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Abstract

Bose-Einstein condensation as a theoretical concept was suggested a century ago, but
is a relatively new research field experimentally. It gained attention after Ketterle et
al. and Cornell et al. realised the first condensates in 1995. The condensates were
formed of weakly interacting, real atomic gases. Magnons, which are quasiparticle
bosonic excitations of a magnetically ordered system, were proposed by Felix Bloch
in 1936. In 2006 Demokritov et al. found evidence of Bose-Einstein condensation of
magnons at room temperature for the first time.

To explain the physics leading to a magnon condensate in ferromagnetic insulators,
the dipolar interaction between the spins is essential, although it is weak. To realise
a BEC, there needs to be a repulsive effective interaction between the magnons,
which the direct exchange interaction and Zeeman coupling are unable to provide
on their own. Part II of this work will revisit the calculations leading to the predic-
tion of Bose-Einstein condensation of magnons in yttrium-iron garnet. To obtain
this complete analysis of the stability, we have closely followed the work done by
Kopietz, Li and Demokritov. We find a term in the interaction potential that was
missing in the literature.

Conclusive evidence of Bose-Einstein condensation of magnons in antiferromagnetic
insulators has not yet been found. We perform similar calculations as for the ferro-
magnetic system, to predict the theoretical existence of such condensates. We found
that there are combinations of parameters for the system that facilitates condens-
ation of magnons in antiferromagnetic insulators at non-zero momenta. When the
interactions between the magnons in the condensates are repulsive, we found that
the intervalley scattering, namely between the two types of magnons, dominates
the interaction potential. We believe that our analysis can be of use for determin-
ing parameters in future experiments, where the goal is to observe condensation of
magnons.
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Sammendrag

Bose-Einstein kondensasjon er et forskningsfelt som har f̊att økt oppmerksomhet
etter at Ketterle et al. og Cornell et al., i 1995, fremstilte et kondensat for første
gang. Begge gruppene laget kondensatet av reelle materialpartikler, nærmere be-
stemt svakt vekselvirkende atomgasser. Magnoner er bosoniske eksitasjoner av et
magnetisk ordnet system. De ble foresl̊att for første gang av Felix Bloch i 1936. I
2006 fremstilte Demokritov et al. de første kondensatene av magnoner ved romtem-
peratur .

Magnetisk dipolvekselvirkning er svært viktig ved fremstilling av et kondensat av
magnoner, selv om den er svak. For å kunne ha et stabilt kondensat, m̊a po-
tenisalet mellom bestanddelene være frastøtende. Den sterkere Heisenberg vek-
selvirkningen og Zeemankoblingen vil ikke gi potenisalet de nødvendige egenskapene.
Spesialiseringsprosjektet analyserer stabliteten til et kondensat av magnoner i ferro-
magnetiske isolatorer, spesifikt for en tynn film av yttrium-jern granat. Vi har fulgt
arbeidet til Kopietz , Li og Demokritov i denne fullstendige analysen av stabiliteten.
Vi fant et ledd i vekselvirkningspotensialet som ikke var beskrevet i litteraturen.

Endelige bevis for Bose-Einstein kondensasjon av magnoner i antiferromagnetiske
isolatorer er enn̊a ikke funnet. Vi utfører analyser for et antiferromagnetisk system,
analogt med analysene som allerede er utført for ferromagnetiske systemer. Vi har
funnet kombinasjoner av parametere for systemet som underbygger teorien om at det
er mulig for magnoner, med impuls forskjellig fra null, å kondensere i antiferromag-
netiske isolatorer. Vi fant ogs̊a at med disse parameterne vil mellomdals-spredning,
alts̊a spredning mellom de to typene antiferromagnetiske magnoner, dominere vek-
selvirkningspotensialet. Vi tror dette kan være nyttig for å bestemme parametere for
eksperimenter i antiferromagnetiske systemer, hvor man ønsker å finne kondensasjon
av magnoner.
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Disclaimer

This work consists of three parts. Part I consists of work done mainly in the au-
tumn of 2022, but with some modifications done in the spring of 2023. Particularly,
section 2.5 has been significantly extended.

Part II is the work done in autumn of 2022, in TFY4510 Physics Specialisation
Project, which is credited 15 ECTS. Although it has already been graded, it is pro-
foundly relevant for the master’s thesis. We will frequently refer to the work done
in the specialisation project.

The remaining, and most important, sections of the master’s thesis, TFY4900 -
Physics Master’s Thesis, which is credited 30 ECTS, are found in Part III. The
parts that have already been graded are marked with a star, ”*”.
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Conventions and Abbreviations

To increase readability, we specify the conventions that are used throughout the
thesis,

x Scalar

x Vector of scalars

x̂ Unit vector, x̂ = x/|x|
x Single operator

x⃗ Vector of operators

X Matrix.

The difference in scalar and single operator will be clear from the context. Specific
symbols will be introduced throughout the text.

The notation {a, b}n denotes a product of any combination of a and b, n times.

In Part II, we will mainly be working in three spatial dimensions (or quasi 2D). In
Part III, we will consider a spin chain model in one dimension.

Throughout Part III, we will mainly use i for sublattice A, and j for sublattice B.
However, for interactions between different lattice sites, we will use i for the lattice
point, and j for the nearest neighbours.

Commonly used abbreviations are

BEC Bose-Einstein condensation/condensate

FMI ferromagnetic insulator

AFMI antiferromagnetic insulator

DMI Dzyaloshinskii-Moriya interaction

YIG yttrium-iron garnet

BLS Brillouin light scattering

1BZ First Brillouin zone.
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Chapter 1

Introduction

1.1 Background on the field*

In three dimensions, all particles can be classified as either bosons or fermions. Fer-
mions cannot have all their quantum numbers identical, such as energy level, while
their wavefunctions overlap. Bosons, on the other hand, can [1]. Bose-Einstein
condensate (BEC) is a new state of matter for bosonic particles [2]. This state is
obtained when the spatial extension of the wave functions for these particles be-
comes large. For a gas of real particles this happens when the gas is cooled to
very low temperatures. The single particle wavefunctions will then overlap, and the
particles in the condensate can be described with one macroscopic wave function [3].

This state of matter was first proposed by Bose and Einstein. Bose treated light as
indistinguishable particles and obtained the same results as Planck for the radiated
energy density of a black body, without mixing classical and quantum mechanics.
He sent his work to Einstein, who was impressed and published it in Zeitschrift für
Physik in 1924, on Bose’s behalf [4]. In 1925 he published an article based on Bose’s
work, proposing the new state of matter for atoms, Bose-Einstein condensate [5, 6].

After around 70 years, in 1995, two different groups managed to create and observe
a BEC experimentally for the first time. One with Eric Cornell at the University
of Colorado at Boulder [7, 8], and the other with Wolfgang Ketterle at MIT [3, 9].
Cornell and his group created a condensate of rubidium atoms, while Ketterle and
his group used sodium atoms. They were awarded the Nobel Prize in Physics for
their work in 2001. The main reason for the long time between the founding of the
theory, and the experimental proof was the difficulties of cooling the gas sufficiently
[3].
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1.2. Purpose of thesis

More than 90 years ago, in 1930, Felix Bloch introduced the idea of a spin wave [10].
Intuitively, one might think that a single spin-flip would be the lowest excited energy
eigenstate of a ferromagnetically ordered system. However, this is not correct. A
magnon, which is a quantised spin wave, is the lowest excitation [11]. The spins at
all lattice sites deviate from the quantisation axis in a way such that the deviations
total to a spin flip [12, 13].

After the discovery of particle BEC, there have been numerous discoveries of quasi-
particle BEC. Some examples are BEC of photons [14], excitons [15, 16] and exciton-
polaritons [17]. In 2006 Demokritov et al. published an article with experimental
results that proved the existence of a BEC of magnons at room temperature [18].
The dispersion relation for a BEC of magnons in some ferromagnetic insulator (FMI)
has two minima and thus two condensates, an example being yttrium-iron garnet
(YIG). Six years after the discovery of the condensate, in 2012, Demokritov and his
group also proved the coherence of the condensates [19].

Recent publications present a promising application of magnon BEC, namely qubits
for use in quantum computers. Superconducting qubits, made of Cooper-pairs,
have been of great interest. However, they have shown weakness due to decoherence
effects caused by Coulomb interactions. Magnons, which are electrically neutral,
could therefore be a promising candidate for stable qubits [20, 21].

1.2 Purpose of thesis

An important requirement for the existence of a Bose-Einstein condensate is the
presence of a repulsive interaction between the constituents of the condensate [22,
2]. This ensures the stability of the condensate. The purpose of Part II, the spe-
cialisation project report, was to rederive a full analysis of the stability of a BEC of
magnons in a FMI, specifically YIG.

In the master’s thesis, mainly Part III, the goal is to investigate how the stability of
BEC of magnons in an antiferromagnetic insulator (AFMI) depend on the various
interactions in the system.
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1.3. Structure of thesis

1.3 Structure of thesis

The structure of the thesis is as follows. In Chapter 2 we introduce various inter-
actions that are relevant to magnetic spin systems. We present a more detailed
explanation of the new state of matter, known as the Bose-Einstein condensate,
in Chapter 3. In Chapter 4, the first chapter of Part II, we perform a Holstein-
Primakoff transformation for the interactions in a ferromagnetic thin film insulator
with a cubic lattice. A physical realisation of such a system is YIG. Next, we carry
out a Bogoliubov transformation to diagonalise the non-interacting Hamiltonian. In
Chapter 5 we perform the majority of the stability analysis. The dipolar interaction
is crucial to the stability of the condensate, which we show in Chapter 6. In Chapter
7 we conclude the ferromagnetic part.

In Chapter 8, the first of Part III, we present some relevant background on antifer-
romagnetic systems. In general, we will not repeat theory from Part II, but some
topics will be elaborated on. Concerning the criteria for condensate formation, we
also refer to Part II, but emphasise that the crucial property that must be satisfied
is a repulsive effective interaction between the magnons. In Chapter 9 we perform
similar steps as in Chapter 4. The results, are found in Chapter 10. The discussion
of the antiferromagnetic part is found in Chapter 11. A summary of Part III and the
main work of the master’s thesis, is found in Chapter 12. Further work is proposed
in Chapter 13.

In Appendix A we elaborately show that there is a term missing in the energy
function for the magnon condensate in YIG, in the literature such as in Demokritovs
work in [23]. In Appendix B we have included additional figures for the discussion.
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1.3. Structure of thesis
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Chapter 2

Spintronics

In this section we will introduce the idea of spin and explain how it connects to
magnetisation. Then we will introduce the various interactions that take place in
a magnetic system. All interactions are introduced with their Hamiltonian, which
is the relevant description for this thesis. We assume a system at half-filling, which
means that there is one electron at each lattice site on average.

2.1 Spin and magnetisation*

Spin, S, is a form of angular momentum. It has a physical appearance similar to a
particle spinning about its centre of mass, but unlike orbital angular momentum, L,
this angular momentum actually has nothing to do with spinning motion in space.
Spin is an intrinsic form of angular momentum [1]. From the Dirac equation, which
is a relativistic wave equation, it can be shown that L is not a conserved quant-
ity. However, if the particles are allowed to carry an appropriate intrinsic angular
momentum, S, then the total angular momentum J = L + S will be a conserved
quantity [24].

If a classical, charged particle is actually spinning, it creates a magnetic dipole with
an associated magnetic dipole moment, m. A quantum particle with spin also has a
magnetic dipole moment. For electrons, this takes the formm ≈ γeS, where γe is the
gyromagnetic ratio for the electron. Generally, the operator is m⃗ = γSS⃗ + γLL⃗ [25].
But because the orbital angular momentum generally is quenched by the crystal
field, the operator is approximated by m⃗ ≈ γeS⃗ [12]. In this thesis, we will assume
that the length of magnetic moments is constant, |m| = 1.

Different materials will have different types of total magnetisation. They can be di-
vided into five categories: diamagnetic, paramagnetic, ferrimagnetic, ferromagnetic
and antiferromagnetic [13]. In the last three types, the spins are ordered. In this
thesis, we will first look at ferromagnetic systems, and then focus on antiferromag-
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2.1. Spin and magnetisation*

netic systems. Ferromagnetic materials have a non-zero net magnetisation as most
spins orient themselves along the same axis, even in the absence of an external mag-
netic field. Antiferromagnetic materials will usually have no net magnetisation, as
neighbouring spins cancel each other (in square and cubic lattices). A ferromagnetic
system in a cubic lattice is illustrated in Figure 2.1(a), and an antiferromagnetic sys-
tem in Figure 2.1(b).
When the temperature of a (anti)ferromagnetic material is above the critical tem-

Figure 2.1: (a) Ferromagnetic spin ordering, (b) antiferromagnetic spin ordering.
The figure is from [26].

perature, the thermal energy is stronger than the coupling between the spins. When
this occurs, the spin orientations are randomised. This is the paramagnetic phase.
As the materials are cooled down, and the material is cooled below the critical
temperature , the spins start to order. This is a phase transition, with the order
parameter being the magnetisation for ferromagnetic systems and staggered mag-
netisation, also known as Nèel-vector, for antiferromagnetic systems and the control
parameter being the temperature. This is of second order, which means that it is a
continuous transition [27].

This phase transition is illustrated in Figure 2.2(a) for ferromagnetic and Figure
2.2(b) for antiferromagnetic systems. The magnetisation as a function of temper-
ature is denoted by m(T ), and n(T ) is the staggered magnetisation as a function
of temperature. The saturation (staggered) magnetisation is mS (nS), which is
reached at zero temperature. When the (staggered) magnetisation is saturated, all
the dipoles have aligned as energetically preferred. Then it is not possible to further
increase the (staggered) magnetisation.
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2.2. Direct exchange interaction*

(a) (b)

Figure 2.2: (a) Phase transition from paramagnetic to ferromagnetic phase. (b)
Phase transition from paramagnetic to antiferromagnetic phase.

2.2 Direct exchange interaction*

As the systems temperature decreases to below the critical temperature, the direct
exchange interaction will be the most important one. The system will not have
enough thermal energy for the spins to break the preferred ordering. The crit-
ical temperature is the Curie-temperature, TC , for ferromagnetic systems and Nèel-
temperature, TN , for antiferromagnetic systems [27]. Although this is the strongest
interaction, it is short-ranged. To a good approximation, the spins interact only
with their nearest neighbours. This is the Heisenberg model [13].

In ferromagnetic ordered systems, the direct exchange interaction originates from
the Coulomb force. For antiferromagnetic ordered systems this interaction comes
from the kinetic energy of electrons, and their tendency to hop [12, 28].

This Hamiltonian can be expanded to cover the interaction between spins at all
lattice sites i, and all nearest neighbours at lattice sites j

Hex = −J
∑
⟨i,j⟩

S⃗i · S⃗j. (2.1)

Note that since i and j are nearest neighbours, denoted by ⟨i, j⟩, this sum excludes
i = j. Minimising the energy corresponding to this Hamiltonian, leads to the dif-
ferent ordering of ferromagnetic and antiferromagnetic systems. To minimise for a
positive J , the spins will be parallel, which is the defining trait of ferromagnetism.
To minimise for a negative J , the spins will be antiparallel, hence giving antiferro-
magnetism.
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2.3. Dipolar interaction*

2.3 Dipolar interaction*

A magnetic dipole has a magnetic field. The dipolar interaction describes how one
magnetic dipole is affected by the magnetic field from another. The magnetic field
from one magnetic dipole m is Bdip = 1/4π[3r(m · r)/r5 − m/r3], where r is the
distance from the dipole. The energy stored in the interaction between the two
magnetic moments is Udip = −m ·Bdip [29].

This gives an energy between two magnetic dipoles, m1, m2, of

Udip =
1

r3
[m1 ·m2 − 3(m1 · r̂)(m2 · r̂)]. (2.2)

The Hamiltonian describing the dipolar interaction between N spins is

Hdip = −1

2

∑
ij

∑
αβ

Dαβ
ij Sα

i S
β
j , (2.3)

where i and j are lattice sites and i ̸= j [30]. Here, α, β = {x, y, z}. The dipolar
tensor is denoted by D. It contains the interaction strength, and its elements are
defined as

Dαβ
ij = (1− δij)

µ2

|Rij|
[
3R̂α

ij R̂
β
ij − δαβ

]
, (2.4)

with µ being the magnetic moment associated with the spin, and Rij = ri−rj is the

vector from lattice site i to j [31]. The length of the unit vector R̂ in the α-direction
is denoted by R̂α

i .

