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a b s t r a c t 

The energy transition is increasingly being discussed and implemented to cope with the growing environmental 
crisis. However, great challenges remain for effectively harvesting and utilizing solar energy in cities related to 
time and location-dependant supply and demand, which needs more accurate forecasting- and an in-depth un- 
derstanding of the electricity production and dynamic balancing of the flexible energy supplies concerning the 
electricity market. To tackle this problem, this article discusses the development of solar cities over the past few 

decades and proposes a refined and enriched concept of a sustainable solar city with six integrated modules, 
namely, land surface solar irradiation, three-dimensional (3D) urban surfaces, spatiotemporal solar distribution 
on 3D urban surfaces, solar photovoltaic (PV) planning, solar PV penetration into different urban systems, and 
the consequent socio-economic and environmental impacts. In this context, Geographical Information Science 
(GIScience) demonstrates its potent capability in building the conceptualized solar city with a dynamic bal- 
ance between power supply and demand over time and space, which includes the production of multi-sourced 
spatiotemporal big data, the development of spatiotemporal data modelling, analysing and optimization, and 
geo-visualization. To facilitate the development of such a solar city, this article from the GIScience perspective 
discusses the achievements and challenges of (i) the development of spatiotemporal big data used for solar farm- 
ing, (ii) the estimation of solar PV potential on 3D urban surfaces, (iii) the penetration of distributed PV systems 
in digital cities that contains the effects of urban morphology on solar accessibility, optimization of PV systems for 
dynamic balancing between supply and demand, and PV penetration represented by the solar charging of urban 
mobility, and (iv) the interaction between PV systems and urban thermal environment. We suggest that GIScience 
is the foundation, while further development of GIS models is required to achieve the proposed sustainable solar 
city. 
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Table 1 

List of nomenclature. 

No. Full notation Abbreviation 

1 Geographical Information Science GIScience 
2 Geographical Artificial Intelligence GeoAI 
3 Three-dimensional 3D 
4 Light Detection and Ranging LiDAR 
5 Unmanned Aerial Vehicle UAV 
6 Meteorological/Statistical METSTA 
7 Support Vector Regression SVR 
8 Random Forest RF 
9 Multi-Layer Perceptron MLP 
10 Gradient Boosting Machine GBM 

11 Level-of-Detail LoD 
12 Convolutional Neural Networks CNNs 
13 Electric Vehicles EVs 
14 Vehicle-to-Grid V2G 
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. Introduction 

During the past century, fossil fuels have been used heavily as the
rimary engine for the global industrial revolutions, which however has
aused serious environmental problems, such as air pollution [1] , global
arming [2] , and the urban heat island effect [3] , that severely threat-

ns the ecological system of the earth. It was suggested that to limit
lobal warming at 2 °C with a 50% probability in the 21st century, the
otal carbon emission should be limited to 11 Gt CO 2 between 2011
nd 2050. However, gas emissions from the consumption of conven-
ional fossil fuels have already taken approximately three times of the
esignated number [2] . It was also suggested that about 33% of the
il reserves, 50% of gas reserves, and 80% of coal reserves should not
e used by 2050 to achieve the target of the Paris Agreement limiting
lobal warming below 2 °C [2] . In this circumstance, there is an increas-
ng demand for facilitating the wide utilization of renewable energies to
itigate climate change. 

To cope with these challenges, the international community has pro-
oted energy transition to renewable energy sources to reduce depen-
ency on conventional energy sources [4–6] . One study emphasized that
ime matters for smartly balancing variable renewable energy supplies,
aximizing the benefits of energy consumers, and optimizing the inte-

ration of energy systems [4] . To achieve this, it is imperative to (i) un-
erstand the characteristics of intermittent renewable energy and fore-
ast the electricity production related to the market; (ii) build resilient
nergy systems that are capable of coping with extreme weather condi-
ions; (iii) predict the production and supplement of renewable energies;
iv) model the time-dependant energy consumption associated to the
oad profiles of the real electricity demand; (v) integrate energy storage
o enhance the flexibility of prosumer benefits; and (vi) propose robust
ontrol and effective management of the renewable energy systems to
ynamically balance supply and demand [4] . As one of the most pop-
lar renewable energies, solar energy has attracted much attention in
ecent years and solar farming has experienced booming development,
esulting in the rising demand for adopting solar PV systems in cities
ince there is a consistent increase in solar photovoltaic (PV) transition
fficiency and decrease of the purchase cost [ 5 , 6 ]. 

