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Summary
Background Amino acids are key to protein synthesis, energy metabolism, cell signaling and gene expression;
however, the contribution of specific maternal amino acids to fetal growth is unclear.

Methods We explored the effect of maternal circulating amino acids on fetal growth, proxied by birthweight, using
two-sample Mendelian randomisation (MR) and summary data from a genome-wide association study (GWAS) of
serum amino acids levels (sample 1, n = 86,507) and a maternal GWAS of offspring birthweight in UK Biobank
and Early Growth Genetics Consortium, adjusting for fetal genotype effects (sample 2, n = 406,063 with maternal
and/or fetal genotype effect estimates). A total of 106 independent single nucleotide polymorphisms robustly
associated with 19 amino acids (p < 4.9 × 10−10) were used as genetic instrumental variables (IV). Wald ratio and
inverse variance weighted methods were used in MR main analysis. A series of sensitivity analyses were
performed to explore IV assumption violations.

Findings Our results provide evidence that maternal circulating glutamine (59 g offspring birthweight increase per
standard deviation increase in maternal amino acid level, 95% CI: 7, 110) and serine (27 g, 95% CI: 9, 46) raise, while
leucine (−59 g, 95% CI: −106, −11) and phenylalanine (−25 g, 95% CI: −47, −4) lower offspring birthweight. These
findings are supported by sensitivity analyses.

Interpretation Our findings strengthen evidence for key roles of maternal circulating amino acids during pregnancy
in healthy fetal growth.
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Research in context

Evidence before this study
Amino acids are essential for healthy fetal growth, however,
up-to-date evidence on the contribution of specific amino
acids to fetal growth is still limited due to sparce human
studies conducted previously and inconsistent conclusions
from small studies. The inconsistent findings from previous
observational studies might be due to risk of bias suffered
from confounding bias (e.g., confounded by adiposity related
traits in previous studies). Thus, the causal relationship
between maternal circulating amino acids during pregnancy
and offspring birthweight remains unclear.

Added value of this study
Using two-sample Mendelian randomisation analysis, we
examined the causal effect of maternal circulating amino acids
during pregnancy on offspring birthweight based on
summary level data from the largest genome-wide

association study (GWAS) of serum amino acids levels
measured by high-throughput platforms (86,507 individuals)
and a maternal GWAS of offspring birthweight (406,063
individuals with maternal and/or fetal genotype effect
estimates) in UK Biobank and Early Growth Genetics
Consortium. We found several potentially biologically
meaningful maternal circulating amino acids having causal
effects on offspring birthweight.

Implications of all the available evidence
Our findings indicate that maternal genetically predicted
levels of glutamine and serine increase offspring birthweight,
and leucine and phenylalanine appear to reduce offspring
birthweight. Future randomized controlled trials are
warranted to identify potential intervention opportunity (e.g.,
amino acids supplementation during pregnancy) to optimize
healthy fetal growth.
Introduction
Healthy fetal growth and development are essential for
survival, short-term, and potentially longer-term
health.1–3 Amino acids are essential for the synthesis of
protein and numerous other molecules, as well as for
the modulation of multiple cell signalling pathways. It
has been estimated that amino acids need to be supplied
at rates between 10 and 60 g/day per kg fetus for
adequate fetal growth.4 In vivo human studies highlight
complex interactions between maternal, placental and
fetal mechanisms in how different amino acids are
delivered to the fetus.5–7 However, evidence from human
studies on how maternal amino acids influence fetal
growth and development is scarce, with inconsistent
conclusions from small studies of amino acids supple-
mentation in pregnancies at risk of fetal growth
restriction.8–11

Mendelian randomisation (MR) is an approach
where genetic variants, robustly associated with a
modifiable exposure, are used as instrumental variables
to infer the causal relationship between the exposure
and an outcome of interest.12,13 Maternal genetic vari-
ants, normally single nucleotide polymorphisms
(SNPs), have been increasingly used as instrumental
variables to examine the causal relationships between
genetically influenced intrauterine exposures and
offspring birthweight in MR analysis.14–17 These have
confirmed the causal effect of maternal smoking during
pregnancy on slower fetal growth as assessed by
repeated ultrasound scan and lower birthweight,18,19 and
of pre-pregnancy body mass index and higher fasting
glucose on higher birthweight.17 MR is less likely to be
biased by the socioeconomic, environmental, behav-
ioural and health factors that confound conventional
multivariable analyses, although it is subject to other
sources of bias such as weak instrument bias and bias
from unbalanced horizontal pleiotropy (discussed
below).20–23 It may also provide a long-term (possibly
across the whole life course) assessment of between
person differences in an exposure. In relation to this
study, it could establish evidence of the effect of
maternal circulating amino acids during pregnancy on
fetal growth (as indicated by birthweight).

The aim of this study was to use two-sample MR to
estimate the potential causal effect of maternal serum
levels of the 20 established amino acids on offspring
birthweight in up to 406,063 individuals with maternal
and/or fetal genotype effect estimates.
Methods
We selected genetic variants strongly associated with 20
different circulating amino acids from the largest
genome-wide association studies (GWAS) available (N
up to 86,507),24 which were validated in samples of
pregnant women (N = 2,966) from the Born in Bradford
(BiB) study—the only study with maternal pregnancy
circulating amino acids and genome wide data that we
could identify25—and women only (N = 4,407) using
data from the Fenland study included in the main
GWAS.24 We used these genetic variants as instruments
to examine the effects of maternal circulating amino
www.thelancet.com Vol 88 February, 2023
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acids during pregnancy on offspring birthweight in a
two-sample summary data MR framework.22,26

Data sources
Sample 1: estimates for the association between genetic
variants and amino acids
Summary data for the association between genetic var-
iants and amino acids were retrieved from a recently
conducted cross-platform GWAS of 174 metabolites that
included 20 amino acids and up to 86,507 adult women
and men (for individual metabolites sample sizes varied
from 8,569 to 86,507).24 Genome-wide association ana-
lyses of up to 174 plasma metabolites were undertaken
in the following cohorts of UK adults.