Note that there is no restriction on i and j. This is a long-ranged interaction, mean-
ing that one spin couples to all other spins in the lattice. Inserting approximate
values, we can see that it will also be weak compared to the direct exchange for
small spatial separations [32].

As we will see later, this is an important contribution in ferromagnetic insulators.
When an antiferromagnetic insulator has a square bipartite lattice, it will have
vanishing magnetic dipolar interaction. Therefore, this interaction mainly manifests
in ferromagnetic systems.

2.4 Magnetic anisotropy*

There is a variety of types of magnetic anisotropy effects, however we will look at
the magneto-crystalline anisotropy. This effect originates from the coupling between
the relativistic spin-orbit coupling and the electric charge density [27].

The geometry of the system thus plays a role in the spin-configuration. The dir-
ect exchange interaction imposes a preferred parallel or antiparallel spin alignment,
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2.5. Zeeman coupling

however all quantisation axes are equivalent. Anisotropy will provide the system
with a preferred quantisation axis.

A good approximation to crystalline anisotropy is the single-ion anisotropy. In most
materials it is the most important anisotropy mechanism [27].

The Hamiltonian for this type of anisotropy is

Hani = −Keasy(S⃗i · êeasy)2 +Khard(S⃗i · êhard)2

= ±|Kani|
∑
i

(S⃗i · ê)2, (2.5)

where Keasy ≥ 0 and Khard ≥ 0 are the anisotropy strengths for the easy and hard
axes, respectively [33]. Correspondingly, êeasy/hard is the direction of the easy/hard
axis. Aligning along the easy axis will minimise the energy.

Also note that in Eq. (2.5), the sum over i is over the total lattice, meaning both
sublattices. In this thesis, our material does not have a hard axis, so we will use a
single-ion anisotropy with an easy axis.

2.5 Zeeman coupling

When an external magnetic field, h, is applied to a magnetic system, the spins in
the system couple to the field. This is called the Zeeman coupling. If the system
has degenerate energy levels, applying h to the system will split the levels. We will
see this effect in section 10.2.
The coupling only involves interaction between the magnetic field and individual
spins. There is no interaction between spins at different lattice sites.

We choose to orient the magnetic field along the ẑ-direction, h = hẑ. This gives us
a simple expression for the Hamiltonian

HZee = −µ
∑
i

h · S⃗i

= −µ
∑
i

hSz
i . (2.6)

Note that in both the ferromagnetic and antiferromagnetic case, the sum over i runs
over the total lattice. This means that both sublattices in the AFMI are indexed by
i.

The antiparallel ordering of our antiferromagnetic system analysed in Part III, is
caused by the direct exchange interaction between the nearest neighbouring spins.
However, if we impose magnetic anisotropy, and an external magnetic field that is
stronger than the critical field, hc = hcẑ, the antiparallel ordering starts to break
down. This is known as the spin-flop transition, where the Zeeman coupling, rather
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2.6. Dzyaloshinskii–Moriya interaction*

than the direct exchange interaction, dominates the energy minimisation [34, 35].
The spins antiparallel to the ẑ-axis start to rotate towards the positive ẑ-axis.

Although we have not yet presented the dispersion relations, we will briefly describe
how the critical field, hc, is found. By inspecting Eq. (10.20), we have at k = 0

ωc
H = µhc ≥

√
(ωE + ωA)2 − ω2

E ≈
√
2ωEωA, (2.7)

where ωE = 2JS and ωA = KzS, gives dispersion relations with negative energy. To
obtain the form of hc in Eq. (2.7) we utilised the fact that the magnetic anisotropy
is much smaller than the direct exchange interaction.

2.6 Dzyaloshinskii–Moriya interaction*

When the spin-orbit coupling is treated perturbatively, the Dzyaloshinskii–Moriya
interaction (DMI) emerges from the expansion [27, 36]. It is an antisymmetric
exchange interaction. DMI competes with the much stronger direct exchange inter-
action [37]. To exist, there needs to be a local environment with absence of inversion
symmetry [27].

DMI is heavily affected by the crystal lattice, and the symmetry determines whether
it is a nearest neighbour or a next nearest neighbour exchange interaction. We will
therefore present the Hamiltonian for a general lattice.

The Hamiltonian for the DMI between spins S⃗i, S⃗j is

HDMI =
∑
i,j

Dij · (S⃗i × S⃗j), (2.8)

where Dij = −Dji is the DM-vector, and i and j being lattice sites. The sum ex-
cludes i = j. The DM-vector, which will be specified for each system, defines the
type of interaction. To minimise the energy from this interaction, the spins will be
tilted towards the direction of Dij. Note that this D is not the same as in Eq. (2.4).

The cross product in (2.8) competes with the dot product in (2.1). To obtain the

lowest energy possible caused by DMI, spins S⃗i, S⃗j would have to be orthogonal.
The direct exchange interaction is stronger than DMI, and will therefore be more
energetically important. Although it is weak, DMI will sometimes give a small,
finite magnetisation in antiferromagnets, and a small but finite Néel-vector in fer-
romagnets. In a typical magnetic material, DMI usually tilts the spin of the order
of 1°[12]. This interaction is fundamental for the creation of skyrmions, which ori-
ginates from the magnetic frustration caused by the competition between DMI and
direct exchange interaction [38].
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Chapter 3

Bose-Einstein Condensation of
Particles and Quasiparticles*

The bosons involved in this condensate occupy the quantum-mechanical ground
state. To achieve this condensation for real particles, a gas must be cooled very
close to T = 0 K, while keeping the particle density, n, small [39]. As the gas
is cooled to such low temperatures, the individual particle wave functions begin to
overlap, and the system collapses to one single quantum state, that can be described
with one collective wave function. The condensate can be modelled both as inter-
acting and non-interacting.

To estimate the critical temperature TC , at which the wavefunctions begin to over-
lap, we can set the average interparticle spacing 1/n1/3, equal to the thermal de
Broglie wavelength. We then find that TC is proportional to n2/3/m.

Bogoliubov founded a theory, which considers perturbations from the non-interacting
systems. The theory predicts a finite pressure of the particles at zero temperature.
From thermodynamics, we have the requirement that the partial derivative of dens-
ity with respect to pressure, ∂n/∂P , is positive [40, 41]. As a consequence of this,
Bogoliubovs theory finds that the interaction amplitude needs to be positive. Thus,
to have a stable condensate, we need a repulsive interaction between the particles.
This is an important result when we try to prove the existence of magnon BEC
theoretically.

The experimental results of Demokritov et al. [42], which proved the existence of a
BEC of magnons, was done in yttrium-iron garnet, YIG. This is a much-investigated
material in this field. A great advantage of YIG, is that the Gilbert damping. An-
other crucial advantage is that magnons in YIG have a long lifetime, τlife [39].
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By long lifetime we mean long relative to the thermalisation time, τth. The therm-
alisation time is the time needed for the magnons to distribute their energy and fall
into the lowest energy level - thus forming the condensate. Therefore, it is import-
ant that τlife ≫ τth. The magnon-phonon coupling does not conserve the number of
magnons, which is why the magnons have a limited lifetime. In YIG τth ≈ 100 ns
and τlife ≈ 1 ms [23]. This means that a magnon BEC is not truly in equilibrium,
but rather in a state of quasi-equilibrium. However, as long as τlife ≫ τth this is not
a problem [23].

Figure 3.1: (a) The setup in Demokritov et al.’s experiment that showed the ex-
istence of magnon BEC. (b) Shows the magnon dispersion relation as a function of
kz. The illustration also shows how the magnons thermalise into the wave vectors
±kBEC, in which the energy function has its minima. H0 is the applied external
magnetic field. The figure is from [43].

Contrary to atomic BECs, which exist at temperatures of the order of nanokelvins
[3], magnon BECs can be found at room temperature. We argued above that TC is
proportional to n2/3/m. For an atomic gas, the density cannot be too high, as that
would cause the system to condense to a liquid or solid state. This problem does
not apply to magnons. Furthermore, the mass of magnons is significantly lower than
for real particles. It is the combination of a higher density and a lower mass that
allows a magnon BEC to exist at much higher temperatures than an atomic BEC.

To observe the condensate, Demokritov and others use Brillouin Light Scattering
(BLS) to image it [18, 44]. BLS outputs an intensity, which is proportional to the
number of magnons. Their procedure of creating a magnon BEC also requires an
in-plane magnetic field and microwave radiation [23]. Microwave radiation is used
for parametric pumping of magnons into the system. We base our analysis on these
magnons.

Parametric pumping is one of several techniques used to create magnons. The
chemical potential of magnons under normal circumstances is zero. For a BEC to
be realisable, there is a certain critical value for the chemical potential [18]. There-
fore, there is a need to alter the chemical potential from zero, to its critical value.
This can be done by e.g. parametric pumping [18, 45].
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Figure 3.1 is from Demokritov et al.’s set-up in 2006 [43]. Figure 3.1a) shows the
experimental set-up. Magnons are pumped into the film by the microwave reson-
ator. The probing light is used to image the BEC. Figure 3.1b) shows the magnon
dispersion relation for kz, θ = 0. It also shows the process of thermalisation of
the magnons. They are injected at a certain momentum, k > kBEC and end up in
±kBEC.
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Part II

Ferromagnetic System
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Chapter 4

Bosonisation of Ferromagnetic
System*

So far, all the Hamiltonians have been presented with spin operators. These oper-
ators follow a commutation relation of [Sα

i , S
β
j ] = iεαβγS

γ
i δij, where α, β is x, y, z,

i and j denote lattice sites and εαβγ is the Levi-Civita tensor. This commuta-
tion relation makes the forthcoming computations complicated. We will perform
a Holstein-Primakoff transformation to obtain a Hamiltonian expressed in bosonic
operators a†i , ai, that instead follow the simple commutation relation [ai, a

†
j] = δij.

This procedure is known as a bosonisation of the Hamiltonian.

The first step is to introduce two new operators, S+, S−, the spin raising and lowering
operators, respectively. These are defined as

Sz
i = S − a†iai

S+
i = Sx

i + iSy
i

S−
i = (S+

i )
† = Sx

i − iSy
i , (4.1)

where S is the total spin.

From these we see that we can express Sx
i , S

y
i as

Sx
i =

1

2
(S+

i + S−
i )

Sy
i =

1

2i
(S+

i − S−
i ). (4.2)

We assume that our system exhibits a large degree of order, and that it is quantised
along the z-axis. By assuming that the spins only deviate a small amount from
the quantisation axis, we can introduce the Holstein-Primakoff transformation. The
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4.1. Direct exchange interaction

transformation is defined as

Sz
i = S − a†iai

S+
i =

√
2S

√
1− a†iai

2S
ai

S−
i =

√
2S a†i

√
1− a†iai

2S
. (4.3)

If we now can assume that S is large, S ≫ ⟨a†iai⟩, we can utilise the approximation√
1− x ≈ 1 − x/2. In YIG, S ≈ 14.2, which means this approximation is valid

[31]. By also including Sz
i from Eq. (4.1), we obtain the full expression for the

transformation we will be using

Sz
i = S − a†iai

S+
i ≈

√
2S (1− 1

4S
a†iai) ai

S−
i ≈

√
2S a†i (1−

1

4S
a†iai). (4.4)

4.1 Direct exchange interaction

We now want to rewrite the direct exchange interaction Hamiltonian in our new
basis, Eq. (4.4). Before substituting the transformation operators, we expand the
dot product in Eq. (2.1). We then insert the operators in Eq. (4.2), which gives the
resulting bosonised Hamiltonian

Hs
ex = −J

2

∑
⟨i,j⟩

[
Sz
i S

z
j +

1

2

(
S+
i S

−
j + S−

i S
+
j

)]
.

After inserting the transformation in Eq. (4.4), the resulting Hamiltonian is

Hb
ex = −JNzS2/2− SJ/2

∑
⟨i,j⟩

[
−a†iai − a†jaj + aia

†
j + a†iaj

]
−J/2

∑
⟨i,j⟩

[
a†iaia

†
jaj −

1

2
aia

†
ja

†
jaj −

1

2
a†iaiaia

†
j

]
, (4.5)

where z is the number of nearest neighbours.

The first term in the first line in Eq. (4.5) is just a constant, which we can absorb
in a reference energy. The sum in the first line is the non-interacting Hamiltonian,
Hb,2

ex . It is called non-interacting as it is O(a2).

The sum in the second line is the interacting Hamiltonian, Hb,4
ex . The first term in

this sum is a density term. The last two terms express hopping processes. E.g., the
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4.1. Direct exchange interaction

last term in this sum shows a boson being created at lattice site j, two bosons being
destructed at lattice-site i and a boson being created at i.

This Hamiltonian is not diagonal, as it contains terms of the type a†iaj. Applying a
Fourier transform will diagonalise it. We introduce the Fourier transformed bosonic
operators, ak, a

†
k. A boson with momentum k will be destructed by ak, while a†k

creates a boson with momentum k. The inverse Fourier transforms take the form

ai =
∑
k

ak e
ik·r⃗i

a†i =
∑
k

a†k e
−ik·r⃗i . (4.6)

An important detail here, is that we assume three spatial dimensions. The x-
direction of the film is extremely short, relative to the y and z-directions. Reference
[31] shows we can approximate the system as periodic in all directions, and then set
kx to zero - the lowest magnon band. This is the uniform mode approximation, and
it allows us to work with a system that is effectively two-dimensional.

Inserting Eq. (4.6) into Hb,2
ex = −SJ/2

∑
⟨i,j⟩

[
−a†iai − a†jaj + aja

†
j + a†iaj

]
, we obtain

Hb,2
ex = -SJ/2

[
−2

∑
k1,k2

∑
j

δ(k2 − k1)a
†
k1
ak2

+
∑

k1,k2

δ(k2 − k1)a
†
k1
ak2

∑
δ

e−ik1·δ

+
∑

k1,k2

δ(k1 − k2)a
†
k1
ak2

∑
δ

eik2·δ
]

(4.7)

= −SJz

[∑
k

a†kak +
∑
k

γ(k)a†kak

]
= −SJz

∑
k

[
1 + γ(k)

]
a†kak, (4.8)

where we have defined γ(k) = 1/z
∑

δ e
ik·δ. The sum over δ is the sum over the

vectors from a lattice site, to its nearest neighbours. The number of nearest neigh-
bours on this specific lattice is represented by z, and we have utilised the fact that
γ(−k) = γ(k) in a square (cubic) lattice. We notice that by just inserting the Four-
ier transformed operators, we have diagonalised the Hamiltonian.

We insert the same transformation (Eq. (4.6)) into the interacting Hamiltonian,
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4.2. Zeeman coupling

Hb,4
ex , and obtain

Hb,4
ex = −J

2

∑
i,δ

[
1

N2

∑
k1,...,k4

a†k1
ak2a

†
k3
ak4e

i(−k1+k2−k3+k4)·ri ei(k4−k3)·δ

+
1

2

1

N2

∑
k1,...,k4

ak1a
†
k2
a†k3

ak4e
i(k1−k2−k3+k4)·ri ei(k4−k2−k3)·δ

+
1

2

1

N2

∑
k1,...,k4

a†k1
ak2ak3a

†
k4
ei(−k1+k2+k3−k4)·ri e−ik4·δ

]
(4.9)

= −Jz

2

[
1

N

∑
k1,k2,k3

a†k1
ak2a

†
k3
ak1+k3−k2 γ(k1 − k2)

−1

2

1

N

∑
k1,k2,k3

ak1a
†
k2
a†k3

ak2+k3−k1 γ(k1)

−1

2

1

N

∑
k1,k2,k3

a†k1
ak2ak3a

†
k2+k3−k1

γ(k2 + k3 − k1)

]
. (4.10)

In Eq. (4.10), the first sum represents that a boson with momentum k1 + k3 − k2

is destructed, a boson with momentum k3 is created, one with momentum k2 is
destructed and one with momentum k1 is created. The same reasoning applies to
the second and third sums. In all these sums, the number of bosons is conserved, as
well as the momentum. Every term has an equal amount of destruction and creation
operators.