Although there is great potential to widely use solar energy since
ew generation of PV modules are keeping updated and it is clean and
bundant on the majority of the earth’s surface, effectively utilizing so-
ar energy is still difficult due to its intermittent characteristics mainly
aused by the obstacle of the atmosphere and variable weather condi-
ions, which makes it even harder to instantly meet fluctuating load de-
ands. With the rapid development of geospatial technologies in recent

ears, such as Geographical Information Science (GIScience) and geo-
raphical artificial intelligence (GeoAI), it is possible to incorporate the
imulation of dynamic geographical environments and spatiotemporal
eographical evolutions into a digital city model [7–9] , which provides
ew opportunities to address the challenges in modelling, analysing, and
alancing the heterogeneous relationship between solar supply and en-
rgy demand over time and space. The major contributions of this article
nclude: (i) proposing a new concept of sustainable solar city with six in-
erconnected modules to meet the new demands on dynamic balancing
etween heterogenous supply and demand; (ii) designing a system ar-
hitecture orientated in GIS technologies for implementing the proposed
olar city; (iii) analysing the fundamental roles of GIScience in interdis-
iplinary research for the solar-city development; and (iv) reviewing rel-
vant studies and discussing future GIS-based research to achieve such
ersion. 

The remainder of this paper is organized as follows. Section 2 reviews
he development of a solar city and proposes the concept of a sustainable
olar city to meet the new demand for dynamic balancing between sup-
ly and demand. Following the system architecture of a sustainable solar
ity, Sections 3 , 4 , 5 , and 6 respectively discuss the achievements and
hallenges in developing a sustainable solar city from the perspective of
patiotemporal data production, modelling, analysis, and optimization.
2 
inally, Section 7 presents the conclusion. The list of nomenclatures is
resented in Table 1 . 

. Conceptualization of a solar city 

.1. Development of a solar city 

Four decades ago, people began to postulate that a “solar city ” could
e achieved when 100%, 59.7%, and 18.2% of the energy demand from
esidential, commercial, and industrial systems could be supplied by on-
ite solar collection [10] , which could be one of the earliest studies about
olar cities. In 1998, Couret et al. [11] conceptualized a solar city as an
ntegration of a habitant city, a cultural city, and a sustainable city that
an preserve natural resources, promote energy conservation, enable
ocio-economic sustainability, and optimize urban planning, with an
daption of appropriate technology. In 2006, a future solar city was pro-
osed with three-dimensional (3D) characteristics that incorporate new
ndustry, energy innovation, and eco-culture, which aims to decrease
arbon footprint, develop renewable energy, and pursue economic de-
elopment [12] . These propositions show that the development of solar
ities requires interdisciplinary knowledge. Vanderburg emphasized in
13] that a knowledge infrastructure is needed to guide the evolution of
he urban habitat toward solar cities, which requires the introduction of
 preventive orientation into each relevant area of specialization, e.g.,
rchitecture, urban planning, civil engineering, urban management, and
olitics. In recent years, the concept of solar cities has been further de-
eloped. Beatley [14] proposed the vision of a solar city that can produce
nergy, food, and materials and achieve carbon neutrality by incorpo-
ating solar energy into designing and developing green infrastructure,
nd Scheer [15] believed that solar cities help transform the global en-
rgy supply to the reconnection of local energy generation and use from
echnical and social logic perspectives. The previously proposed solar
ities are capable of powering cities in many ways that can make posi-
ive effects on socio-economy and environment, while it lacks the flexi-
ility and precision in dynamically handling mismatched loads between
upply and demand. 

.2. Definition of a sustainable solar city 

To meet the new demands for energy transition with the capability
f handling dynamic balance, we refine and further enrich the concept
f solar cities. We define a solar city as a sustainable power system that
ollects, stores, and utilizes solar energy to power a variety of urban
ystems efficiently and smartly, resulting in an increase in solar pene-
ration, an improvement of socio-economic conditions, and the creation
f a liveable urban environment. We propose that a solar city can be
uilt by integrating hierarchical and interconnected modules ( Fig. 1 ),
ncluding 
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Fig. 1. The concept of a solar city consisting of 
six integrated modules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

a  

h  

m  

t  

v  

p  

t  

e  

i  

l  

u  

s  

i  

a  

a  

e  

g  

u  

i  

w  

i  

c

2

t

 

t  

s  

b  

(  

a  

a  

p  

m  

b  

i  

a
 

q  

r  

s  

t  

G

(  

 

 

 

 

 

 

 

 

(  

 

 

 

(i  

 

(i  

 

 

 

 

(i) land surface solar irradiation that estimates spatiotemporal solar
distribution on the flat land surface, which is significantly af-
fected by unstable weather and stable climate possibly with sea-
sonal variations, 

(ii) 3D urban surface that is presented by 3D city models, contain-
ing but not limited to major geo-objects, such as natural terrain,
buildings, and vegetation, 

(iii) solar potential distribution that models the spatiotemporal distri-
bution of solar potential on 3D urban surfaces, 

(iv) solar PV planning that plans and optimizes PV installation to maxi-
mize solar farming and minimize occupied urban surfaces to meet
the electricity demand, 

(v) solar PV penetration that allows PV systems to power various ur-
ban systems by designing adaptive and efficient solar charging
and storage solutions, and 

(vi) socio-economic and environmental impacts that reveal the conse-
quent interactions between PV systems and socio-economy and
urban environment. 

