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The main contribution of this thesis is the investigation of different denoising techniques for Ocular
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(EEG) signals as well as little experience with data processing and deep Convolutional Neural Net-

work (CNN) for classification. This thesis hopefully reflects the amount of knowledge we have gained

over the past year.
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Abstract

This thesis investigates methods for removing Ocular Artifacts (OA)s from recorded Electroencephalog-

raphy (EEG) signals and evaluates their effectiveness and feasibility for use in a Brain-Computer In-

terface (BCI) system. The motivation stems from the desire to improve the quality of life for persons

with Locked-in Syndrome (LIS), a condition where individuals remain conscious and awake but ex-

perience complete paralysis, preventing them from moving or communicating. Artifact handling is

vital for BCIs to ensure accurate interpretation of brain signals and reliable performance.

A communication system has been proposed in earlier contributions to the project, where a control

signal is to be obtained by recording EEG signals generated during a specific visual stimulation proto-

col [5]. To introduce OA handling into this pipeline, four different techniques were tested: Indepen-

dent Component Analysis (ICA), an algebraic approach, and two versions of Signal-Space Projection

(SSP). These methods were compared in terms of their artifact removal performance and subsequent

classification using a Convolutional Neural Network (CNN). The dataset used has EEG data from

31 subjects observing RGB colors on a screen with gray pauses in between. This allowed for binary

classification of rest (gray screen) and task (RGB colors).

The experiments performed in this project aimed to evaluate the effects of the different artifact re-

moval techniques and their impact on classification performance. Based on visual inspection of the

signal and coherence analysis between the processed signals and the original recordings, it was found

that most of the methods effectively detected and removed the OA spikes to a satisfactory degree.

However, the algebraic method performed poorly, with variations in OA detection across different

channels resulting in either too few artifacts removed or unnecessary removal in non-artifact areas.

This discrepancy was also reflected in the classification results, as the other models achieved average

accuracies ranging from 69% to 75%, while the algebraic method behaved close to a random classifier

at 50%. Out of the real-time appropriate removal methods, the modified SSP method provided the

highest average accuracy of 71%. However, variation in the classification made the best individual

subject performance 94%, using no OA removal.

The results emphasize the significance of exploring various classifiers and their response to OA re-

moval. It is clear that although further enhancements are needed, the findings demonstrate the via-

bility of developing efficient methods for removing OAs in BCIs, which could improve the classifica-

tion and prediction performances, thereby facilitating accurate communication platforms.
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Abstract - Norwegian

Denne oppgaven undersøker metoder for å fjerne okulære artefakter (OA) fra registrerte EEG-signaler

og evaluerer deres effektivitet og gjennomførbarhet for bruk i et fremtidig hjerne-datamaskin grens-

esnitt (BCI). Motivasjonen stammer fra ønsket om å forbedre livskvaliteten for personer med locked-

in syndrom (LIS), en tilstand der personer er bevisste og våkne, men opplever total lammelse som

hindrer dem fra å bevege seg eller kommunisere. Håndtering av artefakter er avgjørende for å sikre

nøyaktig tolkning av hjerneaktivitet og pålitelig systemytelse for BCIer.

Et kommunikasjonssystem ble foreslått i et tidligere prosjekt, der EEG-signaler generert under en

visuell stimuleringsprotokoll blir brukt. For å introdusere OA-håndtering i prosessen, ble fire ulike

teknikker testet: uavhengig komponentanalyse (ICA), en algebraisk tilnærming, samt to versjoner

av signalromsprosjeksjon (SSP). Disse metodene ble sammenlignet med tanke på deres evne til å

fjerne artefakter og påfølgende klassifisering ved hjelp av et konvolusjonelt nevralt nettverk (CNN).

Datasettet som ble brukt i denne oppgaven inneholder EEG-data fra 31 deltakere, spilt inn mens de

observerte en skjerm som viste RGB-farger i intervaller med en grå pause mellom hver farge. Denne

oppsettet muliggjør en binærklassifisering av hvile (grå skjerm) versus oppgave (RGB-farger).

Eksperimentene som ble utført i dette prosjektet hadde som mål å evaluere effekten av de ulike arte-

faktfjerningsteknikkene og deres innvirkning på klassifisering. Basert på visuell inspeksjon og ko-

hæransanalyse av de bearbeidede signalene og de opprinnelige opptakene, ble det funnet at de fleste

metodene effektivt oppdaget og fjernet OA-spike på en tilfredsstillende måte. Imidlertid fungerte den

algebraiske metoden dårlig med variasjoner i OA-deteksjon mellom ulike kanaler, noe som resulterte

i enten for få fjernede artefakter eller unødvendig fjerning i ikke-artefaktsområder. Denne forskjellen

ble også gjenspeilet i klassifiseringsresultatene, da de andre modellene oppnådde gjennomsnittlig

nøyaktighet på 69% til 75%, mens den algebraiske metoden oppførte seg som en tilfeldig klassifis-

erer med 50% nøyaktighet. Av fjerningsmetodene som er egnet for sanntidsbruk, ga den modifiserte

SSP-metoden den høyeste gjennomsnittlige nøyaktigheten på 71%. Imidlertid resulterte variasjonen

i prestasjon i den beste individuelle klassifiseringen på 94%, uten bruk av OA-fjerning.

De oppnådde resultatene understreker betydningen av å utforske ulike klassifiseringsmetoder og

deres respons til metoder for fjerning av OAer. Det er tydelig at selv om ytterligere forbedringer og

optimalisering er nødvendige, viser funnene at det er mulig å utvikle effektive metoder for å fjerne

okulære artefakter i BCIer, og dermed bistå i utviklingen av nøyaktige kommunikasjonsplattformer.
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Chapter 1

Introduction

LIS is a neurological disorder that results in quadriplegia and anarthria, meaning a partial or com-

plete loss of voluntary muscle control and speech, respectively. Individuals affected by LIS remain

conscious and have intact cognitive functions, but they cannot communicate verbally or move their

bodies, resulting in a state of being "locked in" [6]. There are varying degrees of LIS, with some indi-

viduals having partial voluntary muscle control over certain body parts, such as lip twitches or neck

movements, while others experience complete paralysis, including eye movement. However, even in

the most severe cases, cognitive function and sensory abilities such as hearing, smell, taste, and the

ability to experience pain and pleasure remain intact [7].

In addition to the physical challenges faced by individuals with LIS, their inability to communicate

highly affects their quality of life. Due to the anarthria, their communication possibilities are reduced

to the movement they are able to produce. Although several communication methods are available

today, they are often limited in various ways. For instance, eye-tracking with a spelling board is one

of the methods used today [8]. It will enable the person to express themselves, however, it comes

with a large delay from when the thought appears to when the spelling is finished and the message

is conveyed. "I hate that delay. I want to answer right away because the sentence is clear in my

head." [9] is how a 21-year-old LIS patient using eye-tracking describes the communication process,

highlighting the frustration and limitations he experiences when using this method. Keeping up con-

versations in this manner is tedious and inefficient, making conversations time-consuming and ex-

hausting, which can lead to social exclusion. Moreover, gaze-dependent communication requires the

ability to control eye movements, and losing that control means losing the ability to communicate.

For those with Complete Locked-in Syndrome (CLIS), this method is not possible due to complete

paralysis[8].

Moreover, individuals with the mentioned condition frequently encounter stigmatization and dis-

criminatory treatment as a result of insufficient understanding regarding their condition [8]. Instead

of engaging with the person affected, people may talk around or over them or exclusively direct their

communication to the caregiver. This communication exclusion not only causes frustration for those
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with LIS but also perpetuates misconceptions about the disease, deepening the societal misunder-

standing and isolation of those affected, affecting their everyday life.

Therefore, it is crucial to develop and improve communication methods to enhance the quality of life

and well-being of individuals with LIS. BCI systems use brain activity as input to a computer appli-

cation. The EEG signals from the brain can be used by Machine Learning (ML) algorithms calibrated

to the user, allowing the user to control a computer with their mind. This can possibly make a more

efficient way of communication. Since the cognitive function is one of the few functionalities that

remains unaffected by the disease, this enables a communication system suitable for all stages of the

disease. BCIs also have the potential to improve communication efficiency for individuals with LIS,

which can possibly lead to reducing the social exclusion people with LIS experience today by making

it easier to engage in conversations [8, 10].

1.1 Motivation

The purpose of this work is to explore the possibility of creating a communication system for individu-

als with LIS based on EEG and to investigate feasible methods to achieve this. Previous contributions

to the project [5, 11], have explored the possibility of using a combination of the brain’s color percep-

tion and the eye movement of the user to control a BCI. During these experiments, participants were

exposed to different colors while their EEG data was collected. This data was used to train ML mod-

els capable of predicting the specific color exposure when presented with new, unseen data. Several

processing pipelines were explored, including varying data processing, feature extraction, and clas-

sification models. Notably, an average accuracy of 74.3% and 61.4% was achieved in differentiating

between a task and resting state, and between the four colors expositions, respectively.

The author suggested that the presence of OAs could have been a contributing factor to the end result.

Removal of OAs is usually done offline, as the state-of-the-art methods for removal are computation-

ally heavy and therefore not real-time suitable [12]. However, the presence of OAs in EEG data could

significantly reduce the reliability of BCI systems. Therefore, in the work towards a communication

platform for people with LIS, investigation of the effectiveness of OA removal methods suitable for

real-time applications, such as BCIs, is of importance.

1.2 Problem Description

This work aims at automatically removing OAs from EEG signals by using three different techniques.

The performance of the methods will be evaluated on the possibility of being used in a future BCI.

The second objective is to train different Neural Networks, using the processed datasets, and compare

their performance.

1.3 Approach

The approach involves using four different techniques to remove eye blink artifacts from EEG data;

ICA, two versions of SSP, and an algebraic method. These techniques will be compared in terms of
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their ability to remove eye blink artifacts and improve the classification performance of a CNN. The

performance of the four processed datasets will be compared to evaluate the effectiveness of each

technique.

1.4 Outline

The introduction of the general problem and the objectives of the work is done in chapter 1. Chapter

2 provides relevant background information, on signals from the brain and different data processing

techniques. A brief overview of previous research on BCIs for LIS and the methods for signal pro-

cessing is given in chapter 3, while chapter 4 presents a description of the specific implementations

and pipelines utilized in this work. In chapter 5, the experiments conducted, and their correspond-

ing results, are presented. Finally, chapter 6 offers a discussion of the obtained results and provides

recommendations for future work.
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Chapter 2

Background

2.1 Locked-in Syndrome

LIS is a neurological disorder caused as a result of injury to the brain stem. There are multiple poten-

tial causes of injury, including but not limited to stroke, hemorrhage, trauma, and hypotension [13].

This part of the brain contains motor nerves responsible for controlling the voluntary movement of

the body and facial muscles. As a result, LIS is mainly characterized by quadriplegia and anarthria,

with the patient often retaining vertical movement of the eyes as well as control of the upper eye-

lid. Patients also maintain their cognitive abilities intact, resulting in individuals that are present and

awake without the opportunity to express themselves through easy communication [14, 15].

LIS is typically divided into three classifications: 1) Classical LIS is characterized by the individual

being completely immobile except for vertical eye movements and blinking. 2) Partial LIS allows for

some voluntary motor functions, while 3) CLIS is the most severe form and results in total paralysis,

rendering a person completely immobile and unable to communicate [16]. It’s worth noting that a

person with LIS may eventually progress to CLIS.

2.2 The Anatomy of the Human Brain

The human brain regulates all bodily functions, including cognitive and behavioral processes. It is

typically divided into three primary regions based on the functions controlled in those regions: the

cerebrum, the brainstem, and the cerebellum. The brainstem is located at the base of the brain and

connects the brain to the spinal cord. The brain and the spinal cord make up the central nervous

system. Together, they are responsible for integrating all sensory information from the Peripheral

Nervous System (PNS). The brain processes the information about the current state of the body, and

together with past experiences, it directs motor responses through the PNS. Above the brainstem, the

cerebellum is located, which coordinates movement and maintains balance while also contributing

to cognitive functions such as attention and language. The largest part of the brain, the cerebrum,

consists of two hemispheres which are further divided into four lobes, shown in fig. 2.1. The occipital
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Figure 2.1: Illustration of the four lobes in the cerebrum. Reprinted from [18].

Figure 2.2: Illustration of the visual pathways through the brain. Reprinted from [23]

lobe is mainly the part of the cerebrum that processes visual signals [17].

2.2.1 Color Perception in the Brain

When light from the environment and light sources enters the eye, it is captured by the cone and rod

photoreceptors in the retina at the back of the eyeball. These photoreceptors convert the light energy

into electrical signals, which are then carried by neurons through the optic nerve to the Primary Visual

Cortex (V1) in the occipital lobe for signal processing, visualized in fig. 2.2 [19]. There are three types

of cones, each sensitive to different ranges of wavelengths of light: short (S), medium (M), and long (L)

wavelengths, corresponding to blue, green, and red light, respectively [20]. By comparing the signals

from the different types of cones, the brain is able to determine the perceived color of an object [21].

