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Abstract

To meet the growing demand for green power generation, wind power development is
projected to increase much in the coming years. Computationally cheap high resolution
wind data can help wind developers increase production and give better production esti-
mates, thereby reducing both the cost of wind power and the risk associated with wind
farm development.

To help accomplish this, here a fully convolutional 3D GAN with a wind gradient based
loss function is trained to super-resolve microscale near-surface atmospheric wind flow.
Applying an ESRGAN generator architecture with a terrain feature extractor and a feature
dropout layer, the model super-resolves the wind field to 4x4 increased horizontal reso-
lution with average length of the error wind vector 0.24 m/s, and physically reasonable-
looking 3D wind flow.

The model is applied to a generated dataset with unevenly spaced vertical coordinates.
Various approaches for addressing the irregular grid are tested, and it is found that interpo-
lating the wind field with regular vertical spacing relative to the ground, and adding terrain
as input to the model performs best.

Based on the physics of atmospheric wind flow, multiple loss functions comparing specific
parts of the wind gradient of the generated and the high resolution wind field are introduced
and tested. A loss function focusing on, in descending order, differences in the ∂

∂x
∂
∂y

derivatives, horizontal divergence ∂u1

∂x + ∂u2

∂y and divergence, mediated by an average
absolute error pixel loss was found to increase performance greatly. Adversarial learning
is dropped, as it at best only slightly improved on pure content loss.

The best model is shown to do significantly better than interpolation, even approximating
turbulent wind patterns reasonably well. The model is shown to be flexible, also able to
produce 8x8 and 16x16 resolution increase. Further work is needed to apply the model in
wind farm development or operation, tailoring the model to the relevant scale, terrain and
datasets. All in all, the model should be considered a proof-of-concept for CNN driven
super-resolution of 3D microscale atmospheric wind flow.
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Sammendrag

I møte med økende behov for grønn energi er det froventet med stor økning i vindkraftut-
bygging de neste årene. Billig høyoppløslig vinddata kan hjelpe vindutviklere å optimere
produksjon og redusere risiko ved vindutbygging.

For å bidra til dette, brukes en konvulær GAN modell her til å øke oppløsningen på
mikroskala atmosfæriske vindfelt. Ved å anvende en ESRGAN generator-arkitektur med
terrenganalyse og dropout-lag gir modellen en 4x4 økning i horisontal oppløsning på vin-
ddata med 0.24 m/s gjennomsnittlig vektorlengde på feilen, og fysisk rimelige genererte
3D vindfelt.

Modellen brukes på et numerisk generert datasett med irregulære vertikale koordinater.
Forskjellige tilnærminger for å håndtere dette koordinatsystemet blir testet. Det best fun-
gerende oppsettet interpolerer dataen så den blir regulær i forhold til bakkenivå, og inklud-
erer z-koordinater som input til modellen.

Basert på relevant fysikk introduseres og testes flere tapfunksjoner som sammenligner spe-
sifikke deler av vindgradienten til det genererte og høyoppløselige vindfeiltet. Den beste
tapsfunksjonen fokuserer mest på, i synkende rekkefølge, forskjeller i ∂

∂x
∂
∂y -deriverte, ho-

risontal divergens ∂u1

∂x + ∂u2

∂y , absoluttfeil og divergens. Adversarial læring blir til slutt
droppet, da det maks bidro til en liten forbedring.

Den beste modellen presterer betydelig bedre enn interpolering, og anslår til og med tur-
bulente vindmønstre rimelig bra. Modellen er også fleksibel, den kan også brukes til 8x8
og 16x16 økning i horisontal oppløsning. Mer må gjøres før modellen kan anvendes i
utvikling eller drift av vindparker, da modellen må tilpasses relevant skala, terreng og
datasett. Totalt sett er resultatene lovende.
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Chapter 1
Introduction

Wind energy is an increasingly important power source. The International Energy Agency
(IEA) estimates that wind power generation increased by a record 273 TWh [1] (up 17
percent) in 2021. Yet their 2050 net zero carbon emission scenario has 7900 TWh of wind
electricity generation in 2030, and to reach this we will need to more than double the
annual wind power additions relative to the record production increase in 2021.
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Figure 1.1: Yearly wind power generation, and estimated needed production in 2030 in IEA’s Net
Zero Emissions by 2050 Scenario

Further increases in wind power depend on reductions in the levelised cost of wind energy
(LCOWE), effective cost per unit electricity from wind power. One way to achieve this
is to optimise the turbine layout with respect to the wind field. The ability to optimise

1
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Chapter 1. Introduction

the layout depends on the quality of accessible wind flow data, and our ability to estimate
how placing turbines would influence the wind flow described by that data. Better layout
optimisation would help reduce LCOWE and give immediate production gains for new
projects by allowing wind developers to squeeze more power generation out of each tur-
bine. And, perhaps more important, better production estimates reduce the uncertainty,
and thereby risk of developing a wind farm.

1.1 Wind Flow Modelling and Downscaling
To model wind flow, computational fluid dynamics (CFD) simulations is state-of-the-art.
However, on the scale of wind farms these simulations are so computationally demand-
ing that they are often impractical or impossible to use in practice. More data-driven
approaches can therefore be utilised as a computationally cheaper way of predicting wind
flow. This has lead to a lot of research into both purely data driven and more physics
guided methods for estimating wind flow of wind parks [2]. That research is mostly fo-
cused on predicting wake effects of wind turbines, as these can significantly reduce the
effectiveness of turbine layouts. These techniques are dependent on good input data for
the wind flow in the area.

Decent low resolution data is usually easily available, with databases like ERA5 [3]. These
are useful, as they provide general wind statistics for a wind farm location. However, on-
shore the shape of the terrain significantly influences the wind flow, and the data is too
coarse to capture the local topographical adaptation of the wind field. The higher resolu-
tion of wind data one has, the better one can find the locally most attractive places for wind
turbines, and the better one can estimate the wake effects between the turbines. Therefore,
methods for what is usually referred to as downscaling, to produce approximate high res-
olution data from low resolution wind data, are applied to (among other applications like
weather forecasting) improve the production estimates of wind developers.

Atmospheric wind flow is hard to model exactly, and have scale dependent dynamics. This
makes downscaling an interesting engineering challenge of combining our knowledge of
the physics with a diverse range of mathematical and computational tools effectively. Dif-
ferent assumptions are made on different scales, and different methods might be effective
for different assumption regimes, and according to what features of the wind flow one most
wants to model correctly. Dynamical downscaling [4] [5] involves applying a high reso-
lution numerical model on a small part of the area of interest, and then apply the relations
found between the low resolution and high resolution data in that area to approximate high
resolution wind flow outside of the high resolution domain. Empirical-statistical down-
scaling [6] [7] [8] [9] does not involve simulating a high-resolution region, instead using
statistical models to infer high resolution predictands from low resolution predictors from
a dataset of known predictor-predictand paris.

Recently, these methods have been more often combined [10] or replaced with machine
learning methods, especially deep convolutional neural networks (CNNs) [11] [12], em-
ploying techniques often developed for image segmentation. Convolutional generative
adversarial networks (GANs) have also proven effective for images, especially for super

2



1.2 Project Description

resolving (SR) low resolution images to higher resolution. Such techniques have also made
their way into downscaling wind data. Miralles et al. (2022) [13] succesfully downscaled
historical 2D wind data in from a 25km x 25km to 1.1km x 1.1km grid using an adversarial
approach aided by detailed topographical data. Stengel et al. (2020) [14] employed a two
step convolutional GAN to downscale 2D wind data all the way from 100km x 100km to
2km x 2km with good looking results. They did this by training one network on generating
a medium resolution dataset from a low resolution dataset and another on generating the
high resolution data from the medium resolution data.

In this thesis a fully convolutional GAN is employed to downscale wind data, but working
with 3D wind flow, and on a smaller scale than the above, from 800m x 800m to 200m x
200m in the horizontal plane.

1.2 Project Description
The project builds on previous work by Thomas Nakken Larsen 2020 [15] and Tran et
al. 2020 [16] on a perceptually driven GAN for super resolving a 2D slice of the wind
field. Their idea was to convert wind vectors to RGB colors and utilise a well-known
image super resolving architechture involving a pretrained image feature extractor. Larsen
concluded that this was not a good idea, as perceptually interesting features of a picture
are not necessarily the same as the physically important features of a wind field. This
project instead aims to replace the perceptual approach with a more physically guided loss
function to train the network to approximate the actual physics of 3D atmospheric wind
flow.

More specifically, Three points will be investigated:

1. Methods for applying a 3D convolutional neural network to unevenly spaced atmo-
spheric data. (Experiment 1)

2. Physically guided loss functions to help the model approximate the physics of 3D
atmospheric flow. (Experiment 2 and Experiment 2.5)

3. Design, performance and usefulness of the best performing model (Chapter 5).

Chapter 2.1 will go through the physics of atmospheric wind flow, deriving the equations
that are used to generate the dataset that will be used, highlighting key properties with
respect to the machine learning techniques that will be employed. Then the most relevant
machine learning methods and GAN architectures are covered in Chapter 2.2. Chapter
3 covers the dataset, data processing, model architecture, loss function and experimental
setups. Chapter 4 presents the results of the experiments, and discussion of these results.
Chapter 5 evaluates the best performing model. Finally, Chapter 6 sums up and concludes
the thesis.

3
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Chapter 2
Theory

2.1 Physics of Atmospheric Wind Flow
To understand the data that will be used, and how to evaluate the model’s approximation
of wind flow physics, I derive the equations that are used to generate the data.

General fluid flow is governed by mass (2.1), momentum (2.2) and energy (2.3) conserva-
tion:

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

ρ
Du
Dt

= ∇ · τ + f, (2.2)

ρ
D

Dt

(
e+

1

2
u2

)
= f · u+∇ · (τ · u)−∇ · q (2.3)

where u is the velocity field, t is time, ρ is mass density, τ is the stress tensor of the fluid, e
is internal energy of the fluid, q is the heat flux, f is the sum of body forces on an infinites-
imal volume of the fluid and D

Dt = ∂
∂t + u · ∇, the material derivative. For a Newtonian,

isotropic fluid, with no other forces than gravity (neglecting the coriolis force for atmo-
spheric flow), we can rewrite τ and get the Navier-Stokes momentum equation

D(ρu)

Dt
= −∇p+∇ ·

(
µ

[
∇u+ (∇u)T − 2

3
(∇ · u)I

])
+ ρg. (2.4)

Here, the stress tensor has been separated into a volumetric contribution coming from the
pressure p gradient and a deviatoric part coming from the velocity gradient. If we dot

5



Chapter 2. Theory

the above equation with u, subtract it from (2.3) and use the same assumptions as before
(more details in [17]), we can rewrite (2.3) to

ρ
De

Dt
= −p(∇ · u) + ϕ−∇ · q, (2.5)

with ϕ as the viscous component of the deformation work rate:

ϕ = µ
(
∇u+ (∇u)T

)
:
(
∇u+ (∇u)T

)
− 2

3
µ(∇ · u)2 (2.6)

Here, : is the double dot product.

2.1.1 The Boussinesq Approximation
Now, applying the Boussinesq approximation [18], we assume that density variations are
small, ρ = ρ0+δρ, δρ≪ ρ0, ρ0 = const, so that these variations only affect the buoyancy
term ρg of the equation, while in the other terms we approximate ρ ≈ ρ0. Applying the
approximation to (2.1) and (2.4) we get

∇u = 0 (2.7)

Du
Dt

= − 1

ρ0
∇p+ ν∇2u+ g

ρ

ρ0
, (2.8)

with ν = µ
ρ0

. Neglecting ϕ (usually very small), assuming an ideal gas, setting de =
CV dT (T is temperature and CV is heat capacity at constant volume), inserting (2.1) for
∇ · u and using the boussinesq approximation, we can simplify equation (2.5) to

ρCp
DT

Dt
= ∇ · (κ∇T ), (2.9)

with q = κ∇T , κ as the thermal conductivity of the fluid and Cp as the heat capacity at
constant pressure.