In the figure, modules 1 to 3 present the electricity supply capabil-
ty in different spatial and temporal scales, such as hourly, monthly, or
nnual PV electricity generation; modules 4 and 5 demonstrate solar
arvesting to meet real electricity demand by various urban systems;
odule 6 reveals the impacts of a developed solar city. It is noted that

he solar city is constrained by an independent and dynamic urban en-
ironment. However, this does not mean that a solar city will be com-
letely self-sufficient by only harvesting solar energy. We suggest that
he utility-scale solar PV plants outside the city are also essential to gen-
rate a great amount of electricity. Nevertheless, harvesting solar energy
n the local city has two major advantages, which can avoid large energy
oss because of long-distance transmission, and easily adapt to complex
rban systems, creating additional social and economic impacts. For in-
tance, building-integrated PV sun shading boards can (i) cool down
ndoor temperature and thus reduce air conditional usage, (ii) generate
 certain amount of electricity to power buildings, and (iii) be useful for
rchitectural aesthetics. On the other hand, we suggest that the current
nergy saving because of solar farming can be absorbed by future urban
rowth with larger energy demand. However, in the future perspective,
rban growth both vertically in height and horizontally in the area can
ncrease the installed capacity of PV arrays, and PV transition efficiency
ill also be increased because of the development of material engineer-

ng. This will make an increased reduction of conventional fossil fuel
onsumption. 
3 
.3. System architecture of a sustainable solar city based on GIS 

echnologies 

According to this new definition, electricity supply and demand are
wo major components in a solar city ( Fig. 2 ). Specifically, the supply
ide includes a series of models that estimate land surface radiation
ased on the clear-sky radiation with the influence of multiple factors
i.e., location, cloud cover, terrain variation, and 3D buildings), which
llows the estimation of PV electricity generation through the planning
nd installation of PV systems, followed by power transmission and
ower storage. Meanwhile, the demand side refers to the electricity de-
and from various urban systems, such as electricity consumption from

uildings and charging demands from e-vehicles and e-scooters, which
s affiliated with the consequent effects on socio-economic development
nd urban environmental improvement. 

The heterogeneous relationship between demand and supply re-
uires dynamic balancing over time and space to build an adaptive and
esilient energy system. To achieve this, GIScience enriched by multi-
ourced spatiotemporal big data is the foundation in constructing a sus-
ainable solar city. As shown in Fig. 2 , GIScience with the support of
eoAI presents its powerful capability in 

i) multi-sourced spatiotemporal big data production to support the con-
struction of a solar city by seamlessly coupling with geospatial tech-
nologies (e.g., remote sensing, surveying, urban sensing, LiDAR scan-
ning, and UAV monitoring), leading to the creation of datasets, such
as land surface solar irradiation maps to determine annual solar po-
tential, 2D rooftop area maps and 3D city models to estimate shadow
effects in an urban environment, large-scale PV area distribution
maps to estimate life-cycle electricity generation, and roadside noise
barrier maps and street-view images to plan suitable locations for PV
installation,; 

ii) spatiotemporal data modelling to model the time-series distribution of
spatiotemporal solar PV potential on 3D urban surfaces, considering
the effects of seasonal variation, unstable weather, shadowing from
buildings and terrain variation, and multiple reflections between ur-
ban surfaces; 

ii) spatiotemporal data analysis to identify PV potential locations that are
quantitatively large and spatially concentrated, suggesting preferred
areas for planning PV installation at solar-abundant locations; 

v) spatiotemporal multi-objective optimization to penetrate PV systems
for powering urban systems through spatiotemporal optimization
with the development of multi-objective functions (e.g., maximiz-
ing solar farming while minimizing PV areas to meet real electric-
ity demand), and estimate its impacts by building interactive socio-
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Fig. 2. System architecture of a sustainable solar city. 
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economic models and urban micro-environment models that are dy-
namically interacting with the PV systems; and 

v) geo-visualization to better understand, plan and develop solar cities. 

.4. The fundamental roles of GIScience in developing a sustainable solar 

ity 

Based on the above illustration, we suggest that efficiently powering
rban systems with solar energy requires interdisciplinary research to
alance between supply and demand over time and space. This, with
he distinct characteristics of spatiotemporal heterogeneity, presents the
undamental roles of GIScience in science fusion ( Fig. 3 ). 

1 GIScience is the foundation for integrating interdisciplinary re-
search, including but not limited to data science, solar engineering,
and system science. This is because GIScience can seamlessly (i) in-
terconnect data science to create and analysis geospatial big data
(e.g., using deep learning, computer vision, and surveying to build
3D building models in different Level-of-Details (LoDs)), (ii) incor-
porate solar engineering (i.e., material engineering to determine PV
transition efficiency and electrical engineering to design smart grids)
to estimate solar power generation in real geo-environment, and (iii)
integrate system science to understand spatiotemporal characteris-
tics of each system with an establishment of professional knowledge
to power the system efficiently. 

2 GIScience is the key in developing a series of hierarchal models
to plan efficient solar farming. This presents the distinctive capa-
bility of GIScience on abstracting and modelling geographical phe-
nomena (e.g., estimating solar distribution on 3D urban surfaces),
analysing spatiotemporal solar distribution (e.g., identifying quan-
4 
titatively large and spatially concentrated PV potential areas), and
planning solar PV installation (e.g., determining the location, orien-
tation, and installed capacity of PV arrays). 

