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Abstract—Online federated learning (FL) enables geographi-
cally distributed devices to learn a global shared model from
locally available streaming data. Most online FL literature
considers a best-case scenario regarding the participating clients
and the communication channels. However, these assumptions are
often not met in real-world applications. Asynchronous settings
can reflect a more realistic environment, such as heterogeneous
client participation due to available computational power and
battery constraints, as well as delays caused by communication
channels or straggler devices. Further, in most applications,
energy efficiency must be taken into consideration. Using the
principles of partial-sharing-based communications, we propose a
communication-efficient asynchronous online federated learning
(PAO-Fed) strategy. By reducing the communication load of the
participants, the proposed method renders participation more
accessible and efficient. In addition, the proposed aggregation
mechanism accounts for random participation, handles delayed
updates and mitigates their effect on accuracy. We study the
first and second-order convergence of the proposed PAO-Fed
method and obtain an expression for its steady-state mean square
deviation. Finally, we conduct comprehensive simulations to study
the performance of the proposed method on both synthetic and
real-life datasets. The simulations reveal that in asynchronous
settings, the proposed PAO-Fed is able to achieve the same
convergence properties as that of the online federated stochastic
gradient while reducing the communication by 98 percent.

Index Terms—Asynchronous behavior, communication effi-
ciency, online federated learning, partial-sharing-based commu-
nications, nonlinear regression.

I. INTRODUCTION

A myriad of intelligent devices, such as smartphones, smart-

watches, and smart home appliances, are becoming an integral

part of our daily lives, and an enormous amount of data is

available on those devices. Unfortunately, this data is primarily

unused, and we need to develop tools that can process this data
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to extract information that can improve our daily lives while,

at the same time, ensuring our privacy. Federated learning

(FL) [1] provides an adaptive large-scale collaborative learning

framework suitable for this task. In FL, a server aggregates

information received from distributed devices referred to as

clients to train a global shared model; the clients do not

share any private data with the server, only their local model

parameters or gradients learned from this data [1], [2]. When

data becomes progressively available to clients, it is possible

to perform decentralized learning in real-time (implementing,

e.g., online FL [3]) for applications that include environmental

monitoring and condition monitoring using sensor networks

[4], internet-of-medical-things (IoMT) based healthcare appli-

cations [5] (e.g., cardio rhythm monitoring), and autonomous

vehicles [6]. In online FL, the server aggregates the local

models learned on the streaming data of the clients [7].

However, in many applications, the participating clients might

have heterogeneous energy supply and limited communication

capacity that can be intermittently unavailable or subject to

failure. Therefore, such edge devices cannot participate in

typical federated learning implementations.

In most real-world implementations of FL, it is essential

to consider statistical heterogeneity, system heterogeneity, and

imperfect communication channels between clients and the

server. Statistical heterogeneity implies that data are imbal-

anced and not independent and identically distributed (non-

i.i.d.) [8] across devices, while system heterogeneity refers

to their various computational and communication capaci-

ties. Finally, imperfect communication channels cause delays

in the exchanged messages. Although many FL approaches

can handle statistical heterogeneity, there is relatively little

research addressing the remaining complications above. In

particular, existing FL methods commonly assume a best-case

scenario concerning the client availability and performance

as well as perfect channel conditions [1], [9]–[18]. However,

several additional aspects need attention for efficient FL in

a realistic setting. First, clients cannot be expected to have

the same participation frequency, e.g., due to diverse resource

constraints, channel availability, or concurrent solicitations

[19]–[22]. Furthermore, clients may become unavailable for

a certain period during the learning process, i.e., some clients

are malfunctioning or not reachable by the server [19], [20].

In addition, physical constraints such as distance or overload

introduce delays in the communication between the clients

and the server, making their contribution arrive later than

expected [20]–[23]. These constraints, frequently occurring in

practice, impair the efficiency of FL and complicate the design

of methods tailored for asynchronous settings [19]–[25].
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Energy efficiency is an essential aspect of distributed ma-

chine learning algorithms and one of the original motivations

for FL [26]. The communication of high-dimensional models

is energy-onerous for distributed devices. For this reason, it

is crucial to cut the communication cost for clients [14],

[18]. Further, such reduction can facilitate more frequent

participation of resource-constrained devices, or stragglers, in

the learning process. In addition, in asynchronous settings,

where power and communication are restricted, ensuring com-

munication efficiency reduces the risk of bottlenecks in the

communication channels or power-related shutdown of clients

due to excessive resource usage.

We can find a considerable amount of research in the

literature on communication-efficient FL [13]–[18], [27]–

[30] and asynchronous FL [19]–[25], [31]–[39]; however,

only a few works consider both aspects within the same

framework. The classical federated averaging (FedAvg) [18],

developed for ideal conditions, reduces the communication

cost by selecting a subset of the clients to participate at

each iteration. In a perfect setting, this allows clients to

space out their participation while maintaining a consistent

participation rate. In asynchronous settings, however, clients

may already participate sporadically because of their inherent

limitations. Hence, subsampling comes with an increased risk

of discarding valuable information. The work of [34] proposes

a smart selection system to address this issue, but this is

associated with an additional computational burden on the

server, and only lessens the information loss associated with

client scheduling. The works in [23], [28] reduce communi-

cation in uplink via compressed client updates. Aside from

the accuracy penalty associated with the sparsification and

projection used, the resulting extra computational burden on

the clients of these non-trivial operations is not appealing

for resource-constrained clients. Moreover, the work in [28]

did not consider asynchronous settings. Although the work

in [23] considers various participation frequencies for the

clients, it assumes they are constant throughout the learning

process. The works in [24], [39] reduce the communication

load of clients in asynchronous settings; however, they are

specific to neural networks and lack mathematical analysis. In

addition, the considered asynchronous settings do not include

communication delays. We note that structure and sketch

update methods suffer the same accuracy cost and additional

computational burden as compressed updates; and in all three,

the simultaneous unpacking of all the received updates at the

server can form a computational bottleneck. Another option

explored recently for distributed learning is the partial-sharing

of model parameters [40]. The partial-sharing-based online FL

(PSO-Fed) algorithm [27] features reduced communications in

FL, but only in ideal settings.

This paper proposes a partial-sharing-based asynchronous

online federated learning (PAO-Fed) algorithm for nonlinear

regression in asynchronous settings. The proposed approach

reduces communication significantly while retaining fast con-

vergence. In order to perform nonlinear regression, we use

random Fourier feature space (RFF) [41], [42], where in-

ner products in a fixed-dimensional space approximate the

nonlinear relationship between the input and output data.

Consequently, given the constant communication and compu-

tational load, RFF is more suitable for decentralized learning

than traditional dictionary-based solutions whose model order

depends on the sample size. In addition, RFF presents the

advantage of being resilient to model change during the

learning process, which is key in online FL. Further, we

implement partial-sharing-based communications to reduce the

communication load of the algorithm. Compared to the other

available methods, partial-sharing does not incur an additional

computational load and only transfers a fraction of the model

parameters between clients and the server. This allows clients

to participate more frequently while maintaining minimal

communication without additional computational burden. The

proposed aggregation mechanism handles delayed updates and

calibrates their contribution to the global shared model. We

provide first- and second-order convergence analyses of the

PAO-Fed algorithm in a setting where client participation is

random, and communication links suffer delays. Finally, we

conducted simulation studies using synthetic and real-life data

to examine and compare the proposed algorithm with existing

methods.

