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ABSTRACT

In this study, pre- and postprocessing of hydrological ensemble forecasts are evaluated with a special focus on floods for 119 Norwegian

catchments. Two years of ECMWF ensemble forecasts of temperature and precipitation with a lead time of up to 9 days were used to

force the operational hydrological HBV model to establish streamflow forecasts. A Bayesian model averaging processing approach was

applied to preprocess temperature and precipitation forecasts and for postprocessing streamflow forecasts. Ensemble streamflow forecasts

were generated for eight schemes based on combinations of raw, preprocessed, and postprocessed forecasts. Two datasets were used to

evaluate the forecasts: (i) all streamflow forecasts and (ii) forecasts for flood events with streamflow above mean annual flood. Evaluations

based on all streamflow data showed that postprocessing improved the forecasts only up to a lead time of 2–3 days, whereas preprocessing

temperature and precipitation improved the forecasts for 50–90% of the catchments beyond 3 days’ lead time. We found large differences in

the ability to issue warnings between spring and autumn floods. Spring floods had predictability for up to 9 days for many events and catch-

ments, whereas the ability to predict autumn floods beyond 3 days was marginal.
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HIGHLIGHTS

• The study evaluates the univariate and the combined effects of preprocessing both precipitation and temperature forecasts together with

the postprocessing of streamflow.

• Evaluating forecasts of both floods as well as all streamflow values.

• Large catchment sample for more robust assessment of preferred processing approaches.

• Seasonal and regional differences in processing approaches are assessed.
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INTRODUCTION

Early warnings based on flood forecasts enable both the management authorities and the public to take necessary measures to
reduce the economical, personal, and social impact of floods (e.g., UNISDRI 2004; Pappenberger et al. 2017). However, in
common with any sort of forecast, an inherent feature of flood forecasting is uncertainty. In the hydro-meteorological fore-

casting chain, the forecast uncertainty comes from multiple sources. There is uncertainty in observations, initial
conditions, forcing data, model description, and model parameters (e.g., Buizza et al. 1999; Zappa et al. 2011).

To capture the uncertainty in weather prediction caused by initial conditions (e.g., Lorenz 1969) and model parametriza-

tion, ensemble prediction systems (EPS) were developed (e.g., Leith 1974; Buizza 2015). The use of hydrological ensemble
forecasts has been studied in the literature, see, e.g., Cloke & Pappenberger (2009), Wetterhall et al. (2013). To get unbiased
and reliable hydrological forecasts, preprocessing (applied to the meteorological forcing) and/or postprocessing (applied to

the hydrological output) techniques are needed. For flood forecasting, important sources of uncertainty and errors are the
precipitation and temperature forecasts (e.g., Zappa et al. 2011). These variables are considered for preprocessing in this
paper.

For a national or regional flood forecasting service, a large number of catchments with different hydrological processes and
regimes are considered. In most papers, ensemble forecasts of all streamflow values for one or a small number of catchments
are evaluated. Therefore, to assess the added value of pre- and postprocessing on flood forecasts, a case study from a large
number of catchments that well represent the variability of hydrological processes is needed to provide robust conclusions.

The quality of ensemble forecasts is often measured by the key characteristics’ reliability and accuracy. A forecast is reliable
(statistically calibrated) when, e.g., for 90% of the forecasts, the observations are within the 90% prediction interval. Raw fore-
cast ensembles are often biased and underdispersive (Gneiting et al. 2005). A lack of dispersion in global meteorological

ensembles is most evident for the shortest lead times and can be explained by slower growth rates of the perturbations in
the ensemble prediction system compared to those of an instable ‘true’ atmosphere (Hamill 2001). To correct for bias and
underdispersion in ensemble systems, different statistical postprocessing approaches are proposed, see Li et al. (2017) and
Vannitsem et al. (2018) for comprehensive reviews. These approaches include both parametric approaches relying on para-
metric probability distributions, for example, Bayesian model averaging (BMA) and nonhomogeneous Gaussian regression
(NGR), and nonparametric approaches like quantile regression and ensemble error dressing methods. In this study, we

used BMA since it is well established and adapts easily to any kind of seasonality. Raftery et al. (2005) introduced BMA
to the atmospheric community as a statistical method to achieve calibrated and sharp forecasts, and the method has since
been widely used within the community (e.g., Fraley et al. 2010; Madadgar et al. 2014; Xu et al. 2019).

The effects of both pre- and postprocessing on short- to medium-range streamflow forecasts have been analyzed in previous

studies (e.g., Zalachori et al. 2012; Roulin & Vannitsem 2015; Benninga et al. 2017; Sharma et al. 2018). Some key findings
are that (i) calibrated precipitation forecasts do not necessarily lead to calibrated streamflow forecasts (Zalachori et al. 2012;
Verkade et al. 2013; Benninga et al. 2017); (ii) postprocessing alone is the simplest way to improve forecasting performance

(Zalachori et al. 2012; Sharma et al. 2018), but not always with a significant improvement (Benninga et al. 2017); (iii) pre-
processing the meteorological forcing is important for forecasting high streamflows since errors from the meteorological
model are dominant in this case (Benninga et al. 2017); (iv) preprocessing has the highest skill improvement in the warm

season, whereas postprocessing is the most effective in the cold season with snow cover (Sharma et al. 2018). These findings
indicate that the relative importance of pre- and postprocessing depends on factors including lead time, streamflow magni-
tude, and season. None of these studies have compared the univariate and the combined effects of including both
precipitation and temperature forecasts in the preprocessing together with the postprocessing of streamflow on flood fore-

casts. Furthermore, these studies indicate that the effects depend on both climatological and physiographic catchment
characteristics and that it can be useful to systematically evaluate the combination of pre- and postprocessing methods for
a large set of catchments with variations of climatic and physiographic properties. In this study, we will evaluate (i) the uni-

variate and the combined effects of preprocessing both precipitation and temperature forecasts together with the
postprocessing of streamflow for forecasting floods as well as all streamflow values, and to (ii) perform the evaluation for
a large catchment sample.