3 GIScience plays an essential role in optimizing spatial-associated PV
configurations with an energy storage capability to address the spa-
tiotemporal barriers between supply and demand. It can be used for
a variety of applications. Here the applications are related to various
urban systems, such as charging e-vehicles, collecting, cleaning, and
transporting water, powering indoor air-cooling system, and provid-
ing artificial lighting for urban farming. For instance, GIScience can
optimize the number and location of distributed PV systems with
varying installed capacities, which is essential to charging e-vehicles
having heterogeneous electricity demands. 

. Multi-sourced spatiotemporal big data production 

This section presents the production of multi-sourced spatiotempo-
al big data using GIS, Remote Sensing, and GeoAI technologies, which
rovides fundamental data infrastructure related to solar energy, urban
nvironment, and PV plants ( Fig. 4 (a)). 

.1. Estimation of land surface solar irradiation 

It is important to precisely estimate land surface solar irradiation
nterfered by the atmosphere, which conclusively determines the total
olar potential that can be harvested. Such data can be collected from
round-based weather stations, which are usually updated frequently
ith high precision. However, sparse observation locations make it dif-
cult to generate spatially continuous solar potential maps influenced by
tmospheric conditions, such as clouds and aerosols [16] . To create solar
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Fig. 3. The fundamental roles of GIScience in 
developing a solar city. 
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istribution data with high spatiotemporal resolution over large regions,
reat efforts have been made during the past two decades [17] that are
ainly based on empirical [ 18 , 19 ], physical [20] , and machine learning

pproaches [21–23] . It was suggested that latitude is not the conclusive
actor to determine annual solar capacity of a city at a global scale,
hile urban morphology significantly affects solar capacity of each city

20] . Since empirical models are difficult to be generalized to other re-
ions, physical models were developed and widely used through the
odelling of the radiation transmission process, such as the METSTA
odel [24] and the Bird model [25] . Meanwhile, some studies utilized
ata acquired from both meteorological stations and satellites [26–28] ,
hich was helpful for creating large-scale solar distribution maps, while

he temporal resolution was relatively low, limiting the use for near real-
ime estimation. 

Most recently, a series of machine learning networks have been de-
eloped for solar irradiation estimation. For instance, Ramedani et al.
29] suggested that Support Vector Regression (SVR) using the polyno-
ial model and radial basis model as the kernel function outperformed

uzzy linear regression for global solar radiation prediction in Iran. Sri-
astava et al. [30] found that the Random Forest (RF) model obtained
he best results in forecasting hourly solar radiation from 1-day-ahead
o 6-day-ahead in India, compared to the models of Multivariate Adap-
ive Regression Spline, Classification and Regression Tree, and Piecewise
inear Functions of Regression Trees. Rabehe et al. [31] concluded that
he Multi-Layer Perceptron (MLP) performed better than the Boosted De-
ision Tree and the combination of the models with linear regressions for
he estimation of daily global solar irradiation. Furthermore, Liao et al.
32] estimated seasonal and annual land surface solar irradiation in Aus-
ralia and China by using four machine learning models, i.e., Gradient
oosting Machine (GBM), RF, SVR, and MLP. Based on the computed
lear-sky solar irradiation, cloud optical thickness, and aerosol optical
hickness retrieved from Himawari-8 meteorological satellite images, it
as found that GBM obtained the highest accuracy and implied that the
roposed method was simple and effective for large-scale solar irradia-
ion estimation [32] . 

.2. Development of the 3D city model 

Solar mapping of urban surfaces, known as “solar cadastre ”, has
roven to be a promising approach for accurate solar analysis at the
5 
uilding, district, and city levels [33] . However, these approaches have
ertain limitations, such as using simplistic assessment methods that
ead to inaccurate results [33] . Studies on solar energy potential aim
t improving the prediction accuracy of solar irradiation on surfaces.
stimating solar potential by simple and general methods is common
ractice for small-scale roofing installations, but not for solar integrated
ystems on façades [34] . To guide urban densification processes by op-
imizing the exploitation of solar energy systems on urban surfaces and
imultaneously considering energy demands from buildings, a more ad-
anced approach is needed. Knowledge of solar potential and building
nergy is crucial to optimise self-consumption in urban areas. Currently,
he existing solar cadastres lack a specific focus on urban microclimate
onditions and interaction amongst buildings that face complex phe-
omena (i.e., shadow cast and solar inter-building reflections). Solving
omplex equations and models for different buildings is helpful for deal-
ng with these interactions. Dedicated tools arose with a modular struc-
ure in co-simulation frameworks, and in the specific model, the infor-
ation exchange at each timestamp allows accounting for the interac-

ions [35] . For instance, in optimization processes at the city scale, such
rameworks are used to bring together architectural aspects (geometry),
ngineering aspects (energy system design), and a part of the micro-
limate conditions of buildings (local solar potential) [36] . At the city
cale, the co-simulation approach allows domain-specific expert tools to
ork together [36] . Moreover, its efficacy varies considerably due to the
ccuracy of spatial information available and generated (e.g., satellite
ata, and data from Light Detection and Ranging - LiDAR), and the used
D models in different LoDs. 