As mentioned, γ(k1 − k2) is a form factor. It depends on the number of nearest
neighbours, as well as the geometry of the lattice. It will be different for a square
and e.g. a honeycomb lattice. We can utilise the geometry of the square lattice,
in which for every neighbour, the lattice has another neighbour in the opposite
direction. This geometry ensures that γ(k) will always be real. That is not true in
general, and not for e.g. the honeycomb lattice.

By performing the Holstein-Primakoff transformation, we introduced new bosonic
operators, which significantly simplified the calculations. By Fourier transforming
the new bosonic operators, we have diagonalised the Hamiltonian for the direct
exchange interaction.

4.2 Zeeman coupling

We will assume an external field parallel with the quantisation axis, h ∥ ẑ. When
inserting the transformation in Eq. (4.1) into the spin Hamiltonian in Eq. (2.6), we
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4.3. Dipolar interaction

get the bosonised Hamiltonian

Hs
Zee = −

∑
i

µhSz
i

Hb
Zee = −

∑
i

µh(S − a†iai)

= −µhNS + µh
∑
k

a†kak. (4.11)

The first term is a constant, and can be absorbed into a reference energy. The
Hamiltonian for the Zeeman coupling was already diagonal, but we have now written
it with operators that are more convenient to work with.

4.3 Dipolar interaction

As already written in Eq. (2.3), the Hamiltonian describing the dipolar interaction
is

Hs
dip = −1

2

∑
i,j

∑
α,β

Dαβ
ij Sα

i S
β
j . (4.12)

We want this Hamiltonian to be expressed in the bosonic operators in Eq. (4.1) as
well. We insert (4.2) and Sz

i from Eq. (4.1). When doing this, we get some terms
O(a1) and O(a3). These will all have an off-diagonal matrix-element as coefficient.
It can be shown that off-diagonal elements of the Dij-matrix are all zero in a thin
film [31].

We then obtain a bosonic dipole Hamiltonian

Hb
dip = Hb,2

dip +Hb,4
dip (4.13)

Hb,2
dip =

1

4

∑
i,j

S
[
− (Dxx

ij +Dyy
ij ) a

†
ia

†
j + (−Dxx

ij −Dyy
ij ) aia

†
j

+ (−Dxx
ij −Dyy

ij ) a
†
iaj + (−Dxx

ij +Dyy
ij ) aiaj

+ 2Dzz
ij a†iai + 2Dzz

ij a†jaj
]

(4.14)

Hb,4
dip =

1

2

1

8

∑
i,j

{
2(Dxx

ij +Dyy
ij )
[
a†iaiaia

†
j + aja

†
ia

†
iai + 4a†iaia

†
jaj
]

+2(Dxx
ij −Dyy

ij )
[
a†ja

†
ia

†
iaj + a†iaiaiaj

]}
.

(4.15)

We now define new coefficients

Aij = S

[
δij
∑
n

Dzz
in −

Dxx
ij +Dyy

ij

2

]
Bij = −S/2

[
Dxx

ij −Dyy
ij

]
. (4.16)
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4.3. Dipolar interaction

These coefficients are defined such that when inserting them back into the sums, we
change the sums to include i = j.

By cleaning up Eq. (4.14) and inserting coefficients in Eq. (4.16), we obtain a simple
Hamiltonian

Hb,2
dip =

1

2

∑
ij

[
Aija

†
iaj +Bijaiaj +B∗

ija
†
ia

†
j

]
. (4.17)

We now want to express the interaction in momentum space. We obtain this by
inserting the inverse Fourier transform of ai, a

†
i , Eq. (4.6) and of Dαβ

ij , Aij and Bij

Aij =
∑
k

Ak e
−ik·rij

Bij =
∑
k

Bk e
−ik·rij

Dαβ
ij =

∑
k

Dαβ
k e−ik·rij . (4.18)

As previously stated, since we study a thin film, we only need Dαα
ij . The Fourier

transformed coefficients in Eq. (4.18) are

Ak =
∆

3
− S

2
(Dxx

k +Dyy
k )

Bk = −S

2
(Dxx

k −Dyy
k )

Dxx
k =

4πµ2

a3
[1
3
− fk

]
Dyy

k =
4πµ2

a3
[1
3
+ sin2 θk(fk − 1)

]
Dzz

k =
4πµ2

a3
[1
3
+ cos2 θk(fk − 1)

]
, (4.19)

where ∆ = 4πµ2/a3 = 4πMs, with Ms being the saturation magnetisation. The
angle between k and the external magnetic field, h, is denoted by θk. For later
convenience, we will present the variables Ak and Bk when the direct exchange
interaction and Zeeman coupling are included as well

Ak = h+ JS[4− 2 cos(kya)− 2 cos(kza)]

+
∆

3
− S

2
(Dxx

k +Dyy
k ) (4.20)

Bk = −S

2
(Dxx

k −Dyy
k )

Dxx
k =

4πµ2

a3

[
1

3
− fk

]
Dyy

k =
4πµ2

a3

[
1

3
+ sin2 θk(fk − 1)

]
Dzz

k =
4πµ2

a3

[
1

3
+ cos2 θk(fk − 1)

]
. (4.21)
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4.3. Dipolar interaction

As we would intuitively have thought, Bk in Eq. (4.21) is zero in the absence of the
dipolar interaction. Inspecting Eq. (4.17) and Eq. (4.8), we see that there are only
diagonal terms emerging from the direct exchange interaction and Zeeman coupling.

The momentum space Hb,2
dip reads

Hb,2
dip =

1

2

∑
k

[
2Aka

†
kak +B∗

ka
†
ka

†
−k +Bka−kak

]
(4.22)

=
∑
k

a⃗ †
kHka⃗k, (4.23)

where a⃗k and Hk are defined as

a⃗k =

(
ak
a†−k

)
, Hk =

(
Ak Bk

B∗
k Ak

)
. (4.24)

We now want to apply the same procedure that we used for Hb,2
dip, to Hb,4

dip. Inserting
Eqs. (4.6) into eq (4.15) we obtain

Hb,4
dip =

1

2

1

8

2

N3/2

{[
4
∑

k1,...,k4

(
Dxx

k3−k4
+Dyy

k3−k4

)
a†k1

ak2a
†
k3
ak4 δ(k4 + k2 − k1 − k3)

+
∑

k1,...,k4

(
Dxx

k4
+Dyy

k4

)
ak1a

†
k2
ak3a

†
k4
δ(k2 + k3 − k1 − k4)

+
∑

k1,...,k4

(
Dxx

k1
+Dyy

k1

)
ak1a

†
k2
a†k3

ak4 δ(k1 + k4 − k2 − k3)

]
+

[ ∑
k1,...,k4

(
Dxx

k1
−Dyy

k1

)
a†k1

a†k2
a†k3

ak4 δ(k4 − k3 − k2 − k1)

+
∑

k1,...,k4

(
Dxx

k4
−Dyy

k4

)
a†k1

ak2ak3ak4 δ(k4 + k3 + k2 − k1)

]}
.

(4.25)

After performing one of the ki sums, taking advantage of the δ-functions and re-
naming the momenta, Hb,4

dip will be

Hb,4
dip =

1

2

1

8

2

N

∑
k,q,q′

{
2(Dxx

k +Dyy
k )
[
a†q+kaqa

†
q′−kaq′ + h.c.

]
+(Dxx

q +Dyy
q )
[
aqa

†
q+ka

†
q′−kaq′ + h.c.

]
+(Dxx

k −Dyy
k )
[
a†q+q′+kaqaq′ak + h.c.

]}
, (4.26)

where h.c. denotes the Hermitian conjugate of the preceding terms within the par-
enthesis.
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4.3. Dipolar interaction

We have now expressed the full dipolar Hamiltonian in momentum space. In doing
this, we have obtained some terms which do not conserve the number of magnons.
The last line in Eq. (4.26) annihilates three bosons, while it only creates one. We
note that even though the number of magnons are not conserved, the momentum
is.

Defining three new functions, f1(k), f2(k), f3(k) we can write Eq. (4.26) more com-
pactly as

Hb,4
dip =

1

2

1

8

2

N
4
∑
k,q,q′

{[
f3(k)− 2f1(q)

] [
a†q+kaqa

†
q′−kaq′ + h.c.

]
+2f2(k)

[
a†q+q′+kaqaq′ak + h.c.

]}
, (4.27)

where the functions are defined as

f1(k) =
ℏγ2πMs

S

[
(1− fk) sin

2 θ + fk
]
/4

f2(k) =
ℏγ2πMs

S

[
(1− fk) sin

2 θ − fk
]
/4

f3(k) =
ℏγ2πMs

S
(1− fk) cos

2 θ. (4.28)
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Chapter 5

Stability Analysis of
Ferromagnetic System*

5.1 Bogoliubov transformation

As we see in Eq. (4.17), Hb,2
dip is not diagonal, since it still has terms of the type

a†ka
†
k and ak ak. To diagonalise it, we will perform a Bogoliubov transformation. We

diagonalise the Hamiltonian to find the eigenstates of the non-interacting Hamilto-
nian. The interacting Hamiltonian is perceived as a small perturbation to the exact
solvable system, the non-interacting Hamiltonian.

As we are working with operators, and vectors of operators, we need to be careful
when diagonalising the Hamiltonian. We cannot diagonalise it carelessly, as that
will not guarantee that the eigenvectors are bosonic. That is why we need to do a
Bogoliubov transformation [46].

We define a matrix, U , for the Bogoliubov transformation [30]. The matrix and its
inverse is

U =

(
uk vk
v∗k uk

)
, U−1 =

(
uk −vk
−v∗k uk

)
(5.1)

where uk and vk are the Bogoliubov coefficients. We note from the matrices that uk

is a real number, whereas vk can be complex.

We now define two new bosonic operators, αk, α
†
k(

αk

α†
−k

)
=

(
uk vk
v∗k uk

)(
ak
a†−k

)
, (5.2)

(
ak
a†−k

)
=

(
uk −vk
−v∗k uk

)(
αk

α†
−k

)
. (5.3)
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5.1. Bogoliubov transformation

We require these new operators to follow the same bosonic commutation relation as
for ak, a

†
k, meaning that [αk, αk′ ] = [α†

k, α
†
k′ ] = 0, and [αk, α

†
k′ ] = δk,k′ . From the

first two commutators we find that u−k = uk and v−k = vk. From the commutator
[αk, α

†
k′ ] = δk,k′ we find that

u2
k − |vk|2 = 1. (5.4)

We want to find restrictions on uk and vk so that Hb,2
dip becomes diagonal. This can

be done by inserting Eq. (5.3) into Eq. (4.23). We then require that U †HU is
diagonal, by setting off-diagonal elements to zero.

We then obtain the following expressions for uk, vk

uk =

√
Ak + εk
2εk

, vk =
Bk

|Bk|

√
Ak − εk
2εk

, (5.5)

where εk =
√

A2
k − |Bk|2.

This results in a Hamiltonian that is diagonal in the new operators α, α†

Hb,2
dip =

∑
k

[
εkα

†
kαk +

εk − Ak

2

]
. (5.6)

The dispersion relation, εk can be plotted by inserting typical values for YIG, e.g.
from [45].
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Figure 5.1: (a) εk plotted as a function of kz, (θ = 0) and as a function of ky,
(θ = π/2). (b) same plots as (a)) but with logarithmic k-axis.
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5.1. Bogoliubov transformation

Figure 5.2: Surface plot of εk as a function of ky and kz.

Figure 5.1(a) shows the two-dimensional slice of the dispersion relation for the dir-
ect exchange interaction, Zeeman coupling and dipolar interaction, εk, plotted with
θ = 0 and θ = π/2. For both angles we see two symmetric minima. In Figure 5.1(b),
we see two-dimensional slices of εk plotted with logarithmic k-axis. We recognise the
shape of εk from other works, such as [18]. In Figure 5.2 we have plotted the same
εk in three dimensions. We can recognise that a two-dimensional slice has the same
shape of εk when θ = {0, π/2} as in Figure 5.1(a). The anisotropy of the dispersion
relation is due to the dipolar interaction.

By looking at the dispersions, we see that there are two energy minima for the
magnons. We know that the condensation takes place in these two minima. We
therefore choose to only look at these two momenta, ±Q. To achieve this, we
let the sum pick out momenta such that all creation and destruction operators have
momenta k = ±Q. We define ωm = γ4πMs. The resulting Bose-Einstein condensate
Hamiltonian is

HQ = −
[
a†Qa

†
QaQaQ + a†−Qa

†
−Qa−Qa−Q

][DQ2

2S
+

ℏωm

4S
FQ

]
/N

−a†−Qa
†
Qa−QaQ

[
−4

DQ2

2S
+

ℏωm

8S
8FQ − ℏωm

2S
2(1− F2Q)

]
/N

−
[
a†QaQaQa−Q + a†−Qa−Qa−QaQ + h.c.

]3ℏωm

8S
FQ/N. (5.7)
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5.2. Hamiltonian at the minima

5.2 Hamiltonian at the minima

We now want to express the Hamiltonian, HQ, in the new basis, Eq. (5.2). Inserting
Eq. (5.3) into Eq. (5.7), we obtain

HQ = A
[
α†
Qα

†
QαQαQ + α†

−Qα
†
−Qα−Qα−Q

]
+ 2B α†

Qα
†
−QαQα−Q

+ C
[
α†
QαQαQα−Q + α†

−Qα−Qα−QαQ + h.c.
]

+D
[
α−QαQαQα−Q + h.c.

]
. (5.8)

The coefficients A,B,C,D are functions of the Bogoliubov coefficients, and take the
form

A = − ℏωm

4SN

[
(α1 − α3)FQ − 2α2(1− F2Q)

]
− DQ2

2SN
(α1 − 4α2)

B =
ℏωm

2SN

[
(α1 − α2)(1− F2Q)− (α1 − α3)FQ

]
+

DQ2

SN
(α1 − 2α2)

C = −
[
ℏωm

8SN

[
(3α1 + 3α2 − 4α3)FQ +

8

3
α3(1− F2Q)

]
+

DQ2

SN

α3

3

]
D =

ℏωm

4SN

[
(α3 − 3α2)FQ + 2α2(a− F2Q)

]
+

DQ2

2SN
α2, (5.9)

where α1 = u4
Q+4u2

Qv
2
Q+v4Q, α2 = 2u2

Qv
2
Q, α3 = 3uQvQ(u

2
Q+v2Q). When performing

these calculations, we inspect BQ and its phase. From Eq. (5.5) we know vQ’s phase
is determined by BQ’s phase. It turns out BQ and vQ are both real, which allowed
for significant simplification of the expression.

The constant D is defined as D = 2JSa2. In calculating the expression in Eq. (5.8)
we have also utilised the fact that Hb,2

dip in Eq. (4.17) is O(S1), while H4 is O(S0).

When inserting the commutation relations [αQ, α
†
Q] = 1, some terms that are O(α2)

emerge. We can neglect those terms, as H2 is one order of magnitude larger than
the newly emerged O(α2) terms.

Comparing with the work of Demokritov et al. [23], we have identical expressions for
A,B,D. The coefficient C however, has the opposite sign. Tracing this backwards
through the calculations, we can see that it emerges from the definitions of Bk. Our
definition in Eq. (4.19) is identical to Kopietz’ [31], which has the opposite sign of
Demokritov’s. This also manifests in f2(k) in Eq. (4.28), and the sign of the last
line in Eq. (5.7).

We note that a new type of term has appeared in the Bogoliubov transformed
Hamiltonian, Eq. (4.15). The last two terms only destruct, while the Hermitian
conjugate only creates magnons. These terms obviously do not conserve the number
of magnons, however they do conserve momenta.
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5.3. Energy function for the Bose-Einstein condensate

5.3 Energy function for the Bose-Einstein con-

densate

As this Hamiltonian describes the magnons with momenta corresponding to the
BEC, we want to approximate α±Q with a macroscopic field, utilising a Madelung
transformation. The field we insert into Eq. (5.8) is ⟨α±Q⟩ =

√
N±Q exp(iϕ±). The

number of magnons in k = +Q is N+Q, and correspondingly for N−Q. The phase of
the magnon condensate in k = +Q is ϕ+, and correspondingly for ϕ−. This results
in the interaction potential

V4 =
1

2
N2

c

[
(A+B)−(B+D cos 2Φ−A)(δ/Nc)

2+D cos 2Φ+2C
√

1− (δ/Nc)2 cosΦ
]
.

