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Abstract
This paper investigates the problem of simultaneously predicting multiple binary responses by utilizing a shared set of
covariates. Our approach incorporates machine learning techniques for binary classification, without making assumptions
about the underlying observations. Instead, our focus lies on a group of predictors, aiming to identify the one that minimizes
prediction error. Unlike previous studies that primarily address estimation error, we directly analyze the prediction error
of our method using PAC-Bayesian bounds techniques. In this paper, we introduce a pseudo-Bayesian approach capable
of handling incomplete response data. Our strategy is efficiently implemented using the Langevin Monte Carlo method.
Through simulation studies and a practical application using real data, we demonstrate the effectiveness of our proposed
method, producing comparable or sometimes superior results compared to the current state-of-the-art method.

Keywords Binary responses · Low-rank predictors · PAC-Bayesian inequalities · Langevin Monte Carlo · Missing data

1 Introduction

The relationship between multiple response variables and a
set of predictors has been a topic of ongoing research and
interest in the literature, with numerous studies dedicated
to understanding and exploring this connection. One area
of particular interest in this field is the use of reduced rank
regression, which involves using a low-rank constraint to lin-
early connect the response variables and the predictors, see
e.g. Izenman (2008), Cook (2018), Reinsel et al. (2023) and
Giraud (2021). This approach has been widely studied and
applied, with numerousworks published on the topic, includ-
ing those by Anderson (1951), Izenman (1975), Bunea et al.
(2011),Geweke (1996), andmany others. From frequentist to
Bayesian approaches, there have been a wide range of meth-
ods and techniques employed to analyze and model these
relationships, Corander andVillani (2004), Chakraborty et al.
(2020), Alquier (2013), Goh et al. (2017), Yang et al. (2020),
Kleibergen and Paap (2002), Chen et al. (2013), She and
Chen (2017).
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However, despite the extensive research in this area, most
studies have focused on real-valued responses. Inmany appli-
cations, the entries of the response matrix are binary, that
is, they are in the set {−1, 1}. For example, the treatment
responses from multiple drugs can be recoded as binary
or categorical when measured from each cell line, as seen
in studies by Hayes et al. (2006), Greenlund et al. (2005),
Mishra and Müller (2022). This highlights the need for fur-
ther research on the use of binary or categorical response
variables in reduced rank regression and other multivariate
modeling techniques.

The problem of modeling multiple binary response vari-
ables has received some limited attention in recent years,
with few studies proposing reduced-rank regression mod-
els as a solution. One notable example is the paper by Luo
et al. (2018), which proposed amixed-outcome reduced-rank
regression model to handle response matrices that include
both binary and count data, and also addressed the issue of
missing data in the responses. Another recent study, carried
out independently of Luo et al. (2018), is the paper by Park
et al. (2022), which additionally considered row-wise sparse
constraints in addition to the low-rank assumption, but only
for fully observed binary response matrices. The main idea
behind these studies is to assume a marginal logistic regres-
sion model to relate the binary response and the covariates,
and then employ a penalized maximum likelihood method.
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However, the studies in Luo et al. (2018) and Park et al.
(2022) primarily focus on recovering the parameter matrix
of interest, and provide estimation error rates for their esti-
mators. While their results demonstrate that their estimators
are consistent when estimating a low-rank matrix, they do
not provide any guarantee on the prediction error or misclas-
sification error. This highlights the need for further research
in this area, particularly in terms of developing methods that
not only accurately estimate the parameter matrix, but also
provide guarantees on the performance of predictions and
classification.

One of the key challenges in addressing the problem of
multiple binary responses is the lack of robust and gener-
alizable models that can accurately predict and classify the
outcomes. In this paper, we aim to address this gap by taking
a machine learning approach and adopting a classification-
based method to deal with binary output. Unlike traditional
methods that rely on parametric models, we will consider
a set of prediction matrices and seek to find the one that
yields the best prediction error. This approach is built on the
principles of statistical learning theory (Vapnik 1998), where
the zero–one loss is used as a measure of prediction error,
and the risk of the classifier is controlled by a PAC (proba-
bly approximately correct) bound. However, the non-convex
nature of the zero–one loss function makes it computation-
ally intractable.An alternative is the use of a convex surrogate
such as the hinge loss,whichwas introduced inZhang (2004),
has been shown to be effective in a variety of machine learn-
ing tasks and has the added benefit of being computationally
efficient. By leveraging this method, we aim to provide a
robust and generalizable model for predicting and classify-
ing multiple binary responses.

In this work, we propose a novel approach to address-
ing the problem of multiple binary responses that combines
elements of both Bayesian and machine learning methodolo-
gies. Specifically, we propose a pseudo-Bayesian approach
that utilizes a notion of risk based on the hinge loss, rather
than relying on a likelihood function. Our approach is based
on the principles of PAC-Bayesian theory (Shawe-Taylor and
Williamson 1997; McAllester 1998; Herbrich and Graepel
2002; Catoni 2007; Dalalyan and Tsybakov 2008; Seldin
et al. 2012; Alquier et al. 2016; Seldin and Tishby 2010; Ger-
main et al. 2015), which provides theoretical guarantees on
the prediction and misclassification error for our method. It
is worth mentioning that using loss functions in replacing the
likelihood is becoming popular in the so-called generalized
Bayesian inference in recent years as documented for exam-
ple in Matsubara et al. (2022), Jewson and Rossell (2022),
Yonekura and Sugasawa (2023), Medina et al. (2022), Grün-
wald and Van Ommen (2017), Bissiri et al. (2016), Lyddon
et al. (2019), Syring and Martin (2019).

The use of a hinge loss-based risk function allows us to
overcome some of the limitations of traditional likelihood-
based Bayesian models, particularly when dealing with
binary response variables. Unlike traditional likelihood func-
tions, which can be difficult to model and computationally
intensive to compute, the hinge loss function is convex and
can be easily optimized. To further improve the efficiency
and practicality of our proposed approach,we also develop an
efficient gradient-based samplingmethod based on Langevin
Monte Carlo. This method allows us to approximate the
computation of our proposedmethod,making itmore compu-
tationally tractable and suitable for large-scale applications.
Overall, our proposed approach offers a novel and promis-
ing approach to modeling and predicting multiple binary
responses, providing both theoretical guarantees and prac-
tical computational methods for its implementation.

Similar to the approach proposed in Luo et al. (2018),
our proposed method has the capability to handle incom-
plete response matrices. This is achieved by extending our
approach to account for missing data in the response matrix,
which allows for greater flexibility and applicability of our
method. The extension of our method to handle missing
data is relatively simple and does not introduce any addi-
tional complexity to the overall approach. This allows for
our method to be applied to a wider range of datasets with
incomplete or missing data. This capability is especially use-
ful in real-world applications, where missing data is often
present and traditional methods may struggle to handle such
cases effectively. For example, in studies involving medical
treatments, it is not uncommon for certain patients to drop
out of the study, resulting in missing data in the response
matrix. Our proposedmethod allows for the inclusion of such
missing data, providing a more comprehensive and realistic
analysis of the treatment outcomes. Additionally, in obser-
vational studies, missing data can be a common problem due
to various factors such as non-response, measurement error
or data collection issues. Our proposed method’s ability to
handle missing data would be beneficial in these scenarios
as well.