Depending on the information being processed, the visual pathway may differ. Visual Area 4 (V4) in

the occipital lobe, the purple area in fig. 2.3, is believed to be the primary processing center for color

perception [22]. That means that this is the area mostly stimulated when observing color.
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Figure 2.3: Illustration of the visual areas in the brain. Reprinted from [24]

Figure 2.4: Anatomy of a neuron. Reprinted with modifications from [18].

2.3 Signals of the Brain

In the brain, communication is achieved through electrical and chemical signals in a process called

neural communication. The anatomy of a neuron is illustrated in fig. 2.4. An electrical signal, called

an action potential, travels down the axon of a stimulated neuron to the axon terminal where it trig-

gers the release of chemical neurotransmitters [25]. These neurotransmitters cross the synapse and

bind to receptors on the dendrites of the next neuron, causing ion channels to open or close and cre-

ating a new electrical signal. This signal transmission repeats, ultimately transmitting information

throughout the brain. The resulting electrical stimuli can be measured and analyzed to gain insight

into the functioning of the brain [19].
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Figure 2.5: The international 10-20 system for electrode placement. Reprinted from [26]

2.3.1 Electroencephalography

EEG is a non-invasive technique employed to measure the electrical activity of the brain. The pro-

cess involves placing electrodes on the scalp to detect the electrical signals produced by neurons.

For the signal to be detected by the electrode, it has to pass through the meninges, the skull cere-

brospinal fluid, and the skin. All of these barriers have a distinct level of resistance, meaning that

the signals recorded have to be a sufficient amount of accumulated post-synaptic firings happening

concurrently and in the same direction. Greater synchronization of postsynaptic potentials results in

larger EEG amplitudes and lower frequencies [27]. The resulting EEG dynamics are highly nonlinear

and complex [28]. In order to reduce the resistance between the electrode and the scalp, and thereby

improve the quality of the measurements, a conductive gel can be used.

2.3.2 Signal Acquisition

The presence of electrical interference from the body, such as muscle contractions, or external sources

like power lines, can make it challenging to analyze non-invasive EEG data, as these signals can mask

or attenuate the recorded signal. To address this issue, differential amplifiers are used to eliminate

biological and ambient noise in EEG recordings [29]. There are different options for choosing the

reference electrode. In monopolar EEG recordings, a distant reference electrode is compared with

the measuring electrode to ensure that only the signal of interest is extracted and amplified while the

common noise is rejected [30]. However, this method can be affected by variations in the electrical

properties of the scalp and the tissues underlying the electrodes, as well as by the distance between

the reference electrode and the scalp. These factors can lead to inconsistencies and errors in the EEG

8



recordings. To overcome these limitations, a virtual reference node can be implemented instead of a

distant reference node. This is done by averaging the signals from all electrodes, excluding the one

being used as the measuring electrode. This method allows for capturing more localized changes in

the electrical activity of the brain [31].

Each electrode in EEG recordings captures a signal from a particular region of the brain. The scalp

electrodes can be positioned in various ways, and there can be difficulties with placing them corre-

spondingly on different subjects due to anatomical variations. The International 10-20 System for

electrode placement provides a standardized system for electrode placement, based on four defined

anatomical landmarks in the front, back, left, and right of the head. Each electrode is placed with an

interval of 10 or 20% of the total latitudinal and longitudinal lines [26]. Each electrode is assigned a

name consisting of a letter and a number, where the letter indicates the corresponding brain region

(such as ’Fp’ for frontal pole, ’F’ for frontal, ’C’ for central, ’P’ for parietal, ’O’ for occipital, and ’T’ for

temporal), and the number indicates the distance from the middle line, where odd and even numbers

represent the left and right lobe, respectively. This convention is illustrated in fig. 2.5.

2.3.3 Frequency Bands

The synchronized and asynchronized firing of neurons causes EEG to have a large range of frequen-

cies. Waveform frequencies contain information about in which state the subject is, such as wakeful-

ness or sleep [32]. The frequencies are normally divided into five categories, named with the Greek

letters δ,θ,α,β, and γ. There is no consensus in the literature on the defined frequency ranges. The

values presented in table 2.1 are the ones most commonly used by clinical electroencephalographers

[33]. Each of the bands is associated with different cognitive states of the brain. In the occipital lobe

electrodes, alpha rhythms are expected to achieve their highest values [33]. Generally, frequencies in

the γ band are rarely encountered in the scalp EEG [32].

There are several issues associated with the division of frequency bands in EEG signals. Firstly, there

is a lack of agreement on the specific frequency ranges for each band, which can vary among studies

and hinder cross-study comparisons. Secondly, the division of frequency bands may oversimplify the

complex nature of EEG signals, which consist of multiple overlapping and interdependent frequency

components. Consequently, such division may obscure the underlying dynamics and interactions

between different frequency components. Thirdly, the interpretation of frequency bands can be sub-

jective and context-dependent. The same frequency band may have different meanings depending

on the cognitive or behavioral state of the subject, and the task being performed, in addition to other

factors [32].

2.3.4 EEG Artifacts

The EEG signal can be affected by extraneous or unwanted signals, known as artifacts, which can

complicate the accurate interpretation of brain activity. These artifacts fall into two categories: phys-

iological and non-physiological. Physiological artifacts are generated by electrical disturbances in the

body, such as cardiac activity, respiration, perspiration, eye movement, and blinking. Non-physiolog-

ical artifacts arise from external sources, such as electrode or cable movement, body movements, or
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Frequency band Frequency band Associated with
Delta (δ) 0.1−4 Hz Homeostatic sleep drive

Theta (θ) 4−8 Hz
Homeostatic sleep drive, relaxed,

meditative, and creative states

Alpha (α) 8−13 Hz Relaxed wakefulness and drowsiness
Beta (β) 14−30 Hz Active thinking

Gamma (γ) > 30 Hz Cognitive states

Table 2.1: Frequency bands of the brain activity [33] and their association [32].

Figure 2.6: The human eyeball with the polarization indicated. Reprinted with modifications from
[36].

electrical and electromagnetic interference [34].

Ocular Artifacts

OA in EEG pertain to electrical signals generated by eye movements or blinks, which are predomi-

nantly observed in the frontal region and can significantly vary across individuals, resulting in alter-

ations in signal amplitude [35].

There exists a voltage difference between the cornea and the retina as depicted in fig. 2.6, resulting in

the eye acting like a dipole, thereby creating an electrical field. As the eye rotates, the field fluctuates,

leading to a detectable alteration in voltage that can be captured by electrodes positioned close to the

eyes [37]. These artifacts are commonly visible during saccadic eye movement, meaning movement

caused by changing the point of fixation. This could be from larger movements resulting in larger

amplitudes and lower frequencies, such as moving over a landscape, or from smaller movements,

such as reading a book, which would give smaller amplitudes and higher frequencies. An example

of how such rapid eye movement presents itself in EEG data is given in fig. 2.7. These saccadic arti-

facts are particularly evident in the channel data at the top of each chain, meaning the channels that

are the closest to the eyes. Here, the small spike-like discharges corresponds well with the recorded

Electrooculogram (EOG) data at the bottom.

Artifacts that stem from blinking and vertical eye movement are significantly impacted by the eyelid.
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Figure 2.7: An example of how OAs from rapid eye movement presents itself in EEG data. Each vertical
division shows 1 second. The first four channels form a chain from over the left temporal head region,
and the second four form a chain over the left parasagittal head region. The bottom two chains form
over the corresponding right parasagittal and temporal regions, respectively. The middle set of four
channels shows the data recorded over the midline head region. The final bottom channel shows EOG
data recorded on the right side. Reprinted with modifications from [30]. The blue circle illustrates an
OA from a blink, while the red circle is an example of rapid eye movement.

The lid movements can be seen as ’sliding electrodes’ that short circuit the positive charge of the

cornea to the extra-ocular skin [39]. This means that when the eyelid closes, the overall electrical

potential difference between the retinal and corneal sides of the eyeball will be determined by the

combined values of the retinal and corneal potentials, thus altering the EEG signal with a substantially

larger amplitude than that of the saccades [40]. An example of this can be seen in fig. 2.8 where both

slower eye movement and eyelid artifacts are included along with an example of muscle tension. The

three examples display significantly different shapes, amplitudes, and frequencies.

The frequency bands associated with OAs have been explored in various studies, revealing some vari-

ations in their categorization. According to one source [41], EOG artifacts span a frequency range of

0-12 Hz. Another study [42] focuses specifically on blink artifacts, suggesting their frequency range

extends up to 13 Hz. In contrast, a third source [43] proposes a more detailed classification, distin-

guishing between eyelid artifacts (0-4.5 Hz) and saccadic movement artifacts (4-20 Hz). These differ-
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Figure 2.8: Examples of physiological artifacts in EEG recording. a) eye movement, b) eye blink, and
c) muscle tension. In contrast, normal EEG signals typically exhibit lower amplitudes, which can be
observed in the unaffected channels located in the upper portion. Reprinted from [38]

ences in frequency band characterizations suggest that the manifestation and characteristics of OA

can vary across different types of ocular activity. Understanding these distinctions is crucial for effec-

tively identifying and mitigating the impact of OAs in various applications, such as signal processing

and data analysis.

2.4 Preprocessing

As mentioned, the raw EEG data is susceptible to noise and disturbances that can hinder the accu-

rate interpretation of brain activity. Preprocessing the EEG data plays a vital role in removing these

disturbances, improving the signal-to-noise ratio, and facilitating the detection of subtle changes in

brain activity. This is a critical step in ensuring that the data is suitable for further analysis [44].

Bandpass Filter

A bandpass filter refers to an electronic filter that allows a specific range of frequencies, known as

the passband, to pass through the filter while rejecting frequencies outside that range, known as the

stopband. In other words, a bandpass filter attenuates signals with frequencies lower or higher than

the passband, effectively filtering out unwanted frequencies.

Notch Filter

A notch filter refers to a type of signal processing filter that is used to remove or reduce the amplitude

of a specific frequency or range of frequencies within a signal. This is achieved by applying a band-

stop filter, which attenuates a specific range of frequencies while allowing all other frequencies to

pass through unaffected. In the context of this project, it is used to remove the 50 Hz common-mode

noise, to enhance the signal-to-noise ratio, and improve the overall data quality.

12



2.5 Data Processing

The OAs introduce high-amplitude signals to the EEG data that can distort the underlying neural

activity patterns. This section focuses on methods specifically designed for removing such spikes.

The algebraic method used in this work encompasses multiple steps, including the application of a

Finite Impulse Response (FIR) filter, spike detection, and Discrete Wavelet Transform (DWT). Two

approaches utilize SSP, while the final method involves the use of ICA.

2.5.1 Finite Impulse Response Filter

FIR filters are digital filters that generate an output of limited length when presented with a finite-

length input, like an impulse. The filter’s frequency response is defined by a collection of coefficients

[45].

y[n] =
N−1∑
k=0

h[k]x[n −k] (2.1)

Equation (2.1) shows the filter’s formula, where the output signal of the filter is obtained by taking

the weighted sum of the input signal x[n], with the weights determined by the impulse response of

the filter, h[k]. When the FIR filter is linear, its coefficients exhibit either symmetry or anti-symmetry.

Consequently, the number of multiplications required is reduced by half the length of the filter, which

is equal to (N +1)/2 for filters with odd values of N [46].

2.5.2 Spike Detection

The following spike detection algorithm is presented in [47]. Consider a time interval I = [τ,τ+T ] of

period T at timestamp τ. In this interval, it is assumed that there is at most one blink. A FIR filter of

order M is applied to the noisy signal y(t ) in this interval, using the sliding window technique, with

window size L, repeated n times in the interval I . The result is on the form

ak t 2
k +bk tk + ck = 0 (2.2)

where the coefficients are the output of the filter at time tk . If all three coefficients are non-zero, there

is a discontinuity in the signal at that timestamp. This corresponds to a spike in the signal.

To decide if there is a spike at timestamp tk , a decision function can be compared to a threshold value.

The decision function for the signal vk (τ), based on the n sliding windows in the interval with length

T , can be expressed as

Fn =
K−1∏
k=0

Fk,n forn = 0,1,2 . . . (2.3)

where

Fk,n = [
vk+1,n

]2 − vk,n vk+2,n . (2.4)

This can be compared to a threshold to separate normal signal data from spikes. In theory, Fn should
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Figure 2.9: Graphical explanation of DWT decomposition. (LP: Low pass filter, HP: High pass filter,
↓2: down sampled by 2, ai : approximate coefficients at level i , di : detail coefficients at level i )

be zero, but to take into account noise it is compared to a fixed threshold.

2.5.3 Discrete Wavelet Transform

DWT is a method in signal processing, where a signal is represented as a linear combination of a set

of basis functions, or wavelets. It has been evaluated as a method for real-time processing because

of its computational efficiency [47]. By comparing the input signal to the mother wavelet at different

translations and scales, the DWT produces coefficients that encode the signal’s representation in the

wavelet basis. These coefficients encapsulate the signal’s time and scale variations, facilitating further

analysis and manipulation [48].

The DWT generates coefficients for each decomposition step, with detail coefficients corresponding

to high frequencies, and approximate coefficients to low frequencies. Both types are down-sampled

by a factor of 2 for each step, as shown in fig. 2.9. The maximum level of decomposition therefore

depends on the number of data points and the type of mother wavelet, since down-sampling reduces

the coefficients at each level.