The paper is organized as follows. Section II introduces FL

for nonlinear regression as well as partial-sharing-based com-

munications. Section III defines the considered asynchronous

settings and introduces the proposed method. Section IV

provides the first and second-order convergence analysis of

the PAO-Fed algorithm. Section V presents numerical results

for the proposed method and compares it with existing ones.

Finally, Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section presents the nonlinear regression problem in the

context of FL. Further, a brief overview of the most closely

related existing algorithms is proposed. Finally, the behavior

of partial-sharing-based communications is presented.

A. Online Federated Learning for Nonlinear Regression

We consider a federated network where a server is con-

nected to a set K of |K| = K geographically distributed

devices, referred to as clients. In the online FL setting [3], used

when real-time computation is desirable, the entire dataset of a

client is not immediately available. Instead, it is made available

to the client progressively throughout the learning process. We

denote the continuous streaming data appearing at client k ∈ K
at iteration n by xk,n ∈ R

L, the corresponding output yk,n is

given by:

yk,n = f(xk,n) + ηk,n, (1)

where f(·) : RL −→ R is a nonlinear model and ηk,n is the

observation noise. The objective is that the server and clients

learn a global shared nonlinear model from the data available

at each client, without this data being shared amongst clients

or with the server. To this aim, the clients periodically share

with the server their local model, learned from local data, and

the server shares its global model with the clients.

Several adaptive methods can be used to handle nonlinear

model estimation problems, e.g., [41]–[44]. The conventional
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kernel least-mean-square (KLMS) algorithm [43] is one of the

most popular choices but suffers from a growing dimensional-

ity problem, leading to prohibitive computation and commu-

nication requirements. Coherence-check-based methods [44]

sparsify the original dictionary by selecting the regressors

using a coherence measure. Although feasible, this method

is not attractive for online FL, especially in asynchronous

settings, since it requires that each new dictionary element be

made available throughout the network, inducing a significant

communication overhead, especially if the underlying model

changes. The random Fourier feature (RFF) space method

[41], [42] approximates the kernel function evaluation by

projecting the model into a pre-selected fixed-dimensional

space. The selected RFF space does not change throughout

the computation, and, given that the chosen dimension is

large enough, the obtained linearizations can be as precise as

desired. Therefore, we use RFF-based KLMS for the nonlinear

regression task, as it is data-independent, resilient to model

change, and does not require extra communication overhead,

unlike conventional or coherence-check-based KLMS.

In the following, we approximate the nonlinear model by

projecting it on a D-dimensional RFF-space, in which the

function f(·) is approximated by the linear model w∗. To

estimate the global shared model using the local streaming

data, we solve the following problem:

min
w

J (w), (2)

where J (w) is given by:

J (w) =
1

K

∑

k∈K

Jk(w) (3)

Jk(w) = E[|yk,n −wTzk,n|
2],

and zk,n is the mapping of xk,n into the D-dimentional RFF-

space.

B. Existing Algorithms

The Online-Fed algorithm, an online FL version of the con-

ventional FedAvg algorithm [18] solves the above estimation

problem as follows. At each iteration, n, the server selects a

subset of the clients Kn ⊆ K to participate in the learning

task and shares the global shared model wn with them. Then

the selected clients in Kn perform the local learning process

on their local estimates wk,n as

wk,n+1 = wn + µzk,nek,n, (4)

where µ is the learning rate and ek,n is the a priori error of

the global model on the local data given by

ek,n = yk,n −wT

nzk,n. (5)

The clients then share their updated models with the server,

which aggregates them as

wn+1 =
1

|Kn|

∑

k∈Kn

wk,n+1, (6)

where |Kn| denotes the cardinality of Kn. In the particular

case where ∀n,Kn = K, i.e., all the clients participate at each

iteration, we denote the algorithm Online-FedSGD.

Fig. 1: Partial sharing in a simple scenario.

The PSO-Fed algorithm proposed in [27] uses partial-

sharing-based communications to reduce further the commu-

nication load of the Online-Fed algorithm. Additionally, PSO-

Fed allows clients who are not participating in the current

iteration to perform local learning on their new data. By doing

so, this algorithm drastically reduces communication without

compromising the convergence speed.

C. Partial-sharing-based Communications

In partial-sharing-based communications, as defined in [40],

the server and the clients exchange only a portion of their

respective models instead of the entire model. The portion

is extracted prior to communication by multiplication with a

diagonal selection matrix with main diagonal elements being

either 0 or 1, where the locations of the latter specify the model

parameters to share. This operation is computationally trivial

and, therefore, does not induce delay on the communication,

unlike compressed update methods, e.g., [23], [28]. Here,

m denotes the number of nonzero elements in the selection

matrices; this is the number of model parameters shared at

each iteration. The selection matrix Mk,n is used for server-

to-client communication at time n and the selection matrix

Sk,n for client k’s response, as can be seen on Fig. 1 where

the simple case where m = D/3 is illustrated.

The usual aggregation step in (6) cannot be used

with partial-sharing-based communications, and needs to be

adapted. The expression of wn+1 in Fig. 1 is the aggregation

step for coordinated partial-sharing in perfect settings. Coordi-

nated partial-sharing is the special case where all clients send

the same portion of the model at a given iteration.

For the clients to participate in the learning of the whole

model, and to ensure consistency across models, it is necessary

that the selection matrices evolve. To this aim, we set:

diag(Mk,n+1) = circshift(diag(Mk,n),m) (7)

Sk,n = Mk,n+1 (8)

where circshift denotes a circular shift operator. Sk,n is set

to be equal to Mk,n+1 rather than Mk,n in order to share

a portion of the client’s model further refined by the local

learning process. As can be seen in Fig. 1, wk,n+1(0) contains

information from a single local learning step of client k, while
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wk,n+1(1) contains information from three (since it is equal

to wn−2(1) refined thrice by the local learning process). For

smaller values of m, the additional information is greater, but

the original value of the portion is also older.

D. Motivation

The above-mentioned algorithms offer significant commu-

nication savings but do not consider practical network en-

vironments and client resources. When performing federated

learning in real-world applications, clients may be unavailable

for various reasons, message exchanges may be delayed or

blocked, and straggler clients may be present. For this reason,

it is essential to tailor the developed algorithms to asyn-

chronous settings. Those environments impact the algorithm

design and optimization. For instance, we will see that many

choices made for the PSO-Fed algorithm in an ideal setting

are unsuitable for asynchronous settings.

III. PROPOSED METHOD

This section presents the proposed communication-efficient

Partial-sharing-based Asynchronous Online Federated Learn-

ing (PAO-Fed) algorithm and the asynchronous settings for

which it is developed.

A. Asynchronous Settings

The following features are necessary for an online FL

method to operate successfully in realistic environments.

• The capability to handle non-IID and unevenly distributed

data.

• The capability to handle heterogeneous, time-varying,

and unpredictable client participation, including possible

downtimes. In most real-world applications, the com-

putation and communication capacity of a specific task

are heterogeneous and time-varying. In addition, clients

are unreliable as they may experience many issues (low

battery, software failure, physical threat, etc.). Moreover,

when dealing with many clients, an infrequently occur-

ring failure is likely experienced at least once. Lastly, it is

unlikely for the server to know in advance when a client

will be unavailable or suffer a failure, so even the most

reliable clients may suffer downtimes.

