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Abstract

Model Predictive Control (MPC) has become increasingly important due to its ability to

optimally control complex systems. By taking predictions and system constraints into ac-

count, the control law can improve the reliability and safety of industrial operations. MPC

can also help industries comply with environmental regulations by optimizing energy con-

sumption and reducing climate emissions. This makes it superior to classical approaches,

as it can improve overall productivity. With the increasing demand for sustainable and

efficient solutions, the controller is applicable to a wide range of industries, including

manufacturing, process, robotics and energy. MPC has become a critical component of

industrial control systems and is considered the main modern control approach.

Light-Weight MPC is an open-source simulation framework exploiting the performance of

linear Model Predictive Controllers. As a lightweight software, it has minimal resource

requirements, a small memory footprint, and efficient execution prioritising a simple in-

terface. Different scenarios can be addressed by defining a system description and a

controller tuning. Simulation data is neatly structured using JavaScript object nota-

tion (JSON), which can be interfaced with several other frameworks. The simulator is

C++ implemented using the Operator Splitting Quadratic Solver (OSQP) software as the

controller optimizer. The algorithm addressed is based on the formulation derived from

High-performance Industrial Embedded Model Predictive Control (Kufoalor, Imsland and

Johansen, 2015). The derived controller considers slack constraints and bias correction as

the fundamental components of MPC functionality required for lightweight software. The

corresponding system description addressed is the Finite Step-Response Model (FSRM).

A widely used model in the process industry. This model serves as both the control and

plant model, hence the simulator does not take model errors into account.

In order to make the software accessible to many and easy to use for a wide range of

devices, an interfacing Create-React-App-based application was developed. The simulator

is ported to the app using Emscripten Compiler Frontend and Webassembly (Wasm),

a high-performance binary instruction format designed for the web. This setup allows

the application as a whole to be executed in the browser without the need for server-

side callbacks. The simulation software serves as an academic tool to learn, test and

explore linear Model Predictive Controllers. The framework is open-source distributed and

licensed under BSD 3-Clause: https://github.com/orgs/Light-weight-MPC/repositories.

https://github.com/orgs/Light-weight-MPC/repositories


Samandrag

Modell-prediktiv regulering har vorte eit viktig verktøy i moderne industri. Mykje p̊a

grunn av dugleiken til å optimalt styre avanserte system. Ved å ta prediksjonar og sys-

tembegrensingar i betraktning kan styringslova heve grad av sikkerheit og p̊alitelegheit

for industrielle operasjonar. Den modellbasserte styringsmetoden kan ogs̊a hjelpe indus-

triar med å etterkomme miljøkrav ved å optimalisere energibruk og redusere klimautslepp.

Dette gjer den overlegen i forhold til klassiske regulatorar, sidan den kan forebetre produkt-

iviteten p̊a fleire plan. Med ein aukande etterspurnad etter berekraftige og effektive

løysingar, kan styringsmetoden nyttast innan ei rekke ulike industriar, til dømes innanfor

produksjon, prosess, robotikk og energi. Modell-prediktiv regulering har vorte ein kritisk

komponent i industrielle styringssystem og er antatt å vere ein sentral styringsmetode i

dagens samfunn.

Light-Weight MPC er eit simuleringsverktøy nytta til å vurdere ytinga til den mod-

ellbasserte regulatoren. Som ei lettvektsklasse programvare brukar den minimalt med

ressursar slik som minne. Grensesnittet er enkelt oppbygd og brukarvennleg. I tillegg,

skal programmet køyre effektivt. Forskjellege senario kan undersøkast ved å definere ein

system-modell og styrings-tuner. Simuleringsdataen er ryddig strukturert i JavaScript

object notation (JSON), og er lett tilgjengeleg for analyse i fleire andre rammeverk. Simu-

latoren er programmert i C++ og importerar Operator Splitting Quadratic Solver (OSQP)

programvara til å optimalisere styringa. Algoritma nytta er basert p̊a formuleringa skil-

dra i doktor-avhandlinga High-performance Industrial Embedded Model Predictive Control

(Kufoalor, Imsland og Johansen, 2015). Denne utleda stryingsformuleringa antek slakk

variablar og feilkorrigering som kjernefunksjonaliteten i ein Modell-prediktiv regulator.

Styringsmetoden basserar seg p̊a endelege sprangresponsemodellar, som er ein mykje brukt

modell i prosess-industrien. Desse modellane vert b̊ade brukt til styring i tillegg til å skildre

modellen. Dermed tek ikkje simulatoren modellfeil i betrakning.

For å gjere verktøyet tilgjengeleg og brukarvenleg for mange ulike apparat, vart ein Create-

React-App-bassert nettsideløysing utvikla. Simulatorlogikken blir overført til applikas-

jonen ved bruk av Emscripten Compiler Frontend og Webassembly (Wasm). Wasm er eit

høg-effektivt binært instruksjonsformat designa for nettsider. Dette oppsettet er uavhen-

gig fr̊a bruken av serverkall sidan heile applikasjonen vert køyrt i nettlesaren. Simuler-

ingsprogrammvara er eit akademisk verktøy for å lære, teste og utforske lineære Modell-

prediktive regulatorar. Rammeverket er ope kjelde publisert og lisensiert under BSD

3-Clause: https://github.com/orgs/Light-weight-MPC/repositories.

https://github.com/orgs/Light-weight-MPC/repositories
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1 Introduction

1.1 Project background and goal

The field of process control has evolved significantly over the past few decades. With the

growing complexity of industrial systems, there has been a corresponding increase in the

demand for more advanced and sophisticated control techniques. One such technique that

has received considerable attention in recent years is Model Predictive Control. MPC is

a control strategy that exploits mathematical models to predict system behaviour over a

receding horizon. The predictions are used to optimize the control inputs to fulfil desired

performance objectives. Predictive control approaches have become the de facto norm in

the industry. Especially, in cases where aspects such as constraints are considered and/or

if small improvements in performance can result in huge increases in profit. For such

industrial plants, the extra expense of a model-based controller approach can be justified

[23].

Even though the controller is considered a state-of-the-art method, the approach is typic-

ally unrecognized by individuals. MPC design can be significantly more complex compared

to classical control methods such as the proportional-integral-derivative (PID) controller.

Implementing an Model Predictive Controller successfully often involves extensive know-

ledge of system dynamics, mathematical modelling and optimization theory. This expertise

may not be readily available in all industrial settings, making it challenging to adopt MPC

in many applications.

Over the last decades, there has been an exponential growth of computing power. This has

increased the applicability of more powerful technological solutions, such as the addressed

controller method. With the advancement in computing power, MPC has become feasible

for handling more intricate and detailed models. It is now possible to efficiently control

complex systems that involve a large number of states, constraints, and variables. Such

models enable more accurate predictions and precise control actions, leading to improved

system performance. Additionally, the growth of computing power allows longer prediction

horizons. By considering longer horizons, a broader perspective of future system behaviour

can be obtained, enabling more informed decision-making and leading to enhanced stability

properties. MPC can consider complete dynamics, leading to better control strategies that

optimize performance over extended periods. Not to mention the impact this movement

has had on the available optimizers. Complex optimization problems associated with

MPC, such as quadratic and nonlinear programming, can be solved quickly allowing real-

time control implementation. This is particularly beneficial for fast-changing systems

where real-time decision-making and control execution time are crucial.

Equinor is an international energy company that maintains its headquarters in Norway.

The organization conducts operations both onshore and offshore. Its industries encom-

pass a variety of sectors, including oil and gas, solar energy, offshore wind, hydrogen, and

others. Such systems often yield complex multi-variable system dynamics, which can be

challenging to control efficiently with the use of classical control approaches such as PID

control. Therefore, the predictive controller strategy plays a central role in many of Equi-

nor’s processes and is widely used. In order to apply Model Predictive Control in practice,

1



the company has its own in-house control software called Estimation and Prediction Tool

for Identification and Control (SEPTIC), with its first release in 1997. According to [9],

today the control software is used in applications such as oil refining, gas processing and

offshore production. However, MPC has found applicability in emerging fields such as CO2

Capture and Storage (CSS) and energy management. MPC is continuously addressed to

maintain and further develop Equinor’s running applications both on and offshore. [9]

also concludes that the utilization of the control approach can increase production up to

5%, which is a considerable growth in business. The controller enables this advancement

by optimising the use of resources in line with a given cost. In other words, the control-

ler expresses a preference for a production system that is environmentally and socially

sustainable.

Clearly, both industry and society themselves benefit from using this advanced control

method and it should be considered in every reasonable use case. This applies not only

to existing applications but also to the ones yet to be discovered. Furthermore, as a

result of recent technological advancements, modern solutions consistently surpass clas-

sical approaches. Therefore, opting for a predictive control approach offers even greater

advantages. Consequently, there is a growing need for simulation software to effectively

identify and address relevant use cases. By automating MPC scenarios, one can easily

assess the performance and compare control data from different controllers. This sim-

plifies the control engineering design and decision-making process. Additionally, having

automated simulation software available, engineers can predict and optimize behaviour

achieving the pre-eminent controller. The development of such simulation software in a

lightweight manner is the aim of this master’s thesis.

1.2 Problem description

The purpose of this master thesis is to create an open-source lightweight simulation soft-

ware for linear MPC implementations. In the realm of software development, lightweight

software refers to applications or programs that have minimal resource requirements,

a small memory footprint, and efficient execution. Light-Weight MPC shall prioritize

simplicity, fast performance, and low system overhead, making it suitable for resource-

constrained environments. The revised version emphasizes the key characteristics of light-

weight MPC and acknowledges the potential challenge of high run-time complexity. It

also highlights the importance of managing computational efforts when dealing with such

complexity. The simulation software targets the core functionality of SEPTIC, implement-

ing central Model Predictive Controller elements. The simulator shall fulfil the following

criteria:

• Based on suitable input files, the software should generate the controller and produce

corresponding model simulation data on a discrete-time horizon, T , with constant

controller objectives.

• The simulated controller is specifically designed for process industry applications,

utilizing the Finite Step-Response Model (FSRM) as the system description.

• Provide functionality to analyse controller performance.
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• Emphasise run-time and a memory-efficient C/C++ implementation.

• High-quality open-source code following principles of software development, i.e. mod-

ularity, readability, testability, etc.

• Easily portable to web applications.

With an aim to make the code more user-friendly, a web application integrating the

simulator shall be developed. This frontend will help automate the tuning and testing

of the Model Predictive Controller providing a tailored interface. The web application

shall fulfil the following criteria:

• Emphasise user-interface (UI), user-experience (UX) and web performance.

• Being available on different devices supporting multiple web browsers.

• Provide functionality to analyse controller performance.

• Being an industrial and academic framework for tuning and testing MPC.

As stated in 1.1, MPC is a complex controller being unrecognized by many industries.

Therefore, to expose the inner workings of the algorithm, the application layout will include

informative pages explaining the controller principle and tuning mechanisms. Thus, the

application will target both industrial usages as well as being an academic framework for

linear Model Predictive Controller.

This master thesis continues the specialization project [29]. During the pre-project, the

theory behind and implementation of a minimal lightweight MPC was derived along with

corresponding testing routines and simulation results. However, in this thesis, the theory

and implementations are further improved and extended. Additionally, while the pre-

project concerned itself with the simulator, this thesis focuses on the web interface and

simulator applications to a greater extent.

Due to the clear dissection between the simulator and the web application, both in terms

of functionality and implementation language, it was sensible to divide the software into

separate repositories. The repositories are named Web-application and MPC-simulator.

The combination of these code bases is hereby referred to as Light-Weight MPC.

1.3 Contribution

The main contribution of this thesis is the lightweight implementation of an MPC simu-

lation software. The controller is developed based on contemporary theory and modern

software libraries aiming to emphasise run-time complexity and memory management.

The corresponding web application automates the sequence of producing simulation data.

Some highlights are:

• Designing a Unix-based toolchain using GNU compiler collection (GCC) and GNU

Make to deploy C/C++ source code. The toolchain uses Conda as package and

environment manager.
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• Deriving and implementing an MPC with and without slack variables using FSRM

as control model and Operating Splitting Quadratic Solver (OSQP) as optimizer.

• Using Webassembly to port C/C++ code to a web application such as the native-

run-time is preserved.

• Developing a portable React web application providing a tailored interface to the

simulator.

1.4 Outline

The master thesis is structured in the following manner aiming to describe the design

choices and the implementation of the simulation software. After the introductory section,

presenting the background and project description, the theory behind an MPC is outlined.

This theory is sufficient in order to understand the MPC principle and the impact the

tuning variables have on the controller performance. Additionally, a background is needed

in order to properly utilize the simulation software. The theory section also covers the

FSRM, which serves as the main model description. With this foundation established,

the Model Predictive Controller for Finite Step-Response Model (MPC-FSRM) is derived.

The theoretical background is built upon the foundational theories elucidated in High-

performance Industrial Embedded Model Predictive Control [12] and Process Dynamics

and Control [25].

Following the theory, the implementation of the simulator and the web application is

described. Starting by describing the functionality of the simulator, a sensible toolchain

is designed and implemented making the simulator portable to Unix devices. Moreover,

input-output (IO) data formats are outlined to pass sufficient data to the simulator and

recall them for further analysis. The relevant implementation languages and relevant

libraries used are also addressed. After defining the objectives of the web application, the

text elaborates on how to combine the two different repositories in a simulation pipeline

using Webassembly. The frontend design regarding the UI and the UX is discussed in

relation to the application objectives.

After having elaborated on the methodology, some simulation results are presented to

substantiate the application objectives stated in Section 1.2. In order to test the software,

dynamic system descriptions are needed. For this purpose two FSRMs with relevance

to the process industry are described. These models serve to be a typical use case for

an end user, pursuing to control these plants using MPC. The results reveal how to

utilize the simulation software and its many functionalities to obtain the best pre-eminent

MPC-FSRM. Subsequent to the results, a discussion follows where different software

aspects are brought to light. Central to this section is to address how the implemented

functionality aligns with the problem description. The conclusion points out possible ways

to bring the application further on the path to emerge from the lightweight category.
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2 Theoretical background

The theoretical section of this thesis is a continuation of the theory presented in the

corresponding project thesis [29]. Hence, some of the sections might appear similar or

even identical. The theory chapter is divided into three sections: Finite Step-Response

Model, Model Predictive Control and Model Predictive Control for Finite Step-Response

Model. The first two sections were also covered in the pre-project, hence they resemble.

However, in instances requiring clarification or the inclusion of missing details, certain

sections were appended. The controller presented in Section 2.3 is an extended version of

the one derived in the pre-project.

2.1 Finite Step-Response Model

An MPC algorithm is dependent on a control model formulation of the dynamical system.

In general, a plant can be defined by multiple inputs and outputs yielding a Multiple Input

Multiple Output (MIMO) system description. However, for simpler model representations,

the input and output can appear singular. This class of systems are characterized as a

Single Input Single Output (SISO) system. The MPC formulation is not limited to one

system description, but the problem formulation is extended with the complexity of the

model, yielding ambitious computation and implementation. Therefore, in the choice of a

model for MPC control, one needs to consider model complexity. This section will study

an important model in process control, the FSRM.

The Finite Step-Response Model is an advantageous representation of stable linear sys-

tems. The model representation is rapidly used within the process industry, due to the fact

that many process plants are linear and open-loop stable. In order to describe the system

dynamics, step-response coefficients si are utilized. These describe the output value of a

linear system when a unit step response is applied. By having this system representation,

the response can be singly described by a vector of s1, s2, . . . , sN . The number of step-

response coefficients, denoted as the model horizon N , is chosen large enough in order to

accurately describe the exponential response of a stable linear system. Due to the stability

property, all step-response models feature sN+1 ≈ sN .

2.1.1 Single Input Single Output system description

The formulations of the FSRM are taken from the book Process Dynamics and Control

(Chapter 20 [25]). This section, describing the model, denotes a lowercase mathematical

symbol as a single value. Uppercase and bold uppercase notation denote respectively a

vector and a matrix expression. These different notations make up the nomenclature. The

output y is dependent on two terms, a summation of actuation changes and an offset. The
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SISO representation of an FSRM at a time step k can be expressed as,

y(k) =

N−1∑
i=1

si∆u(k − i) + sNu(k −N)

=
[
s1 s2 · · · sN

]


∆u1
∆u2
...

∆uN−1

+ sNuN

= f(S,∆U, u)

(1)

In contrast to other system models, the step response formulation is not based on states

but describes the dynamic of the systems by linear combining step coefficients with the

corresponding change in actuation. Due to the usage of actuation steps and not the

current actuation, an N − 1 element large vector of actuation steps needs to be monitored

throughout the simulation of an FSRM. Along with the final actuation, u(k −N), these

values represent the internal state of the system. The final actuation is also only a system

parameter, and shall not be confused with the applied actuation, u, which is expressed

as u =
∑N−1

i=1 ∆u(k − i) + u(k − N). Notice that ∆u(k) denotes the first element in the

vector and that the iteration goes backwards in time. Hence, the previous actuation step

is multiplied by the first step-response coefficient added by the later step with a later

coefficient and so on.

Assume a step in actuation, ∆u∗ occurring at time k. The corresponding model output

is then described by right-shifting the step into the actuation vector. The past actuation

step, ∆uN−1, is then disregarded from the fixed-sized actuation vector, but rather included

in the updated final actuation, uN = uN + uN−1. To conclude, the effect of an actuation

step is represented by right-shifting the actuation vector and updating the offset. This

is one of the key properties of using the FSRM for MPC, as calculating predictions is a

fairly simple operation.

y(k + 1) =

N−1∑
i=1

si∆u(k − i+ 1) + sNu(k −N + 1)

=
[
s1 s2 · · · sN

]


∆u∗
∆u1
...

∆uN−2

+ sN (uN + uN−1)
(2)

The expression (1) is a discrete-time system representation, where k and i are respectively

the current and fixed time step. By denoting j as a future time step, the output ŷ(k + j)

describes a predicted output j time steps forward in time. The general SISO predicted

output equation is formulated by splitting up the different step responses in future and
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past time intervals, respectively for i ∈ [0, j] and i ∈ [j + 1, N ], yielding,

ŷ(k + j) =

j∑
i=1

si∆u(k + j − i)︸ ︷︷ ︸
Effect of future control actions

+
N−1∑
i=j+1

si∆u(k + j − i) + sNu(k + j −N)︸ ︷︷ ︸
Effect of past control actions

,

(3)

where the past term is reformulated as,

ŷo(k + j) ≜
N−1∑
i=j+1

si∆u(k + j − i) + sNu(k + j −N), (4)

yielding the SISO predicted output equation:

ŷ(k + j) =

j∑
i=1

si∆u(k + j − i) + ŷo(k + j). (5)

2.1.2 Model prediction

Given the system description, one can determine up to N model predictions simply from

a linear equation. For an arbitrary prediction P steps into the future, the P first step-

response coefficients are used to estimate the output. The remaining N − 1 − P step

coefficients are used to represent the effect of already chosen ∆u. Analogously, this pro-

cedure can be seen as P right-shift operations of the actuation vector. By expanding these

expressions one can formulate a vector of P predictions, Ŷ . Similarly, this can be done for

the past outputs and actuation steps by also taking the control horizon M into account,

yielding the expressions (6).