The remainder of the paper is structured as follows.
Section2 provides a detailed description of the problem
statement and presents our proposed method, along with
its theoretical results. An extension to handle incomplete
response data is also discussed in this section. In Sect. 3, we
describe the Langevin Monte Carlo method used to compute
our proposed method and present numerical studies on both
synthetic and real datasets to demonstrate its performance.
Conclusions and discussions are given in Sect. 4. All techni-
cal proofs are gathered in Appendix A.
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2 Problem andmethod

2.1 Problem statement

Weformally consider the followingmultiple binary responses
with a set of common covariates problem: for units i =
1, . . . , n with covariate vectors xi ∈ R

p, there exist q binary
responses yki ∈ {−1, 1} for k = 1, . . . , q. From a classifica-
tion perspective, it would be natural to use a linear predictor
as a function fromR

p to {−1, 1} in the following way: when
xi is revealed, M (k) ∈ R

p predicts yki by sign(xi M
(k)).

For the matrix notation, let’s define the binary response
matrix Y = [y1, . . . , yq ] ∈ {−1, 1}n×q and the covari-
ate matrix X = [x�

1 , . . . , x�
n ]� ∈ R

n×p. With multiple
responses, the predictors can be written in matrix-form as
M = [M (1), . . . , M (q)] ∈ R

p×q .
The ability of the predictor to predict a new entry of the

matrix is then assessed by the risk

R(M) = E
[
1(Y11·(XM)11<0)

]
,

and its empirical counterpart is:

r(M) = 1

nq

n∑

i=1

q∑

j=1

1(Yi j (XM)i j<0).

From the standard approach in classification theory (Vapnik
1998; Devroye et al. 1996), the best possible classifier is the
Bayes classifier, MB , such that

R(MB) = inf
M

R(M).

The anticipated property of the Bayes matrix, MB , is that
it exhibits a low-rank structure or can be effectively approx-
imated by a low-rank matrix.

For the sake of simplicity, we put R = R(MB) and r =
r(MB). The goal is to find an estimator M̂ that yields the
minimal excess risk R(M̂) − R.

While the risk R(M) has a clear interpretation, working
with its empirical counterpart r(M) is challenging as it is
non-smooth and non-convex. A common approach to over-
come this issue is to replace the empirical risk with a convex
surrogate (Zhang 2004). In this paper, we primarily focus on
the hinge loss, which results in the following hinge empirical
risk:

rh(M) = 1

nq

n∑

i=1

q∑

j=1

(1 − Yi j (XM)i j )+ ,

where (a)+ := max(a, 0),∀a ∈ R.

2.2 Estimation procedure

Building upon the work previously done in the field of PAC-
Bayesian theory, we define the pseudo-posterior distribution
as follows:

ρ̂λ(M) ∝ exp[−λrh(M)]π(M)

where λ > 0 is a tuning parameter that will be discussed later
and π(M) is a prior distribution, given in (1), that promotes
(approximately) low-rankness on the parameter matrix M .

The term ρ̂λ, known as the Gibbs posterior, can be
interpreted as the posterior distribution under a Bayesian
framework, where π represents the prior distribution for the
parameter M . However, this Bayesian interpretation is not
essential for understanding the approach, as it relies on the
proportionality of exp[−λrh(M)] to a likelihood function.
The motivation behind defining ρ̂λ stems from the minimiza-
tion problem in Lemma 1 rather than Bayesian principles. It
is not necessary to have a likelihood function or a complete
model; only the empirical risk based on the hinge loss func-
tion is required.

Nonetheless, we still refer to π as the prior and ρ̂λ as the
pseudo-posterior. The measure ρ̂λ can be seen as an adjusted
version of π . Comparing two parameters, m1 and m2, if
rh(m1) < rh(m2), then exp[−λrh(m1)] > exp[−λrh(m2)]
for any λ > 0. This implies that, relative to π , ρ̂λ assigns
more weight to m1 than to m2. The adjustment in the dis-
tribution thus favors the parameter value that results in a
smaller in-sample hinge empirical risk. The tuning param-
eter λ controls the degree of adjustment. The choice of λ

will be further explored in subsequent sections. This pseudo-
Bayesian approach has been previously studied in various
low-matrix estimation problems, such as Alquier (2013),
Mai and Alquier (2017), Mai and Alquier (2015), Cottet and
Alquier (2018), Mai (2023).

In thiswork,we have opted to use a spectral scaled Student
prior distribution, as follows, with a parameter τ > 0,

π(M) ∝ det(τ 2Ip + MMᵀ)−(p+q+2)/2. (1)

This prior can induce low-rankness of matrices M , as it can
be verified that π(M) ∝ ∏p

j=1(τ
2 + s j (M)2)−(p+q+2)/2,

where s j (M) denotes the j th largest singular value of M .
It means that this prior follows a scaled Student distribution
evaluated at s j (M) which induces approximately sparsity
on the s j (M) (Dalalyan and Tsybakov 2012). Thus, under
this prior distribution, most of the s j (M) are close to 0 and
that M is approximately low-rank. This prior has been used
before in image denoising (Dalalyan 2020), bilinear regres-
sion (Mai 2023; Yang et al. 2018) for matrix completion.
Even though this prior distribution is not conjugate in our
problem, it is advantageous to utilize the Langevin Monte
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Carlo, a sampling method that relies on gradients for imple-
mentation purposes.

2.3 Theoretical results

In this work, we make use of the Mammen and Tsybakov’s
margin assumption in Mammen and Tsybakov (1999).

Assumption 1 (Margin assumption) We assume that there
is a constant C ≥ 1 such that:

E

[(
1Y (XM)≤0 − 1Y (XMB )≤0

)2] ≤ C[R(M) − R].

As an example, in the noiseless case where Y = sign(XMB)

almost surely, we have that

E

[(
1Y (XM)≤0 − 1Y (XMB )≤0

)2]

= E

[
12
Y (XM)≤0

]
= E

[
1Y (XM)≤0

] = R(M)

= R(M) − R.

Thus, the margin assumption is satisfied with C = 1.
We now present a theoretical bound on the expected risk

for a random estimator of M generated from the pseudo-
posterior ρ̂λ(M).

Theorem 1 Assume that Assumption 1 is satisfied and put
r∗ = rank(MB) and with τ 2 = (p + q)/(2q2 pn‖X‖2

F
).

Then, for any ε ∈ (0, 1) and for λ = 2nq/(3C + 2), ς ∈
(0, 1), with probability at least 1 − 2ε,

∫
Rdρ̂λ

≤ 2.5R + �C,ς

×
r∗(q + p + 2) log

(
1 + q‖X‖F ‖MB‖F

√
np√

(p+q)r∗

)
+ log(1/ε)

nq
,

where �C,ς is a known constant that depends only on ς,C.

The proof of the above theorem is given in Appendix A.
The technical argument used in the proof is known as
“PAC-Bayesian bounds", introduced in Shawe-Taylor and
Williamson (1997), McAllester (1998) as a way to provide
empirical bounds on the prediction risk ofBayesian-type esti-
mators. However, it is well known that the PAC-Bayesian
approach also comes with a set of powerful technical tools to
establish non-asymptotic bounds as documented in Catoni
(2003, 2004, 2007) that have been explored in this paper.
For an in-depth exploration of PAC-Bayes bounds, including

recent surveys and advancements, readers are encouraged to
refer to the following references Guedj (2019) and Alquier
(2021).

