fictitious beams in x-direction

873

874 for i in range(1,number_of_spans_x+1):

875 for j in range(1,number_of_spans_z+2):

876 for k in range(1,number_of_floors):

877 for l in ['a','b']:

878 orig_partname = 'Part-fic_beam_x'

879 orig_instancename = \

880 'Part-fic_beam_x-'+str(k)+'-'+str(i)+'-'+str(j)+'-'+l

881 create_edge_set_fic_beam_x(orig_partname,orig_instancename)

882

883 ### Fictitious beams in z-direction

884

885 for i in range(1,number_of_spans_x+2):

886 for j in range(1,number_of_spans_z+1):

887 for k in range(1,number_of_floors):

888 for l in ['a','b']:

889 orig_partname = 'Part-fic_beam_z'

890 orig_instancename = \

73

891 'Part-fic_beam_z-'+str(k)+'-'+str(i)+'-'+str(j)+'-'+l

892 create_edge_set_fic_beam_z(orig_partname,orig_instancename)

893

894 ### Create list of lists of sets

895

896 list_of_sets = [corner_column_sets,

897 end_column_sets,

898 internal_column_x_sets,

899 internal_column_z_sets,

900 beam_x_sets,

901 beam_z_sets,

902 fic_beam_x_sets,

903 fic_beam_z_sets]

904

905

906

907 ## Create sections

908

909 ### Corner column section

910

911 m.LProfile(a=column_h, b=column_h+column_b, name='Profile-corner_column',

912 t1=column_b, t2=column_b)

913 m.BeamSection(consistentMassMatrix=False, integration=

914 DURING_ANALYSIS, material='Material-GL30c', name='Section-corner_column',

915 poissonRatio=0.0, profile='Profile-corner_column', temperatureVar=LINEAR)

916

917 ### End column section

918

919 m.TProfile(b=column_h, h=column_h+column_b, l=column_h+column_b/2, name=

920 'Profile-end_column', tf=column_b, tw=column_b)

921 m.BeamSection(consistentMassMatrix=False, integration=

922 DURING_ANALYSIS, material='Material-GL30c', name='Section-end_column',

923 poissonRatio=0.0, profile='Profile-end_column', temperatureVar=LINEAR)

924

925 ### Internal column section

926

927 internal_column_area = 3*column_b*column_h

928

929 internal_column_i11 = 2/12*column_b*column_h**3 +\

930 1/12*column_b**3*column_h +\

931 2*column_b*column_h*((column_b+column_h)/2)**2

932

933 internal_column_i12 = 0

934

935 internal_column_i22 = 2/12*column_b**3*column_h +\

936 1/12*column_b*column_h**3

937

938 icj_a = float(np.max([column_b,column_h])/2)

939 icj_b = float(np.min([column_b,column_h])/2)

940

941 icj_a = float(np.max([0.625,0.49])/2)

942 icj_b = float(np.min([0.625,0.49])/2)

943

74

944

945 internal_column_j = 0 # this is wrong

946

947

948 m.GeneralizedProfile(area=internal_column_area, gammaO=0.0, gammaW=0.0,

949 i11=internal_column_i11, i12=internal_column_i12,

950 i22=internal_column_i22, j=internal_column_j, name=

951 'Profile-internal_column')

952

953 ### Internal column sections

954

955 m.RectangularProfile(a=column_b, b=2*column_h, name=

956 'Profile-internal_column_x')

957 m.BeamSection(consistentMassMatrix=False, integration=

958 DURING_ANALYSIS, material='Material-GL30c', name=

959 'Section-internal_column_x', poissonRatio=0.0, profile=

960 'Profile-internal_column_x', temperatureVar=LINEAR)

961

962 m.RectangularProfile(a=column_h, b=column_b, name=

963 'Profile-internal_column_z')

964 m.BeamSection(consistentMassMatrix=False, integration=

965 DURING_ANALYSIS, material='Material-GL30c', name=

966 'Section-internal_column_z', poissonRatio=0.0, profile=

967 'Profile-internal_column_z', temperatureVar=LINEAR)

968

969 ### Regular beam section

970

971 m.RectangularProfile(a=beam_b, b=beam_h, name='Profile-beam_regular')

972 m.BeamSection(consistentMassMatrix=False, integration=

973 DURING_ANALYSIS, material='Material-GL30c', name='Section-beam_regular',

974 poissonRatio=0.0, profile='Profile-beam_regular', temperatureVar=LINEAR)

975

976 ### Fictitious beam section

977

978 m.GeneralizedProfile(area=fic_beam_area, gammaO=0.0, gammaW=0.0,

979 i11=fic_beam_i11, i12=fic_beam_i12, i22=fic_beam_i22, j=fic_beam_j, name=

980 'Profile-fic_beam')

981 m.BeamSection(alphaDamping=0.0, beamShape=CONSTANT,

982 betaDamping=0.0, centroid=(0.0, 0.0), compositeDamping=0.0,

983 consistentMassMatrix=False, density=density_fic_beam, dependencies=0,

integration=→֒

984 BEFORE_ANALYSIS, name='Section-fic_beam', poissonRatio=Nu_fic_beam, profile=

985 'Profile-fic_beam', shearCenter=(0.0, 0.0), table=((E_fic_beam, G_fic_beam),),