• Fenland study (N = 9,363 adults) in which 174 me-
tabolites were measured using mass spectrometry
(MS, Biocrates p180 kit).

• EPIC-Norfolk (N = 5,841) in which metabolites were
measured using MS (Metabolon Discovery HD4).

• INTERVAL study in which metabolites were
measured using MS (Metabolon Discovery HD4
platform, N = 8,455) and proton nuclear magnetic
resonance (1H NMR, Nightingale, N = 40,905).

Given that two genotyping arrays (Affymetrix Axiom
and Affymetrix SNP5.0) were used in the Fenland study,
genome-wide association meta-analysis based on the
two chips were first undertaken in the Fenland study
and then results were meta-analysed with genome-wide
association results in EPIC-Norfolk and INTERVAL for
metabolites that matched those measured in the
Fenland Biocrates platform. These results were further
meta-analysed with publicly available GWAS summary
data from two studies.

• GWAS meta-analysis of 123 metabolites measured
using NMR spectroscopy on up to 24,925 individuals
from 14 cohorts in Europe by Kettunen et al.27

• GWAS meta-analysis of more than 400 metabolites
measured using the MS Metabolon platform on up
to 7,824 individuals from two European population
studies (KORA and TwinsUK) by Shin et al.28

For each metabolite, a meta-analysis of z-scores was
performed based on the above summary data using
METAL. Quality control was performed after meta-
analysis with excluding variants with minor allele fre-
quency (MAF) below 0.5% and not captured by at least
half of the participating studies or sample size for each
metabolite measured.24

A total of 20 amino acids (alanine, arginine, aspara-
gine, aspartate, cysteine, glutamate, glutamine, glycine,
histidine, isoleucine, leucine, lysine, methionine,
phenylalanine, proline, serine, threonine, tryptophan,
tyrosine and valine) were included in the meta-analysis.
We calculated the SNP effect and standard error based
www.thelancet.com Vol 88 February, 2023
on the z-score, sample size and MAF reported in the
abovementioned z-score based meta-analysis results
using the method introduced in ref.29

Sample 2: estimates for the association between maternal
genetic variants and offspring birthweight
Summary data for the association between genetic var-
iants and birthweight were extracted from the most
recent GWAS of birthweight which included 297,356
individuals who reported their own birthweight and
210,248 women who reported their offspring’s birth-
weight were combined into analysis (total n = 406,063).30

Participants with gestational age less than 37 completed
weeks (where known) or birthweight less than 2.5 kg or
greater than 4.5 kg (in UK Biobank) were excluded.
Associations with birthweight were in standard devia-
tion (SD) units in this GWAS and we multiplied these
by 484 (the median SD of birthweight in the 18 pro-
spective cohorts included in this GWAS) to obtain re-
sults in grams, which are easier to interpret.

In this study, we were primarily interested in using
maternal genetic variants to test the effect of maternal
circulating amino acids on offspring birthweight. One
challenge of utilising MR to test causal intrauterine ef-
fects on offspring outcomes, such as birthweight, is the
correlation between maternal and offspring genotypes.
If the offspring genetic variants affect the offspring
outcome, there could be violation of the exclusion re-
striction assumption. The GWAS by Warrington et al.
used a newly developed structural equation modelling
(SEM) approach to partition maternal and fetal genetic
effects on birthweight.30,31 In this study, we used the
summary data from the association of maternal genetic
variants on offspring birthweight, adjusted for offspring
genetic effects, as provided by the weighted linear model
adjusted (WLM-adjusted) analyses, an approximation of
the SEM approach.

Genetic instrumental variable selection and
harmonisation with birthweight GWAS results
A total of 112 SNPs were identified as independent
signals (LD-clumping was performed using r2 < 0.05
and ≥ 1 Mb on each side of sentinel SNP) and metab-
olome wide-adjusted GWAS significant with at least one
of the 20 amino acids in the metabolites GWAS. In
agreement with the cross-platform GWAS, we used a p-
value <4.9 × 10−10 to select SNPs strongly associated
with one or more amino acids. This p-value threshold,
which considers multiple testing resulting both from
the genome-wide analyses and multiple phenotypes
tested, was calculated as the conventional GWAS p-value
threshold divided by the number of principal compo-
nents explaining 95% of the variation in the 174 me-
tabolites in the Fenland study (i.e., metabolome-wide
adjusted GWAS p-value = 5 × 10−8/102 = 4.9 × 10−10).

To ensure statistical independence across SNPs
instrumenting for each amino acid, we conducted a
3
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more stringent LD clumping with a cut-off of r2 < 0.01
within a 10,000 kb window, by using a 1000 Genomes
European reference panel. As a result, 110 of the 112
SNPs passed the filtering and were left to be used as
instruments for at least one of the 20 amino acids.