• The capability to weigh the importance of delayed mes-

sages. Model parameters with the same timestamp may

arrive at different instants at the server. In practice, com-

munication channels are unreliable, and although most

messages arrive within a short window, some may take

longer, especially when the communication channels are

strained. In addition, straggler clients may not be able to

complete the learning task in the given time frame, and

although their update may not be delayed, it will arrive

late at the server. Therefore, the developed method must

be robust to a delay spread in the received parameters.

• The capability to reduce the likelihood of straggler-

like behavior. Resource-constrained devices may induce

latency or run out of power, resulting in reduced infor-

mation sharing. It is, therefore, not sufficient to consider

stragglers-like behavior [21]; it is preferable to improve

their operational environments, e.g., by reducing their

computation and communication load.

The first step to address those challenges is to model

the presented behaviors properly. To this aim, the clients’

participation is modeled by participation probabilities. At an

iteration n, the Bernoulli trial on the probability pk,n dictates

if client k is able to participate. The use of probabilities for

participation allows the model to address all the behaviors

presented in the second point, unlike the commonly used tier-

based model for participation (e.g., [23]), where each tier is

expected to behave optimally given a tailored frequency. In

fact, heterogeneity and time-dependency are handled by giving

clients various evolving probabilities pk,n, and unpredictability

and downtimes are naturally present when ensuring that all

probabilities are lower than one. In addition, any communica-

tion sent by a client to the server may be delayed by one or

several iterations.

With the proposed model, the limitations of real-world

applications and the heterogeneity of the computational power

and communication capacity of the available devices are taken

into consideration. Those asynchronous settings diminish the

potential performance of an FL method, especially in the

online setting, where data not shared in time is lost. The

proposed method ensures communication efficiency and, in

turn, some extend energy efficiency in order, notably, to

avoid downward cycles in the asynchronous behavior of the

participating clients. For instance, a weaker device may take

longer to perform the learning process, struggle to send a long

message, and need time to save enough power to participate

again. Therefore, performing less computation and exchanging

shorter messages will reduce the burden on the clients and

the communication channels, making further complications or

delays less likely. For this reason, a communication-efficient

method tailored for the asynchronous settings can perform

above its expectations in a real-life scenario.

B. Delayed Updates

The consequence of the introduced delays is that not all

updates sent by clients participating at a given iteration will

arrive at the server simultaneously. Precisely, we denote Kn

the set of all the clients who sent an update that arrived at the

server at iteration n. This set can be decomposed as:

Kn =

∞
⋃

l=0

Kn,l (9)

where Kn,l denotes the set of the clients who sent an up-

date at iteration n − l which reached the server at iteration

n, the subscript l corresponds to the number of iterations

during which the update was delayed. A delayed update will

naturally lose value the longer it is delayed, as it becomes

outdated. To improve the learning accuracy of the proposed

algorithm, we propose a weight-decreasing mechanism that

weights down delayed updates. By doing so, we diminish the

negative impact of outdated data on the convergence. This

mechanism is different from age of update mechanisms found

in [45]–[47] where weights are dictated by the amount of



5

data, independently from communication delays. We denote

αl ∈ [0, 1] the weight given to the updates sent by the

clients in Kn,l. This work only considers potential delays in

client-to-server communications. Although delays in server-

to-client communications also affect performance, they do not

require further modification of the aggregation mechanism.

Additionally, such delays are less likely to occur in IoT/CPS

applications, where the server is typically a powerful device

that broadcasts messages to resource-constrained clients.

C. PAO-Fed

The proposed PAO-Fed algorithm is tailored to the asyn-

chronous settings; notably, its novel aggregation step is de-

signed to handle delayed updates. PAO-Fed makes use of

all the available clients at a given iteration. To reduce the

amount of communication associated with the learning, it uses

partial-sharing-based communications, which is well adapted

to the asynchronous settings as it does not lay any additional

computational burden on the participating clients. Further, the

aggregation step is refined with a weight-decreasing mecha-

nism to diminish the negative impact of delayed updates on

convergence. The algorithm is as follows.

During iteration n, the server shares a portion of the global

shared model, i.e., Mk,nwn, to all the available clients. The

selection matrix Mk,n dictates which portion of the model is

sent to client k. The available client k receives its portion of

the global shared model, and uses it to update its local model,

the new local model is given by Mk,nwn + (I−Mk,n)wk,n.

Afterward, the available client k refines its local model by

performing the process of local learning on its newly available

data as follows.

wk,n+1 = Mk,nwn + (I−Mk,n)wk,n + µzk,nek,n, (10)

where ek,n is the a priori error of the local model on the local

data given by:

ek,n = yk,n − (Mk,nwn + (I−Mk,n)wk,n)
Tzk,n. (11)

When a client is unavailable at a given iteration but receives

new data and is not malfunctioning, it refines its local model

autonomously. For example, this can be a case where a client

is well functioning but does not have communication capacity

at the time. This local update step, identical to the one used

in [27], is performed as

wk,n+1 = wk,n + µzk,nek,n, (12)

where ek,n in that case is given by

ek,n = yk,n −wT

k,nzk,n. (13)

This update is computationally trivial for most devices and

does not involve communication. Its purpose is for the client

to share better-refined model parameters during the next par-

ticipation. Naturally, this additional information only reaches

the server if the model parameters are not overwritten before

being communicated, further motivating the choice of selection

matrices made in (8).

After this local update step, all available clients communi-

cate a portion of their updated local models to the server. A

client k communicates the portion of the model dictated by

the selection matrix Sk,n, that is, Sk,nwk,n+1. Those updates

may arrive at the present iteration or at a later one if they are

delayed.

At the server, we consider the previously introduced set Kn

consisting of the clients whose updates arrive at the current

iteration. This set comprises the sets Kn,l, 0 6 l < ∞ that

consist of the clients whose update was sent at iteration n− l
and arrives at the current iteration. The set Kn,0 consists of

the available clients at the current iteration whose updates have

not been delayed. Note that a client may appear twice in the

set Kn if two of its updates arrive at the same iteration. The

deviation from the current global model engendered by the

updates received from a non-empty set Kn,l is given by

∆n,l =
1

|Kn,l|

∑

k∈Kn,l

Sk,n−l(wk,n+1−l −wn). (14)

If a set Kn,l is empty, we set by convention ∆n,l = 0

The aggregation step of the proposed algorithm uses a

weight-decreasing mechanism for delayed updates. A client’s

participation that has been delayed for l iterations will be given

the weight αl ∈ [0, 1]. By convention, we set the weight of

the updates that are not delayed to α0 = 1. The resulting

aggregation mechanism is given by:

wn+1 = wn +
∞
∑

l=0

αl∆n,l. (15)

When l > lmax, the maximum effective delay, the aggregation

mechanism discards the corresponding updates by setting

αl = 0, l > lmax. It is possible to replace ∞ by lmax in (15)

without changing the aggregation mechanism. Note that in the

eventuality where several updates from clients in Kn update

the same model parameter, only the most recent updates are

considered, the selection matrices of the remaining updates are

adjusted accordingly prior to computing (15). The resulting

algorithm is presented in Algorithm 1.

D. Partial-sharing in Asynchronous Settings

In coordinated partial sharing, all participating clients share

the same portion of the model so that the server’s model is

aggregated from a large number of clients, thus improving

accuracy. For this reason, coordinated partial-sharing is used

in most algorithms assuming perfect settings. In practice,

however, delayed updates partially overwrite the previously

aggregated portion, as can be seen in (15), thus negating the

added value of coordination.

To tackle this issue, one can either use a weight-decreasing

mechanism such as the one presented above or use uncoordi-

nated partial sharing. Besides, uncoordinated partial-sharing

is ideal when dealing with underlying model changes, as

the server’s model uniformly steers towards its new steady-

state value, instead of doing so portion by portion as with

coordinated partial-sharing.