Remark 1 It is important to mention that the result of the
above theorem has an adaptive characteristic in the sense that
the estimator does not depend on the rank r∗ = rank(MB).
When the rank r∗ is small, the prediction error will be similar
to theBayes error, R, evenwith a small sample size. This type
of result is commonly referred to as an ‘oracle inequality’ as
it suggests that our estimator performs as well as if we had
access to the rank of MB through an oracle. Additionally, it
is noteworthy that r∗ �= 0 is not a necessary condition in the
above formula. If r∗ = 0, we interpret 0 log(1 + 0/0) as 0.

Corollary 2 In the case that Y = sign(XMB) a.s., for any
ε ∈ (0, 1) and forλ = 2nq/5, with probability at least 1−2ε,

∫
Rdρ̂λ

≤ �′
1,ς

r∗(q + p + 2) log

(
1 + q‖X‖F ‖MB‖F

√
np√

(p+q)r∗

)
+ log(1/ε)

nq
(2)

where �′
C,ς = �1,ς .

Remark 2 The Theorem 1 and Corollary 2 presented in this
study offer novel perspectives on the prediction error, which
complement the previously established theoretical results
on estimation errors in Luo et al. (2018) and Park et al.
(2022). These theoretical inequalities allow for the com-
parison of the out-of-sample error of our predictor to the
optimal one, and demonstrate that the prediction error rate is
r∗ max(q, p)/nq, with logarithmic terms included. This is a
noteworthy contribution to the field as it provides a compre-
hensive understanding of the relationship between the rank
of MB and the prediction error.

It is worth mentioning that the utilization of Assumption
1 plays a crucial role in achieving a ’fast’ prediction rate,
as demonstrated in Theorem 1. The initial introduction of
this assumption was made inMammen and Tsybakov (1999)
for classification purposes, and it has since been adopted
for ranking tasks in subsequent works such as Clémençon
et al. (2008), Robbiano (2013), Ridgway et al. (2014). In
the forthcoming proposition, we present a slower rate result
without relying on the usage of Assumption 1. The proof is
also given in Appendix A.

Proposition 1 Put r∗ = rank(MB) and with τ 2 = (p +
q)/(2q2 pn‖X‖2

F
). Then, for any ε ∈ (0, 1) and for
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λ = 2
√
nq/(p + q + 2), ς ∈ (0, 1), with probability at

least 1 − 2ε,

∫
Rdρ̂λ

≤ 2R + 	ς

×
r∗√(q + p + 2) log

(
1 + q‖X‖F ‖MB‖F

√
np√

(p+q)r∗

)
+ log(1/ε)

√
nq

,

where 	ς is a known constant depending only on ς .

2.4 Dealing with imcomplete responses

As previously mentioned in the introduction, the method
proposed in Luo et al. (2018) has the capability to handle
incomplete response data. Similarly, our proposed approach
can also be easily and naturally extended to address the sce-
nariowhere the responsematrixY containsmissing data. The
ability to handle missing data is an important consideration,
as it is a common issue in many real-world datasets. This can
be especially useful in cases where data collection is difficult
or expensive, as it allows for the use of all available data,
rather than discarding observations with missing data.

Let 
 = {(i, k) : yik is observed i ∈ {1, . . . , n}, k ∈
{1, . . . , q}} be the index set of the observed entries of the
binary responsematrix Y . Here, we have that |
| = m < nq.
We assume that we observe a design matrix X and m i.i.d
random pairs (O1,Y1), . . . , (Om,Ym). The variables Oi are
i.i.d copies of a random variableO having distribution on the
set {1, . . . , n} × {1, . . . , p}.

The risk in this case is given as

R(M) = E

[
1(Y1·(XM)O1<0)

]
,

and its empirical counterpart is:

rm(M) = 1

m

m∑

i=1

1(Yi (XM)Oi <0).

The hinge empirical risk is now as

rhm(M) = 1

m

m∑

i=1

(1 − Yi (XM)Oi )+ .

The subsequent theorem establishes a theoretical bound
that links the integrated risk of the estimator to the minimum
attainable risk achieved by the Bayes classifier, MB .

Theorem 3 Assume that Assumption 1 is satisfied and put
r∗ = rank(MB). Then, for any ε ∈ (0, 1) and for λ =

2m/(3C+2), τ 2 = (p+q)/(2qpm‖X‖2F ), υ ∈ (0, 1), with
probability at least 1 − 2ε,

∫
Rdρ̂λ

≤ 2.5R + �′
C,υ

×
r∗(q + p + 2) log

(
1 + q‖X‖F ‖MB‖F

√
mp√

(p+q)r∗

)
+ log(1/ε)

m

where�′
C,υ is known constant that depends only on the υ,C.

Remark 3 The message of Theorem 3 lies in its ability to
give a finite sample bound and to demonstrate that our esti-
mate remains effective in a non-asymptotic scenariowhen the
intrinsic dimension (i.e., the rank) is relatively small in rela-
tion to m. To clarify this point, consider the scenario where
p is a function of m that increases as m increases. In this
scenario, a traditional asymptotic approach would not pro-
vide useful information, but our bounds still provide valuable
insights, as long as the rank of the parameter matrix is suffi-
ciently small in relation to m.

The selection of λ in our results is based on optimizing an
upper bound on the risk R (as presented in the proofs of the
theorems, given in Appendix A). However, it is important to
keep in mind that this choice may not always be the most
suitable option in practice, even though it provides a reliable
estimate of the magnitude of λ. To ensure optimal perfor-
mance, it is recommended to use cross-validation to adjust
the temperature parameter correctly.

3 Numerical studies

3.1 Implementation and comparedmethods

Implementation

In this section, we introduce the use of the Langevin Monte
Carlo (LMC) algorithm as a method for sampling from the
(pseudo) posterior. The LMC algorithm is a gradient-based
method for sampling from a distribution.

First, a constant step-size unadjusted LMC algorithm, as
described in Durmus and Moulines (2019), is proposed. The
algorithm starts with an initial matrix M0 and uses the recur-
sion:

Mk+1 = Mk − h∇ log ρ̂λ(Mk) + √
2hNk k = 0, 1, . . .

(3)

where h > 0 is the step-size and N0, N1, . . . are independent
random matrices with i.i.d standard Gaussian entries. When
the step-size h is not small enough, the sum can explode

123



  136 Page 6 of 15 Statistics and Computing           (2023) 33:136 

Roberts and Stramer (2002), so a Metropolis-Hastings (MH)
correction is included in the algorithm. This guarantees con-
vergence to the desired distribution, but slows down the
algorithm due to the additional acception/rejection step at
each iteration.