We estimated the pair-wise correlations across
amino acids for the selected genetic variants to assess
the potential genetic correlation between amino acids.
To do that, we used the list of the above 110 selected
SNPs to extract SNP-amino acid effect estimates for
amino acids present in the summary data from previ-
ously published GWAS,27,28 where 8 amino acid con-
centrations were measured via NMR spectroscopy and 7
additional amino acids were measured via MS Metab-
olon in the two GWAS, respectively. We then calculated
and visualised the pair-wise correlation coefficients be-
tween amino acids separately for different amino acid
measurement platforms (i.e., NMR and MS Metabolon).

For the 110 selected SNPs, we searched for SNP-
birthweight association summary data in the GWAS of
maternal genetic effects on offspring birthweight. Five
SNPs (rs8061221, rs4253272, rs1065853, rs72661853
and rs142714816) were absent from the birthweight
GWAS, for four of which we could identify proxy SNPs
(rs7187819, rs4253282, rs7412, rs112748538) in high
linkage disequilibrium (LD) (details can be found in
Table S1). No proxy SNP could be found for
rs142714816, which was excluded from further analysis
(Table S1).

We harmonised the SNP-exposure and SNP-
outcome association data using “harmonise_data”
function of the TwoSampleMR R package.32 During the
data harmonisation, 3 palindromic SNPs (rs28601761,
rs2422358 and rs1935), with MAF of 0.42, 0.44 and 0.48,
were removed because we could not unambiguously
harmonise them. In the end, 106 SNPs were selected to
be used as genetic instruments for the 19 amino acids
(no available genetic instruments for cysteine after data
harmonisation). There was considerable overlap in SNP-
amino acid associations, with 6 amino acids associated
with rs715, 7 amino acids associated with rs1260326,
and 2 amino acids associated with other SNPs respec-
tively as shown in Fig. S1.

Statistical analyses
For the main MR analysis, we used Wald ratios (for
glutamate and methionine because only one SNP was
available for each of the two amino acids), and multi-
plicative random-effect inverse variance weighted (IVW)
approach33,34 for all other amino acids, to estimate the
causal effect of maternal circulating amino acids on
offspring birthweight. Both of these methods assume
that all instruments are valid (e.g., no horizontal plei-
otropy), even though IVW could still produce unbiased
estimates in certain scenarios of IV assumptions viola-
tions (i.e., balanced horizontal pleiotropy). In this study,
we focus on effect size and precision, and interpret p-
values as evidence strength indicators.35,36 All statistical
analyses were performed using R (version 4.0.2).

MR sensitivity analyses
We conducted a series of sensitivity analysis to assess
the plausibility of the core Mendelian randomization
assumptions (i.e., that the SNPs are valid and strong
instruments for testing the effect of maternal circulating
amino acids on offspring birthweight).

Instrument validity
Where more than one genetic instrument was available
for a particular amino acid, we checked for the presence
of outlier SNPs using leave-one-out analyses. For amino
acids which have five or more SNPs as instrumental
variables, we calculated Cook’s distance to ascertain
whether any individual SNP had a disproportionate level
of influence on the analysis results where a cut-off of 4/
the number of SNPs was used. We used Cochrane’s Q
statistic to examine the heterogeneity between SNP-
specific causal estimates. The presence of outlier SNPs
and substantial heterogeneity across SNPs could be
indicative of horizontal pleiotropy. Where five or more
genetic instruments were available for a particular
amino acid, we performed MR methods that are more
robust to horizontal pleiotropy, such as weighted me-
dian20 and MR-Egger regression.37 The weighted median
method assumes that more than 50% of the weight in
the analyses come from valid instruments and is more
robust to the effects of outliers. Unlike IVW, MR-Egger
does not constrain the regression slope between the
SNP-amino acids and SNP-birthweight associations to
go through zero. This means that the slope (MR esti-
mate of the causal effect) is expected to be corrected in
the presence of unbalanced horizontal pleiotropy as long
as the INSIDE (‘Instrument Strength Independent of
Direct Effect’) assumption holds. A non-zero intercept
from MR-Egger indicates unbalanced pleiotropy. We
compared the consistency of results across these MR
methods with our main analysis results.

Furthermore, we performed a ‘conservative MR
analysis’,38 in which we selected only SNPs mapping to
genes involved in amino acids metabolism pathways
(e.g., amino acids biosynthesis or degradation). SNPs
regulating the expression/function of these genes are
more likely to be credible instruments for Mendelian
randomization analysis of circulating amino acids in
comparison to SNPs with an unknown role in gene
regulation. We prioritised SNPs for the conservative MR
analyses based on results reported in the metabolites
GWAS work,24 in which they used two approaches (a
hypothesis-free genetic approach and a biological
knowledge-based approach) to prioritise likely causal
genes for the observed genetic associations with me-
tabolites (details can be found in24). In terms of amino
acids that are the focus of our study, we further looked
up the list of these prioritised genes associated with
www.thelancet.com Vol 88 February, 2023
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amino acids in Pathway Commons database,39 to
confirm whether the functions of these genes are
directly involved in the regulation of amino acids
metabolism. One main selection criterion was used: a
corresponding amino acid metabolism pathway can be
identified in at least one data source among the many
curated in that database, which reflects that the priori-
tized gene of a specific amino acid is directly involved in
that amino acid metabolism. For those prioritised genes
which were confirmed on their functional roles in the
corresponding amino acids metabolism pathways, we
included them in the either biologically or genetically
conservative SNPs set to perform MR sensitivity analysis
using Wald ratios method or multiplicative random-
effect IVW method as appropriate. The results were
compared with MR main analysis results.