γ j k =
∫ ∞

−∞
x(t )

1p
2 j
ψ

(
t −k2 j

2 j

)
d t (2.5)

Equation (2.5) depicts the general form of the DWT. The mother wavelet is represented by ψ while

x(t ) is the signal and the parameters j and k correspond to scaling and shifting, respectively. Adjusting

the scaling factor of the wavelet alters the sensitivity to changes, enabling customization for either

low or high frequencies. Shifting the signal introduces a delay, which changes the time domain of the

signal. Some of the most common mother wavelets are shown in fig. 2.10. Selecting an appropriate

mother wavelet is crucial and is typically done by choosing a wavelet that resembles the input signal

[49].
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Figure 2.10: Common wavelet basis functions made using the pywt library. They are classified by
wavelet family and order, e.g. Sym3 = symlet wavelet of the 3r d order

2.5.4 Signal-Space Projection

SSP is a technique commonly employed in EEG for removing noise from recorded signals. The ap-

proach involves projecting the signal onto a lower-dimensional subspace, the selection of which en-

tails the calculation of the average pattern across sensors in the presence of noise. This pattern serves

as a direction in sensor space, and the subspace is constructed to be orthogonal to this noise direction

[50].

When implementing SSP, it is crucial to select the right noise subspace for the projection [51]. If the

selected subspace doesn’t fully capture the noise pattern, some noise may remain after the projection.

Conversely, if the selected subspace is too large, it may also include some of the signals, leading to a

reduction in data quality and potential loss of important information. It has also been found that the

application of SSP may reduce the output signal itself [51].

The subspace is found by modeling the recorded signal as a combination of the signal s(t ) and the

noise n(t ) as seen in eq. (2.6a). The noise is further expressed in eq. (2.6b) as a column c(t ) made up

of a subset of field patterns of the noise, its orthogonal basis U , and a small error e(t ) which is con-

sidered dismissible. The field disturbances c(t ) is the term that captures the noise, and it is removed

by multiplying by the transform of U . In total, this culminates in P , the output projection expressed

in eq. (2.6d) [50].

r (t ) = s(t )+n(t ) (2.6a)

n(t ) =Uc(t )+e(t ) (2.6b)

s(t ) = r (t )−n(t ) = Pr (t ) (2.6c)

P = I +UU T (2.6d)

This process can be computationally heavy, depending on the size of the data and the computing

resources. However, the output is a vector that is to be multiplied with the input signal. This means

that applying the projection is a much simpler process.
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SSP is primarily used for eliminating stationary environmental noise, caused by external sources be-

yond the subject’s body and the recording system. Nevertheless, the method is also applicable for

eliminating biological artifacts resulting from Electrocardiogram (ECG) and EOG activities [52].

2.5.5 Independent Component Analysis

ICA is a mathematical technique used to separate a multivariate signal into statistically independent

components. Generally, ICA is a computationally heavy method that requires several rounds of visual

inspection and decomposition. It is based on the assumption that the observed signal is a linear mix-

ture of underlying independent sources, where each source signal is non-Gaussian and has a unique

probability distribution [53].

ICA works by decomposing the mixed signals into their independent components, which can be iden-

tified based on their statistical properties. By assuming there are N statistically independent signals

si (t ), i = 1, ..., N where each signal is a realization of some fixed probability distribution, the observa-

tion of the signals x(t ) can be formulated as

x(t ) = As(t ) (2.7)

where A is the mixing matrix. A formula for the estimated original signals can be found by inverting

the formula such that

ŝ(t ) =W x(t ) (2.8)

where W = A−1. When using ICA as an artifact removal technique, the independent component or

components that represent the artifact source is visually identified and used to remove the noise from

the signal mixture [53].

When employing the ICA method, there exists a potential risk where the application of correction on

channels with comparatively low signal-to-noise ratio, such as EEG channels and channels located

farther from the signal peaks, may introduce additional noise to these channels. This occurs due to

the elevated errors in estimating the mixing matrix for ICA when the signal-to-noise ratio diminishes

[54].

2.6 Classification and Machine Learning

Multi-class classification is a critical task in BCI applications, where EEG signals are classified into

several categories. In a BCI system, EEG signals are employed to decode the user’s intention or mental

state, which is then translated into control commands for an external device. For this project, the

classification is done using an ML algorithm, which are algorithms that have the ability to enhance

their performance by leveraging previous experiences [55]. This experience can include prior data

points that are used to find latent structures and properties within the data. When the data points

lack labels or target values, this process is referred to as unsupervised learning. Conversely, when

these data points are accompanied by labels or target values, it falls under the domain of supervised
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Figure 2.11: Illustration of a single neuron for ML

learning. In the context of this research project, supervised learning techniques will be employed to

facilitate the analysis and prediction of the data.

A ML algorithm offers various means to control its behavior in generating prediction models. To de-

termine the optimal values for these controls, the dataset is divided into three subsets: the training

set, the validation set, and the test set, which are utilized at different stages of the classification pro-

cess.

For each ML model constructed, there exist a set of weights, known as parameters, which determine

the significance of each feature in the prediction. These parameters are optimized using the training

set, resulting in the creation of the best model for the given configuration. The process of generating

these models is governed by the algorithm’s hyperparameters and is fine-tuned using the validation

set [56].

2.6.1 Neural Networks

Neural Network (NN) are a type of ML algorithm that consists of interconnected processing units, or

neurons, that work together to learn from data [55]. These neurons receive input from other neurons,

process the input by attaching weights, and produce an output that is transmitted to other neurons.

The process of a single neuron is shown in fig. 2.11. NN have demonstrated their effectiveness in var-

ious tasks, including classification [57]. The learning process of NN involves backpropagation. This

means that the error between the predicted output and the actual output is propagated back through

the network and used to adjust the weights of the neurons [58]. As a result, neural networks pos-

sess the ability to learn intricate relationships between input and output data and find applications

in diverse domains [59], though they are considered ’black boxes’, meaning there are no methods for

feature extraction from the model [60].
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Deep learning is a sub-field of ML characterized by the use of deep NN, which involves the use of

multiple hidden layers that can learn hierarchical representations of data. Deep learning models

have proven to be particularly advantageous in EEG signal classification tasks, as they can learn com-

plex features directly from raw data without the need for handcrafted features or preprocessing steps

[3]. Moreover, these models can handle large datasets and high-dimensional inputs efficiently using

shared weights and local connections. They can be trained end-to-end using gradient descent algo-

rithms with backpropagation, which allows them to optimize the model parameters to minimize the

classification error [57].

2.6.2 Convolutional Neural Network

CNNs are commonly used for classification tasks. They are usually built with three layers, with the

convolutional layer being the most important one, hence its name.

The convolutional layer consists of a filter or a feature detector that is moved across the data while

checking if that specific feature is present. The output is a feature map, which is a series of values that

depict where in the data the feature is present. This process can be done multiple times by filters with

different properties, allowing for more complex features to be found as the sum of its parts [61].

Following the convolutional layer is the pooling layer and the fully connected layer. The pooling layer

reduces the risk of overly complex models by reducing the number of parameters. This makes for a

more robust algorithm. Finally, the full-connected layer produces the output, translating from the

similarity of features to an estimated match of category [62, 61].
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Chapter 3

Literature Review

3.1 Current Communication Methods and BCIs for LIS

The communication techniques that are currently available for patients with BCIs are varied [63]. One

common method involves alphabet boards in combination with blinking and eye movement to indi-

cate letters. However, this method relies on the patient’s caregiver having an active role in interpreting

the movement in order to make out letters and convey the messages, which provides little to no pri-

vacy. Other techniques rely on innovative technology, such as eye-tracking, which while providing

more independence, still requires a significant amount of time for communication [64]. This highly

impacts social situations and affects the patients’ opportunity to participate in conversations[9, 63].

Additionally, these methods might not be available if the patient is unable to move their eyes or blink

voluntarily. For patients with CLIS, the only option may be BCIs that does not require any movement,

but rather relies on other signals to be interpreted.

A study [65] that surveyed people with LIS on their preferred applications, mental strategies, and time

of information for communication, found that they, in general, showed the same preferences. Scor-

ing the highest on the application was direct personal communication, while the preferred mental

strategy was attempted speech, followed by attempted movement. Incorporating the user group’s in-

volvement in the development of assistive technologies is crucial to ensure the utilization of optimal

methods and the inclusion of necessary functionalities. By actively engaging the users throughout

the development process, the resulting technologies can better address their specific needs and pref-

erences. This user-centric approach helps to enhance the usability, effectiveness, and overall quality

of the assistive technologies being developed.

There are already several types of BCIs that are being researched, some with promising reports. Im-

plementing these technologies could improve patient care, increase patient engagement, and allow

us to monitor the long-term impact of LIS on patients’ health and quality of life [66]. Though devices

for direct communication are a significant resource for this purpose, the field of use for BCIs is only

growing. Allowing for easy computer access in time with the rise of smart homes could make more
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tasks readily available, introducing a larger degree of independence [67].

The existing BCIs feature a wide range of paradigms and user requirements. For patients with CLIS,

there exist several options under the category of invasive BCIs such as a spelling interface using in-

tracortical signals [68] and a communication device using local field potentials[69]. These typically

require implants or other direct connections to sensors under the skin, and while highly accurate,

they also are expensive and might pose a risk to the patients’ health. For patients in classical LIS,

or patients retaining some motor control, the opportunities for stimuli change, and with them, the

paradigms for BCIs. A study [70], found promising results using SSVEPs recorded over the visual cor-

tex, supporting the possibility of utilizing visual stimuli. It also allows for mimicking the existing prac-

ticed methods for communication, leaving less new learning for both caregivers and patients.

Among the most popular non-invasive BCIs are the EEG-based systems [66]. The technologies that

have emerged includes spelling devices [71, 72, 73], controllable wheelchairs [74, 75, 76], speech gen-

erators [77, 78] and control of humanoid robots [79, 80, 81]. Despite these achievements, it has been

observed that many of the publications do not provide details on how EEG artifacts were managed

[82]. This poses a significant problem as they not only contaminate the desired control signal but may

overpower the classifier’s detected features and create an undesired paradigm.

3.2 State-of-the-art in OA Removal

It is crucial to remove the artifacts that interfere with signal analysis in order to use BCIs for reliable

communication. While effective methods exist, such as ICA, spatial filtering, and regression-based

techniques [83], they typically require offline processing, which is slow and computationally inten-

sive. Though these methods perform well at preserving the signal without distortion, they are not

suitable for real-time applications like BCIs.

In a previous study [84], a real-time OA removal method was introduced, combining ICA with a

Kalman filter. This method demonstrated promising outcomes by effectively removing OAs from

EEG signals while minimizing distortion. The proposed method achieved a high detection rate of

98.4% for eye blinks, accurately identifying the occurrences of OAs. The removal process successfully

eliminated the ocular noise without adversely affecting the alpha band, which is a frequency range of

particular interest in EEG analysis.

Wavelet transform-based decomposition and selective removal of OA-associated frequency compo-

nents are among the methods being researched for this use case [85]. These techniques have shown

promise in achieving fast analysis and providing usable real-time processing for BCIs across a range of

frequencies. To preserve the signal outside OAs, it is recommended to perform the removal algorithm

only during short periods when necessary. In another study [47], a combination of artifact detection

and removal was proposed to address this issue. The detection method involved using algebraic spike

detection to identify segments likely to be OAs. This method achieved positive results in both artifact

removal and real-time computing.
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3.3 Previous Contributions to the Project

Two earlier works have been conducted as contributions to this project, namely a specialization

project [11] and a master thesis [5]. The main objective was to investigate the potential of combining

the brain’s color perception and the user’s eye movements to develop a straightforward communi-

cation system suitable for individuals with LIS. For this purpose, a dataset was collected using a

protocol that displayed color on a screen, mimicking a possible protocol for the intended BCI. The

four colors red, green, blue, and yellow were shown in intervals, interrupted by a black screen. This

resulted in two types of tests: Classification of the four colors, as well as differentiation between a

color and the black screen. Testing was done with a pipeline of preprocessing, feature extraction, and

several classification techniques, including Random Forest (RF), Support Vector Machine (SVM), and

CNN.

The results achieved accuracies of 69.87% and 73.6% for differentiating between task and rest states,

and the four colors, respectively. This was concluded to be promising for the feasibility of the BCI.

It was reported that one of the weaknesses in the dataset was the contamination of the rest state

sample by eye blinks in order to preserve the samples of the four colors, which might contribute to

the difference in result between the two experiments [5]. This speaks in favor of testing the thesis

on another dataset that might be less affected by OAs, as well as highlights the importance of a BCIs

capacity to deal with issues related to real-time use, such as eye blinks.

In previous studies, the dataset utilized in this thesis has been subjected to RGB classification using

two different approaches: the Minimum Distance to Mean with geodesic filtering (FgMDM) Rieman-

nian classifier [4] and a CNN model [86]. For the FgMDM Riemannian classifier, the preprocessing

phase involved discarding epochs that contained artifacts, resulting in the classification being per-

formed on artifact-free epochs. The average accuracy achieved using this classifier was 74.48% over

a subset of subjects. In the case of the CNN classification, a hybrid method was employed. The OAs

with the highest amplitude were discarded, while the OAs that had a lesser impact on the signal were

removed using SSP (a technique called artifact removal using SSP). The classification results showed

an average accuracy of 77% across all subjects and 84% for the same subjects as the FgMDM Rieman-

nian classifier.