The main objective of this study is to assess the potential improvements in flood forecasts by combining pre- and postpro-
cessing for a variety of catchments. Different schemes of pre- and postprocessing using BMA are evaluated within the
operational flood forecasting setup used by the Norwegian flood forecasting service. The different schemes were tested for
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119 catchments that vary in climatology, catchment characteristics, and hydrological regimes. During the study period, there

were flood events in 80 of the catchments. The large number of flood events and catchments allowed us to provide robust
assessments of the performance of the different schemes under different flood conditions.

The working hypothesis of this paper is that pre- and/or postprocessing improves streamflow forecasts and that the

improvements differ between catchments and between events. We addressed the following questions:

1. How should pre- and postprocessing be combined to improve streamflow forecasts with an emphasis on floods?

2. Are there regional or seasonal patterns in the preferred combination of pre- and postprocessing?

STUDY AREA, HYDROLOGICAL MODEL, AND DATA

Area

Norway consists of several different climatic zones. The west coast of Norway forms a topographical barrier for the westerlies
and orographic enhancement of precipitation makes this area one of the wettest parts of Europe, with an annual precipitation
of around 4,000 mm. The driest regions have annual precipitation of around 400 mm (Hanssen-Bauer et al. 2017). The temp-

erature depends on latitude, altitude, and distance from the coast.
The seasonal variation in runoff depends on seasonal variations in both temperature and precipitation. There are two basic

runoff regimes in Norway. For coastal regions with a temperate climate, the highest flows occur during autumn and winter

due to heavy rainfall. For inland regions with a sub-arctic or arctic climate, prolonged periods of winter temperatures below
0 °C result in a seasonal snow storage, winter low flow, and high streamflow during spring due to snowmelt. There are, how-
ever, many possible transitions between these two basic patterns (e.g., Gottschalk et al. 1979). We grouped the Norwegian

catchments into five hydroclimatic regions (Figure 1) according to Hanssen-Bauer et al. (2017) and Vormoor et al. (2016).
The study area consists of 119 catchments distributed all over Norway (Figure 1). All selected catchments are part of the

operational flood forecasting system and are mostly unregulated, with a large variation in size (3–15,447 km2) and elevation
(103–2,284 meters above sea level [m.a.s.l.]). Three catchments (Table 1) are presented in more detail to illustrate streamflow

ensemble forecasts estimated by different processing approaches for three different flood events. The catchments were
selected to represent the main flood-generating processes for the different regions. The catchments are all well described
by the model.

Figure 1 | The map shows the location of the outlet of the 119 catchments used in this study as well as a schematic overview of the areas
affected by floods caused by different events (rain, snowmelt, and atmospheric river (AR)) during the study period 2014–2015. It is worth
noting that not all catchments experienced floods within the areas. The colored dots indicate catchments by the regions, east (green), south
(orange), west (blue), mid (dark red), north (light blue).
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Hydrological model

We used the Hydrologiska Byråens Vattenbalance (HBV) model (Bergström 1976; Sælthun 1996; Beldring 2008) that is used
by the operational flood forecasting service at the Norwegian Water Resources and Energy Directorate (NVE). The HBV
model is a conceptual model whose vertical structure includes a snow routine, a soil moisture routine, and a response func-

tion that consists of two tanks. Quick runoff is represented by a nonlinear tank, whereas slow runoff is represented by a linear
tank. The model divides each catchment into 10 elevation zones where each represents 10% of the catchment area. Catch-
ment average temperature and precipitation are elevation adjusted using a catchment-specific lapse rate to attain one

representative precipitation and temperature value for each elevation zone. The Nash–Sutcliffe efficiency (Nash & Sutcliffe
1970) and volume bias are used as calibration metrics. The calibration period, 1996–2012, gives a mean Nash–Sutcliffe 0.77
for all 119 catchments, with zero volume bias. The validation period, 1980–1995, shows a mean Nash–Sutcliffe of 0.73, with a

mean volume bias of 5% (Gusong 2016).

Data

Meteorological observation SeNorge v1.1

We used the gridded daily temperature and precipitation data from the SeNorge v 1.1 dataset, which covers all of Norway
with a 1� 1 km grid size. The interpolation of observations to the grid is based on measured values at approximately 400

meteorological stations for precipitation, and 240 stations for temperature. Residual kriging is applied for spatial interpolation
of detrended temperature values (Tveito 2007; Mohr 2008). Temperature is detrended by adjusting station data to sea level
using a standard temperature lapse rate of 0.65 °C/100 m. Triangulation is used for the spatial interpolation of precipitation

(Tveito 2007; Mohr 2008). The precipitation is further elevation corrected, using a constant increase of 10% per 100 m
beneath 1,000 m.a.s.l, and 5% per 100 m above 1,000 m.a.s.l. (Tveito et al. 2005).