The update rule in (3) is now considered as a proposal for
a new candidate,

M̃k+1 = Mk − h∇ log ρ̂λ(Mk) + √
2h, Nk, k = 0, 1, . . . ,

(4)

This proposal is accepted or rejected according to the MH
algorithm with probability:

min

{

1,
ρ̂λ(M̃k+1)q(Mk |M̃k+1)

ρ̂λ(Mk)q(M̃k+1|Mk)

}

,

where q(x ′|x) ∝ exp
(−‖x ′ − x + h∇ log ρ̂λ(x)‖2F/(4 h)

)

is the transition probability density from x to x ′. This
is known as the Metropolis-adjusted Langevin algorithm
(MALA). It guarantees the convergence to the (pseudo)
posterior and provides a way to choose the step-size h.
Unlike random-walk MH, MALA usually proposes moves
into regions of higher probability, which are more likely to
be accepted. The step-size h for MALA is chosen such that
the acceptance rate is approximate 0.5 following Roberts and
Rosenthal (1998), while the step-size for LMC in the same
setting is chosen smaller than for MALA.

Compared methods

We will assess the effectiveness of our proposed methods by
comparing them to Bayesian approaches that rely on logistic
regression.More specifically, it is nowassumed thatY |X = 1
with probability f (XM) and Y |X = −1 with probability
1− f (XM), where f (·) is the link function, f (x) = ex/(1+
ex ). In this case the pseudo-likelihood exp(−λr�(M)), with
λ = nq, is exactly equal to the likelihood of the logistic
model. Here,

r�(M) =
∑

i j

logit(Y XMi j )/(nq), and

logit(u) = log(1 + e−u)

is the logistic loss. The prior distribution is exactly the same
as in previous sections.

As studied in Zhang (2004), the logistic loss can serve as a
convex alternative to the hinge loss for approximating the 0-1
loss. However, it is worth noting that employing the logistic
loss may lead to a slower convergence rate compared to the
hinge loss (Zhang 2004).

In this study, we evaluate the performance of our pro-
posed methods, LMC-H and MALA-H, in comparison to

three other alternatives: (1) LMC-logit, (2) MALA-logit
(methods based on Bayesian logistic regression) and (3) the
current state-of-the-art method mRRR. The mRRR method,
which was proposed in Luo et al. (2018), is a frequentist
approach and its implementation can be found in the R pack-
age rrpack Chen et al. (2022).

3.2 Simulation studies

We consider different scenarios of data generation to assess
the performance of our method. The sample size is fixed as
n = 100, while we vary the dimension of the covariates and
responses as q = 8, p = 12 and q = 20, p = 50. The entries
of the covariate matrix X are simulated fromN (0, 1). More
specifically, we consider two scenarios for the true parameter
matrix M∗:

• First, it is a rank-2 matrix that is a product of two rank-
2 matrices, i.e M∗ = Ap×2B�

q×2, where A’s and B’s
entries are iid drawn from N (0, 1);

• Second, it is an approximate rank-2 matrix. To cre-
ate an approximate rank-2 matrix, we first simulate a
rank-2 matrix M ′ as before and then add some noise as
M∗ = 2M ′ + N , where entries of N are simulated from
N (0, 0.1).

Then we consider the following settings to obtain the
responses:

• Setting I

Y = sign(XM∗ + E)B.

• Setting II With u = XM∗ + E, put p = exp(u)/

(1 + exp(u)):

Yi j ∼ Binomial(pi j ).

Here, the noise term (E, B) is varied in different scenarios
which lead to different setup in each setting. It is summarized
in Table 1.

Table 1 Summary of simulation settings

Setting Name B E

I.1 No noise B = 1 a.s E = 0 a.s

I.2 With noise B = 1 E ∼ N (0, 1) a.s

I.3 Switch B ∼ 0.9δ1 + 0.1δ−1 E = 0 a.s

I.4 Switch with noise B ∼ 0.9δ1 + 0.1δ−1 E ∼ N (0, 1) a.s

II.1 logistic n.a E = 0

II.2 logistic with noise n.a E ∼ N (0, 1)
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Table 2 Misclassification error Setting LMC-logit (%) LMC-H (%) MALA-logit (%) MALA-H (%) mRRR (%)

Fully observed

I.1 0.51 (0.43) 0.51 (0.44) 0.39 (0.26) 0.15 (0.14) 0.51 (0.41)

I.2 8.89 (2.71) 8.89 (2.68) 7.74 (2.50) 6.87 (2.50) 8.93 (2.70)

I.3 5.36 (1.34) 5.32 (1.28) 6.13 (1.09) 5.25 (1.01) 5.26 (1.30)

I.4 11.8 (2.84) 11.7 (2.83) 11.3 (2.44) 10.6 (2.42) 11.7 (2.85)

II.1 14.4 (3.25) 14.3 (3.34) 12.6 (2.93) 11.6 (2.76) 14.4 (3.30)

II.2 15.4 (3.98) 15.4 (3.99) 13.8 (3.64) 12.8 (3.61) 15.4 (3.98)

10% of data is missing

I.1 2.09 (1.69) 2.14 (1.70) 2.47 (1.75) 3.53 (1.94) 2.10 (1.66)

I.2 11.1 (4.74) 10.9 (4.72) 11.4 (5.11) 11.4 (5.00) 11.0 (4.84)

I.3 16.1 (4.03) 16.2 (4.08) 17.5 (4.31) 16.8 (4.14) 16.0 (4.06)

I.4 20.6 (5.24) 20.6 (5.31) 22.4 (5.46) 22.2 (5.41) 20.6 (5.14)

II.1 16.6 (5.26) 16.6 (5.05) 17.4 (5.26) 18.0 (5.39) 16.4 (5.00)

II.2 19.2 (5.76) 19.2 (5.37) 19.4 (5.32) 20.0 (5.54) 19.3 (5.54)

30% of data is missing

I.1 2.84 (1.16) 2.78 (1.17) 3.07 (1.25) 3.93 (2.80) 2.80 (1.13)

I.2 11.3 (3.03) 11.2 (3.03) 11.7 (3.07) 11.9 (3.31) 11.2 (3.11)

I.3 17.3 (3.06) 17.0 (2.92) 18.0 (2.85) 17.7 (2.90) 16.9 (2.92)

I.4 23.0 (4.21) 23.1 (3.93) 23.4 (3.92) 23.3 (3.98) 22.9 (4.00)

II.1 17.6 (4.43) 17.5 (4.25) 18.0 (4.33) 18.4 (4.31) 17.5 (4.42)

II.2 19.7 (4.34) 19.8 (4.47) 20.0 (4.39) 20.6 (4.37) 19.9 (4.58)

n = 100, q = 8, p = 12, rank-2

The LMC, MALA are run with 30000 iterations and we
take the first 1000 steps as burn-in. We set the values of
tuning parameters λ and τ to 1 for all scenarios. It is impor-
tant to acknowledge that a better approach would be to tune
these parameters using cross validation, which could lead
to improved results. The mRRR method is run with default
options and that 5-fold cross validation is used to select the
rank.

Each simulation setting is repeated 100 times and we
report the averaged results. The results of the simulations
study are detailed in Tables 2, 3, 4 and 5 and the values within
parentheses indicate the standard deviations associated with
each misclassification error percentage.

Among the methods mentioned, the MALA algorithm
with the hinge loss consistently demonstrates the lowest mis-
classification error rate. In fact, in some instances, it even
outperforms the frequentist mRRR method by a margin of
two times. This highlights the effectiveness of the proposed
method, which combines theMALA algorithm and the hinge
loss, for achieving accurate classification results.