Current developments aim to create more precise information layers
o estimate the integration of the solar system on rooftops [37] , mostly
evoid of building infrastructure (e.g., chimneys, elevator engines) that
re common constraints for optimal solar system installation, but also
n the non-negligible vertical surfaces (façades) [38] . At high-latitude
ocations, façades have a high potential to collect sunlight since the sun
aintains an optimum angle of incidence for longer, making solar sys-

ems’ integration into façades even more favourable than in cities in
ow latitudes. Moreover, employing vertically mounted solar systems,
resent a better operating condition for solar systems since they do not
ccumulate much dust and rarely will be covered by snow in the win-
er, which brings an increase in solar energy production and more im-
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Fig. 4. A hierarchical workflow to develop the proposed solar city. (a) Multi-sourced spatiotemporal big data production. (b) Spatiotemporal data modelling. (c) 
Spatiotemporal data analysis. (d) Spatiotemporal multi-objective optimizations. 
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ortantly matches with electricity consumption and price peaks. The
nvestigation of such unique opportunities requires combined local re-
earch to make solar energy more affordable and accelerate its pene-
ration in countries that are in the far north region. However, assess-
ng solar irradiation on building façades and identify suitable areas of
he façades (e.g., unglazed) for solar PV installation is more complex
han on rooftops. This requires more advanced solar potential estima-
ion models, considering solar accessibility influenced by urban mor-
6 
hology, LoD3 3D model, and the textures and albedos of the façades. In
his regard, the rapid development of 3D scanning methodologies makes
 compelling case for a comparison in terms of accuracy before large-
cale scanning is undertaken. At the neighbourhood level, there are on
he one hand LiDAR-based techniques and the other photogrammetry-
ased techniques. Recently, LiDAR techniques have received a strong
oost, and photogrammetry software used to create 3D city models from
ollections of overlapping photographs has become readily available
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e.g., photo modeller), which makes it possible to build fine-scale 3D
ity models. 

.3. Segmentation of 2D rooftop areas from satellite imagery 

Quantifying the available rooftop area is an important and feasible
ay to estimate the annual solar PV potential on buildings [39] . How-

ver, large-scale estimation of building PV potential is challenging due
o the lack of available high-quality rooftop data and insufficient gen-
ralization ability of modelling methods [40] . To cope with this chal-
enge, many studies have been devoted to automatically extract build-
ng rooftops accurately using remote sensing and artificial intelligence
echniques, which have contributed to the development of various gen-
rative methods and public datasets [ 41 , 42 ]. 

At the same time, urban energy studies are moving toward finer-
rained simulations that require more granular and precise geospatial
ata. In contrast to extracting accurate building footprints, some studies
ave explored finer-grained information about building rooftops [43] .
or example, as one of the most advanced image-semantic segmentation
etworks, Deeplabv3 + was used to segment rooftop areas [44–47] . In
ddition, roof structure lines are fine-grained elements of the roof that
an be delineated from satellite imagery to serve as a reference for the
orphology of the rooftop [48] . The roof structure lines can divide the

oof into multiple components, which can be further mapped with rich
ttributes (e.g., slope, aspect, and light intensity) to reflect the detailed
eatures of the roof surface, which is helpful for the optimization of PV
nstallations on rooftops [ 48 , 49 ]. 

.4. Detection of roadside noise barriers from street-view images 

Additionally, as a type of urban infrastructure in metropolitan re-
ions, roadside noise barriers provide an alternative location for PV in-
tallation, expanding limited sites to utilize solar resources in densely
opulated urban regions, which has received great attention from many
ations [50] . Rather than conducting costly and time-consuming road
nspections and investigations, studies used street-view imagery to cap-
ure roadside noise barriers in Nanjing and Suzhou, China, using deep
earning (i.e., YOLO v3) and computer vision techniques [ 51 , 52 ]. As a
esult, PV panel locations and solar PV potentials can be estimated using
he mileage and spatial distribution of extracted roadside noise barriers
52] . 

.5. Segmentation of large-scale PV areas from satellite imagery 

As PV systems have been installed widely in the past few years, re-
ent studies have focused on extracting installed PV areas from satel-
ite imagery, which provides fundamental datasets for estimating the
otal installed capacity and PV modules [53] , analysing the economic
nd environmental impacts [54] , and guiding PV policy-making [55] .
he methods of PV area extraction have been developed using remote
ensing image segmentation [56] , machine learning [57–59] , toward
dvanced deep learning [ 60 , 61 ]. 

Some studies have combined object-based remote sensing image
nalysis and template matching techniques to segment PV areas from
ery high-resolution aerial imagery [56] . Others have utilized machine
earning methods, such as random forests, to extract PV areas from high-
esolution aerial imagery [57] . While these approaches can detect most
V areas, they have limitations in segmenting areas obstructed by sur-
ounding environments with similar colors and textures. 