986 temperatureDependency=OFF, thermalExpansion=OFF)

987

988

989

990 ## Assign beam orientation and section

991

992 def assign_beam_orientation(setname,vector):

993

994 m.parts[partname_frame].assignBeamSectionOrientation(method=

995 N1_COSINES, n1=vector, region=

75

996 m.parts[partname_frame].sets[setname])

997

998 def assign_section(set_name,section_name):

999

1000 m.parts[partname_frame].SectionAssignment(offset=0.0,

1001 offsetField='', offsetType=MIDDLE_SURFACE, region=

1002 m.parts[partname_frame].sets[set_name],

1003 sectionName=section_name, thicknessAssignment=FROM_SECTION)

1004

1005

1006 column_orientation = [(0,0,1),

1007 (1,0,0),

1008 (0,0,-1),

1009 (-1,0,0)]

1010

1011 for i in range(len(corner_column_sets)):

1012 setname = corner_column_sets[i]

1013 orientation = column_orientation[i]

1014 assign_beam_orientation(setname,orientation)

1015 assign_section(setname,'Section-corner_column')

1016

1017 for i in range(len(end_column_sets)):

1018 setname = end_column_sets[i]

1019 sidenumber = int(setname[-3])-1

1020 orientation = column_orientation[sidenumber]

1021 assign_beam_orientation(setname,orientation)

1022 assign_section(setname,'Section-corner_column')

1023

1024 for i in range(len(internal_column_x_sets)):

1025 setname = internal_column_x_sets[i]

1026 orientation = (0,0,-1)

1027 assign_beam_orientation(setname,orientation)

1028 assign_section(setname,'Section-internal_column_x')

1029

1030 for i in range(len(internal_column_z_sets)):

1031 setname = internal_column_z_sets[i]

1032 orientation = (0,0,-1)

1033 assign_beam_orientation(setname,orientation)

1034 assign_section(setname,'Section-internal_column_z')

1035

1036 for setname in beam_x_sets:

1037 assign_beam_orientation(setname,(0,0,-1))

1038 assign_section(setname,'Section-beam_regular')

1039

1040 for setname in beam_z_sets:

1041 assign_beam_orientation(setname,(1,0,0))

1042 assign_section(setname,'Section-beam_regular')

1043

1044 for setname in fic_beam_x_sets:

1045 assign_beam_orientation(setname,(0,0,-1))

1046 assign_section(setname,'Section-fic_beam')

1047

1048 for setname in fic_beam_z_sets:

76

1049 assign_beam_orientation(setname,(1,0,0))

1050 assign_section(setname,'Section-fic_beam')

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061 # Interaction

1062

1063 if run_interaction:

1064

1065 ## Internal columns

1066

1067 for i in range(1,number_of_spans_x):

1068 for j in range(1,number_of_spans_z):

1069

1070 masterset = 'Set-internal_column_x-'+str(i)+'-'+str(j)

1071 slaveset = 'Set-internal_column_z-'+str(i)+'-'+str(j)

1072 tiename = 'Constraint-internal_column-'+str(i)+'-'+str(j)

1073

1074 m.Tie(adjust=ON, master=

1075 a.instances[instancename_frame].sets[masterset]

1076 , name=tiename, positionToleranceMethod=COMPUTED, slave=

1077 a.instances[instancename_frame].sets[slaveset]

1078 , thickness=ON, tieRotations=ON)

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089 # Mesh

1090

1091 if run_mesh:

1092

1093

1094

1095 def create_mesh(orig_partname,orig_instancename,elementsize,elementtype):

1096

1097 iso_name = orig_partname.replace('Part-','')

1098

1099 x0,y0,z0 = find_instance_coord(orig_partname,orig_instancename)

1100

1101 if ('column' in orig_partname):

77

1102 x1,y1,z1 = x0,y0+total_height,z0

1103 elif ('Part-beam_x' in orig_partname):

1104 x1,y1,z1 = x0+beam_x_l,y0,z0

1105 elif ('Part-beam_z' in orig_partname):

1106 x1,y1,z1 = x0,y0,z0+beam_z_l

1107 elif ('Part-fic_beam_x' in orig_partname):

1108 x1,y1,z1 = x0+fic_beam_l,y0,z0

1109 elif ('Part-fic_beam_z' in orig_partname):

1110 x1,y1,z1 = x0,y0,z0+fic_beam_l

1111

1112 m.parts[partname_frame].seedEdgeBySize(constraint=FINER,

1113 deviationFactor=0.1, edges=

1114 m.parts[partname_frame].edges.

1115 getByBoundingBox(x0,y0,z0,x1,y1,z1), size=elementsize)

1116

1117 m.parts[partname_frame].setElementType(elemTypes=(ElemType(

1118 elemCode=elementtype, elemLibrary=STANDARD),), regions=(

1119 m.parts[partname_frame].edges.