Finally, at the request of reviewers we explored
whether there might be bias due to specific horizontal
pleiotropy from body mass index (BMI) or smoking (i.e.,
genetic variants instrumenting for amino acids influ-
ence BMI/smoking which in turn affect birthweight,
independently of the specific amino acid). We examined
the causal effect of each amino acid on birth weight,
adjusting for maternal BMI and lifetime smoking in
multivariable MR (MVMR) analysis separately.40 Sum-
mary genome-wide data on maternal BMI were extrac-
ted from GWASs on BMI of 171,977 women of
European ancestry conducted by the Genetic Investiga-
tion of ANthropometric Traits (GIANT) consortium.41

Summary genome-wide data on lifetime smoking were
extracted from 462,690 individuals of European ancestry
who participated in the UK Biobank study.42 A total of 37
SNPs instrumenting for maternal BMI and 126 SNPs
instrumenting for lifetime smoking were obtained.
Genetic variants instrumenting for amino acids, BMI
and lifetime smoking were harmonised with each other
and with those for birthweight, where an additional
round of LD clumping was performed for the combined
set of instruments for all the exposures (i.e., amino acids
and BMI/lifetime smoking) with a threshold of
r2 < 0.001 within a 10,000 kb window to ensure inde-
pendence of instruments. MVMR analysis was carried
out as described by Sanderson et al.,40 where the
covariance between genetic associations with each
exposure was fixed at zero. Furthermore, we calculated
conditional F-statistics to assess the strength of in-
struments. MVMR analysis was conducted using the
MVMR package for R.43

Instrument strength
To assess instrument strength in MR analysis, we
calculated an F statistic for each genetic instrument and
I2GX statistic for each exposure (i.e., amino acid) in the
case of MR-Egger regression.44 A high value of I2GX
(normally greater than 0.9) would be indicative of less
than 10% relative bias due to measurement error in the
MR-Egger causal estimate, which is equivalent to a
www.thelancet.com Vol 88 February, 2023
scenario of F-statistic greater than 10 in conventional
instrumental variable analysis.44

Relevance of genetic instruments
Our interest in this study is whether maternal circu-
lating amino acids during pregnancy influence fetal
growth and hence birthweight. We selected SNPs from a
GWAS conducted in the general population (combining
women and men) assuming that these SNPs are rele-
vant instruments for our target population (i.e., preg-
nant women). We assessed the plausibility of this
assumption by testing the relevance of the amino acids
instruments in predicting maternal circulating amino
acids during pregnancy. We were only able to identify
one cohort with maternal genotype and circulating
amino acids measured during pregnancy (the BiB
cohort). In BiB, amino acids were measured as part of
an NMR metabolomics analysis, at 24–28 weeks of
gestation (further details in25). Data were available for 9
of the amino acids and in 2966 women of European
ancestry. Amino acids levels were first natural log-
transformed, winsorised at 5 SDs and transformed to
Z scores, then adjusted for maternal age and top 10
principal components from genomic data. Each of the
resulting residuals was regressed against the corre-
sponding SNP (genetic instrument) used in the main
MR analysis. A total of 89 SNP-amino acid associations
were estimated from this analysis. In addition to
comparing GWAS associations to the equivalent in BiB,
we also compared them to the same associations in the
Fenland study (non-pregnant women). In addition to
comparing individual SNP associations between the
GWAS, BiB and Fenland, we also compared the meta-
analysis estimates of the genetic instrument-amino
acid associations for each amino acid across the three
different data sources.

Ethics statement
Ethics approval for BiB has been obtained from the
Bradford Research Ethics Committee. Written consent
was obtained from all participants. The Fenland study was
approved by the National Health Service (NHS) Health
Research Authority Research Ethics Committee (NRES
Committee–East of England Cambridge Central, ref. 04/
Q0108/19), and all participants provided written informed
consent. This study only used its summary level data.

Role of the funding source
The funders had no role in study design, data collection,
analysis, or interpretation, or any aspect pertinent to the
study.
Results
Pair-wise genetic correlations across amino acids
Using data from up to 86,507 individuals, we selected
112 SNPs strongly (p < 4.9 × 10−10) and independently
5
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(r2 < 0.05 and ≥ 1 Mb on each side of the sentinel SNP)
associated with the blood concentration of at least one of
the 20 amino acids (Table S2). Using a list of 110 in-
dependent genetic variants after more stringent LD-
clumping (r2 < 0.01 within a 10,000 kb window), we
calculated the pair-wise correlation coefficients for the
SNP-amino acid effect estimates based on summary
data from previously published GWAS.27,28 We were able
to extract 108 SNP-amino acid effect estimates across 8
NMR spectroscopy measured amino acid concentrations
(alanine, glutamine, histidine, isoleucine, leucine,
phenylalanine, tyrosine and valine) from the GWAS
conducted by Kettunen et al.27 and 72 SNP-amino acid
effect estimates across 7 MS measured amino acids
(asparagine, glycine, lysine, methionine, proline, serine
and tryptophan) from the GWAS done by Shin et al.28

We calculated pair-wise genetic correlations between
the amino acids on each measurement platform, with
the results presented in Fig. 1. Branched chain amino
acids (BCAAs; valine, leucine and isoleucine) were
highly correlated with one another (r = 0.77–0.91) and
serine and glycine were also strongly correlated
(r = 0.65). These results point to the clustered nature of
genetic regulation of circulating amino acids, which is
likely reflecting shared metabolic pathways between
amino acids. As an example, valine, leucine and
isoleucine are metabolized by a series of reactions
catalyzed by the same enzymes to generate in-
termediates for the citric acid cycle (also known as the
tricarboxylic acid cycle or the Krebs cycle) (Fig. S2).
Therefore, higher/lower activity of this pathway will
affect the concentration of the three branched-chain
amino acids. Likewise, serine and glycine are inter-
twined due to their interconversion as part of one-
carbon metabolism, which is essential for nucleotide
Fig. 1: Pair-wise correlations for the SNP-amino acid effect estimates acro
spectroscopy (a) and Mass Spectrometry (MS) (b). Data were extracted fr
glutamine; gly, glycine; his, histidine; ile, isoleucine; leu, leucine; lys, lysin
tryptophan; tyr, tyrosine; val, valine.
synthesis and methylation reactions involved in epige-
netic regulation and serine is intensively involved in
glycine biosynthesis within the glycine metabolism
pathway (Fig. S3).