In this project, the same dataset is being utilized; however, a different focus is placed on artifact

removal methods. The objective is to investigate whether it is possible to perform artifact removal

effectively without the need to discard epochs, as discarding epochs is not feasible in real-time appli-

cations. By applying artifact removal techniques, the project aims to enhance the quality of the data

and improve the overall classification performance. The goal is to develop methods that can success-

fully remove artifacts while preserving the underlying relevant information in the epochs. This would

allow for real-time applications where all available data can be utilized for classification, without the

need for discarding epochs due to artifacts.
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Chapter 4

Materials and Methods

4.1 Software Tools

The implementation of this project relied on Python and various other packages. MNE [87] was em-

ployed for general EEG data handling tasks such as data loading, filtering, sampling, and visualiza-

tion. The artifact detection FIR filter was implemented using the Signal library from SciPy [88]. MNE’s

preprocessing package was used to implement ICA and SSP. For artifact removal, PyWavelet [89]

was utilized for DWT and inverse DWT, while Numpy [90] were mainly used for mathematical pur-

poses. An implementation [91] of EEGNet using Tensorflow’s library Keras was used as a basis for this

project.

4.2 Dataset

The dataset was recorded at the NeuroImaging facilities of Aalto University in Helsinki [4]. The record-

ings took place in a high-end, three-layered magnetically shielded room where EEG recordings were

taken simultaneously with Magnetoencephalography (MEG) measurements recorded by the MEG

Core.

This project only has use for the EEG data, which were recorded using a 64-channel cap from antNeruo

with a sampling frequency of 1000.00 Hz. A total of 60 electrodes collected EEG signals, while the

other 4 were used as EOG channels in order to capture ocular and muscular interference. The EEG

channel electrodes were placed after the international 10-20 system.

In total 31 subjects were recorded. For subjects 1-18 as well as for subject 26, the two channels ’Oz’

and ’O2’ were flat and therefore marked as bad. Some of these subjects were later re-recorded and

therefore have 2 sessions, while the rest only have 1.
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Figure 4.1: An illustration of the protocol used for collecting the data.

4.2.1 Protocol

The protocol consisted of the participants being placed in front of a screen and shown colors in inter-

vals. The colors were shown in random order and with a gray screen between each color. A cross was

added to the middle of the gray screen in order to let the participants rest their gaze. For the colors,

the duration was set at 1.3s while the gray pause screen had a slight randomization between 1.3s and

1.6s in order to prevent the participants from getting used to the rhythm. The RGB color codes utilizes

were FF0000, 008000, and 0000FF. An illustration of the protocol with duration and colors is shown in

fig. 4.1. A total of 140 epochs of each color was recorded, with 4 pauses of 1 minute placed throughout

to let the participants rest.

During the experiment, participants were instructed to avoid blinking the colored screen which im-

plies that the epochs containing OAs are expected to be more prevalent during the gray screen, mean-

ing the rest state. Additionally, a camera was utilized to capture video footage of the participants, al-

lowing for the measurement of their engagement levels. It is worth mentioning that a few participants

displayed signs of drowsiness and even fell asleep during the recording sessions.

4.2.2 Data Selection

The final data selection consists of sessions where all channels were reported as good and the partic-

ipants were reported as awake and focused. The final data selection can be seen in table 4.1 with the

final number of epochs in each class per session.

The presence of gray pauses inserted between each color screen ensures an equal number of data

segments for both the gray screens and the combined total of the colored screens. This balanced

distribution of data segments between the rest and task classes is crucial when attempting to classify

these two classes.
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Subject Session Rest epochs Task epochs
2 2 425 420
3 2 424 420
4 2 425 420
5 2 425 421
6 2 425 420
7 2 425 420
8 2 425 420

11 2 425 420
13 2 425 420
14 2 425 421
15 2 424 420
18 2 425 420
19 1 425 420
20 1 425 420
21 1 425 420
23 1 422 420
24 1 425 420
25 1 425 420
26 2 425 420
28 1 425 420
29 1 425 420
30 1 425 420
31 1 425 420

Total 9770 9662

Table 4.1: Subjects and session with their total number of epochs used for the OA removal and subse-
quent classification
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4.3 Preprocessing

Removing Powerline Noise

Electrical power lines produce a 50 Hz AC signal that can contaminate EEG recordings. To remove

this noise, a notch filter was applied to remove the 50 Hz frequency component from the data.

Bandpass Filter

A bandpass filter was applied to the data to limit the frequency range of interest. Since frequencies in

the gamma range are rarely encountered in EEG data, this range was chosen to be between 0.1 and

45 Hz. This ensures that any noise or artifacts that may have been introduced during data acquisition

are removed.

Downsampling

The original data recording was done with a sampling frequency of 1000 Hz. Since the intended ap-

plication of this is a BCI, it is beneficial that the signal processing and the classification using the NN

can be completed in a real-time perspective. EEG signals have a high dimensionality and processing

is computationally intensive, especially with a high sampling frequency. Additionally, higher frequen-

cies require more processing power and storage capacity, making the equipment heavier and bulkier,

which can be undesirable for everyday use where comfort and portability are important factors to

consider. Therefore, downsampling the EEG signals can make the system more lightweight and com-

fortable, which is beneficial for practical applications. Based on this, downsampling to 200 Hz was

applied to the signal.

4.4 Data Processing

After preprocessing the data, it was cleaned using the four methods presented in this section. All

methods have the intention of removing ocular artifacts, specifically blinks as they are the most dis-

ruptive to the signal, while preserving the information in the recording. While ICA and SSP were im-

plemented as well-established methods, the implementations of the modified SSP and the algebraic

method were developed in this thesis.

4.4.1 Algebraic Method

The algebraic method used in this work was suggested by [47]. It is a hybrid algorithm that detects

and removes the OAs. First, the algorithm detects OA zones based on algebraic calculation. Second, it

removes the blinks by using DWT decomposition and thresholding. In contrast to the other methods

used, the denoising is only applied to the area detected as an artifact. This results in a fast denoising

technique, well suited for real-time applications, like BCIs.

In the original paper proposing the method, the decision function, eq. (2.3), was compared to the

threshold

γ= N

µ+σ , (4.1)
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where N is a constant found through experimentation, and µ and σ are the mean and Standard De-

viation (SD), respectively. The value should be set so that the method detects sufficiently accurately

on data from different subjects [47].

In [1, 2], it was found that some of the detected areas did not cover the complete spike in the sig-

nal. Experimentation was done to circumvent this. It was found that implementing padding to the

detected areas on both sides of the region improved the detection, and was hence included in the

algorithm.

After the detection of OAs, denoising using DWT with 8 levels of decomposition was applied to the

detected regions. The frequency bands for 8 levels of decomposition using data with a sampling fre-

quency of 200 Hz are presented in table 4.2. For each level, the DWT generates detail coefficients.

To remove unwanted frequency components, coefficients exceeding a certain threshold are replaced

with zero.

Level Frequency band
D1 50-100
D2 25-50
D3 12.5-25
D4 6.3-12.5
D5 3.1-6.3
D6 1.6-3.1
D7 0.8-1.6
D8 0.4-0.8
A8 0-0.4

Table 4.2: The frequency bands corresponding to each detail coefficients obtained from a DWT with
8 levels of a signal with sampling frequency 200 Hz. Di denotes the detail coefficient at the i th level
and A8 is the approximation coefficient.

As discussed in section 2.3.4, OAs occur at low frequencies, but there are different reports as to the

specific ranges that are relevant. For this project, 0-13 Hz will be used as this is also what was reasoned

in the original article for the algebraic method [47]. By using levels 4 to 8 (corresponding to the fre-

quency range 0.4-12.5 Hz) for denoising, the unwanted large contributions to the detail coefficients in

this frequency range could be filtered out. After thresholding, inverse DWT was used to reconstruct

the signal, and the original signal was exchanged with the reconstructed signal in the detected OA

zones.

The mother wavelet was selected experimentally by testing different options such as ’coif5’, ’bior4.4’,

’sym3’, and ’haar’. To determine the threshold for coefficient selection, three metrics were tested: Uni-

versal Threshold (UT), SD, and Median Absolute Deviation (MAD). The UT threshold was calculated

using equations

TU T =
√

2logNσ (4.2)

σ2 =median

( |Ca |
0.6745

)
, (4.3)
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where N is the length of the data and Ca represents the wavelet coefficients at the a-th level. and

0.6745 is the constant value for Gaussian noise. The SD threshold was set to

TSD = 1.5std(Ca) (4.4)

as proposed by [92], where std is the SD of the ath level coefficients. Similarly, the threshold based

on MAD is

TM AD = 1.5M AD(Ca) (4.5)

In all cases, thresholding was applied to the absolute value of the coefficients using the threshold

function from the PyWavelets library in ’less’ mode, with a substitute value of zero.

Through experimentation, it was found that the ’bior4.4’ wavelet combined with the UT gave the best

results, and therefore the parameters chosen for this project.

4.4.2 Signal-Space Projection

The second OA-removal method used was SSP. The EOG channel was used to calculate the projec-

tion. First, an average EOG epoch was computed using the create_eog_epochs function from MNE

preprocessing library. This function utilizes an EOG channel to extract epochs centered around the

peaks of OA events. The threshold to trigger detection of such an event is based on the range of

the signal. The average of these epochs is then used to estimate the spatial distribution of the EOG

artifacts. The compute_proj_eog function was then used to calculate the projection vectors based

on the spatial distribution. The resulting projection matrix was applied to the EEG data using the

apply_proj function from MNE, which subtracts the projection from the EEG data to remove the

EOG artifacts.

4.4.3 Signal-Space Projection - Modified Version

The third method used in this work is referred to as a modified version as it is a modification of how

SSP is normally applied. As this work aims to find a denoising technique suitable for real-time appli-

cations, it is advantageous to reduce the calibration time needed for use.

Instead of using the whole session to find the best examples of the artifacts, only a small part of the

recording was utilized. During the sessions, the participants had a pause of 1 minute so that the

recording process was not too hard on their focus. At the time of the pause, the participants were not

requested to look at the screen, but rather take a break, adjust their seating, and regain focus. This

means that during this minute there exists OA such as blinks and eye movement, as well as possible

muscle artifacts. Using only one of these minutes for calculating the SSP would make for a method

that is both robust and requires little effort for calibration.

The continuous signal of one of the minutes was used along with the

compute_proj_eog function to calculate the projection. This projection was then applied to the

whole signal using the same method as described above.
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The alternative approach is proposed as a more real-time suited OA-removal algorithm, more tar-

geted towards BCI applications. The idea is that the user is asked to wear the EEG recording device

and perform a brief calibration process by blinking for a short period of time. This calibration data

is then used to calculate the projection matrix that can remove eye blink artifacts in real time during

the subsequent use of the BCI system. This approach can potentially reduce the time required for

preprocessing EEG data significantly, and possibly improve the accuracy of the BCI system since it is

calibrated specifically for the individual user.

4.4.4 Independent Component Analysis

ICA is one of the most used methods in OA removal today, though it is computationally heavy and

therefore not suited for real-time use or BCIs. It is, however, a good source for comparison of the

performance of the other methods and provides a standard for how the results should look.

ICA was used to remove ocular artifacts from the EEG data using the ICA function from the prepro-

cessing library of MNE. First, a high-pass filter with a cutoff frequency of 1 Hz was applied to remove

slow drifts and other low-frequency noise. The filtered data were then used as input to the ICA algo-

rithm. Secondly, the ICA function performs independent component analysis on the input data. The

number of components to estimate was set to 20 and automatic regulation of the maximum number

of iterations was used.

To identify components related to eye movements, the find_bads_eog function in MNE was used.

This function automatically detects ICA components that are correlated with the EOG data, which is

a direct measure of eye movements. The function returns the indices and scores of the components

that are most strongly correlated with the EOG. These components can then be excluded from the

ICA decomposition by setting the exclude attribute of the ICA object.

Finally, ICA was applied to the preprocessed data to remove the ocular artifacts. The applymethod of

the ICA object was used to project the EEG data onto the ICA components and then back-transform

to obtain the denoised data.

4.5 Classification

This section details the choices made for the classification tasks. In order to assess differences in the

performance made by the process of color perception in the brain, tests were done on both the whole

set of channels, and a subset more closely associated with the relevant regions, namely the six chan-

nels ’PO3’, ’POz’, ’PO4’, ’O1’, ’Oz’, and ’O2’. For all tests, the same implementation was utilized.

4.5.1 EEGNet

The classification will be done by EEGNet, a compact CNN that has been developed for EEG use. NN

usually demand being specially built for the specific use case, while this open-source model aims to

work as a generalized CNN that can work across different paradigms. This makes it highly relevant for

this project as its focus is not on building the best classifier, but rather comparing methods in signal
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Figure 4.2: A visualization of the structure of EEGNet. Reprinted from [3]

processing.

The network consists of three main components: a depthwise temporal convolution layer, a sepa-

rable spatial convolution layer, and a depthwise temporal convolution layer with stride. These are

all visualized in fig. 4.2. The first temporal convolution layer operates on the time axis of the input

data, while the spatial convolution layer operates on the electrode axis. The second temporal con-

volution layer with stride reduces the temporal resolution of the output and enables the network to

learn high-level temporal and spatial features.