To address these challenges and achieve more precise segmenta-
ion of PV areas affected by various land covers, researchers have de-
eloped new models utilizing Convolutional Neural Networks (CNNs).
hese models, such as DeepSolar [62] , ConvNet [ 63 , 64 ], and U-Net
65] . These models have demonstrated their ability to segment PV areas
nd create city-level PV maps with satisfactory accuracy. More recently,
 different type of CNN, Deeplabv3+, which employs Atrous Spatial
7 
yramid Pooling, has been used to extract PV areas from satellite images
66] , and it was suggested that the original and refined DeepLabv3 +
ere competitive to U-Net and RefineNet for extracting concentrated
nd distributed PV areas in Heilbronn, Germany [67] and Jiangsu, China
68] . However, these models face difficulties in obtaining refined and
egular boundaries for small and distributed PV modules due to chal-
enges such as an imbalance between positive and negative samples in
he imagery, variations in color and texture of PV modules under varying
aylighting conditions, and the potential misclassification of geo-objects
ith similar characteristics to PV modules. Therefore, a more detailed-
riented approach, utilizing geospatial technologies and adapting to the
hallenges posed by PV module segmentation, is greatly needed. 

. Spatiotemporal data modelling 

This section introduces GIS models for accurately estimating spa-
iotemporal solar PV potential on 3D urban surfaces, which is influenced
y the urban thermal environment, unstable weather conditions, and
omplex built environment ( Fig. 4 (b)). 

.1. Estimation of PV transition efficiency 

With an increasing rate of urbanization, urban surface temperatures
eep increasing and extreme heat waves become more and more fre-
uent [69–71] . It was found that temperatures on PV surfaces play a
ey role in electricity generation. This is because the standard PV elec-
ricity transition efficiency is tested at a standard temperature of 25
Celsius, and with a higher temperature, an increase of 1 °Celsius will
ecrease the PV efficiency by around 0.5% and PV efficiency can be de-
reased by 25% under high-temperature environments [72] . Since land
urface temperatures in urban areas can reach 60 to 70 °C in the sum-
er noon time [73] , it is reasonable to consider that air temperatures

r land surface temperatures can significantly affect PV transition effi-
iency through radiation transfer and surface energy exchange, which,
owever, has not been fully investigated yet. To tackle this problem,
e many utilize geospatial technologies to measure real-time PV effi-

iency, observe varying temperatures of PV surfaces, quantify dynamic
hermal environment, and develop spatiotemporal models to estimate
he PV efficiency based on all the influential factors. 

.2. Estimation of solar PV potential on 3D urban surfaces 

It is important to accurately estimate the spatiotemporal distribution
f solar PV potential to plan PV installation at solar abundant locations
nd assess the electricity generation of installed PV systems. Previous
tudies incorporated sky view factors to estimate PV potential along
treet canyons [ 74 , 75 ], which essentially incorporated shadow effects
rom surrounding buildings. To assist rooftop PV installation, many stud-
es estimated rooftop PV potential [76–78] , in which one estimated the
robability distribution of annual cloud cover to generate an annual so-
ar potential map on all rooftops in Hong Kong [16] . 

Further studies developed physical models to estimate solar potential
n façades and the ground [79] , or on façades and rooftops [80–83] .
or example, Catita et al. developed the SOL algorithm to generate 3D
oints on façades to present solar radiations [80] . Liang et al. utilized
n extension of the 2D r.sun model and the Graphics Processing Unit
echnique to real-timely visualize irradiations at an instant of time on
D building surfaces [ 81 , 82 ]. In addition, one study modelled the effect
f greenery on the amount of solar energy received on building surfaces,
hich is vital for some cities where greenery is dominant [84] . 

A few studies showed the capability of estimating solar irradiation on
ntire urban surfaces, including rooftops, façades, and ground [85–87] .
or instance, the SORAM model used a ray-tracing algorithm to deter-
ine whether a 3D ray vector intersects with a voxel and to calculate

olar irradiations on building surfaces [85] . In another study, the v.sun
odule considered the shadow effect caused by surrounding buildings
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nd estimated 3D solar irradiation, which was implemented based on
he r.sun model that enables the computation of segmenting 3D vectors
o smaller polygons [86] . Similarly, urban surfaces were modelled as
D point clouds to record and visualize solar irradiations on urban sur-
aces. To achieve this, the total solar irradiations (i.e., direct, diffuse,
nd reflective irradiations) were modelled as 3D vectors that intersect
ith 2.5D building surfaces, resulting in an estimation of shadow effects

rom all surrounding buildings [ 20 , 88 ]. 

. Spatiotemporal data analysis 

This section demonstrates the developed GIS models for (i) analysing
he effects of urban morphology on solar accessibility based on both the
urrent and the transformed urban environments, and (ii) identifying
olar-abundant locations that are favourable for collecting solar energy
 Fig. 4 (c)). 