The other methods that employ the logistic loss func-
tion, such as MALA-logit and the LMC algorithm-based
approaches (LMC-H and LMC-logit), exhibit similar perfor-
mance to the mRRR method. These methods are generally
comparable in terms of misclassification error rates. How-

ever, it is worth noting that theMALA-logit approach, which
also utilizes the MALA algorithm, shows superiority to the
mRRR method in cases involving low-rank matrices and
higher dimensions.

While the LMC-based methods (LMC-H and LMC-logit)
performwell, they are not significantly better than themRRR
method.However, these approaches are noted to bemore effi-
cient in handling larger data sets, which can be advantageous
in certain scenarios.

It’s important to acknowledge that as the proportion of
missing data increases to 10% and 30%, the misclassifica-
tion error percentages also increase. This suggests a decline
in the performance of these methods in the presence of miss-
ing data. Therefore, addressing and mitigating the effects
of missing data is crucial for improving the performance of
these methods in real-world applications.

In summary, the MALA algorithm with the hinge loss
stands out as the method with consistently lower misclassi-
fication error rates. The logistic loss-based methods and the
LMC-based methods demonstrate comparable performance
to the mRRR method. However, it is necessary to carefully
consider the impact ofmissing data on thesemethods’ perfor-
mance and employ appropriate strategies to handle missing
data effectively.
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Table 3 Misclassification error Setting LMC-logit (%) LMC-H (%) MALA-logit (%) MALA-H (%) mRRR (%)

Fully observed

I.1 0.88 (0.63) 0.88 (0.63) 0.70 (0.46) 0.46 (0.36) 0.88 (0.63)

I.2 4.35 (1.11) 4.34 (1.11) 3.57 (0.91) 2.74 (0.69) 4.35 (1.10)

I.3 5.51 (0.69) 5.52 (0.68) 7.04 (0.73) 5.92 (0.76) 5.51 (0.70)

I.4 7.82 (1.19) 7.82 (1.21) 8.85 (1.13) 7.46 (1.06) 7.83 (1.19)

II.1 7.59 (1.78) 7.58 (1.77) 6.20 (1.47) 4.86 (1.17) 7.59 (1.77)

II.2 8.01 (1.78) 7.99 (1.79) 6.57 (1.46) 5.15 (1.20) 7.99 (1.78)

10% of data is missing

I.1 3.32 (1.34) 3.32 (1.35) 3.46 (1.45) 3.65 (1.57) 3.34 (1.36)

I.2 7.13 (2.15) 7.15 (2.17) 7.53 (2.12) 7.69 (2.32) 7.20 (2.20)

I.3 16.7 (2.75) 16.7 (2.84) 19.1 (3.00) 19.7 (2.97) 16.7 (2.79)

I.4 18.3 (2.90) 18.4 (2.89) 21.0 (3.17) 21.8 (3.32) 18.2 (2.85)

II.1 10.6 (2.45) 10.6 (2.47) 11.2 (2.41) 11.2 (2.63) 10.6 (2.45)

II.2 11.7 (2.57) 11.6 (2.54) 12.1 (2.55) 12.2 (2.59) 11.6 (2.50)

30% of data is missing

I.1 3.82 (0.92) 3.81 (0.94) 4.04 (1.01) 3.99 (0.98) 3.81 (0.93)

I.2 7.98 (2.52) 7.98 (2.53) 8.18 (2.24) 8.27 (1.98) 7.97 (2.50)

I.3 19.9 (3.94) 19.9 (3.92) 21.2 (2.60) 21.4 (2.17) 19.9 (3.93)

I.4 22.3 (4.51) 22.3 (4.52) 23.1 (2.79) 23.3 (2.51) 22.3 (4.56)

II.1 11.2 (2.63) 11.2 (2.70) 11.7 (2.40) 11.8 (2.39) 11.2 (2.74)

II.2 11.6 (2.24) 11.6 (2.25) 12.3 (2.36) 12.6 (2.50) 11.6 (2.26)

n = 100, q = 20, p = 50, rank-2

Table 4 Misclassification error Setting LMC-logit (%) LMC-H (%) MALA-logit (%) MALA-H (%) mRRR (%)

Fully observed

I.1 1.37 (2.57) 1.36 (2.58) 1.15 (0.85) 0.59 (0.52) 1.38 (2.61)

I.2 7.76 (3.24) 7.72 (3.25) 3.90 (0.96) 2.88 (0.87) 7.78 (3.27)

I.3 11.0 (2.25) 11.1 (2.31) 7.40 (0.94) 6.14 (0.93) 11.2 (2.39)

I.4 12.5 (3.08) 12.2 (2.91) 8.27 (1.18) 7.06 (1.20) 12.4 (3.04)

II.1 9.62 (2.45) 9.59 (2.43) 5.94 (1.51) 4.87 (1.48) 9.65 (2.48)

II.2 10.9 (2.58) 10.8 (2.50) 7.04 (1.50) 5.98 (1.49) 10.9 (2.55)

10% of data is missing

I.1 7.54 (3.57) 7.49 (3.68) 6.36 (2.67) 5.94 (2.64) 7.56 (3.57)

I.2 12.2 (4.38) 12.1 (4.28) 8.66 (3.08) 8.24 (3.05) 12.3 (4.49)

I.3 22.3 (4.89) 22.1 (4.93) 19.0 (4.72) 18.4 (4.42) 22.4 (5.03)

I.4 22.8 (5.72) 22.8 (5.84) 19.9 (4.34) 19.2 (4.41) 23.1 (5.85)

II.1 14.7 (4.45) 14.6 (4.54) 11.3 (3.74) 11.0 (3.91) 14.8 (4.59)

II.2 15.4 (4.78) 15.5 (4.88) 11.8 (3.96) 11.9 (4.13) 15.6 (5.02)

30%of data is missing

I.1 11.4 (5.32) 11.4 (5.12) 7.97 (2.03) 7.22 (2.08) 11.5 (5.31)

I.2 14.2 (3.75) 14.1 (3.79) 9.62 (2.11) 8.98 (2.16) 14.3 (4.02)

I.3 24.3 (4.09) 24.2 (4.17) 20.5 (2.81) 19.9 (2.93) 24.6 (4.36)

I.4 25.9 (4.37) 25.7 (4.15) 21.7 (2.74) 21.2 (2.89) 26.1 (4.40)

II.1 15.9 (3.95) 15.7 (3.83) 11.9 (2.95) 11.5 (2.80) 16.0 (4.11)

II.2 16.3 (4.22) 16.3 (4.07) 12.4 (2.69) 12.0 (2.75) 16.3 (4.13)

n = 100, q = 8, p = 12, approximate rank-2
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Table 5 Misclassification error Setting LMC-logit (%) LMC-H (%) MALA-logit (%) MALA-H (%) mRRR (%)

Fully observed data

I.1 13.3 (2.27) 13.2 (2.27) 8.61 (1.25) 5.77 (0.68) 13.2 (2.26)

I.2 13.3 (2.04) 13.3 (2.04) 8.63 (1.07) 5.85 (0.76) 13.3 (2.05)