More details on the parameters of the model are depicted in table 4.3. Parameters F1 and D are the

number of temporal and spatial filters, respectively. F2 is a hyperparameter that sets the number of

feature maps.

4.5.2 Implementation of EEGNet

The implementation was adapted from the provided example at [91] in order to accommodate the

data sampled at 200 Hz, which deviates from the example implementation intended for 128 Hz data.

The kernel length, which is typically set to half of the sampling rate in EEGNet, was adjusted accord-

ingly to 100 Hz instead of 64 Hz. This modification was made to ensure that the EEGNet model can

effectively process the data and capture the relevant temporal features. This adjustment was the only

modification made to EEGNet for this specific project.
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Block Layer # filters Size # params Output Activation Options
1 Input (C, T)

Reshape (1, C, T)
Conv2D F1 (1, 64) 64 · F1 (F1, C, T) Linear Mode = same
BatchNorm 2 · F1 (F1, C, T)

DepthwiseConv2D D · F1 (C, 1) C · D · F1 (D · F1, 1, T) Linear
Mode = valid,
depth = D,
max norm = 1

BatchNorm 2 · D · F1 (D · F1, 1, T)
Activation (D · F1, 1, T) ELU
AveragePool2D (1, 4) (D · F1, 1, T // 4)
Dropout (D · F1, 1, T // 4) p = 0.25 or p = 0.5

2 SeparableConv2D F2 (1, 16) 16·D·F1+F2·(D·F1) (F2, 1, T // 4) Linear Mode = same
BatchNorm 2 · F2 (F2, 1, T // 4)
Activation (F2, 1, T // 4) ELU
AveragePool2D (1, 8) (F2, 1, T // 32)
Dropout (F2, 1, T // 32) p = 0.25 or p = 0.5
Flatten (F2 · (T // 32))

Classifier Dense N · (F2 · T // 32) N Softmax Max norm0.25

Table 4.3: The EEGNet architecture, reprinted from [3], is defined by the following parameters: C
represents the number of channels, T is the number of time points, F 1 is the number of temporal fil-
ters, D represents the depth multiplier (number of spatial filters), while F 2is the number of pointwise
filters, and N is the number of classes.

4.5.3 Data Processing for Classification

Reference Electrode

The EEG data was recorded without using a reference node. Therefore, a virtual reference was ap-

plied using common average referencing across all the channels, to estimate the signal at the virtual

reference.

Epochs

To isolate event-related activity in EEG signals, the data was divided into epochs of 1.45 seconds,

containing 291 samples. This approach enabled the classification of patterns of brain activity that

corresponded to specific cognitive processes or events. Each epoch included a baseline period of

0.2 seconds before the event onset and a post-stimulus period of 1.25 seconds. The baseline pe-

riod captured the brain activity before the cognitive event, while the post-stimulus period captured

subsequent activity associated with the event. Including both periods allowed better isolation and

analysis of the event-related activity in the EEG signals by including the onset of the event. Addition-

ally, including the baseline period accounted for individual differences in baseline brain activity and

ensured that the classification was based on relative changes in activity associated with the cognitive

event.

Epoch Rejection

Normally, epochs that have a peak-to-peak amplitude larger than 150µV would be rejected as a

means to avoid parts of the signal that are polluted by muscle signals, environmental noise, or elec-

trode artifacts. However, as the aim of this project is to investigate OAs, this step was left out of the

signal processing. This way, all the methods had the same basis for training and testing the classifier.

The total number of epochs for the rest and task states can be seen in table 4.1 and shows that the
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Test data Validation data Training data

Figure 4.3: Illustration of the training, validation, and test sets. Each rectangle represents a recorded
session from a subject.

dataset is approximately balanced between the two classes.

Training, Validation, and Test Data

In ML, Leave-one-out Model (LOOM) refers to a technique where, during model evaluation, each

data point in the dataset is used as a separate test sample while the remaining data points are used

for training the model. This means that for a dataset with N samples, N different models are trained

and evaluated, where each model is trained on N-1 samples and tested on the left-out sample.

For this project, this segmentation was implemented using each subject as a separate test sample, as

illustrated in fig. 4.3. One subject was set aside, while the rest were randomized and split into a train-

ing set and a validation set by a ratio of 80-20, rounding up to 18 and 4 subjects, respectively.

4.6 Pipeline

The final pipeline for the signal processing is presented in fig. 4.4. The dataset underwent five distinct

processing approaches, which in turn served as training data for five distinct NN models. Among

the datasets, four underwent OA removal in addition to preprocessing, while the fifth dataset was

exclusively applied preprocessing without any OA removal.

4.7 Metrics for Evaluation

In this section, the metrics that will be used to evaluate the effectiveness and performance of the

methodology will be discussed. The evaluation of the OA removal will first be done visually to the ex-

tent possible. However, the evaluation will also be complemented by the accuracy achieved through

the classification of NN models. This combined approach allows for a comprehensive gauge of the

efficiency of OA removal and its influence on the overall performance of our methodology.

4.7.1 Evaluation of OA Removal

For an EEG signal in real-time, there exists no noiseless signal for comparison. As such, the evaluation

of the effectiveness of the OA removal cannot be based on a direct comparison with the true target

value. If this were to be the case, the OAs would have to be made by inserting artificial peaks that were
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Figure 4.4: The intended processing pipeline for this project. EEG data is applied the same pre-
processing and then four methods of OA de-noising. The resulting data is used to train and test four
neural networks.

similar to the ones detected in the data. For this project, however, the analysis will be done on data

containing real OAs.

Coherence

For the results of the data processing, a coherence plot will be employed. Coherence is a measure

that describes the degree of similarity between two signals as a function of the frequency. The blink

artifacts occur in a specific frequency range that the removal processes used should eliminate. If the

processes are executed correctly, there should be low coherence within the specified OA frequency

range (0-13 Hz), and a higher coherence value for frequencies outside this range. Ideally, only the

specified frequency range should be affected, and since the algebraic method only targets these fre-

quencies this is likely the outcome of this method. However, since both ICA and SSP also are used for

general noise removal, it is likely that other frequency ranges will be affected as well.

Furthermore, the coherence plot provides additional information about the overall performance across

all channels in the data, allowing for an understanding of the effects of the different denoising tech-
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niques across the entire EEG recording. By examining the coherence values for each channel, chan-

nels that may require further processing or investigation to improve the overall signal quality can

be identified. It is worth noting that while the coherence plot provides valuable information about

the degree of similarity between two signals, it should not be interpreted as a direct measure of the

effectiveness of removing OAs.

Visual Inspection

Given that there are no means of quantitatively assessing the effectiveness of the OAs removal pro-

cess in separating the OAs from the underlying neuronal activity, a subjective assessment is required.

Specifically, a visual inspection should be performed on the processed signal to evaluate the extent

to which it resembles a typical EEG signal and to identify any potential artifacts that may have been

introduced during the denoising process. This subjective evaluation provides an important way of

assessing the quality of the denoised signal and can help to ensure that the removal of OAs does not

compromise the underlying neuronal activity.

4.7.2 Evaluation of Classification

To evaluate the four CNN models generated by the four differently denoised datasets, and the prepro-

cessed data, a confusion matrix will be employed. In a two-class classification, the matrix will be a

2×2 matrix, on the form shown in table 4.4, where the diagonal presents the number of correctly clas-

sified samples, while the other elements are the number of incorrect classifications. For each class,

statistical metrics can be calculated for further insight into the performance. The one used in this

work will be accuracy, which is defined as

Accur ac y = T P +T N

T P +T N +F P +F N
, (4.6)

where T P is the number of true positives, T N is the number of true negatives, F P is the number of

false positives, and F N is the number of false negatives. The optimal value is 1, which would mean

that all predictions were correct. Other metrics might highlight the classification results if the dataset

was unbalanced. However, since this is not the case for this project, accuracy is the only metric that

will be considered.

Predicted

Positive Negative

A
ct

u
al Positive True Positive False Negative

Negative False Positive True Negative

Table 4.4: Illustration of a 2-class confusion matrix

To summarize the accuracies obtained per method, a box plot will be used. A box plot is a graphical

representation of the distribution of a dataset. It provides a visual summary of key statistical mea-

sures, such as the median, quartiles, and potential outliers, as illustrated in fig. 4.5. The plot consists
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Figure 4.5: An illustration of a box plot. IQR is the interquartile range

of a rectangular box that represents the interquartile range, with a horizontal line inside denoting the

median. Whiskers extend from the box to indicate the range of the data, excluding outliers, which

are typically displayed as individual points beyond the whiskers. Box plots are useful for comparing

distributions, identifying skewness or outliers, and understanding the spread and central tendency

of a dataset.
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Chapter 5

Results

5.1 Ocular Artifact Removal

The following experiments were done to analyze the performance of the removal techniques of the

dataset. For all tests, the preprocessing was done as explained in section 4.6. The different removal

techniques were then applied to the whole signal of each session.

To ensure simplicity and consistency, session 2 from subject 14 was deliberately chosen for the plots

and figures presented in this section. The selection of this session was not random but intended to

showcase the representative response observed in the EEG data. In addition to the processed signal

samples, coherence plots were included as visual examples for inspection. Three specific channels,

namely ’Fpz’, ’Cz’, and ’Oz’, were selected for the coherence plots to highlight the variations in re-

sponses across the scalp.

5.1.1 Algebraic Method

The algebraic removal method was applied according to the method described in section 4.4. Analy-

sis of the EEG data processed by the algebraic removal algorithm revealed that the detection of OAs

varied depending on the electrode location. Figure 5.1 presents a section of the denoised processed

signal compared to the original preprocessed signal. There is a noticeable difference between the

amount of detected OAs in the three channels. Specifically, in the frontal electrode, only the most

rapid spikes were detected, while in the central and occipital electrodes, all artifacts were detected.

Additionally, multiple regions in the occipital lobe were identified as regions containing OAs, despite

not actually being indicative of such.

In the comparison of the channel data in fig. 5.1, there is a notable distinction in the amplitude of

the artifacts in the different channels. In the two more posterior channels, there is a larger amplitude

of the spikes compared to the frontal channel. It is possible that the algorithm was unable to detect

the lower amplitude artifacts. Additionally, the method has successfully detected blinks with similar

amplitudes as those it failed to detect in ’Fpz’, despite the more variable signal in ’Oz’. This suggests
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Figure 5.1: An example of the cleaned signal using the algebraic removal method compared to the
original signal, for three of the channels from the second session of subject 14. The algebraic detec-
tion resulted in the OA-zones marked with the orange background in the figure. The method failed to
detect some of the OAs in ’Fpz’, and detected OAs at times no OAs were contaminating the signal in
’Oz’.
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that the small amplitude alone is not the sole cause of the detection problem.

In fig. 5.1, it is evident that the SD of the signal increases in the posterior direction, resulting in a

smaller spike-to-signal ratio. This smaller ratio should pose a higher challenge in distinguishing

spikes in the posterior electrodes. However, since the algebraic detection method uses the inverse

SD of the signal to scale the threshold, the threshold will decrease in the posterior direction, resulting

in the observed over detection.

To illustrate some of the effects of the algebraic removal method and its effectiveness in reducing

artifacts, a comparison of the signals of a single OA has been included, shown in fig. 5.2. This shorter

time frame allows for a more detailed analysis of the results. The interval is chosen specifically to

illustrate different occurrences that generally happened in the data. This detailed analysis is only

presented for this specific removal method because the other three techniques do not have a separate

detection algorithm, but rather use a transformation applied to the data as a whole.

The performance of the algebraic method is highly dependent on the detection performance. As seen

in fig. 5.2, both the detection and the accuracy vary. The figure presents one OA, where the detection

is significantly different in the three channels. In the frontal channel, ’Fpz’, the OA is not detected at

all, while in the central and occipital electrodes, it is detected. Although the OA is detected in both,

the start time is substantially earlier in the occipital channel than in the central one. The detection

determines the amount of the signal that is denoised with the removal algorithm. When applying

DWT to the signal, thresholding the coefficients, and then reconstructing it with the inverse trans-

formation, some information may be lost. For this reason, it is advantageous to have the algorithm

minimize the duration of the identified OA interval, to the actual duration of the OA.

When evaluating the efficacy of the algorithm, it is observed that the method exhibits satisfactory

performance in removing the detected OAs. The algorithm generally performs well in removing high-

amplitude spikes while preserving the EEG signal’s normal behavior, as far as a subjective visual as-

sessment is concerned. However, some exceptions occur where some of the trend in the spike re-

mains for certain large spikes. This is an indication of the threshold used for the detail coefficients in

the DWT, was too high.

Occasionally, in the transition from the original signal to the denoised signal, a voltage drop is intro-

duced. The phenomenon can be seen in the central electrode in fig. 5.2, at the start of the detected

OA interval. When a voltage drop is introduced, some of the information in the original signal is lost.

This can lead to a distortion of the signal, potentially making it more difficult to interpret the signal

correctly, which could become apparent when using the resulting data in the classification.