Meteorological forecasts ECMWF ENS

The temperature and precipitation forecasts used in the hydrological simulations of this study were taken from the European
Center of Medium-Range Weather Forecast (ECMWF) forecast ensembles (ENS). ENS provides an ensemble of 51 members

and a forecasting period of 246 h. The ensemble members are generated by adding small perturbations to the forecast initial
conditions. The perturbations represent the uncertainty in the observations. Further, the uncertainty associated with the
model physics is represented by perturbing the physics tendencies that come from the parametrizations and each member

is perturbed individually. This method is known as the Stochastically Perturbed Parametrization Tendencies (SPPT)
scheme and improves the forecasts giving a much better spread-error relationship compared to initial condition perturbations
alone. A detailed description of the ECMWF ENS system is provided in, e.g., Buizza et al. (1999) and Persson (2015). The grid
resolution of the model forecasts used in this study is 0.25° (i.e., model cycles/versions 40r1, and 41r1 (ECMWF 2018)). The

variables used for the hydrological modeling are the accumulated precipitation and the 2-m temperature aggregated to catch-
ment daily (06:00–06:00) mean values.

Streamflow reference simulations

To calibrate the hydrological model the streamflow measurements from the NVE database (https://www.nve.no/hydrology/)
were used as a reference. To evaluate the streamflow forecasts, we used simulated streamflow (reference streamflow) created

by running the hydrological model with SeNorge temperature and precipitation as forcing. Using this approach, we isolated
the effect of the uncertainty in the weather forecasts, and we could ignore uncertainties in observed meteorological inputs,
initial conditions, hydrological model parametrizations and parameters as suggested in Verkade et al. (2013).

Table 1 | Catchment characteristics for selected catchments: catchment area, annual runoff (Q), catchment mean elevation (Mean elev),
effective lake area (Eff lake), glacier area (Glacier)

Name Area (km2) Annual Q (mm) Mean elev (m.a.s.l) Eff lake (%) Glacier (%) Selected Flood

Moeska 121 1,585 325 1.71 0.00 Rain: Dec 2015

Nybergsund 4,425 487 781 2.48 0.00 Snowmelt: May 2014

Bulken 1,092 2,038 867 0.88 0.39 AR: oct 2014

Hydrology Research Vol 54 No 2, 119

Downloaded from http://iwaponline.com/hr/article-pdf/54/2/116/1256410/nh0540116.pdf
by NTNU user
on 08 September 2023

https://www.nve.no/hydrology/


Study period

The study period 2014 and 2015 was chosen since several large floods affected rivers in most parts of Norway during this
period (Figure 1). In May 2014, there were large snowmelt floods in the central and eastern parts of Norway. In October

2014, western Norway was hit by an atmospheric river (a narrow plume of high moisture content air transported from the
tropical and extratropical latitudes towards the poles, see, e.g., Zhu & Newell 1998), which led to the flooding of multiple
rivers. Atmospheric rivers are responsible for extreme precipitation events when the moist air masses are orographically
lifted at topographical barriers like the west coast of Norway (e.g., Stohl et al. 2008). In July 2015, there were snowmelt

floods in central eastern Norway, and in September 2015, an extratropical cyclone, Petra, caused floods in Southern
Norway. In early October 2015, a cyclone, Roar, caused floods in Trøndelag and Nordland and in early December a cyclone,
Synne, caused floods in several catchments in south-west Norway, some exceeding the 200-year return level. Floods did not

occur in all catchments; hence, the number of catchments used in the flood evaluation analysis was reduced to 80, from the
original 119 catchments available for evaluation.

PRE- AND POSTPROCESSING

Processing chain

The temperature and precipitation forecast data from ECMWF were prepared by aggregating the variables from hourly to a

daily time step. Thereafter the horizontal resolution was changed using nearest neighbor interpolation to a 1� 1 km grid,
equal to the SeNorge grid. For the temperature forecasts, a standard elevation adjustment of 0.65 °C/100 m was applied to
account for the elevation differences between the original and the seNorge grid. Finally, the temperature and precipitation

forecasts were aggregated to average values for each catchment. The ECMWF forecasts from 2014 and 2015 were used as
forcing for the hydrological model, enabling a retrospective evaluation of the daily streamflow forecasts for almost 2 years.
The unprocessed daily ensemble forecasts for each catchment are referred to as Traw,t,l,s,m and Praw,t,l,s,m where t is the
issue time, l is the lead time, s is the catchment and m is the ensemble member.

We used BMA to process all ensembles of temperature, precipitation and streamflow. We chose BMA since it is flexible
enough to adjust for biases and spread in the raw forecasts, and is well established and easy to implement. Using only BMA
allowed us to address the main objective of this paper in a consistent way. BMA was applied to the raw forecasts to produce

the preprocessed ensemble, with themembers referred to as Tbma,t,l,s,m andPbma,t,l,s,m,where t is the issue time, l is the lead time,
s is the catchment andm is the ensemble member. For postprocessing streamflow, we used BMA to createQbma,t,l,s,m. The pro-
cessing was applied to each issue date, t, lead time l, and catchment, s, independently for all combinations. To improve

readability, t,l,s,m is suppressed in the remainder of this paper. We evaluated all combinations. The four combinations of temp-
erature and precipitation (Tbma andPbma together with Traw andPraw) were run through the hydrological model resulting in four
preprocessed streamflow forecasts (Qraw). Thereafter, postprocessing the preprocessed forecasts resulted in four streamflow

forecasts (Qbma), which could be compared to Qraw to establish the effect of postprocessing. See Figure 2 for an overview of
the complete processing chain. A more detailed presentation of each step in the processing chain follows.