2.1.2 The Anelastic Approximation
In the anelastic approximation, instead of only assuming small absolute deviations in den-
sity, one assumes small deviations in ρ, p, and potential temperature θ with regards to a
homoentropic hydrostatically balanced reference state. Also assuming an ideal gas, we
have

∂p0
∂z

= ρ0(z)g (2.10)

ρ = ρ0(z) + δρ (2.11)
p = p0(z) + δp (2.12)
θ = θ0 + δθ (2.13)

θ = T

(
pref
p

) R
Cp

=
Rp

ρ

(
pref
p

) R
Cp

, (2.14)
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2.1 Physics of Atmospheric Wind Flow

where pref is some reference pressure. Taylor expanding (2.14) around θ0(p0, ρ0) to first
order we get

θ = θ0

(
1 +

[
(1− κ)δp

p0
− δρ

ρ0

])
. (2.15)

Using these relations to rewrite (2.4) we get

Du
Dt

= −∇
(
δp

ρ0

)
+ ν∇2u+ g

δθ

θ0
(2.16)

2.1.3 Reynolds Averaged Navier-Stokes equations
Looking for a steady state solution of the wind field, we perform a Reynolds decomposition
of the velocity field into an average and a time dependent component u(x, t) = u(x) +
uf (x, t). Inserting this into (2.1) and (2.4), then time averaging we get the Reynolds
Averaged Navier-Stokes (RANS) equations:

∂ρ

∂t
+∇ · (ρu) = 0 (2.17)

D(ρu)

Dt
= −∇p+∇ ·

(
µ

[
∇u+ (∇u)T − 2

3
(∇ · u)I

]
− ρuf ⊗ uf

)
+ ρg, (2.18)

We now have an equation with only the time averaged quantities, except for the∇(ρuf ⊗ uf )
term. This term is highly non-linear, and is seen to act as a kind of stress on the fluid, called
the Reynolds stress. A turbulence closure model is needed to make the RANS equations
solvable.

2.1.4 Eddy Viscosity and the k−ε Turbulence Model
Turbulence is notoriously hard to model exactly, but several methods have proven useful
for approximating turbulent flow. The standard way of doing this for RANS models is to
model the turbulence as a modification of the viscosity of the fluid, called eddy viscosity.
[19]

−ρuf ⊗ uf = µt

[
∇u+ (∇u)T − 2

3
(∇ · u)I

]
+

2

3
ρkI (2.19)

k =
1

2
uf · uf =

1

2
Tr(uf ⊗ uf ) (2.20)

We see that this makes the Reynolds stress serve as a viscosity term with eddy viscosity
µt:

D(ρu)

Dt
= −∇p′ +∇ ·

(
(µ+ µt)

[
∇u+ (∇u)T − 2

3
(∇ · u)I

])
+ ρg, (2.21)

with p′ absorbing the isotropic part of the Reynolds stress, p′ = p− 2
3ρkI. We can similarly

use the eddy viscosity to approximate the effective thermal diffusivity [20]:

7
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D(ρθ)

Dt
= ∇

((
κ

Cp
+

µt

σθ

)
∇θ

)
, (2.22)

with σθ as the turbulent Prandtl number for heat, usually set between 0.7 and 0.9. So in the
same way we model the turbulence as an effective viscosity increase of the average wind
flow, we model turbulence as an effective diffusivity increase for the average potential
temperature.

The eddy viscosity depends on wind flow, so we use the k−ε [19] model to fully close the
equations:

D(ρk)

Dt
= ∇

((
µ+

µt

σk

)
∇k

)
+ ρPk + ρPb − ρε (2.23)

D(ρε)

Dt
= ∇

((
µ+

µt

σε

)
∇ε

)
+

ερ

k
(C1Pk +C3Pb)− C2ρ

ε2

k
(2.24)

νt =
µt

ρ
= Cµ

k2

ε
(2.25)

Here, k is still time averaged turbulent kinetic energy [(2.20)], ε is the time averaged tur-
bulent kinetic energy dissipation rate, Cµ, C1, C2, C3, σk and σε are empirical constants,
usually set to 0.09, 1.92, 1.43, 1.0, 1.0 and 1.3, respectively. Pk and Pb are turbulent
kinetic energy sources from respectively shear velocity and buoyancy [21]:

Pk = νt

(
∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj
(2.26)

Pb = −
g

θ

νt
σT

∂θ

∂z
, (2.27)

with x1, x2, x3 = x, y, z and (u1, u2, u3) = u.

The k−ε model has a sound empirical basis but we can also make sense of it intuitively.
Our goal was to model the ∇(ρuf ⊗ uf ) term in the RANS momentum equation. As it
is given by the average fluctuations from the average flow in an area, it represents average
chaotic (turbulent) wind flow in that area. Instead of dealing with the 3D details of this
chaotic flow we define a scalar µt that measure the level of chaoticity, and aim to set the
value of this scalar so that it affects the steady state wind flow the way viscosity affect
general fluid flow. Viscosity represents a fluid’s resistance to deformation, so we model
the turbulence as viscosity of the steady flow, as the chaotic patterns will oppose the steady
state wind flow similarly to how viscosity opposes normal flow.

Equations (2.23) and (2.24) introduced the turbulent kinetic energy k and the turbulence
kinetic energy dissipation rate ε to estimate strength of that viscous effect. Equation (2.23)
tells us that turbulent kinetic energy is induced by shear velocities (Pk) in the average

8
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flow and buoyancy (Pb), and removed by ε. Equation (2.24) tells us that Pk and Pb also
produces ε, but scaled with ε

k , so that it is produced quickly for small k, but less quickly
when k is bigger. Large kinetic energy also inhibits the sink term (proportional to ε2

k ), so
that ε remains sizeable as long as k is sizable, though with the ε2 ensuring that ε doesn’t
become too large. What we end up with is a distribution of average turbulence intensity
and dissipation rate in space. We use this to model the strength of the eddy viscosity as
µt ∝ k k

ε . That the introduced virtual viscosity increases with turbulent kinetic energy is
intuitive, the k

ε can be thought of as a measure of the resistance of the turbulence to being
dissipated.

2.1.5 Resulting Equations and Key Takeaways
Usually, for atmospheric wind flow µ ≪ µt, κ

Cp
≪ µt

σθ
, so that the molecular viscosity

and molecular diffusivity can be neglected. Doing that and applying the anelastic ap-
proximation to the k−ε equations (2.21)-(2.24), we can combine everything to this set of
equations:

∇u = 0 (2.28)

(u · ∇)u = −∇
(
δp′

ρ0

)
+ νt∇2u+ g

δθ

θ0
. (2.29)

Dk

Dt
= ∇

(
νt
σk
∇k

)
+ Pk + Pb − ε (2.30)

Dθ

Dt
= ∇

(
νt
σθ
∇θ

)
(2.31)

Dε

Dt
= ∇

(
νt
σε
∇ε

)
+

ε

k
(C1Pk +C3Pb)− C2

ε2

k
, (2.32)

The above set of equations can be solved numerically to find stable steady state solutions
of atmospheric wind flow. Before moving on, I highlight some relevant characteristics of
these equations:

• The gradient of the wind field is highly constrained. The wind field should be
divergence free, conserve momentum, and accurately model turbulent effects. All of
this creates strong constraints on the wind gradient. Also, large gradients signal an
area of interest, as the features of the wind field that are hard to model are coupled
to larger wind gradients.

• Terrain shape is a major influencer of the wind field. The divergence free crite-
rion (2.28) means that when the wind is blowing in a certain direction, hills in the
terrain will act like sources for the wind field, pushing the wind in other directions,
and dips in the terrain act like sinks, pulling the wind flow toward them. The k−ε
model tells us that this pushing and pulling will induce turbulence effects, signifi-
cantly complicating the wind flow close to the ground.

9
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• Differences in height above ground level means different dynamics for the wind
field. Equation (2.10) tells us that pressure is decreasing quickly with increas-
ing height. Also, a normal boundary condition applied in CFD simulations is that
the wind velocity is zero at ground level, and has approximate wind profile uz =
u∗
κ

[
ln
(

z−d
z0

)]
[22], with u∗, κ, d, z0 as shear velocity, Karman’s constant, ground

level height and surface roughness length (length of typical blockers like trees) re-
spectively. The point is that wind speed increases quickly with elevation close to
the ground. That also further emphasises the the significance of terrain shape, as
varying ground altitude moves this wind profile and the no-slip boundary. All in all,
it should be clear that the horizontal coordinates and the vertical coordinates cannot
be treated the same.

These three points will prove relevant for designing the data-driven model tested in this
thesis.

2.2 Relevant Machine Learning Methods
Machine learning is a broad term, used for a variety of methods involving some kind of
algorithmic learning from data. Here, I give a summary of the main machine learning
techniques applied in this thesis. As these were covered extensively in Thomas Larsen’s
thesis [15], and are generally well known, this chapter and Chapter 2.3 will not be very
detailed, instead focusing on key attributes of the most relevant techniques.

Machine learning is usually divided into supervised and unsupervised learning. Supervised
learning is driven by labeled input-output (x−y) datasets. The goal is to teach the model
to reliably predict the labeled output y from the input x, so the trained model can produce
the desired output for unlabeled inputs. In unsupervised learning one does not have labeled
data, but instead the goal is for the algorithm to discover patterns in the data.

2.2.1 Artificial Neural Networks and Backpropagation
An artificial neural network (ANN) is a set of matrices, bias and activation functions that
transforms input to output. An ANN is dividided into layers, with the ith layer being a
combination of a weight matrix Wi, a bias vector bi and an (element wise) activation
function fi to transform input vector xi to output vector xi+1:

xi+1 = fi(Wixi + bi) (2.33)

The activation function is often chosen as a simple, but non-linear function. This non-
linearity enables ANNs to approximate any function [23]. An input can be transformed
through many layers before producing the final output, which is then evaluated by a loss
function. Then we can calculate the gradient of this loss function for all the weights and
biases of the entire model, by tracing the output back through the network and see how
each weight contributed to the resulting loss. This is known as backpropagation. With
the gradient in hand one can then modify each weight and bias slightly in the direction
of less loss. Multilayered ANNs are often referred to as "deep learning". Such models
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can quickly become very large and computationally demanding, so many techniques have
been developed to make the models more effective.

2.2.2 Convolutional Neural Networks
Instead of allowing all the parts of the input vector to affect each output of a layer like in
a fully connected layer [(2.33)], a convolutional neural network (CNN) applies convolu-
tional filters of a certain size across the data to capture key features of each local region,
meaning that one convolutional layer applies the same small filter across the entire spatial
dimension of the data. This makes sense for spatial data, as all points in space are a priori
equivalent, and are naturally most influenced by their immediate surroundings. Relative

Source: https://brilliant.org/wiki/convolutional-neural-network/

Figure 2.1: Convolutional Neural Network. The figure demonstrates how the output of a convo-
lutional layer is only affected by its immediate surroundings, and how one often extracts a large
amount of features when using CNNs.

to fully connected layers, convolutional layers are extremely cheap in terms of number of
parameters. One can scale the data as much as one wants in the spatial dimension without
increasing the number of weights − the same filter is applied across all the data. Instead,
one can extract a large number of features, as demonstrated in Figure 2.1, increasing the
depth of the data with feature maps aiming to capture different key properties of the input.
Deep CNNs have been shown to be very effective in image segmentation, with initial con-
volutional filters capturing features like edges or textures, and later layers in the network
being able to identify sophisticated traits like tumors or facial expressions.