Ŷ (k + P ) ≜
[
ŷ(k + 1) ŷ(k + 2) . . . ŷ(k + P )

]T
∈ RP (6a)

Ŷ o(k + P ) ≜
[
ŷo(k + 1) ŷo(k + 2) . . . ŷo(k + P )

]T
∈ RP (6b)

∆U(k + (M − 1)) ≜
[
∆u(k) ∆u(k + 1) . . . ∆u(k +M − 1)

]T
∈ RM (6c)

Due to the linear form of the FSRM, one can express P model predictions ahead using M

control inputs. This mapping from control inputs to predictions is achieved by defining

the lower triangular matrix S ∈ RP×M .
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Ŷ (k + P ) = S∆U(k +M) + Ŷ o(k + P ), (7a)

S ≜



s1 0 · · · 0

s2 s1 0
...

...
...

. . . 0

sM sM−1 · · · s1
sM+1 sM · · · s2

...
...

. . .
...

sP sP−1 · · · sP−M


. (7b)

2.1.3 Multiple Input Multiple Output system description

The MIMO system description is obtained using the superposition principle. A MIMO

system output is formulated as a linear combination of several SISO systems, hence the

MIMO representation is a straightforward extension of the system (7). For an industrial

process plant, the MIMO system description is governed by multiple outputs Y and inputs

U . In this case, the response of an output variable can be caused by multiple input

variables. Following the superposition principle, the total response is equivalent to the

summation of the sub-responses.

Whenever MPC is applied to a model representation, another methodology is used to

describe the model variables. The term controlled variable (CV) describe a variable to be

controlled, yielding an output variable. Such variables often have a set point to target and

the dynamics are governed by soft constraints. Similarly, a manipulated variable (MV)

refers to a variable the controller can determine, yielding an input variable. In contrast to

the controlled variables these are governed by hard constraints, constraints which cannot

be stepped over. This methodology, renaming the model’s inputs and outputs, is typical

for industrial applications. Hence, the use of MV and CVs is naturally included in the

implementation of Light-Weight MPC .

Assume nCV = 1 and nMV = 2, referring to the number of respectively controlled and

manipulated variables. The output, Ŷ (k+P ), is composed of two SISO FSRMs governed

by Equation (7). As seen in Equation (8), knowledge of both systems is required, implying

having determined the step-response coefficients for both sub-systems. In the general

case with nCV controlled variable and nMV manipulated variables, the overall system

description can be described in a linear form (9a). Extending the MIMO matrix definitions

is formed by stacking the SISO components upon each other. For instance, one element

of the MIMO Θ-matrix (9b) describes one SISO response, S-matrix defined in Equation

(7b).

Ŷ (k + P ) = S11∆U1(k +M) + Ŷ o
11(k + P )

+ S12∆U2(k +M) + Ŷ o
12(k + P )

= Θ∆U(k +M) + Ŷ o(k + P )

(8)
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Ŷ (k + P ) = Θ∆U(k +M − 1) + Ŷ o(k + P ), (9a)

where Θ ≜


S11 S12 · · · S1nMV

S21 · · · · · · S2nMV

...
...

...
...

SnCV 1 · · · · · · SnCV nMV

 ∈ RnCV ·P×nMV ·M , (9b)

Ŷ o(k + P ) ≜
[
Ŷ o
11 Ŷ o

12 · · · Ŷ o
1nMV

· · · Ŷ o
nCV 1 · · · · · · Ŷ o

nCV nMV

]T
, (9c)

∆U(k +M − 1) ≜



∆U11(k +M − 1)

∆U12(k +M − 1)
...

∆U1nMV (k +M − 1)
...

∆UnCV nMV (k +M − 1)


. (9d)

2.1.4 Simulating a Finite Step-Response Model

When digitally simulating an FSRM, time must be discretized into smaller steps. The

sampling period, ∆t, denoting one discrete time step is firmly related to the model horizon

N . The model horizon should be chosen so that

N =
ts
∆t

, (10)

where ts is the settling time for the open-loop response [25]. This value describes the

time needed for the process to reach a steady state when a step response is applied. Most

important, when deriving an FSRM, is to use the same ∆t for all input-output responses.

Only by enforcing this property, a valid simulation model can be acquired. Otherwise, the

controller actuates the same controlled variable using different time stamps. Assuming a

MIMO FSRM description and a constant ∆t, the model horizons may differ due to varying

settling times. Typically, N ∈ [30, 120] according to [25]. The simulator implemented

solves the problem by enforcing an equal number of step response coefficients. By defining

N∗ as the highest number of coefficients present in the model. The simulator utilizes the

property, sN+1 ≈ sN , to pad every smaller step-response coefficient vector to the size N∗.

Since the notion of time is abstracted into the number of coefficients, it does not make

much sense to produce a simulation for an MPC horizon in a unit of seconds. Therefore

the MPC horizon, T is a unitless variable describing the total number of steps used in a

simulation. One specific step is denoted k such that a whole simulation can be described

as k ∈ [0, . . . , T ]. The impact of one simulation step, k → k + 1, represents the ∆t used

when deriving the FSRM.
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2.2 Model Predictive Control

Model Predictive Control is a state-of-the-art control technique, utilizing a model and

optimization theory to predict and determine the optimal control actuation. By having

the system model present in the controller, the algorithm can take multiple different

dynamics into account to achieve better performance. Hence the controller method has

most applications facing difficult multi-variable system plants. Additionally, as constraints

are a natural part of an optimization problem, system constraints can easily be accounted

for in the control loop. The objective of the controller can vary and is defined by the

optimization problem. However, a typical MPC aims to stabilize the model output to a

set point or make them follow a trajectory.

2.2.1 Classical versus predictive control

Classical controllers such as PID control are the most commonly adopted structure in

the industry. Their success is linked to the three parameters Kp, KI and Kd, as seen in

Equation (11), being intuitive and simple to tune in many cases. The PID controller is a

computationally fast controller, assessing the control error in the current time stamp t.

K(t) = Kpe(t) +KI

∫ t

t0

e(τ)dτ +Kdė(t) (11)

It is shown (e.g., see [23] Chapter 1) that PID control is challenging to implement for

several system classes. Furthermore, it is also difficult to achieve a good performance

using a PID controller if the system is prone to large time delays or has a non-minimum

phase zero. It is not surprising that the scope of a PID controller is limited as the model is

too simplistic to cater for the challenging dynamics of some system descriptions. Predictive

controllers, on the other hand, have a more complex structure involving multiple controller

parameters. An MPC is a more flexible controller and a better choice for controlling multi-

variable systems and heavily constrained systems.

Nevertheless, many of these systems can maintain high-quality control performance by

combining PID control with a human operator. So what aspects does a human account

for which cannot be perceived by classical controllers?

The true value the predictive controllers lies in their ability to anticipate the future. This

is in fact the natural approach humans use to control their surroundings. Consider the

process of driving a car. A good driver has a lifted head and eyes glancing several meters

ahead. This is in order to anticipate any potential dangers, such that he can account for

these at an early stage by reducing the driving velocity or positioning himself accordingly.

In other words, the driver uses predictions in order to achieve a reasonable control law,

and the car moves forward as the road within our vision moves. In general, how far the

prediction goes is denoted by the prediction horizon and this horizon recedes in time.

Figure 1 illustrates how the receding horizon moves by the time step k and prediction

horizon P . As the horizon moves in time, the operator picks up new information used to

update the control action. This is the core principle of a predictive controller.
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k = 0

k = 1

k = 2

Δk = P

Figure 1: Illustration of the receding horizon. Even though the process changes with time,
the prediction horizon is held constant, predicting new information for each step k.

Consider again the car driving process but without a human operator. The car is driving

down an alley in order to reach its destination, the system needs to turn by the next

intersection. A predictive controller would plan the scenario by reducing the vehicle speed

before the act of turning. Hence, maintaining the reference within the constraints. This

controller performance is given due to predictions far enough ahead to large enough to

anticipate the turn. If any other aspects such as traffic lights and pedestrians could be

perceived, this could also be accounted for in the control action.

This example clearly shows the use of predictive controllers. However, in order to describe

the predictions, additional models must be accounted for in the controller algorithm lead-

ing to higher run-time complexity. In general, the optimal controller can be obtained by

finding the sweet spot between performance and complexity. Often simple fast systems will

benefit from classical control approaches, while slow complex system description rather is

the typical use case for predictive controllers.

2.2.2 Optimization theory

In order to understand the linear MPC algorithm, a background in optimization theory

is required. The following sections provide a grasp overview of the basic principle behind

the controller. Mathematical optimization is the theory behind finding a set of optimum

values, z ∈ Rn, for a problem given a set of constraints. The definition of a general

constrained optimization problem is formulated as (cited from [6])

min
z∈Rn

f(z), (12a)

subject to ci(z) = 0, i ∈ E , (12b)

ci(z) ≥ 0, i ∈ I, (12c)

where f is a scalar objective function describing the properties we want to optimize. E
and I are the disjunct index sets respectively to the equality and inequality constraints.

Based on the constraints the feasible set X is denoted as

X = {z ∈ Rn | (ci(z) = 0, i ∈ E) ∧ (ci(z) ≥ 0, i ∈ I)} , (13)
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The solution to the optimization problem is a z∗ ∈ X minimizing the objective function.

Hence, f(z∗) < f(z), ∀z ̸= z∗ ∈ X . There exist a diversity of approaches in order to

determine z∗. A suitable optimizer depends on the specific problem and along with other

factors such as memory requirements and speed of convergence. The problem formulation

is critical when using optimization algorithms. The problem should be formulated in a way

that is well-suited to the optimizer being used and the characteristics of the problem being

solved. A well-formulated problem can greatly improve the performance of the optimizer

and the quality of the solution obtained.

2.2.3 Standard Quadratic Program formulation

A Quadratic Program (QP) arises frequently in optimization-based control. The objective

is to find a control signal that minimizes a quadratic cost subject to constraints on the

control inputs and state variables. The benefit of such a formulation is that the convexity

of the problem is easily characterized. The structure of such a QP is defined as [6]:

min
z∈Rn

1

2
zTGz + qT z, G ∈ Rn×n, q ∈ Rn (14a)

subject to ci(z) = aTi − bi = 0, i ∈ E (14b)

ci(z) = aTi − bi ≥ 0. i ∈ I (14c)

The standard quadratic program is characterised by a quadratic cost function constrained

by affine elements. If the hessian matrix, G, is a positive definite matrix, yielding, G =

GT ≻ 0 the problem has convex properties. The importance of convexity in optimization

problems stems from the fact that convex functions and sets have desirable properties

that make optimization easier. It can be shown that convexity implies a uniquely global

solution for the optimization problem (14). Such a global minimum in the solution space

allows solvers to converge to the optimal solution efficiently since no local minima exist in

the solution space. In the case when the hessian matrix is positive semi-definite, yielding

G = GT ⪰ 0, the optimization problem is still relatively easy to obtain a solution.

However, this solution might not be a global solution due to the existence of local minima

in the solution space.

2.2.4 Minimal controller formulation

Assume a controller, assessing a SISO plant with manipulated variable ∆u and controlled

variable y for the time horizon k = [0, · · · , j, · · · , T ]. Linear MPC is formulated as a

convex optimization problem minimizing an objective function:

min

P∑
j=W+1

∥y(k + j)− yref (k + j)∥2Q +
M−1∑
j=0

∥∆u(k + j)∥2R, (15)
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such that

y(k + j) = f(p̂,∆u(k + j)) (16)

where
∑I

0 ∥y∥
2
Q = yTQy ∈ R,Q ∈ RI×I indicates a scaled L2-norm where each expression

is scaled by the elements qi of the positive definite matrix Q. By utilizing the L2-norm

the cost function is assumed to be convex. Additionally, by assuming a linear model

description (16), the overall problem is convex using the same analogy as in Section 2.2.3.

Furthermore, taking additional linear constraints into account will not change the overall

convexity of the quadratic problem.

This is a linear MPC due to the linear property of the dynamical model. Furthermore,

this problem can be solved using quadratic optimizers. However, if the plant is nonlinear

modelled (16) the optimization problem becomes more challenging to solve. This com-

plicates the solution procedure significantly and a nonlinear solver is needed instead of a

quadratic. Such a controller formulation is denoted as a nonlinear MPC and due to its

increased complexity, this type of problem will not be further addressed in this thesis. For

further reading f(p̂,∆u(k + j)) is assumed to be linear.

The SISO formulation, Equation (15) and (16), can easily be extended to a MIMO system

description. This is done by representing y and ∆u in vector cases with the respective

lengths of nCV and nMV . By rewriting the summations as vector-matrix multiplications

extracting the optimization variables in a vector z, the optimization problem takes the

form of (14). The model variable p̂ depends on the specific system model representation.

If f(. . . ,∆u) is represented by a step-response model this variable may consist of measured

outputs and previous control inputs.

One question remains. How can the controller be interpreted? The first summation

evaluated a controlled variable error, between the model output and the given reference

yref . This reference could either be a constant term or a trajectory to be followed. The

performance tuning is represented by the matrices Q = QT ⪰ 0 and R = RT ⪰ 0. The Q

matrix is a tuning matrix that penalizes the controlled variable error. By increasing the

q-weights the controller will emphasize tracking the reference signal. Similarly, the later

summation assesses the change in actuation penalised by the R-matrix. By tuning these

values higher, the controller emphasises a small change in actuation. Additional signals

can be taken into account simply by adding an L2-norm expression. The general tuning

problem is not that challenging for an MPC controller, since every tuning factor penalises

a certain signal.

2.2.5 Model Predictive Control principle

As elaborated in Section 2.2.1, the basic controller principle builds upon future model

predictions. Given models, the controller can predict the controlled variables and use this

information further to plan an optimal sequence of manipulated variables. Note that the

horizons P , M , T > 0 and W ≥ 0 denote scalars even tho they are written in uppercase.

For each time step k, a tuned optimization problem is solved for a prediction horizon, P ,

and a control horizon M . This notion is also called dynamical optimization, solving a

set of different optimization problems with the same underlying structure for every time
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stamp. The different horizons specify how many time steps into the future the controller

takes into account when optimizing. Particularly, the control horizon M refers to the

number of future control actions that the MPC plans ahead. It determines the length

of the control sequence considered when optimizing. On the other hand, the prediction

horizon, P , specifies the number of future time steps over which the system behaviour is

predicted. It determines how far into the future the MPC controller looks when making

control decisions. After each optimization, the first predicted actuation, u(k + 1) is fed

back into the plant, proceeded by estimating the system plant using this information to

further predict the next optimal action. Algorithm 1 describes the MPC procedure using

output feedback.

How do the controller parameters affect the performance? Consider the control and pre-

diction horizons, M and P . As the control horizon increases, the MPC controller tends

to become more aggressive and the required computational effort increases. M is often

selected such that M ≤ P . A rule of thumb according to [25] is N
3 < M < N

2 , and different

values of M can be tied to every MV. The same case goes for the prediction horizon P if

the settling times, ts are quite different. However, due to simplicity, M and P are assumed

equal for every CV and MV response present in a MIMO FSRM. This assumption is also

done in thesis [12], but can easily be extended by parsing multiple horizons. if imple-

mented, these additional can be reflected in the definition of the Θ-matrix yielding the

dimensions R
∑nCV

i=0 Pi×
∑nMV

j=0 Mj . The prediction horizon is often selected to be P ≤ N+M

so that the full effect of the last MV move is taken into account. A decrease in this value

tends to make the controller more aggressive. To avoid an aggressive response one can

also consider the prediction horizon infinite, P →∞. It can be shown that this controller

assembles a Linear Quadratic Regulator (LQR) if additional constraints are disregarded.

Such a controller definition will however not be regarded in this project.

For process plants having a delayed response time, it might be reasonable to account for

this delay in the controller definition. The start horizon, W , describes the first predicted

output deviation to account for in the cost function. Especially, when regarding industrial

process plants, such systems do usually have slow dynamics with a certain time delay,

τ between control input and system output. Due to this system property, it would be

dubious to try to control the plant for t ≤ τ corresponding to k ≤ W in relation to the

MPC horizon. Only taking predictions k ≥W into account will also contribute to reducing

the computational effort, since fewer terms are considered.

2.2.6 Implementing a Model Predictive Controller

Having covered the control principle and the model, this section will elaborate on how a

controller simulation can be implemented. Figure 3 illustrates how the controller is related

to the plant, which is being controlled. The control method is illustrated in the blue marked

area, where an optimizer and a control model are used to calculate the optimal actuation.

For a simulation case, there is no physical plant to apply the actuation on, hence both the

control model and plant must be mathematically described. Considering controlling an

FSRM plant, the control model will resemble the plant model exactly. This is not the case

for real-time control, as the control model only is an estimated model, and model errors

are present. For every time step k, the controller solves an optimization problem where
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...... ......

Figure 2: Illustration of a Model Predictive Control scenario, inspired by figure 20.2 [25].
This scenario exemplifies the impact the horizons have on the predicted signals.

the control model is used as an equality constraint. Algorithm 1 describes the simulation

procedure used in MPC-simulator.

Algorithm 1 Output feedback MPC procedure [6]

for k = 0, . . . , T do
Compute an estimate of the current output ŷk based on the measured data up
until time k.
Solve a dynamic optimization problem on the prediction horizon P from k
to k + P using M actuation predictions with xk as initial condition.
Apply the first control move uk from the solution above.

end for

MPC-simulator aims to implement the core functionality of an MPC. Of course, the basic

principle enters into this purpose. However, there are other features often found in the

realm of predictive control. These features contribute to improving the flexibility of the

controller and are also addressed in the lightweight implementation.

2.2.7 Soft constraints, slack variables

According to [25], applying inequality constraints on the input and output variables was

the primary motivation for the early development of MPC. This property could for in-

stance non-saturating actuators or constraining process outputs such as temperature, flow,

pressure and volume seen from a process industry view. However, inequality constraints

might lead to feasibility issues for a solver algorithm.

For practical applications, a small feasible set, described in Equation (13), might not be
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Plant

Optimizer

Control model

Model Predictive Controller

Actuation, U Simulated Output, Y

Ref

Figure 3: General Model Predictive simulation loop. For each simulation step, the output
of the plant is feedback to the controller optimizing the next actuation with the use of the
prediction model and reference.

sufficiently feasible for stabilizing controller feedback. In the case of controlling physical

plants, model errors and disturbances are always present. These phenomena may break

any of the inequality constraints, such that no feasible solution is obtainable for the con-

troller in order to stabilize the plant. By introducing soft constraints in the objective

function, the inequality constraints are softened, increasing the set of feasible solutions

(13). This approach is beneficial in the case where disturbances or unforeseen phenom-

ena are impacting the plant. Soft constraint introduced in the cost function emphasises

robustness in the controller.

Soft constraints, also known as slack variables, are implemented by adding and subtracting

an offset, ϵ, to respectively the upper and lower inequality constraint for the output vari-

able. As indicated in Figure 3, the output is denoted as Y . Equation (17) shows how slack

variables can be mathematically interpreted. This offset is further penalized in the cost

function, in which the offset is minimized. For the presents of multiple slack variables, the

cost takes a linear form, ρT ϵ. The offset is also required to be non-negative allowing only

an increase of the feasible set. To enforce this property, additional inequality constraints

for the offset are added to the optimization problem. The tuning of the soft constraint

represents the hardness of the constraint. By increasing ρ, the constraint is hardened.

Conversely, softening occur through a reduction. Soft constraints are typically employed

only on the controlled variables.