As stated previously, the method sometimes detected an interval exceeding the actual OA. This is un-

favorable, however, as seen in the occipital lobe in fig. 5.2, the majority of the EEG data is preserved

at the beginning of the interval. This observation suggests that the method is capable of preserving

the EEG signal’s integrity to a significant degree, even when it is applied to an interval that extends

beyond the actual duration of the artifact. The ability of the method to retain the EEG’s normal be-
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Figure 5.2: An example of a single OA from the second session of subject 14, comparing the cleaned
signal using the algebraic removal method to the original signal. The detected OA zones are marked
for each channel. ’Fpz’ did not detect an OA zone and therefore the original and cleaned signals are
the same for this example, while ’Oz’ detected a larger zone than ’Cz’.
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Figure 5.3: The coherence between the channel data from the second session of subject 14, before
and after applying the algebraic removal method. Each line represents the coherence of one channel.
Three of the channels are colored as shown in the legend to showcase the differences across the scalp.

havior for the majority of the interval suggests that the algorithm is not overly aggressive in removing

non-artifact portions of the signal. Therefore, despite the occasional over-detection of artifact inter-

vals, the method preserves a significant portion of the EEG data, which suggests that over-detection

is not detrimental to the quality of the signal.

To gain more insight into the effects of the removal method, the coherence between the channel

data of the original and the processed data was computed. Figure 5.3 presents the coherence, where

each line represents the coherence between the original and processed channel data. The highlighted

channels are the same as the ones discussed previously. As wanted, the coherence is close to one for

high frequencies, while in the frequency band where OAs contaminate the data, the coherence is

lower for the majority of the channels. The close coherence in the upper frequencies of likely highly

contributed to by the fact that the original signal is still present in the areas where there was not

detected any OAs. The frequency band of the detail coefficients being thresholded is 0.4-12.5 Hz,

corresponding to the dip in the correlation. Some of the channels have a smaller dip in coherence.

This could be caused by either there being fewer OAs in the channel data, or fewer being detected. As

previously seen in fig. 5.1, there were fewer OAs being detected in the frontal electrode, which results

in a smaller amount of the signal being processed, explaining the higher coherence. Contrarily, all

spikes were detected in the central and occipital electrodes in fig. 5.1, causing a larger portion of the

data to be denoised, causing a smaller similarity between the original and cleaned data.
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Subject, session 2, 2 3, 2 4, 2 5, 2 6, 2 7, 2 8, 2 11, 2 13, 2 14, 2 15, 2 18, 2

No. of components 2 2 2 2 2 2 2 2 2 3 2 2

Subject, session 19, 1 20, 1 21, 1 23, 1 24, 1 25, 1 26, 2 28, 1 29, 1 30, 1 31, 1

No. of components 2 2 2 3 2 2 2 1 2 2 2

Table 5.1: The number of ICA components removed per session.

5.1.2 Independent Component Analysis

The ICA was done using the MNE library and was performed in multiple iterations in conjunction

with a visual inspection, as is the norm. For each iteration, the components are chosen based on

their similarity to the EOG and the scalp field topographies for each component. The effect on the

EEG data was monitored and used in addition to the others to decide the final number of iterations,

as well as the success of each iteration. For all the subjects the number of rounds was between 1 and

3, and for session 2 of subject 14, the number of iterations was 3. Table 5.1 shows the number of

components removed for each session.

An example of the signal after the application of ICA for channels ’Fpz’, ’Cz’, and ’Oz’ is shown in

fig. 5.4. For all 3 channels, the artifacts were visibly reduced, as was the goal of the visual inspection

during the removal process. The recomposed signal also appears to retain the overall shape and am-

plitude of the original signal, even where there was previously OA. However, when the two signals are

overlapped as shown in the figure, it is clear that the ICA process has introduced some delay to the

signal. This is due to the ICA object being fitted to FIR-filtered copy of the signal before being applied

to the original. This can be offset by the baseline correction when dividing the signal into epochs for

the classification.

How the effect of the ICA varies over the different channels can be discussed from the correlation plot

of fig. 5.5. The same three channels have been highlighted in color. As the effect of the removal was

apparent in fig. 5.4, it is to be expected that the frequency similarity to the original has been changed

for these channels.

Generally, the curve of the lower frequencies matches for most of the channels. This result is con-

sistent with the frequency range expected to be the source of the noise. For the frequencies above

this range, the coherence is varied but generally follows the same pattern, meaning that there is a

clear trend and common response for most of the channels. The variance could be due to the re-

moval of other noise the ICA found with the OA, or indeed the opposite; linear noise introduced by

ICA. Since the signal is decomposed into linear components, the subtraction of these components

may also introduce noise or artifacts. Added rounds of ICA were found to further this behavior, as the

components represented the artifacts less after each round.
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Figure 5.4: An example of the cleaned signal using ICA compared to the original signal for three chan-
nels from the second session of subject 14, over a period of time.
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Figure 5.5: The coherence between the channel data from the second session of subject 14, before
and after applying ICA for an example session. Each line represents the coherence of one channel.
Three of the channels are colored as shown in the legend.

5.1.3 Signal-Space Projection

The SSP method was applied in two ways, as explained in section 4.6. After some experimentation

over all the subjects, it was concluded that the number of vectors should be set to 1 for all. Adding

more vectors did not make a visible impact, but rather added noise found in the coherence plots

presented shortly.

Examples of the signal after the SSP and the modified version of SSP were applied are presented in

fig. 5.6 and fig. 5.7, respectively. When comparing the two results, they both manage to project the

signal to a subspace that captures all the artifacts. However, the method using the modified SSP

exhibits some remnants of artifacts. While they both still display the same patterns as the original

signal, fig. 5.7 seems to also carry the pattern of the artifacts, though still lowering the amplitude of

the spikes. This modified SSP only used a sample of 60 seconds to calculate the subspace for the

projection, while the other had the whole session. This means that the samples of characteristic

artifacts to model the noise after were not equally distributed and were also likely contaminated by

other OAs as well as muscle artifacts. The limited sample space could account for why the whole

artifact was not removed by the modified SSP.

For channels ’Cz’ and ’Oz’ the signal amplitudes were significantly reduced in both methods, which

may especially pose a problem if the artifacts are still present as this may affect the signal-to-noise

ratio. In general, it means that modifications to the whole signal make visual inspection more de-
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Figure 5.6: The cleaned signal using SSP compared to the original signal for three channels from the
second session of subject 14, over a period of time.
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Figure 5.7: The cleaned signal using the modified version of SSP compared to the original signal for
three channels from the second session of subject 14, over a period of time.
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manding and requires more than a simple comparison between the original and remodeled signals.

The removal of a subspace from a signal introduces complexities in its interpretation, posing chal-

lenges to accurate understanding. By eliminating an inaccurate subspace, vital information related

to the signal’s underlying structure and relevant features may be lost, impeding accurate analysis and

potentially leading to misinterpretations.

SSP is used under the assumption that the noise exists in a subspace that is orthogonal to the signal

space. If this is not the case, there is a risk that parts of the desired signal may also be reduced.

Looking at the coherence between the original recording and each of the signals produced by these

two methods in fig. 5.8 and fig. 5.9 restates the difficulty of accurate interpretation of what noise the

removal of the subspace might introduce to the signal, or what signal features may be lost. Most of

the channels do exhibit a lower coherence for the frequency range associated with OAs. Even for the

channels that still have quite a high coherence, there is a dip in the area 0-5 Hz, which speaks in favor

of SSP as a tool for OA removal. For the higher frequencies, on the other hand, there is by comparison

a lack of pattern and similarity across the channels.

For comparison of the two SSP methods, fig. 5.10 shows the coherence between them. Though the

bottom part of the frequency spectrum shows some differences, it should be noted that they are all

above 0.86. The fact that it is in this area that carries dissimilarity is quite to be expected following

the comparison of fig. 5.6 and fig. 5.7. Provided that SSP is a satisfactory method for OA removal that

preserves the desired signal, it stands to reason that the modified version also will perform well. As

there is limited knowledge on this performance to be gathered from the example and coherence plot,

this should be further evaluated by the performance of the classification algorithm.

5.1.4 Comparison of Performances

The algebraic removal method differs from the three others by only altering the data in the detected

intervals. This makes the signal outside the OA-zones equal to the original, leaving the signal unal-

tered and preserving the information. Since the other methods are applied to the signal as a whole,

there is no assurance of preserving the integrity of the information. As seen in fig. 5.11 at the end

of the plotted interval in ’Cz’, the algebraic method is equal to the original signal, as it is outside an

OA-zone, while the signals processed with the three other methods diverge from the trend of the orig-

inal signal. Conversely, the detection-limited OA removal approach, as exemplified by the frontal

electrode in fig. 5.11, demonstrates that it may not successfully eliminate all OA artifacts. In con-

trast, methods such as SSP and ICA offer a distinct advantage in this regard. As projection-based and

transformation-based techniques are applied to the entire signal, SSP and ICA have the capacity to

capture and address a broader range of OA artifacts. This comprehensive approach ensures that OAs

are not skipped, contributing to a more thorough removal of unwanted artifacts.

As verified by the coherence plot in fig. 5.10, the signals obtained from the two SSP methods exhibit

a remarkable level of similarity, with virtually indistinguishable differences in fig. 5.11. It should be

noted that this level of similarity was not as high throughout the whole dataset, however, overall the

methods did produce remarkably similar results. The observed level of similarity between the signals
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Figure 5.8: The coherence between the channel data from the second session of subject 14, before
and after applying SSP. Each line represents the coherence of one channel. Three of the channels are
colored as shown in the legend.
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Figure 5.9: The coherence between the channel data from the second session of subject 14, before
and after applying the modified version of SSP. Each line represents the coherence of one channel.
Three of the channels are colored as shown in the legend.
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Figure 5.10: The coherence between the channel data from the second session of subject 14, after
applying SSP and the modified version of SSP. Each line represents the coherence of one channel.
Three of the channels are colored as shown in the legend.

obtained from the two SSP methods supports the validity of the proposed modified SSP method,

provided that SSP does indeed preserve the signal integrity. This will be further evaluated using the

classification results.

5.2 Classification

The data was put through the preprocessing and the subsequent OA removal techniques as described

above. The result was five signals that were then put through classification using EEGNet as described

in section 4.5. The findings from that classification are presented in this section.

While accurately classifying the appropriate color from the EEG recording is an essential aspect of a

BCI, for this particular project it will be adequate to use it as a measure to assess the effectiveness of

the various removal techniques. The EEGNet model was primarily set up with standard parameters,

meaning that the model itself may not be the most optimal choice for this classification task. As a

result, the obtained results primarily serve the purpose of comparing the impact of different methods

on the classifier, rather than evaluating the classifier’s performance. This also pertains to the protocol

for the data collection. The effectiveness of the data collection protocol typically plays a crucial role

in evaluating classification results. However, due to the potential obscuring effects of ocular artifacts

on the collected epochs, the protocol itself cannot be accurately evaluated in this context.

The dataset contains data from 58 channels, however, the primary region responsible for visual pro-
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Figure 5.11: An example of a single OA from the second session of subject 14, comparison of the signal
after each removal technique for a single artifact for three channels. The two SSP methods resulted in
barely distinguishable signals.
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cessing in the brain is the occipital lobe. This region is specifically covered by six channels: ’PO3’,

’POz’, ’PO4’, ’O1’, ’Oz’, and ’O2’. Two models were developed for each subject using data from all

58 channels, and the listed six channels exclusively. These models are referred to as the 58-channel

model and the 6-channel model, respectively, and their results are presented in sections 5.2.1 and 5.2.2.

Each section presents a figure of the accuracy of the LOOMs created with the data processed in the

five different ways: only applying preprocessing, or applying one of the four OA removal methods.

These results are presented for each of the subjects. Furthermore, confusion matrices are included,

combining the results across all subjects, for each method. Finally, a box plot of the accuracies ob-

tained from the 6- and 58-channel models are presented, for comparing the results obtained for each

method.

During the visual inspection of the signal processed using ICA, a minor delay was observed. To ad-

dress this issue, a uniform delay was applied to all channels, though, there was a slight variation in the

delay across individual channels. This was done before the signal was divided into epochs to ensure

that the correct data was still contained within the correct epoch and corresponding class. For the rest

of the removal methods, the signal was simply split into epochs without any further processing.

5.2.1 6-channel Model

This experiment aimed to investigate the impact of using only the channels in the occipital lobe on

classification results. The decision to focus on the occipital lobe was motivated by its known signifi-

cance in visual processing and its relevance to the task at hand. Reducing the number of electrodes

can significantly alleviate the computational complexity of EEG data processing. With a smaller elec-

trode set, the overall dimensionality of the input data decreases, making it computationally more

efficient to train and evaluate the classification model. This efficiency is particularly valuable in real-

time applications, such as everyday usage of BCIs, where fast processing is crucial. Additionally, from

a user’s perspective, using fewer electrodes in a BCI setup can enhance comfort and usability. Com-

paring the effect of using only occipital electrodes with the different OA removal methods is of partic-

ular interest. Evaluating the classification performance with reduced electrodes allows for a focused

investigation of how different OA removal techniques perform under such conditions.