2.2.3 Residual Learning
In residual learning, instead of transforming the input completely in each layer, an incre-
mental modification is added to the input each time:

xi+1 = xi +M(xi) (2.34)
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Here M can represent any combination of layers or techniques that outputs data with
the same dimensions as xi. This means that each M can be optimised for this slight
modification, rather than simultaneously figuring out how to both preserve key parts of the
original data and modifying it in a full transformation. The technique can be combined
in several nested blocks to strengthen this effect further, as each layer can then exploit
the information of each previous layer in the block and the original input. Figure 2.2
demonstrates resiudal learning visually.

M

x

x

i

i+1

+

Figure 2.2: Residual Block. A model M is trained to optimize a modification of xi, xi+1 =
xi + M(xi) instead of xi+1 = M(xi). M can represent any combination of layers or techniques
that outputs data with the same dimensions as xi

2.2.4 Dropout Layers

A dropout layer regularises a network by randomly zeroing out some of parts of the output
of hidden layers during training. This enhances generalization, and prevents overfitting
the data, as the different parts of the network are prevented from relying too much on
combining each others output, instead having to each contribute more robustly to optimise
the loss function. In CNNs this is typically done on a feature level, so each feature has a
set probability of being dropped, as shown in Figure 2.3.

Dropout has proven to be an effective regularisation technique, and Kong et al. [24] found
that a dropout layer before the last convolutional layer in a super-resolving residual net-
work improved performance and generalisability of the network. Applying both dropout
and batch normalization in the same network can produce negative cross-effects [25], but
if dropout is applied after the last batch normalisation in the network, this should not be a
problem.

12
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Input

feat1

feat2

feat3

feat4

feat5

feat6

Output

Figure 2.3: Feature dropout layer. Entire feature channels are randomly zeroed out with a set
probability.

2.2.5 Gradient Clipping
Gradient clipping means clipping the gradient so that it cannot be larger than a certain
threshold. One way of doing this is clipping the total norm of the gradient, so that it never
exceeds a set threshold C:

g =

{
C g

||g|| , if ||g|| > C

g, otherwise,
(2.35)

with g as the calculated gradient of the model. Gradient clipping can be beneficial if the
loss function has very steep valleys or peaks in parameter space, ensuring that the model
doesn’t take to take a too large optimisation step during training. A large step can move
the model away from a promising area in parameter space, and in the worst case send the
model spiralling away from less loss, with the model overstepping the beneficial area more
and more with each iteration.

2.3 Generative Adversial Networks
A generative adversial network (GAN) is an unsupervised generative model. A GAN
model consists of a generator network G and a discriminator network D that interact as
shown in Figure 2.4.

The generator tries to generate samples f = G(z) that are indistinguishable from samples t
of the true distribution T, while the discriminator tries to distinguish the generated samples
from true samples. As the generator becomes better, the job of the discriminator gets
harder, while as the discriminator gets better, the job of fooling it becomes harder for
the generator. So by including the output of the discriminator in the loss function of the
generator, both networks can help each other get better. The discriminator outputs a a
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z G

D

G loss

P(t)
f

t

Z

T
D loss

P(t)

Figure 2.4: A standard GAN model. T is a distribution of true samples t that the generator G is
trying to approximate given a random input z from its input space Z. The discriminator D is trained
to distinguish samples t of T from samples f = G(z). The accuracy of D’s evaluation P(t) is used to
train both G and D.

number between 1 and 0 representing certainty of the input being a true sample (1.0) or a
false sample (0.0). Then we can define the loss functions of both networks:

LGAN
D = log (D(t))− log (1−D(G(z))) (2.36)

LGAN
G = log (1−D(G(z))) . (2.37)

G is penalised for the discriminator labeling its generated data as false, while D is pe-
nalised both for not correctly identifying true samples and for being fooled by the genera-
tor.

2.3.1 Relativistic Average GANs
Since its introduction in 2014 [26], multiple adjustments of the original GAN model
have been introduced. The relativistic average GAN (RaGAN) model was introduced by
Jolicoeur-Martineau in 2018 [27]:

LRaGAN
D = −

〈
log

(
D̄(t)

)〉
−
〈
log

(
1− D̄(f)

)〉
(2.38)

LRaGAN
G = −

〈
log

(
D̄(f)

)〉
−

〈
log

(
1− D̄(t)

)〉
, (2.39)

with

D̄(t) = σ
(
C (t)−

〈
C(f)

〉)
D̄(f) = σ

(
C (f)−

〈
C(t)

〉)
.

(2.40)
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Here σ is the activation function of the discriminator, C(x) is the discriminator output
before the activation, D(x) = σ

(
C(x)

)
, and the ⟨⟩ represents expected value, in practice

meaning the batch average value. Now, instead of punishing the discriminator for absolute
classification error, it is rewarded for its classification of true samples relative to how it
classifies false samples. Similarly for the generator. This exploits the knowledge that half
of the samples presented to the discriminator are fake. Whereas in the original GAN a per-
fectly calibrated model would classify all samples as real, a perfectly calibrated RaGAN
would classify half of all samples as fake, and half as real. Both the generator and the
discriminator are pushed to specifically target the recurring differences between the real
and generated data, rather than just the result of each single sample.

2.3.2 GAN Failures and Training Techniques

Using a model with two adversarial networks complicates model training. A common
failure mode is called mode collapse, in which the generator cycles through specific types
of samples from the true distribution, never mapping out the entire space of real samples.
Convergence failures can also occur in which the generator and discriminator get stuck in
a changing pattern instead of finding a stable equilibrium.

Another failure type is vanishing generator gradients. Initially, it is easy to distinguish real
and generated data. The discriminator may therefore be very confident in classifying the
generated samples as false. This leads to the generator not receiving meaningful feedback
from the discriminator. The generator’s gradient vanishes, since small changes in the
generator cannot help meaningfully towards fooling the discriminator. The problem is
addressed by intentionally confusing the discriminator in early training, by for example
smoothing or randomly flipping labels of t and f. One can also add instance noise to the
generated and real samples. These techniques, GAN algorithms and failure modes, are
covered in more detail in Larsen’s thesis [15].

2.3.3 Single Image Super-Resolution GANs

A Single Image Super-Resolution GAN (SISRGAN) is a GAN network trained to approx-
imate a high-resolution image IHR from a single low resolution image ILR by generating
a super-resolved image ISR. Training of such a network is illustrated in figure 2.5.

SISRGANs using deep residual networks have proven very effective at super resolving
images. Of the most effective and well-known of these architectures is the Enhanced
Super-Resolution GAN (ESRGAN), introduced by Wang et. al in 2018 [28]. Vesterkjær’s
2019 [29] implementation of this architecture can be seen in figure 2.6.

The "enhanced" part refers to ESRGAN’s inspiration from Super-Resolution GAN (SR-
GAN) [30]. In SRGAN, the generator consists of a number of residual dense blocks
(RDBs) of Conv-BatchNorm-PRelu-Conv-BatchNorm, and the same discriminator as in
Figure 2.6. In figure 2.6 we see how this idea has been taken further, nesting RDBs into
what the authors named residual in residual dense blocks (RRDBs) and scale the outputs
by a factor α = 0.2 (called residual scaling, first used by Szegedy et al. [31]).
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I G

D

G loss

P(I   )I

I
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HR
D loss

P(I   
)downsample

SRLR

HR
HR

HR

Figure 2.5: A SISRGAN model. IHR is downsampled to ILR, which is used as input for G to
produce ISR. D tries to distuinguish IHR and ISR, and G and D are penalized according to the
accuracy of Ds classification.

SRGAN combines the (slightly modified from (2.36)-(2.37)) adversarial loss with a per-
ceptual loss and a pixel loss:

Lpix
G = MSE(IHR,G(ILR)) (2.41)

L
perceptualij
G = MSE(ϕi,j(IHR), ϕi,j(G(ILR)) (2.42)

LG = η1L
pix
G + η2L

perceptualij
G − η3 log (D(G(z))) (2.43)

LD = LGAN
D (2.44)

Here, MSE is mean square error, η1, η2, η3 are constants and ϕi,j is the feature map
obtained by the j-th convolution after activation, before the i-th maxpooling layer within
the pretrained VGG19 [32] network. The perceptual loss therefore penalises the generator
according to how differently the generated SR images and the HR images activate features
in a network trained to detect important perceptual features. The SRGAN generator is
first trained on only Lpix

G . Then this pretrained model is trained further using LG with,
after some testing, η1, η2, η3 = 0.0, 0.06 (effectively as a result of feature scaling), 0.001
and ϕi,j = ϕ5,4.

In ESRGAN the perceptual loss is modified to use the feature output from the pretrained
image classifier before activation instead of after, thereby gaining more granular feature
discrepancies. ESRGAN uses RaGAN losses instead of traditional adversarial loss, and
η1, η2, η3 = 0.01, 1.0, 0.005. ESRGAN also uses mean square error for pretraining the
generator, but average absolute error instead of MSE for Lpix

G when used in (2.43). Hav-
ing the pretrained MSE generator and the trained perceptual GAN generator, they use
weight interpolation between the two generators, allowing choice of how much one wants
to weigh pure content error versus perceptual features. Finally, they remove batch normal-
ization from the generator, seeing that this increased performance further.
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Source: Vesterkjær 2019 [29]

Figure 2.6: ESRGAN architecture as implemented by Vesterkjær 2019 [29]. Conv means 2D con-
volutional layer, 2sConv is a convolutional layer with stride 2 (halves the dimension of the data),
BatchNorm is 2D batch normalisation, LReLU stands for the Leaky ReLu activation function (with
negative slope 0.2 in ESRGAN), 2x NN Up means nearest neighbour upscaling with scale factor 2,
Concat means concatenating the data along the feature dimension, the + symbol means add, the α
triangle means multiply by α (= 0.2 in ESRGAN) and Linear means fully connected layer.
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In Larsen’s [15] thesis, the ESRGAN architecture in Figure 2.6 was tested for super-
resolving a 2D slice of the wind field. However, in order to use the perceptual loss, each
wind component was normalised independently to positive values to simulate RGB pixels.
In training, the model failed to minimise the perceptual loss enough for the pixel loss or
adversarial loss to have much effect.

The pretrained image classifier used in ESRGAN is trained to find central perceptual fea-
tures like textures, edges and specific object shapes, and Larsen concluded that this trans-
lates poorly into central features of the RGB-translated wind field. Also, the normalisation
scheme changed the orientation of the wind vectors, not preserving their spatial infor-
mation. Instead, here the perceptual loss is dropped, and the loss function is modified
to capture important physical features. Also, as emphasised in Chapter 2.1.5, the terrain
shape is the main influencer of the local wind field, so the terrain should not be ignored
by the model, but incorporated somehow. Furthermore, not being constrained by the im-
age format, the new model aims to learn complex terrain adaptation of 3D wind flow.
Below I describe in more detail the dataset, architecture, loss functions and code of the
model.

3.1 Dataset

3.1.1 HARMONIE-SIMRA
The data that will be used is generated by HARMONIE (Hirlam Aladin Regional Mesoscale
Operational Numerical prediction in Europe) - SIMRA (Semi Implicit Method for Reynolds
Averaged Navier Stokes Equations), a multiscale numerical simulation model, desribed in
Rasheed et al. 2017 [21].