Y − ϵl ≤ Y ≤ Y + ϵh, ϵh ≥ 0, ϵl ≥ 0. (17)

2.2.8 Bias correction

Due to inaccuracy and unknown disturbances, the predictions used in the control al-

gorithms might be unrealistic and error-prone. Prediction accuracy can be improved using

the latest measurements in the predictions. The idea is to define a bias correction defined

as in Equation (18). This bias is an estimate of the control model error and can further

be added to the predicted output yielding a corrected prediction (19). The measured bias

b(k) measured in the current time step k is added to every future prediction. Hence, the

method can be seen as an update in the model controller offset.
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optimzer
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Figure 4: Block diagram for model predictive control with output feedback. The real-
world deceptive model information is used to correct the control model in the feedback
loop.

b(k) = y(k)− ŷ(k) (18)

ỹ(k + j) ≜ ŷ(k + j) + b(k)

= ŷ(k + j) + [y(k)− ŷ(k)]
(19)

This strategy is known as output feedback or bias correction, utilizing measurements in

the control loop. The expressions are taken from [25]. The corresponding block diagram

for an output feedback MPC controller is shown in Figure 4. The bias correction term is

called residual and is seen in most outer feedback. In order to implement this control loop

software-wise, a mathematical model assembling a real-world plant needs to be simulated.

A typical control challenge when controlling an actual plant is the impact the process noise

has on the control loop. Hence, in order to make the control loop as realistic as possible

in a simulation environment, noise should be present in the plant model simulations. By

this means, the model simulation assembles real sensor data.

Having such a plant model present, in addition to the derived control model, one can

also use the residual, B(k), as an estimate of how well the control model assembles the

underlying plant. If this deviation is too great, one might need to reconsider the control

model. Usually, the control model is a linearized model, yielding a simpler model de-

scription. The linearization approach is often made in order to analytically derive control

laws. The MPC-simulator assumes the Finite Step Response Model description as the

control and prediction model. However, as described in Section 2.1 about the model, it

can only represent linear stable plants. In the case where the plant deviates too far from

this assumption, the controller will perform poorly due to the overwhelming model errors

present in the control loop.
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2.2.9 Model Predictive Controller formulation

Taking all the MPC features mentioned into account, one can represent the MPC controller

by the optimization problem described by the Equations (21). The problem formulation

takes a MIMO system description into account, hence every value that occurred in the

SISO formulation (15) is now represented as a vector. The vector nomenclature is described

by capitalized letters.

There are in total six tuning variables making up the prediction mechanism and controller

performance. The horizons: P,M and W and penalizing variables Q,R and ρ. The

closed-loop stability of MPC can be acquired by the choice of Q,R, P and W . A rule of

thumb is to set the prediction horizon large enough to cover the dominant dynamics. By

predicting far ahead, the algorithm may overcome any future instability by depicting early

deviations. Achieving closed-loop stability is in practice no major issue giving a sound

MPC tuning. Especially when all dynamical models addressed in Light-weight MPC are

open-loop stable, however, as addressed in Section 2.2.8 model errors are unavoidable, and

stability should always be taken into account when tuning. To summarise, the selection of

appropriate values for the six tuning variables depends on the specific system dynamics,

control objectives, and computational constraints. It often requires a combination of

theoretical analysis, simulation studies, and empirical tuning to find optimal values that

result in satisfactory control performance for a given application.

min
P∑

j=W+1

∥∥∥Ỹ (k + j | k)− Yref (k + j)
∥∥∥2
Q
+

M−1∑
j=0

∥∆U(k + j)∥2R + ρT ϵ, (20a)

where ρ =

[
ρh
ρl

]
, ϵ =

[
ϵh
ϵl

]
, (20b)

such that

Ỹ (k + j) = F (p̂,∆u(k + j)) +B(k + j), B(k) = Y (k)− Ŷ (k), j ∈ {W + 1, . . . , P} ,
(21a)

U(k + j) = U(k + j − 1) + ∆U(k + j), j ∈ {0, . . . ,M − 1} , (21b)

∆U ≤ ∆U(k + j) ≤ ∆U, (21c)

Y − ϵl ≤Ỹ (k + j) ≤ Y + ϵh, ϵh ≥ 0, ϵl ≥ 0. (21d)
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2.3 Model Predictive Control for Finite Step-Response Model

The theory behind the MPC principle and the FSRM description has been covered in the

respective Section 2.2 and 2.1. What remains is how to design a suitable MPC for the

purpose of controlling such a dynamic model. More importantly, how to emphasise run-

time complexity in the design. Both MPC-FSRM formulations discussed in this chapter

are inspired by the doctor thesis High-performance Industrial Embedded Model Predictive

Control [12].

2.3.1 Standard Quadratic Program formulation

The aim of this section is to derive the standard QP problem formulation for a MIMO

step response model, constraining the output error and the change in input. As mentioned

in Section 2.2.3, when designing optimization-based controllers, the run-time depends on

the optimization problem’s complexity. Fast physical systems require real-time controller

performance to achieve the desired dynamics. Hence, the standard formulation is often

used to assure fast optimization.

In order to gain a complete understanding of the derivation, with all the different matrix

expressions, it is reasonable first to show the formulation for a SISO system description,

extending to a MIMO, before deriving the standard QP. For a SISO system description,

the MPC problem can be formulated as follows:

min
P∑

j=W+1

qj(ỹ(k + j)− yref (k + j))2 +
M−1∑
j=0

rj∆u(k + j)2 + ρhϵh + ρlϵl (22)

subject to

ỹ(k + j) = y(k + j) + b(k), b(k) = y(k)− ŷ(k), j ∈ {W + 1, . . . , P} , (23a)

u(k + j) = u(k + j − 1) + ∆u(k + j), j ∈ {0, . . . ,M − 1} , (23b)

∆u ≤∆u(k + j) ≤ ∆u, j ∈ {0, . . . ,M − 1} , (23c)

u ≤u(k + j) ≤ u, j ∈ {0, . . . ,M − 1} , (23d)

y − ϵl ≤ỹ(k + j) ≤ y + ϵh, ϵh ≥ 0, ϵl ≥ 0, j ∈ {W + 1, . . . , P} . (23e)

ρh, ρl ≥ 0 represent the tuning of the soft constraint described in Section 2.2.7. By

representing the summations in terms of dense matrices and stacking the variables into

vectors, as done in Section 2.1.3, the following MPC formulation is achieved:

min Ỹ (k + (P −W ))TQỸ (k + (P −W )) + ∆U(k + (M − 1))TR∆U(k + (M − 1))

−2T (k)TQỸ (k + (P −W )) + ρTh ϵh + ρTl ϵl,
(24)
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where

Ỹ (k + (P −W )) = Θ∆U(k + (M − 1)) +Φ∆Ũ(k) + ΨŨ(k −N) +B(k),

= Θ∆U(k) + Ŷ o(k + P ) +B(k),

= Θ∆U(k) +Λ(k),

(25)

Q = blkdiag (Q, nCV ) ∈ RnCV ·(P−W )×nCV ·(P−W ),

R = blkdiag (R, nMV ) ∈ RnMV ·M×nMV ·M ,
(26)

such that

U(k) = K−1(ΓŨ(k − 1) + ∆U(k)), B(k) = Y (k)− Ŷ (k), K ≻ 0 (27a)

Ỹ (k + j) = Y (k + j) +B(k), j ∈ {W + 1, . . . , P} , (27b)

∆U ≤∆U(k + j) ≤ ∆U, j ∈ {0, . . . ,M − 1} , (27c)

U ≤U(k + j) ≤ U, j ∈ {0, . . . ,M − 1} . (27d)

Y − ϵl ≤Ỹ (k + j) ≤ Y + ϵh, ϵh ≥ 0, ϵl ≥ 0, j ∈ {W + 1, . . . , P} , (27e)

This formulation describes the model-based predictive controller for an Finite Step-Response

Model. The blkdiag function appearing in Equation (26) is described in the appendix Sec-

tion A. For esthetical reasons, the output reference signals Yref are described by the

letter T (k). This notation is also more descriptive since the reference also could be given

by a trajectory. The cost function consists of two quadratic expressions constraining all

CVs and MVs, respectively denoted by Y and ∆U . In addition, three linear terms occur

considering the trajectory tracking and the upper and lower soft constraints respectively.

The tuning matrices are diagonalized by the number of CV and MV present in this rep-

resentation block.

By using the same approach as in Section 2.2 the Equation (25) can be simplified using

the terms of future and past control actuation. This is realized by introducing Λ in the

equation. As seen in the Equation (25), the past term Ŷ o(k+P ) can be reformulated by

separating the past change in actuation and final actuation. This is expressed by defining

the two step-response matrices Φ and Ψ. The matrices are mathematically expressed

in the Equations (28) and (29). This reformulation is important in the reduction of the

standard QP problem. Additionally, for a general FSR model, it is not given that every

SISO model. Furthermore, Λ-matrix cannot be formed without having a defined size.

Define N∗ as the highest valued N considering every step response included in the model

definition. Due to the structure of the Finite Step Response Model, one can pad the

step response vector, defined in (1), with an arbitrary number of sN . The padded SISO

response will be mathematically equivalent to the original, but larger in terms of model

parameters.
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Φ =


Φ1,1 Φ1,2 · · · Φ1,nMV

Φ2,1 Φ2,2 · · · Φ2,nMV

...
...

. . .
...

ΦnCV ,1 ΦnCV ,2 · · · ΦnCV ,nMV


nCV (P−W )×

∑nMV
j=1 (N∗−W−1)

Φi,j =


sW+1 sW+2 . . . sN−2 sN−1

sW+2 sW+3 . . . sN−1 sN
...

...
...

...
...

sP+1 sP+2 . . . sN sN


(P−W )×N∗−W−1

(28)

Ψ =


Ψ1,1 Ψ1,2 · · · Ψ1,nMV

Ψ2,1 Ψ2,2 · · · Ψ2,nMV

...
...

. . .
...

ΨnCV ,1 ΨnCV ,2 · · · ΨnCV ,nMV


nCV (P−W )×nMV

Ψi,j =


sN
sN
...

sN


(P−W )×1

(29)

Notice that these matrices define the predictions used in the controller’s cost function.

Hence all of the matrix dimensions are dependent on the horizons variables P , M and

W . The same goes for the Θ-matrix described in Equation (30). By setting W = 0, one

obtain an FSRM description suited for simulation purposes.

Θ =


S1,1 S1,2 · · · S1,nMV

S2,1 · · · · · · S2,nMV

...
...

...
...

SnCV ,1 · · · · · · SnCV ,nMV


nCV ·(P−W )×nMV ·M

,

Si,j =



sW sW−1 · · · 0

sW+1 sW
. . . 0

...
...

. . .
...

sM sM−1 · · · s1
sM+1 sM · · · s2

...
...

. . .
...

sP sP−1 · · · sP−M


(P−W )×M

.

(30)

The decoupling of actuation in the MIMO case is described in (27a). Here the two matrices

K and Γ take the form of Equation (31) using the block diagonal transform described in

the appendix Section A. Since K is a positive definite matrix, it is invertible. It can be

shown that K−1 takes the form of a lower triangular matrix, taking only the value 1 (33).
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K = blkdiag (K1,K2, . . . ,KnMV ) ∈ RM ·nMV ×M ·nMV ,K ≻ 0,

Γ = blkdiag (Γ1,Γ2, . . . ,ΓnMV ) ∈ RM ·nMV ×nMV ,
(31)

Kj =



1 0 . . . 0 0

−1 1
. . . 0 0

0 −1 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . −1 1


, Γj =


1

0

0
...

0

 , (32)

K−1 =



1 0 . . . 0 0

1 1
. . . 0 0

1 1
. . . 0 0

...
...

. . .
. . .

...

1 1 . . . 1 1


∈ RM ·nMV ×M ·nMV . (33)

If soft constraints are to be regarded in the controller formulation, the output variables

Y , need to be slacked by ϵl and ϵh. One way to accomplish this mathematically is to

enlarge the optimization vector, zst, with additionally Y (k) as formulated in (35). Using

this formulation, each output variable is slacked twice. One time representing upper slack

and one time representing lower slack. However, one additional matrix is needed in order

to represent the slack property. In general, depending on the prediction horizon, there

are in total (P −W ) · nCV output variables. Still, there are only a total of nCV slack

variables - one for each output. To make the dimensions become mathematical valid for

subtraction and addition, the nCV slack variables must be mapped to (P −W ) ·nCV . This

is accomplished using the scaling matrix (34).

1 =



10,1 0 . . . 0
...

...
. . .

...

1(P−W ),1 0
. . . 0

0 10,2
. . . 0

...
...

. . .
...

0 1(P−W ),2
. . . 0

...
. . .

. . .
...

0 0 0 10,nCV

...
...

...
...

0 0 0 1(P−W ),nCV



∈ R(P−W )·nCV ×nCV . (34)

Y − 1ϵl ≤ Ỹ ≤ Y + 1ϵh ⇔

{
−∞ ≤Ỹ ≤ Y + 1ϵh

Y − 1ϵl ≤Ỹ ≤ ∞
⇔

{
−∞ ≤Ỹ − 1ϵh ≤ Y

Y ≤Ỹ + 1ϵl ≤ ∞
(35)
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By grouping the optimization variables ∆U, Ũ, Y, ϵh and ϵl together in a vector zst, the

overall problem leads to the standard QP problem formulation (14). This can be concluded

by comparing the standard QP formulation to the cost function (36) and corresponding

linear constraints (37). It can be shown that R,Q ≻ 0 =⇒ Gst ⪰ 0. For simplicity,

the inequality constraints are left out since they are not used for further derivation. The

standard quadratic program formulation is the base formulation deriving the MPC-FSRM.

min
zst

1

2
zTstGzzt + q(k)T zst

= min
zst

1

2



∆U

U

Ỹ − ϵh
Ỹ + ϵl
ϵh
ϵl



T

2R 0 0 0 0 0

0 0 0 0 0 0

0 0 2Q 0 0 0

0 0 0 2Q 0 0

0 0 0 0 0 0

0 0 0 0 0 0





∆U

U

Ỹ − ϵh
Ỹ + ϵl
ϵh
ϵl



+
[
0 0 −2T (k)TQ −2T (k)TQ ρTh ρTl

]


∆U

U

Ỹ − ϵh
Ỹ + ϵl
ϵh
ϵl


(36)

such that

Ezst =

 −I K 0 0 0 0

−Θ 0 I 0 1 0

−Θ 0 0 I 0 −1




∆U

U

Ỹ − ϵh
Ỹ + ϵl
ϵh
ϵl


=

 ΓŨ(k − 1)

Φ∆Ũ(k) +ΨŨ(k −N) +B(k)

Φ∆Ũ(k) +ΨŨ(k −N) +B(k)

 = f

(37)

2.3.2 Condensed formulation

The condensed formulation targets a QP on the form:

min
z

1

2
zTGz + qT z, G = GT ⪰ 0,

s.t. l ≤ Az ≤ u.
(38)

This formulation differs from the standard quadratic formulation in which there are no

linear constraints present. The constraints are rather formulated as a linear system of in-

equalities upper and lower bounded. In order to get to the target QP (38), a reformulation
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of the constraints is needed. Recall the structure of the optimization vector used in (36):

zst =



∆U

U

Ỹ − ϵh
Ỹ + ϵl
ϵh
ϵl


∈ R2·(M ·nMV +·P ·nCV +nCV ). (39)

As formulated in Equation (25), both Y (k), and U(k) are expressions of ∆U(k) and by use

of these equality constraints the number of optimization variables can be reduced. This

method is called the Null Space Method described in [16] (Chapter 16.2). The principle is

that the equality constraints present in the optimization problem can be folded into the

cost function, reducing the function to its null space. Hence, a reduced MPC formulation

can be achieved yielding a condensed formulation. For the standard QP formulation

described in Equation (36) the optimization vector (39) is reduced to

zcd =

∆U

ϵh
ϵl

 ∈ RM ·nMV +2·nCV . (40)

The fewer optimization variables, the lower yields the run-time complexity of the MPC

algorithm. Hence the condensed formulation is preferable for this project. In order to

derive the condensed formulation using the Nullspace method, Equation (25) and (27a)

is utilized to describe U(k) and Y (k) in terms of ∆U(k). The aim is to represent the

optimization vector as a linear combination of the condensed vector, yielding zst = Azcd+

C. The expression has the property such that EA = 0 and A being invertible. Using

this expression, one can reduce the standard quadratic program cost function (14). This

derivation is shown in Equation (41).

min
zst

1

2
zTstGzzt + qT zst

= min
zcd

1

2
(Azcd + C)TG(Azcd + C) + qT (Azcd + C)

=
1

2
zTcdA

TGAzcd + (CTGA+ qTA)zcd

=
1

2
zTcdGcdzcd + qTcdzcd

(41)

The matrix A and vector C are derived in Equation (42).
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zst =



∆U

U

Ỹ − ϵh
Ỹ + ϵl
ϵh
ϵl


=



∆U

K−1ΓŨ(k − 1) +K−1∆U(k)

Λ(k) +Θ∆U(k)− ϵh
Λ(k) +Θ∆U(k) + ϵl

ϵh
ϵl



=



I 0 0

K−1 0 0

Θ −1 0

Θ 0 1

0 I 0

0 0 I


∆U

ϵh
ϵl

+



0

K−1ΓŨ(k − 1)

Λ(k)

Λ(k)

0

0


= Azcd + C(k)

(42)

Hence, the condensed MPC formulation can be summarized as,

min
zcd

1

2
zTcdGcdzcd + qTcd(k)zcd, (43a)

Gcd = ATGA = 2 ·

R+ 2ΘTQΘ −ΘTQ1 ΘTQ1

−1TQΘ 1TQ1 0

1TQΘ 0 1TQ1

 ⪰ 0, (43b)

qcd(k) = C(k)TGA+qTA = 2 ·

 2 ·ΘTQ(Λ(k)− T (k))
−1TQ(Λ(k)− T (k)) + ρh
1TQ(Λ(k)− T (k)) + ρl

 , (43c)

such that

zcd(k) ≤ Azcd ≤ zcd(k), (44a)

yielding,

∆U

U

−∞
Y

0

0


−



0

K−1ΓŨ(k − 1)

Λ(k)

Λ(k)

0

0


≤



I 0 0

K−1 0 0

Θ −1 0

Θ 0 1

0 I 0

0 0 I


zcd ≤



∆U

U

Y

∞
∞
∞


−



0

K−1ΓŨ(k − 1)

Λ(k)

Λ(k)

0

0


. (44b)

2.3.3 Properties of the condensed formulation

Due to the positive semi-definite property of the standard QP (36), yielding G ⪰ 0. It

can be shown that this property also is passed to Gcd (43b). This is a result of positive

semi-definiteness being closed under a congruence transform. For G being positive semi-

definite:

G ⪰ 0 ⇐⇒ yTGy ≥ 0, ∀y. (45)
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Table 1: Condensed form matrix dimensions

Matrix expression Condensed dimensions

zcd M · nMV + 2 · nCV

qcd M · nMV + 2 · nCV

T (P −W ) · nCV

Λ (P −W ) · nCV

Q nCV · (P −W )× nCV · (P −W )

R M · nMV ×M · nMV

Θ nCV · (P −W )×M · nMV

Φ nCV (P −W )×
∑nMV

j=1 (N∗ −W − 1)

Ψ nCV (P −W )× nMV

K/K−1 M · nMV ×M · nMV

Γ M · nMV × nMV

A 2M · nMV + 2 · (P −W ) · nCV + 2 · nCV ×M · nMV + 2 · nCV

Gcd M · nMV + 2 · nCV ×M · nMV + 2 · nCV

Define y = Ax.

xTATGAx ≥ 0, ∀x =⇒ ATGA = Gcd ⪰ 0 □ (46)

Hence, one can conclude that the condensed formulation is a convex program with the

properties stated in Section 2.2.3.