I.3 15.7 (2.92) 15.7 (2.93) 12.7 (1.62) 10.0 (1.22) 15.7 (2.91)

I.4 16.0 (3.12) 16.1 (3.12) 13.0 (1.57) 10.3 (1.12) 16.1 (3.13)

II.1 13.4 (2.56) 13.3 (2.55) 8.73 (1.29) 6.02 (0.82) 13.4 (2.55)

II.2 13.6 (2.14) 13.6 (2.13) 8.88 (1.24) 6.05 (0.75) 13.6 (2.15)

10% of data is missing

I.1 16.1 (3.04) 16.1 (3.08) 14.9 (3.04) 14.2 (2.54) 16.1 (3.05)

I.2 16.5 (3.23) 16.5 (3.17) 15.1 (2.80) 14.4 (2.75) 16.5 (3.18)

I.3 25.6 (4.09) 25.6 (3.91) 25.6 (3.25) 25.4 (3.17) 25.6 (3.97)

I.4 25.8 (4.49) 25.7 (451) 25.7 (3.73) 25.4 (3.66) 25.7 (4.46)

II.1 16.3 (3.38) 16.4 (3.29) 14.8 (2.73) 14.0 (2.53) 16.3 (3.30)

II.2 17.0 (3.62) 16.9 (3.57) 15.1 (3.30) 14.8 (3.15) 16.9 (3.53)

30% of data is missing

I.1 17.0 (2.77) 17.0 (2.74) 15.8 (2.35) 15.2 (2.10) 17.0 (2.74)

I.2 16.8 (2.57) 16.8 (2.50) 15.8 (2.27) 15.2 (2.00) 16.7 (2.58)

I.3 29.7 (4.40) 29.8 (4.43) 28.3 (2.78) 27.6 (2.46) 29.8 (4.40)

I.4 29.9 (4.30) 29.9 (4.24) 28.3 (2.71) 27.4 (2.42) 29.9 (4.29)

II.1 17.4 (3.12) 17.4 (3.10) 16.4 (2.34) 15.8 (2.13) 17.4 (3.07)

II.2 17.7 (3.20) 17.7 (3.23) 16.7 (2.94) 16.1 (2.48) 17.7 (3.25)

n = 100, q = 20, p = 50, approximate rank-2

3.3 A real data study

In this section, we evaluate the performance of our proposed
method on a real data with multiple binary responses. To do
this, we utilize the spider data set, which can be found
in the R package mvabund Wang et al. (2012). The matrix
of covariates, X ∈ R

28×6, includes information on 6 envi-
ronmental features from 28 samples. The response matrix,
Y ∈ R

28×12, is count data that represents the number of 12
hunting spider species from 28 observations of abundance.
We convert the response data into binary format by setting
yi j = −1 if there is no such species surviving in a certain
environment and yi j = 1 otherwise. This results in a total of
154 negative ones (45.8%) and 182 positive ones (54.2%).

The data is divided randomly into two sets: a training set
consisting of 23 samples and a test set consisting of 5 sam-
ples. We use the training data to run the methods and then
evaluate their prediction accuracy based on the test data. This
process is repeated 100 times, each time with a different ran-
dom partition of the training and test data. The results of this
procedure are illustrated in Fig. 1. By repeating the proce-
dure multiple times and averaging the results, we can obtain
a more robust and accurate assessment of the performance
of the methods. This approach allows us to account for any
potential variability in the data and obtain a better under-
standing of the methods’ performance.
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Fig. 1 Result on real data

The results, from Fig. 1, show that our proposed method,
computed using the Metropolis-Adjusted Langevin Algo-
rithm with the hinge loss (’MALA-H’), outperforms the
frequentist mRRRmethod. The prediction errors forMALA-
H and mRRR are 15.05% (±5.15%) and 24.96% (±7.85%),
respectively. Other approaches, such as those using LMC,
also perform well and are slightly better than the mRRR
method. The approach MALA-logit, which utilizes the logit
loss, is slightly behind MALA-H with a prediction error of
16.47% (±5.63%). This suggests that MALA-H is the most
effective method among those tested.

To further evaluate the performance of all the considered
methods, we also investigate their performance when miss-
ing data is present in the response matrix of the spider
real data set. To do this, we randomly remove 10%, 20%,
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Fig. 2 Results on real data with missing data in the response matrix. Left: 10% of the entries is removed, middle: 20% of the entries is removed,
right: 30% of the entries is removed

and 30% of the entries in the response matrix. We denote
by 
 the index set of the observed entries. We then run
all the considered methods on the data set with incomplete
responses and evaluate the prediction/misclassification error
on the set of unobserved entries and this process is repeated
100 times. This allows us to assess how well the methods
can handle missing data and make predictions even when
certain information is missing. The results of this evaluation
are presented in Fig. 2. In general, when examining incom-
plete response scenarios, the outcomes are comparable to
those observed in complete response cases, implying that
all the methods under consideration are capable of handling
missing data. Furthermore, it is worth noting that MALA-
H continues to outperform other methods in dealing with
incomplete response situations.

4 Discussion and conclusion

In this paper, we investigated the problem of making pre-
dictions for multivariate binary responses using a set of
covariates by exploring low-rank predictors through the lens
of machine learning. We focused on providing the predic-
tion error rate, which has not been addressed in previous
published works. Our approach leverages methods from sta-
tistical learning theory for binary classification and does not
require any assumptions about the underlying observations.
Instead, we focus on a set of predictors and aim to find the
one that results in the lowest prediction error. We propose
using a pseudo-Bayesian method in this paper, which is also
able to handle incomplete response data.

Furthermore, we developed an efficient computational
approximation method, based on a gradient-based sampling
technique known as Langevin Monte Carlo. By implement-
ing thismethod, wewere able to overcome the computational
challenges that are often associated with this type of prob-
abilistic approach, making our proposed approach more
practical and applicable in real-world settings. The numerical
studies we conducted on simulated and real-world data sets
have shown promising results when compared to the state-
of-the-art method, further validating the effectiveness of our
proposed approach.

Although, our work offers a promising solution for the
problem of relating a set covariates to multiple binary
response, but there is still room for further exploration and
improvement. One area of future research could include
extending our method to incorporate variable selection, in
order to identify the most important covariates in determin-
ing the binary responses. Additionally, future research could
also focus on addressing the problem of missing data in the
covariate matrix X , which is a common issue in many real-
world datasets. This would further improve the robustness
and applicability of our proposed method.

An additional aspect that requires further attention in prac-
tical applications is the tuning of the learning rate λ and
the parameter τ in the prior distribution. While we have
presented certain values that yield favorable theoretical out-
comes, it is important to acknowledge that these choices may
not be optimal in practice, although they offer some guid-
ance regarding the magnitude of the tuning parameters. We
have also mentioned that cross-validation can be employed
in practical scenarios, albeit at the cost of increased computa-
tional time. It is worth highlighting that the optimal tuning of
these parameters remains a challenging problem in practical
settings. In particular, tuning the learning rate λ remains as
an open research question that has garnered significant atten-
tionwithin the framework of generalizedBayesian inference,
see for exampleMeunier and Alquier (2021), Wu andMartin
(2023) and references there in.