Rasheed et al. describes the HARMONIE model as "a nonhydrostatic model, in which the
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dynamical core is based on a two-time level semi-implicit semi-Lagrangian discretization
of the fully elastic equations, using a hybrid coordinate system in the vertical direction
([33])". Instead of using a separate equation for ε like in the k-ε model (Chapter 2.1.4), ε
is calculated using these relations:

ε =

(√
Cµk

)3/2
ℓt

(3.1)

ℓt ≈
min(κz, 200m)

1 + 5Ri
, (3.2)

Ri =
(g/θ)∂θ/∂z

(∂u/∂z)2
≈ −Pb

Pk
(3.3)

with κ = 0.4, and k still being the average turbulent kinetic energy.

The 750 × 960 × 65 mesh of the HARMONIE model covers a 1875km × 2400km ×
26km area, giving it a resolution of 2,5km x 2,5km in the horizontal domain. The sim-
ulated HARMONIE data is interpolated and used as input for the SIMRA model, which
solves the anelastiq RANS equations derived in Chapter 2.1, (2.28)-(2.32), numerically
on a 200x200x40 mesh covering 30km×30km×2.5km with higher resolution close to the
wind farm. The actual geographical domains can be seen in Figure 3.1.

Source: Rasheed et al. [21]

Figure 3.1: Area covered by the HARMONIE-SIMRA model, HARMONIE to the left, and SIMRA
to the right.

The hourly generated SIMRA data on a 200m x 200m x 40 resolution is available at
https://thredds.met.no/thredds/catalog/opwind/catalog.html. This
is the dataset that will be used as ground truth in this thesis.
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3.1.2 Properties of the Data
When running CFD simulations, one designs a mesh that is much more detailed close to
objects that complicate the wind flow, like terrain, than in areas of expected simple flow.
The actual horizontal meshing used in SIMRA can be seen in Figure 3.1. The simulated
data has been adapted to a regular 200m x 200m grid, but the data still has uneven ver-
tical spacing, with dense terrain following layers close to the ground and gradually more
flat horizontal layers as we move higher up. This pattern can be seen clearly in Figure
3.2.

Figure 3.2: Shape of the dataset. Showing every fifth layer of data in the vertical coordinate. The
z-coordinate has been multiplied by five to highlight the shape. Yellow marks high wind speed, blue
marks low wind speed.

Zooming in on a 32x32x10 slice of the dataset, and not scaling the vertical axis, we can see
the wind field in more detail in Figure 3.3. We see how the terrain affects the wind, pushing
higher wind speed uphill, and less, even reversed wind speed downhill. Figure 3.3 also
demonstrates how dense the horizontal layers are close to the ground, a normal property
of simulated data, to help model the complexities of near-surface wind flow.

Figure 3.3: Zoomed in unscaled wind field. Showing the 10 bottommost layers in a 32x32 slice of
the data area. Yellow marks high wind speed, blue marks low wind speed.

For our purposes, the uneveness in the vertical spacing is an advantage and a challenge
at the same time. Higher information density in areas that are hard to approximate is
beneficial for accurate modelling, and when designing wind farms one is interested in the
wind speed relatively close to the ground, where turbines can harvest the wind energy.
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At the same time, it poses a challenge for applying CNNs, as they, in applying the same
convolutional filter across the entire spatial dimension, assume that the same relations hold
between neighbouring points in one part of the data as others. If they don’t, the CNNs
have to compromise between features that are useful in different parts of space. Hence
Experiment 1, where different approaches to handling the vertical spacing is tested and
compared.

Zooming further, in Figure 3.4, we can see some of the turbulence effects that makes
it hard to model near-surface wind fields in complex terrain. We can see how dips and
bumps in the landscape induce swirls and chaotic wind patterns, as described in Chapter
2.1.5. From the figure we also get a picture of the difficulty of super-resolving the wind
field as intended, as a perfect generator would have to infer the full swirling pattern of
Figure 3.4a from the data we see in Figure 3.4b. Comparing such areas in the generated
and real data therefore provides a key indicator of how well the model has learned to model
the physics of atmospheric wind flow.

(a) High resolution wind field

(b) Low resolution wind field

Figure 3.4: Turbulent Terrain effects. Showing the 16 bottommost layers in a chaotic region of the
wind field.

These patterns also demonstrate an advantage of working with full 3D data rather than 2D
slices, as these effects are hard to pick up from one 2D slice. Recall that we introduced
two new equations to model how turbulence is induced and dissipates in space. It is a
highly 3D phenomena, as the turbulence propagates and interacts in space. Therefore, to
accurately model a 2D slice without overfitting a certain terrain, the model would have to
incorporate some spatial understanding of how these effects behave in 3D space. Working
in 3D, we can guide this spatial learning properly.
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3.1.3 Data Augmentation and Processing
The data processing, augmentation and loading can be summarised in seven steps:

1. Download available data from https://thredds.met.no/thredds/catalog/
opwind/catalog.html

2. Extract the selected spatial part of the data, stripping off the edges, slicing the
chosen horisontal layers and checking for any invalid values. (136x135x41 →
128x128x[chosen number of horisontal layers], set to 128x128x10 for the experi-
ments in this thesis)

3. Save each data sample to a file and extremal values of the data to another file (for
deciding normalization factors of a selected training set).

4. Split the data into train, validation and test sets with, respectively, ratios 0.8, 0.1, 0.1,
and save normalization factors from only the training dataset (to avoid peeking). The
split is done along the time axis, so that the validation and test sets contain data from
other time periods, but still in the same geographical domain. The training data is
always shuffled during training.

5. Create customised datasets and dataloaders that when providing a sample loads a
single file, includes the specified input channels, normalises the data, downsamples
to create the low resolution data and returns LR data, HR data and z-coordinates of
the data. The downsampling is done simply by keeping every "scale"th point along
each of the horizontal axes (LR = HR[::scale, ::scale, :]), with scale=4 for all results
in this thesis except those in Chapter 5.2.3. The z-coordinates are not downsampled,
as the model utilises high resolution terrain information (see Chapter 3.2). The HR-
data is always just the wind field, but the LR-data may include low resolution z-
coordinates, low resolution pressure, low resolution terrain or low resolution height
above ground (See Experiment 1).

6. If enabled, the customized dataset interpolates (or loads from saved interpolated
data) along the z-axis as specified in Algorithm 1.

7. If enabled, the customized dataset applies the following data augmentation tech-
niques during training and validation:

• Horizontal slicing: Change the HR data to a random horizontal 64x64x[chosen
number of horizontal layers] slice of the 128x128x[chosen number of horizon-
tal layers]. LR data is adjusted correspondingly. When horizontal slicing is
enabled, with scale 4 and chosen number of horizontal layers 10, during train-
ing LR is of dimension 16x16x10, and HR and z-coordinates is of dimension
64x64x10.

• Rotation: Rotate a random amount (randint(0,4)*90◦) around the z-axis.

• Flipping: Flip the data across the x or y-axis with 50% probability.

If all the data augmentation steps are taken, as is the case for all the discussed experiments
except in Chapter 5.2.3, the amount of total possible data samples is increased by a factor
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Chapter 3. Method

of 64 ∗ 64 ∗ 4 ∗ 2 ∗ 2 = 65536. Of course, only the rotations and flipping produces "new"
wind flow, but the slicing exposes the model to more variations in the terrain and what
datapoints are sampled as input to the model, as these are selected relative to the slicing
area.

The slicing also causes a disparity in how much different parts of the data is utilised in
training, as a pixel in the horizontal center of the dataset has a

(
63
64

)2
chance of being

included in a slice, while a pixel in the corner has a
(

1
64

)2
chance of being included. The

disparity is ameliorated somewhat by sampling from a β-distribution Beta(α, β) with
α = β < 1, so that it is more likely to slice closer to the edge. Figure 3.5 compares the
resulting 2D distributions to show the skewness in utilisation of the dataset.

(a) Uniform (b) Compared (c) Beta(0.25, 0.25)

Figure 3.5: 2D Sampling Distribution due to Data Augmentation. Comparing uniform and β-
distribution sampling of a 64x64 slice of a 128x128 grid. The surfaces show how often a pixel is
included in a sample using the respective sampling techniques.

Though a single sample from the custom dataset only uses 25% of the (non-augmented)
data, validation is still done by iterating through the validation dataloader one time. When
testing, the data augmentaion is turned of, testing on the entire area without rotating or
flipping.

After all experiments were run, a bug in the data augmentation process was discovered.
When the wind field was rotated or flipped the orientation of the wind vectors remained
the same. This is problematic for learning the 3D terrain adaptation of the wind field,
as the rotated fields no longer contain the correct directional relations between the wind
vectors and the terrain. However, for the model’s part, what it learns is to make sure it is
symmetric under a certain linear transformation. Due to the bug, this learned symmetry is
for a different linear transformation than intended. With the bug, the model has to learn to
rotate and flip the vectors to find the useful relations to the terrain, but at the same time,
when the orientation of the vectors is kept, it is easier for the model to treat the rotated
fields equivalently. In total, we should expect this bug to make it make it slightly easier or
slightly harder for the model to correctly solve the problem it is given, depending on the
usefulness of the terrain information, and risk of overfitting the terrain is higher.

If the following parameters are included in training, they are normalized according to these
equations:

unorm
i =

ui

max(abs(concat(u1, u2, u3))
(3.4)
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3.2 Model Architecture

xnorm =
x−min(x)

max(x)−min(x)
(3.5)

znormalt =
zalt

max(zalt)
(3.6)

Here, uis are the wind components, zalt = z−terrain is altitude above ground, and x can
represent pressure, z-coordinates or terrain, as these are all normalized according to (3.5).
This way the wind components vary between -1 and 1 and the other coordinates between 0
and 1. The choice of zalt normalization (3.6) is done to maintain the relationship between
differences in the data relative to the altitude above ground.

When interpolation is enabled the vertical coordinates are interpolated as described in
Algorithm 1.

Algorithm 1 Interpolate z-coordinates

Input: 3D array wind comp or pressure u, 3D array altitude above ground zalt
Output: u interpolated
z_1D← linspace(mean(zalt[:][:][0]),mean(zalt[:][:][−1], num = len(zalt[0][0][:]))
for xi in x do

for yj in y do
u[xi][yj ][:]← interp(z_1D, zalt[xi][yj ][:], u[xi][yj ][:])

end for
end for
return u

The linspace method makes an evenly spaced array between two values, and interp means
simple linear interpolation. The main point is that the coordinates are interpolated only
in the z-direction, and onto a regular grid relative to the ground, not regular in absolute
terms. So the grid is still irregular, but it is regular with respect to the ground.

3.2 Model Architecture
The employed model keeps the ESRGAN architecture shown in Figure 2.6. However some
changes have been made:

• The network has been adapted to handle 3D input with a variable number of hor-
izontal layers, moslty by changing from 2D to 3D convolutional layers. The first
four "DownConv" blocks (see figure 2.6) in the discriminator maintains the size of
the z-dimension, the last layer also halves the z-dimension. When horisontal data
slicing is enabled, the last block does not halve the xy-dimensions.

• A feature dropout layer with probability 0.1 has been added before the last convolu-
tional layer of the generator as in [24], and a feature dropout layer with probability
0.2 has been added after the feature extraction ("DownConv") part, but before the
classifier part of the discriminator. This is intended to help regularise the models,
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making the generator more robust and making it harder for the discriminator to tar-
get specific too specific traits of the generated data.

• A Conv-LReLu-Conv 3D terrain feature extractor has been added to the generator.
It takes in the z-coordinates of the high resolution data and concatenates the features
extracted with the extracted features of the rest of the network after the "UpConv"
(see figure 2.6) blocks. This is intended to exploit that one usually has high resolu-
tion data of the terrain available regardless of the resolution of the wind data.