Figure 2 | The processing chain of the experimental set up. Traw and Praw are the unprocessed forecasts. The preprocessing producing the
ensembles Tbma and Pbma. All combinations of Tbma and Pbma together with Traw and Praw were run through the hydrological model. BMA was
further applied to the streamflow forecasts producing the ensembles Qbma in addition to Qraw. In total, eight combinations of pre- and
postprocessing were evaluated. The PS were applied to each issue date, lead time, and catchment.
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Bayesian model averaging

BMA aims to correct dispersion errors in a bias-corrected ensemble (Raftery et al. 2005). For each lead time, BMA uses a
mixture distribution, where for an ensemble with M members, the density function conditioned on all ensemble members

is the weighted average of kernels for each member m. The preprocessed meteorological ensembles were established by ran-
domly drawing M realizations from the mixture distribution estimated by BMA. The kernel, for the quantity one wishes to
forecast, y, is denoted by fu(yjxm) where f is the kernel probability density function (pdf) with parameters θ, and xm is the
raw forecast’s ensemble member. The pdf conditioned on all M ensemble members is the weighted average of the pdf for

each member:

f(yjx1, . . . , xM) �
XM
m¼1

wmfu(yjxm) (1)

where
PM

m¼1 wm ¼ 1 and the weights are interpreted as the posterior probabilities of each ensemble member. The ensembles
in this paper are based on ECMWF ENS which comprises members that are considered exchangeable, and weights and par-

ameters can be constrained to be equal for all members (Fraley et al. 2010). For each issue date, we used the previous n days of
ensemble forecasts and reference observations to estimate the parameters in the kernel. To account for the specific properties
of temperature, precipitation and streamflow, different kernel distributions were used, and the details are provided below.

BMA for temperature (Tbma)

We followed Raftery et al. (2005) and used a Normal distribution as the kernel for the temperature BMA models. Since the

temperature ensemble forecasts were not already bias corrected, the mean is specified as a0 þ a1Traw,m, where Traw,m is the
temperature forecast for ensemble member m and a0 and a1 are regression parameters that account for any bias. The par-
ameters are specific for each catchment, issue date, and lead time and are the same for all ensemble members.

(2)

To estimate the parameters a0, a1, and s in Equation (2), the catchment average temperatures from SeNorge were used as a
reference.

BMA for precipitation (Pbma)

We followed Sloughter et al. (2007) who proposed a Bernoulli-gamma distribution as the kernel in the BMA precipitation

models to establish Pbma.

f(PbmajPraw,m) ¼ f(Pbma ¼ 0jPraw,m)I{Pbma¼ 0} þ f(Pbma . 0jPraw,m)h(PbmajPraw,m)I{Pbma.0} (3)

where I{} is unity if the condition within the brackets is true and zero otherwise. f(Pbma ¼ 0jPraw,m) is the probability of zero

precipitation given by a logistic regression model:

f(Pbma ¼ 0jPraw,m) ¼ 1

1þ exp(b0 þ b1P
1=3
raw,m þ b2dm)

(4)

where b0, b1, and b2 are regression parameters common for all ensemble members and dm equals 1 if Praw,m¼ 0 and equals 0

otherwise.
h(PbmajPraw,m) was assumed to follow a gamma distribution for the cube root transformation P0

bma ¼ P1=3
bma of the precipi-

tation, where the mean (mm) and variance (s2
m) of the distribution depend on the ensemble member:

mm ¼ c0 þ c1P
1=3
raw,m ands2

m ¼ d0 þ d1Praw,m (5)

where all parameters c0 and c1, d0 and d1 were the same for all ensemble members. The seven parameters in the Bernoulli-
gamma kernels were estimated using the catchment average precipitation from seNorge as a reference.
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BMA for streamflow (Qbma)

We applied a Box–Cox transformation (Box & Cox 1964; Duan et al. 2007) on both observed and forecasted streamflow to
create the transformed streamflow Q0 normally distributed:

Q0 ¼
(Ql � 1)

l
for l = 0

log(Q) for l ¼ 0

8<
: (6)

where l is a transformation parameter. The Box–Cox transformation has proven valuable for hydrological applications (e.g.,
Bates & Campbell 2001; Thyer et al. 2002; Yang et al. 2007; Engeland et al. 2010). We used a fixed value for λ supported by
previous studies by Engeland et al. (2010), who found that λ ¼ 0.2 gave forecast errors that were approximately independent

of forecasted values. As for temperature, we applied the BMA with a combination of normal kernels for postprocessing the
streamflow forecasts, such that

(7)

BMA training length

Following Raftery et al. (2005), the BMA models for temperature, precipitation, and streamflow were trained on data from a

time window prior to the issue date for each forecast. We tested different training lengths for all variables and lead times,
using CRPS (description in the following section) as the evaluation metric. Experiments with different training lengths
showed that the optimal window size depends on variable, lead time, and whether CRPS was calculated for all data or
only for days with flooding. Precipitation was most sensitive to the training length and a 45-day training period was found

to be optimal for most catchments and lead times. To maintain consistency during the evaluation we used a 45-day training
period for all variables (i.e., temperature, precipitation, and streamflow).

Temperature and precipitation dependence structure (ensemble copula coupling)

The BMA models described above were applied independently to each weather variable, each location (here catchment) and

each lead time. The preprocessed ensembles were established by drawing 51 new realizations from the mixture distribution of
each BMA model independently. To recreate forecast trajectories of temperature and precipitation, it is necessary to account
for the temporal and inter-variable dependence structures. In this study, it was achieved by using an approach similar to
Ensemble Copula Coupling (ECC, Schefzik et al. 2013). The original 51 ensemble members (o,m) for temperature and pre-

cipitation were, for each location, issue date, and lead time, assigned a rank (ro,m), where o refers to the original ensemble
member. Similarly, the 51 BMA-processed precipitation and temperature ensemble members were assigned a rank (rn,m),
where n,m refers to the BMA-processed ensemble member. The 51 preprocessed ensemble members were reordered by

using ro,m and rn,m as keys to keep the preprocessed ensemble members in the same rank sequence as the original ensemble
members. By applying this method to all variables, lead times, and issue dates we maintain the dependency between the vari-
ables, as well as the temporal dependency for each of the variables.