Genetic variants instrumenting for circulating
amino acids
Five of the 110 selected genetic variants were absent
from the birthweight GWAS, however we identified
proxy SNPs (r2 ≥ 0.8) for four of them (no proxy could
be found for rs142714816); this led to a total of 106
SNPs remaining as genetic instruments for the 19
amino acids after data harmonization (3 palindromic
SNPs were removed and there were no available genetic
variants instrumenting for cysteine) (Table S3). These
genetic variants explained a proportion of variation in
circulating amino acids ranging from 0.13% (glutamate)
to 4.76% (asparagine) (Table S4).

Estimates of causal effects of maternal amino acids
on offspring birthweight
Main findings
In the main MR analyses, there was evidence sug-
gesting positive causal effects of maternal serine (27 g
higher offspring birthweight per SD higher serine,
95% CI: 9, 46) and glutamine (59 g, 95% CI: 7, 110) on
offspring birthweight. There was also evidence of in-
verse causal effects of phenylalanine (−25 g, 95%
CI: −47, −4) and leucine (−59 g, 95% CI: −106, −11) on
offspring birthweight. There was no strong evidence
for causal effects of the remaining amino acids on
offspring birthweight (Fig. 2 and Table S5). However,
despite using the largest available datasets, some causal
effects were imprecisely estimated and, therefore, we
cannot discard the presence of biologically meaningful
ss amino acids measured using Nuclear Magnetic Resonance (NMR)
om previously published GWAS.27,28 Ala, alanine; asn, asparagine; gln,
e; met, methionine; phe, phenylalanine; pro, proline; ser, serine; trp,

www.thelancet.com Vol 88 February, 2023
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effects for some amino acids, such as alanine (43 g,
95% CI: −14, 100).

Sensitivity analyses to explore possible bias due to horizontal
pleiotropy
Between SNP heterogeneity. If all SNPs instrumenting
for a particular amino acid are valid (i.e., without hori-
zontal pleiotropy effects), we would expect the effect
estimates to be consistent across SNPs. To assess this,
we performed leave-one-out analysis for amino acids
having more than one genetic instrument and calculated
Cook’s distance for amino acids having five or more
genetic instruments. Cochrane’s Q statistic was used to
test between SNP heterogeneity in the causal estimates.

There was evidence of between SNP heterogeneity
for some of the amino acids according to the visual in-
spection of leave-one-out analysis results (Fig. S4),
quantification of Cook’s distance and Cochrane’s Q
statistic (Table 1 and Table S6). SNPs in or near several
genes (genetically prioritized genes identified in the
GWAS conducted by Lotta et al.24) that contributed to
this heterogeneity were identified (Table 1). Some of
these loci, such as GCKR (regulating glucokinase) and
CPS1 (catalysing the initial step for the urea cycle,
pathway responsible for amino acids degradation and
urea synthesis), have been reported to be pleiotropic in
Main MR analysis Sensitivity analysis
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Fig. 2:MR estimates of the effects of maternal circulating amino acids on o
that were prioritized in the original metabolites GWAS,24 where two
knowledge-based approach) were used to prioritize likely causal genes for
amino acids; BCAAs, branched chain amino acids.
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previous studies,45,46 whereas other loci, such as GLS2
and PPM1K-DT, have been found to play a key role in
the regulation of glutamine and branched-chain amino
acids, respectively.

MR-Egger and weighted median analyses. To explore
whether these heterogeneous SNPs were causing bias
in our main analyses we undertook MR sensitivity
analyses that are more robust to invalid instruments
(i.e., weighted median and MR-Egger regression).
These require multiple SNP instruments and were
conducted for 13 of the 19 amino acids with 5 or more
SNPs available as genetic instruments (Fig. 2).
Weighted median and MR-Egger regression analysis
yielded broadly consistent results with the findings
from the main IVW MR analysis (Fig. 2). The one
exception was the result for alanine, which in the main
IVW analysis had a positive effect on offspring birth-
weight with wide confidence intervals including the
null but in MR-Egger analysis an inverse effect size
was revealed though extremely wide confidence in-
tervals also included the null. The MR-Egger intercept
also suggested that the IVW result for alanine might be
biased by unbalanced horizontal pleiotropy (p = 0.02)
(Table S7). For all other amino acids for which MR-
Egger could be undertaken there was no strong
Biologically prioritized instruments Genetically prioritized instruments

150 −150 −100 −50 0 50 100 150 −150 −100 −50 0 50 100 150
ams) per SD change in amino acids

 random effects) MR Egger Wald ratio Weighted median

ffspring birthweight. In the conservative MR analyses, we chose SNPs
approaches (a hypothesis-free genetic approach and a biological
the observed genetic associations with metabolites. AAAs, aromatic
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Amino acids Q statistic Df I2 (%) p-value Influential SNPs detected by Cook’s distance