Clearly, this problem formulation is a more compact representation compared to the stand-

ard MPC. The problem size can be characterised by the number of optimization variables,

n and the number of constraints, m. One can show that:

n = M · nMV + 2 · nCV = dim(zcd), (47a)

m = 2 ·M · nMV + 2 · (P −W ) · nCV + 2 · nCV . (47b)

Moreover, one can see that the problem size is proportional not only to the number of

model variables but also to the horizons. Hence, an MPC based on a MIMO FSRM is

a fairly memory-demanding system description. An overview of other matrix dimensions

used in the formulation is given in Table 1. The condensed problem formulation stated

in the Equations (43) serves as the main MPC algorithm in MPC-simulator, as it is

the least memory-consuming MPC. For scenarios where slack variables are disregarded,

the controller (58) is rather simulated. For simulation purposes, an overview of all the

parameters needed to simulate the condensed controllers is represented in Table 2. There

are in total fourteen different scalars and vectors needed to simulate the MPC-FSRM

derived in this section.
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Table 2: Controller parameters. Description of all parameters needed in order to simulate
the condensed Model Predictive Controller. The identifiers are also used in the imple-
mentation of MPC-simulator.

Parameter Description

P Prediction Horizon
M Control Horizon
W Start Horizon
Q Output error penalty
R Actuation penalty
ρh Upper slack penalty
ρl Lower slack penalty
z Upper constraints
z Lower constraints

3 Implementation

Section 3.1 describes the implementation of the simulator software. This design is a

continuation of the software presented in the pre-project. Therefore, Section 3.1 resembles

the software design Chapter 5 in [29]. Consequently, to the outline of the simulator

implementation, the design of the Web-application, Section 3.2, is addressed.

3.1 MPC-simulator

The MPC-simulator is the foundation of Light-Weight MPC. As stated in the problem

description, Section 1.2, this tool incorporates MPC and conducts closed-loop simulations

using an FSRM. Once all the necessary information is parsed, the condensed controller

defined by Equation (43) can be instantiated for simulation. The controller performance

is directly related to the trace-back of the output trajectories. Therefore, it is essential

to store this information in a structured manner to enable further assessment The same

applies to controller tuning and system data. Considering that the software exists within

a digital realm, the plant must also be simulated alongside the controller. Therefore,

the simulation step is the most intricate part of the project, as it brings together all the

necessary components to generate simulation data. The complexity of the step is highly

related to the complexity of the controller itself. Hence, a C/C++ implementation is

considered to handle potentially large run-time requirements efficiently. Additionally, the

software should account for errors such as invalid data and simulation failures, adopting

defensive implementation practices and providing meaningful feedback to the end user.

Like any framework, the simulator should accommodate various scenarios, making generic

implementations the preferred approach.

To gain insights into the functionality of simulation software for control algorithms, initial

research was conducted on SEPTIC. Understanding this software seemed appropriate

since the simulator aimed to encompass its core functionality. However, unlike SEPTIC,

Light-Weight MPC emphasises portability over advanced MPC features. The lightweight

software is distributed as open source and built using modern software practices. The final
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Figure 5: Illustration of the MPC-simulator folder structure

simulator’s folder structure is illustrated in Figure 5.

3.1.1 Toolchain

Every software relies on a platform to run effectively. To efficiently build and compile the

simulator, it was necessary to design a suitable toolchain. Since C/C++ is a compiled

language and not an interpreted, the build procedure is a bit more involved as the com-

pilation is platform-dependent. In contrast to an interpreted language, a compiler assess

the whole code base in the executable files produced. This makes the code execution time

comparatively less since the program is translated into machine code. Therefore, C/C++

are preferred implementation language for heavily computational tasks. The process of

producing machine code from source code involves four essential steps: preprocessing,

compiling, assembling, and linking of the source code [28]. Besides accounting for these

different build steps the toolchain should also be handy in use. The toolchain was intended

to be cross-platform, hence runnable on multiple OSs. Considering the hardware limita-

tions, the toolchain release is specifically designed for Unix-based operating systems like
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macOS and Linux. The implementation relies on the GNU toolchain [8], incorporating

GNU Make and GCC. Additionally, to automate the compilation process, CMake has

been integrated into the toolchain.

The principle behind this building software is as follows: Based on a text file, CMake allows

the user to specify different targets such as compiler flags, the programming language

version, external libraries etc. Dependent on the flag configuration, the software generates

a suitable Makefile describing how the compiler shall compile and link the code base

together. By enhancing a strict folder structure and clearly separating the source code

from the headers, shown in Figure 5, CMake is able to notice any changes in the code

base. It consequently notifies the compiler to add this advancement to the executable files.

In contrast to GCC, CMake is cross-platform and can target other compilers, making the

extension to Windows OS possible. Followed by the generation of the Makefiles, GNU

Make can interpret the file and call GCC to compile the software consequently.

In addition to local software, standardised packages and libraries were needed in order to

implement code in a structured and readable manner. Instead of importing several header

files describing the interface of a C/C++ library, a package manager was utilized. Conda

[2] is an open-source package, dependency and environment manager for a waste set of pro-

gramming languages, including C/C++. Conda allows programming environments, which

is a major benefit, making dependency issues easy to handle. MPC-simulator is based

on several different C/C++ packages, and instead of downloading these separately into

Conda, one can simply download an environment instead. A programming environment

defines a collection of dependencies targeting a specific application. This design choice is

especially handy as packages become deprecated with time. The MPC-simulator offers

two downloadable environments for different operating systems. The first environment,

named ”linux”, is designed for Linux-based OSes. The second environment is tailored for

macOS, aligning with its corresponding naming convention. Despite being a highly diverse

package manager, it proved to be easily integratable into the toolchain. Figure 6 shows

an overview of the toolchain.

3.1.2 Data flow

As indicated in Table 2, there are numerous parameters that contribute to the diversity of

an MPC. Additionally, in order to produce the controller simulation, the definition of the

plant model is also needed. These two components are needed to complete the simulation

loop Figure 3. Since the MPC-simulator is designed to accommodate various scenarios

involving different controllers and FSRMs, the input data may vary in size. Therefore, it

was necessary to structure the controller and plant data in a logical and practical manner.

The IO formats are described in the appendix Section B. The input files are divided into

two formats: scenario and system files. The system file provides a detailed description

of the specific model representation being simulated. On the other hand, the scenario

file defines the corresponding controller and establishes a link to the relevant system file.

This highlights the fact that simulating a controller in isolation is meaningless without

understanding the underlying system. While the system and simulation files can possess

diverse structural properties, the goal of implementing a lightweight interface led to specific

design considerations. The system file is customized for the FSRM, while the scenario file

29



CMake

GNU Make

GCC

Conda

Package Manager

Toolchain

./mpc_simulator

Executable

Makefile

Compile

Compile setup

Packages

Figure 6: Illustration of the MPC-simulator toolchain. The components represent the
software used to realise the different C/C++ build steps.

is tailored for the MPC-FSRM. In future implementations, there may be opportunities to

reuse the same configuration for other controller and model definitions.

For this purpose, the lightweight data-interchange format JavaScript object notation

(JSON) format was chosen [19]. Due to the easily readable interface and programming

language support, JSON is widely used in the software community. Moreover, since the

format is so usual, there exists a diversity of different software for parsing and serializing

such formats. This also emphasises the portability of the data to other frameworks, which

can readily parse the simulation data for further applications. All of these properties

clearly made JSON a much-preferred data format. The detailed structure of the scenario

and system files is described in the appendix, Section B.2 and B.3.

Similarly, an output format was needed in order to be able to interpret the simulation

data and analyse the controller performance. Unlike the input formats, determining the

output format was not as straightforward or obvious. The selected output format drew

inspiration from SEPTIC. The stored data includes the optimal actuation values (U), the

reference trajectory to be followed (T ), and the simulated output of the model among

others. For boundary analysis, the constraints are also added to the simulation format.

The output data was customised in order to exploit different aspects of the controller

performance. Similarly to the input format, this format can also for future reference be

customised to include certain data for the specific scenario. The description of the file is

found in the appendix Section B.1 and Figure 7 illustrates the simulator’s dataflow.

To fulfil the requirement of parsing and serializing JSON-formatted files with logic com-

patible with C/C++, external software was imported. The emphasis during this process

30



system.json

t

Simulate

Serialize

ref
y
u

y

scenario.json

system.json

...

simulation.json

u = [u1, u2, ..., uT]

ref = [r1, r2, ..., rT]

y = [y1, y2, ..., yT]

T

Figure 7: Illustration of the MPC-simulator data flow, defining the different steps from
processing input to producing output. The input files are represented by the system and
scenario files. The simulation results are serialized into a simulation file.

31



was on achieving efficiency and readability. The open-source JSON parser, nlohmann

[13], was a popular option for this purpose written in modern C++. Besides the software,

a well-documented Application programming interface (API) followed with the purpose

of aiding implementation. The software could also be installed via Conda, which fitted

perfectly into the toolchain described in Section 3.1.1. The utilization of the nlohmann

software primarily involves including a nlohmann-json object, which behaves like a C++

container. By defining the data, one can easily pass the information to the container, and

it will generate the corresponding JSON format. However, when reading a JSON file, the

data needs to be converted into standard C++ types. For this objective, several C++

classes and structs were implemented in order to categorize the data efficiently from the

specified input format.

3.1.3 Finite Step-Response Model

The implementation of the FSRM proved to be the most challenging aspect of the sim-

ulator. Despite the model itself being composed of a series of step-responses, there are

multiple matrices that need to be constructed and updated during simulation. Equation

(25) serves as an example of one such matrix. To express the matrices software-wise in-

volves allocating memory and several index operations. If the simulator was to regard

other MPC and models it would be preferable to import a standard linear algebra library.

Eigen [10] is a C++ template library used for linear algebra. The framework provided a

simple interface to define vectors and matrices along with efficient linear algebra opera-

tions such as matrix multiplication, transpose, inversion and others. The library is fast

and reliable with good compiler support [10]. Similarly to the nlohmann parser, the Eigen

software is also well-documented with an existing API. This library was a clear choice to

import into MPC-simulator.

The implementation of the FSRM is found in the file FSRModel.h. FSRModel is a C++

class with a constructor taking a data object described in Section 3.1.2 as an argument.

The object has member variables corresponding to horizon parameters from Table 2 and

the matrices needed to calculate the predicted output Equation (25). In the general case,

the Finite Step-Response Model could include an unknown amount of CVs and MVs hence

the object is constructed at run-time, allowing dynamic memory management. Addition-

ally, nCV and nMV could possibly take on large values making these member variables

consume a lot of the program memory. The most memory-consuming variables were often

sparse matrices, matrices containing a high number of zero elements. Such variables were

therefore implemented using a memory-optimized type Eigen::SparseMatrixXd, which

is an efficient data type for describing dense matrices. Pointers were also utilized in the

model implementation with the same aim of reducing memory consumption. By using

pointer expressions instead, the software references a certain predefined data type instead

of traditionally copying it. Avoiding copying the program circumvents unnecessary us-

age of program memory. Poor memory handling can lead to stack overflow and system

crash and should be dealt with cautiously. Therefore is the object encapsulated, with a

destructor releasing the dynamically allocated memory.
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3.1.4 Condensed Model Predictive Controller

Up until this point, the methods used to solve the MPC optimization problem (43) have not

been addressed. The project description does not require an implementation of an open-

source solver. To derive and implement such a solver is a very involved and complicated

task. Hence, several optimizer frameworks were addressed for this purpose. All addressed

optimizers had the ability to solve a convex QP in a fast manner.

OSQP [27] is a numerical optimization package solving convex QPs on the form (48),

where x is the optimization variable and G is a positive semi-definite matrix. This prob-

lem formulation aligns perfectly with the condensed MPC (43). This is no coincidence

since the algorithm is derived with the purpose of fitting to the OSQP software. The

optimizer employed in the Model Predictive Controller implementation is based on the

alternating direction method of multipliers (ADMM) approach. ADMM is a first-order

optimization method known for its emphasis on efficiency. OSQP outperforms most avail-

able commercial and academic solvers, such as GUROBI and MOSEK [27].

minimize
1

2
xTGx+ qTx, G = GT ⪰ 0, (48a)

subject to l ≤ Ax ≤ u. (48b)

The software provides interfaces for programming languages such as C, Python, Julia, and

MATLAB. However, the source code was not implemented directly into MPC-simulator,

as only a community-maintained version of OSQP was available in C++. This open-

source software goes with the name Osqp-Eigen and is maintained by Giulio Romualdi

[18]. Additionally, as the name states, the software is also based on the Eigen library

addressed in Section 3.1.3. Since Eigen already was used in the implementation of the

control model, Osqp-Eigen was the preferred optimizer software. Additionally, the package

provided an example code on how to implement MPC on a linear State Space Model (SSM).

This contributed to the reduction of the implementation time of MPC-simulator.

3.1.5 Simulation

The SRSolver() function is an implementation of the MPC stated in Algorithm 1. The

abbreviation, ”SR”, refers to step response as the control model is an FSRM. A pseudo-

code of this algorithm is described in Algorithm 2. The pseudo-code contributes to the

understanding of the MPC-simulator C++ implementation outlined in the appendix Sec-

tion D.

As demonstrated in the appendix, additional matrices, namely Ωy and Ωu, were required

to efficiently implement the simulation loop. These matrices are utilized to select the

first element of a vector, specifically the initial predicted output and actuation values.

The solution of the QP (43) yields a vector zcd described in (40). However, a Model

Predictive Controller only applies the first optimized actuation to the simulated plant.
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Algorithm 2 SRSolver() - the simulation loop

for k = 0, . . . , T do
ReadOutput() // Bias update

zcd ← OsqpEigen::Solver.solveProblem()

∆U ← Ωu · zcd(0 : M · nMV ) // Extraxt actuation

Y ← Ωy · SimulateFSRM(∆U) // Update control model

UpdateQP()

end for

This extracting operation is realized by multiplying Ωu (49) to the sliced optimization

vector, characterised by the third step in the algorithm loop.

Similarly, having specified the prediction horizon, propagating the calculated actuation

through the FSRM yields a P · nCV long output vector Y . This is the result of the

prediction Equation (25). Therefore, in order to parse the first prediction, updating the

simulated plant, the vector is multiplied with Ωy (50). This calculation is described as

the fourth step in the simulation loop. Obtaining all P predictions are also interesting to

analyse after the simulation. This is in order to see if the controller plans to stabilize the

plant.

Ωu =


1 0 . . . 0 0 . . . 0 0 . . . 0

0 0 . . . 1M 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...

0 0 . . . 0 0 . . . 1M ·(nMV −1) 0 . . . 0


nMV ×nMV ·M

(49)

Ωy =


1 0 . . . 0 0 . . . 0 0 . . . 0

0 0 . . . 1P 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...

0 0 . . . 0 0 . . . 1P ·(nCV −1) 0 . . . 0


nCV ×nCV ·P

(50)

The interface to the simulator software is implemented using command-line interface (CLI)

as UI. One can simply run the simulator by calling the bash scriptmake.sh in the command

line. Additional simulation flags can be indicated to the CLI to define specific aspects of

the simulation. Allowing different flags to be parsed, permits the user to easily run different

simulations. Table 3 indicates the different allowed flags. The arguments are parsed into

the C++ software using CLI11 [24]. This is an open-source argument parser available

for downloading through Conda. The library turned out to be a powerful command line

parser with minimal syntax, fitting perfectly the lightweight simulator.

All arguments are indicated with a corresponding flag, a letter describing the argument.

Firstly, the MPC horizon, T , needs to be specified. This variable describes the total num-

ber of simulation steps or the number of dynamic optimization problems the controller

to be solved. This argument’s predecessor is the flag −T . Furthermore, the system file,

defining the plant model, is specified. This argument is interpreted as an std::string

with a corresponding −s flag. As the simulator only parses the system definition, it is ne-

cessary to have a corresponding default scenario file for the specific system, which defines
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Table 3: Simulator argument flags. These flags must be specified in order to call the
MPC-simulator.

Flag Description

−T [int] MPC Horizon
−s [std :: string] System
−r [std :: vector < double >] Reference vector
−n [bool] New simulation flag

the controller. If no default scenario file exists, an additional flag must be added to the

CLI to specify the scenario. This is avoided as the controller definition is a scenario file

named ”sce ” followed by the system name. The −r flag symbolises the reference sent to

the controller definition. The length of the reference vector must coincide with the model

description, otherwise, an std::invalid_argument error is returned. The targets parsed

are constant values in line with the simulator objectives described in Section 1.2. Typic-

ally this is not a valid assumption to make. However, since the current implementation

of the simulator only simulates FSRM descriptions, this assumption was made. The final

argument represents the ability to recall a previous simulation and simulate for further

time steps. This continuation may or may not have a different controller turning and

change in control targets. Having this functionality present in the software lets the user

test how the controller acts on repetitive changes in controller objectives. When entering a

simulator call without the new simulation flag, the simulator parses the information from

an old simulation. The parsing is needed for the simulator to initialize at the endpoint

of the targeted simulation having the same configuration as the previous controller. To

summarise, the simulation can be called using the lightweight.sh build script with addi-

tional argument flags specified. Ex. sh lightweight.sh -T [MPC horizon] -s [scenario] -r

[reference] -n [new simulation].

When assessing a new model description in the simulation software, it might be useful to

simulate the open-loop response to get an impression of the dynamics. Creating an open-

loop simulation is a neat approach to getting insight into the behaviour and characteristics

of the plant. This information is valuable to identify potential challenges and to design

an appropriate control strategy. Due to the open-loop stability of FSRMs, there is no

risk of encountering mathematically undefined simulations. Therefore, the functionality

of simulating a process without a control law was also implemented. This functionality can

be reached from the CLI. The relevant flags needed to perform an open-loop simulation

on an FSRM are shown in Table 4. Since the software assumes constant reference values

simulating an MPC, a stabilizing controller will produce a constant-valued actuation when

the set-point is reached. As seen in the table, the open-loop simulation requires two

arguments to define the actuation. The actuation vector, corresponding to the argument

flag −r, defines the maximum value the actuation can reach. Consequently, the change

in the actuation vector argument determines the increase in actuation for each simulation

step. Having the functionality defined, the end user can apply a stable actuation response

to the linear model. Performing an open-loop simulation is done by typing sh openloop.sh

-T [MPC horizon] -s [system] -r [actuation] -a [change in actuation].

In the case where slack variables are not needed in the controller definition, the simulator

35



Table 4: Open loop argument flags. These flags must be specified in order to simulate an
open loop process.

Flag Description

−T [int] MPC Horizon
−s [std :: string] System
−r [std :: vector < double >] Actuation vector
−a [std :: vector < double >] Change in the actuation vector

disables this property. While great slack penalties contribute to hardening the constraints,

small values have a counteracting effect. For instance, by defining ρh = ρl = 0, the slack

variables are disregarded in the cost function. Hence, the hard output constraints from

the QP description (48) have no effect on the controller performance. In the opposite

case, where the end-user wants to treat the output constraints as hard constraints, ρh
and ρl must take on extremely large values. When this is desired, the simulator uses the

condensed formulation without slack constraints (57). This is achieved by defining these

variables as empty arrays.