The resulting architecture can be seen in Figure 3.6.
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Z

Dropout3d

Dropout3d
zDown

Source: Modified from Vesterkjær 2019 [29]

Figure 3.6: The modified ESRGAN architecture employed in this thesis. In addition to changing
from 2D to 3D data with a variable number of horizontal slices, a feature dropout layer (Dropout3d)
has been added to each of the models, and a terrain feature extractor had been added the generator,
in order to exploit high resolution terrain information. Conv means 3D convolutional layer, 2sConv
is a convolutional layer with stride 2 in the horizontal directions and stride 1 in the vertical direction,
zDown is like a DownConv block but with vertical stride 2 and horisontal stride 2 if slice data
augmentation is enabled and 1 otherwise. BatchNorm means 3D batch normalisation, LReLU stands
for Leaky ReLu activation function (with negative slope 0.2), 2x NN Up means nearest neighbour
upscaling with a horizontal scale factor 2, Concat means concatenating the data along the feature
dimension, the + symbol means add, the α triangle means multiply by α (= 0.2) and Linear means
fully connected layer.
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3.3 Loss Function
Three types of loss make up the total loss function: adversarial, pixel and wind gradient
based losses. The adversarial losses are the GAN losses discussed in Capter 2.3, and,
here as in ESRGAN, the RaGAN losses are used and average absolute error is used as the
pixel loss. The gradient based losses are based on the gradient of the wind field, not to be
confused with the gradient of the total loss function that is used to train the model. Four
different gradient losses are introduced, giving us a total of seven distinct losses:

Lpix
G = AV G

(
|IHR − ISR|

)
(3.7)

L∇xy
G = MSE

((
(∇IHR)∂x∂y

)′
,
(
(∇ISR)∂x∂y

)′)
(3.8)

L∇z
G = MSE

((
(∇IHR)∂z

)′
,
(
(∇ISR)∂z

)′)
(3.9)

Ldiv
G = MSE

(
(∇ · IHR)

′, (∇ · ISR)′
)

(3.10)

L
divxy

G = MSE
((

(∇ · IHR)∂x∂y
)′
,
(
(∇ · ISR)∂x∂y

)′)
(3.11)

Ladversarial
G = LRaGAN

G (3.12)

Ladversarial
D = LRaGAN

D , (3.13)

using the terminology of Chapter 2.3.3, with IHR, ILR and ISR = G(ILR) referring to
the high resolution wind field, low resolution wind field and generated (super-resolved)
wind field. AV G means average component wise value, and MSE means mean squared
error. In the notation above, ∇I∂x∂y = (∂ux

∂x ,
∂uy

∂x , ∂uz

∂x , ∂ux

∂y ,
∂uy

∂y , ∂uz

∂y ) and (∇ · I)xy =
∂ux

∂x +
∂uy

∂y , with ui being the component of the wind field in the i-direction. Similarly for
∇I∂z , and (∇·I) is the divergence of the wind field. The ′ in the gradient losses represents
that they are normalized according to (3.14).

(
I∇jR

)′
=

I∇jR

max

(
max

(
abs(I∇HR)

)
,
max(abs(I∇

SR))
100

) (3.14)

Here,
(
I∇jR

)′
represents any of the components appearing in equations (3.8)-(3.11), and

I∇jR, I∇HR and I∇SR their corresponding unnormalised values.

If the loss was scaled with a normalization factor max
(
abs(concat(I∇HR, I

∇
SR))

)
the gen-

erator would be rewarded for I∇SR containing one very large value, while when scaled
according to the I∇HR values, it is penalized severely for having very large or very small
gradient values relative to the scale of the actual gradients. However, this could also lead
to exploding losses, so if the difference is very large it is scaled according to a fraction of
the maximum I∇SR value.

As emphasized in 2.1.5, the vertical and the horizontal directions are not equivalent when
it comes to atmospheric flow. The ∂

∂z derivatives contains physically different information
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from the ∂
∂x

∂
∂y derivatives. They are also different in that we are super-resolving the

wind field only in the horizontal direction, not vertically. Furthermore, with wind speed
increasing quickly with elevation close to the ground, the ∂

∂z derivatives could dwarf the
∂
∂x

∂
∂y derivatives if combined. To specifically focus the model on mass conservation, the

divergence losses (3.11)-(3.10) are introduced. With the disparity between the vertical and
the horizontal directions in mind we define a a horizontal divergence loss (3.11) in addition
to the 3D divergence loss.

Comparing the HR and SR components rather than using physically informed penalties
directly on the SR data brings many advantages. For example, the continuity equation
tells us that the wind field (in the boussinesq approximation) should be divergence free.
This can’t hold perfectly for discrete simulated data, so one would have to find a proper
level of error tolerance when penalising divergence. To complicate further, a reasonable
tolerance level may vary spatially, for example if a bump in the terrain and the discreteness
of the data causes local divergence. It is also unclear how one would penalise the generated
data according to the momentum equation (2.29) without generating pressure or potential
temperature.

Penalising the differences between the gradient of the SR and HR data solves all of these
problems, automatically adjusting the loss according to how well we can expect the the
equations to hold and what patterns in the generated data that should be penalized. It is
also what makes it physically reasonable to penalise horizontal divergence even though
mass isn’t conserved in a horizontal slice, because it might hold approximately for large
spatial parts of the data, and comparing tells us which ones. The downside of this technique
is that physical imprecisions in the simulated HR data will transfer to the SR data, but, of
course, the entire project is based on the assumption that the simulated data is sufficiently
precise.

These losses combine to the total loss function for the generator:

Ltot
G = η1L

pix
G + η2L

∇xy
G + η3L

∇z
G + η4L

div
G + η5L

divxy

G + η6L
adversarial
G (3.15)

Like before, ηi are weight constants. The various losses gives us flexibility to test what
we should emphasise most to teach the model to approximate the physics of atmospheric
wind flow. η6 is set to 0.005 (as in ESRGAN) initially, combinations of η1−5 are tested in
Experiment 2-2.5.

3.4 Code and Hardware
The full code and its history can be found in can be found on Github at https://
github.com/jacobwulffwold/GAN_SR_wind_field. The results are repro-
duceable using the repository. The code is modified from Larsen’s [15] code, which again
is an adaptation of Vesterkjær’s [29] code, which is accessible at https://github.
com/eirikeve/esrdgan. All parts of the code have been modified, but Vesterkjær’s
basic structure remains.
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The listed experiments and training of the model was done with NVIDIA A100m40 GPUs
on the IDUN cluster [34] at NTNU. With one GPU, training the model for 100k iterations
takes a bit less than two days. The GPU memory usage strongly depends on the input data
size and the batch size. With batch size 32 and 16x16x10 –> 64x64x10 training the model
needs approximately 22GB GPU memory.

3.5 Experimental Setup

3.5.1 Standard Key Hyperparameters
Table 3.1 lists key standard hyperparametes that are used unless specified otherwise. An
exhaustive list can be found in appendix A.

Table 3.1: Standard key hyperparameters and their meaning

Input
Parameter Value Meaning/Comments
include_pressure True G input channel
include_z_channel True G input channel
included_z_layers 1-10 10 of the 11 layers closest to the ground

(dropping the one furthest down)
interpolate_z False Interpolate as specified in Algorithm 1
include_altitude_channel False zalt as G input channel

Data
Parameter Value Meaning/Comments
enable_slicing True Slice 64x64 slices as specified in Chap-

ter 3.1.3
scale 4 xy dimension scale difference between

LR and SR, e.g. 16x16→ 64x64
data_augmentation_flipping True
data_augmentation_rotation True

Training
Parameter Value Meaning/Comments
G/both D G/both D
learning_rate 1e-5 1e-5
weight_init_scale 0.1 0.2 Smaller kaiming weight initialization
multistep_lr_steps [10k, 30k,

50k, 70k,
100k]

Schedule for reducing learning rate
during training

lr_gamma 0.5 Factor of reduction when lr is reduced
niter 90k Number of training iterations
use_label_smoothing True Set HR labels to 0.9 + 0.1 it

niter instead
of 1.0 when training D

adversarial_loss_weight 0.005 η6, as specified in Equation (3.15)
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gradient_xy_loss_weight 1.0 η2, as specified in Equation (3.15)
gradient_z_loss_weight 0.2 η3, as specified in Equation (3.15)
xy_divergence_loss_weight 0.25 η5, as specified in Equation (3.15)
divergence_loss_weight 0.25 η4, as specified in Equation (3.15)
pixel_loss_weight 0.15 η1, as specified in Equation (3.15)
D_G_train_ratio 1 How often D is trained relative to G
use_instance_noise True Add instance noise when training D,

D(x)→ D(x+ ε)
εi ∼ N

(
0, 2.0

(
1− it

niter

))
G_max_norm 1.0 Max norm for gradient clipping, func-

tions as C in equation (2.35)

So unless otherwise specified, in addition to the wind field, pressure and the z-coordinates
of the data are included as low resolution input channels for G, data is augmented by slic-
ing, flipping and rotating as specified in Chapter 3.1.3, and the generator and the discrimi-
nator are trained in parallel for 90k iterations. The discriminator is intentionally confused
initially by adding instance noise to the samples, and prevented from being too confident
with one sided label smoothing (see Chapter 2.3.2).

3.5.2 Experiment 1: Input Channels and Handling Vertical Coordi-
nates

With other parameters as specified in Chapter 3.5.1, in Experiment 1, the combinations
in table 3.2 are tested with two different seeds.

Table 3.2: Combinations tested in Experiment 1. name is what the combination will be referenced
to as, interpolate signals whether the data is interpolated as specified in Algorithm 1 or not, z, p,
zalt and terrain columns refers to whether these variables are included as input channels to the
generator.

name interpolate z p zalt terrain
only_wind ✗ ✗ ✗ ✗ ✗
z_channel ✗ ✓ ✗ ✗ ✗
p_channel ✗ ✗ ✓ ✗ ✗
p_z_channels ✗ ✓ ✓ ✗ ✗
zground_channels ✗ ✗ ✗ ✓ ✓
p_zground_channels ✗ ✗ ✓ ✓ ✓
only_wind_interp ✓ ✗ ✗ ✗ ✗
z_channel_interp ✓ ✓ ✗ ✗ ✗
p_channel_interp ✓ ✗ ✓ ✗ ✗
z_p_channels_interp ✓ ✓ ✓ ✗ ✗

As touched upon several times, the terrain shape and altitude significantly affect wind flow,
but the irregular spacing of the vertical coordinates poses a problem for applying CNN’s.
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This experiment aims to find the best way to address this, either by giving the model input
that contains information about the terrain, altitude and vertical spacing or by interpolating
the data to get get a more CNN suited grid.

Note that since data augmentation is enabled, due to the bug mentioned in 3.1.3, many
physically distorted data samples were used during training. This might disfavour the mod-
els that utilise extra terrain data somewhat, as it makes the terrain-wind relations slightly
less accessible to the model. Test scores are not affected, as testing is only done on the
non augmented wind field.

3.5.3 Experiment 2: Loss Functions
In response to the results of Experiment 1, a slight modification was done of the setup de-
scribed in Chapter 3.5.1. The D_G_train_ratio variable is changed to 2 after 60k iterations
and niter to 100k, so that G is trained for 60k+20k iterations and D is trained for 60k+40k
iterations.

Otherwise the setup remains unchanged, meaning that the p_z_channels combination
above will be tested, but now varying the loss function. In Experiment 2 the combi-
nations in table 3.3 are tested with two different seeds. The pixel loss and adversarial loss
is kept constant, η1 = 0.15, η6 = 0.005. The std_cost combination is equivalent to the
p_z_channels run in Experiment 1, so it will not be run again, but this means that it hasn’t
been changed as specified above, instead running 90k iterations for both D and G.