Applying ICA, SSP, modified SSP and only preprocessing resulted in approximately the same average

accuracies of respectively 0.75, 0.69, 0.71, and 0.71, visualized in fig. 5.12. The model for the algebraic

method performed the worst with an average accuracy of 0.5, meaning that the model is essentially a

random classifier having approximately the same distribution across both true and false predictions.

The confusion matrices combining the results of all LOOMs for each of the OA removal methods are

presented in fig. 5.13. The four preprocessing pipeline models obtaining the best accuracies had quite

balanced matrices, having approximately the same percentage of False Positive (FP) as False Negative

(FN). Contrarily, the algebraic removal method, which performed the worst, had a slight overweight

of task-state predictions.

The similar accuracies of the four methods suggest the processing pipelines produce data that is of

similar quality to the CNN. One of the four methods was solely preprocessing without any OA removal
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Figure 5.12: Rest vs. task classification accuracies from the LOOMs for each removal technique, using
only data from the 6 electrodes in the occipital lobe. The dashed lines are the average accuracy of
each method. The average for ’None’ and ’SSP_MOD’ are coinciding. The random classifier accuracy
is marked with a red line, and is coinciding with the average of ’Algebraic’.

technique, and yet achieved similar accuracies to the other methods. It is possible that the processing

methods, including OA removal techniques, do not improve the quality of the data significantly for

this specific classifier. CNNs are specifically designed to automatically learn and extract meaningful

features from the data. Since the performance was approximately the same for the preprocessed data

as the data applied OA removal, it indicates that the model may have been able to extract the mean-

ingful features despite the OA spikes. Alternatively, it is plausible that while the methods effectively

remove the targeted OA, they may also remove some of the informative signals alongside the noise.

This could result in a loss of relevant information required for accurate classification. A third possibil-

ity is that while the OA removal appears to be satisfactory, there could still be remnants of the spikes

that the CNN is detecting. These potential faults in the process could be leading to similar accuracies

compared to the purely preprocessed data.

The results obtained from the classification analysis of the dataset indicated that the highest accuracy,

as well as the overall average accuracy, were achieved when employing the ICA for the removal of

OAs. This finding aligns with the widely recognized status of ICA as a state-of-the-art technique for

OA removal in the field.

As the coherence plot (fig. 5.10) between the data processed with the two SSP techniques indicated,

the two methods produced highly similar results. This similarity was also evident in the classifica-

tion outcomes, as both models yielded very comparable accuracies. Notably, the proposed modified

technique exhibited a higher average accuracy compared to the conventional SSP denoising method.

Examining the models generated from the dataset processed with SSP, it was observed in fig. 5.13

that they had a slightly lower FP rate but a higher FN rate. Although the difference was not substan-

tial enough to draw definitive conclusions regarding the superiority of one method over the other,

it does provide a valuable indication of the efficacy of the SSP approach when utilizing a simulated
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Figure 5.13: Confusion matrices for the rest vs. task classification done using 6 channels for each
removal technique.
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calibration method for achieving effective overall artifact removal.

The 6-channel models from the signal that was applied the algebraic removal performed the worst out

of all when evaluating based on the accuracies. These results could mean that the classifier was not

able to differentiate between the task and rest state when the OAs were removed. However, since the

three other OA removal methods gave better results, this is not very plausible. One possible interpre-

tation is that the algebraic method, may not adequately preserve the underlying patterns or features

in the EEG data that are crucial for accurate classification. This could result in a loss of discriminative

information, leading to the lower accuracies observed. Another explanation is that the method may

introduce noise to the signal that affects the performance of the CNN. The voltage drop, mentioned

in section 5.1.1 and seen in fig. 5.2, is one example of such introduced noise. When the algorithm in-

puts the recomposed, denoised signal, there is no guarantee that the transition sample values will be

close to each other, which can lead to the observed voltage jumps. Moreover, the sudden transition of

the denoised signal and the original signal may introduce new nonlinearities. These types of artifacts

introduced by the algorithm may contribute to the poor classification results.

Due to the variability in detection accuracy across different channels, as mentioned in section 5.1.1,

the resulting channel data will exhibit a varying number of remaining spikes. As a result, there will be

an imbalanced spike distribution across the entire dataset. This non-uniform distribution introduces

challenges during the classification phase, as the NN model relies on consistent and representative

patterns to effectively differentiate between the two classes. Uneven spike counts across channels

may skew the learning dynamics and the model’s ability to generalize and accurately classify unseen

instances may be compromised. Moreover, the imbalanced spike distribution can lead to inadequate

feature representation within the CNN model, as the model may fail to recognize the discriminative

features.

5.2.2 58-channel Model

This experiment aimed to assess the impact of utilizing all 58 channels in the classification results.

Although the focus on the occipital lobe is motivated by its known significance in visual processing

and its relevance to the task, it is also important to investigate the performance when using a larger

number of electrodes. Evaluating the performance of the various OA removal techniques using the

complete electrode setup allows for a comprehensive assessment of their efficacy under more com-

plex electrode configurations.

Although more information is available, the performance generally decreased for the 58-channel

models compared to the 6-channel. As seen in fig. 5.14, the average accuracy of the models created

with the five processing pipelines were 0.66, 0.51, 0.61, 0.69, and 0.66 for data applied only prepro-

cessing, algebraic removal, ICA, SSP and the modified SSP, respectively. The results show that one

of the models generated from data with no OA removal gave the highest accuracy of all models. This

finding challenges the assumption that utilizing artifact removal techniques leads to improved classi-

fication accuracy. The confusion matrices generated for these models are presented in fig. 5.15. There

is generally less balance in the FP and FN predictions using the whole dataset.
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Figure 5.14: Rest vs. task classification accuracies from the LOOMs for each removal technique, using
all 58 channels. The dashed lines are the average accuracy of each method. The average for ’None’ and
’SSP_MOD’ are coinciding. The random classifier accuracy is marked with a red line, and is coinciding
with the average of ’Algebraic’.

Contrarily to the 6-channel model, data that was applied ICA removal had one of the lowest accu-

racies, with only the algebraic removal that gave random classifier results, performing worse. The

majority of errors in these cases were false positive rest-state classifications.

By using the whole set of channels, conventional SSP gave on average better results than the modified.

This suggests that the standard SSP approach, without modifications, was more effective in mitigating

artifacts and improving classification accuracy when more data was used.

Similar to the findings in the 6-channel model, the application of algebraic removal to the 58-channel

data did not improve classification accuracy. The average accuracy was 0.51, with a slight overweight

of rest classifications, as seen in fig. 5.15 in contrast to the 6-channel model.

5.2.3 Comparison of Classification Results

Figure 5.16 compares the accuracies obtained when training the CNN on data with the different OA

removal techniques. There is a larger interquartile range for the models using all channels, meaning

there is variability in the results obtained from those models.

Generally, there is a trend of worse performance when using all the channels. When the input con-

tains irrelevant information, such as noise or artifacts, it can hinder the network’s ability to extract rel-

evant features and make accurate predictions. The presence of additional channels in the 58-channel

setup could have introduced more noise or irrelevant information into the input data, making it more

challenging for CNN to discern important patterns. As a result, the overall performance of the models

created with the 58-channel setup suffered compared to the 6-channel models.

ICA produced the greatest difference in model results when using the total dataset. The results visu-
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Figure 5.15: Confusion matrices for the rest vs. task classification done using 58 channels for each
removal technique.
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alized in fig. 5.16 show that only 25% of the models had a resulting accuracy of over 70%, while for the

models using the 6 occipital lobe electrodes, approximately 75% of the models had accuracies above

70%. Because of the better performance using data from the relevant area of the brain, this indicates

that the fault stems from the use of too many irrelevant channels and not from a poor artifact removal

method.

The models generated from the dataset employing the modified SSP artifact removal exhibited the

smallest disparity between the 58- and 6-channel model results, in contrast to the other OA removal

models. Notably, the signal subspace estimation was performed using the same number of channels

as the model, suggesting that the estimation remains reliable even when utilizing a limited number of

channels. This finding underscores the robustness and efficacy of the modified SSP artifact removal

method in achieving consistent performance across different channel configurations.

Overall, there is a general trend of a lower variation of the model accuracies in the 6-channel mod-

els compared to the 58-channel models suggests an enhanced generalizability when utilizing fewer

channels. The models trained on fewer channels are better at capturing the essential features and pat-

terns that are consistent across multiple channels, leading to improved performance across different

datasets and scenarios. Thus, the utilization of a smaller set of channels can contribute to increased

robustness and generalizability of the models in the context of OA detection and classification.

For the algebraic method, the accuracy obtained from the 58-channel data was slightly increased from

that of the 6-channel model. As discussed in section 5.1.1, the detection of the OAs in the occipital

lobe was too sensitive, and overestimated the number of spikes in the signal. Consequently, a larger

portion of the data is exchanged with the reconstructed, denoised data. In this process, the data can

lose some information crucial to the feature extraction in the CNN, resulting in poor classification

results. As also discussed, the detection was more accurate in the central channel and underestimated

the number of OAs in the frontal channel. When creating models from all the channel data, a larger

portion of the original signal is left. However, this data may be less relevant to the visual stimuli.

This may have contributed to the slight increase in performance and would support the theory of the

algebraic removal method removing too much information from the signal.

A notable observation shared by the models developed from both the 6-channel and 58-channel

data is the inter-subject variation in individual performance. Emphasizing the subject-wise perfor-

mances is crucial, as the application of potential BCI systems is inherently personalized. In figs. 5.12

and 5.14, it is evident that certain subjects consistently achieved better results across different pro-

cessing methods, such as subject 14, who exhibited the highest accuracy for multiple models. Con-

versely, subject 31 consistently performed below the average for models derived from all methods.

Likewise, several other subjects displayed a higher proportion of lower model accuracy, exemplified

by subject 31. These findings indicate the presence of individual subject characteristics that influ-

ence the performance of the models. One possible explanation for the observed differences could

be the presence of fewer artifacts or better recording quality for certain subjects. Understanding and

accounting for these subject-specific factors will be essential for the successful implementation of a

personalized BCI system.
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Figure 5.16: Comparison of the accuracies from the 6- and 58-channel models for each OA removal
technique. The darkest colors illustrate the accuracies obtained from classification using 6 channels,
while the lighter colors illustrate the accuracies from classification using 58 channels.
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Chapter 6

Conclusion, Discussion and Further

Work

6.1 Discussion

The aim of this work was to investigate methods for removing OA from recorded EEG signals and

evaluate the effectiveness and feasibility of usage in a future BCI. Four different techniques were

tested, ICA, an algebraic approach, and two versions of SSP. Classification using CNN was then used

as an additional evaluation framework for artifact removal.

The objective is motivated by the wish to ease the life of individuals with LIS. Effective communi-

cation plays a crucial role in an individual’s autonomy and overall well-being. However, the existing

communication aids used in LIS often come with the disadvantage of being time-consuming, mak-

ing it challenging to participate in conversations and significantly prolonging the duration required

to communicate a single sentence. In addition to this, the method also lacks privacy for the user, as

mentioned in chapters 1 and 3. By leveraging BCI technology, a more efficient and accurate com-

munication approach can be established, potentially alleviating the negative impact of the current

communication methods on the individual’s quality of life.

When investigating the methods for developing a BCI based communication, processing pipelines

for the EEG signals are an important part. In this work, specifically, the noise-reducing methods of

OA removal were implemented and evaluated for use in BCIs. The current state-of-the-art method for

removal of the spikes introduced to the signal due to blinks is ICA, however, because of the computa-

tional heaviness, it is not suited for real-time applications, such as BCIs. SSP is a similar method, also

too computationally heavy for BCIs because the method requires an extraction of OAs to calculate the

projection that is applied to the whole signal.

Two methods for real-time usage were implemented and tested. Firstly, a method proposed by [47], of

a hybrid OA detection and removal algorithm. Secondly, a proposed method, that uses the projection
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similarly as in SSP, but by using a defined interval to find the artifacts.

6.1.1 Dataset

A high-quality dataset is crucial for data analysis when it comes to ensuring the accuracy and reli-

ability of the findings. The dataset used in this project was gathered in a controlled and stable en-

vironment. It has been previously employed in classification tasks and demonstrated satisfactory

performance [4], indicating its suitability. In this study, epochs that contained artifacts such as blinks

or muscle movements were systematically excluded. As this project aims to investigate various meth-

ods for OA removal, the dataset selected is deemed appropriate. Moreover, since participants were

instructed to blink during pauses rather than RGB colors, the epochs containing OA are overrepre-

sented during the pauses. This makes for uncertainties, as the two classes might have seen different

processing.

6.1.2 Ocular Artifact Removal

The experiments performed for this project were designed to test out the effects of the different ar-

tifact removal techniques and the subsequent classification using the processed data. Using visual

inspection of the signal as well as an inspection of the coherence between the processed signals and

the original recording, it was found that most of the methods were detecting and removing the spikes

caused by the OA to a satisfactory degree. The second objective was to find the best method to differ-

entiate between a task state and a resting state as a way to compare the acoa removal.

The results obtained from the 6- and 58-channel models are summarized in table 6.1. The exper-

iments showed that models created with 6 channels gave on average better results, while the 58-

channel models had the total highest accuracy. The best performing method was ICA for the 6-

channel models and no acoa removal for the 58-channel models. The algebraic method performed

poorer, with variation in OA detection across the different channels causing the resulting signal to

either remove too few artifacts or applying the removal algorithm where it was not needed. This ten-

dency was also seen in the classification, as the rest of the models achieved average accuracies of 69-

75% while the one based on the algebraic method behaved close to a random classifier at 50%.