Alanine 137.73 19 86.20 4.94E-20 rs1260326 (GCKR), rs2168101 (LMO1)

Asparagine 9.21 4 56.57 0.06 rs12587599 (ASPG)

Glutamine 108.51 12 88.94 1.18E-17 rs2657879 (GLS2)a

Glycine 35.71 12 66.40 3.61E-4 rs715 (CPS1)

isoleucine 10.08 4 60.32 3.92E-2 rs1440581 (PPM1K-DT)a

leucine 8.82 5 43.31 0.12 rs7678928 (PPM1K-DT)a

lysine 14.52 8 44.90 0.07 rs8056893 (SLC7A6)

A cut-off of 4/the number of SNPs was used to detect the influential SNPs by Cook’s distance. Genes mapped to influential SNPs were identified using a hypothesis-free
genetic approach in the original cross-platform GWAS of metabolites.24 aSNPs included in the below conservative analysis.

Table 1: Influential SNPs detected by Cook’s distance and Cochran’s Q test results.
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evidence of unbalanced horizontal pleiotropy (all MR-
Egger intercept p-values >0.05).

Conservative MR analysis. In addition to these sensi-
tivity analyses we also explored potential bias due to
horizontal pleiotropy by undertaking conservative MR
analyses where possible. SNPs mapped to genes directly
involved in amino acids metabolism are more likely to
be valid instruments for testing the effects of circulating
amino acids than SNPs mapped to genes known to be
highly pleiotropic (e.g., GCKR) or of unknown role in
amino acids metabolism. Therefore, we defined con-
servative sets of SNPs (i.e., SNPs that are more credible
instruments for circulating amino acids) and conducted
MR analyses (IVW or Wald ratio) based on these. This
was done by restricting the genetic instruments to those
with established genetic or biological functions indi-
cating direct causal effects on specific amino acids.

Twenty-one SNPs instrumenting for 13 amino acids
were selected based on biological plausibility (selection
criteria detailed in Methods section), and additional 20
SNPs instrumenting for 14 amino acids were selected
based on genetic function (Table S8). As shown in
Fig. 2, compared with the findings from the main MR
analysis, the conservative analysis produced broadly
consistent results. A positive effect of maternal serine
on offspring birthweight was confirmed for both bio-
logically and genetically prioritized instruments. Inverse
effects of asparagine and aspartate were observed in the
conservative analysis, which were not consistently
observed in the main MR analysis. In addition, the ef-
fect estimates for glutamine and some BCAAs (i.e.,
leucine and isoleucine) attenuated in the conservative
analysis.

MVMR analysis with adjusting for maternal BMI and smo-
king. The causal effects of maternal circulating amino
acids on birthweight following MVMR adjustment for
maternal BMI, and (separately) for lifetime smoking
were consistent with the main unadjusted MR analyses,
with one exception, suggesting that bias due to hori-
zontal pleiotropy from maternal BMI/smoking was
unlikely to explain most of our results (Fig. 3). The one
exception was for the potential effect of proline on
birthweight. In our main MR (unadjusted) analyses
there was no robust evidence of an effect of proline on
birthweight (difference in mean birthweight per SD
higher proline: 9 g, 95% CI: −46, 65). However, in
MVMR analysis adjusting for maternal BMI this
increased more than 9-fold to a strong positive effect
(87 g, 95% CI: 11, 163). The result from MVMR analysis
with adjustment for lifetime smoking (8 g, 95% CI: −10,
26) was consistent with the main unadjusted estimate.
Conditional F-statistics ranged from 2.03 (glutamate) to
168.92 (glycine) after adjusting for BMI and from 1.40
(glutamate) to 74.19 (glycine) after adjusting for lifetime
smoking (conditional F-statistics for each amino acid
can be found in Table S9), suggesting likely weak in-
strument bias in MVMR analysis.

Analyses to explore instrument strength. The instrument
strength in the main IVW MR analysis was assessed by
F statistic and additionally I2GX statistic was calculated to
quantify the strength of violation of the ‘NO Measure-
ment Error’ (NOME) assumption, which, if greater than
0.9, should not materially affect the MR-Egger regres-
sion estimates.44 F statistic ranged from 38.74 to 7504.06
with mean F statistic across SNPs instrumenting for
each amino acid ranging from 41 (glutamate) to 633
(glycine). I2GX ranged from 0.67 to 0.99 for amino acids
where MR-Egger regression analysis was performed
(I2GX < 0.9 for alanine, histidine, isoleucine, leucine and
threonine and I2GX > 0.9 for the remaining amino acids)
(Table S4 for instrument strength: F statistic and I2GX),
suggesting that MR-Egger analysis estimates for the
former 5 amino acids should be interpreted with caution
because of potential effect dilution.

Testing the genetic instrument relevance to maternal preg-
nancy amino acids. The SNPs used as genetic in-
struments for amino acids in this study were obtained
from the largest GWAS to date that was done in non-
pregnant women and men.24 If genetic associations
with amino acids differ markedly between women and
www.thelancet.com Vol 88 February, 2023
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Fig. 3: MVMR estimates of the causal effects of maternal circulating amino acids on offspring birthweight with adjusting for maternal BMI and
lifetime smoking respectively. AAAs, aromatic amino acids; BCAAs, branched chain amino acids; BMI, body mass index; MVMR, multivariable
Mendelian randomisation.