Table 3.3: Combinations tested in Experiment 2. name is what the combination will be referenced
to as, ηis are the cost weighing constants defined in Equation (3.15)

name η2 η3 η4 η5

only_pix_cost 0.0 0.0 0.0 0.0
grad_cost 1.0 0.2 0.0 0.0
div_cost 0.0 0.0 0.25 0.25
xy_cost 1.0 0.0 0.25 0.0
std_cost 1.0 0.2 0.25 0.25
large_grad_cost 5.0 1.0 0.25 0.25
large_div_cost 1.0 0.2 1.25 1.25
large_xy_cost 5.0 0.2 1.25 0.25

Experiment 2 aims to test four different hypothesis for what parts of the total loss (Equa-
tion (3.15)) are most useful to emphasise in training:

H21 Different parts of the wind gradient are about equally useful. If this is correct then
grad_cost and large_grad_cost should perform comparatively well, as scaling up
L∇xy
G and L∇z

G does not neglect any parts of the gradient.

H22 The divergence losses Ldiv
G and L

divxy

G are most useful. If this is correct then
div_cost and large_div_cost should perform comparatively well.

H23 The losses that specifically target the ∂
∂x

∂
∂y derivatives, L∇xy

G and L
divxy

G , are most

32



3.5 Experimental Setup

useful. If this is correct then xy_cost and large_xy_cost should perform compara-
tively well.

H24 The gradient based losses are strictly less useful than Ladversarial
G and Lpix

G . If this
is correct then only_pix_cost should outperform the other combinations.

3.5.4 Experiment 2.5: Loss Function Parameter search
After Experiment 2 was somewhat inconclusive, a hyperparameter search was conducted
in the following search space (based on results of Experiment 2

0.0 <η1 < 1.0 (3.16)
0.5 <η2 < 32.0 (3.17)
0.25 <η3 < 16.0 (3.18)
0.25 <η4 < 16.0 (3.19)
0.25 <η5 < 16.0, (3.20)

sampled on an uniformly on a logarithmic scale with base 2, except for η1 which is sam-
pled uniformly on a linear scale. The hyperparameter search is implemented using the
ray tune framework [35], with the Optuna [36] search algorithm and an Asynchronous
Successive Halving Algorithm (ASHA) [37] scheduler. The Optuna search algorithm im-
plements a Bayesian tree search algorithm, it incorporates the results of previous samples
when choosing configurations to test. The ASHA scheduler asynchronously stops poorly
performing configurations, allowing tests of more combinations with the same computing
power. Note that this biases the search towards early performers, assuming that strong
initial performance indicates strong later performance. Ray tune is a flexible framework
for implementing the parallel processing of the search.

The maximum training iterations is set to 35k and minimum iterations before stopping a
run is set to 1.2k. The search is initialised with promising combinations based on results
from Experiment 2.

33



Chapter 3. Method

34



Chapter 4
Results and Discussion of
Experiments

4.1 Experiment 1: Input Channels and Handling Vertical
Coordinates

4.1.1 Results of Experiment 1
Validation results during training in Experiment 1, as specified in Chapter 3.5.2, are dis-
played in Figure 4.1. Results from using the generator saved as it was on training iteration
80k on the test dataset are gathered in table 4.1.
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Figure 4.1: Experiment 1 validation results during training for two different seeds, coloured accord-
ing to the combinations specified in Table 3.2. The top row shows validation peak signal to noise
ratio, the bottom row shows the average absolute error of a wind component of the generated wind
field. A dashed line for trilinear interpolation performance is included for comparison.
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Table 4.1: Test results of Experiment 1. name references the combinations in table 3.2, PSNR is
the average peak signal to noise ratio, pix represents the average absolute error of a wind component
of the generated wind field and 1 and 2 refers to the two different seeds used for training. Since
the models working with interpolated low resolution data are trained to produce interpolated high
resolution data, the generated data is interpolated back to the original coordinates and evaluated
against the original high resolution data during testing. Those results are to the right, and evaluation
results against the interpolated high resolution data is to the left in the "interp" rows. Trilinear
interpolation performance is included for comparison.

name PSNR1 (db) PSNR2 (db) pix1 (m/s) pix2 (m/s)
only_wind 39.35 39.32 0.283 0.285
z_channel 39.96 40.52 0.268 0.246
p_channel 39.59 39.65 0.278 0.276
p_z_channels 40.27 40.05 0.253 0.261
zground_channels 40.6 40.61 0.242 0.244
p_zground_channels 40.54 40.00 0.245 0.264
only_wind_interp 39.06 / 39.10 39.25 / 39.22 0.293 / 0.292 0.288 / 0.289
z_channel_interp 40.59 / 40.53 40.65 / 40.61 0.246 / 0.247 0.243 / 0.243
p_channel_interp 39.47 / 39.49 40.03 / 39.99 0.283 / 0.289 0.265 / 0.267
z_p_channels_interp 39.73 / 39.75 39.77 / 39.77 0.274 / 0.274 0.276 / 0.273
trilinear 36.53 0.377
trilinear_interp 36.35 / 36.42 0.385 / 0.382

4.1.2 Discussion of Experiment 1
A number of observations can be made from Table 4.1 and Figure 4.1:

1. The model performs much better than trilinear interpolation.

2. The PSNR and absolute error graphs in Figure 4.1 are mirror images, indicating that
the error does not mainly consist of a few large mistakes.

3. The generator’s performance degrade significantly towards the end of training, indi-
cating that it overfits a non-optimal discriminator

4. Interpolation does not significantly degrade information quality, as the generated
data interpolated back to the original coordinates performs almost as well as com-
pared with the interpolated high resolution data.

5. Adding pressure as an input channel improves performance

6. Adding z-coordinates as an input channel improves performance

7. Interpolation slightly improves performance

8. Overall, including both pressure and z-coordinate input channels performs worse
than only including z-coordinates

9. z_channel_interp and zground_channels are the best overall performers in the exper-
iment.
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Two (seeds) is a small sample size, so one cannot draw confident conclusions when the
disparities in performance are small between models. Observations 1-6 are deemed rela-
tively conclusive, while observations 7-9 are considered indicative. The intention of using
z-coordinates rather than terrain values was that it seemed like a neat way of combining ter-
rain, elevation above ground and vertical spacing into one consistent variable. Seeing that
zground_channels, which splits height above ground and terrain, and z_channel_interp,
which has the same vertical spacing everywhere performed well, it would have been ben-
eficial to also have tested terrain_channel and terrain_channel_interp combinations, with
only terrain as an extra input channel, for respectively interpolated and non-interpolated
data.

The main conclusion of Experiment 1 is that the convolutional model works well despite
irregular coordinates, and performs much better when z-coordinates are included as an
extra input channel together with the wind field.

4.2 Experiment 2: Loss Functions

4.2.1 Results of Experiment 2
Validation results during Experiment 2, for the combinations specified in Chapter 3.5.3
can be seen in Figure 4.2. Results from using the generator saved on training iteration
80k for std_cost and 90k for the rest of the combinations on the test set are gathered in
Table 4.2. As explained in Chapter 3.5.3, 90k for the other values means 75k training
iterations for the generator, so the std_cost model applied to the test set has 5k more
training iterations than the others in the table.

Table 4.2: Test results of Experiment 2. name references the combinations in table 3.3, PSNR is
the average peak signal to noise ratio, pix represents the average absolute error of a wind component
of the generated wind field and 1 and 2 refers to the two different seeds used for training.

name PSNR1 (db) PSNR2 (db) pix1 (m/s) pix2 (m/s)
only_pix_cost 38.00 37.37 0.335 0.344
grad_cost 39.67 39.73 0.276 0.273
div_cost 39.65 36.62 0.276 0.378
xy_cost 38.84 31.73 0.309 0.519
std_cost 40.27 40.05 0.253 0.261
large_grad_cost 41.05 40.94 0.234 0.239
large_div_cost 41.42 41.35 0.225 0.227
large_xy_cost 41.55 40.72 0.223 0.248
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Figure 4.2: Experiment 2 validation results during training for two different seeds, coloured ac-
cording to the combinations specified in Table 3.3. The top row shows validation peak signal to
noise ratio, the bottom row shows the average absolute error of a wind component of the generated
wind field. A dashed line for trilinear interpolation performance is included for comparison.

4.2.2 Discussion of Experiment 2
From Figure 4.2 and Table 3.3 we see that the gradient-based losses improve performance
significantly with the current setup. However, the results are not very conclusive for the
hypotheses introduced in Chapter 3.5.3, except for H24, which is falsified, at least with
the current setup. As the runs with the largest losses are the best performers, Experiment
2 does not tell us if we are anywhere close to the actual best values, which might be much
bigger. The results point slightly in favour of emphasising L

divxy

G and deemphasising L∇z
G ,

but this is considered weak, especially considering that there seems to be a key point in
training around iteration 25k, at which "large" runs split towards a better or worse trajec-
tory. The results could also indicate too low learning rate for the generator, if increasing
the absolute value of the loss improves performance.
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Chapter 4. Results and Discussion of Experiments

As in Experiment 1, the models’ performance degrade towards the end of training, so the
increase in training the discriminator was not sufficient to address this problem, even per-
haps making it worse. However, we see some of the runs start to oscillate, indicating that
the dip in performance towards the end might be the start of an oscillating pattern.

Due to the ambiguity of these results, and the large space of possible combinations, a
hyperparameter search was conducted, Experiment 2.5.

4.3 Experiment 2.5: Loss Function Parameter Search

4.3.1 Results of Experiment 2.5
The results from the parameter search can be seen in Figure 4.3, and the parameters of
the five best performing runs are displayed in Table 4.3. The decomposed validation loss
during training of the best performing loss function, hereby named L∗

G, is displayed in
Figure 4.4. The norm of the gradient before clipping during training is displayed in Figure
4.5.

iterationsη1η4η5PSNRη3η2

(a) Parameter combinations tested in the search
and their performance. Plot generated by ray.tune.
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Figure 4.3: Results of Experiment 2.5. In the top left corner the scores of all tested combinations
and their parameters are displayed, with the best performing combinations highlighted. The ηis are
the loss weighing constants defined in (3.15), "iterations" is what iteration the run was stopped at,
PSNR is the validation PSNR score after that iteration. In the bottom left corner we see the same
table for only the the best performers with the parameter axes scaled according to their spanned
parameter range. To the right we see validation results during training, with the best performers
coloured. In the top right corner we see the validation PSNR score, in the bottom right corner we
see the total validation loss.

40

https://docs.ray.io/en/latest/tune/tutorials/tune-output.html


4.3 Experiment 2.5: Loss Function Parameter Search

η1 η2 η3 η4 η5 PSNR (db) pix (m/s
0.336 30.6 1.86 7.21 3.66 39.9 0.259
0.757 22.6 3.05 11.2 4.45 39.6 0.265
0.446 26.4 0.643 1.18 0.62 39.5 0.271
0.231 20.9 0.565 0.398 1.76 39.5 0.277
0.477 21.4 0.464 0.965 0.391 39.4 0.271

Table 4.3: Best performing combinations in Experiment 2.5. The ηis are the loss weighing con-
stants defined in (3.15), PSNR is the validation PSNR score after the final training iteration and pix
is the average absolute error of the generated wind field.
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Figure 4.4: Decomposed validation loss for the best performing loss function in the parameter
search L∗

G. The losses in the plot are as the ones defined in Chapter 3.3.
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Figure 4.5: The unclipped norm of the gradient during training with L∗
G. With the current setup, all

values over 1 are clipped. (Equation (2.35))
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4.3.2 Discussion of Experiment 2.5
Some key observations from Figure 4.3:

1. Performance still seems to somewhat favour large absolute loss.

2. The samples (and best performers) are heavily biased towards large η2 (scaling up
L∇xy
G ) and low η3 (scaling down L∇z

G )

3. Performance seems to favour larger η4 (Ldivxy

G ) than η5 (Ldiv
G )

4. Pixel loss for the best performers varies significantly

Figure 4.5 shows us that, with the increased absolute size of the loss function, the norm
of the gradient was so large that it was clipped according to equation (2.35) for almost
all training iterations. So most optimisation steps during training were the same length,
regardless of the loss landscape, which is not optimal for performance. However, it might
actually have been beneficial for the parameter search, because when each model has a set
optimisation step length only the relative weighting of the different losses matter, thereby
neatly allowing us to compare only the relative scaling of the losses. Looking at the total
validation losses in Figure 4.3b reveals that the best performing model has the second
largest absolute loss, so correspondingly scaling down the values in Figure 4.5 we see that
most of the runs probably were not as often clipped as L∗

G. All in all, it is unclear whether
this effect in sum was positive or negative for the parameter search. But we’ve learned that
the learning rate and clipping needs to be adjusted.