Examining the individual accuracies across both the 6-channel and 58-channel models in table 6.1, it

is evident that the "None" method yielded the highest accuracy (0.94 for 58 channels) and the second-

highest accuracy for 6 channels. This suggests that not applying any specific artifact removal tech-

nique may result in relatively better performance in terms of classification accuracy. Though, because

the dataset contains OAs in the resting states, the classifier may discriminate between blink vs. no

blink rather than color vs. no color.

For each of the methods to be working as efficiently as possible, there is a need to tune them to fit

the signal. For the ICA the algorithm is provided by MNE and only requires some visual inspection,

which can be aided by the other working analysis tools of MNE. Similarly, for the SSP, the built-in

features of MNE take care of calculating the subspace provided the signal and the desired number

of vectors. In this work, it has been found the output can be affected by calculating the subspace
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Method
6 channels 58 channels

Method
Average Best (subject) Average Best (subject) suitable for real-time

None 0.71 0.90 (14) 0.66 0.94 (24) Yes

Algebraic 0.50 0.52 (20) 0.51 0.57 (28) Yes

ICA 0.75 0.92 (14) 0.61 0.91 (14) No

SSP 0.69 0.85 (6) 0.69 0.89 (14) No

SSP_MOD 0.71 0.87 (14) 0.66 0.84 (5) Yes

Table 6.1: Summary of the obtained results from the rest vs. task classification after each method for
artifact removal. The table presents the average accuracies of the LOOMs created using each method
of 6- and 58-channel data. The table also presents the maximum accuracy obtained for each method,
and the subject yielding the result.

on a different segment than the vectors are applied to. Lastly, the logic of the algebraic method has

been implemented by hand and is therefore the most likely to be prone to error handling due to

implementation and non-established tuning processes.

The variation in detection across channels has likely contributed to the poor performance of the al-

gebraic method. The threshold used for detection was tuned by visual inspection across different

subjects in an effort to find a value that would perform in a generally satisfactory manner for all the

subjects. However, upon reviewing the obtained results, it is evident that additional calibration of the

algorithm is required, both on an individual subject basis and for each individual channel.

A potential approach for calibration could be implemented similarly to the proposed method for the

modified SSP. This could involve allocating a brief initial period during a user session, which would

serve as the basis for calculating the detection threshold. In order to ensure a more consistent de-

tection and removal process across all channels, a decision function for detection could be imple-

mented. In this function, the cumulative detection results across channels would establish a global

OA-zone. This would compensate for under-detection in the frontal channels by incorporating detec-

tion from other channels, while over-detection in the occipital channels would be counterbalanced

by the absence of detection in the remaining electrodes. Alternatively, it would be possible to imple-

ment separate thresholds for each channel, allowing the detection to be independent of the perfor-

mance of other thresholds.

When suggesting a calibration process for the detection threshold, it is imperative that the equation

used is also considered as a potential contributor to the underperformance. The equation for the

threshold, obtained from [47], is presented in equation eq. (4.1). The observed variations in results

across channels align well with the fact that the equation is inversely proportional to the SD, as dis-

cussed in section section 5.1.1. It is important to further investigate the relationship between the

SD of the signal and the spike amplitudes caused by OAs. Adjustments to this equation may be nec-

essary to establish a threshold that can be applied consistently across channels and subjects. This

could involve exploring alternatives such as an inversely proportional relationship or entirely differ-
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ent threshold formulations.

The similarity in performance between the two versions of SSP are indicative of the feasibility of de-

veloping a calibration process for calculating the noise subspace. These results highlight the potential

of the proposed modified SSP method as a viable approach for OA removal. Moreover, the method’s

ability to maintain high accuracy while offering real-time feasibility positions it as a valuable can-

didate for future exploration and development in the field of BCI systems. The calibration segment

was extracted from the pause in the data protocol, but it was noted that this section contained arti-

facts other than eye blinks and small movements resulting from fixating on the screen, likely due to

subjects’ movement and speaking. Since both versions of SSP exhibited similar performance using

different segments, it would be beneficial to further investigate the influence of what kind of segment

is used for the calibration. Exploring the effects of using different segments, such as one from the mid-

dle of the protocol that reflects activity levels during actual use, as well as that of the actual patient

group, could provide valuable insights. This analysis of various data segments would contribute to

understanding the limitations and requirements of this calibration method, ensuring its robustness,

which is crucial for its application in a BCI setting.

The over-representation of the OAs in the epochs representing the rest state creates a potential risk

of the classifier learning a spurious association between the presence of OAs and the classification

task. This is especially relevant for ML models that rely solely on the preprocessed signal, in which

the OAs remain. Comparing the performance of these models with other methods reveals minimal

differences. There are several possible explanations for this finding. Firstly, the CNN might be ca-

pable of sufficiently identifying the underlying features related to color perception in the EEG data,

enabling it to overlook the artifacts on its own. Alternatively, the CNN may still be detecting artifacts

even after removal, either due to incomplete artifact removal or the introduction of new noise during

the removal algorithms. To investigate this, it would be valuable to examine how epochs containing

artifacts are distributed within the confusion matrix, providing insights into the impact of artifact re-

moval on classification performance. Additionally, employing alternative classifiers such as RF and

SVM, which are not based on deep learning, may yield more pronounced differences in classification

results. These classifiers also offer enhanced model transparency and the ability to determine feature

relevance, which could provide a further understanding of the features employed in the classification

process.

During the implementation of the classification, the choice was made to not include epoch rejection

as this was likely to affect the OAs, especially for the algebraic method, and the signal simply under-

going preprocessing. This means that there may very well have been left other types of artifacts in the

signal, that might have influenced the classification. However, it is reasonable to assume that the dis-

tribution of these artifacts is approximately equal between the two classes. Therefore, the presence

of these epochs should have minimal impact on the evaluation of the OA removal methods.

It is important to note that the performance was heavily influenced by subject-specific variations.

Subject 14 often achieved the best accuracy using the varying methods, yielding the best accuracies

for five out of the ten maximum accuracies presented in table 6.1. Though this session was chosen
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to highlight the typical response of the removal process, its high performance for the classification

was not anticipated. It may very well be due to individual differences in the quality of the recordings.

These results underscore the importance of considering subject-specific variations, as some subjects

consistently outperformed others across different processing methods. Such subject-specific perfor-

mance variations emphasize the importance of personalized approaches in the development of BCI

systems.

Limitations have been encountered in the evaluation of the results obtained from this project. Al-

though adjustments have been made to the signal within the desired range based on coherence plots,

it remains unclear what noise has been introduced to the signal. Initial visual inspections suggest

a satisfactory signal appearance, but a deeper analysis using additional tools is necessary to explore

the underlying structures and features of the signal. Since the classification results may merely dis-

tinguish epochs that contain OAs from those without, further evaluation of the methods is needed

before protocols and the next steps toward BCIs are discussed.

6.1.3 Towards a BCI

The methodologies assessed in this research project rely on the utilization of EEG to capture sig-

nals from patients. Although the selection of this method is motivated by its cost-effectiveness and

user-friendly nature, requiring minimal cognitive exertion, it is imperative to examine the patients’

perception and acceptance of this approach. The study [65] presented in section 3.1 reported that the

preferred method for the use of BCIs was speech, followed by attempted movement. This raises the

question of the relevance of pursuing approaches that may not be in line with the patients’ wishes.

However, as discussed in section 3.1 there has been reported promising result regarding EEG-based

BCIs.

The utilization of visual stimuli as the cognitive strategy for operating a BCI necessitates users’ con-

trol over certain eye movements and blinking. This requirement may lead to a lack of inclusivity for

patients with CLIS. Considering that patients with incomplete LIS may retain some degree of bod-

ily movement, it is improbable that they would find this approach useful, as attempted movements

are typically more favored as a cognitive strategy. However, a recent study [93] examined the poten-

tial of employing imagined colors as a means of controlling a BCI and reported promising outcomes,

indicating the feasibility of this method. Implementing this approach could enhance inclusivity for

patients with CLIS, offering them an alternative means of interaction.

The requirements for the protocol accompanying the BCI implementation also warrant considera-

tion. In order to offer advantages over existing keyboards that utilize eye tracking, the method should

incorporate a predefined set of commands that enable swift communication. This feature is essen-

tial for facilitating rapid and efficient interaction, ensuring that the proposed method surpasses the

functionality of current eye-tracking keyboards.
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6.2 Conclusion

This work aimed to investigate methods for removing OAs from EEG signals and evaluate their effec-

tiveness for potential use in a future BCI communication system for individuals with LIS. The moti-

vation behind this research stems from the need to improve communication methods for individuals

with LIS, who face significant challenges due to their limited motor control and speech capabilities.

By harnessing BCI technology and EEG signals, a more efficient and accurate communication ap-

proach can be developed, potentially enhancing the quality of life for individuals with LIS. Three

techniques, including ICA, SSP, and an algebraic method, were tested and compared in terms of OA

removal and their impact on classification performance.

The experiments conducted in this study focused on the removal of OAs from EEG signals using dif-

ferent techniques. Visual inspection and coherence analysis demonstrated that most of the methods

effectively detected and removed the artifacts caused by eye blinks. However, the algebraic method

showed poorer performance, with variations in OA detection across different channels. The clas-

sification results also revealed that the other models achieved average accuracies of 69-75%, while

the algebraic-based model behaved close to a random classifier at 50%. Among the real-time suit-

able techniques for removal, the modified SSP method yielded the highest average accuracy of 71%.

Nevertheless, due to variations in individual performance, the best result achieved by an individual

subject was 94% without using OA removal. The presence of OAs in the rest state epochs posed a

potential risk of false associations between artifacts and the classification task. However, the per-

formance of ML models, particularly CNNs, did not show significant differences when comparing

models using preprocessed signals with and without OAs. Further analysis, such as examining the

distribution of epochs containing artifacts within the confusion matrix, and exploring alternative

classifiers, could provide a deeper understanding of the impact of artifact removal on classification

performance.

OA removal methods a calibration processes and adjustments to the detection thresholds were pro-

posed. The implementation of individual subject-based and channel-specific calibration could im-

prove the consistency and performance of the removal algorithms. Moreover, further investigation

into the relationship between the SD of the signal and OA spike amplitudes could lead to refinements

in the threshold equation. The evaluation of two versions of SSP indicated the feasibility of devel-

oping a calibration process for calculating the noise subspace. Exploring different data segments for

calibration, including segments from the middle of the protocol and those representing actual pa-

tient data, would provide valuable insights into the limitations and requirements of this calibration

method.

In conclusion, this work has contributed to the exploration of artifact removal methods for potential

use in a BCI-based communication system for individuals with LIS. While improvements and op-

timizations are still needed, the findings support the feasibility of developing efficient OA removal

process for BCIs, that could be used in accurate communication platforms. The results have also

highlighted the importance of investigating different types of classifiers and their need for effectively

removing OAs.
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6.3 Future Work

The end goal of this thesis is to evaluate methods for signal processing with the end goal of creating

an EEG-based BCI. Keeping this in mind when moving forward is important, to ensure the patients’

needs are being assessed, and that the approaches are well-suited for this type of real-time applica-

tion.

Further refinement of these methods for OA removal is crucial if they are to be relevant for this task.

Both the algebraic method and the modified version of SSP are in need of working calibration proto-

cols that will ensure they are tailored to each individual as well as the patient group. For this, the SSP

should be tested on calibration segments that are more similar to that of the patient group, if not ac-

tual patient data. Should there be developed a calibration system for the algebraic method rendering

it more robust across channels, there could be a cause to investigate this method further. Although,

for now, there appears to be more promise in pursuing the SSP as a method for artifact removal.

Though not the focus of this thesis, having a BCI as the end goal means the classification also needs

to be improved further. The promising results achieved with EEGNet, indicate that the NN is quite

capable of classifying the two tasks. Given that EEGNet performed quite well without the artifact

removal, utilizing a classifier that is not based on NN, but rather more dependent on the signature of

the features being preserved through the process could prove useful. This could be classifiers such as

RF or SVM that may compute feature importance analysis and thereby provide interpretable models

that could identify the most important factors in the classification process. This could help shed more

light on the differences between the original and the processed signal.

An option that should be considered for the data is to create a dataset with synthetic OAs. This would

allow for further analysis of the impact of both the OAs and the removal processes on the signal and

the subsequent classification. It would also allow for the epochs affected by OAs more evenly dis-

tributed between the two tasks, ensuring that there is no bias toward one of the classes. This would

make sure that the original signal could serve as a more accurate benchmark for the removal than

that of the ICA.

With the BCI in mind, further testing of the approach should go toward ensuring online functionality

that is tailored towards the patient group. This means evaluating the computational demands and

time performance of the methods, in order to optimize the real-time performance of the system. This

also includes shortening the length of the epochs, while keeping up the classification performance.

As reported by persons with LIS, the time it takes to efficiently communicate should be one of the

priorities in the development of assistive technologies. Maintaining focus on this entails discussing

designs with persons with LIS as well as their caregivers and ensuring that no requirements are lost in

the process.
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