IV. CONVERGENCE ANALYSIS

In this section, we examine the convergence behavior of the

proposed PAO-Fed algorithm that uses partial-sharing-based
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Algorithm 1 PAO-Fed

1: Initialization: w0 and wk,0, k ∈ K set to 0

2: Procedure at Local client k
3: for iteration n = 1, 2, . . . , N do

4: if Client k receives new data at time n then

5: if k is available then

6: Receive Mk,nwn from the server.

7: Compute wk,n+1 as in (10).

8: Share Sk,nwk,n+1 with the server.

9: else

10: Update wk as in (12).

11: end if

12: end if

13: end for

14: Procedure at Central Server

15: for iteration n = 1, 2, . . . , N do

16: Receive client updates from subset Kn ⊂ K.

17: Compute wn+1 as in (15).

18: Share Mk,n+1wn+1 with the available clients.

19: end for

communications and evolves in asynchronous settings such as

the ones presented in Section III. We prove mathematically

that the proposed PAO-Fed algorithm converges to the exact

model in the RFF space and exhibits stable extended mean

square displacement under certain general assumptions.

Before proceeding to the analysis, we introduce auxiliary

matrices to express an entire iteration of the algorithm in the

matrix form. Similar to [48], we define the extended model

vector we,n, local update matrix Ae,n, and mapping of the

data into the RFF-space Ze,n as

we,n = col{wn,w1,n, . . . ,wK,n,w1,n . . . ,wK,n,w1,n−1,

. . . ,wK,n−1, . . . ,w1,n−lmax
, . . . ,wK,n−lmax

},

Ae,n = blockdiag{An, IDK , . . . , IDK},

Ze,n = blockdiag{Zn,0DK×K , . . . ,0DK×K}, (16)

with

An =















I 0D · · · 0D

a1,nM1,n I− a1,nM1,n

...
... 0D

. . . 0D

aK,nMK,n

... I− aK,nMK,n















,

Zn = blockdiag{0D, z1,n, . . . , zK,n}, (17)

where ak,n = 1 if the client k is available at iteration n
and 0 otherwise, col{·} and blockdiag{·} represent column-

wise stacking and block diagonalization operators, respec-

tively. We can now express the extended observation vector

ye,n = col{0, y1,n, y2,n, . . . , yK,n,0K×1, . . . ,0K×1} as

ye,n = ZT

e,nw
∗
e + ηe,n, (18)

where w∗
e = 1(K+1)lmax+1 ⊗w∗ and the extended observation

noise ηe,n = col{0, η1,n, η2,n, . . . , ηK,n,0K×1, . . . ,0K×1}.

We then can express the extended estimation error vector as

ee,n = ye,n − ZT

e,nAe,nwe,n. (19)

Therefore, the recursion of the extended model vector we,n

is given by

we,n+1 = Be,n(Ae,nwe,n + µZe,nee,n), (20)

with

Be,n =























Bn B0,n 0D×DK B1,n · · · Blmax,n

0D×1 IDK 0DK · · · · · · 0DK

... IDK 0DK · · · · · · 0DK

... 0DK IDK 0DK · · · 0DK

...
...

. . .
. . .

. . . 0DK

0D×1 0DK · · · 0DK IDK 0DK























Bn = I−
lmax
∑

l=0

αl

∑

k∈Kn,l

bk,n,l
|Kn,l|

Sk,n−l

Bl,n = [
αlb1,n,l
|Kn,l|

S1,n−l, · · · ,
αlbK,n,1

|Kn,l|
SK,n−l]. (21)

where bk,n,l = 1 if k ∈ Kn,l and 0 otherwise.

In the following, we present a detailed convergence analysis

of the PAO-Fed algorithm both in mean and mean-square

senses. To this end, we make the following assumptions:

Assumption 1: The mapped data vectors zk,n are drawn at

each time step from a WSS multivariate random sequence with

correlation matrix Rk = E[zk,nz
T

k,n].
Assumption 2: The observation noise ηk,n is assumed to be

zero mean white Gaussian, and independent of all input and

output data.

Assumption 3: At each client, the model parameter vector is

assumed to be independent of the input data.

Assumption 4: The selection matrices are assumed indepen-

dent from each other, and of any other data.

Assumption 5: The learning rate µ is small enough for terms

involving higher-order powers of µ to be neglected.

It is important to note that no assumption is taken on the αl

variables because lmax is a fixed value in our analysis.

A. First-order Analysis

This subsection examines the mean convergence of the

proposed PAO-Fed algorithm.

Theorem 1. Let Assumptions 1–4 hold true. Then, The

proposed PAO-Fed converges in mean if and only if

0 < µ <
2

max
∀k,i

λi(Rk)
. (22)

Proof: Denoting the model error vector w̃e,n = w∗
e −

we,n, and using the fact that w∗
e = Be,nAe,nw

∗
e (by con-

struction, all rows in Be,n and Ae,n sum to 1), from (20), we

can recursively express w̃e,n as

w̃e,n+1 = w∗
e −we,n+1

= w∗
e −Be,nAe,nwe,n −Be,nµZe,nee,n

= Be,nAe,nw̃e,n −Be,nµZe,nηe,n

−Be,nµZe,nZ
T

e,n(w
∗
e −Ae,nwe,n)

= Be,n(I− µZe,nZ
T

e,n)Ae,nw̃e,n

− µBe,nZe,nηe,n. (23)
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Taking the statistical expectation E[·] on both sides of (23)

and using Assumptions 1–4, we obtain

E[w̃e,n+1] = E[Be,n]E[I− µZe,nZ
T

e,n]E[Ae,n]E[w̃e,n]

= E[Be,n](I− µRe)E[Ae,n]E[w̃e,n], (24)

where Re = blockdiag{0D,R1,R1, · · · ,RK ,0DKlmax
}. The

quantities E[Ae,n] and E[Be,n] are evaluated in Appendix A.

Further, we consider the vectors and matrices reduced to the

subspace between the index D+1 and D(K +1). We denote

the reduction of x by x|sel. Using the reduced definitions, (24)

becomes: E[w̃e,n+1|sel] = (I− µRe|sel)E[Ae,n|sel]E[w̃e,n|sel],
where the block w̃e,n|sel is defined as a linear sequence of

order 1 in a normed algebra. To prove the convergence of

E[w̃e,n|sel], we use the properties of the block maximum norm

[49]. From Appendix A, we have ||E[Ae,n|sel]||b,∞ = 1. Then

the convergence condition reduces to ||I − µRe|sel||b,∞ < 1,

equivalently, |1 − µλi(Rk)| < 1, ∀k, i, where λi(·) is the

ith eigenvalue of the argument matrix. This leads to the

convergence condition given by (22).