EVALUATION

We evaluated the pre- and postprocessing methods for the study period using both the full dataset and the flood dataset using
continuous rank probability score (CRPS), skill score (CRPSS) and the critical success index (CSI) as evaluation metrics.

CRPS and continuous rank probability skill score (CRPSS)

The continuous rank probability score (CRPS) has properties that are appealing for the evaluation of an ensemble forecast.

CRPS will give credit to high probabilities close to the reference, which is not necessarily the case for other ensemble veri-
fication scores (Gneiting et al. 2007). CRPS has the same unit as the observations (m3/s for streamflow), and is negatively
oriented, where zero is the optimal value. For a deterministic forecast, CRPS reduces to the mean absolute error (MAE,

Hersbach 2000), which enables a comparison between a deterministic and an ensemble forecast. CRPS measures the integral
of squared difference between the forecast and the observation, both given as a cumulative distribution function (cdf). If the
observation is deterministic the Heaviside function is used for the observation cdf (Hersbach 2000). For ensemble forecasts,
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the CRPS is calculated discretely since both the observations and the forecasts are reported in discrete intervals (Hersbach

2000, Equation (8)):

CRPS ¼ 1
M

XM
m¼1

jxm � xobsj � 1
M2

XM
m¼1

XM
n¼1

jxm � xnj (8)

where M is the ensemble size, xm is ensemble member m and xobs is the reference observation. For a time-series of forecasts,
the mean CRPS for each scheme (CRPSPS) can be calculated.

The continuous ranked probability skill score (CRPSS, Equation (9)) enables assessment of the skill of the different proces-
sing schemes (PS) relative to the raw forecasts (raw). The mean CRPS for each scheme (CRPSPS) and for the unprocessed
forecasts (CRPSraw) are used to calculate CRPSS.

CRPSSPS ¼ 1� CRPSPS

CRPSraw
(9)

Note that CRPSS has 1 as the optimal value and is positively oriented. Since CRPSS has no units, we could calculate average
skill scores across all catchments. CRPS and CRPSS were calculated for the complete dataset as well as for the flood dataset.

Critical success index

In an operational flood forecasting setting, flood warnings are issued when there is a certain probability for streamflow to
exceed predefined flood warnings thresholds. The occurrence and nonoccurrence of floods are therefore binary events
that can be summarized in a contingency table (Table 2) providing an overview of hits (H), missed events (M), false

alarms (F), and correct nonevents (N). Based on the contingency table shown in Table 3, the following indices can be
used to evaluate the performance of a forecasting system.

Hit ratio, where a hit rate of 1 is the best performance (SR): SR ¼ H
H þM

(10)

False alarm ratio (FR): FR ¼ F
H þ F

(11)

Critical Success Index (CSI): CSI ¼ H
H þ F þM

(12)

Since floods are rare events, there are a small number of flood events compared to the number of nonevents. A good fore-

cast has a high hit ratio and a low false alarm ratio. The CSI (Jolliffe & Stephenson 2012) balances these two aims by
penalizing the hit ratio for both the missed events (M) and the false alarms (F). The CSI has a value between zero and
one, with one being the optimal value. In an operational setting, a warning will be issued when a predefined number of

ensemble members (or a defined probability) exceeds the flood warning threshold. For the simplicity of this work, we
have chosen a limit of 10 members exceeding the mean annual flood level. The mean annual flood has a return period of
2.33 years (i.e., ∼20% probability of occurrence).

Floods by seasons

The performance of flood forecasts can differ between seasons for several reasons. One reason is that flood-dominating pro-
cesses often are aligned to season, e.g., snowmelt contribution to floods dominates in spring, and rain-induced floods

Table 2 | Contingency table for classification of hits (H), missed events (M), false alarms (F), and correct nonevents (N)

Observation

No Yes

Forecast No N M
Yes F H
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dominate in autumn. Another example are seasonal dependent biases, for example, a negative bias in the temperature ensem-
ble forecast in autumn and winter for the Norwegian west coast (Seierstad et al. 2016; Hegdahl et al. 2019). For these reasons,
we divided the flood events into spring and autumn floods and used CSI to evaluate how the performance of processing
methods depends on the season. We defined spring from April 4 to June 13, and autumn from September 1 to December 10.

RESULTS

Skill – relations to lead time for all data and floods

We used CRPSS, with the raw ensembles as a benchmark, to evaluate how the different processing approaches affected the
performance of ensemble streamflow forecasts for all lead times and catchments, for the full data set and for the subset of

floods. CRPSS for all data and catchments (Figure 3 left and Table 3) show that nearly all catchments have a CRPSS
above zero and therefore benefit from processing and that postprocessing in combination with preprocessing is most impor-
tant for the short lead times, whereas postprocessing alone gives the lowest CRPSS. Preprocessing of temperature alone or

combined with preprocessing of precipitation are the two best approaches for a lead time of 9 days. The t-test in Table 3
shows that it is difficult to find one method that is significantly better than all the others for all of Norway. The best processing
approach (Tbma_Praw_Qbma) is significantly better than preprocessing only precipitation Traw_Pbma or postprocessing stream-
flow without any preprocessing (Traw_Praw_Qbma).