Furthermore,whendealingwith practical problems involv-
ing huge datasets, it has been observed that LMC algo-
rithms may encounter scalability issues. In order to address
this challenge, variational inference (VI) has emerged as
a computational optimization-based alternative to Markov
chain Monte Carlo techniques. VI has gained popular-
ity for approximating intractable posterior distributions in
large-scale Bayesian models due to its comparable effective-
ness and superior computational efficiency. The connection
between the PAC-Bayesian approach and variational infer-
ence has been elucidated in Alquier et al. (2016), while
the development of variational inference for matrix comple-
tion has been explored in Cottet and Alquier (2018). These
references provide a roadmap for future research, aiming
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to develop a more scalable computational approximation
method for our proposed approach.
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A Proofs

For any � ⊂ R
n1×n2 , let P(�) denote the set of all proba-

bility distributions on � equipped with the Borel σ -algebra.
For (μ, ν) ∈ P(�)2, K(ν, μ) denotes the Kullback–Leibler
divergence.

Lemma 1 (Donsker and Varadhan’s inequality, see Catoni
2007Lemma 1.1.3) Let μ ∈ P(�). For any measurable,
bounded function h : � → R we have:

log
∫

eh(θ)μ(dθ) = sup
ρ∈P(�)

[∫
h(θ)ρ(dθ) − K(ρ, μ)

]
.

Moreover, the supremum w.r.t ρ in the right-hand side is
reached for theGibbs distribution,ρ(dθ)∝exp(h(θ))π(dθ).

We will make use of the following version of the Bern-
stein’s lemma taken from (Massart 2007, page 24).

Lemma 2 Let U1, …, Un be independent real valued random
variables. Let us assume that there are two constants v and
w such that

∑n
i=1 E[U 2

i ] ≤ v and that for all integers k ≥ 3,∑n
i=1 E

[
(Ui )

k+
] ≤ vk!wk−2/2.

Then, for any ζ ∈ (0, 1/w), E exp
[
ζ
∑n

i=1 [Ui − EUi ]
] ≤

exp
(

vζ 2

2(1−wζ)

)
.

Firstly, we establish a general PAC-Bayesian bound for
our problem as a preliminary step. Subsequently, the specific
case necessary for obtaining the result stated in Theorem 1
will be examined.

Lemma 3 Assume that Assumption 1 is satisfied and that λ <

2nq/(C + 2). Then, for ε ∈ (0, 1), with probability at least
1 − ε:

∫
Rdρ̂λ ≤ R

+ 1

1 − Cλ
2nq(1−λ/nq)

{
inf

ρ∈P(Rp×q )

[
rhdρ + K(ρ, π)

λ

]

−r + log(1/ε)

λ

}
. (5)

Proof Fix anyM and putUi j =1Yi j (XM)i j≤0−1Yi j (XMB )i j≤0.

UnderAssumption1,wehave that
∑

i j E[U 2
i j ] ≤ nqC[R(M)

− R]. Now, for any integer k ≥ 3, as the 0-1 loss is bounded,
we have that

∑

i j

E

[
(Ui j )

k+
]

≤
∑

i j

E

[
|Ui j |k−2|Ui j |2

]
≤
∑

i j

E

[
|Ui j |2

]
.

Thus, we can apply Lemma 2 with v := nqC[R(M) − R],
w := 1 and ζ := λ/nq. We obtain, for any λ ∈ (0, nq),

E exp{λ([R(M) − R] − [r(M) − r ])}

≤ exp

{
Cλ2[R(M) − R]
2nq(1 − λ/nq)

}

,

and

∫
E exp

{
λ[R(M) − R] − λ[r(M) − r ]

−Cλ2[R(M) − R]
2nq(1 − λ/nq)

}

dπ(M) ≤ 1.

Them, using Fubini’s theorem, we get:

E

∫
exp

{
(λ − Cλ2

2nq(1 − λ/nq)
)[R(M) − R]

−λ[r(M) − r ]}π(dM) ≤ 1.

Consequently, using Lemma 1,

E exp

{
sup
ρ

∫ {
(λ − Cλ2

2nq(1 − λ/nq)
)[R(M) − R]

−λ[r(M) − r ]} ρ(dM) − K(ρ, π)} ≤ 1.

123

https://github.com/tienmt/binary_rrr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  136 Page 12 of 15 Statistics and Computing           (2023) 33:136 

Using Markov’s inequality,

P

(
sup
ρ

∫ {
(λ − Cλ2

2nq(1 − λ/nq)
)[R(M) − R]

−λ[r(M) − r ]} ρ(dM) − K(ρ, π) + log ε > 0) ≤ ε.

Then taking the complementary and we obtain with proba-
bility at least 1 − ε that:

∀ρ, (λ − Cλ2

2nq(1 − λ/nq)
)

∫
[R(M) − R]ρ(dM)

≤ λ

∫
[r(M) − r ]ρ(dM)

+ K(ρ, π) + log
1

ε
.

Now, note that as rh ≥ r ,

λ

[∫
rdρ − rn

]
+ K(ρ, π) + log

1

ε

≤ λ

[∫
rhdρ + 1

λ
K(ρ, π)

]
− λr + log

1

ε
.

As it stands for allρ then the right hand side can beminimized
and, fromLemma 1, theminimizer overP(Rp×q ) is ρ̂λ. Thus
we get, when λ < 2nq/(C + 2),

∫
Rdρ̂λ ≤ R + 1

1 − Cλ
2nq(1−λ/nq)

{
inf

ρ∈P(Rp×q )

×
[∫

rhdρ + 1

λ
K(ρ, π)

]
− r + 1

λ
log

1

ε

}
.

��

A.1 Proof for Theorem 1

Finally, we consider the distributions ρ ∈ P(Rp×q) that will
be defined as translations of the prior π .

Definition 1 For matrix MB ∈ R
p×q , we define ρ̃MB (M) ∈

P(Rp×q) by

ρ̃MB (M) = π(MB − M).

Proof of Theorem 1 We apply Lemma 3

∫
Rdρ̂λ ≤ R + 1

1 − Cλ
2nq(1−λ/nq)

{
inf

ρ∈P(Rp×q )

[∫
rhdρ

+ 1

λ
K(ρ, π)

]
− r + 1

λ
log

(
1

ε

)}
. (6)

First, we have that,

∫
rh(M)ρ(dM)

= 1

nq

∫ n∑

i=1

q∑

j=1

(1 − Yi j (XM)i j )+ρ(dM)

≤ 1

nq

⎡

⎣
n∑

i=1

q∑

j=1

(1 − Yi j (XMB)i j )+

+
∫ n∑

i=1

q∑

j=1

∣∣∣(X(M − MB))i j

∣∣∣ ρ(dM)

⎤

⎦

≤ rh(MB) +
∫

‖X(M − MB)‖2Fρ(dM).

And for ρ = ρ̃MB (M), and using Lemma 1 in Dalalyan
(2020),

∫
‖X(M − MB)‖2F ρ̃MB (dM)

=
∫

‖XM‖2Fπ(dM) ≤ ‖X‖2F
∫

‖M‖2Fπ(dM)

≤ ‖X‖2Fqpτ 2.