In total, Experiment 2.5 favours hypothesis H23, namely that the gradient-based losses
focused on the ∂

∂x
∂
∂y derivatives are most useful. Figure 4.4 shows that the best per-

forming loss function L∗
G is heavily dominated by L∇xy

G , Ldivxy

G and Ldiv
G , in that order.

The best scaling for the pixel and adversarial losses seem underdetermined by the experi-
ment.
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Chapter 5
Evaluation of the Best Performing
Model

5.1 Hyperparameters of the Best Performing Model
Based on the results of Experiment 1, Experiment 2, Experiment 2.5 and further testing,
a number of changes were made to the hyperparameters of the model. Most significantly,
adversarial learning has been dropped. Changing to alternating training between D and
G, experimenting with turning on or off instance noise and label smoothing, adjusting the
adversarial loss weight and initiating with a generator pre-trained on content loss gave at
best a small increase in performance over pure content loss, on a scale in which it could
simply be due to a learning rate reset. Therefore, we will instead look at the best generator
without adversarial learning, named Gbest. Modified generator parameters are listed in Ta-
ble 5.1. Otherwise, the generator setup is unchanged from the full list of hyperparameters
in Appendix A.

Table 5.1: Modified hyperparameters of Gbest from the standard setup.

Input
Parameter Value Meaning/Comments
include_pressure False G input channel
interpolate_z True Interpolate as specified in Algorithm 1

Training
Parameter Value Meaning/Comments
learning_rate 8e-5
niter 150k Number of training iterations
adversarial_loss_weight 0 η6, as specified in Equation (3.15)
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Chapter 5. Evaluation of the Best Performing Model

gradient_xy_loss_weight 3.064 η2, as specified in Equation (3.15)
gradient_z_loss_weight 0 η3, as specified in Equation (3.15)
xy_divergence_loss_weight 0.721 η5, as specified in Equation (3.15)
divergence_loss_weight 0.366 η4, as specified in Equation (3.15)
pixel_loss_weight 0.136 η1, as specified in Equation (3.15)
pixel_loss_weight_pre-train 0.136 η1, as specified in Equation (3.15), used

in pre-training
G_max_norm ∞ Max norm for gradient clipping, func-

tions as C in equation (2.35)

As seen in Table 5.1, the coefficients in L∗
G has been scaled down by a factor 10 and L∇z

G

has been dropped completely.

Ltot
Gbest

= η1L
pix
G + η2L

∇xy
G + η4L

div
G + η5L

divxy

G (5.1)

with ηi values specified in Table 5.1. Gbest was first trained for 100k iterations with
pixel loss η1 = 0.034 then trained for 150k iterations with η1 = 0.136. Restarting with
four times as high pixel loss improved not only the pixel wise error but also caused lower
gradient-based losses. Also, the learning rate has been increased by a factor 8, and gradient
clipping has been dropped.

The results in this chapter are also subject to the bug in data augmentation, as there was
not time to fully redo training when the bug was discovered. Ongoing runs without the
bug indicate that performance improves slightly with correct data augmentation.

5.2 Evaluation of the Model

5.2.1 Metrics and Overall Performance

The average test scores of Gbest are compared against trilinear interpolation in Table 5.2.
In Figure 5.1 we see the second lowest horizontal slice, while in Figure 5.2 we see the
second highest horizontal slice, of the wind field in low resolution (LR), high resolution
(HR), interpolated (TL) and super-resolved by Gbest (SR).
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Table 5.2: Test result of Gbest. PSNR is the average peak signal to noise ratio for a single sample
in the test set, pix represents the average absolute error of a wind component of the generated wind
field, pix-vector means the average length of the error wind vector, pix-vector relative is average
value of the pix-vector divided by the average wind speed of the sample. Though being interpolated,
the generated wind field is not interpolated back and compared to original data as in Table 4.1,
as this did not affect the results significantly. Trilinear interpolation performance is included for
comparison.

name PSNR (db) pix (m/s) pix-vector
(m/s)

pix-vector
relative

Gbest 47.14 0.116 0.24 6.12%
trilinear_interp 36.35 0.385 0.80 18.5%
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(a) Wind velocity along the x-axis (b) Wind velocity along the z-axis

(c) Error for the wind component pointing along the x-axis

(d) Error for the wind component pointing along the z-axis

Figure 5.1: Comparison of the second lowest horizontal 2D slice of the wind field for a randomly
selected wind field. LR means low resolution, the input of the model, TL means trilinear interpola-
tion of the LR data, SR means the super-resolved wind field generated by the trained network and
HR means the true high resolution wind field. "Avg error" refers to average absolute error for the
displayed wind component in the displayed slice, the "% of average" means this value divided by
the average of value of that wind component in that slice for the HR wind field.
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(a) Wind velocity along the x-axis (b) Wind velocity along the z-axis

(c) Error for wind velocity along the x-axis

(d) Error for wind velocity along the z-axis

Figure 5.2: Comparison of the second highest horizontal 2D slice of the wind field for a randomly
selected wind field. LR means low resolution, the input of the model, TL means trilinear interpola-
tion of the LR data, SR means the super-resolved wind field generated by the trained network and
HR means the true high resolution wind field. "Avg error" refers to average absolute error for the
displayed wind component in the displayed slice, the "% of average" means this value divided by
the average of value of that wind component in that slice for the HR wind field.
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Next we will look more in detail at the generated 3D wind flow, to see if the physics in-
formed loss functions has helped the model produce physically reasonable results.

5.2.2 Generated 3D Wind Flow and Turbulence Modelling
We now compare the entire 3D fields as we did for some selected 2D slices and wind
components above. First we will look at a sample with relatively large average wind speed
at 8.2 m/s. For this wind field the average length of the error wind vector of the SR field is
0.41 m/s (5% of average) and the average absolute error of the TL field is 1.34 m/s (16%
of average). In figure Figure 5.3 we see how the generated wind fields adapts to the terrain,
comparing for LR, HR, TL and SR data, as before.
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LR wind field [m/s]
17.9  13.4  8.94  4.47  0.00  

(a) LR wind field

HR wind field [m/s]
17.9  13.4  8.94  4.47  0.00  

(b) HR wind field

HR-TL wind field error [m/s]
4.90  3.67  2.45  1.22  0.00  

(c) TL error, HR-TL

HR-SR wind field error [m/s]
4.90  3.67  2.45  1.22  0.00  

(d) SR error, HR-SR

TL wind field [m/s]
17.9  13.4  8.94  4.47  0.00  

(e) TL wind field

SR wind field [m/s]
17.9  13.4  8.94  4.47  0.00  

(f) SR wind field

Figure 5.3: Comparison of LR, HR, TL and SR wind fields from a randomly selected sample. LR
means low resolution, the input of the model, TL means trilinear interpolation of the LR data, SR
means the super-resolved wind field generated by the trained network and HR means the true high
resolution wind field.

Figure 5.3 demonstrates that the SR wind field adapts much more crisply to the terrain
than the interpolated data. Looking more closely at Figure 5.3c, we can see that the in-
terpolation error follows regular terrain following patterns, with TL interpolation system-
atically misjudging regions of quickly changing terrain. Meanwhile Figure 5.3d shows a

49



Chapter 5. Evaluation of the Best Performing Model

much more chaotic pattern, indicating that the model doesn’t have obvious weak spots, but
makes calibrated best guesses when inferring the wind field between data points.

So the model seems to have learned general terrain adaptation. The model, however, is
trained to minimise absolute error in gradients and component-wise wind speed, which
means that for any batch during training, the large wind fields will dominate the loss
function. We should therefore check how it fares with less powerful winds, so we look at
a sample with average wind speed 1.04 m/s in Figure 5.4.
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LR wind field [m/s]
3.79  2.84  1.90  0.948 0.00  

(a) LR wind field

HR wind field [m/s]
3.79  2.84  1.90  0.948 0.00  

(b) HR wind field

HR-TL wind field error [m/s]
1.72  1.29  0.858 0.429 0.00  

(c) TL error, HR-TL

HR-SR wind field error [m/s]
1.72  1.29  0.858 0.429 0.00  

(d) SR error, HR-SR

TL wind field [m/s]
3.79  2.84  1.90  0.948 0.00  

(e) TL wind field

SR wind field [m/s]
3.79  2.84  1.90  0.948 0.00  

(f) SR wind field

Figure 5.4: Comparison of LR, HR, TL and SR wind fields from a randomly selected sample. LR
means low resolution, the input of the model, TL means trilinear interpolation of the LR data, SR
means the super-resolved wind field generated by the trained network and HR means the true high
resolution wind field.

For this area, the average absolute error is 0.19 m/s (18% of average speed) for SR and
0.31 m/s (30% of average speed). We also clearly see that the relative error is higher in
Figure 5.4, since even with the colour scale in Figures 5.4d going up to 160% the average
wind speed it we see more error in Figure 5.4d than in figure 5.3d, where the colour scale
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maxed out at 60% of the average wind speed. Comparing 5.4d and 5.4e more closely,
we can actually see SR underperforming TL in quite large areas of low wind speed. We
conclude that the model’s emphasis on large absolute error makes it perform worse on very
weak wind fields. This is not necessarily a bad thing, in wind power it is the absolute, not
the relative, size of the error that matters for estimating power production.

Figure 5.4 also demonstrates a problem with the vertical cutoff of the training data. In the
figure we see large areas in which the wind seems to stop completely. What is actually
happening is that the wind is pushed upwards by the terrain. With terrain following co-
ordinates only up to 40m above ground level and weak winds, the data doesn’t cover the
wind continuing higher up, instead making it seem like the wind only blows at the top of
hills. Given that we are trying to push the model to learn traits like mass conservation this
is not ideal. Extending the input data to higher altitude above ground up should therefore
improve performance.

Next, let us see how the model deals with the harder parts of modelling wind flow. Figure
5.5 zooms in on a turbulent region of the HR, LR, TL and SR wind fields.
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LR wind field [m/s]
17.9  13.4  8.94  4.47  0.00  

(a) LR wind field

HR wind field [m/s]
17.9  13.4  8.94  4.47  0.00  

(b) HR wind field

HR-TL wind field error [m/s]
3.90  2.92  1.95  0.974 0.00  

(c) TL error, HR-TL

HR-SR wind field error [m/s]
3.90  2.92  1.95  0.974 0.00  

(d) SR error, HR-SR

TL wind field [m/s]
17.9  13.4  8.94  4.47  0.00  

(e) TL wind field

SR wind field [m/s]
17.9  13.4  8.94  4.47  0.00  

(f) SR wind field

Figure 5.5: Comparison of LR, HR, TL and SR wind fields in a turbulent region. LR means low
resolution, the input of the model, TL means trilinear interpolation of the LR data, SR means the
super-resolved wind field generated by the trained network and HR means the true high resolution
wind field.