The variability in CRPSS is larger for the flood dataset (Figure 3 right and Table 3) compared to the full dataset, meaning
that the benefit from the PS under flood conditions is not so high for all catchments, and for several catchments, the forecasts
worsen (those where CRPSS is below zero). For the flood dataset, we find that if only preprocessing is applied, preprocessing

both precipitation and temperature gives the highest skill. For the approaches including postprocessing, we see that postpro-
cessing alone is the worst processing scheme, and that combining preprocessing of temperature with postprocessing is the
best approach for more catchments. For the longer lead times, there are increasingly more catchments where postprocessing

leads to a poorer performance, compared to using the raw forecast (our reference forecast). The t-test in Table 3 shows that it
is difficult to find one method that is significantly better than all the others for all of Norway. The best processing approaches
for the flood data (Tbma_Pbma) and for all data (Tbma_Praw_Qbma) are both significantly better than postprocessing streamflow

without any preprocessing (Traw_Praw_Qbma).

CRPS – relations to location for the flood dataset

In Figure 4, maps of the processing approaches that achieve the best performance according to CRPS for the flood dataset are
shown for lead times of 1, 5, and 9 days. The same results are summarized in Table 4 including summaries for each

Table 3 | Summary statistics of CRPSS values for a lead time of 5 days for the full dataset and the flood dataset

The p-values show the outcome of a t-test comparing each processing approach to the best ones. For the full dataset, Tbma_Praw_Qbma is the best whereas

for the flood dataset, Tbma_Pbma is the best.
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hydroclimatic region identified in Figure 1 (east, south, west, mid, and north). In the left column, we show which of the pre-
processing approaches resulted in the best CRPS. We see that Pbma, alone or together with Tbma, gives the best results for

western and southern coasts of Norway for lead times of 1 and 5 days, whereas for 9 days lead time, Tbma alone is more impor-
tant. The success of the Pbma, in the coastal regions, could be that the floods are mainly rain driven. Tbma has a less clear
spatial pattern. The benefit of processing decreases with lead time as the number of catchments with the best performance
for the raw forecasts increases with lead time. In the middle column of Figure 4, we show the best postprocessing schemes

for catchments where including postprocessing gave the best performance. Here we see that Qbma alone is the most successful
for lead time of 1 day, whereas the combination of Tbma and Qbma dominates for 5 days. The Tbma and Qbma are the least
successful processing in eastern Norway. The right column in Figure 4 shows if a scheme including only preprocessing or

both pre- and postprocessing performed the best. We see that a majority of catchments located inland, at high elevations
or in eastern Norway benefit from postprocessing for lead times of 1 and 5 days, whereas the coastal catchments benefit
to a smaller degree from postprocessing. The benefit of processing decreases with lead time.

Figure 3 | Boxplot of CRPSS (optimal value is 1) for all catchments based on the full dataset (left) and the flood event dataset (right) for all PS
(x-axis) and lead times of 1, 5, and 9 days (rows). The first three boxplots indicate the different preprocessing schemes, whereas the last four
indicate PS that include a postprocessing step.
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Although Qbma alone is the best approach for lead time of 1 day in a large proportion of the catchments (22 of 88), in
particular in eastern Norway (8 of 26) (Table 4), it has the worst average performance since it results in low, and even

negative CRPSS values in several catchments (Figure 3, right column). This indicates that Qbma alone lacks
robustness.

Figure 4 | The maps in the left column show the catchments where the different preprocessing schemes provide the best flood forecast. The
middle column shows postprocessing schemes that provide the best CRPS. Figures to the right indicate catchments where any preprocessing
approaches alone (red dots) or the combination of pre- and postprocessing (blue dots) provides the highest performance. All evaluation of
CRPS was applied for the subset of floods, and by the mean CRPS for lead times of 1, 5, and 9 days.
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CSI for the whole year, spring, and autumn floods

In this evaluation, the processing scheme giving the highest critical success index (CSI) for each catchment is considered, and
the number of catchments for which the specific scheme gave the best CSI is in Figure 5. The CSI value indicates the skill of

the forecasts. No hits will give a CSI of zero, whereas all hits and no missed events or false alarms will give a CSI of one. For
each catchment, multiple methods can achieve equal CSI and the number of ‘best’ CSI can exceed the total number of
catchments.

Evaluating CSI for floods from the whole year did not give any clear indication as to which of the processing methods was
better at predicting floods. This might be caused by floods being generated from rain, snowmelt, or a combination of those.
However, by separating the flood dataset between floods occurring in spring and those occurring in autumn (Figure 5) we

Table 4 | For each processing scheme, the number of catchments giving the best CRPS are presented for lead times of 1,
5, and 9 days and sorted by the hydroclimatic regions East (E), South (S), West (W), Mid (M), and North (N), see
Figure 1

Figure 5 | Number of catchments (vertical axis) for which the schemes on the horizontal axis gave the best critical success index (CSI) for
spring (left) and autumn (right) floods. Each row represents one lead time (1, 5, and 9 days) and includes all PS. A value of zero indicates that
this method was not the best method for any of the catchments. If all schemes resulted in CSI of zero for one catchment, this catchment was
not counted.
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attain some interesting insight. For spring (Figure 5, left) we see that for a lead time of 1 day, the number catchments for which

the different processing method performed the best is almost similar, indicating several successful methods. Qbma alone or in
combination with Tbma and Qbma were the least successful methods. For lead times of 5 and 9 days, we see some improvement
by applying pre- and/or postprocessing to spring floods.

For autumn (Figure 5, right) the results differ from the spring results. For a lead time of 1 day, the predictions are improved
in several catchments by including postprocessing. Postprocessing has zero predictability (CSI is zero) for most of the catch-
ments for lead times of 5 and 9 days. Only a few catchments have better predictive skill when applying Pbma alone or in
combination with Tbma.