.1. The effects of urban morphology on solar accessibility 

In this context, the optimal geometry of buildings was determined
y considering metrics such as building massing, density, and orienta-
ion to provide efficient solar PV planning [89–92] . For example, one
tudy proposed twelve building block configurations and manipulated
hree geometrical parameters (i.e., the width of streets, the heights of
xisting and planned buildings, and the massing of buildings) to adjust
uilding layouts and finally obtain an optimal integration [92] . How-
ver, an optimal solution proposed in an ideal scenario may not be able
o be applied in a real urban environment because building design may
e influenced by multiple factors simultaneously, such as noise control,
ndoor daylighting time, and traffic dispersion. Therefore, understand-
ng the effect of a transformed urban environment on solar accessibil-
ty of existing and planned buildings is also imperative when a master
lan of buildings is established. This can be achieved by comparing the
uilt environments transformed from the current city to the future city
 88 , 90 , 93 ]. On this basis, these studies discussed the changes in solar
ccessibility on different urban partitions (i.e., rooftops, façades, and
round) when a cluster of new buildings are built up. 

.2. Identification of solar abundant locations 

For easy maintenance and efficient solar farming, it is reasonable to
nstall PV modules at locations where solar potentials are quantitatively
arge and spatially concentrated. To achieve this, one study determined
he minimum solar potential to be harvested on each of the urban parti-
ion (i.e., rooftops, façades, or ground) and computed the rate of usable
rea on each 3D urban surface [94] . Then, spatiotemporal data analysis
as conducted to summarize the rate of urban surfaces that are equal
r larger than a designated usable area during a calendar year. With the
ariation of the minimum solar potential and the rate of urban surfaces
o be used for solar farming, the study drawn continuous curves describ-
ng the relationship between the two quantities, which was an effective
nalysis to assist PV site selection based on the expected electricity gen-
ration efficiency and the minimum area to be utilized. 

. Spatiotemporal multi-objective optimization 

This section illustrates the GIS-integrated models for the planning of
olar PV systems with storage capability in an urban scale, designing
olar charging solutions to power e-vehicles and e-scooters, as well as
evealing its effects on urban micro-environments ( Fig. 4 (d)). 

.1. Penetrating distributed PV systems in digital cities 

Concepts such as energy hubs and smart microgrids are used to im-
rove the penetration of solar energy within urban areas [95–97] . The
ptimal design of such distributed energy systems is a challenging task
8 
hat has been widely discussed in the literature. The process begins with
uantifying the energy demand, and the second step is quantifying the
V potential, an extensive task comprehensively discussed in the previ-
us sections. Both demand and PV potential are used for energy system
izing [98] . Many optimization models have been used in the present
tate-of-the-art to perform design optimization of urban energy systems
ith solar PV [99] . 

Most of the recent studies focussed on optimal sizing of solar PV
anels along with supporting technologies such as energy storage (e.g.,
attery banks and H 2 storage), energy conversion devices (e.g., heat
umps), and dispatchable energy technologies (e.g., internal combus-
ion generators, combined heat, and power). These studies focused
n the optimal design of building-integrated PV systems and the en-
rgy hub, which gradually evolved to the neighbourhood and urban
cales [100–102] . Both linear and non-linear optimization methods have
een used with detailed techno-economic models. However, grey box
nd data-driven models are becoming attractive alternatives, especially
hen considering the complex terrain brought up by the urban con-

ext [103] . For instance, reinforcement learning can present the opti-
al despatch [104] while supervised and transfer learning can be used

o move from a cluster of buildings to an urban scale [ 105 , 106 ]. Moving
nto data-driven models will be a promising direction, which is yet to
e fully explored. 

Given the ambitious decarbonization targets, urban areas should aim
o become self-sufficient, being less dependant on the stable electricity
upply provided by the grid [107] . The fluctuations brought by energy
emand and solar energy potential cannot be solely buffered using en-
rgy storage (both long and short) [108] . The flexibility brought up by
uilding, transportation, and industrial systems needs to play a signif-
cant role in this context [109] . Therefore, PV integration needs to be
onsidered along with system coupling. Similarly, large-scale grid in-
egration of PV could lead to destabilizing the electricity grid [110] .
onsidering both system coupling and spatially associated grid stabiliza-
ion, energy markets at multiple levels will lead to a complex ecosystem.
herefore, optimizing the integration of PV technologies at the build-

ng and neighbourhood scale in such a complex energy ecosystem is
 challenging task that cannot be completely handled using state-of-
he-art centralized models. Decentralized architectures and hybrid ar-
hitectures (i.e., hierarchically decentralized superstructures) such as
rban Cells are promising approaches in this context [111] . Consider-

ng emerging concepts such as block-chains and the urban Internet of
hings, it will introduce more challenges in the future that need to be
onsidered during the system sizing phase [111] . The evolution of en-
rgy system optimization models, the introduction of machine learning
echniques, and the ever-increasing performance of high-performance
omputing will help to address the challenges and enable solar cities. 

.2. Solar charging for urban mobility 

The primary energy source in the transportation system is fossil fuels,
hich is detrimental to global environments and climate. Thus, electri-
cation of the transport system is a crucial way to build green mobility.
owever, charging millions of electric vehicles (EVs) can easily over-

oad the power grid [112] , and if the electricity still comes from fossil
uels, it is hard to achieve the anticipated benefits of EVs with a sig-
ificant reduction of greenhouse gas emissions. To tackle this problem,
ncorporating EVs with solar (or more broadly renewable) energy pro-
ides a plausible way for transforming energy structure in the trans-
ortation system and meeting CO 2 emission targets [113] . Therefore,
t is greatly needed by cities to mitigate global warming and energy
carcity, showing significant economic and environmental impacts on
he industry [114] . 