B. Second-order Analysis

In this subsection, we present the second-order analysis

of the proposed PAO-Fed algorithm. For the given arbitrary

positive semidefinite matrix Σ, the weighted norm-square of

w̃e,n is given by ||w̃e,n||
2
Σ
= w̃T

e,nΣw̃e,n. From (23), we can

obtain

E[||w̃e,n+1||
2
Σ] = E[||w̃e,n||

2
Σ′ ] + µ2

E[ηT

e,nY
Σ

n ηe,n], (25)

where the cross terms are null under Assumption 2 and the

matrices Σ′ and YΣ are given by

Σ′ = E[AT

e,n(I− µZe,nZ
T

e,n)B
T

e,n Σ (26)

Be,n(I− µZe,nZ
T

e,n)Ae,n],

YΣ

n = ZT

e,nB
T

e,nΣBe,nZe,n. (27)

Using Assumption 3 and the properties of the block Kro-

necker product, and the block vectorization operator bvec{·}
[50], we can establish a relationship between σ = bvec{Σ}
and σ

′ = bvec{Σ′} as

σ
′ = F

T
σ, (28)

where

F = QBQA − µQB(I⊗b Re)QA − µQB(Re ⊗b I)QA,

where the higher-order powers of µ are neglected under

Assumption 5. In the above

QA = E[Ae,n ⊗b Ae,n],

QB = E[Be,n ⊗b Be,n]. (29)

In Appendix B, we evaluate the matrices QA and QB, and

prove that all their entries are real, non-negative, and add up

to unity on each row. This implies that both matrices are right-

stochastic, and thus, their spectral radius is equal to one.

We will now evaluate the term E[ηT

e,nY
Σ
n ηe,n] as follows:

E[ηT

e,nY
Σ

n ηe,n] = E[ηT

e,nZ
T

e,nB
T

e,nΣBe,nZe,nηe,n]

= E[trace(ηT

e,nZ
T

e,nB
T

e,nΣBe,nZe,nηe,n)]

= trace(E[Be,nZe,nE[η
T

e,nηe,n]Z
T

e,nB
T

e,n]Σ)

= trace(E[Be,nΦnB
T

e,n]Σ), (30)

with Φn = Ze,nΛηZ
T

e,n, where Λη = E[ηT

e,nηe,n] is a

diagonal matrix having the noise variances of all clients on

its main diagonal. Note that we used Assumption 2 in the

last line of (30). Finally, using the properties of the block

Kronecker product, we have

trace(E[Be,nΦnB
T

e,n]Σ) = hT
σ, (31)

with

h = bvec{E[Be,nΦnB
T

e,n]}

= QBbvec{E[Φn]}. (32)

Combining (25), (28), and (30), we can write the recursion

for the weighted extended mean square displacement of the

PAO-Fed algorithm as:

E[||w̃e,n+1||
2
bvec−1{σ}] = E[||w̃e,n||

2
bvec−1{FT

σ}] + µ2hT
σ,

(33)

where bvec−1{·} represents the reverse operation of block

vectorization.

Theorem 2. Let Assumptions 1–5 hold true. Then, the PAO-

Fed algorithm exhibits stable mean square displacement if and

only if:

0 < µ <
1

max
∀k,i

λi(Rk)
. (34)

Proof: Iterating (33) backwards to n = 0, we get

E[||w̃e,n+1||
2
bvec−1{σ}] =E[||w̃e,0||

2
bvec−1{(FT)n+1

σ}]

+ µ2hT(I+

n
∑

j=1

(FT)j)σ. (35)

To prove the convergence of E[||w̃e,n||
2
Σ
] =

E[||w̃e,n+1||2bvec−1{σ}
], we need to prove that the spectral

radius of F is less than one, i.e. ρ(F) < 1. Using the

properties of the block maximum norm [49], we have

ρ(F) 6 ||QB(I− µ(I⊗b Re)− µ(Re ⊗b I))QA||b,∞,

6 ||QB||b,∞||QA||b,∞

||(I− µ(I⊗b Re)− µ(Re ⊗b I))||b,∞. (36)

Since the matrices QA and QB are right stochastic, we

have ||QA||b,∞ = ||QB||b,∞ = 1. Therefore the condition

||(I− µ(I⊗b Re)− µ(Re ⊗b I))||b,∞ < 1, equivalently, |1−
µ(λi(Re) + λj(Re))| < 1, ∀i, j, is sufficient to guarantee

the convergence of ||w̃e,n||
2
Σ

. This simplification leads to the

convergence condition in (34).
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C. Transient and Steady-state Mean Square Deviation

From (33), we can express the relation between

E[||w̃e,n+1||
2
bvec−1{σ}

] and E[||w̃e,n||
2
bvec−1{σ}

] as

E[||w̃e,n+1||
2
bvec−1{σ}] = E[||w̃e,n||

2
bvec−1{σ}]

+ E[||w̃e,0||
2
bvec−1{(FT−I)(FT)nσ}]

+ µ2hT(FT)nσ. (37)

If we set σ = bvec{blockdiag{ID,0, . . . ,0}}, we obtain the

transient expression for the mean square deviation of the global

model at iteration n: E[||w̃n||
2] = E[||w̃e,n||

2
bvec−1{σ}

].
Under (34), by letting n → ∞ in (33), we obtain the

expression of the steady-state mean square deviation (MSD)

for the PAO-Fed algorithm.

lim
n→∞

E[||w̃e,n||
2
bvec−1{(I−FT)σ}] = µ2hT

σ. (38)

By setting σ = (I − F
T)−1bvec{blockdiag{ID,0, . . . ,0}},

the steady-state MSD expression of the global model can be

obtained.

V. NUMERICAL SIMULATIONS

This section demonstrates the performance of the proposed

PAO-Fed algorithm through a series of numerical experi-

ments. In these experiments, we compare the performance

of the PAO-Fed algorithm with existing methods, specifically,

Online-FedSGD, Online-Fed [18], and PSO-Fed [27].

A. Simulation Setup

We considered a federated network comprising K = 256
clients connected to a server. Synthetic data is progressively

made available to the clients in an imbalanced and non-IID

manner. For this purpose, the clients are separated into 4 data

groups for which training sets are composed of 500, 1000,

1500, and 2000 samples, respectively. A single data sample

is of the form {xk,n, yk,n}, and related by the following

nonlinear relation R
4 −→ R:

yk,n =
√

x2
k,n[1] + sin2(πxk,n[4]) (39)

+ (0.8− 0.5 exp(−x2
k,n[2])xk,n[3]) + ηk,n,

where xk,n[i] denotes the ith element of vector xk,n =
[xk,n, xk,n−1, xk,n−4, xk,n−3]. A first-order autoregressive

model is used to produce the non-IID input signal xk,n =
θk xk,n−1 +

√

1− θ2k uk,n, with uk,n ∈ N (µk, σ
2
uk
), and, for

a given client k, θk ∈ U(0.2, 0.9), µk ∈ U(−0.2, 0.2), and

σ2
uk

∈ U(0.2, 1.2). The observation noise νk,n is assumed

to be white Gaussian with variance σ2
νk

∈ U(0.005, 0.03).
Further, the cosine feature function is used to map xk,n from

dimension L = 4 into the RFF space of dimension D = 200.

As discussed in Section III.A, client participation is mod-

eled using the probabilities pk,n, k ∈ K. Note that a client

can only participate in an iteration if it receives new data;

otherwise, the probability is set to 0. The clients of each data

group are further separated into 4 availability groups, dictating

their probability pk,n of participating at each iteration. The

Bernoulli trial on pk,n dictates if a client is available or not

at a given iteration. Unless stated otherwise, the participation

probabilities given to the four availability groups are 0.25, 0.1,

0.025, and 0.005. Finally, each communication to the server

will be delayed by more than l iterations with probability

δl, 0 < l < lmax, with, unless stated otherwise, δ = 0.2 and

lmax = 10. This probability is assumed to be the same for all

clients.