(5.10)
Here we have defined three new numbers, Nc,Φ and δ. Nc is the total number of
condensed magnons, Nc = N+Q +N−Q, which can be tuned and kept constant [23].
The total phase for the two condensates is Φ = ϕ+ + ϕ−. The difference in the
number of magnons in the two condensates is δ = N+Q −N−Q.

Comparing with Eq. 10 in [23], we see that there is an extra term in our calculations,
D cos(2Φ). In Appendix A we have rigorously shown that this term should be
present. As the extra term is a function of Φ, it could alter the phase diagram.

5.4 Curvature of the potential

As we now have our interaction potential in Eq. (5.10), we can inspect the possibil-
ities for the existence of a BEC. We know that V4 needs to be a repulsive potential.
We therefore look for extremum points, and determine if they are minima or maxima.

The process of determining such points is to first differentiate V4 with respect to δ
and Φ. We then set the expression to zero and solve for the respective variable

∂V4

∂δ
=

1

2
N2

c

[
(B +D cos(2Φ)− A)(2δ/N2

c )−
2Cδ

N2
c

√
1− (δ/Nc)2

cos(2Φ)
]
= 0

∂V4

∂Φ
=

1

2
N2

c

[
2D sin(2Φ)(δ/Nc)

2 − 2D sin(2Φ)− 2C
√

1− (δ/Nc)2 sin(Φ)
]
= 0.

(5.11)
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5.4. Curvature of the potential

This yields six extremum points

i) (δ/Nc)
2 = 0,Φ = 0

ii) (δ/Nc)
2 = 0,Φ = π

iii) (δ/Nc)
2 = 1−

[
C cos(Φ)

A−B −D cos(2Φ)

]2
,Φ = 0

iv) (δ/Nc)
2 = 1−

[
C cos(Φ)

A−B −D cos(2Φ)

]2
,Φ = π

v) (δ/Nc)
2 = 0,Φ = arccos

[
C
√

1− (δ/Nc)2

((δ/Nc)2 − 1)D

]
vi) (δ/Nc)

2 = 1−
[

C cos(Φ)

A−B −D cos(2Φ)

]2
,Φ = arccos

[
C
√

1− (δ/Nc)2

((δ/Nc)2 − 1)D

]
(5.12)

To check if any of these extrema could be minima, we need to find the second
derivatives

∂2V4

∂δ2
=

1

2
N2

c

[
(A−B −D cos(2Φ))(2/N2

c )−
2C cos(Φ)

N2
c (1− (δ/Nc)2)3/2

]
∂2V4

∂Φ2
=

1

2
N2

c

[
4D cos(2Φ)(δ/Nc)

2 − 4D cos(2Φ)− 2C
√

1− (δ/Nc)2 cos(Φ)
]

∂2V4

∂δ∂Φ
=

∂2V4

∂Φδ
=

1

2
N2

c

[
4D sin(2Φ)(δ/N2

c ) +
2Cδ√

1− (δ/Nc)2
sin(Φ)

]
. (5.13)

If a point is a minimum, there are three criteria it needs to fulfil: a) ∂2V4/∂δ
2 > 0,

b) ∂2V4/∂Φ
2 > 0 and c) (∂2V4/∂δ

2) (∂2V4/∂Φ
2)−(∂2V4/∂δ∂Φ)

2 > 0 when evaluated
at the point in question [47].

Extremum point i)

We look at the two first extrema, to see if we can consider restrictions that satisfy
the criteria for a minimum. We start by checking the point (δ/Nc)

2 = 0,Φ = 0

∂2V4

∂δ2
=

1

2
N2

c

[
(A−B −D)(2/N2

c )− 2C/N2
c

]
= A−B −D − C

∂2V4

∂Φ2
=

1

2
N2

c

[
−4D − 2C

]
∂2V4

∂δΦ
= 0.

To be a minimum we need, a)
[
A−B −D−C

][
−4D− 2C

]
2/N2

c > 0, b) A−B −
D − C > 0 and c)

[
−4D − 2C

]
> 0 to be fulfilled.
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5.4. Curvature of the potential

Extremum point ii)

The next extremum point is (δ/Nc)
2 = 0,Φ = π

∂2V4

∂δ2
=

1

2
N2

c

[
(A−B −D)(2/N2

c ) + 2C/N2
c

]
= A−B −D + C

∂2V4

∂Φ2
=

1

2
N2

c

[
2C − 4D

]
∂2V4

∂δΦ
= 0.

To be a minimum we need a)
[
A−B−D+C

][
2C−4D

]
2/N2

c > 0, b)A−B−D+C > 0
and c)

[
2C − 4D

]
> 0 to be fulfilled.

We know that A,B,C and D are functions of the external magnetic field, h, and
the thickness, d, of the film. These are parameters that can be tuned. If our system
satisfies the restrictions in either of the two extrema, we have found conditions under
which a stable BEC can exist.

The important thing to note here is that the ability to tune the coefficients A,B,C
and D comes from h and d. These emerge from the Zeeman coupling and dipolar
interaction, respectively. Therefore we see that the dipolar interaction is import-
ant, and not negligible although of small value. In section 6.2 we have elaborately
shown that the direct exchange interaction and Zeeman coupling cannot create a
stable BEC. When extremum point i) and ii) are tuned to be minima, they will be
symmetric condensates. δ, the difference in the number of magnon in the two con-
densates, is zero in both cases. As mentioned before, δ has a well-established way of
being measured, namely BLS. The difference in phase between the two condensates,
Φ, is zero in the first minimum and π in the second. The experimental aspects of
the difference in the phases is discussed in section 6.1.
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Chapter 6

Discussion*

6.1 Phase of the condensate

The two varying quantities in magnon BEC are δ = N+−N− and Φ = ϕ+−ϕ−. Since
δ is the difference in the number of magnons in the two coherent condensates, this
is a physical, and more importantly, measurable quantity. Experimentally, the con-
densates are imaged using Brillouin Light Scattering, BLS. This method measures
an intensity from the condensates, which is proportional to the number of magnons
in the condensate. This has been done e.g. in reference [19].

The difference in phase, Φ, is however more complicated. One possible approach
to quantify it, is to measure a persistent spin-current [48]. This idea is borrowed
from superconductors. The corresponding order parameter is ∆. As in our case,
this order parameter also has a phase, ∆ ∼ exp(iϕ). A Josephson junction can be
created between two superconductors. These superconductors must have the same
∆. This is a material dependent constant, thus meaning that they are made of the
same material. Sandwiched in between these, we place a normal metal/material. If
these two otherwise identical superconductors have different phases, ϕ1 ̸= ϕ2 there
will flow a charge current through the normal metal/material.

The idea, then, is to create a similar setup, but exchanging the superconductors with
ferromagnetic insulators. The relevant set-up is then two ferromagnetic insulators
separated by a normal metal/material. The setup is illustrated in Figure 6.1. In
both of the ferromagnetic insulators, there will be two coherent condensates. If the
Φs are different, a persistent spin current could flow. A more detailed explanation
can be found in e.g. [48].
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6.2. Importance of the dipolar interaction

Figure 6.1: Two ferromagnetic insulators on either side of a normal metal. A magnon
BEC exists in both insulators. A persistent spin-current flows from one FMI to the
other. The figure is from [48].

6.2 Importance of the dipolar interaction

As mentioned earlier in the report, the dipolar interaction was needed to explain
the formation of a condensate in a ferromagnetic system. We will now present the
reason why the direct exchange interaction and Zeeman coupling alone are insuffi-
cient to explain the formation of a stable BEC.

We start by looking at the coefficients in Eq. (4.21). Since we only want to include
the direct exchange interaction and Zeeman coupling, we set the terms emerging
only from the dipolar interaction to zero

Ak = h+ JS[4− 2 cos(kya)− 2 cos(kza)]

Bk = 0

Dxx
k = 0

Dyy
k = 0

Dzz
k = 0. (6.1)

(6.2)

To obtain the modified Bogoliubov transformation, we insert these values into uk

and vk in Eq. (5.5). Since Bk = 0, we see that the modified coefficients are now
uk = 1 and vk = 0. We could equally well have argued this by intuition, as the direct
exchange interaction Hamiltonian is diagonal. The Bogoliubov transformation thus
reduces to just the identity transformation.
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6.2. Importance of the dipolar interaction

We also know that the terms proportional to FQ in Eq. (5.9) stem from the dipolar
interaction. Thus, we set these to zero as well. The coefficients in Eq. (5.9) reduce
to

A = −DQ2

2SN

B =
DQ2

SN
C = 0

D = 0. (6.3)

Now we do the same transformation as in the case including the dipolar interaction,
a±Q =

√
N±Q exp(iϕ±). This gives us

V4 = A
[
N2

+Q exp(−2iϕ+ + 2iϕ+) +N2
−Q exp(−2iϕ− + 2iϕ−)

]
+ 2BN+QN−Q exp(−iϕ+ + iϕ+) exp(−iϕ− + iϕ−)

= A
1

2

[
N2

c + δ2
]
+ 2B

1

4

[
N2

c − δ2
]

V4 =
1

2
N2

c

[
(A+B) + (A−B)(δ/Nc)

2
]
. (6.4)

To determine if this system qualifies for BEC, we need to find some minima in the
energy/potential. As before, we start by differentiating V4 with respect to δ and
setting the derivative equal to zero

∂V4

∂δ
=

1

2
N2

c (A−B) 2δ/N2
c = 0. (6.5)

Eq. (6.5) is fulfilled when δ = 0, which is the extremum point. We now need to
check if this extremum point is a maximum, minimum or saddle point. The second
derivative of V4 is

∂2V4

∂δ2
= A−B

= −DQ2

2SN
− DQ2

SN

= −3DQ2

2SN
< 0, (6.6)

where we inserted values for A and B from Eq. (6.3). Since all the constants in the
last line in Eq. (6.6) are positive, we know that the total term is always less than
zero. Therefore, the second derivative of V4 is always less than zero, and thus the
potential does not have a minimum. This means that there cannot exist a Bose-
Einstein condensate of magnons. As we know, such a condensate does exist. This
means that we have not successfully explained the system. The missing part is the
dipolar interaction.
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Chapter 7

Summary and Outlook*

7.1 Summary

In the specialisation project report, we have presented a full analysis of the stability
of a magnon BEC in a ferromagnetic insulator. By performing three consecutive
transformations, namely the Holstein-Primakoff, Fourier and Bogoliubov transform-
ations, we produced a bosonic Hamiltonian describing the magnetic system. By
omitting other momenta than ±kBEC, we obtained the Hamiltonian describing only
the condensate. Inserting the condensate fields, we found the potential function,
which we used in our analysis to find potential minima. By tuning the external
magnetic field and the thickness of the film, we can tune the parameters such that
we obtain a minimum in the potential.

In Part III, we will shift the focus to stability analysis of BEC of magnons in anti-
ferromagnetic insulators.
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Part III

Antiferromagnetic System
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Chapter 8

Introduction to Antiferromagnetic
System

8.1 The antiferromagnetic system

Most of the work done in the master’s thesis is presented in Part III (although some
sections of Part I also belong to it). In Part II, we investigated the stability of a
Bose-Einstein condensate in a ferromagnetic system. Now, the goal is to carry out a
similar analysis for an antiferromagnetic system. This is a more difficult task, as the
relevant interactions are considerably more complicated due to the bipartite lattice.
However, it is also more interesting and rewarding, since much less is known about
Bose-Einstein condensation of magnons in antiferromagnetic systems.

We include the direct exchange interaction, magnetic anisotropy, Zeeman coupling
and DMI in our system. These interactions were all introduced in Chapter 2. In
Part II, we gave an introduction to Bose-Einstein condensates, and the history of
the field. We will therefore not repeat that material here, but rather encourage the
reader to consult Chapters 1 and 3.

In Chapter 2, Figure 2.1(b), we showed a cubic, bipartite lattice. In the next section,
we will elaborate on the dimensionality of our system. However, we always divide
the total lattice into two sublattices, A and B. In sublattice A the quantisation axis
is along the positive ẑ-axis. The spins on sublattice B are aligned antiparallel to the
ẑ-axis.

In the ferromagnetic case, we included the long-range dipolar interaction. However,
we have no significant contribution from this interaction in the antiferromagnetic
case. As stated in section 2.3, the dipolar interaction vanishes in the square (cubic)
bipartite antiferromagnetic case, due to the dipoles cancelling. The DMI, on the
other hand, is non-vanishing for the antiferromagnetic system. We assume a system
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8.1. The antiferromagnetic system

similar to those of ref. [49, 50] which has already been investigated experimentally.

For the direct exchange interaction, we include only nearest neighbour interactions,
meaning between the two sublattices. The magnetic anisotropy is modelled by on-
site anisotropy, which means that there is no interaction between different lattice
sites. The same also applies for the Zeeman coupling. The DMI, however, is an
inter-site interaction. For the DMI as well, we only look at distances up to nearest
neighbours. There are many possible configurations of the DMI, however we will use
a uniform DMI. This means that all DM-vectors are parallel. We decided on this
configurations based on the properties that this DMI gives the dispersion relations,
as elaborated on in ref. [50].

In the ferromagnetic case, there is only one species of magnons. In antiferromagnetic
systems on the other hand, there are two species. They are right-handed and left-
handed magnons, also referred to as clockwise and counter-clockwise, respectively.
As we will see, without an external field to couple the spins to, or without DMI, the
two magnon species are degenerate in energy.

After performing a Bogoliubov transformation, the magnons are represented in a
diagonal basis. This representation is the one we will use in our investigations. We
will find that there are two regions in k -space where the condensates can form, one
for each species. We will see that there are terms in the Hamiltonian that cause
an oscillation of magnons between the two condensates. This includes a transfer of
angular momentum, which was not necessary for the ferromagnetic case. However,
this is explained by the spin-orbit coupling (SOC) that also gives rise to the DMI.

We observed in Part II that the interactions between the magnons determine whether
there can exist a stable condensate. This is also the case for antiferromagnetic sys-
tems. We will see that the interaction between the magnons can be tuned with
magnetic anisotropy and DMI. This can be done by doping for the anisotropy, and
by applying an external electric field for the DMI.

The main reason for including DMI in our system is that we want to obtain dis-
persion relations similar to those in ref. [50]. As mentioned, the DMI will shift
the dispersion relations and their minima, and thus the momenta at which the con-
densations occur. This is known as non-reciprocal magnons. The shift causes the
condensates to be more easily observed experimentally.

When a magnetic field pulse with energy equal to the gap is applied to the sys-
tem, magnons at k = 0 are excited. This is known as antiferromagnetic resonance
(AFMR). To be able to observe the condensates, we need to experimentally observe
the constituent magnons. Thus, we need to be able to distinguish the magnons in
the condensates, from those that are not part of them [51]. Therefore it is interesting
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y
δ1δ2

h∥ẑ

D

Figure 8.1: Antiferromagnetic 1D spin chain showing orientation of external mag-
netic field and DMI. The nearest neighbour vectors δ1 and δ2 are also shown.

to include DMI, since the resulting system possess the above-mentioned shift away
from k = 0.

8.2 Dimensionality and symmetry

Real-world physical systems are usually three-dimensional. Yet, some systems are
two-dimensional to a good approximation. An example was the YIG film mentioned
in Part II. Furthermore, physical systems may sometimes be well described with a
model of lower dimension. In this part we will look at a one-dimensional bosonic
system. Ref. [52] argues that since we do not have long-range interactions, reducing
the dimensionality from 3D to 1D can be done without significantly changing the
underlying physics of this system.

Having decided on the dimensionality and the interactions included, we now present
an illustration of the resulting system and its interactions in Figure 8.1. Throughout
our calculations, we will mostly use a wave vector k = (0, k, 0). We are thus looking
at a 1D spin chain. Note the directions of the δi in Figure 8.1. This will be of great
significance in section 9.4.