3.1.6 Visualization tool

As stated in the problem the simulator shall be equipped with functionality to analyse

controller performance. Such an analysis tool would provide insight into the simulator,

verifying software implementation. This functionality would therefore not only be valuable

for the application itself but also for the development progress. From the early stages of

development, it was evident that the tool should incorporate visualizations in the form of

plots. However, determining the specific formats of the plots and deciding what informa-

tion to include was not initially clear. In order to settle on a suitable format exploiting the

performance, inspiration was taken from SEPTIC. This format separates the MVs from

the CVs in a number of nMV · nCV plots. There are in total three signals accounted for

in the plots with a standard colour coding. The output, the actuation and the reference

are respectively coloured purple, blue and red. An additional axis is also illustrated in

the plot to separate past and future predictions and actions. This axis and colour coding

resemble Figure 2. Additionally, the lower and upper constraints are also plotted in order

to determine if the CVs or MVs surpass their respective constraints.

The visualization tool is implemented using the Python programming language. Python

was chosen due to its neat syntax and ability to include Matplotlib [11] which is a common

plotting library. The programming language is also easily integrable through Conda.

Since the tool was implemented in another language, it was developed separately from

the simulator. As a result, the analysis tool needs to be called externally after each

simulation. Similarly to the simulator interface, the analysis tool also allows CLI argument

parsing. The only flag implemented is −s, which is used to specify the simulation file

described in the appendix Section B.3. Additionally, if the user does not prefer the CLI,

a Jupyter Notebook file can be run in order to produce the same visualizations. Jupyter

Notebook is an interface allowing Python code to be run in a web browser [1]. If the

Conda environment is activated in the terminal, Jupyter is activated by calling jupyter
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notebook in the command line. The implementation of the visualization tool is found in

the vis-folder shown in Figure 5.

3.1.7 Code competency

An important objective of the simulator software is how code competency is reflected in

the implementation. The notion refers to design principles within software development

assuring i.e. the maintainability, testability and reliability of the source code. Figure 8

outlines the MPC-simulator structure. In line with typical software principles objectives,

the code base should be divided into simple modules each having its field of responsibility.

In order to fulfil this requirement the simulator consists the three modules: IO, model and

MPC. In the IO module, the nlohmann JSON parser is imported and IO files are parsed

and serialized to achieve the wanted data flow outlined in Section 3.1.2. The JSON files

are stored locally in the data folder illustrated in Figure 8. The modules, model and MPC,

implement the control model and the corresponding condensed controller (43). The naming

of the modules is chosen descriptively emphasising the readability and maintainability of

the software.

All modules are implemented defensively, meaning that arguments are typed checked and

tested before the simulation routine is further executed. Defensive programming is an

important software principle, providing meaningful feedback to the end user and warnings

if the software configuration will induce faults and simulation errors. Specifically, central

procedures are implemented using try-catch statements. By throwing std::exceptions

when a fault occurs, the programmer can trace the error back to its origin. Furthermore, all

modules are implemented using test-driven development (TDD). This software principle

deals with the testability of different functionality. Every core function shall easily be

testable to validate functionality. The corresponding tests used to validate the software

are defined in the tests.cc file. To assure the readability of the source code, the Doxygen

documentation format [4] is described in every module. Every function is documented

likewise as the SRSolver() function described in the appendix Section D. On a modular

level, readability is assured by having a README.md file present. This file is typically the

first file a programmer faces when browsing a GitHub repository. In addition to explaining

the purpose of each module, the README.md files also elucidate how to download and

run the software.
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Figure 8: Module diagram describing the MPC-solver. Imported Python and C++ pack-
ages are also illustrated. The dotted line symbolises the dissection between the simulator
and the visualization tool.
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3.2 Web-application

The Web-application serves as a portable, tailored web interface for the implemented con-

troller described in Equation (43). The ability to interface the World Wide Web (WWW)

will immersively enhance the simulator’s value for users. Supporting communication over

the Hypertext Transport Protocol (HTTP) makes the simulation highly accessible and

reachable across the continents. The only dependency needed is an Internet connection. In

an industrial setting, engineers can utilize the software to assess MPC performance outside

the office having remote access. For instance on one of Equinor’s many oil platforms in the

North Sea or other distant facilities. Additionally, the software can be available to many

other devices supporting web browsing. Not only stationary PCs but also smaller devices

such as tablets, smartphones or other Internet of Things (IoT) devices. This has also

an impact on the scalability, letting multiple users access the application. The increased

traffic can be tackled by employing a distributed system architecture. Even though this

is fully achievable, this is left out in the implementation of Light-Weight MPC. However,

a static HTTP server is added to the development pipeline for local deployment.

One major motivating factor behind the development of the Web-application is the sim-

plification of the simulation procedure. As elaborated in Section 3.1.5, the only inter-

face available is through the command line. By encapsulating the simulator using the

Web-application as frontend, these dependencies can be abstracted into the interface. By

defining a tailored UI, the CLI is replaced with visually appealing and easy-to-navigate

user-friendly components.

3.2.1 React, Create React App

In order to implement the interactive application, it was early decided to look into React

and Create React App (CRA). React is a JavaScript library for defining user-interfaces

and is widely used in web development to build interactive applications [22]. The library

employed in this project adopts a component-based syntax, where each element of the UI

is implemented as a component in JSX format, encapsulating its own logic and rendering.

JSX is an extension of JavaScript and can be rendered using a Virtual Document Object

Model (DOM). Leveraging a DOM for rendering is a key advantage of utilizing the React

library. When changes occur in a React component, only the necessary parts of the DOM

are updated, enhancing performance and rendering efficiency. This rendering approach

is particularly well-suited for applications that prioritize web performance. Moreover, as

specified in the problem description, Section 1.2, the frontend of the application should

support multiple web browsers. According to the documentation [22], React is compatible

with all modern browsers, including Microsoft Edge, Firefox, Chrome, Safari, and others.

In summary, React is a fast library that also offers ease of development and testing, suitable

for a lightweight simulation software.

Create React App is a development environment for React applications [3]. CRA simplifies

the initial setup and configuration, handling necessary dependencies and build processes.

The environment’s only dependency is Node.js. This is an asynchronous event-driven

JavaScript run-time [17] used to employ JavaScript projects. Node also provides a default

package manager, Node Package Manger (npm) which can be used to install open-source
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packages needed for implementation. Similarly to CMake, CRA manages different build

dependencies by enhancing a strict folder structure. Figure 9 illustraits the folder structure

of Web-application needed to let npm handle package dependencies. The most noticeable

folders are the source folder and node modules. The latter folder is a collection of all re-

quired Node-packages used in the project. All dependencies are stated in the package.json.

There are multiple ways to deploy the website using the CRA framework. Different ap-

proaches are emphasised based on the intention of use. With Node.js installed, all that

is needed to deploy the software is to call npm install in the command line to install

the required modules. To initiate a development server, you can execute the command

”npm start” as outlined in the installation instructions. This server reacts to changes

in the source code updating the layout of the site correspondingly. Another deployment

approach, which is more suitable for static web deployment, is to run a production build

of the application. This is done by calling npm run build. After successfully calling this

command, the build folder, visible in Figure 9, is created. Furthermore, this optimized

build can be deployed by a static server.

3.2.2 Webassembly, Emscripten Compiler Frontend

Even though the setup seems promising, there is still a problem left to be addressed.

How to port the simulator to the web? A lot of effort was given into the implementation

of MPC-simulator and it would be a dissipation if this code was not to be used in the

application. The simulator was also implemented using the C++ programming language

for efficiency means. Hence, the porting process should be carried out in a manner that

ensures efficiency is not compromised.

Wasm is an instruction format designed to run high-performance code on the web [30]. The

chosen format aims to be encoded in a binary format that is both efficient in terms of size

and load time. This optimization is pursued to attain near-native speed when executing

within web browsers. This makes Wasm especially suitable for compute-intensive tasks

which JavaScript is not really good at. By using Wasm, one can enlarge the functionality

of JavaScript by combining it with low-level programming languages such as C/C++,

Rust and Python i.e.

Clearly, the employment of Wasm solves the porting problem between the MPC-simulator

and Web-application. Hence, porting functionality is implemented at both ends. Going

back to the folder structure of the application Figure 9, the Wasm compiled simulator in-

terfacing JavaScript is located inside the source folder under the name mpc simulator.mjs.

This file easily be imported into a JavaScript function handling the simulator proced-

ure. The simulator file is produced using a compiler called Emscripten Compiler Frontend

(emcc) [5]. The compiler is a part of the MPC-simulator repository, enabling the simulator

to easily interface web applications. Even though the Webassembly format is language-

agnostic, the emcc is optimized only for C/C++ projects. With the use of Embind, one can

bind C++ function definitions to JavaScript classes. These Emscripten bindings are im-

plemented inside the wasm folder in the simulator folder structure illustrated in Figure 5.

Furthermore, a CLI is implemented to run the compilation. The compile configuration

interfacing CMake is implemented in the bash script emcc.sh. Figure 10 illustrates the

relation the build script has on the lightweight pipeline.
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Figure 9: Web-application folder structure. The upper hierarchical folders consisting of
build, node modules, public and src are enforced for dependency management.
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Figure 10: Empscripten Compiler Frontend is used to compile the simulator to Wasm.
This file can further be imported into the application.
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3.2.3 Database

As stated in a previous section, the major benefit of encapsulating the simulator into a

web application is that it can simplify the data flow. Even though the scenario files can

be defined through interactive components, the simulator still has a strong dependency

on system files. In the domain of web development, such external data is normally stored

in a database. The Web-application can easily interface external databases performing

an HTTP request. Such databases are needed when the framework is to simulate many

different FSRMs. However, at an early stage of development, only a total of two FSRMs

are added to the simulator. Due to time constraints, it was chosen to only implement a

local database, leaving the implementation of a system file-based database for future work.

The local database resembles the data folder defined inside the simulator’s source. The

web application parses the content of the local database displaying them inside a React

component for user selection. The local database is denoted as systems in Figure 9.

3.2.4 Plotly

Similarly to the MPC-simulator objectives, the Web-application also needs the functional-

ity to analyse controller performance. This functionality aims to preserve the visualization

tool described in Section 3.1.6. While the original tool was implemented using Python’s

matplotlib, this web functionality was implemented using React’s Plotly [20]. This is a

JavaScript graphing library imitating most of the functionality a visualization framework

needs. Similarly to the Python package, a well-documented API was available for imple-

mentation specifics, minimising the development time. The Line Chart object use to plot

the simulation data inside the React-application also allows zooming into the graphs for

detailed assessments. Additionally, these reactive components can also save the graphs

produced in order to address different simulation results.

3.2.5 User experience and user interface

The user-interface of any web application plays a crucial role in its success and user

satisfaction. The UI directly impacts the UX and the overall impression of the application.

It defines how users interact, navigate and accomplish their tasks using the application.

The application’s UI is also the main contributing factor to the user’s first impression.

A positive impression would likely motivate usage and app exploration. Above all the

UI should be easy to understand and improve productivity for the user. In order to

implement user-friendly components for the project, Material UI was imported. This is

an open-source React component library providing predefined components for development

[14]. For instance, interactive TextFields, buttons, URL links and more could be imported

and integrated into the project. Many of the components are also highly customizable and

can be integrated to suit individual tasks.

TheWeb-application consists mainly of three components, controlling several sub-components

and corresponding child processes. These components are the Header, Body and Footer,

describing the upper, lower and middle parts of the website’s layout. Figure 11 shows

the layout of the front page. As seen the Header is found in the upper part of the page,
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Figure 11: The front page of the Web-application. The page consists of interactive React
components: A header with a menu bar, a body tailored to the simulator and a footer
providing the software licensing. The app is running at a local port in a Safari browser.

providing the title and a logo. Correspondingly, the Footer lies at the bottom of the page,

providing the software licence. The app functionality is found inside the Body compon-

ent, inside a menu bar. This bar displays five different modules for the user to select

and explore. The front page aims to define the scenario file needed to run the simulator.

Hence, the current menu module is called correspondingly. As seen on the page, multiple

TextFields appear on the left side. These are interactive components, which can store user

input. During simulation, the information is serialized into a scenario file and routed to

the simulator logic. For simplicity, a default scenario is provided in the application after

having selected one of the available models in the local database. Furthermore, the MVs

and CVs present in the model are displayed under the ”Reference(s)” section along with

the corresponding measurement units in order to provide reasonable controller references.

This is a quite neat feature of the software since the end user is able to get some insight

into the model before attempting to fit a controller tuning. At the far right, a simula-

tion button is located. By pressing this button, a callback function is activated, running

the underlying MPC-simulator in the browser. However, this button is disabled if the

provided input yields an invalid controller scenario. Every TextField input is checked if

a change occurs, updating each component’s error state. A component turns red if its

input is invalid for simulation matters. Eventually, when all components yield a valid

simulation, the simulation button turns green and a simulation can be produced. This

error checking is important for the UX, providing continuous feedback to the user during

the engagement. The error-checking criteria for each controller parameter are stated in

Table 5.
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Table 5: Overview of the error-checking criteria for each controller parameter.

Parameter Criteria

P P ∈ [M,N∗]
M M ∈ [W,P ]
W W ∈ [0,M ]
T T > 0
Q Q ≥ 0, Q.length = nCV

R R ≥ 0, R.length = nMV

ρh ρh ≥ 0, ρh.length = nCV

ρl ρl ≥ 0, ρl.length = nCV

z zi > zi, i ∈ {0, . . . , 2 · nMV + nCV } z.length = 2 · nMV + nCV

z zi < zi, i ∈ {0, . . . , 2 · nMV + nCV } z.length = 2 · nMV + nCV

Light-Weight MPC

Scenario: No simulation avaliable!

BSD 3-Clause License

SCENARIO SIMULATION ALGORITHM MODELS ABOUT

Figure 12: Simulation module: No simulation results are available for display.

The remaining modules, which can be accessed in the menu bar, are named: Simulation,

Algorithm, Models and About. Upon rendering these modules in the application, a webpage

is displayed. Which page to be displayed is user-defined by interfacing the menu bar.

Navigating to the simulation page will display one of two outcomes. Depending on if a

simulation has been produced or not, the simulation page displays a simulation result

or none. Figure 12 shows the simulation page given no simulation is available. In the

other case, the simulation page mimics the plotting format interfacing with the simulator

using the Plotly library outline in Section 3.2.4. Usually, it takes some time to run the

simulator from the app, causing the user to wait. As previously elaborated the run time

is dependent on the size of the model description, as described. In order to not let the

user wait unknowingly if the application responded to the simulation call or not, a loading

page is displayed. Figure 34 shows the layout of this page.

In the given use case, when a user does not achieve acceptable controller performance, they
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Light-Weight MPC

Figure 13: Light-Weight MPC logo. The logo is used for the GitHub organization.

may remain in this unsatisfactory condition. It might not be intuitive how to approach this

further. Therefore, the UI is also designed to provide informative modules covering the

controller principle. By rendering these pages the end user can deepen their knowledge

about predictive controllers and use the test models to try out theories in simulations.

The module Models, available in the menu bar, presents the general FSRM description

and how this module is used to predict future simulation steps. Additionally, the Algorithm

module describes how this model is used in the simulated controller algorithm in order

to achieve controller objectives. The different algorithms along with tuning principles are

also described, such that the end user may succeed in their search for tuning parameters.

Designing these modules and integrating them into the menu bar apprise the application’s

academic perspective. These modules are thoroughly described in the appendix, Section F.

3.2.6 Distribution

The Light-Weight MPC simulation pipeline is open-source distributed under the terms

of the BSD 3-Clause license. This document provides legally binding guidelines for the

use and distribution of the code base. In order to combine the simulation software into

an entity, a GitHub organization under the name Light-Weight-MPC was made. Within

this organization three repositories are available for download: MPC-simulator, Web-

application and Light-Weight-MPC. The two first repositories are described respectively in

Section 3.1 and Section 3.2. The final repository is a code base for development purposes if

it is desired to redistribute the application. The organization can be accessed through this

link: https://github.com/orgs/Light-weight-MPC/repositories. Additionally, as a means to

brand the software, a logo was made. Figure 13 illustrates the logo.
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4 Software testing and results

4.1 Control models

In order to test different aspects of the simulation software, several model definitions

are needed in order to exploit different functionalities. For this purpose, two models are

derived and used for MPC simulations in the further sections.

4.1.1 first order model

The first order model is an asymptotically stable mathematical model often found within

the process industry. As the name states, the model describes a first-order ordinary differ-

ential equation, yielding a SISO system description. In general, step-response coefficients

can be obtained either empirically, by machine learning techniques or analytically from the

transfer function. Due to the simple structure of the model, the coefficients can easily be

derived analytically: Assume a first-order model with a time delay present. The transfer

function expressing the response between an input, u and output y can be represented

mathematically:

y(s)

u(s)
=

ke−θs

τs+ 1
, s =

d

dt
. (51)

The parameters k, τ and θ respectively denote the gain, the time constant and the time

delay present in the model. The variable s is a complex variable appearing due to the

Laplace transformation. Based on the description (51), the coefficients can be derived

by calculating the step-response for a sequence of time steps ∆t. Calculating the in-

verse Laplace transform of the expression, setting u(s) = δ(t− θ), where δ(t) denotes the

Heaviside step function, and the coefficients can be described as ([25], Equation 20-4),

si = 0 for i∆t ≤ θ

si = k
(
1− e−(i∆t−θ)/τ

)
for i∆t > θ

}
. (52)

Here t = i∆t. i = 1, 2, . . . , N such that ts = N∆t = 5τ + θ is considered the process

settling time. Hence, N = 5τ+θ
∆t [25]. Most importantly is that N is chosen large enough

such that sN+1 ≈ sN .

The first order model is derived using k = 5, τ = 15 min and θ = 3 min. In order to

calculate the model horizon needed in order to cover the process settling time, the sampling

time ∆t needs to be decided. For simplicity, ∆t = 1 min such that each simulation step

corresponds to this step in time. If this plant is to be controlled using an MPC-FSRM, an

MPC horizon T = 10 corresponds to 10 min. Inserting the specified values into Equation

(10) yields a model horizon N = 80. Hence, in order to simulate the settling time of

the system an MPC horizon, T ≥ N = 80 is needed. There is a lot of research tied to

this model description, both in the matter of control and system identification. If one

wishes to control a plant but does not possess any corresponding model description. If the

system data assembles a first-order system, Skogestad’s system identification procedure
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[26] can be utilized. The simple internal mode control (SIMC) method also describes a

PID tuning approach to control the plant. If the system under consideration exhibits a

MIMO configuration, the system identification approach can also be applied to identify

and model the MIMO system. Consider a MIMO plant, if one excites one input with a

unit step while simultaneously holding all other input constants, one can use this open-

loop data to derive an FSRM. This holds given that the responses assemble first-order

systems. Taking this approach into account, the simplistic model has a far greater scope

of application than first guessed.

4.1.2 SingleWell

As stated in the theory, Section 2, the Model Predictive Controller approach is most desir-

able for complex slow multi-variable system description, where small improvements in per-

formance can result in considerable increases in profit [23]. Clearly, the first order model is

too simplistic to cover this use case. Simulating a SISO system description is also far easier

in comparison to a MIMO. To test the simulation software on a more complex model, the

SingleWell model was derived. SingleWell describes mathematically a single oil pipe and

the process of leading the flow of oil and gas through the sea floor. The model is a MIMO

system description having oil and gas rates as output. These rates or CVs are controlled

using two valves or MVs. The first MV is the choke which controls the oil production rate

on the upper end of the well. The production rates occur due to the pressure difference

between the reservoir and the valves. In order to control the oil rate gas lift is injected as

an artificial-lift method to reduce the hydrostatic pressure [9]. The resulting bottom-hole

pressure reduction can be an enabler for the production allowing higher production rates.