The performance of the algorithms is evaluated on a test

dataset with the mean squared error (MSE) given at iteration

n by:

MSE-test =
1

MC

MC
∑

e=1

||ye
test − (Ze

test)
Twe

n||
2
2

T
, (40)

where MC is the number of Monte Carlo iterations, T is the

size of the test dataset, ye
test and Ze

test are the realization of the

data for a given Monte Carlo iteration, and we
n is the server’s

model vector for the considered method. When comparing

the PAO-Fed algorithm with other methods, the learning rates

were set to yield identical initial convergence rates so that

steady-state values may be compared. Some algorithms were

not able to reach this common convergence rate, but since their

steady-state accuracy is lower, comparison is still possible. All

the learning rates satisfy the convergence conditions obtained

in Section IV for PAO-Fed, and are available in [18], [27] for

Online-Fed, Online-FedSGD, and PSO-Fed. For instance, in

Fig. 2, 3, and 4, the step-size for the PAO-Fed algorithm is

set to µ = 0.4 with max
∀k,i

λi(Rk) = 1.02.

In the simulations, we implement uncoordinated partial-

sharing-based communications from the server to the

clients with diag(Mk,n) = circshift(diag(M1,n),mk) and

diag(M1,n) = circshift(diag(M1,0),mn). This, in turn, dic-

tates the portion of the model sent by the clients to the server

(see Section II C) so that, on average, all portions are equally

represented in the aggregation. We recall that m is the number

of model parameters shared at each iteration by both the server

and the clients, and dictates the communication savings in

partial-sharing-based communications.

We consider different versions of the PAO-Fed algorithm.

• PAO-Fed-C0 and PAO-Fed-U0 utilize coordinated and

uncoordinated partial-sharing, respectively, without em-

ploying the weight-decreasing mechanism in (15), that

is, αl = 1, 0 6 l 6 lmax. Further, the clients share the last

received server model portion, refined once by the local

update process.

• PAO-Fed-C1 and PAO-Fed-U1 utilize coordinated and

uncoordinated partial-sharing, respectively, without em-

ploying the weight-decreasing mechanism in (15). Their

selection matrices evolve as described in Section II C.

• PAO-Fed-C2 and PAO-Fed-U2 utilize coordinated and

uncoordinated partial-sharing, respectively, and employ

the weight-decreasing mechanism in (15) with αl =
0.2l, 0 6 l 6 lmax. Their selection matrices evolve as

described in Section II C.

Unless explicitly specified, each PAO-Fed implementation

shares m = 4 model parameters per communication round,

resulting in a 98% reduction in communication.
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Fig. 2: Optimization of the PAO-Fed method. (a) Utilizing local updates and coordinated/uncoordinated partial-sharing, (b)

Communication savings, (c) Utilizing a weight-decreasing mechanism for delayed updates.

B. Hyper Parameters Selection

In the first experiments, we study the impact of the hy-

perparameters on the convergence properties of the PAO-Fed

algorithm. Specifically, we investigate the impact of the choice

of the selection matrices, the number of model parameters

shared, and the scale of the weight-decreasing mechanism for

delayed updates. The corresponding learning curves in Fig. 2

display the MSE-test in dB versus the iteration index.

First, we examined how the choice of the selection matrices

Mk,n and Sk,n impact the convergence properties of the

PAO-Fed algorithm. These matrices select the model portion

to be shared between the server and clients (see Section II

C). The versions PAO-Fed-C0 and PAO-Fed-U0 are set with

Sk,n = Mk,n; that is, the last received portion from the

server is updated once by the local learning process at the

clients before being sent back to the server. On the contrary,

the versions PAO-Fed-C1 and PAO-Fed-U1 are set as in (7)

and (8); that is, the received portions from the server will

be updated several times by the local learning process to

accumulate information, in a manner similar to batch learning,

before being sent back to the server. We observe in Fig. 2

(a) that the versions PAO-Fed-(C/U)1 outperform the versions

PAO-Fed-(C/U)0. For this reason, we will only consider the

versions of the PAO-Fed algorithm making full use of the local

updates in the following. We also notice in this experiment that

it is best to use uncoordinated partial-sharing in asynchronous

settings, this contradicts the behavior of partial-sharing-based

communications in ideal settings, where coordinated partial-

sharing performs slightly better than uncoordinated, as ex-

plained in [27].

Second, we studied the impact of the number of model

parameters m shared by participating clients and the server

during the learning process. Fig. 2 (b) shows the performance

of the PAO-Fed-U1 algorithm (uncoordinated, making use of

local updates) for different values of m, namely m = 1,

m = 4, and m = 32. Although sharing more model parameters

increases the initial convergence speed, we observed that it de-

creases the final accuracy for larger m values. This contradicts

previous results in the literature about the behavior of partial-

sharing in ideal settings [27]. In fact, sharing more model pa-

rameters increases the potential negative impact of one single

delayed update carrying outdated information, decreasing the

overall accuracy. Sharing a small number of model parameters

limits the impact of a given update, providing some level of

protection against outdated information, and ensuring better

model fitting [51]. We chose to set m = 4 as a baseline, as

it presents a good compromise between initial convergence

speed, steady-state accuracy, and communication reduction.

Finally, to reduce the harmful effect of delayed updates on

the convergence properties of the algorithm, we introduce the

weight-decreasing mechanism for delayed updates proposed

in (15) in the versions PAO-Fed-C2 and PAO-Fed-U2. We

set αl = 0.2l, 0 6 l 6 lmax. In Fig. 2 (c), we display

the performance of these methods alongside PAO-Fed-C1 and

PAO-Fed-U1. We observe that decreasing the weight of the

delayed updates significantly improves the performance of the

PAO-Fed algorithm on the considered asynchronous settings.

The proposed mechanism considers the relevance of delayed

and potentially outdated updates by effectively reducing their

impact on the server model, especially for substantial delays.

By doing so, the negative effect of delayed updates is miti-

gated; in particular, when using the aforementioned weight-

decreasing mechanism, PAO-Fed-C2 using coordinated partial

sharing and PAO-Fed-U2 using uncoordinated partial sharing

exhibit the same performance.

C. Comparison of PAO-Fed with Existing Algorithms

In the following experiments, we compare the performance

of the PAO-Fed algorithm with existing online FL methods

in the literature. Figs. 3 (a) and (c) display the MSE-test in

dB versus the iteration index, and Fig. 3 (b) displays accuracy

variation versus communication savings.

First, we compared PAO-Fed-U1 and PAO-Fed-U2 with

Online-Fed [18], and Online-FedSGD. Fig. 3 (a) displays the

corresponding learning curves. First, we observe that Online-

Fed performs poorly; sub-sampling the already reduced pool

of available clients is not a viable solution to reduce commu-

nication in asynchronous settings. Then, we observe that both
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Fig. 3: Comparison of PAO-Fed with existing methods. (a) Learning curves, (b) Steady-state MSE vs. communication load,

(c) Impact of straggler clients.

PAO-Fed-U1 and PAO-Fed-U2 outperform Online-FedSGD

while using 98% less communication. The reason for this

very good performance is twofold. First, using the local and

autonomous local updates in the PAO-Fed algorithm allows

it to extract more information from the sparsely participating

clients. Second, partial-sharing-based communication provides

the PAO-Fed algorithm with an innate resilience to the negative

impact of delayed updates; this resilience is further increased

in the PAO-Fed-U2 algorithm with the weight-decreasing

mechanism, hence its better performance.