Like dimensionality, symmetry also effects the way physical systems behave, and
some properties can be determined just from symmetry considerations. A famous
example is Noëthers theorem [53]. Symmetry is an extensive subject, and we will
only mention a few results, directly relevant to this work. First, we note that in
the context of spin system, the DMI can only exist if spatial inversion symmetry is
broken.
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8.2. Dimensionality and symmetry

Furthermore, it is relevant to mention the Mermin-Wagner theorem [54, 27]. It states
that for one and two-dimensional systems, long-range order cannot exist at finite
temperature if the system has a continuous symmetry and short-ranged interactions.
Any fluctuation, thermal or quantum mechanical, will disrupt the long-range order
of the system. Consequently, we can conclude that the 1D and 2D Heisenberg model,
which has a continuous rotation symmetry, must have a critical temperature equal
to zero. This is not necessarily the case if we include interactions that break the
continuous symmetry.

Finally, Goldstone’s theorem [55, 56] asserts that if a continuous symmetry is spon-
taneously broken in the ground state, then there exist gapless excitations. These are
known as Goldstone bosons in general, and as magnons in the case of ferromagnets
and antiferromagnets.
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Chapter 9

Bosonisation of Antiferromagnetic
System

To perform calculations in our current basis will be difficult. The spin operators’
commutator is [Sα

i , S
β
j ] = iεαβγS

γ
i δij. The analysis is considerably simplified by a bo-

sonisation procedure, resulting in commutators that maps to a number, as opposed
to an operator. We utilise a Holstein-Primakoff transformation, which transforms
the spin operators to bosonic operators that have simpler commutation relations on
the form [ai, a

†
j] = [bi, b

†
j] = δij, [ai, b

†
j] = 0, and all others equal to zero.

In an antiferromagnetic system, the bosonisation procedure will be analogous to the
ferromagnetic case. However, we now have two sublattices. The Holstein-Primakoff
transformation for the up-spins, sublattice A, will be identical to the one applied for
a ferromagnetic system, as we assume that the spins are quantised parallel to the
ẑ-axis. In sublattice B we obtain an adjusted transformation, as we assume that
the spins are quantised antiparallel to the ẑ-axis. The spin raising and lowering
operators for sublattice A are

S+
i = Sx

i + iSy
i

S−
i = (S+

i )
† = Sx

i − iSy
i . (9.1)

We introduce the same raising and lowering operators as before, adjusted for sub-
lattice B

S+
j = Sx

j + iSy
j

S−
j = (S+

j )
† = Sx

j − iSy
j . (9.2)

We see that we can express Sx
i/j and Sy

i/j in terms of the raising and lowering oper-
ators as

Sx
i/j =

1

2
(S+

i/j + S−
i/j)

Sy
i/j =

1

2i
(S+

i/j − S−
i/j). (9.3)
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9.1. Direct exchange interaction

As we have two sublattices, one aligning parallel to the ẑ-axis, and one aligning
antiparallel to the ẑ-axis, the Holstein-Primakoff transformation differs for the two
sublattices. For sublattice A, the Holstein-Primakoff transformation is

Sz
i = S − a†iai

S+
i =

√
2S

√
1− a†iai

2S
ai ≈

√
2S (1− 1

4S
a†iai) ai

S−
i =

√
2S a†i

√
1− a†iai

2S
≈

√
2S a†i (1−

1

4S
a†iai). (9.4)

For sublattice B, the Holstein-Primakoff transformation is

Sz
j = −S + b†jbj

S+
j =

√
2S b†j

√
1−

b†jbj

2S
≈

√
2S b†j (1−

1

4S
b†jbj)

S−
j =

√
2S

√
1−

b†jbj

2S
bj ≈

√
2S (1− 1

4S
b†jbj) bj. (9.5)

Note the asymmetry in Sz
i and Sz

j in Eq. (9.4) and (9.5). Also observe from Sz
i/j

in Eqs. (9.4) and (9.5), that 2S is the maximum number of bosons on each lattice
site. To approximate the square roots in Eq. (9.4) and Eq. (9.5) we utilised the
assumption that ⟨a†iai⟩/2S ≪ 1. We thus use the same first order approximation for
the square root as in the ferromagnetic case, namely

√
1− x ≈ 1− x/2. Note that

the average ⟨a†iai⟩ is the actual mean number of bosons in the system at a given
temperature. Thus it includes both the thermal average and the quantum average.
The majority of these magnons are pumped in, as described in Chapter 3.

9.1 Direct exchange interaction

To bosonise the interaction, we start by expanding the dot product in Eq. (2.1) .
We obtain two double sums, the first being a sum over sublattice A, with neighbours
in sublattice B. The other sum is over sublattice B with neighbours in sublattice A.

Hex = J
∑
⟨ij⟩

[
1

2
S+
i S

−
j +

1

2
S−
i S

+
j + Sz

i S
z
j

]

= J
∑
i∈A
j∈B

[
1

2
S+
i S

−
j +

1

2
S−
i S

+
j + Sz

i S
z
j

]
+ J

∑
i∈B
j∈A

[
1

2
S+
i S

−
j +

1

2
S−
i S

+
j + Sz

i S
z
j

]
.

(9.6)

Note that because of the commutativity of the dot product, seen in Eq. (2.1), the
sums are identical. Because of this property, we can swap places of the operators
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9.1. Direct exchange interaction

and rename the dummy indices i,j. We thus obtain a Hamiltonian with only one
double sum

Hex = 2J
∑
⟨ij⟩
i∈A
j∈B

[
− S2 + S

[
aibj + a†ib

†
j + b†jbj + a†iai

]
− 1

4

[
aib

†
jbjbj + a†iaiaibj + a†ib

†
jb

†
jbj + a†ia

†
iaib

†
j + 4a†iaib

†
jbj
]]
.

We have disregarded terms O({a, b}6), due to the smallness of their expectation
values.

We now define the interacting and non-interacting Hamiltonian for the direct ex-
change interaction

H0
ex = −JS2Nz

H2
ex = 2SJ

∑
i∈A
j∈B

[
aibj + a†ib

†
j + b†jbj + aia

†
i

]
H4

ex = −1

2
J
∑
i∈A
j∈B

[
aib

†
jbjbj + a†iaiaibj + a†ib

†
jb

†
jbj + a†ia

†
iaib

†
j + 4a†iaib

†
jbj
]
, (9.7)

where N is the number of lattice points on the total lattice, and z is the number of
nearest neighbours.

The first line in Eq. (9.7), H0
ex, is just a constant. We absorb it into the reference

energy. The second line, H2
ex is the non-interacting part, as it is O({a, b}2). We see

that it is not diagonal, since it contains terms of the form aibj and a†ib
†
j. The last

line, H4
ex, is the interacting part. The last term in the interacting part is a density

term. Note that the other terms do not conserve the number of bosons.

We will apply a Fourier transformation, which will give us the Hamiltonian in mo-
mentum space, while also diagonalising the non-interacting Hamiltonian for the
direct exchange interaction.

For sublattice A we insert the inverse Fourier transforms

ai =
1√
N/2

∑
k

ak e
−ik·ri

a†i =
1√
N/2

∑
k

a†k e
ik·ri , (9.8)

where N is the number of lattice points on the total lattice, and N/2 is the num-
ber of lattice points on each sublattice. The position vector ri is generally three-
dimensional, however it is reduced to ri = (0, yi, 0) for our calculations on a 1D spin
chain.
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9.1. Direct exchange interaction

Similarly, for sublattice B, we have the inverse Fourier transforms

bj =
1√
N/2

∑
k

bk e
−ik·rj

b†j =
1√
N/2

∑
k

b†k e
ik·rj , (9.9)

where, in a similar manner, rj = (0, yj, 0) for the 1D spin chain. Note that since
the lattice constant on each sublattice is now twice that of the total lattice, the first
Brillouin zone (1BZ) is halved.

We start by expressing the non-interacting Hamiltonian in momentum space. By
inserting the transformations in Eq. (9.8) and (9.9) into the non-interacting Hamilto-
nian in Eq. (9.7), and performing the sums over i and j, we obtain

H2
ex = 2SJ

[
z
∑
k1k2

δ(k1 − k2) ak1a
†
k2

+ z
∑
k1k2

δ(k1 − k2) b
†
k1
bk2

+
∑
k1k2

δ(k1 + k2) γ(k2) ak1bk2 +
∑
k1k2

δ(k1 + k2) γ(k2) a
†
k1
b†k2

]
, (9.10)

where γ(k) =
∑
δ

eik·δ, and δ are the vectors from a lattice site to its neighbours. As

mentioned in Part II, γ(k) is often referred to as the form factor. In three dimensions,
the δ-sum, over a cubic lattice, is extended to include six nearest neighbours. In our
1D spin chain model, there are two nearest neighbours, and we obtain a contribution
of 2 cos(kx) + 2 cos(kz)

∣∣
kx=kz=0

= 4 to the reference energy.

We can now perform one of the k -sums in each double sum. We then find

H2
ex = 2SJ

∑
k

z[a†kak + b†kbk ] + 2[akb−k + a†kb
†
−k] cos(k), (9.11)

where we have utilised that cos(k) is an even function.

Later, we will gather the bosonic operators in vectors and express the Hamiltonian
as a quadratic form. Therefore, we rewrite the Hamiltonian in a symmetric form by
using the commutation relations [ai, a

†
j] = δij, [bi, b

†
i ] = δij, at an appropriate stage

in the calculations. We will refer to this as the expanded Hamiltonian This will be
useful when we diagonalise the non-interacting Hamiltonian through a Bogoliubov
transformation in section 10.1. We present it here for later use

H2
ex = SJ

∑
k

z
[
[a†kak + aka

†
k + b†kbk + bkb

†
k ]

+2[akb−k + b−kak + a†kb
†
−k + b†−ka

†
k ] cos(k)

]
. (9.12)

We now look at the interaction Hamiltonian in Eq. (9.7). We once again insert the
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9.2. Magnetic anisotropy

inverse Fourier transformations from Eq. (9.8) and (9.9), into H4
ex. We find

H4
ex = 2J(−1

4
)

1

(N/2)

∑
k1...k4

ak1b
†
k2
bk3bk4 δ(k2 − k1 − k3 − k4)

∑
δ

ei(k2−k3−k4)·δ

+
∑

k1...k4

a†k1
ak2ak3bk4 δ(k1 − k2 − k3 − k4)

∑
δ

e−ik4·δ

+
∑

k1...k4

a†k1
b†k2

b†k3
bk4 δ(k1 + k2 + k3 − k4)

∑
δ

ei(k2+k3−k4)·δ

+
∑

k1...k4

a†k1
a†k2

ak3b
†
k4
δ(k1 + k2 + k4 − k3)

∑
δ

eik4·δ

+4
∑

k1...k4

a†k1
ak2b

†
k3
bk4 δ(k1 + k3 − k2 − k4)

∑
δ

ei(k3−k4)·δ. (9.13)

Performing one of the k -sums and renaming the indices, we obtain

H4
ex = 4J(−1

4
)

1

(N/2)

∑
k,q,q′

cos(k)[akbk+q+q′bqbq′ + ak+q+q′aqbk + h.c.

+4a†q−kaqb
†
q′+kbq′ ],

where h.c. denotes the Hermitian conjugates of the terms in front of it.

9.2 Magnetic anisotropy

The magnetic anisotropy was first introduced in Eq. (2.5). As mentioned, we assume
on-site, easy-axis anisotropy along the ẑ-axis, êeasy ∥ ẑ. We now split the sum for
our two sublattices. We obtain

Hani = −Kz

∑
i

(Sz
i )

2 −Kz

∑
j

(Sz
j )

2, (9.14)

where the i -sum runs over sublattice A, while the j -sum runs over sublattice B.

We now insert the Holstein-Primakoff transformation given in Eqs. (9.4) and (9.5).
The transformed Hamiltonian is then

Hani =−Kz

∑
i

[
S2 − 2Sa†iai + a†iaia

†
iai
]
−Kz

∑
j

[
S2 − 2Sb†jbj + b†jbjb

†
jbj
]
. (9.15)

The first term in each sum is just a constant, which we absord into the reference
energy. The second term is the non-interacting Hamiltonian, while the last term is
the interaction Hamiltonian.

We can split Eq. (9.15) into a Hamiltonian for the non-interacting part, H2
ani and a
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9.3. Zeeman coupling

Hamiltonian for the interaction part H4
ani

H2
ani = 2SKz

[∑
i

a†iai +
∑
j

b†jbj

]
H4

ani = −Kz

[∑
i

a†iaia
†
iai +

∑
j

b†jbjb
†
jbj

]
. (9.16)

As for the direct exchange interaction, we want to insert the inverse Fourier trans-
formations into Eqs. (9.8) and (9.9) to bring the Hamiltonian to momentum space.
We start by considering the non-interacting Hamiltonian

H2
ani = 2SKz

∑
k

[
a†kak + b†kbk

]
. (9.17)

For later convenience, we introduce the expanded H2
ani which is useful for matrix-

notation. In addition to an extra term for the reference energy arising from the
commutation relations, the expanded non-interacting Hamiltonian is

H2
ani = SKz

∑
k

[
a†kak + aka

†
k + b†kbk + bkb

†
k

]
. (9.18)

We find the interaction Hamiltonian the same way, namely by inserting the inverse
Fourier-transformations in Eqs. (9.8) and (9.9), into H4

ani, giving

H4
ani = −Kz

1

(N/2)

[ ∑
k1...k4

a†k1
ak2a

†
k3
ak4δ(k1 + k3 − k2 − k4)

+
∑

k1...k4

b†k1
bk2b

†
k3
bk4δ(k1 + k3 − k2 − k4)

]
= −Kz

1

(N/2)

∑
kqq′

[
a†q−kaqa

†
q′+kaq′ + b†q−kbqb

†
q′+kbq′

]
. (9.19)

We see that the expressions for the magnetic anisotropy, Eqs. (9.17) and (9.19) are
quite simple.

9.3 Zeeman coupling

To bosonise the Zeeman coupling, we insert the Holstein-Primakoff transformation
in Eqs. (9.4) and (9.5) into Eq. (2.6)

HZee = −µh
∑
i∈A

[
S − a†iai

]
− µh

∑
j∈B

[
−S + b†jbj

]
, (9.20)

where i sums over sublattice A, and j over sublattice B. An important note here
is that the Zeeman coupling does not contribute to the interaction Hamiltonian, it
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9.4. Dzyaloshinskii-Moriya interaction

is purely non-interacting. Note also that we do not obtain a contribution to the
reference energy, as the terms O(S) cancel.

We insert the inverse Fourier transforms in Eqs. (9.8) and (9.9) to obtain

HZee = −geµBh
∑
k

[
b†kbk − a†kak

]
. (9.21)

Again we introduce the expanded Hamiltonian, which will prove convenient when
we write the total non-interacting Hamiltonian in matrix notation

HZee = −µh

2

∑
k

[
b†kbk + bkb

†
k − a†kak − aka

†
k

]
. (9.22)

9.4 Dzyaloshinskii-Moriya interaction

By inspecting Figure 3 and arguments in [[50], we use a DM-vector that is parallel
to the ẑ-axis. We see from the reference that to obtain the system we desire, the
DM-vector needs to be uniform, rather than staggered. This will ensure that the
clockwise and anti-clockwise magnon bands split, and are no longer degenerate in
energy. Uniform DMI means that the DM-vector is parallel to the ẑ-axis at every
lattice point.

The DMI in this setup is carried by nearest neighbour interactions. As usual, we will
denote this by ⟨ij⟩, where i denotes the lattice point and j the nearest neighbours.
By letting the DM-vector be parallel to the ẑ-axis, Dij = Dνij ẑ, Eq. (2.8) expands
to

HDMI = D
∑
⟨ij⟩

νij
[
S⃗i × S⃗j

]
z
, (9.23)

where in the double sum, i runs over the total lattice, while j runs over the nearest
neighbours of a lattice point. νij is inserted to conserve the DM-vector’s antisym-
metry, namely Dij = −Dji. The symmetry of ν is then νij = −νji.