However, the gas lift used to increase oil production is costly and should be applied with

minimal waste. The SingleWell model is a suitable use case for MPC, optimizing the

use of this resource. Figure 14 is an illustration of the SingleWell plant. By employing

the MPC approach, set points can be specified for the controller, along with appropriate

tuning parameters that align with the desired cost function. The controller subsequently

ensures the optimal production of set points, adhering to the defined objectives.

The model is originally implemented by Equinor’s research team using Functional Mock-up

Interface (FMU) [9]. To acquire the step-response coefficients for the FMU model, simu-

lations were conducted using the method outlined in Section 4.1.1. This process resulted

in a MIMO system description with a model horizon N = 180. Due to the two valves

present, the model has an underlying nonlinear dynamic. Therefore, the step-response

coefficients obtained are not an exact representation of the plant since the coefficients

assemble a linearized system. As illustrated in Figure 14, the gas lift valve is a controlled

valve which can determine the valve opening based on a targeted flow measured in m3/h.

The choke, on the other hand, is a normal valve with an opening ranging from [0, 100]%.

Both of the controlled variable, being the oil and gas rates are measured in m3/h.
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Figure 14: Illustration of the oil pipe SingleWell model. Oil is pumped from a reservoir
under the sea floor. In order to control the oil rate through the well, gas lift is injected
providing an artificial lift.
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Figure 15: Light-Weight MPC simulation loop

4.2 MPC-simulator testing and results

As covered in the project thesis [29], the backend has been tested on a simple SISO system

description. Those results were concluded to approve the implementation of a simpler

version of the MPC algorithm (43). This implementation did not cover the usage of slack

constraints nor bias correction in the control law. Since then, the MPC-simulator software

has been updated and improved. However, due to time constraints simulating a real-world

plant description used for bias correction is still left to be implemented. Therefore, the

implemented simulation loop does not have any output feedback present, correcting the

model errors. Nor is there any reliable model present to point out if errors even occur.

Hence, the Light-Weight MPC software assumes a perfect control model identical to the

plant and a simulation loop illustrated in Figure 15. This new controller implementation

needs to be tested to a greater extent due to the advancement in functionality. Luckily,

having derived the two FSRMs, first order model and SingleWell, it is possible to test a

larger group of scenarios.

Assume the simulator is used to address Model Predictive Control on the first order model.

MPC scenarios are defined by editing the tuning variables for the JSON files inside the

scenarios folder. Since the addressed model has N = 80, it is sensible to set the prediction

horizon, P = N , yielding T ≥ P in order to predict the dominant dynamics. To reduce

the run-time memory, M is chosen such that M ≤ P . By defining the rest of the tuning

parameters as identity matrices and setting W = 0, only the inequality constraints are left

before performing a simulation. Consider the scenario shown in the JSON file, Figure 16,

simulated on a Linux distributed system. In order to call the simulator, the Conda envir-

onment must first be imported and then activated in the CLI: conda activate linux. One

can call the simulator performing a simulation for an MPC horizon T = 120, where the

MPC aims to control the plant to a reference T = 2. In the CLI this call translates to sh

make.sh -T 120 -s first order model -r [2] -n using the flags described in Table 3.
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Figure 17: Simulation T = 120 and T = 2 on the first order model plant with a controller
description shown in Figure 16.

{ "system": "first_order_model",

"MPC": { "P": 80,

"M": 50,

"W": 0,

"Q": [1],

"R": [1],

"RoH": [1],

"RoL": [1] },

"c": [

{"du": [-0.2, 0.2]},

{"u": [0, 1]},

{"y": [0, 2.5]} ]

}

Figure 16: first order model scenario file.
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In order to analyse the simulation, the visualization tool described in Section 3.1.6 needs to

be called. This is achieved by feeding python3 vis/plot.py -s sim first order model into the

CLI, given that the simulation file was stored with the name sim first order model.json.

The resulting simulation data is shown in Figure 17. Clearly, the simulation data shows

a working Model Predictive Controller managing to control the mathematical model to

a given reference within a total number of 25 simulation steps. However, an oscillating

response combined with a saturating actuation is not a satisfactory controller performance.

Luckily, the software is designed to rapidly consider new scenarios by recalling the software.

In order to achieve better controller performance, one might decide to change the tuning

variables Q and R. Additionally, one can reduce the simulation time by changing the start

horizonW and disregarding the use of slack variables. Slack variables can be set aside since

none of the controlled variable constraints is active. By defining such a MPC scenario,

the condensed formulation without slack constraints is simulated (57). Hence, ρh and ρl
are undefined vectors, in line with the description of the MPC-simulator,Section 3.1.5.

Furthermore, as covered in Section 4.1.1, it is reasonable to set W > 0 as there is a

time delay present in the model. This property is also seen by addressing the graphs.

Running the simulator with controller parameters changed to W = 10 and Q = 200

the output oscillations are damped. This can be seen in the simulation results from

Figure 18. Since slack constraints were disabled, a smaller QP was solved during this

simulation. Hence, the simulation time was decreased. In order to check if this tuning

is resilient to repetitive changes in reference values, one can disable the new simulation

flag and simulate the previous scenario for a longer MPC horizon having the reference

changed. The total number of simulation steps using this simulator configuration yields

T = 120 + 120 + 80 = 320. The first 120 steps are taken from the previous simulation,

while the latter 200 prediction steps are the results of the new simulation using the changed

reference value, T = 1. The simulation result is shown in Figure 19.

A new feature, which was not implemented during the pre-project, is the use of slack

constraints in the simulation. In order to validate this functionality, the same scenario

can be simulated apart from changing the upper constraint to the value of 1.75. Since the

reference yields a value of 2 the controller is forced to break the upper constraint in order

to achieve the controller objective. The controller performance, Figure 20, is in line with

the theory behind slack variables. The output error penalty, determined by Q = 200, is

severely larger than the penalty of exceeding the upper constraint, ρh = 1. The simulation

results indicate a softened upper constraint. In this scenario, W = 0, in order to avoid an

oscillating response when the controller exceeds the constraint. Conversely, the constraint

can be hardened by increasing the slack penalty. The simulation result setting Q = 1 and

ρh = 2000 is shown in Figure 21.

After having tested the different functionalities provided using the condensed controller

definition (43) on the theoretical first order model, one can try the simulator on a model

definition used for industrial applications. The SingleWell model covered in Section 4.1.2

describes one oil well where the oil rate is controlled by applying an artificial lift by injecting

external gas into the well. Assume that an end user wants to control this process optim-

ally, utilizing Light-Weight MPC to address the issue. The model’s open-loop response

is simulated as a starting point to find a suitable controller definition. This information

can be valuable for understanding the dynamics and identifying potential challenges. For
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Figure 18: Simulation results considering time delay and output oscillations in the con-
troller tuning.

instance, finding suitable constraint values can be hard to obtain. Certainly, the controller

can endure a small output constraint subset having slack constraints present in the optim-

ization problem. However, this is not the case for the constraints regarding the controller

actuation. If these values are too heavily constrained, it might be infeasible to fulfil the

criteria for reaching the reference value. Consequently, the controller must be tuned to

handle these challenges. The open-loop simulation functionality is a neat feature when

assessing MIMO systems.

From the model description, outlined in Section 4.1.2, the first manipulated variable could

only take on values in the range from [0, 100]%. Therefore, it is sensible to add this property

as an inequality constraint. Consequently, one can assume that the valve cannot open

faster than 2% in each simulation step to penalise the corresponding change in actuation.

By defining the gas lift rate as a response increasing by 25m3/h for each simulation step

up until the final value of 1000m3/h, the response is shown in Figure 22. By inspection,

the plot shows an equilibrium at approximately 3900m3/h and 72m3/h respectively the

gas and oil rate. As the use of artificial gas lift is rather expensive, one can apply a Model

Predictive Controller to reduce this cost while simultaneously maintaining the oil rate.

In order to exploit the applicability the controller has on this issue a simulation using

identity penalties is produced. In an attempt of reducing the artificial gas the set-point

in this simulation are respectively 3800m3/h and 72m3/h. The resulting simulation is

shown in Figure 23. Since the model horizon, N = 180, the prediction horizon is chosen

correspondingly. Since there is no time delay present in the control model description,
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Figure 19: Continuation of simulation 18 with a changed reference value. This function-
ality can be used to address the performance under a changing simulation environment.

W takes zero value. The simulation plots reveal a working controller solving the tracking

problem applied. As seen in the lower left plot, the choke reaches maximum opening

quite early in the simulation. This response in combination with the injected gas lift

yields an overshoot in the oil rate response. This overshoot is rather undesired as it

is advantageous to have a smooth control law. In order to improve the simulation, the

tuning parameters described in the JSON file, Figure 25, are used. In this scenario, slack

constraints are disabled since the controlled variables are not sufficiently close enough to

the constraints to have an impact on the simulation. The tuned Model Predictive Control

simulation is displayed in Figure 24. In line with the theory, increasing the output-error

penalty, identified as the elements in the Q-matrix, will produce a dampened response.

Additionally, by also tuning in the R-matrix, the penalty on the gas lift can be utterly

inflicted. Sadly, the controller tuning yielding the smooth oil rate response affects the

tracking of the gas rate due to the coupled model dynamics.
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Figure 20: Simulating first order model determining the reference above the upper output
constraint. Output error penalty, Q = 200 and upper slack penalty, ρh = 1.

{ "system": "SingleWell",

"MPC": { "P": 180,

"M": 120,

"W": 0,

"Q": [1, 15000],

"R": [1, 5000],

"RoH": [],

"RoL": [] },

"c": [

{"du[1]": [-2, 2]}, {"du[2]": [-10, 10]},

{"u[1]": [0, 100]}, {"u[2]": [0, 1000]},

{"y[1]": [0, 4000]}, {"y[2]": [0, 100]} ]

}

Figure 25: SingleWell scenario file used for testing.
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Figure 21: Hardening the upper constraint to validate a correctly implemented slack
variable. Output error penalty, Q = 1 and upper slack penalty, ρh = 2000.

4.3 Web-application testing and results

The purpose behind the Web-application software is to provide a neat interface to the

simulator to enhance the automation of the production of simulation data. As covered

in Section 3.2, the software is cross-platform and reachable on a diversity of devices as

long as an Internet connection is available. With Node.js installed, the application can be

deployed as described in the implementation section. After deployment, the front page,

Figure 11, is the first the user encounters. Assume the user wants to perform the same

simulations as produced in Section 4.2. The first step is to define the control model to be

simulated. Hence, the user navigates to the System name input bar. The available model

descriptions stored in the local database are displayed in a drop-down menu as shown in

Figure 26. As expected, the two models described in Section 4.1 are present in the menu.

By selecting the first order model a default MPC tuning appears inside the different Text-

fields. These tuning parameters are defined in the default tuning.json file shown in the

folder structure Figure 9. Additionally, the reference section, which previously appeared

empty, has now changed. This is the feature mentioned in the implementation Section 3.2.5

providing the end user model parameters and dimensions. By feeding in the value T = 2

in the reference input field, the scenario assembles the second first order model simulation

covered in Section 4.2. The MPC-scenario is in line with the controller parameter criteria

shown in Table 5. This conclusion can also be drawn from the green coloured RUN SIM-

ULATION button located on the far right in the Figure 27. By pressing the button the
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Figure 22: Open-loop simulation of the SingleWell model for T = 300. The control model
reaches its steady state after around 200 simulation steps.
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Figure 23: MPC simulation of the SingleWell model for T = 250, P = 180 and M =
120. The data shows that the simulated controller achieves the tracking problem while
simultaneously reducing the use of artificial gas.
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Figure 24: SingleWell simulation with an MPC horizon, T = 250. The tuning matrices
are defined to optimize the oil rate response, Q = [1, 15000] and R = [1, 5000].
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Model Predictive Controller:
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Figure 26: Model descriptions available: The application parses all models stored in the
database for selection.

Wasm compiled MPC-simulator is called producing the simulator. While the end user

waits on the simulator to return the data, the loading page, Figure 34, is displayed.

Assume another user wants to download the application to design an MPC with the aim

to control the SingleWell model. The user has only Windows deceives available so he

chooses to make use of the web application. After having spawned the application and

selected the model, the user enters the same tuning parameters he had seen worked well

on a SISO system. However, the simulation button is disabled preventing the software to

perform simulations. The current state of the application could resemble the case shown

in Figure 29. This error is caused due to the controller parameters failing to fulfil the

criteria pointed out in Table 5. The specific parameters not passing the criteria check are

marked out in red colour. These values cause the disability of the simulation button. After

having sorted out all the parameter errors, the user decides to simulate the scenario. Even

though the scenario entered is valid, simulation errors might occur for unknown reasons.

For instance, when testing out a new model description, there might be some properties

in the system file causing simulation faults. To test the application’s ability to handle

such errors, a scenario is tested on a model description with a wrongly defined parameter.

Figure 30 shows the layout after the attempt.
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Model Predictive Controller:

Constraints:

Reference(s):

y:

u: 

BSD 3-Clause License

first_order_model

Scenario name, string

first_order_model_test

MPC horizon T, int

120

P =

Prediction horizon, int

80

M =

Control horizon, int

50

W =

Start horizon, int

10

Q =

vector<double>, length: 1

[200]

R =

vector<double>, length: 1

[1]

ρ =h

vector<double>, length: 1

[]

ρ =l

vector<double>, length: 1

[]

vector<double>, length: 1

[-0.2]

vector<double>, length: 1

[0]

vector<double>, length: 1

[0]

≤ ΔU ≤

≤ U ≤

≤ Y ≤

vector<double>, length: 1

[0.2]

vector<double>, length: 1

[1]

vector<double>, length: 1

[2.5]

n =CV 1 :

y reference, int

2 [m]

n =MV 1 :

[m]

N =∗ 80

RUN SIMULATION

System name

SCENARIO SIMULATION ALGORITHM MODELS ABOUT

Figure 27: Web-application layout after having selected first order model as control model.
Every field except the reference is defined by a default tuning. Feeding in a reference value
combined with a valid scenario results in a green RUN SIMULATION button.
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Figure 28: Web-application layout after simulating the default tuning corresponding to
the selection of the first order model with a reference value T = 2.
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Light-Weight MPC
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Figure 29: Web-application layout when the simulation criteria Table 5 is not fulfilled.
The figure is taken from the application running on a Windows operating system.

Light-Weight MPC

Model Predictive Controller:

Constraints:

Reference(s):

y:

u: 

n_CV does not coincide with CV

BSD 3-Clause License

first_order_model

Scenario name, string

first_order_model_test

MPC horizon T, int

120

P =

Prediction horizon, int

80

M =

Control horizon, int

50

W =

Start horizon, int

10

Q =

vector<double>, length: 1

[200]

R =

vector<double>, length: 1

[1]

ρ =h

vector<double>, length: 1

[]

ρ =l

vector<double>, length: 1

[]

vector<double>, length: 1

[-0.2]

vector<double>, length: 1

[0]

vector<double>, length: 1

[0]

≤ ΔU ≤

≤ U ≤

≤ Y ≤

vector<double>, length: 1

[0.2]

vector<double>, length: 1

[1]

vector<double>, length: 1

[2.5]

n =CV 1 :

y reference, int

0 [m]

n =MV 1 :

[m]

N =∗ 80

RUN SIMULATION

System name

SCENARIO SIMULATION ALGORITHM MODELS ABOUT

Figure 30: Scenario page layout after enforcing a simulation error. Since the implement-
ation of MPC-simulator emphasises defensive programming, the detailed error message
caught is displayed in red colour.
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5 Discussion

Recall the Light-Weight MPC objectives stated in the problem description, Section 1.2.

The main objective of the project is to implement a lightweight simulation tool for linear

Model Predictive Control. Several components are needed to simulate a controller for this

purpose. Firstly, the system description representing the control model must be inputted

into the software. The control model is simulated alongside the MPC, which implicitly

reuses the model to predict future behaviour. The principle behind the controller method

along with the simulation loop was covered in the theory, Section 2, and illustrated in

Figure 3. Furthermore, the controller defines the model dynamic based on a set of tuning

parameters, which is the second type of data inputted to the software. Implementing a

framework realising the simulation loop in a simple manner is what makes the software

lightweight.

The addressed controller formulation was to target a typical process model and represent

the core functionality of the control software SEPTIC. Hence, the chosen simulation loop

was tailored to control challenges within the process industry. However, for different tasks

and objectives, another controller definition or system description might be more suited.

For instance, the current simulator implementation only addresses one cost function, even

though there might be other costs more desirable. By modularizing the implementation,

new functionality can be enhanced by reusing the original simulation loop.

Another important aspect, which needed to be accounted for, was the complexity of the

controller. As the strategy is far more complex compared to classical approaches, the effi-

ciency of the controller formulation needed to be addressed to achieve a lightweight design.

Developing a realistic controller and simulation environment was yet another factor. This

presented a more significant challenge than anticipated, although implementing the most

advanced simulation software was never a part of the problem description. A software

can only be as useful as its UI regardless of how many simulation aspects it accounts for.

Therefore, energy was rather put into developing the web application. The application

offers a customized interface for the simulator, streamlining the automation of simula-

tion data. Instead of manually editing JSON files to modify controller parameters, the

app provides interactive components such as drop-down menus, buttons, and text fields.

This abstraction of the design dependency enhances user-friendliness by eliminating the

need for manual read-and-write operations in an editor. Compared to the MPC-simulator,

which is dependant on Unix systems, the implementation Web-application enhances the

portability of the simulation software as well.

Even though the simulation setup works, there are simplifications made and functionality

left out of the software. Only the simulation results can reveal the usability and applica-

tions of the software. The implementation details and results described in Section 4 are

discussed in the further sections.
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5.1 MPC-simulator discussion

5.1.1 Simulations

Recall the test scenarios described in Section 4.2 relating to the control of the first order model.

Based on the simulation data outlined in this section, the controller behaves as expected

considering the theory, Section 2.2. Regarding the first simulation Figure 17, the controller

achieves getting the plant to track the specified reference T = 2 in about 25 simulation

steps. By addressing the plots, all constraints specified in the corresponding scenario file,

Figure 16 are obeyed. As seen in the MV plot, the actuation reaches saturation at U = 1.0.

Since the constraints impacting the actuation are hard, the controller cannot produce a

control law exceeding this constraint. The controller manages to keep both signals within

these boundaries and simultaneously achieve the controller objective.

This scenario illustrates one of the core benefits of using Model Predictive Control. In a

practical scenario, such constraints can assure that actuators are not pressed to their far

limit in order to reach a target. Repeated saturation of the equipment can lead to higher

maintenance costs as the lifespan is reduced. Saturation may overheat the actuators

and cause damage. The same goes for the change in actuation constraints, which also the

controller manages to comply with. A too-large actuation step might not be suitable for the

process actuators as they may have a preferred operating point. Another aspect of having

hard constraints present in the controller formulation relates to the safety requirements

of the operating plant. By assuring that constraints are held under any circumstances,

reliability is maintained and safety risks are avoided.

Another aspect worth mentioning is the plot layout. By addressing the plots, these formats

assemble the description covered in the section about the visualization tool, Section 3.1.6.