Second, we study the relationship between communication

load and accuracy. Figure 3 (b) shows the steady-state mean

squared error on the test dataset versus the average commu-

nication load per iteration when the clients employ either

PAO-Fed-U1, PAO-Fed-C2, or Online-Fed algorithms. The

communication load is obtained by multiplying the average

number of model parameters shared by a client during a given

iteration, corresponding to m for the PAO-Fed algorithms, by

32, which is the number of bits on which a model parameter

is stored. We find the MSE reached after 2000 iterations in

the previous figure by the three algorithms in this figure for

a communication load of 128 bits. Similarly, we find the

MSE reached after 2000 iterations in the previous figure by

Online-FedSGD in this figure for the Online-Fed algorithm

with a communication load of 6400 bits. Further, we observe

that the higher the communication load is, the better the

performance of Online-Fed is. However, the performances

of the algorithms using partial-sharing-based communication

vary very little with the communication load, as the lower

amount of communication is compensated by the use of local

updates and the resilience to delayed communications.

Finally, to observe the impact of the straggler clients on

the convergence properties of the algorithms, we compare the

performance of the algorithms in the proposed settings (100%
of clients are potential stragglers) to their performance in an

ideal setting where clients are always available when they

receive new data and their communication channels do not

suffer from delays (0% of clients are potential stragglers).

The learning curves are shown in Fig. 3 (c). We observe

that, in the absence of straggler clients, the methods using

coordinated partial-sharing achieve greater accuracy, almost

identical to methods with no communication reduction, while

the methods using uncoordinated partial-sharing have slightly

worse performance, this corresponds to the results obtained

in [27]. Furthermore, we see that the PAO-Fed-C2 algorithm

used on straggler clients has convergence properties almost

similar to the ones of algorithms in a perfect setting.

D. Performance on a Real-world Dataset

Fig. 4 shows the performance of the proposed PAO-Fed

algorithm on the real-world California Cooperative Oceanic

Fisheries Investigations (CalCOFI) dataset [52]. This dataset

comprises oceanographic data from seawater samples collected

at various stations and contains more than 800,000 samples.

Each sample contains parameters such as temperature, salinity,

O2 saturation, etc. The salinity of the water is linked in a

nonlinear manner to the other available parameters, and we

employed the proposed method to learn this nonlinear model

relating the salinity level in a decentralized manner. For the

purpose of the experiment, we consider only 80,000 samples

that we distribute progressively and unevenly to the 256
clients throughout the learning process (to ensure non-IID and

imbalanced data settings). Further, we simulated the straggler-

like behavior of the clients as mentioned above (availability

groups are 0.25, 0.1, 0.025, and 0.005; each communication

to the server will be delayed by more than l iterations with

probability δl, 0 < l < lmax, with δ = 0.2 and lmax = 10).

We observe similar performance for the PAO-Fed, Online-

Fed, and Online-FedSGD algorithms to the experiments on

synthetic datasets. The PAO-Fed-U1 algorithm is able to

achieve the same accuracy as Online-FedSGD while using

98% less communications, and the PAO-Fed-C2 algorithm,

also using 98% less communications, is able to outperform

all other methods.
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Fig. 4: Learning curves on the CalCOFI dataset.

E. Comparison of Various Communication Reduction Methods

in Asynchronous Settings

In this simulation, we compare the performance of the

proposed method with the PSO-Fed [27], Online-Fed [18], and

SignSGD [53] algorithms. The PSO-Fed algorithm combines

client scheduling and partial-sharing-based communications.

For a fair comparison, it has been tailored to reduce the

overall communication load by 98%, similar to the proposed

PAO-Fed-C2 algorithms. By design, the SignSGD drastically

reduces the communication load from clients to server but does

not reduce the communication load from server to clients. Its

communication load reduction is, therefore, less than 50%.

For this reason, the Online-Fed algorithm has been tailored

to reduce the communication load by only 50%. The learning

curves are displayed in Fig. 5. We observe that reducing the

communication load via a combination of client scheduling

and partial-sharing-based communication, as in PSO-Fed, is

not desirable in asynchronous settings. Furthermore, we see

that the SignSGD achieves significantly better performance

than Online-Fed for a similar communication load reduction,

making it a viable alternative to partial-sharing-based commu-

nication in asynchronous settings. However, it would need to

be complemented by server-to-client communication reduction

and a weight-decreasing mechanism to achieve the same

accuracy and communication load reduction as the proposed

PAO-Fed-C2.

F. Impact of the Environment on Convergence Properties

In these last experiments, we study the impact that a change

in the external environment can have on the convergence

properties of the proposed algorithms and existing methods.

The corresponding learning curves are shown in Fig. 6.

First, we studied in Fig. 6 (a) the importance of using

partial-sharing-based communications both at the server and

at the clients. The algorithms using partial-sharing-based

communications have been altered in this simulation with

Mk,n = I, ∀k, n; that is, the server sends its entire model to

the participating clients at each iteration. This modification can

be appealing if the server is not subject to power constraints.

The clients behave normally and only send a portion of

0 500 1000 1500 2000
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-4

-2

0

SignSGD

Online-Fed

PSO-Fed

PAO-Fed-C2

Fig. 5: Learning curves of PAO-Fed, PSO-Fed, Online-Fed,

and SignSGD.

their local model; however, unlike in the other simulations,

the received global model replaces the local model at each

participant, see (10). In such a case, we observe that the

performance of the partial-sharing-based methods is drastically

reduced. It is the information kept by the clients in the not-

yet-shared portions of their local models that allows partial-

sharing-based methods to outperform Online-FedSGD. We

note that clients may choose to ignore part of the received

model to avoid this downfall.

Second, we studied the algorithm behaviors in an environ-

ment where most communications are delayed, but delays

cannot be too lengthy. To this aim, the delay probability

has been significantly increased, and the maximum possible

delay reduced (δ = 0.8 and lmax = 5). We observe in

Fig. 6 (b) that the limited maximum delay allows Online-

FedSGD to outperform PAO-Fed-U1, as the benefit of partial-

sharing against data of poor quality does not out-weight the

smaller amount of communication available to PAO-Fed-U1.

To compensate for the fact that most incoming information

is weighted down by the weight-decreasing mechanism of

PAO-Fed-C2, its learning rate has been increased to near its

maximum value obtained in Theorem 2. Despite this, the

PAO-Fed-C2 algorithm reaches very low steady-state error and

significantly outperforms Online-FedSGD.

Finally, we modeled an environment where availability

groups are given the probabilities 0.025, 0.01, 0.0025, and

0.0005; communications to the server have a probability

δ = 0.4 to be delayed. Further, delays last for more than l
iterations, l taking the values 10i, 0 6 i 6 6, with probability

δ
l
10 ; lmax is set to 60. This notably implies that, in this environ-

ment, delayed updates have a greater probability of arriving

after a non-delayed update coming from the same client. Such

an environment where clients are less likely to be available to

participate, communications are more likely to be delayed, and

delays last for more iterations, is less favorable to learning. An

application relying on edge devices that are poorly available

and unreliable would evolve in an environment similar to this.

Fig. 6 (c) presents the learning curves of Online-Fed, Online-

FedSGD, and the PAO-Fed algorithm in this new environment
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Fig. 6: Learning curves in different environments. (a) Full server communication, (b) Common delays, (c) Increased straggler

behavior.

to see how it may impact the convergence properties of the

algorithms. We observe that, in this environment, reducing the

weight given to the delayed updates gains importance as the

accuracy difference between PAO-Fed-C2 and PAO-Fed-U1

increases. In fact, delayed updates may carry information that

is significantly outdated and, therefore, prevent the algorithms

not using a weight-decreasing mechanism for delayed updates

to reach satisfactory steady-state error. For this reason, the

PAO-Fed-C2 algorithm achieves significantly better accuracy

than Online-FedSGD in this environment.