We divide the the double sum in Eq. (9.23) into two double sums, one where we
sum over sublattice A, with neighbours in sublattice B and vice versa. Explicitly,
we use i as the lattice index, and j for the nearest neighbours in both double sums

HDMI =
D

2i

∑
⟨ij⟩
i∈A
j∈B

νij
[
S−
i S

+
j − S+

i S
−
j

]
+

D

2i

∑
⟨ij⟩
i∈B
j∈A

νij
[
S−
i S

+
j − S+

i S
−
j

]
. (9.24)
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9.4. Dzyaloshinskii-Moriya interaction

We now insert the Holstein-Primakoff transformation in Eqs. (9.1) and (9.2) into
HDMI, which gives

HDMI =
D

2i

∑
⟨ij⟩
i∈A
j∈B

νij 2S
[
a†ib

†
j −

1

4S

[
a†ib

†
jb

†
jbj + a†ia

†
iaib

†
j

]
− aibj +

1

4S

[
aib

†
jbjbj + a†iaiaibj

]]

+
D

2i

∑
⟨ij⟩
i∈B
j∈A

νij 2S
[
biaj −

1

4S
[bia

†
jajaj + b†ibibiaj]− b†ia

†
j +

1

4S

[
b†ia

†
ja

†
jaj + b†ib

†
ibia

†
j

]]
.

(9.25)

We should note here that both a- and b-operators have i and j as indices.

We divide HDMI into a non-interacting Hamiltonian and an interacting Hamiltonian,

H2
DMI =

D

2i

∑
⟨ij⟩
i∈A
j∈B

νij 2S
[
a†ib

†
j − aibj

]
+

D

2i

∑
⟨ij⟩
i∈B
j∈A

νij 2S
[
biaj − b†ia

†
j

]

H4
DMI =

D

2i

∑
⟨ij⟩
i∈A
j∈B

[
− 1

4S

[
a†ib

†
jb

†
jbj + a†ia

†
iaib

†
j

]
+

1

4S

[
aib

†
jbjbj + a†iaiaibj

]]

+
∑
⟨ij⟩
i∈B
j∈A

[
− 1

4S

[
bia

†
jajaj + b†ibibiaj

]
+

1

4S

[
b†ia

†
ja

†
jaj + b†ib

†
ibia

†
j

]]
. (9.26)

We start by investigating the non-interacting Hamiltonian, H2
DMI. We insert the

inverse Fourier transform of the operators from Eqs. (9.8) and (9.9). The non-
interacting Hamiltonian then becomes

H2
DMI =

D

2i

∑
i∈A

2S
1

N/2

[ ∑
k1k2

a†k1
b†k2

ei(k1+k2)·ri
∑
δ

νi,i+δ e
ik2·δ

−
∑
k1k2

ak1bk2e
−i(k1+k2)·ri

∑
δ

νi,i+δ e
−ik2·δ

]
+
D

2i

∑
i∈B

2S
1

N/2

[ ∑
k1k2

bk1ak2e
−i(k1+k2)·ri

∑
δ

νi,i+δ e
−ik2·δ

−
∑
k1k2

b†k1
a†k2

ei(k1+k2)·ri
∑
δ

νi,i+δ e
ik2·δ

]
. (9.27)

Collecting terms gives

H2
DMI =

D

2i
2S
∑
k

a†kb
†
−k

∑
δ

νi,i+δ

(
e−ik·δ − eik·δ

)
+
D

2i
2S
∑
k

b−kak
∑
δ

νi,i+δ

(
e−ik·δ − eik·δ

)
. (9.28)
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9.4. Dzyaloshinskii-Moriya interaction

Note that the last part of both lines in Eq. (9.28) is a sine function. Without νi,i+δ

this sum would be zero. However, because of the definitions of δ in Figure 8.1 we see
that for δ2, the νi,i+δ2 becomes negative. This ensures a non-zero, non-interacting
Hamiltonian for DMI

H2
DMI = −D4S

∑
k

[
a†kb

†
−k + akb−k

]
sin(k). (9.29)

We present the expanded H2
DMI, which will be useful later.

H2
DMI = −D2S

∑
k

[
a†kb

†
−k + a†kb

†
−k + akb−k + akb−k

]
. (9.30)

We now turn to the interaction part of the Hamiltonian, H4
DMI in Eq. (9.26). In-

serting the inverse Fourier transforms of the operators brings it to momentum space

H4
DMI =

D

2i

∑
i∈A

1

(N/2)2

{
−1

2

[ ∑
k1...k4

a†k1
b†k2

b†k3
bk4e

i(k1+k2+k3−k4)·ri
∑
δ

νi,i+δe
i(k2+k3−k4)·δ

+
∑

k1...k4

a†k1
a†k2

ak3b
†
k4
ei(k1+k2+k4−k3)·ri

∑
δ

νi,i+δe
ik4·δ

]
+
1

2

[ ∑
k1...k4

ak1b
†
k2
bk3bk4e

i(k2−k1−k3−k4)·ri
∑
δ

νi,i+δe
i(k2+k3−k4)·δ

+
∑

k1...k4

b†k1
b†k2

bk3a
†
k4
ei(k1+k2+k4−k3)·ri

∑
δ

νi,i+δe
ik4·δ

]}
+
D

2i

∑
i∈B

1

(N/2)2

{
−1

2

[ ∑
k1...k4

bk1a
†
k2
ak3ak4e

i(k2−k1−k3−k4)·ri
∑
δ

νi,i+δe
i(k2−k3−k4)·δ

+
∑

k1...k4

b†k1
bk2bk3ak4e

i(k1−k2−k3−k4)·ri
∑
δ

νi,i+δe
−ik4·δ

]
+
1

2

[ ∑
k1...k4

b†k1
a†k2

a†k3
ak4e

i(k1+k2+k3−k4)·ri
∑
δ

νi,i+δe
i(k2+k3−k4)·δ

+
∑

k1...k4

b†k1
b†k2

bk3a
†
k4
ei(k1+k2+k4−k3)·ri

∑
δ

νi,i+δe
ik4·δ

]}
.

(9.31)

As in the non-interacting part, νi,j keeps the sum of sines non-zero. By carrying
out sums over i, one ki and renaming, we obtain the following expression for the
interaction part of the DMI

H4
DMI = D

1

(N/2)

∑
kqq′

sin(k)

[
a†kb

†
qb

†
q′bk+q+q′ + akb

†
k+q+q′bqbq′

−a†qa
†
q′aq+q′+kb

†
k − a†q+q′+kaqaq′bk

]
. (9.32)
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9.5. Total Hamiltonian

9.5 Total Hamiltonian

Having obtained the non-interacting and interaction Hamiltonian in momentum
space for all interactions, we now add them together. To simplify the expressions,
we define two new functions

f2(k) = J cos(k)

f3(k) = D sin(k). (9.33)

For the non-interacting Hamiltonian, we use the expression for H2
ex in Eq. (9.11).

For the magnetic anisotropy, H2
ani from Eq. (9.17) will contribute. As the Zeeman

coupling is purely non-interaction, we insert the entire HZee from Eq. (9.21). From
DMI, H2

DMI Eq. (9.29) will add to the total non-interacting Hamiltonian.

We thus obtain the following non-interacting, total Hamiltonian

H2 = H2
ex +H2

ani +HZee +H2
DMI

= SJ
∑
k

z[a†kak + b†kbk ] + 2SJ [akb−k + a†kb
†
−k] cos(k)

+ 2SKz

∑
k

[
a†kak + b†kbk

]
− µh

∑
k

[
b†kbk − a†kak

]
−D4S

∑
k

[
a†kb

†
−k + akb−k

]
sin(k). (9.34)

We observe that there are no linear terms, O({a, b}). This is because we found the
correct quantisation axis. Another important observation is that H2 is not diagonal.
H2 contains terms that are off-diagonal such as e.g. a†kb−k . We will therefore, in
the next chapter, perform a Bogoliubov transformation.

We collect the terms of the Hamiltonians for the total interacting Hamiltonian as
well. We use H4

ex in Eq. (9.14) for the direct exchange interaction. Magnetic
anisotropy contributes with H4

ani from Eq. (9.19). As mentioned above, the Zeeman
coupling does not contribute to the interaction Hamiltonian. For DMI, H4

DMI in Eq.
(9.32) contributes. We thus obtain the following total interaction Hamiltonian

H4 = H4
ex +H4

ani +H4
DMI

= 4J(−1

4
)

1

(N/2)

∑
k,q,q′

cos(k)[akbk+q+q′bqbq′ + ak+q+q′aqbk + h.c.

+4a†q−kaqb
†
q′+kbq′ ]

−Kz
1

(N/2)

∑
kqq′

[
a†q−kaqa

†
q′+kaq′ + b†q−kbqb

†
q′+kbq′

]
+D

1

(N/2)

∑
kqq′

sin(k)

[
a†kb

†
qb

†
q′bk+q+q′ + akb

†
k+q+q′bqbq′

−a†qa
†
q′aq+q′+kb

†
k − a†q+q′+kaqaq′bk

]
.

(9.35)

In the next chapter, we will rewrite H4 in terms of the Bogoliubov basis that we
find through the diagonalisation.
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Chapter 10

Stability Analysis of
Antiferromagnetic System

We see that even in momentum space, the non-interacting Hamiltonian is still not
diagonal. We thus need to perform a Bogoliubov transformation to diagonalise it.
During the process of finding the appropriate Bogoliubov transformation, we will
also find the dispersion relation for the clockwise and counter-clockwise magnons.
We expect to find dispersion relations similar to Figure 3dI in ref. [50]. The next
step in the stability analysis will then be to reduce the triple sum of the interaction
Hamiltonian, to the specific momenta where the condensates exist. They exist at
the minima of the dispersion relations. We will see that the condensations occur at
k ±Q.

After finding the interaction Hamiltonian at the momenta where the condensates
exist, we insert the Bogoliubov transformation. Physically, this means that we find a
basis that renders the non-interacting Hamiltonian diagonal, and treat the interact-
ing Hamiltonian as a small perturbation. When we have obtained the Hamiltonian
describing the interactions between the magnons, we insert the expectation value of
the operators, known as a Madelung transformation. We then obtain the interaction
potential. This is the potential that determines if the interactions are repulsive, and
a condensate can exist, or if they are attractive, and a condensate cannot exist.

10.1 Bogoliubov transformation

We start by collecting the expanded non-interacting Hamiltonians, namely H2
ex from

Eq. (9.12) for the direct exchange interaction, H2
ani from Eq. (9.18) for the magnetic

anisotropy, H2
Zee from Eq. (9.22) for the Zeeman coupling and H2

DMI Eq. (9.30) for
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10.1. Bogoliubov transformation

the DMI. The expanded, non-interacting Hamiltonian is then

H2 = SJ
∑
k

[
z[a†kak + aka

†
k + b†kbk + bkb

†
k ]

+2[akb−k + b−kak + a†kb
†
−k + b†−ka

†
k ] cos(k)

]
+SKz

∑
k

[
a†kak + aka

†
k + b†kbk + bkb

†
k

]
−µh

2

∑
k

[
b†kbk + bkb

†
k − a†kak − aka

†
k

]
−D2S

∑
k

[
a†kb

†
−k + a†kb

†
−k + akb−k + akb−k

]
sin(k). (10.1)

To clean up the expressions, we define three new coefficients

ωE = 2SJ

ωD = 2DS

ωA = SKz

ωH =
1

2
µh, (10.2)

where we have explicitly inserted z = 2 in the direct exchange interaction, as we
consider a 1D spin chain.

We want to write the Hamiltonian in Eq. (10.1) on matrix form. When we have
achieved that, we can start diagonalising it. The first step is to collect terms

H2 =
∑
k

[
ωE + ωA + ωH

]
a†kak +

[
ωE + ωA + ωH

]
aka

†
k

+
[
ωE + ωA − ωH

]
b†kbk +

[
ωE + ωA − ωH

]
bkb

†
k

+
[
ωE cos(k)− ωD sin(k)

]
akb−k +

[
ωE cos(k)− ωD sin(k)

]
b−kak

+
[
ωE cos(k)− ωD sin(k)

]
a†kb

†
−k +

[
ωE cos(k)− ωD sin(k)

]
b†−ka

†
k .

(10.3)

We choose the basis such that our non-interacting Hamiltonian is block-diagonal.
Achieving this form allows us to use the same diagonalisation procedure as in section
5.1. With a block-diagonal matrix, as shown in Eq. (10.5), we can solve the blocks
independently, resulting in two separate systems of reduced dimensions

The basis for Eq. (10.3) is Φ⃗ = (Φ⃗I
k Φ⃗

II
k )

T = (ak b
†
−k a

†
−k bk)

T. The Hermitian

conjugate is then Φ⃗†
k = (Φ⃗I

k Φ⃗
II
k )

† = (a†k b−k a−k b†k). We can thus rewrite Eq.
(10.3) as

H2 =
∑
k

Φ⃗†
kHkΦ⃗k, (10.4)

where Hk is defined as

Hk =

(
H I

k 0
0 H II

k

)
. (10.5)
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10.1. Bogoliubov transformation

In order to write H2 on the matrix form in Eq. (10.4), we utilise the fact that∑
k akb−k =

∑
k a−kbk , as the sum runs over 1BZ. The upper right and lower left

blocks of Hk are 2x2-matrices of all zeros. We therefore obtained the desired form
of Hk, namely a 4x4 block-diagonal matrix. The other 2x2-matrices in Eq. (10.5)
are

H I
k =

(
ωE + ωA + ωH ωE cos(k)− ωD sin(k)

ωE cos(k)− ωD sin(k) ωE + ωA − ωH

)
, (10.6)

and

H II
k =

(
ωE + ωA + ωH ωE cos(k) + ωD sin(k)

ωE cos(k) + ωD sin(k) ωE + ωA − ωH

)
. (10.7)

These Hamiltonians are Hermitian, as they should be. We also see that H II
k is equal

to H I
−k. We note that Φ⃗II,T

k = Φ⃗I †
−k . This means that the Bogoliubov coefficients

are the same for subsystem I and II, when we let k → −k. These properties, along
with the block-diagonal form, allows us to consider just one sub-system.

We choose to look at sub-system I

H2,I =
∑
k

Φ⃗I †
k H I

kΦ⃗
I
k. (10.8)

As in section 5.1, we now define a matrix U for the Bogoliubov transformation. This
matrix defines new bosonic operators αk and βk . Since the inverse of matrix U also
will be useful, we present both the matrix and its inverse

Uk =

(
uk v∗k
vk uk

)
, U−1

k

(
uk −v∗k
−vk uk

)
. (10.9)

The u and v are the Bogoliubov coefficients and without loss of generality, we will
assume these to be real [57]. This implies that v∗ = v

Our new operators are defined such that they follow the same bosonic commuta-
tion relations as our current operators does, namely [ak , a

†
k′ ] = δkk′ , [bk , b

†
k′ ] = δkk′ ,

while all other commutators are zero. The new operators thus follow [αk , α
†
k′ ] = δkk′ ,

[βk , β
†
k′ ] = δkk′ while all other commutators are zero. The new operator vector is

⃗̃Φ1
k = (αk β†

−k)
T. We refer to section 5.1 for details.