In Figures 6 and 7, the CSI values for each catchment and all PS are presented for spring and autumn floods respectively.
For spring, lead times of 1 day (left) and 9 days (right) are presented in Figure 6, and for autumn lead times of 1 day (left) and 3
days (right) are presented in Figure 7. A white space indicates that for the actual catchment and processing scheme the floods

were not forecasted, i.e., zero hits. We see that the highest CSI is 0.50, whereas for several cases, none of the processing
approaches resulted in hits. In particular, for autumn floods at a lead time of 3 days, there are 33 catchments where the
raw forecasts gave no hits, none of the processing approaches helped for 28 of these catchments.

Figure 6 | Spring CSI values presented for a lead time of 1 day (left) and a lead time of 9 days (right). The colors indicate CSI range, from white
indicating no hits (CSI¼ 0) to shades of blue up to CSI¼ 0.5.
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The effect of pre- and postprocessing for a selection of events and catchments

Well-forecasted streamflow is essential to determine a correct flood warning level. In this subsection, we present three flood
events and catchments to demonstrate how the different processing approaches influence the ensemble flood forecasts, and
how they correspond to warning levels and the reference streamflow.

Figure 8 shows the outcome of the different processing approaches for the atmospheric river event in the
October 2014 event at Bulken (see also Figure 1, Table 1) in western Norway. Some of the ensemble members reach
the reference streamflow (black line) when Pbma is applied without Qbma. However, none of the ensemble medians

reach up to the threshold warning level exceeded by the reference streamflow (black line). For some members, Pbma

induces very large streamflow forecasts, whereas postprocessing removes the effect of Pbma (Figure 8 left and right,
respectively).

Figure 9 shows the outcome of the different processing approaches for the extreme weather event Synne hitting southern

Norway in early December 2015. We see that precipitation is underestimated by the raw forecasts, and none of the PS result
in ensemble members that reach the reference level for streamflow. The same pattern is seen for Moeska as for Bulken, where
Pbma induces high streamflow values (Figure 9 left) that are later suppressed by the Qbma (Figure 9 right).

Figure 10 shows the outcome of the different processing approaches for the snowmelt flood in May 2014 at Nybergsund in
eastern Norway. For this flood, there are minimal differences between the PS. However, postprocessing reduces the median
forecasts for all lead times, in addition to increasing the spread. In this case, the hydrological model might lack snow and is

Figure 7 | Autumn CSI values presented for a lead time of 1 day (left) and a lead time of 3 days (right). The colors indicate CSI range, from
white indicating no hits (CSI¼ 0) to shades of blue up to CSI¼ 0.5.
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therefore not able to produce snowmelt for streamflow (no effect by Tbma), and/or lack of precipitation in the weather

forecasts.
Table 5 shows the number of members that for each processing approach exceed the warnings threshold for the events pre-

sented in Figures 8–10. Included are the three lead times with the highest warning level for each event.

Figure 8 | Bulken catchment: hydrological ensemble forecast of an atmospheric river event 4 days before the peak of the event. The figures
present the processing alternatives and the reference streamflow. Colored horizontal lines indicate the operational warning thresholds:
yellow (mean annual flood), orange (5-year flood), red (50-year flood), based on the model simulated return levels.

Figure 9 | Moeska catchment: hydrological ensemble forecasts for an extreme weather event 2 days before the peak of the event. The
figures present the processing alternatives and the reference streamflow. Colored horizontal lines indicate the operational warning
thresholds: yellow (mean annual flood), orange (5-year flood), red (50-year flood), based on the model simulated return levels.
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DISCUSSION AND CONCLUSION

The results demonstrate that all catchments benefitted from one or more of the applied PS, thereby confirming our working
hypothesis. However, it was not possible to identify a distinct processing chain that is optimal for all forecasts. The optimal

method varies with several factors including lead time and season. The flood-generating process is often seasonal, i.e., snow-
melt floods are more prone in spring and for inland and high elevation catchments, and rain-induced floods are more typical
for autumn and in coastal catchments.

Figure 10 | Nybergsund catchment. Hydrological ensemble forecasts for a snowmelt event four days before the peak of the event. The
figures present the processing alternatives and the reference streamflow. Colored horizontal lines indicate the operational warning
thresholds: yellow (mean annual flood), orange (5-year flood), red (50-year flood), based on the model simulated return levels.

Table 5 | The number of ensemble members exceeding the highest warning threshold for each of the processing methods for the three
flood events shown in Figures 8–10

Three lead times (Lt) are presented for each catchment.
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Part of answering our first research question ‘How should pre- and postprocessing be combined to improve streamflow fore-
casts with an emphasis on floods?’ is that postprocessing alone seems to be the least optimal choice when evaluating both the
full dataset and even less optimal when the subset of floods is considered. This approach is significantly worse than the best
processing approach, both for floods and for all streamflow. This clearly demonstrates the importance of correcting biases and

spread in the forcing variables. The catchments’ responses to the temperature and precipitation inputs are nonlinear, in par-
ticular for snow accumulation and snow melt processes where temperature thresholds are important. Using postprocessing
alone is therefore less effective in correcting for biases in inputs to the hydrological model. We find that for the full dataset,
the best performance is seen when applying postprocessing combined with preprocessing of temperature for lead times of up

to three days, whereas for the longer lead times preprocessing of temperature alone or both precipitation and temperature
provide the best performance. Global meteorological ensembles often lack spread for shorter lead times since they are
designed for medium-range forecasts and therefore use perturbations that optimize the ensemble spread for longer lead

times. BMA models used both for pre- and postprocessing will therefore improve the forecast skill. It would be instructive
to assess whether using meteorological ensembles from a regional weather model, which are better able to model the uncer-
tainties in the short range compared to the ensembles from global weather models (Frogner et al. 2019a, 2019b), as inputs to
the hydrological model alter this finding. However, such forecasts were not available for our study period.