The formats are designed to easily address if the controller violates any constraints, plot-

ting the constraints at the upper and lower end. The vertical prediction axis appearing at

the end of the MPC horizon, T = 120, is used to separate the simulation data from future

predictions. Even though the simulation data is most important, the planned predictions

can exploit the controller’s intention. For instance, this can be used to validate the imple-

mentation of the controller, as it should always aim to stabilize the plant. If the predicted

outputs are not approaching the reference, this might be an implementation error. This

property also reflects the importance of a well-designed visualization tool, as it validates

the controller principles.

As the previous response was not considered desirable enough due to the output overshoot,

another set of tuning parameters was simulated. By tuning in aW > 0 and an output-error

penalty Q = 200, the performance was improved in the simulation shown in Figure 18.

The simulation data shows a smoothed simulation due to an optimized use of actuation.

Based on the theoretical background the optimizer should address the output error to a

greater extent and reduce the damping. Hence, the result is in line with the theory. The

empirically obtained controller was also tested in a changed simulation environment where

the control objective shifted after T = 120.

The fourth and fifth scenarios, respectively in Figure 20 and 21, show the application of

having slack constraints present in the controller formulation. As the MPC tries to fulfil a
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tracking problem outside the feasible area (13), the plant will encounter a constraint. For-

cing the controller outside its constraints without slack values leads to faulty simulations

and useless data. This happens even though OSQP returns OsqpEigen::ErrorExitFlag::NoError.

When the optimizer is not able to obtain a feasible solution, the simulation yields a

destabilization of the plant. As covered in the theory, Section 2.2.7, the feasible set can

be enlarged by slacking. In the case of trial and testing different scenarios, it is more use-

ful for the user to obtain stabilizing simulations. Therefore, having the ability to enable

slack constraints is a major simulator advancement. This functionality can also be used

to identify if the constraints are too hard.

In order to mimic a realistic use case of the Light-Weight MPC software, the SingleWell

model was simulated. The tests described in Section 4.2 utilize the open-loop functionality

to find realistic set points to make controller objectives. As the dynamic is coupled in this

MIMO system description, an arbitrary controller will not be able to track any chosen

set of references. By assessing the open-loop simulation, the chosen reference values were

respectively 3800m3/h gas rate and 72m3/h oil rate. By comparing the open-loop simula-

tion with the best-obtained controller tuning simulation Figure 24, the MPC performs well

on the fairly complex MIMO system. The controller approach manages to constrain the

costly use gas lift while maintaining the oil rate control objective. This is achieved by pen-

alizing the use of gas lift severely, Q = [1, 15000]. The gas rate response has a small-scale

oscillation. However, as seen in the predicted output the controller plans to stabilize the

response after 300 simulation steps. While this outcome demonstrates the attainability of

desired results with a Model Predictive Controller, utilizing a PID controller to achieve the

same level of performance would pose a significantly greater challenge. The observed per-

formance signifies an optimized behaviour and a reduction in waste, potentially resulting

in substantial resource savings for a company.

5.1.2 Implementation

The MPC-simulator tests show a valid implementation of the MPC mathematically de-

scribed in Equation (43). This formulation is derived with regard to the project descrip-

tion, implementing a lightweight simulation software. Different MPC features such as bias

correction and slack constraints were addressed to make an industrial-like controller defin-

ition. Based on optimization techniques such as the Nullspace method the problem could

be reduced to ensure efficient execution. In view of this property, the OSQP software was

a clear choice as the preferred optimizer as it is the fastest commercial QP solver avail-

able. Other open-source optimizers, such as qpOASES [21], were also considered in the

implementations. However, besides the efficiency aspect, most solvers considered a larger

optimization problem, hence more simulation parameters would be needed. The existing

C++ wrapper Osqp-Eigen made also simplified the choice of optimizer since this software

abstracted optimizer setup into Eigen data types.

Besides the controller definition, the implementation also covers the control and plant

model. As described in Figure 3 the simulator only takes the FSRM into account under

simulation and not the real underlying system. Since the FSRM describes a linear expo-

nentially stable model, this system description is a non-realistic model deviating from the

true system. This control model was chosen due to its applicability in the process industry.
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Additionally, the model predictions are fairly simple to calculate and account for in an

MPC. By having a realistic model definition, bias correction could also be included in the

controller yielding more realistic simulation scenarios. The current simulator assumes a

perfect model, however, for practical control this is never a valid assumption. For instance,

sensors are used in order to estimate the state of the model, and these measurements are

noisy and uncertain. Obtaining such a model description has been challenging in the pro-

ject. Moreover, simulating a complex model accurately requires a lot of computational

power. In the case, the model is described by a set of ordinary differential equations, a

suitable integrator software must be imported into the software. Due to the lack of model

available model definitions, the induced computational overhead and time constraints, bias

correction was left a future work.

Since the control model plays a central role in the simulation software, it was implemented

as a C++ class. By having a class definition, one can instantiate multiple general FSRMs

and define member functions performing calculations. Even though the MPC-simulator

does not take bias correction into account, an interface is implemented as a public member

function. The only aspect left to include bias correction is the calculation of the bias. If

this is achieved, the bias can be fed directly into the simulation loop described in Algorithm

2. Since the simulator may require two different FSRM descriptions, dependent on the W

value, the class definition assures the readability and reusability of the source code. Speak-

ing of the implementation it was stated in the theory that the models were implemented

using Eigen::MatrixXd and Eigen::SparseMatrixXd which are memory-efficient C++

types. Alongside the datatypes, the Eigen software also provided user-friendly syntax to

perform mathematical operations such as transpose and inverse calculations.

One implementation detail worth to be discussed is the interpretation of the MPC horizon,

T . From the current simulator implementation, the interpretation of the time step is

model dependent. How the model horizon effectuates the MPC horizon is elaborated in

Section 2.1.4. In an industrial use case, it might be more sensible to simulate a model in a

time frame with the SI-unit second. If different ∆t are to be addressed, this would imply

importing different step-response representations of the same model. Therefore, it would

have been a neat feature to derive the needed model at run-time and simulate it for a user-

defined ∆t. This functionality would have allowed the user to also test different FSRM

representations for control. As modelling is not the scope of this project, the framework

assumes a predefined model in addition to the user having the background information

needed to interpret the simulation results.

5.2 Web-application discussion

5.2.1 Simulations

By deploying the application in a web browser, the layout is displayed as expected. How-

ever, when opening the app on a smaller device the layout may appear more dense with

less space between the interactive React-components. Regardless of the density of the lay-

out, the structure and underlying functionality are still intact. When selecting the desired

control model, all available models pop up in a drop-down menu, shown in Figure 26. This
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is a quite-user friendly feature securing the selection of a valid model description.

Furthermore, by selecting an available model a default tuning is automatically entered into

the input fields. The default tuning parameters defined in the source code represents a

valid simulation scenario. Such features are added in order to efficiently bring the user up

to speed, interfacing with the application. By performing the simulation, and adding the

value of 2 to the reference vector, the application navigates to the simulation module, dis-

playing the data. Addressing the data produced using the application, Figure 17, and the

simulation data visualized using the MPC-simulator, Figure 28, the data resembles. One

can therefore conclude, that the porting of the underlying C++ code has been successful

using the emcc in the pipeline. By validating this pipeline, the software can be ported

and integrated into other professionally maintained software frameworks. The setup can

in principle compile any C/C++ function to be accessible in a web application. This

architecture deviates from traditional application development as the frontend does not

depend on any server-side callbacks. Normally, the backend and frontend communicate

through the HTTP protocol and socket programming. If data is requested, the frontend

performs an HTTP request and becomes a corresponding response from the backend.

This communication overhead is omitted with the use of Wasm as the application can

access the needed functionality directly. Hence, a Wasm-based application can run in the

browser in an efficient manner without any additional communication overhead. The only

dependency is the installation of Node.js, which is open-source available on all OSs.

In the case where the application fails to produce simulation data or an invalid scenario is

tried to be simulated, the user should be alerted. The implemented UI has an inbuilt error-

checking capability assuring UX. Figure 29 shows the layout of the app when the controller

parameters do not align with the criteria Table 5. Red markers appear around the related

variables. This UX-design aim to provide specific feedback to the user in advance if the

application fails to provide a service. However, simulation errors might not only be a cause

of the entered scenario. Errors could lay in the porting of the simulator, the model defini-

tion or the simulator logic itself, etc. When unforeseen errors occur, informative feedback

should also be displayed. As described in Section 3.1.7, the MPC-simulator has defence

mechanisms such as try-catch statements to handle such errors. The application manages

to catch these error messages and display them in the UI. Figure 30 illustrates the scenario

when a model parameter is incorrectly defined. The end user then gets alerted where the

lies and if possible which parameter to change. In this case, the model parameter nCV did

not coincide with the CV defined in the model. The error-handling mechanism benefits

both the user, wanting to run simulations, and the programmer, wanting to validate the

source code.

5.2.2 Implementation

Addressing the implementation, the use of JavaScript React and CRA were obvious

choices. The syntax was easy to adapt to and Material UI provided an API with in-

formative pages on how to express the targeted frontend design using code. By spawning

the available development server, CRA handled the setup and provided error checking of

the application. One other great feature, of using React is the support the framework has

interfacing with web browsers and platforms.
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Testing and improving the plant response is relatively easy and the exploration does not

take a significant amount of time. This is a major benefit of using the application, as

it simplifies the production of data. At least when the controller principle is known to

the end user. As stated in the project background, Section 1.1, the controller is typically

unrecognized by individuals due to its complexity. In order to operate under this user

assumption, the website is equipped with informative pages covering the needed informa-

tion to understand the control method. These pages are not enough to cover the principle

from scratch, but point the user in the right direction. For instance, in the Algorithm

module, Figure 36, relevant tuning approaches are outlined. This is valuable information

in the event that the user struggle to improve controller performance. It could have been

decided to include all background information behind an MPC like Section 2.2. However,

pushing too much information out on one page will possibly counteract its purpose, as the

user may skip important sections. Therefore, displaying only the core information needed

to utilize the app was rather emphasised. Not to mention the computational overhead the

first option would have caused, rendering a dozen of pages.

Since the simulator does not account for realistic models and the application has an UX

designed for academic use. Light-Weight MPC may be at most applicable for teaching

purposes. Since the core MPC functionality is present, downloading the application is a

great starting point to learn MPC. The software allows enabling and disabling different

functionality, such that focus can be drawn on specific control properties. In addition to

the neat interface, the application is a perfect test setup to see the impact the controller has

on the plant. As of now, the academically recognized first order model is already present

in the software. This model is known to students since it is extensively used in control

theory for system identification and PID control. Furthermore, due to the cross-platform

nature of the software architecture, incorporating the Light-Weight MPC framework into

university courses or trainee programs would pose no challenges. This integration would

effectively broaden the exposure of controller strategies to a wider audience, thereby en-

hancing understanding and knowledge in this field.
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6 Conclusion

Light-Weight MPC is a simulation software meant to assess the performance of an MPC

on typical process step-response models. The simulations can be used to explore new

MPC applications as well as to maintain and further develop existing solutions. Simula-

tion results and control data can be obtained by running the MPC-simulator directly or

spawning the Web-application in a browser if the CLI is to be avoided. Such data can serve

an important role in the decision-making assessing the performance of a Model Predictive

Controlled system. The lightweight property is present in the design of the simulation

software emphasising memory management, efficient execution and simplicity.

For the time being, this software can input an arbitrarily FSRM, MPC tuning and MPC

horizon addressing a vast set of scenarios and applications. The simulation builds upon

algorithm (43), a convex QP with only inequality constraints present. This controller

definition covers the core functionality of an MPC, with the weighting matrices Q and

R and the controller horizons P , M and W present. Additionally, slack constraints and

bias correction were also addressed in the controller formulation, even though the simulator

does not account for the latter in simulations. To program the simulator, modern C++ is

used along with OSQP, the fastest contemporary open-source optimizer available. Slack

constraints can be enabled when defined and the controller can be disabled to address the

open-loop behaviour. In order to assure scalability, package dependencies are handled in

a sensible manner using Conda. The source code is modularized and documented using

Doxygen, the de facto standard documenting tool, assuring maintainability and readab-

ility. The implementation adheres to the objectives of standard software principles, with

a strong emphasis on producing high-quality code. Based on SEPTIC, a visualization

tool is designed and implemented to analyse the controller performance readily. Plot-

ting is achieved using Python’s matplotlib and React Plotly. The simulator serves as an

independent software interfaced by JSON files. With the designed architecture and Em-

scripten Compiler Frontend support, the software can be integrated into many different

applications. Light-Weight MPC is only one example of an interfacing application.

The Web-application is a React based interface to the simulator. The application run

Wasm directly in the browser in order to preserve computational efficiency interfacing

the run-time-heavy simulator. Node.js is the only dependency needed with compliance to

all standard web browsers such as Safari, Chrome, FireFox, etc. In addition to standard

stationary PCs, the application can be utilized from any device having an Internet con-

nection. The layout is designed to tailor the interface to the simulator automating the

simulation procedure. Defensive programming is emphasised in both frameworks improv-

ing flow and user-experience. Hence, user-friendly feedback is provided whenever misuse

or faults occur. To dispel any ”black box” perception regarding the MPC, the frontend

is designed with informative pages that provide customized descriptions of the underlying

algorithm, model, and relevant tuning approaches. This feature aims to enhance trans-

parency and understanding by providing users with comprehensive information about the

inner workings of the controller.

To conclude, the software fulfils the project description under the assumption that the

core functionality of an MPC is implemented and simulated using constant reference for
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a discrete-time horizon T . The lightweight simulation software consists of a total of three

repositories implemented using the same number of programming languages. A Github

organization is established to distribute and brand the framework with a suitable logo.

Light-Weight MPC is open-source released, granting the user the rights to use and change

the software in line with the BSD 3-Clause, stated in Section E. The achieved controller

performance elaborated in the test scenarios, Section 4, demonstrates the effectiveness

of the lightweight controller implementation, showcasing its potential for waste reduction

and resource savings. Moreover, the software can possibly enhance the understanding

and knowledge of the controller method contributing to a more sustainable and efficient

process industry. Overall, this project has successfully delivered a robust and efficient

simulation tool, contributing to the field of predictive control algorithms and paving the

way for further advancements in the industry.

6.1 Further work

The MPC-simulator has great opportunities to become a full-scale simulation software.

By assessing the current version, there is a lot of functionality left to be ported to the

Web-application as well. The next sections elaborate on the purposed features to bring

the simulation software further. However, if all these functionalities were to be added to

the project, Light-Weight MPC might not be considered a lightweight software anymore.

6.1.1 MPC-simulator

Firstly, a really useful feature to integrate into the simulator is bias correction. This could

be achieved by parsing a set of differential equations, either explicitly or implicitly defined

and simulating the representations using a Runge-kutta integrator. Since such models

also are mathematically defined, there is no noise present in the output. As discussed

in Section 5.1, the presents of noise is mandatory in real-life applications. Hence, to

cover this in a simulation environment, white noise could be applied to the simulation

output. Furthermore, the controller performance could be assessed under different levels

of noise. One other approach to induce real-world features into the software is to interface

the FMU model format [7]. This is a common format simulating industrial applications

used by Equinor among others. The SingleWell model is an example of such a model

description. Luckily, given the toolchain design, additional packages needed to implement

this functionality can easily be added to the base.

Besides using the Nullspace method, there are also other formulation techniques to reduce

the computational cost of the QP (43). For instance, the optimization vector, zcd, can

be utterly reduced using input blocking. The idea is to ”block” ∆U , repeatedly for some

sequences of the control horizon. The input can be ”blocked” by demanding ∆U = 0

for some sampling instants. The length of the blocking sequence grows exponentially,

assuming that the controller manages to bring the plant to a steady state. Even though

input blocking would have been a favourable aspect to add to the controller the approach

was considered too complex to add to the lightweight framework.

Certainly, the simulator has the potential to be expanded to accommodate a wider range
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of control models and address different cost functions. By incorporating additional model

representations and optimization objectives, the simulator can cater to various control

scenarios and provide more comprehensive insights into system behaviour. This flexibility

allows for the exploration of different control strategies and the evaluation of their per-

formance under different criteria. With further development, the simulator can become

a versatile tool for control algorithm analysis and optimization in various domains. A

specific model expansion is to include the State Space Model. This is a model which is

often used in academia and in the field of control engineering. In contrast to the FSRM,

this model does not assume exponentially stable system descriptions.

6.1.2 Web-application

As of now, the control model system descriptions need to be stored locally in the app.

Usually, for large-scale applications, huge amounts of data need to be parsed in order to

provide the requested service. Such data cannot be stored locally as the server would

in time run out of memory. In order to operate on a large set of model descriptions, a

database can be used. By utilization of a database, the selected model description can be

requested using HTTP, such that the server only needs to address the needed data. An

example of one such database that could be interfaced, handling JSON-formatted data, is

MongoDB [15]. This software was also considered used during development.

As tested in Section 4, the MPC-simulator is equipped with far more functionality than

accessible in the Web-application. For instance, the simulator can produce open-loop

simulations and simulate further, using a different configuration. These aspects could

be brought into the application. Addressing the first feature, the open-loop simulation

functionality, this could require a new module within the menu bar. Possibly, the open-

loop feature could be accessed by defining a key in the scenario file, such that every

controller parameter is ignored by the underlying simulator. For the second functionality,

a timer could be set after the first simulation, simulating a user-defined step size further for

a small time delay. having this functionality present, the user would not need to address

the MPC horizon, T , as it increases with time.
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Appendix

A Block diagonal transform, blkdiag()

The block diagonal transform, blkdiag as defined in Matlab, returns the corresponding

block diagonal matrix given matrix arguments.

The variables A1,A2, ...,An represent n matrices. The blkdiag-function will then return

a matrix A, such that A has the form

A = blkdiag(A1,A2, ...,An) =


A1 0 0 0

0 A2 0 0

0 0
. . . 0

0 0 0 An

 . (53)

An alternative formulation of the block diagonal transform can be derived in the case it is

sensible to formulate A using only one matrix argument. For this purpose only two argu-

ments are needed, the number of expansions and the matrix. Assume that the argument

matrix A1 has the dimensions Rm×m. The output of the block diagonal transform given

the expansion number n is represented in equation 54.

A = blkdiag(A1, n) =


A1 0 0 0

0 A1 0 0

0 0
. . . 0

0 0 0 A1

 ∈ Rm·n×m·n. (54)
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B Input-output JavaScript object notation formats

The following data formats describe the allowed input and produced output for the simu-

lator. The common denominator is that all formats are defined using JSON [19].

The system file is one of two components for the input format. It is structured in the

manner described in Section B.1. As described in Section 3.1.2 this file targets the model

definition of a Finite Step-Response Model. The second part of the input format is the

scenario file, Section B.2. On the other hand, this file targets the defined controller to be

simulated on the chosen model description. Similarly as the system file target an FSRM,

the scenario file targets a condensed MPC-FSRM (43). Finally, the simulation file is

produced by serializing the simulation data along with the parameters needed to interpret

it. The simulation format is described here, Section B.3. The corresponding C++ data

types used to represent the IO information are double, int and std::string. The arrays

are implemented using std::vector<double>.