The Bogoliubov transformed operators are defined as

⃗̃ΦI
k = UkΦ⃗

I
k ,

(
αk

β†
−k

)
=

(
uk vk
vk uk

)(
ak
b†−k

)
. (10.10)
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10.1. Bogoliubov transformation

We will make more use of expressing ak , b
†
−k in terms of αk , β

†
−k . We therefore

multiply with the inverse of matrix Uk from the left in Eq. (10.10)

Φ⃗1
k = U−1

k
⃗̃Φ1

k ,

(
ak
b†−k

)
=

(
uk −vk
−vk uk

)(
αk

β†
−k

)
. (10.11)

As we stated above, the Bogoliubov transformed operators αk and βk should follow
the same commutation relations as before. This imposes, as in section 5.1, the
constraint

u2
k − v2k = 1. (10.12)

Following the same procedure as in Part II, we insert the expressions for ak and bk
found in Eq. (10.11), into Eq. (10.8), and obtain

H2,I =
∑
k

⃗̃Φk(U
−1
k )†H I

k U
−1
k

⃗̃Φk

=
∑
k

⃗̃ΦkH̃
I
k
⃗̃Φk . (10.13)

We have defined a new matrix, H̃ I
k as

H̃ I
k = (U−1

k )†H I
k U

−1
k . (10.14)

Analogously to the ferromagnetic case, this is the matrix we diagonalise. The matrix
reads

H̃ I
k =

(
H̃

I,(1,1)
k H̃

I,(1,2)
k

H̃
I,(2,1)
k H̃

I,(2,2)
k

)
, (10.15)

and its elements are

H̃
I,(1,1)
k =uk

[
(ωE + ωA + ωH)uk − (ωE cos(k)− ωD sin(k)vk

]
−v∗k

[
(ωE cos(k)− ωD sin(k))uk − (ωE + ωA − ωH)vk

]
H̃

I,(1,2)
k =uk

[
−(ωE + ωA + ωH)v

∗
k + (ωE cos(k)− ωD sin(k))uk

]
−v∗k

[
−(ωE cos(k)− ωD sin(k))vk∗ + (ωE + ωA − ωH)uk

]
H̃

I,(2,1)
k =− vk

[
(ωE + ωA + ωH)uk − (ωE cos(k)− ωD sin(k))vk

]
+uk

[
(ωE cos(k)− ωD sin(k))uk − (ωE + ωA − ωH)vk

]
H̃

I,(2,2)
k =− vk

[
(ωE + ωA + ωH)vk + (ωE cos(k)− ωD sin(k))uk

]
+uk

[
−(ωE cos(k)− ωD sin(k))v∗k + (ωE + ωA + ωH)uk

]
. (10.16)

To obtain a diagonal Hamiltonian, we need the off-diagonal elements to be zero.
Thus, we need H̃

I,(1,2)
k and H̃

I,(2,1)
k to vanish. We observe that the matrix is symmet-

ric, i.e H̃
I,(2,1)
k = H̃

I,(1,2)
k . By also utilising the constraint in Eq. (10.12), we find the
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10.1. Bogoliubov transformation

expressions for uk and vk .

We start by setting H̃
I,(2,1)
k equal to zero,

0 =vk
[
(ωE + ωA + ωH)uk − (ωE cos(k)− ωD sin(k))vk

]
+uk

[
(ωE cos(k)− ωD sin(k))uk − (ωE + ωA − ωH)vk

]
. (10.17)

Employing the constraint u2
k − v2k = 1 presented earlier, we find the following ex-

pression for u2
k and v2k

u2
k =

1

2

√
(ωE + ωA)2

(ωE + ωA)2 − (ωE cos(k)− ωD sin(k))2
+

1

2

v2k =
1

2

√
(ωE + ωA)2

(ωE + ωA)2 − (ωE cos(k)− ωD sin(k))2
− 1

2
. (10.18)

The elements of the matrix H̃ I
k have physical meaning. After inserting the Bogoli-

ubov coefficients in Eq. (10.18), the Hamiltonian in Eq. (10.13) now reads

H2,I =
∑
k

εαkα
†
kαk + εβkβ−kβ

†
−k , (10.19)

where we have renamed H̃
I,(1,1)
k to εαk and H̃

I,(2,2)
k to εβk . To obtain the correct form,

we need to let −k → k in the second term, thus changing εβk → εβ−k . During these
changes we make use of the commutation relation, providing an extra term to the
reference energy.

Inserting uk and vk back into εαk and εβ−k we obtain

εαk =
[
(ωE + ωA)

2 − (ωE cos(k)− ωD sin(k))2
]1/2

+ ωH

εβ−k =
[
(ωE + ωA)

2 − (ωE cos(k) + ωD sin(k))2
]1/2 − ωH , (10.20)

where we have assumed ωD not too large, see Eq. (10.21).

The quantity we are interested in is εβ−k . For simplicity of notation, we thus redefine

εβ−k to εβk , such that εβk =
[
(ωE + ωA)

2 − (ωE cos(k) + ωD sin(k))2
]1/2 − ωH . We can

observe the effect of non-reciprocity here, as a−k ̸= ak and thus α−k ̸= αk . Expli-
citly, sine is not an even function. However, the sum is symmetric, so

∑
k a

†
−ka−k =∑

k a
†
kak .
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10.2. Dispersion relations

10.2 Dispersion relations

We now analyse how the various interactions affect the dispersion relations, εαk and

εβk .

Only direct exchange interaction

Turning off the external magnetic field, anisotropy and DMI, we see that the dis-
persion relations are degenerate. This is shown in Figure 10.1. Another important
observation is that the gap is now closed, at k = 0. Since this is the Heisenberg
model, which has rotational symmetry that is spontaneously broken in the ground
state, gapless excitations are expected from the aforementioned Goldstone’s the-
orem.

As expected from the Heisenberg model for antiferromagnetic ordering, the disper-
sion relations at small k are linear.

/2 /4 0 /4 /2
k

0

1

2

3

4

5

k/J

D/J = 0, Kz/J = 0, H/J = 0

k

k

Figure 10.1: The dispersion relations for α- and β-magnons when external magnetic
field, anisotropy and DMI is turned off. The dashed, vertical lines mark the bound-
aries of the 1BZ.
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10.2. Dispersion relations

Anisotropy turned on, magnetic field and DMI turned off

The next interaction we want to investigate, is anisotropy. We thus leave the external
magnetic field and DMI off, while turning on anisotropy. We see in Figure 10.2
that the dispersion relations are still degenerate, however, a gap has opened. Since
anisotropy breaks the rotational symmetry, Goldstone’s theorem no longer applies.
We also see that the linear shape is not conserved. The dispersion relations are now
quadratic at small k, as opposed to linear as in the previous case.
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k/J
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k

k

Figure 10.2: The dispersion relations for α- and β-magnons, when anisotropy is
turned on while external magnetic field and DMI is turned off. The dashed, vertical
lines mark the boundaries of the 1BZ.
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10.2. Dispersion relations

Magnetic field and anisotropy turned on, DMI turned off

If we now turn on the magnetic field, we see in Figure 10.3 that the dispersion
relations are non-degenerate. The external magnetic field has shifted the counter-
clockwise dispersion relation, εαk , upwards, while the clockwise, ε

β
k , has been shifted

downwards in energy. This result is easily understood when looking at the expres-
sions in Eq. (10.20).
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k/J
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0.1 0.0 0.10.6

0.8

k

k

Figure 10.3: The dispersion relations for α- and β-magnons, when external magnetic
field is turned on while anisotropy and DMI is turned off. The dashed, vertical lines
mark the boundaries of the 1BZ.

We now want to turn on DMI. It is important to note that there is a constraint on
the strength of the DMI, that follows from the dispersion relations [58]. We need

ωD ≤ 4
√
JKz. (10.21)

64



10.2. Dispersion relations

All interactions

We observe that the dispersion relations are shifted horizontally, with equal offsets
to the left and right from k = 0. We will see that this is due to the DMI. We also
note that the dispersion relations are shifted vertically around a certain value.
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Figure 10.4: Dispersion relations for α- and β-magnons with D/J = 0.03, Kz/J =
0.05 and H/J = 0.01. The dashed, vertical lines mark the boundaries of the 1BZ.
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10.2. Dispersion relations

Dispersion relations as functions of anisotropy

To see how the dispersion relations vary as functions of the anisotropy, we show εαk
and εβk for four different values of Kz in Figure 10.5. We observe that the shape of
the dispersion relations changes. When Kz is increased, the minimum and maxima
stay at the same k-value, while the amplitude is reduced.

The curvature of the dispersion relations is given by ∂2εk/∂k
2. From Figure 10.5,

we see that the curvature is reduced when the anisotropy strength is increased. The
reciprocal of the curvature is proportional to the effective mass [59]. Thus, we can
deduce that the effective mass of the magnons is increased with increased anisotropy
strength.
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Figure 10.5: The dispersion relations for α- and β-magnons, when we vary Kz.
Upper left, Kz/J = 0.01. Upper right, Kz/J = 0.07. Lower left, Kz/J = 0.15.
Lower right, Kz/J = 0.2. Magnetic field is turned off, and D/J = 0.03. The
dashed, vertical lines mark the boundaries of the 1BZ.
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10.3. Interaction Hamiltonian

Dispersion relations as functions of DMI

We present the same analysis for the DMI. The four plots in Figure 10.6 show the
dispersion relations with varying D. We observe that the dispersion relations are
increasingly shifted horizontally with increasing D. The minima are thus shifted to
larger k-values.
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Figure 10.6: The dispersion relations for α- and β-magnons, when we vary D. Upper
left, D/J = 0.01. Upper right, D/J = 0.07. Lower left, D/J = 0.15. Lower right,
D/J = 0.2. Magnetic field is turned off, and Kz/J = 0.05. The dashed, vertical
lines mark the boundaries of the 1BZ.

10.3 Interaction Hamiltonian

The main goal of this thesis is, as already mentioned, to find the effective of inter-
actions between the magnons at the k -values that are candidates for condensates.
The necessary condition is that the interactions are repulsive. To investigate this,
we need to find an expression for the interaction potential. In the previous sec-
tion, we found a Bogoliubov-transformation that diagonalised the non-interacting
Hamiltonian. We view the interaction Hamiltonian as a small perturbation to the
non-interacting Hamiltonian. The total interaction Hamiltonian was presented in
Eq. (9.35).
Before inserting the Bogoliubov transformation, it is important to note that the sum
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10.3. Interaction Hamiltonian

in Eq. (9.35) is a triple sum over all momenta. However, the only magnons that are
interesting for us, are those in the condensate. From Figure 10.4, we see that these
magnons lie in the minima of εk at k±Q. Therefore, we reduce the sum to consider

only combinations that give α
(†)
−Q and β

(†)
+Q. To obtain that, we need to reduce the

sum for the Hamiltonian in Eq. (9.35) first.

The resulting Hamiltonian, HQ, is then

HQ =
1

(N/2)

{[[
−f2(Q)− f3(Q)

][
a−Qb

†
QbQbQ + 2a−Qb

†
−Qb−QbQ

]
+
[
−f2(Q) + f3(Q)

][
2aQb

†
QbQb−Q + aQb

†
−Qb−Qb−Q

]
+ h.c.

]
+

[[
−f2(Q)− f3(Q)

][
a†−Qa−Qa−QbQ + 2a†QaQa−QbQ

]
+
[
−f2(Q) + f3(Q)

][
a†QaQaQb−Q + 2a†−Qa−QaQb−Q

]
+ h.c.

]
−4J

[
a†QaQb

†
QbQ + a†−Qa−Qb

†
−Qb−Q + a†QaQb

†
−Qb−Q + a†−Qa−Qb

†
QbQ

+cos(Q)
[
a†Qa−Qb

†
−QbQ + a†−QaQb

†
Qb−Q

]]
−(Kz/2)

[
a†QaQa

†
QaQ + a†−Qa−Qa

†
−Qa−Q + 4a†QaQa

†
−Qa−Q

+ b†QbQb
†
QbQ + b†−Qb−Qb

†
−Qb−Q + 4b†QbQb

†
−Qb−Q + h.c.

]}
. (10.22)

To find this Hamiltonian in the diagonal basis, we insert the (inverse) Bogoliubov
transformation in Eq. (10.11). When collecting terms after the insertion, we omit

terms that include operators α
(†)
+Q, β

(†)
−Q as these are not part of the condensates.

The condensates form at the minima of the dispersion relations. At k = +Q α-
magnons are not in a minimum. The same applies for β-magnons at k = −Q.
As in the ferromagnetic case, in section 5.2, we can use the commutation relations
[αk,α

†
k′ ] = [βk,β

†
k′ ] = δkk′ and neglect terms emerging from the δkk′ as those are of

one order of magnitude smaller than H2 in Eq. (10.19). The final result is then

HQ = A
[
α−Qβ

†
QβQβQ + β†

Qα−Qα
†
−Qα

†
−Q + α−Qα−QβQα

†
−Q + β†

Qβ
†
QβQα

†
−Q

]
+B
[
α−Qα−QβQβQ + β†

Qβ
†
Qα

†
−Qα

†
−Q

]
+C
[
α−Qα−Qα

†
−Qα

†
−Q + β†

Qβ
†
QβQβQ

]
+Dα−Qβ

†
QβQα

†
−Q, (10.23)

where we defined coefficients A, B, C and D as

A =
[
−f2(Q)− f3(Q)

][
α1
Q + α2

Q

]
− 4J

[
α3
Q

]
−Kz

[
2α3

Q

]
B =

[
−f2(Q)− f3(Q)

][
2α3

Q

]
− 4J

[
(1/2)α2

Q

]
−Kz

[
α2
Q

]
C =

[
−f2(Q)− f3(Q)

][
2α3

Q

]
− 4J

[
(1/2)α2

Q

]
−Kz

[
α1
Q − 2α2

Q

]
D =

[
−f2(Q)− f3(Q)

][
8α3

Q

]
− 4J

[
α1
Q − α2

Q

]
−Kz

[
4α2

Q

]
. (10.24)
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10.4. Interaction potential

Additionally, we have defined three new functions in Eq. (10.24),

α1
Q = u4

−Q + v4−Q + 4u2
−Qv

2
−Q

α2
Q = 2u2

−Qv
2
−Q

α3
Q = −u−Qv−Q(u

2
−Q + v2−Q). (10.25)

In Eq. (10.23), we observe that the terms in the third line only include one type
of magnons. These terms thus represent intravalley scattering, as they only consist
of either operators at the minimum for α- or β-magnons. The other terms includes
both α- and β-operators, and thus representing intervalley scattering. We define two
Hamiltonians, Hintra andHinter for, respectively, intravalley scattering and intervalley
scattering

Hintra = C
[
α−Qα−Qα

†
−Qα

†
−Q + β†

Qβ
†
QβQβQ

]
Hinter = A

[
α−Qβ

†
QβQβQ + β†

Qα−Qα
†
−Qα

†
−Q + α−Qα−QβQα

†
−Q + β†

Qβ
†
QβQα

†
−Q

]
+B
[
α−Qα−QβQβQ + β†

Qβ
†
Qα

†
−Qα

†
−Q

]
+Dα−Qβ

†
QβQα

†
−Q. (10.26)

The coefficient C can be interpreted as the amplitude of intravalley scattering within
the two condensates. Coefficients A, B and D can be interpreted as the amplitude
of various types of intervalley scattering between the two condensates.

10.4 Interaction potential

We have now obtained our Hamiltonian in the desired basis. Following the procedure
of section 5.3, we now insert the Madelung transformation to find the interaction
potential. This amounts to inserting the expectation value of the operators. The
transformations in the antiferromagnetic case are

⟨α−Q⟩ =
√
Nα eiϕ

α

⟨βQ⟩ =
√
Nβ eiϕ

β

(10.27)

The interaction potential is now

V4 =AN1/2
α N

1/2
β [Nα +Nβ]2 cos(ϕα + ϕβ) +BNαNβ2 cos(2(ϕα + ϕβ))

+C(N2
α +N2

β) +DNαNβ. (10.28)

We once again assume that we can keep the number of magnons in the condensate
constant, with pumping. We also assume that scattering processes, including spin-
orbit coupling, cause the magnon number in each condensate to vary. Unlike the
ferromagnetic case, where there was only one species of magnons, scattering from
one species of magnons to the other includes a change in angular momentum. This
can happen through spin-orbit coupling. As for the FMI, we also introduce the total
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10.4. Interaction potential

phase, adding the phases in the two condensates. Introducing the same paramet-
ers as in the ferromagnetic case, the total number of magnons in both condensates
Nc = Nβ+Nα, the difference in numbers of magnons in the condensates δ = Nβ−Nα

and the total phase Φ = ϕβ + ϕα. Observing the definition of δ, we can refer to this
parameter as the polarisation of the condensate system. If δ ̸= 0, we have more of
one species of magnons, and thus more of one type of angular momentum.