From Lemma 2 in Dalalyan (2020), we have, with r∗ =
rank(MB), that

K(ρ̃MB (M), π) ≤ 2r∗(q + p + 2) log

(
1 + ‖MB‖F

τ
√
2r∗

)

with the convention 0 log(1 + 0/0) = 0.
As by definition, rh(MB) = 2r , we obtain

∫
Rdρ̂λ

≤ R + 1

1 − Cλ
2nq(1−λ/nq)

{
r + ‖X‖2Fqpτ 2

+ 2r∗(q + p + 2)

λ
log

(
1 + ‖MB‖F

τ
√
2r∗

)
+ 1

λ
log

(
1

ε

)}
.

Then, we use Lemma 4 to get, with probability at least 1−2ε,

∫
Rdρ̂λ

≤ R + 1

1 − Cλ
2nq(1−λ/nq)

{
R + 1

nqς
log

1

ε
+ ‖X‖2Fqpτ 2

+ 2r∗(q + p + 2)

λ
log

(
1 + ‖MB‖F

τ
√
2r∗

)
+ 1

λ
log

(
1

ε

)}
.
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Taking λ = 2nq/(3C + 2), we obtain:

∫
Rdρ̂λ

≤ 2.5R + 1.5‖X‖2Fqpτ 2

+ 3(3C + 2)r∗(q + p + 2)

2nq
log

(
1 + ‖MB‖F

τ
√
2r∗

)

+ 6 + 9Cς + 6ς

4nqς
log

(
1

ε

)
.

The choice τ 2 = (p + q)/(2q2 pn‖X‖2F ) leads to

∫
Rdρ̂λ

≤ 2.5R + 1.5
p + q

2nq

+
3(3C + 2)r∗(q + p + 2) log

(
1 + q‖X‖F‖MB‖F√

np√
(p+q)r∗

)

2nq

+ 6 + 9Cς + 6ς

4nqς
log

(
1

ε

)
.

The results of Theorem 1 is obtained. ��
Lemma 4 For ε ∈ (0, 1), with probability at least 1 − ε, we
have, for every ς ∈ (0, 1), that

r ≤ R + 1

nqς
log

1

ε
.

Proof Let ς ∈ (0, 1), we have that

E (exp[ςnqr ]) =
n∏

i=1

q∏

j=1

E

(
exp

[
ς1(Yi j (XMB )i j<0)

])

≤
n∏

i=1

q∏

j=1

(
eς
E

[
1(Yi j (XMB )i j<0)

])

≤
n∏

i=1

q∏

j=1

(
eς R

) ≤ exp
(
ςnqR

)
.

Thus we obtain, for ε ∈ (0, 1):

E

[
exp

(
ςnqr − ςnqR − log

1

ε

)]
≤ ε.

Now, using Markov’s inequality, we get that

ςnqr − ςnqR − log
1

ε
≤ 0,

with probability at least 1− ε. Thus, the result of the lemma
is obtained. ��

A.2 Proof for Proposition 1

Proof of Proposition 1 As the 0-1 loss is bounded, we can
apply the Hoeffding’s Lemma. We obtain, for any λ ∈
(0, nq),

∫
E exp

{
λ[R(M) − R] − λ[r(M) − r ] − λ2

8nq

}
dπ(M)

≤ 1.

Then taking the complementary and we obtain with proba-
bility at least 1 − ε that:

λ

∫
[R(M) − R]ρ(dM) ≤ λ

∫
[r(M) − r ]ρ(dM)

+ K(ρ, π) + λ2

8nq
+ log

1

ε
.

Now, note that as rh ≥ r ,Thus we get, when λ > 0,

∫
Rdρ̂λ ≤ R + inf

ρ∈P(Rp×q )

[∫
rhdρ

+1

λ
K(ρ, π)

]
− r + λ

8nq
+ 1

λ
log

1

ε
.

And for ρ = ρ̃MB (M), we proceed exactly the same as in
the proof of Theorem 1 and obtain

∫
Rdρ̂λ

≤ 2R + 1

nqς
log

1

ε
+ ‖X‖2Fqpτ 2 + 2r∗(q + p + 2)

λ

× log

(
1 + ‖MB‖F

τ
√
2r∗

)
+ λ

8nq
+ 1

λ
log

(
1

ε

)
.

Taking λ = 2
√
nq/(p + q + 2), we obtain:

∫
Rdρ̂λ

≤ 2R + ‖X‖2Fqpτ 2 + r∗
√

(q + p + 2)

nq
log

(
1 + ‖MB‖F

τ
√
2r∗

)

+ 1

4
√
nq(p + q + 2)

+ 2 + ς
√
nq(p + q + 2)

2nqς
log

(
1

ε

)
.

The choice τ 2 = (p + q)/(2q2 pn‖X‖2F ) leads to the result.
��

A.3 Proof for Theorem 3

We first start with preliminary lemmas.

Lemma 5 For ε ∈ (0, 1), with probability at least 1− ε and
for every υ ∈ (0, 1),
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rm ≤ R + 1

mυ
log

1

ε
.

Proof Let υ ∈ (0, 1), we have that

E (exp[υmrm]) =
m∏

i=1

E

(
exp

[
υ1(Yi (XMB )Oi <0)

])

≤
m∏

i=1

(
eυ
E

[
1(Yi (XMB )Oi <0)

])

≤
m∏

i=1

(
eυ R

) ≤ exp
(
υmR

)
.

Therefore, for ε ∈ (0, 1):

E

[
exp

(
υmrm − υmR − log

1

ε

)]
≤ ε.

Using Markov’s inequality, we obtain the result. ��
Proof of Theorem 3 Assume that Assumption 1 is satisfied,
we proceed as in the proof for Theorem 1, More specifically
we carry as in the proof of Lemma 3, and obtain, for ε ∈
(0, 1), with probability at least 1−ε and for λ < 2m/(C+2):

∫
Rdρ̂λ ≤ R + 1

1 − Cλ
2m(1−λ/m)

{
inf

ρ∈P(Rp×q )

[
rhmdρ

+K(ρ, π)

λ

]
− rm + 1

λ
log

(
1

ε

)}
. (7)

Then, we have

∫
rhm(M)ρ(dM)

=
∫

1

m

m∑

i=1

(1 − Yi (XM)Oi )+ρ(dM)

≤ 1

m

[
m∑

i=1

(1 − Yi (XMB)Oi )+

+
∫ m∑

i=1

∣∣∣(X(M − MB))Oi

∣∣∣ ρ(dM)

]

≤ rhm(MB) +
∫

‖X(M − MB)‖2Fρ(dM).

Then, focusing on ρ = ρ̃MB (M), we use Lemma 5 to get,
with probability at least 1 − 2ε,

∫
Rdρ̂λ

≤ R + 1

1 − Cλ
2m(1−λ/m)

{
R + 1

mυ
log

1

ε
+ ‖X‖2Fqpτ 2

+ 2r∗(q + p + 2)

λ
log

(
1 + ‖MB‖F

τ
√
2r∗

)
+ 1

λ
log

(
1

ε

)}
.

Taking λ = 2m/(3C + 2) and the choice τ 2 = (p +
q)/(2qpm‖X‖2F ) leads to the result. ��
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