B.1 System file

{ "model": {

"n_CV": int, "n_MV": int, "N": int, },

"CV": [

{ "output": string, "unit": string,

"init": double,

"S": [[S11, S12, S13, ... , S1N],

[S21, S22, S23, ... , S2N],

... ,

[S n_MV, ... , S n_MV N]] },

... ,

{ "output": string, "unit": string,

"init": double,

"S": [[S11, S12, S13, ... , S1N],

[S21, S22, S23, ... , S2N],

... ,

[S n_MV, ... , S n_MV N]] }

],

"MV": [

{ "input": string, "unit": string,

"init": double, },

... ,

{ "input": string, "unit": string,

"init": double, }

], }

Figure 31: Template JSON-formatted system file.
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B.2 Scenario file

{

"system": "system_name",

"MPC": {

"P": int,

"M": int,

"W": int,

"Q": [Q1, Q2, ... , QP],

"R": [R1, R2, ... , RM],

"RoH": [Ro1, Ro2, ..., Ro n_CV],

"RoL": [Ro1, Ro2, ..., Ro n_CV],

},

"c": [

{"du[1]": [double_low, double_high]},

...,

{"du[n_MV]": [double_low, double_high]},

{"u[1]": [double_low, double_high]},

...,

{"u[n_MV]": [double_low, double_high]},

{"y[1]": [double_low, double_high]},

...,

{"y[n_CV]": [double_low, double_high]},

]

}

Figure 32: Template JSON-formatted scenario file.
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B.3 Simulation file

While the other two file formats are inputted into the simulation software, the simulation

file is only outputted. This file format is used to analyse the MPC-scenario and needs to

contain information for performance assessment. It is trivial that the variables describing

predictions, actuation, model parameters etc. should be present. These variables are used

to produce the plots seen in Section 4. However, the ∆Ũ , identified as the key ”du tilde”

in the simulation file, strikes out. This attribute is only read when the simulator is called

without the -n flag, yielding an extension of an old simulation for future time steps. The

information is used to set the simulator in the same controller configuration as the targeted

simulation.

{ "scenario": "scenario_name",

"T": int,

"n_CV": int, "n_MV": int,

"P": int, "M": int,

"du_tilde" : [[du11, du12, du13, ... , du1(N-1)],

[du21, du22, du23, ... , du2(N-1)],

... ,

[du n_MV, ... , du n_MV (N-1)]],

"CV": [

{ "output": "output_name",

"unit": string,

"c": [low, high] (double),

"y_pred": [y1, y2, y3, ... , y(T+P+1)],

"ref": [r1, r2, ..., r(T+P+1)] },

... ,

{ "output": "output_name",

"unit": string,

"c": [low, high] (double),

"y_pred": [y1, y2, y3, ... , y(T+P+1)],

"ref": [r1, r2, ..., r(T+P+1)] } ],

"MV": [

{ "input": "input_name",

"unit": string,

"c": [low, high],

"u": [u1, u2, u3, ... , u(T+M)] },

... ,

{ "input": "input_name",

"unit": string,

"c": [low, high],

"u": [u1, u2, u3, ... , u(T+M)] } ]

}

Figure 33: Template JSON-formatted simulation file.
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C Condensed formulation without slack constraints

Given the standard optimization vector without the slack constraints: zst =

∆U

U

Ỹ

.
This vector corresponds to a reduced standard QP given in equation (36):

min
zst

1

2
zTstGzzt + q(k)T zst

=
1

2

 ∆U

U

Ỹ


T  2R̄ 0 0

0 0 0

0 0 2Q̄


 ∆U

U

Ỹ

+
[
0 0 −2T (k)T Q̄

] ∆U

U

Ỹ

 (55)

such that

Ezst =

[
−I K 0

−Θ 0 I

] ∆U

U

Ỹ

 =

[
ΓŨ(k − 1)

Φ∆Ũ(k) +ΨŨ(k −N) +B(k)

]
= f (56)

Furthermore, one can apply the same approach used in section 2.3 to reduce the optimiz-

ation vector to zcd = ∆U . The reduced system then yields:

zst =

∆U

U

Ỹ

 =

 ∆U

K−1ΓŨ(k − 1) +K−1∆U(k)

Λ(k) + Θ(k)∆U(k)


=

 I

K−1

Θ

∆U +

 0

K−1ΓŨ(k − 1)

Λ(k)


= A∆U + C(k)

(57)

The condensed MPC without slack variables can therefore be summarised as:

min
zcd

1

2
zTcdGcdzcd + qTcd(k)zcd, (58a)

Gcd = ATGA = 2 · (ΘT Q̄Θ+ R̄) ⪰ 0, (58b)

qcd(k) = C(k)TGA+ qTA = 2 ·ΘT Q̄(Λ(k)− T (k)), (58c)

such that∆U

U

Y

−
 0

K−1ΓŨ(k − 1)

Λ(k)

 ≤
 I

K−1

Θ

 zcd ≤

∆Ū

Ū

Ȳ

−
 0

K−1ΓŨ(k − 1)

Λ(k)

 . (58d)
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D Condensed MPC-FSRM C++ implementation

Implementation of simulation routine described in Algorithm 2. From line 80, the MPC

loop is executed and the following comments align with the algorithm. Prior lines are used

to configure the OSQP-solver, allocate run-time variables and check feasibility. Section D

shows the corresponding SRSolver header file.

solvers.cc

1 /**

2 * @file solvers.cc

3 * @author Geir Ola Tvinnereim

4 * @brief MPC-FSRM controller module

5 * @version 0.1

6 * @date 2023-04-19

7 *

8 * @copyright Released under the terms of the BSD 3-Clause License

9 *

10 */

11 #include "MPC/solvers.h"

12 #include "MPC/condensed_qp.h"

13 #include <OsqpEigen/OsqpEigen.h>

14

15 #include <stdexcept>

16 using SparseXd = Eigen::SparseMatrix<double>;

17

18 void SRSolver(int T, MatrixXd& u_mat, MatrixXd& y_pred, FSRModel& fsr_sim,

19 FSRModel& fsr_cost, const MPCConfig& conf, const VectorXd& z_min,

20 const VectorXd& z_max, const MatrixXd& ref) {

21 // Initialize solver:

22 OsqpEigen::Solver solver;

23 // Starts primal and dual variables from previous QP

24 solver.settings()->setWarmStart(true);

25 solver.settings()->setVerbosity(false); // Disable printing

26

27 // MPC Scenario variables:

28 const int P = fsr_cost.getP(), M = fsr_cost.getM(), W = fsr_cost.getW();

29 const int n_MV = fsr_cost.getN_MV(), n_CV = fsr_cost.getN_CV();

30 // Define QP sizes:

31 // n = #Optimization variables,

32 const int n = M * n_MV + 2 * n_CV; dim(z_cd)

33 // m = #Constraints, dim(z_st)

34 const int m = 2 * (M * n_MV + (P-W) * n_CV + n_CV);

35 const int a = M * n_MV; // dim(du)

36 const VectorXd z_max_pop = PopulateConstraints(z_max, conf, a, n_MV, n_CV);

37 const VectorXd z_min_pop = PopulateConstraints(z_min, conf, a, n_MV, n_CV);

38 //z_*_pop are lower/upper populated constraints

39

40 solver.data()->setNumberOfVariables(n);

41 solver.data()->setNumberOfConstraints(m);
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42

43 // Define Cost function variables:

44 SparseXd Q_bar, R_bar;

45 const SparseXd Gamma = setGamma(M, n_MV), one = setOneMatrix(P, W, n_CV);

46 const MatrixXd K_inv = setKInv(a), theta = fsr_cost.getTheta();

47 // Dynamic variables:

48 VectorXd q, l = VectorXd::Zero(m), u = VectorXd::Zero(m);

49 // l and u are lower and upper constraints, z_cd

50 VectorXd c_l = ConfigureConstraint(z_min_pop, m, a, false);

51 VectorXd c_u = ConfigureConstraint(z_max_pop, m, a, true);

52

53 // NB! W-dependant

54 setWeightMatrices(Q_bar, R_bar, conf);

55 const SparseXd G = setHessianMatrix(Q_bar, R_bar, one, theta, a, n, n_CV);

56 const SparseXd A = setConstraintMatrix(one, theta, K_inv, m, n, a, n_CV);

57 // Initial gradient

58 setGradientVector(q, fsr_cost, Q_bar, one, ref, conf, n, 0);

59 setConstraintVectors(l, u, fsr_cost, c_l, c_u, K_inv, Gamma, m, a);

60

61 // Set solver data:

62 if (!solver.data()->setHessianMatrix(G)) {

63 throw std::runtime_error("Cannot initialize Hessian"); }

64 if (!solver.data()->setGradient(q)) {

65 throw std::runtime_error("Cannot initialize Gradient"); }

66 if (!solver.data()->setLinearConstraintsMatrix(A)) {

67 throw std::runtime_error("Cannot initialize constraint matrix"); }

68 if (!solver.data()->setLowerBound(l)) {

69 throw std::runtime_error("Cannot initialize lower bound");}

70 if (!solver.data()->setUpperBound(u)) {

71 throw std::runtime_error("Cannot initialize upper bound"); }

72 if (!solver.initSolver()) {

73 throw std::runtime_error("Cannot initialize solver"); }

74

75 u_mat = MatrixXd::Zero(n_MV, T + M);

76 y_pred = MatrixXd::Zero(n_CV, T + P);

77 const SparseXd omega_u = setOmegaU(M, n_MV);

78

79 // MPC loop:

80 for (int k = 0; k <= T; k++) {

81 // Optimize:

82 if (solver.solveProblem() != OsqpEigen::ErrorExitFlag::NoError)

83 { throw std::runtime_error("Cannot solve problem"); }

84

85 // Claim solution:

86 VectorXd z_st = solver.getSolution(); // [dU, eta_h, eta_l]

87 VectorXd z = z_st(Eigen::seq(0, a - 1)); // [dU]

88

89 // Store optimal du and y_pref: Before update!

90 if (k == T) {

91 u_mat.block(0, T, n_MV, M) = (K_inv *

92 z).reshaped<Eigen::RowMajor>(n_MV, M).colwise()

93 + u_mat.col(T-1);

80



94 y_pred.block(0, k, n_CV, P) = fsr_sim.getY(z, true);

95 } else {

96 // Store y_pred

97 y_pred.col(k) = fsr_sim.getY(z);

98

99 // Propagate FSR models: Update both!

100 VectorXd du = omega_u * z; // MPC actuation

101 fsr_sim.UpdateU(du);

102 fsr_cost.UpdateU(du);

103 u_mat.col(k) = fsr_sim.getUK();

104

105 // Update MPC problem:

106 setConstraintVectors(l, u, fsr_cost, c_l, c_u, K_inv, Gamma, m, a);

107 setGradientVector(q, fsr_cost, Q_bar, one, ref, conf, n, k);

108

109 // Check if bounds are valid:

110 if (!solver.updateBounds(l, u)) {

111 throw std::runtime_error("Cannot update bounds"); }

112 if (!solver.updateGradient(q)) {

113 throw std::runtime_error("Cannot update gradient"); }

114 }

115 }

116 }

solvers.h

1 /**

2 * @file solvers.h

3 * @author Geir Ola Tvinnereim

4 * @brief MPC-FSRM controller module

5 * @version 0.1

6 * @date 2023-04-19

7 *

8 * @copyright Released under the terms of the BSD 3-Clause License

9 *

10 */

11 #ifndef SOLVERS_H

12 #define SOLVERS_H

13

14 #include "model/FSRModel.h"

15 #include "IO/data_objects.h"

16

17 #include <Eigen/Eigen>

18 using VectorXd = Eigen::VectorXd;

19 using MatrixXd = Eigen::MatrixXd;

20 /**

21 * @brief Solving the condensed positive semi-definite optimization problem

22 * using OSQP-Eigen for W != 0

23 *

24 * @param T MPC horizon
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25 * @param u_mat Optimized u, filled by reference

26 * @param y_pred Predicted y, filled by reference

27 * @param fsr_sim Simulation model

28 * @param fsr_cost MPC model

29 * @param conf MPC configuration

30 * @param z_min lower constraint vector

31 * @param z_max upper constraint vector

32 * @param ref Output reference data

33 */

34 void SRSolver(int T, MatrixXd& u_mat, MatrixXd& y_pred, FSRModel& fsr_sim,

35 FSRModel& fsr_cost, const MPCConfig& conf, const VectorXd& z_min,

36 const VectorXd& z_max, const MatrixXd& ref);

37

38 #endif // SOLVERS_H

82



E BSD 3-Clause License

BSD 3-Clause License

Copyright (c) 2022, Fondazione Istituto Italiano di Tecnologia

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following

conditions are met:

1. Redistributions of source code must retain the above

copyright notice, this list of conditions and

the following disclaimer.

2. Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other

materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its

contributors may be used to endorse or promote products

derived from this software without specific prior

written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF

THE POSSIBILITY OF SUCH DAMAGE.
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F Web-application layout

As stated in the implementation Section 3.2, the frontend consists of multiple modules

accessible through the menu bar. The default scenario and simulation page are already

covered in Section 3.2.5, however, the remaining pages are yet to be described.

After a valid simulation scenario is defined inside the scenario page, a simulation may

be produced. Due to the complexity of the controller, the test simulations are executed

in about 5 seconds. However, this value varies depending on the model description and

horizon. While the application runs the Wasm compiled simulator, the end user is not

notified that a simulation is ongoing by displaying the Loading page. Figure 34 demon-

strates this site. A circular progress bar along with a string is present in the centre of the

page. After the simulator has returned the simulation data, the application navigates to

the simulation page plotting the result.

The three last pages are not interfacing the MPC-simulator directly, but present to inform

the user of the theory behind the software. Starting off with the Algorithm page shown in

Figure 36. This page describes the condensed controller formulation (43) solved for each

simulation step. In order to achieve the best theoretical controller performance, the page

also provides tuning approaches. Similarly, the Model page provides information about the

control model used when simulating. This page is demonstrated in Figure 35. Lastly, the

About page describes the purpose behind the simulation software, the contribution and

the criteria needed to be fulfilled in order to produce a simulation using the web interface.

This page is encapsulated in Figure 37. Within this page, a link to the source code is

provided in the event a user wants to state a software issue etc. Since bias correction is

not addressed in the simulator, this aspect is expressed in the simulation loop illustration.

Furthermore, in order to avoid confusion, the controller parameters criteria are stated

emphasising UX.
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Light-Weight MPC

Simulating...

BSD 3-Clause License

SCENARIO SIMULATION ALGORITHM MODELS ABOUT

Figure 34: Loading page: while the application is waiting for the simulator to return
simulation results, a spinning progress wheel is displayed.

Light-Weight MPC

Finite Step-Response Model (FSRM)
Implemented using Eigen software for linear algebra:

The FSRModel is a C++ object creating the dynamics of a general linear Step-Response model. The following equations and matrices are avaliable as FSRModel member
functions. The model is commonly used to describe the control plant of an exponentially stable process. In constrast to the State Space Model, this model stores the state
information in the actuation. Hence, tracking the dynamic of the model is the same as tracking the applied actuation.

Model definition:
Instead of using states to describe the dynamics for a given time  the step response models uses step response coefficients,  to describe the relation between the input and
output. For an arbitrary FSR model, the model is describe by  step response coefficients. Furthermore, in order to describe how the change in actuation affects the outputs
and the predicted outputs, three matrices are defined: . The first matrix determines how the step response coefficients are used to predict future outputs, while the
others describes the dynamics of past actuation.
In industrial MPC applications, output variables are denoted "Controlled variables (CV)" and input variables "Manipulated variables (MV)". Hence,  and  denote the
number of inputs and outputs.
Output prediction equation:

When using the FSRM in an MPC optimization problem, the model prediction matrices is defined as follows:
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Figure 35: Model page: Informative page displaying the FSRM description.
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MPC-FSRM algorithm:
Implemented using osqp-eigen C++ wrapper for the OSQP software: See chapter 2.3: Model Predictive Control for Finite Step-Response Model for more information.

The OSQP, operator splitting QP solver solves the problems of the following form:

Given,  is a positive definite matrix, yielding a convex quadratic program. The OSQP solver uses an custom ADMM-based first order method and is one of the fastest QP
solvers avaliable.
Step-Response MPC solver:
This MPC controller is defined as a standard quadratic program (QP) where the cost aims to minimize the error between the output  and the reference :

The cost function is constrained by the model definition and relating variables. For the general FSRM-MPC algorithm this cost is constrained by:

In order to implement the slack constraints , one must map the slack variables to the output . This is done by defining the scaling matrix :

Tuning approaches:
For this model based controller description, a total of 7 variables are determing the performance. The horizons, , are all present in the cost function.
The prediction horizon  determines the closed loop stability. Hence, in order to assure stability, this horizon should be set large enough to cover the domanint dynamics.
However, predicting far ahead is comuputationally costly, therefore one can additionally tune the control and time delay horizon, , to decrease the problem size. The
prediction horizons starts at  and specifies the number of initial steps in which the deviations of the output from the reference are not penalized. Setting  is
particularly useful for systems where there is a time lag between the time of the control action is applied and the time an effect is seen. The control horizon  determines how
many prediced actuations are penalized in the cost function.

While the horizons determine how many predictions to be accounted for, the tuning parameters  and  describes the penalization of respectively the output
deviation and input value. If the MPC simulation yields large output deviations, an increase in the  matrix shall reduce the error. Having large -gains is typical for tracking
control. Consequently, if you wish to avoid large actuation this can be penalized by the -matrix tuning. Such functionality comes often handy when controlling process plants
where the use of too much actuation is costly. The last tuning parameters,  corresponds to the output slack constraints. Having slack variables present in the controller
formulation, the controller allows output variables to exeed their constraints if neccessary. However, one can prevent this border crossing by tuning these parameters
emersively.

Condensed Form:
The condensed formulation solves a smaller optimalization problem, obtained using the Nullspace method. This method reduces the number of optimalization variabled by
defining a linear transform. The transform cancels optimalization variables with the given constraints, yielding a computationally easier problem.

The original optimalization vector, , is reduced to

The consdenced formulation is formulated followingly:

such that:

Condensed Formulation without slack variables:
If the tuning parameters RoH and RoL are both null vectors, slack variables are disabled form the Model Predictive Controller. This yields another controller formulation.

The original optimalization vector, , is reduced to

The consdenced formulation is formulated followingly:

such that:
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Figure 36: Algorithm page: Informative page explaining the controller method.
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This is a repo for implementing the master's thesis for the study programme Cybernetics & Robotics at NTNU. The thesis is handed out by Equinor, and aims on
implementing a simpler software framework simulating optimized control on step-response models. The simulator available through this web application simulates

the performance of an MPC on the corresponding control model assuming no model errors. The functionlity to define a plant model is left out for future
implementations. Hence, there are no output feedback present in the application. The software reads a model definition defined in the system definition JSON

format. Followingly, it parses the UX defined controller tuning and simulates the specified controller method.

Masters thesis description

Master student: Geir Ola Tvinnereim

Supervisors: Prof. Lars Struen Imsland (ITK) & Dr. Gisle Otto Eikrem (Equinor)

The source code can be found at Github and is distributed under the BSD-3-Clause license. 

fig: Software logo

fig: Illustration of the Light-Weight MPC simulation loop.

Software usage:

Navigate to "Scenario" page and define you MPC controller.
A valid controller definition yields a green "Run Simulation" button.
After clicking the button, the simulation results shall appear in the "Simulation" page, othervise an error message occurs.
The mathematical description of the controller and the model structure is respectively defined in the pages "Algorithm" and "Models".

Parameter criteria for valid simulation:

Parameter Criteria
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P P ∈ [M , N ]∗

M M ∈ [W , P ]

W W ∈ [0, M ]

T T > 0

Q Q ≥ 0, Q.length = nCV
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Figure 37: About page: Informative page describing the background of the project along
with usage and controller parameters criteria.
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