Writing the interaction potential V4 in terms of Nc, δ and Φ gives

V4 =
N2

c

2

[
(C +

D

2
)− (

D

2
+B cos (2Φ)− C)(δ/Nc)

2 +B cos(2Φ)

+2A
√

1− (δ/Nc)2 cos(Φ)

]
. (10.29)

An interesting remark at this point, is that the interaction potential of the antifer-
romagnetic system, in Eq. (10.29), has the same form as the ferromagnetic system,
in Eq. (5.10) with different coefficients.

We define two interaction potentials, V4,intra and V4,inter, for the intravalley scattering
and intervalley scattering, respectively.

V4,intra =
N2

c

2
C
[
1− (δ/Nc)

2
]

V4,inter =
N2

c

2

[
D

2
− (

D

2
+B cos (2Φ))(δ/Nc)

2 +B cos(2Φ) + 2A
√

1− (δ/Nc)2 cos(Φ)

]
.

(10.30)

In Figure 11.1 we show the value of V4,intra and V4,inter as functions of the strengths
of DMI and anisotropy.

Since the ferromagnetic and antiferromagnetic potentials have the same form and
variables, we already have an expression for the second derivatives in Eq. (5.13).
In our antiferromagnetic system, we find that extremum points v) and vi) from Eq.
(5.12) are not valid. We thus have four extrema,

i) (δ/Nc)
2 = 0,Φ = 0

ii) (δ/Nc)
2 = 0,Φ = π

iii) (δ/Nc)
2 = 1−

[
A cos(Φ)

C −D/2−B cos(2Φ)

]2
,Φ = 0

iv) (δ/Nc)
2 = 1−

[
A cos(Φ)

C −D/2−B cos(2Φ)

]2
,Φ = π. (10.31)
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10.5. Phase diagrams

10.5 Phase diagrams

As the goal of this work is to determine if a BEC of magnons can exist in an AFMI,
we need to investigate if the potential is repulsive. We thus consider the signs of
the second derivatives of V4, and of V4 itself. An adequate way to inspect this is
by drawing phase diagrams. As first done in section 5.3, we present once again the
criteria for an extremum point to be a minimum, via the second derivative test

a) ∂2V4/∂δ
2 > 0,

b) ∂2V4/∂Φ
2 > 0

c) (∂2V4/∂δ
2) (∂2V4/∂Φ

2)− (∂2V4/∂δ∂Φ)
2 > 0. (10.32)

A useful observation here is that, as we can see from Eq. (5.13), ∂2V4/∂δΦ is a
function of sin(Φ), which is zero in all extrema. We thus focus on a) and b).

In our antiferromagnetic case, the coefficients A, B, C and D are functions of the
direct exchange interaction strength J, the anisotropy strength Kz, and the DMI
strength D. The value of J is hard to change experimentally, so we choose to look
at how the coefficients A, B, C and D vary as functions of Kz and D.

We show the phase diagrams in units of J .
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10.5. Phase diagrams

Extremum point i)

The values of the second derivatives of V4, are shown in Figures 10.7, with ∂2V4/∂δ
2

in 10.7(a) and with ∂2V4/∂Φ
2 in 10.7(b). In Figure 10.7(c) we show the value of V4

in units of J.

In Figure 10.7, the red regions indicate positive values, while blue shows negative
values. We see that for ∂2V4/∂Φ

2 there is no region where it is positive. Thus, this
extremum point is not a minimum and there cannot exist a BEC with these values
of δ and Φ.
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Figure 10.7: (a) and (b) The second derivatives of V4, as functions of Kz and D, in
extremum point i) from Eq. (10.31). (c) V4 as a function of Kz and D in extremum
point i).
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10.5. Phase diagrams

Extremum point ii)

In Figures 10.8(a) and 10.8(b) we see that the entire diagram for ∂2V4/∂δ
2 and

∂2V4/∂Φ
2 are positive. For V4 in Figure 10.8(c) the entire diagram is negative. We

can thus conclude that this extremum point is a minimum, and that the interaction
potential is repulsive. Thus, there can exist a condensate with δ = 0 and Φ = π.
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Figure 10.8: (a) and (b) The signs of the second derivatives of V4, as functions of
Kz and D, in extremum point ii) from Eq. (10.31). (c) V4 as a function of Kz and
D in extremum point ii).
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Extremum point iii)

We show the value of ∂2V4/∂δ
2 and ∂2V4/∂Φ

2 in Figure 10.9(a) and 10.9(b). Sim-
ilarly to extremum point i), we have no overlapping regions where both second
derivatives are positive. From Figure 10.9(c) we see that almost the whole of the
plot for V4 is positive, except for a small region in the upper right corner. This
shows that we cannot have a condensate with these values for δ and Φ.
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Figure 10.9: (a) and (b) The second derivatives of V4, ∂2V4/∂δ
2 and ∂2V4/∂Φ

2

shown as functions of Kz and D, in extremum point iii) where δ and Φ are as in Eq.
(10.31). (c) V4 as a function of Kz and D in extremum point iii).

74



10.5. Phase diagrams

Extremum point iv)

Figures 10.10(a) and 10.10(b), respectively, show ∂2V4/∂δ
2 and ∂2V4/∂Φ

2 as func-
tions ofKz andD. The red colour shows the regions where the second derivatives are
positive. We see that the whole plot of both second derivatives are positive. Look-
ing at V4 in Figure 10.10(c), we see that the entire plot is negative. We therefore
conclude that for these values of δ and Φ a condensate can form.
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Figure 10.10: (a) and (b) ∂2V4/∂δ
2 and ∂2V4/∂Φ

2 as functions of Kz and D, in
extremum point iv) where δ and Φ are as in Eq. (10.31). (c) V4 as a function of Kz

and D in extremum point iv)
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Chapter 11

Discussion

As stated previously, a necessary criterion for BECs to exist, is that the effective
interactions between the constituents are repulsive. We observe from the phase dia-
grams in section 10.5 that this criterion can be met.

11.1 Degenerate condensates

As we saw in section 10.5, there are more than one combination of δ and Φ that
allow a condensate of magnons. This implies that degenerate condensates can co-
exist with the same system parameters. At higher temperatures, we can assume
that the combination of δ and Φ with the lowest energy will be occupied. However,
at low temperatures the magnons might not be able to escape local minima, and
condensates can be degenerate.

As mentioned, we include DMI as it is present in the system we decided to investig-
ate [50]. As we saw in Figure 10.6, the strength of the DMI determines the k values
at which the condensates form. If the condensates form at finite k, it is easier to
observe them and thus the experiments are easier to conduct. [51].

In Figure 11.1 we observe that the value of V4 is dominated by V4,intra at extremum
point i) and iii), while in extremum point ii) and iv) the value of V4 is dominated
by V4,inter. In Appendix B we have included plots similar to those in Figure B.1, for
a specific non-zero value of the DM-strength. We observe that in extremum points
ii) and iv), V4 is still dominated by V4,inter.
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11.1. Degenerate condensates
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Figure 11.1: The value of V4 and its second derivatives, ∂2V4/∂δ
2 and ∂2V4/∂Φ

2

when DMI is turned off are shown in (a) for extremum point i), (b) for extremum
point ii), (c) for extremum point iii) and (d) for extremum point iv). We also
included V4,intra and V4,inter in the figures.

We see that even without DMI, extremum point ii) and iv) can accommodate a BEC
of magnons in an AFMI.
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11.2. Intravalley and intervalley scattering

11.2 Intravalley and intervalley scattering

In Figure 11.2 we show how the coefficients A, B, C and D vary as functions of Kz

and D. The coefficients are defined in Eq. (10.24) and stem from Eq. (10.23). We
can interpret them as the amplitude of the different scatterings. Coefficient C can
be interpreted as amplitude of intervalley scattering. Coefficient A, B and D can
be interpreted as the amplitude of various forms of intervalley scattering.
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Figure 11.2: The plots illustrate A/N,B/N,C/N and D/N vary as functions of (a)
Kz/J for a small DM-strength, D/J = 0.01. (b) Kz/J for a large DM-strength,
D/J = 0.2. (c) D/J for a small anisotropy-strength, Kz/J = 0.01. (d) D/J for a
large anisotropy-strength, Kz/J = 0.2.
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11.2. Intravalley and intervalley scattering

We observe in Figures 11.2(a) and 11.2(b) that increasing the anisotropy strength,
changes the sign of coefficient C. This means that the sign of the amplitude of
intravalley scattering is changed.

As far as the authors are aware, only one previous study has carrioud out a similar
analysis, Arakawa in ref. [60]. In this paper, Arakawa studies MnFe2, where DMI is
negligible. As previously discussed, the DMI makes experiments easier to conduct.
Arakawa employs the Hartree-Fock method for mean-field. We believe the Made-
lung transformation is a more suitable choice of mean-field theory. The Hartree-Fock
method outputs an effective non-interacting Hamiltonian for the particles, however
because of the nature of BEC, we question whether this holds for these calculations.

During the calculations in ref. [60], they also disregard the contribution from the an-
isotropy. However, as we can see in Figure 11.2, the sign of C changes as a function
of the anisotropy strength. Recall that C is the amplitude of intravalley scattering.
Thus, we believe that it is important to include the anisotropy.

In our calculations we also included all types of scattering, A, B, C and D. As we see
in Figure 11.1, the intervalley scattering is dominant for extremum point ii) and iv),
which are the two combinations of δ and Φ that we found suitable for condensation.
Thus, we also question the omission of the intervalley scattering in ref. [60].
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Chapter 12

Conclusion

We have presented an analysis of the stability of BEC in AFMIs, where anisotropy
and DMI was included in addition to the direct exchange interaction and external
magnetic field. The external magnetic field was out of plane, parallel to the quant-
isation axis. DMI was uniform, in order to obtain the desired dispersion relation.
The magnetic anisotropy was easy-axis and on-site.

After performing various transformations to obtain the interaction potential between
the magnons, we found its extremum points. The potential as a function of the dif-
ference in magnon population in the valleys, and the total phase of the condensates,
was presented in section 10.5. There we observed that two of the extremum points
were minima. By pumping in magnons to obtain a finite chemical potential, we have
found necessary and sufficient conditions for a theoretical prediction of magnon con-
densation in AMFIs.

We found that there were two types of scattering in the condensates, intravalley
and intervalley. In the two extremum points that gives rise to condensation, the
contribution from intervalley scattering dominated.

We found two minima for the interaction potential, thus predicting degenerate con-
densates. From the phase diagrams in section 10.5, we see that extremum point
ii) has lower value for the potential. Thus we can conclude that for systems with
appropriate temperatures, extremum point ii) will dominate the degenerate state.
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Chapter 13

Outlook

In our system, we vary the magnetic anisotropy-strength Kz and the DM-strength
D. However, experimentally it is easier to vary the strength of the external magnetic
field. It would be interesting to investigate a system with external magnetic field
in the plane, as opposed to ours, which is out of plane. We expect the in-plane
magnetic field to appear in the interaction Hamiltonian, and thus be present in the
interaction potential V4.

An intriguing modification of our system would be to instead use an easy-plane
magnetic anisotropy. Thus, having both easy-axis and hard-axis anisotropy [61].

In our bosonisation procedure, we utilised the Holstein-Primakoff transformation.
The advantages of this choice of bosonisation is that the transformation is Her-
mitian. Thus, the Hamiltonian is also Hermitian. However, this transformation in-
cludes an approximation, and is therefore not exact. In contrast, the Dyson-Maleev
transformation is exact. Although this bosonisation is exact, it is, however, not con-
sistently Hermitian [62, 63, 64]. Calculations have shown that the non-interacting
Hamiltonian is the same for the Dyson-Maleev and Holstein-Primakoff regime. The
interaction Hamiltonian, however, is not. It would be interesting to see if the con-
clusions differ for the two procedures.

As mentioned, our antiferromagnetic system is collinear. However, by using a tri-
angular lattice, the system could be non-collinear. Alternatively, we also obtain the
non-collinearity by assuming a strong DMI. We assumed the DMI to be not too
strong, in order to preserve the assumed ordering of the spins.
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Appendix

A Derivation of V4*

A more detailed calculations that obtained the extra term in eq. (5.8) is presented
here. Writing out the Hamiltonian again, just for convenience

HQ = A
[
α†
Qα

†
QαQαQ + α†

−Qα
†
−Qα−Qα−Q

]
+ 2B α†

Qα
†
−QαQα−Q

+ C
[
α†
QαQαQα−Q + α†

−Qα−Qα−QαQ + h.c.
]

+D
[
α−QαQαQα−Q + h.c.

]
. (A.1)

We now insert ⟨α±Q⟩ =
√
N±Q exp(iϕ±) into eq. (A.1). This results in

V4 = A
[√

N+Q exp(−iϕ+)
√
N+Q exp(−iϕ+)

√
N+Q exp(iϕ+)

√
N+Q exp(iϕ+)+√

N−Q exp(−iϕ−)
√
N−Q exp(−iϕ−)

√
N−Q exp(iϕ−)

√
N−Q exp(iϕ−)

]
+ 2B

√
N+Q exp(−iϕ+)

√
N−Q exp(−iϕ−)

√
N+Q exp(iϕ+)

√
N−Q exp(iϕ−)

+ C
[√

N+Q exp(−iϕ+)
√
N+Q exp(iϕ+)

√
N+Q exp(iϕ+)

√
N−Q exp(iϕ−)+√

N−Q exp(−iϕ−)
√
N−Q exp(iϕ−)

√
N−Q exp(iϕ−)

√
N+Q exp(iϕ+) + h.c.

]
+D

[√
N−Q exp(iϕ−)

√
N+Q exp(iϕ+)

√
N+Q exp(iϕ+)

√
N−Q exp(iϕ−) + h.c.

]
.

(A.2)

Collecting terms gives us

V4 = A
[
N2

+Q exp(−2iϕ+ + 2iϕ+) +N2
−Q exp(−2iϕ− + 2iϕ−)

]
+ 2BN+QN−Q exp(−iϕ+ + iϕ+) exp(−iϕ− + iϕ−)

+ C
[√

N+Q
3√

N−Q exp(−iϕ+ + iϕ+) exp(iϕ+ + iϕ−)+√
N−Q

3√
N+Q exp(−iϕ− + iϕ−) exp(iϕ− + iϕ+) + h.c.

]
+D

[
N−Q

√
N+Q exp(2iϕ−) exp(2iϕ+) + h.c.

]
. (A.3)

Writing the Hermitian conjugates explicitly in the last three lines and combining
terms results in

V4 = A
[
N2

+Q +N2
−Q

]
+ 2BN+QN−Q

+ C
[√

N+Q
3√

N−Q2 cos(Φ) +
√

N−Q
3√

N+Q2 cos(Φ)
]

+D
[
N−QN+Q2 cos(2Φ)

]
. (A.4)
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We now choose to represent N+Q, N−Q, ϕ+ and ϕ− in terms of Nc, δ and Φ. Since
N+Q = Nc+δ

2
, N−Q = Nc−δ

2
, this means that N2

+Q +N2
−Q = [N2

c + δ2]/2, N+QN−Q =

[N2
c − δ2]/4,

√
N+Q

√
N−Q(N+Q +N−Q) = [Nc

√
N2

c − δ2]/2.

Inserting this into eq. (A.4), we obtain

V4 =A
1

2

[
N2

c + δ2
]
+ 2B

1

4

[
N2

c − δ2
]
+

C
1

2

[
Nc

√
N2

c − δ2
]
2 cos(Φ) +D

1

4

[
N2

c − δ2
]
2 cos(2Φ)

=A
1

2
N2

c

[
1 + (δ/Nc)

2
]
+B

1

2
N2

c

[
1− (δ/Nc)

2
]
+

C
1

2
N2

c

√
1− (δ/Nc)22 cos(Φ) +D

1

2
N2

c

[
1− (δ/N2

c )
2
]
cos(2Φ). (A.5)

Moving terms around, we see that eq. (A.5) is eq. (5.10). In comparison with [23],
we see that we have an extra term, namely D cos 2Φ.
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B Additional Figures

In this Appendix, we place additional figures referenced in section 11.
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Figure B.1: The value of V4 and its second derivatives, ∂2V4/∂δ
2 and ∂2V4/∂Φ

2

when DMI is turned on for a specific value are shown in (a) for extremum point i),
(b) for extremum point ii), (c) for extremum point iii) and (d) for extremum point
iv). We also included V4,intra and V4,inter in the figures.
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