EVs can return electricity through discharging to provide demand-
esponsive services using the vehicle-to-grid (V2G) technology. There
re considerable benefits to using such technology with solar PV charg-
ng stations. With an optimized charging/discharging strategy, V2G can
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educe the possible uncertainty of the PV system [115] . EV charging
ay induce higher loads to the grid, especially during the daytime, and

olar PV provides an option to increase daytime peaking capacity, which
s considered a co-benefit [116] . V2G could enhance the service reliabil-
ty of the grid because these grid-connected vehicles can reduce resid-
al load fluctuation if smart charging is implemented [117] . Also, it
as found that coordinated EV charging can effectively reduce voltage
nbalance [118] . 

Solar charging stations can be installed in many areas. Earlier re-
earch on PV power generation investigated the effects of home so-
ar charging with EVs [119] , and solar charging at the workspace will
rovide more energy supply during the daytime [114] . Also, installing
V arrays in parking lots would provide solar electricity to many EVs
120–122] . A worthy alternative will be deploying solar charging sys-
ems in fuel stations, and this can be exploited as a station-to-grid strat-
gy [123] . While most research focuses on connecting solar charging
tations with the grid, the possibility of off-grid standalone charging
tations using PV and wind was also explored [124] . PV can also be
nstalled on the roof of vehicles. For example, one study proposed a
ovel battery/PV hybrid power source for plug-in hybrid electric vehi-
les, which can provide higher power efficiency and speed [125] . 

To better incorporate solar charging with EVs, load simulation of EV
harging is significant to plan and operate the charging systems. New
lgorithms were proposed to simulate and optimize the scheduling of
V charging [ 112 , 115 , 126 ]. A good distribution of public charging sta-
ions is crucial for EV operations. How to optimize the distribution of
hese charging stations is challenging, especially for renewable-powered
harging stations [127] . Some recent studies also began to explore the
ossibilities of integrating solar charging with small form-factor vehi-
les, like electric scooters and electric bikes [128–131] . 

.3. Interaction between PV systems and urban thermal environment 

Finally, impact assessments are followed to evaluate the environ-
ental effects of the energy system [ 132 , 133 ]. The production of solar

nergy in cities reduced the dependency on fossil fuels that can help to
itigate global warming [134] . On the other hand, at the micro spatial

cale large solar farms can increase the surrounding land surface tem-
erature and air temperature because the reduced vegetation ecosystem
educed latent heat fluxes and the PV increases the sensible heat fluxes
135] . Another study analysed the impacts of solar farming on the lo-
al and micro-thermal environment based on Computational Fluid Dy-
amics simulation and the results showed that the centre of PV area
an reach up to 1.9 °C above the annual average of air temperatures at
.5 m of the ground [136] . These studies showed that PV systems can in-
rease the air and surface temperature at the micro-scale. This also will
ake an adverse effect on the PV efficiency. In this scenario, creating

r identifying a comfortable urban thermal environment is useful and
ecessary for optimizing spatial locations of PV systems and increasing
V electricity production. 

onclusion 

We suggest that solar PV plays a vital role in energy transition and
eep decarbonization of urban energy systems, including building, in-
ustrial, and transportation systems. While achieving deep decarboniza-
ion is challenging due to the fluctuations brought by land surface solar
otential, varying energy demands from different systems, and complex
rban morphology that influences the PV electricity generation at the
uilding level. In this paper, we proposed the concept of a sustainable
olar city, which makes it possible to address these pressing challenges
o facilitate energy transition and combat climate change, leading to
he creation of a holistic platform to standardize complex data flows.

e expect that the successful development of the concept will benefit
any parties, including individuals (e.g., the PV consumers), profession-
9 
ls (e.g., urban planners and policy makers), and operators (e.g., electric
ower supplies). 

The proposed concept and the system architecture reveal that in-
erdisciplinarity collaboration between the fields, such as architecture,
rban planning, electric engineering, computer science, and transporta-
ion, is needed for developing a sustainable solar city. Nevertheless, we
eed to notice that GIScience plays a critical role in synthesizing inter-
isciplinarity and realizing the conceptualized solar city. Meanwhile,
he theories and methods of spatiotemporal data modelling should be
urther developed to improve the capability of GIScience in modelling
olar-related geographical evolutions. For instance, new GIScience mod-
ls are desperately needed to present an invisible urban thermal envi-
onment having fuzzy boundaries in space, which dynamically interacts
ith the PV surface temperatures and thus affects the PV transition effi-

iency. To conclude, the proposed notion of a solar city is a vision that is
xpected to become a reality soon, and GIScience, the science address-
ng the interactions between the environment, people, and sensors, is
oised to contribute significantly to the creation of such vision. 
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