Articles

www.thelancet.com Vol 88 February, 2023 9

www.thelancet.com/digital-health


Articles

10
men, or within women during pregnancy, our MR re-
sults could be biased. To explore this, we compared all
89 genetic associations with amino acids from the
GWAS to the equivalent associations in a sample of
(non-pregnant) women only (N = 4407 Europeans from
the Fenland study) and also a cohort of women
(N = 2966) with amino acids measures at 26–28 weeks
gestation (the BiB cohort). A total of 67 of these genetic
associations were consistent across all three samples
(Fig. 4; heterogeneity p > 0.05). For the remaining 22
associations there was some evidence of heterogeneity
(p ranging from 3.72E-62 to 0.04). One reason for the
heterogeneity might be low imputation quality of some
SNPs in BiB study, such as rs4801776 (imputation
quality score INFO = 0.54), rs1935 (INFO = 0.65) and
rs2168101 (INFO = 0.69), and these SNP-amino acid
pairs were depicted as extremely heterogenous in Fig. 4.
Another reason for the heterogeneity is the presence of
sex-specific effect between specific variants and amino
acids. For example, it has been reported that there are
substantial sex differences in the effect size of the
variant rs715 on glycine (genetic association has higher
magnitude for women than men),46 and in our study it
was confirmed by the magnitude difference between
BiB pregnant women, Fenland non-pregnant women
and GWAS general population (both pregnant and non-
pregnant women higher than general population) as
shown in Fig. 4. After accounting for the above potential
reasons, the genetic associations with amino acids
across the three data sources were broadly consistent,
which provides evidence of using top hits from GWAS
summary data as genetic instruments of maternal
pregnancy circulating amino acids in this study. The
consistency was confirmed in the comparison of the
meta-analysis estimates of the genetic instrument–
Fig. 4: Comparisons of 89 genetic associations with amino acids betwee
men), analysis results from the Fenland study (non-pregnant women) an
exposure associations across the three different data
sources except for glycine, phenylalanine where sub-
stantial heterogeneity between estimates in the Fenland
non-pregnant women and GWAS results in the general
population was observed (Fig. S5).
Discussion
In the present study, we explored the causal relation-
ships between 19 maternal circulating amino acids and
offspring birthweight using two-sample MR analysis
and data from recent metabolites and birthweight
GWAS, which included up to 86,507 and 406,063 par-
ticipants, respectively. Our results are supportive of
maternal circulating glutamine and serine having posi-
tive, and leucine and phenylalanine having negative ef-
fects on offspring birthweight. These findings are
broadly supported by a series of sensitivity analyses
exploring bias due to potential violation of MR as-
sumptions. Despite using the largest GWAS to date for
amino acids and birthweight, it should be noted that, for
some amino acids, estimates were imprecise and key
sensitivity analyses could not be conducted due to the
low number of selected SNPs or lack of selected SNPs
mapping to genes directly involved in amino acids
metabolism.

Glutamine and glutamate are non-essential amino
acids that become conditionally essential amino acids in
catabolic stress states, which include pregnancy as fetal
demand exceeds maternal synthesis.47 Our conservative
MR analyses and review of the literature suggest that the
positive effect of maternal glutamine on offspring
birthweight might be isoenzyme dependent.48,49 Specif-
ically, when glutamine was instrumented by the
missense variant rs2657879 in GLS2 there was evidence
n the cross-platform metabolites GWAS summary data (women and
d the BiB study (pregnant women).
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of a strong positive effect, whereas when instrumented
by rs7587672, which is an eQTL for GLS, there was an
imprecise inverse effect (Fig. S6A). As GLS2 encodes
the enzyme which catalyzes the conversion of glutamine
to glutamate and ammonia and is primarily expressed in
the liver (i.e., liver-type isozyme) and GLS encodes the
kidney-type isozyme,50 we postulate that an overall pos-
itive causal effect of circulating glutamine level during
pregnancy on offspring birthweight might be primarily
driven by liver-type isoenzyme mechanism. This is
indirectly supported by the positive association driven by
rs17602430 (SLC38A2) (Fig. S6B) that is sodium-
dependent neutral amino acids (including glutamine)
transporter in system A.51

During late pregnancy glycine plays a critical role in
fetal growth because it is a primary source of one-carbon
necessary for both synthesis and methylation of DNA
and other molecules.52 However, there is evidence that
glycine is relatively poorly transported across the human
placenta and placental glycine supply is thought to be
lower than fetal demand.53 It has been hypothesized,
and with some support from sheep and human preg-
nancy tracer studies, that maternal circulating serine is
not transported to the fetal circulation via the placenta
but is used within the utero-placental tissues to syn-
thesize glycine, and via this mechanism makes an
important contribution to fetal glycine supply.54,55 Our
findings appear to support this hypothesis, that is, a
causal role of maternal circulating serine on offspring
birthweight was found but little evidence on causal ef-
fects of maternal circulating glycine on offspring birth-
weight. For glycine, results from conservative analysis
(Fig. S7) based on two SNPs, rs17591030 (GLDC) and
rs9923732 (GCSH), did not support a causal effect of it,
though results based rs561931 (PHGDH) and
rs4947534 (PSPH) suggested positive effects. The
reason for this may be the distinct biological pathways
involved. The GLDC and GCSH loci are involved in
glycine degradation, whereas PHGDH and PSPH,
encode enzymes involved in the de novo biosynthesis of
serine.46 Given the interlinked metabolism of serine and
glycine, this might explain the observed potential posi-
tive effects of glycine on birthweight when estimated
using PHGDH and PSPH compared to GLDC and
GCSH. Further exploration of this, for example, using
multivariable MR might be valuable but would require
large sample sizes.