VI. CONCLUSIONS

This paper proposed a communication-efficient FL algo-

rithm adapted to a realistic environment. The proposed FL

algorithm operates with significantly reduced communication

requirements and can cope with an unevenly distributed system

with poor client availability, potential failures, and communi-

cation delays. The proposed partial sharing mechanism reduces

the communication overhead and diminishes the negative

impact of delayed updates on accuracy. We further proposed

a weight-decreasing aggregation mechanism that emphasizes

more recent updates to improve performance in environ-

ments suffering from substantial delays, poor participation,

and straggler devices. Our numerical results showed that the

proposed algorithm outperforms standard FL methods in an

asynchronous environment while reducing the communication

overhead by 98 percent. The proposed approach is ideal for ex-

tracting information in real-time from diverse geographically

dispersed devices without overloading the system, making it

highly desirable in IoT applications in particular. Future works

include expanding the proposed algorithm to a multi-server

or networked architecture to alleviate the strain on the single

server in applications with many clients.

APPENDIX A

EVALUATION OF E[Ae,n] AND E[Be,n]

The matrix Ae,n is composed of D×D-sized blocks Ai,j,n,

given by:

Ai,j,n =



















ID if i = j ∧ (i = 1 ∨ i > K + 1),

ak,nMk,n if i ∈ [|2, . . . ,K + 1|] ∧ j = 1,

ID − ak,nMk,n if i ∈ [2, . . . ,K + 1] ∧ i = j,

0D otherwise,

where k = i− 1.

We note that E[ak,nMk,n] = pk,npmID, with pk,n being

the probability that client k participates at iteration n, and pm
being the probability that a given model parameter is selected

by the selection matrix (i.e., the density of the selection: m
D

).

Since 0 6 pk,npm 6 1, and given the above decomposition,

matrix E[Ae,n] is right stochastic.

Further, we note that by construction, (ak,nMk,n)
2 =

ak,nMk,n; therefore, under Assumption 3, we have

E[ak,nMk,nak′,n′Mk′,n′ ]

=

{

pk,npmID if k = k′ ∧ n = n′,

pk,npk′,n′p2mID otherwise.

Similarly, we decompose the matrix Be,n in D ×D-sized

blocks Bi,j,n as follows:

Bi,j,n =



















































Bn if i = j = 1,

B
(j−1)
0,n if i = 1 ∧ j ∈ [2,K + 1],

B
(j−1 mod K)

⌈ j−1

K ⌉−3,n
if i = 1 ∧ j ∈

[|3K + 2, . . . , (lmax + 3)K + 1|],

ID if i ∈ [|1, 2|] ∧ j = 2,

ID if i > 3 ∧ j > 2 ∧ i = j + 1,

0D otherwise.

,
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The blocks are given by:

Bn = I−
lmax
∑

l=0

αl

∑

k∈Kn,l

bk,n,l
|Kn,l|

Sk,n−l,

B
(k)
l,n = Bl,n[k],

Bl,n =

[

αlb1,n,l
|Kn,l|

S1,n−l, · · · ,
αlbK,n,1

|Kn,l|
SK,n−l

]

.

We note that by construction,

Bn +

lmax
∑

l=1

K
∑

k=1

B
(k)
l,n = I,

hence, the matrix E[Be,n] is right stochastic as well.

APPENDIX B

EVALUATION OF QA AND QB

We decompose matrix QA into D × D-sized blocks and

prove the property by computing the Kronecker product

Ae,n ⊗b Ae,n before taking the expectation. In particular, we

have

QA = [E[Ai,j,n ⊗b Ae,n], (i, j) ∈ [|1, . . . ,K(lmax + 1) + 1|]2],

and we note that QA can be proven to be right stochastic one

block-row at a time, considering sets of D rows indexed by i
in the above equation.

The property is easy to prove on the block-rows i = 1 and

i > K + 1. On those block-rows, we have

Ai,j,n =

{

ID if i = j

0D otherwise
,

therefore, since E[Ae,n] satisfies the property, it is satisfied on

those block-rows.

We now consider the remaining block-rows. For this pur-

pose, let i ∈ [|2, . . . ,K + 1|]. According to the decompo-

sition of the left-hand side Ae,n, the block-row i of QA

reduces to only two non-zero elements, E[Ai,1,n⊗bAe,n] and

E[Ai,i,n ⊗b Ae,n]. Hence we can compute:

E[Ai,1,n ⊗b Ae,n] + E[Ai,i,n ⊗b Ae,n]

= E[ai−1,nMi−1,n ⊗b Ae,n]

+ E[(ID − ai−1,nMi−1,n)⊗b Ae,n]

= E[ID ⊗b Ae,n],

and conclude that the block-row i satisfies the property.

Similarly, we decompose the matrix QB into D×D-sized

blocks and prove that it is right stochastic by computing the

Kronecker product Be,n⊗bBe,n before taking the expectation.

QB = [E[Bi,j,n ⊗b Be,n], (i, j) ∈ [1, . . . ,K(lmax + 1) + 1]2].

The evaluation is trivial for the block-rows i ∈
[2, . . . ,K(lmax + 1) + 1], where the decomposition of the

left-hand side Be,n reduces to only one non-zero element:

I. Therefore, since Be,n satisfies the property, it is satisfied

on those block-rows.

We now consider the block-row i = 1 and compute the sum

of the elements as:

E[Bn ⊗b Be,n +

lmax
∑

l=1

K
∑

k=1

B
(k)
l,n ⊗b Be,n]

= E[ID ⊗b Be,n],

by construction of the B
(k)
l,n matrices. We conclude that the

block-row i = 1 satisfies the property as well.

We have proven that both QA and QB are right stochastic

matrices.
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optimization: distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, Oct. 2016.

[3] O. Dekel, P. M. Long, and Y. Singer, “Online multitask learning,” in
Int. Conf. Comput. Learn. Theory, 2006, pp. 453–467.

[4] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in
federated learning,” Computers & Ind. Eng., vol. 149, p. 106854, 2020.

[5] S. Boll and J. Meyer, “Health-X dataLOFT: A Sovereign Federated
Cloud for Personalized Health Care Services,” IEEE MultiMedia,
vol. 29, no. 1, pp. 136–140, May 2022.

[6] B. Yang, X. Cao, K. Xiong, C. Yuen, Y. L. Guan, S. Leng, L. Qian,
and Z. Han, “Edge intelligence for autonomous driving in 6G wireless
system: Design challenges and solutions,” IEEE Wireless Commun.,
vol. 28, no. 2, pp. 40–47, Apr. 2021.

[7] T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and A. S.
Avestimehr, “Federated learning for the internet of things: applications,
challenges, and opportunities,” IEEE Internet Things Mag., vol. 5, no. 1,
pp. 24–29, May 2022.

[8] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[9] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Trans. Wireless Commun., vol. 20, no. 3, Mar. 2021.

[10] Z. Zhao, C. Feng, W. Hong, J. Jiang, C. Jia, T. Q. S. Quek, and M. Peng,
“Federated Learning With Non-IID Data in Wireless Networks,” IEEE

Trans. Wireless Commun., vol. 21, no. 3, pp. 1927–1942, Mar. 2022.

[11] E. Ozfatura, K. Ozfatura, and D. Gündüz, “FedADC: accelerated feder-
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