The improvement in skill resulting from the PS is smaller for the flood dataset compared to the complete dataset, and
for some catchments, the processing deteriorates the forecasts (Figure 3). We find that postprocessing is less useful for the

three first lead times for the flood dataset as compared to the full dataset. Preprocessing both precipitation and temperature
for the shortest lead times and only temperature for the longest lead times was the best choice for the largest portion of the
catchments in the flood dataset. This result is in line with Benninga et al. (2017) who underline the importance of improving
the meteorological inputs, in particular for high flow events. In addition to the differences in preferred PS between catch-

ments, we find that for a single catchment, the best processing scheme varies with lead time (i.e., Figures 6 and 7). This
underlines that forecast errors arise from different sources, and that being conclusive based on relatively small sample of
floods is difficult. The results further showed that autumn floods were particularly difficult to predict beyond a lead time

of 3 days, where processing did not improve the flood prediction capability for 28 of 33 catchments with a CSI of zero
(Figure 7 right).

Answering our second research question ‘Are there regional seasonal patterns in the preferred combination of pre- and post-
processing approaches?’, the results show that the preferred scheme has both regional and seasonal patterns when evaluated
for the flood dataset. The regional pattern shows that catchments benefitting from preprocessing alone are, to a large degree,
located in coastal areas whereas postprocessing is more important for the inland and high-elevation catchments where temp-
erature and slower snowmelt processes dominate (Figure 4). Furthermore, Pbma is the most successful processing scheme in

areas with high precipitation (i.e., the west and south-west coast of Norway).
The performance of the PS has clear seasonal patterns. The seasonal effect was evaluated by separating spring floods from

autumn floods. The CSI shows that there are large differences in predictability between seasons. For autumn floods there is

almost no predictability beyond 3 days, whereas in contrast, spring floods show predictability for up to 9 days. These results
indicate that the predictability of floods depends on the flood-generating processes, i.e., snowmelt-induced spring floods are
easier to forecast than rain-induced autumn floods. These results further imply that the autumn precipitation and floods are

the most difficult to predict and have the highest potential for improvements. Typical catchments improved by BMA applied
to precipitation (Pbma) are located in coastal and western Norway and are hence prone to high precipitation amounts. One
concern when using BMA for preprocessing precipitation is that some of the ensemble members in Pbma attained physically

nonplausible values, resulting in very high flood forecasts. This is apparent for the Bulken catchment for the October 2014
event (Figure 8). The explanation is that the Bulken catchment experienced large amounts of precipitation during a preceding
event. Several of the raw ensemble members for this preceding event had much lower precipitation than what was later
observed, whereas the high precipitation for the October 2014 event was better forecasted. Consequently, the BMA procedure

increased the forecasted precipitation values too much. In addition, the use of a positively skewed gamma distribution for the
kernel amplifies high precipitation values. We believe that this effect can be particularly important in western Norway where
small shifts in wind directions might significantly change spatial precipitation patterns and thereby introduce a potential for

large errors in forecasts. Possible solutions could be to use a categorical approach (e.g., Ji et al. 2019), where the precipitation
is separated into precipitation categories (based on for example daily ensemble mean) and unique BMA models are trained
for each category.
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Cold climate challenges in flood forecasting are demonstrated by the importance of correct temperature and precipitation

forecasts for snow storage estimations. For both Bulken and Moeska (Figures 8 and 9) preprocessing temperature affects
streamflow through the snowmelt. This indicates that the models have snow available in higher elevated parts of the catch-
ment. On the other hand, neither Pbma nor Tbma affected the streamflow for the snowmelt flood in Nybergsund. In this

example, there is no snow in the model’s internal state and therefore, in a situation of snowmelt, any increase in temperature
by Tbma will not increase streamflow.

For the calculation of CSI, we used a limit of 10 ensemble members (a probability of about 20%) exceeding the flood
threshold to issue a flood warning. The ensemble can provide a whole range of probabilities and here we only evaluated

for one probability level. The optimal probability of exceedance to issue a flood warning might be different between catch-
ments, lead times, and seasons. Another aspect is to investigate the acceptance level for false alarms to missed events. The
number of tolerable false alarms might depend on the impacts of the event (e.g., risk evaluation), and it is therefore difficult

to make one absolute decision on behalf of all possible exceedance levels (flood sizes) and affected parties. We acknowledge
that the choice of evaluation criteria can be different depending on the users and the cost of mitigation action compared to
the loss due to an event, and that false alarms and missed events might be weighted differently depending on a total cost-loss

evaluation.
We conclude:

• An evaluation of CRPS for the complete dataset of 2 years showed that the combination of pre- and postprocessing is most
effective for short lead times, up to 2–3 days. For longer lead times, PS that only include preprocessing provide the best
results, either BMA applied to temperature (Tbma) alone or in combination with precipitation (Pbma).

• For the flood dataset, the added value of processing is less clear. Overall, the best approach for all lead times is to preprocess

both precipitation and temperature.

• The processing is sensitive to regional patterns. Postprocessing was most effective for inland and higher elevated catch-
ments whereas the coastal catchments gained more from preprocessing. BMA applied to precipitation and temperature

improved CRPS for the western and southwestern coastal catchments for the early lead times, whereas Tbma was most
important for the longer lead times.

• We see a substantial difference in performance between spring and autumn floods using critical success index (CSI) for

evaluation. In autumn, there is almost no predictive skill for lead times of more than 3 days. Spring floods have a higher
predictability for up to 9 days in advance.

• The focus for further improvements should be on the preprocessing of high precipitation rates. For most incidents, the

highest precipitation incidents and hence floods were underestimated, whereas for a few incidents, preprocessing high
precipitation rates resulted in unrealistic amounts for individual ensemble members.
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