Unlike glutamine, serine and glycine, which are non-
essential amino acids and use sodium-dependent A
system for placental transport, BCAAs, including valine,
leucine and isoleucine, use sodium-independent L sys-
tem and cross the placenta more rapidly.56 Previous
studies have reported that maternal higher concentra-
tions of essential amino acids, including BCAAs, were
associated with higher risk of intrauterine growth
restricted pregnancies.7,57 In the present study, an in-
verse effect of maternal circulating leucine on offspring
www.thelancet.com Vol 88 February, 2023
birthweight was found in the main MR analysis, which
was directionally consistent with estimates from sensi-
tivity analyses (although effect estimates were attenu-
ated). Leucine has been proposed as a modulator of fetal
muscle protein synthesis through the activation of the
intracellular mammalian target of rapamycin (mTOR)
signaling pathway.58–61 Besides, in previous MR studies,
higher circulating BCAA has been related to higher risk
of type 2 diabetes62 and elevated maternal blood glucose
has been confirmed to increase offspring birthweight.17

Thus, a positive association between BCAA levels and
offspring birthweight would be expected but interest-
ingly the findings in this study provided evidence of an
opposite relationship, which was also observed in a
recent metabolomic study.63 Given the complex biolog-
ical mechanisms involved in the BCAA metabolism and
its close link with insulin resistance,64,65 further MR
studies in large numbers of pregnancies to dissect the
impact of maternal fasting insulin and circulating
BCAAs on offspring birthweight are warranted.

For phenylalanine, our main findings suggested an
inverse effect on offspring birthweight, which was
supported by similar, although imprecise, effect esti-
mates across different methods of sensitivity analyses.
There is evidence, from one small observational study of
20 twins, suggesting a marked reduction in the fetal
circulating concentrations of amino acids including
phenylalanine transported by system L in small for
gestational age twins compared to appropriate for
gestational age twins, though no differences in maternal
amino acids concentrations were observed between
these two groups,66 and we did not identify other studies
in larger samples of the same association. Further
research is required to better understand the potential
mechanisms underlying our findings.

The main strengths of our study include the utili-
zation of maternal genetic effects from a large birth-
weight GWAS (total sample size up to 406,063
individuals) accounting for fetal genetic effects, in a two-
sample MR framework to improve causal inference.
Additionally, we undertook a series of sensitivity ana-
lyses to explore bias due to violation of MR assumptions.
We also used the largest and most comprehensive
amino acid GWAS to select genetic instruments with
validation in a sample of pregnant women. We were
able to demonstrate consistent associations between the
GWAS and a sample of women only, and also with an
independent cohort of pregnant women, with the
exception of one SNP that had previously been identi-
fied as female specific.46 We accounted for possible
population stratification by restricting to European
ancestry and using GWAS summary data accounting for
population structure (e.g., via principal components of
ancestry or using mixed models). Our conservative
analysis, conducted by restricting the genetic in-
struments to those with established genetic or biological
functions in amino acids metabolism, minimizes the
11
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potential for bias due to horizontal pleiotropy arising
from the use of SNPs that do not have specific effects on
amino acids metabolism pathways. In addition, we used
MVMR to explore specific bias due to horizontal plei-
otropy via maternal BMI and lifetime smoking. For the
vast majority of results, we found no evidence of this.
The strong positive association of proline with birth-
weight in MVMR analysis after adjusting for maternal
BMI we believe to be an artefact related to not having the
SNP or a suitable proxy for rs3970551 as one of the
proline instruments. This variant was one that we had a
priori was identified as a genetically and biologically
functional variant for proline, meaning that the strong
adjusted result after including all the other variants but
not this one and the accentuated effect is likely due to
this. Taking these MVMR results together with our
other sensitivity analyses, bias due to horizontal pleiot-
ropy is unlikely to have notably biased our findings.

One of the limitations of our study is in one major
component of the birthweight GWAS data, that is UK
Biobank study, which accounts for 80% of the sample
size in the birthweight GWAS, birthweight was retro-
spectively reported by mothers.30 Additionally, as UK
Biobank had a low response rate (∼5%) at recruitment,
potential selection bias could be an issue in the genetic
association studies and consequent MR analyses.67 Last,
our study focussed on maternal genetic variants regu-
lating amino acids concentration in maternal circulation
and the potential consequences for fetal growth; how-
ever, the impact of amino acids on fetal growth is likely
to result from a complex interplay of maternal, fetal and
placental mechanisms, which should be explored in
future studies. As an example, there is emerging evi-
dence that maternal metabolism affects maternal
circulating amino acids but also fetal amino acids up-
take by regulating placental transport mechanisms,68–70

and therefore our results should be interpreted with
caution.

In conclusion, our findings indicate that maternal
genetically predicted levels of glutamine and serine in-
crease offspring birthweight, and leucine and phenyl-
alanine appear to reduce offspring birthweight. Despite
using the largest GWAS, several causal effects were
imprecisely estimated, including some that might
indicate potentially important clinical effects, such as
for alanine. Thus, larger GWAS of amino acids and
birthweight in particular are needed to replicate our
findings and elucidate mechanisms by which these
amino acids could influence fetal growth. In addition,
the mechanisms underlying these effects are likely to
involve how amino acids are transported across the
placenta and the role of fetal responses and their ge-
notypes in influencing placental transmission. Further
research is required to gain insights into those mech-
anisms. Large-scale, high-quality randomized controlled
trials are key to establish whether intervening on
maternal circulating amino acids during pregnancy
(e.g., via supplementation) can be a useful strategy to
optimize healthy fetal growth.
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