1120 getByBoundingBox(x0,y0,z0,x1,y1,z1),))

1121

1122 m.parts[partname_frame].generateMesh()

1123

1124

1125 for lists in list_of_sets:

1126 for setname in lists:

1127

1128 orig_partname = 'Part-'+setname.partition('-')[2].partition('-')[0]

1129 orig_instancename = setname.replace('Set','Part')

1130

1131 if ('column' in orig_partname):

1132 meshsize,elementtype = column_mesh_size,column_element_type

1133 elif ('fic' in orig_partname):

1134 meshsize,elementtype = fic_beam_mesh_size,fic_beam_element_type

1135 else:

1136 meshsize,elementtype = reg_beam_mesh_size,reg_beam_element_type

1137

1138 create_mesh(orig_partname,orig_instancename,meshsize,elementtype)

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149 # Load

1150

1151 if run_load:

1152

1153 def create_displace_BC(setname,BCname,stepname,tieddofs):

1154

78

1155 U1,U2,U3,UR1,UR2,UR3 = UNSET,UNSET,UNSET,UNSET,UNSET,UNSET

1156

1157 if 'u1' in tieddofs:

1158 U1=SET

1159 if 'u2' in tieddofs:

1160 U2=SET

1161 if 'u3' in tieddofs:

1162 U3=SET

1163 if 'ur1' in tieddofs:

1164 UR1=SET

1165 if 'ur2' in tieddofs:

1166 UR2=SET

1167 if 'ur3' in tieddofs:

1168 UR3=SET

1169

1170 m.DisplacementBC(amplitude=UNSET, createStepName=stepname,

1171 distributionType=UNIFORM, fieldName='', localCsys=None, name=BCname,

1172 region=

1173 a.instances[instancename_frame].sets[setname]

1174 , u1=U1, u2=U2, u3=U3, ur1=UR1, ur2=UR2, ur3=UR3)

1175

1176 def create_point_load(setname,loadname,stepname,magnitudevector):

1177

1178 m.ConcentratedForce(cf1=magnitudevector[0], cf2=magnitudevector[1],

1179 cf3=magnitudevector[2],

1180 createStepName=stepname,

1181 distributionType=UNIFORM, field='', localCsys=None, name=loadname, region=

1182 a.instances[instancename_frame].sets[setname])

1183

1184 ## Corner fixed to ground

1185

1186 Create_Node_Set_ByBoundingBox(partname_frame,

1187 0, 0, 0,

1188 number_of_spans_x*span_length_x, 0, number_of_spans_z*span_length_z,

1189 'Set-ground_nodes')

1190

1191 create_displace_BC('Set-ground_nodes','BC-ground_nodes','Initial',\

1192 ['u1','u2','u3','ur1','ur2','ur3'])

1193

1194 ## Point load

1195

1196 Create_Node_Set_ByBoundingBox(partname_frame,

1197 0, total_height, 0,

1198 0, total_height, 0,

1199 'Set-point_load_node')

1200

1201 create_point_load('Set-point_load_node','Load-point','Step-stat',[100e3,0,0])

1202

1203

1204

1205

1206

1207

79

1208

1209

1210

1211

1212 # Job

1213

1214 if run_job:

1215

1216 def create_and_run_job(jobname='Job-Tall_timber_building', run=True, \

1217 nCpu=1, desc=''):

1218 '''

1219 Creates a job and deletes any previous job with same name

1220

1221 nCpu = Number of processors [int]

1222 dec = Description of job [str]

1223 '''

1224

1225 if os.path.exists(jobname+'.lck'):

1226 os.remove(jobname+'.lck')

1227

1228 mdb.Job(name=jobname, model=modelname, numCpus=nCpu,

1229 numDomains=nCpu, description=desc)

1230 if run:

1231 mdb.jobs[jobname].submit(consistencyChecking=OFF)

1232 mdb.jobs[jobname].waitForCompletion()

1233

1234 create_and_run_job()

1235

80

	Preface
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	WoodSol
	Description of thesis
	Limitations of thesis

	Theory
	Timber material
	Mechanical properties
	Timber and environment
	Glued laminated timber

	Moment resisting frame systems
	Threaded rods
	Rotational stiffness of a semi-rigid connection
	Abaqus CAE
	Element types
	Scripting in Abaqus

	Moment resisting connection
	One-sided connection
	Timber parts
	Steel parts

	Two-sided connection
	Timber parts
	Steel parts

	Numerical model of connection
	Choice of software
	Choice of approach to create the model
	Model overview
	Parameter values

	Numerical model of tall timber building
	Model overview
	Parameter values

	Results and discussion
	Numerical model of connection
	Results
	Discussion

	Numerical model of tall timber building
	Results
	Discussion

	Conclusion and recommendations for further work
	Conclusion
	Recommendations for further work

	Bibliography
	Appendix
	Parameters of single MRC numerical model
	Parameters of tall timber building model
	Script of single MRC numerical model
	Script of tall timber building numerical model