While interpolation almost completely smoothes out the turbulence area, the super-resolved
wind field is remarkably accurate. With only the datapoints in 5.5a it recreates the swirling
pattern of 5.5b, albeit slightly more regular than the actual data. This might be a reason
why it was hard to improve performance with adversarial learning. For chaotic regions,
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the best guess for the model is probably a smoothed out swirling pattern like we see above.
However when the HR data is sufficiently chaotic, the discriminator gets an easy way to
tell whether the data is real or fake by targeting the chaotic areas. In order to fool the
discriminator the generator might have to generate more chaotic patterns, but the more
random the pattern, the more likely it is to be wrong, so instead the content loss ensures
that the generator stays in line.

5.2.3 Changing Scaling and Slicing
Having a functioning setup we can see how well it performs for higher scale gaps than 4x4
resolution increase, and how disabling the data slicing affects the results. Table 5.3 shows
the results of scaling the model with a 4x4, 8x8 and 16x16 increase with and without data
slicing. In Figure 5.6 we compare the results of 8x8 and 16x16 resolution increase when
not slicing the wind field, for the same horizontal layer as in Figure 5.2.

Table 5.3: Test results varying scale of resolution increase and whether data slicing is used in train-
ing. PSNR is the average peak signal to noise ratio for a single sample in the test set, pix represents
the average absolute error a wind component of the generated wind field, pix-vector means the aver-
age length of the error wind speed vector, pix-vector relative is average value of pix-vector divided
by the average wind speed of the sample. Though being interpolated, the generated wind field is
not interpolated back and compared to original data as in Table 4.1, as this did not affect the results
significantly. Trilinear interpolation performance is included for comparison.

name PSNR (db) pix (m/s) pix-vector
(m/s)

pix-vector
relative

Gbest 47.14 0.116 0.24 6.1%
Gbest no slicing (4x4) 49.27 0.090 0.19 5.0%
4x4 trilinear 36.35 0.385 0.8 18.5%
G8x8 41.95 0.204 0.43 11.3%
G8x8 no slicing 44.25 0.159 0.33 9.1%
8x8 trilinear 33.86 0.528 1.12 25.8%
G16x16 34.2 0.502 1.11 26.68%
G16x16 no slicing 41.57 0.216 0.46 12.8%
16x16 trilinear 32.77 0.609 1.29 30.6%
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(a) Wind velocity for 8x8 resolution increase (b) Wind velocity for 16x16 resolution increase

(c) Error for 8x8 resolution increase

(d) Error for 16x16 resolution increase

Figure 5.6: Comparison of 8x8 and 16x16 resolution increase for models trained without slicing
on wind velocity along the x-axis for the second highest horizontal 2D slice of the wind field for
the same wind field as in Figure 5.2. LR means low resolution, the input of the model, TL means
trilinear interpolation of the LR data, SR means the super-resolved wind field generated by the
trained network and HR means the true high resolution wind field. "Avg error" refers to average
absolute error for the displayed wind component in the displayed slice, the "% of average" means
this value divided by the average of value of that wind component in that slice for the HR wind field.
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A number of points can be made from these results:

• The model is flexible, it can be trained for multiple resolution increase scales.

• The model is obviously gaining a lot from having the high resolution terrain infor-
mation available, as it can still produce terrain-following wind patterns even for a
16x16 resolution increase.

• The model performs much better when slicing the dataset is turned off

Given that the model is relying so much on the high-resolution terrain information, the
key question becomes to what degree the model is overfitted to the local terrain. Until the
model is tested on terrain not present in the training data we remain uncertain. Turning off
data slicing means allowing the model to overfit the local terrain even more, having the
same datapoint locations in the same terrain for each sample. This poses an opportunity for
getting better results by intentionally overfitting the model to a specific area, for example
around a wind farm, to better monitor and operate the farm. If this is the goal then further
gains can probably be made by turning off rotation and flipping data augmentation as
well.

5.3 Inside the Model
To see what the model actually focuses on, we can look at the output feature maps of
hidden layers of the model. Being fully convolutional, the model maintains the spatial
orientation, so we can map the feature maps directly onto the 3D wind field. Figure 5.7
shows the low reaolution low velocity wind field shown in Figure 5.4, and some selected
feature maps generated by Gbest when given that input. In the figure we see one terrain
feature map, four samples from the last feature layer after activation and two samples from
the last layer before upscaling (see Figure 3.6 for context).
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(a) HR terrain feature layer (b) Last HR feature layer activation (c) Last HR feature layer activation

(d) Last HR feature layer activation

(e) Last HR feature layer activation (f) Last LR feature layer (g) Last LR feature layer

Figure 5.7: Feature maps of the trained model. In the centre we see the low resolution wind field
over the terrain, the input of the model, and around we see feature maps generated by feeding this
input to the model. In the top left corner we see a terrain feature layer, in the bottom right corner we
see to feature maps from the last layer before upscaling, the rest are from the last feature layer of the
model after activation.

Not surprisingly, we can see the model emphasising specific wind directions and terrain
shapes. For example, the features in Figure 5.7d seem to be activated by wind speed in
the negative x direction and the features in Figure 5.7e seem to be activated by wind speed
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in the negative y direction. The features in Figure 5.7c seems to be activated in the areas
with sharp terrain changes across an axis roughly parallel to the x = y diagonal, which
interestingly also is parallel to the coastline and incoming wind speed. In fact, many of
the feature maps seem to utilise a grid along the diagonals of of the figures, indicating that
the model has found these axes to be the most useful horizontal decomposition of the wind
and terrain data. This also makes sense given that the rotation and flipping done when
loading data keeps the coastline pointing along one of the diagonals, so that even if the
image is rotated or flipped it will maintain one axis parallel to the coast line and one axis
perpendicular to the coastline. In that case, it is fitted to the current terrain.

As mentioned, there was an error in the code causing the rotation in training to apply only
to the spatial points, not the orientation of the vectors. To understand how the model treats
such rotation, and to test our guesses of the meaning of feature layers in Figure 5.7, Figure
5.8 displays the same feature layers for the same input wind field, but with the spatial
points (but not orientation of the vectors!) rotated 90 degrees.
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(a) HR terrain feature layer (b) Last HR feature layer activation (c) Last HR feature layer activation

(d) Last HR feature layer activation

(e) Last HR feature layer activation (f) Last LR feature layer (g) Last LR feature layer

Figure 5.8: Feature maps of the trained model produced by inputting the wind field in Figure 5.7
rotated 90 degrees withoout changing the orientation of the vectors. In the centre we see the low res-
olution wind field over the terrain, the input of the model, and around we see feature maps generated
by feeding this input to the model. In the top left corner we see a terrain feature layer, in the bottom
right corner we see to feature maps from the last layer before upscaling, the rest are from the last
feature layer of the model after activation.

First, we can see clearly how, since the vector orientation is not changed, the new wind
pattern does not match the terrain as it did above. The wind crosses ridges with no effect in
some places, and gets pushed by non-existing ridges in other. For the rotated field we can
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see that our guesses about the maps in Figure 5.8c and Figure 5.7d seem to be reasonable,
but many of the other maps have changed completely. This is a good sign with regards to
overfitting, as with the vectors remaining the same the model could have learned to just
use relations between the vectors and their exact local shape of the terrain. In that case, all
the feature maps would be the same, only rotated 90 degrees. That many of them change
significantly indicates that the model is sensitive to the orientation of the vectors relative
to the terrain, and has found (rotated) actual meaningful connections between the terrain
and wind flow direction.
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Chapter 6
Conclusion and Further Work

In this thesis I have described a 3D convolutional GAN network for super-resolving the
near surface 3D wind field with a 4x4 horizontal resolution increase. The model is inspired
by the ESRGAN [28] image super-resolution architecture, modified to work with 3D wind
flow. A feature dropout layer was added before the last convolutional layer in the generator
and after the feature extractor part of the discriminator. Most importantly, a terrain feature
extractor was added to the generator, so that it can combine the features extracted from the
low resolution data with high resolution terrain information.

Atmospheric flow in complex terrain poses a challenge for 3D CNNs. Information wise
one wants a non-regular grid, densely spaced and terrain following close to the ground and
sparsely spaced and flat higher up. However, CNNs treat all regions of space the same, and
therefore require the same relations to hold in all spatial regions. In Experiment 1 various
approaches to this was tested, and we found that incorporating the z-coordinate of each
data point as an extra input channel improved performance significantly. Interpolation
to enforce even vertical spacing relative to the ground level also increased performance
somewhat, but the evidence for that is weaker.

For incorporating our knowledge of the physics into the model, multiple wind gradient
based losses were introduced in Chapter 3.3, and tested in Experiment 2 and Experiment
2.5. A loss function penalizing, in descending order, differences in the ∂

∂x
∂
∂y derivatives,

horizontal divergence ∂u1

∂x + ∂u2

∂y and divergence between the super-resolved and actual
high resolution data, mediated by a pixel loss in average absolute error was found to in-
crease performance greatly. No setup was found in which adversarial learning significantly
improved performance.

Incorporating these changes into the model, and calibrating the hyperparameters further,
the resulting non adversarial generator super-resolved the test dataset wind field with an
average PSNR of 47.14 db, average length of the error wind vector 0.24 m/s, and aver-
age length of the error wind vector divided by average wind speed 6.12%, as opposed to
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trilinear interpolation scores 36,42 db, 0.80 m/s and 18.5%. A closer inspection of the
3D wind flow revealed that the model approximate terrain adaptation and turbulence re-
markably well, indicating that the physics informed losses in the loss function combined
with the terrain information successfully allowed the model to learn terrain adaptation and
atmospheric wind flow. The model also works reasonably well for different larger scales
of resolution increase.

A bug was found in the rotation and flipping data augmentation process, which lead to
the wind vectors’ orientation not being rotated as the terrain and their position is. Though
this meant the model learned to produce non reasonable wind fields from non reasonable
input during training, early results after fixing it indicates that it was only inhibiting per-
formance slightly, with the model still learning meaningful relations between wind flow
and terrain.

Specifically adressing the three points from the introduction, it has been found that

1. Microscale 3D atmospheric wind flow can be well approximated by CNNs from low
resolution wind data and high resolution terrain data even if the data is irregularly
spaced vertically.

2. Loss functions comparing specific parts of the wind gradient of the generated and
high-resolution wind fields improved performance significantly, with gains from ad-
versarial learning being negligible in comparison.

3. The proposed fully convolutional 3D generator with wind gradient based loss func-
tion super-resolves the near surface 3D wind field remarkably well, both in terms
of absolute error, and in subjectively appearing to meaningfully approximate the
physics of terrain adaptation of wind flow.

6.1 Further Work
As encouraging as these results are, many parts of the model design have not yet been
properly calibrated and tested. Gains in performance can be looked for in

• Improving the architecture of the terrain feature extractor. The current design is a
minimum way to include terrain feature extraction, and the number of features has
not been properly calibrated.

• Testing without dropout layers, or with other dropout percentages

• Trying a U-net generator architecture. A U-net [38] is a U-shaped encoder-decoder
network with skip connections between each corresponding dimension scale in the
encoder and the decoder. Such a structure makes intuitive sense for super-resolving
the wind field in the manner of this thesis. With a U-net, one could start by interpo-
lating the low resolution wind field, concatenate that with the high resolution terrain
data/z-coordinates and use this as input for the generator. This way we build all
our starting point knowledge into the model from the beginning, as opposed to the
current approach: not using the interpolated data, starting with the low resolution
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terrain information as input, and concatenating the high resolution terrain informa-
tion late in the network.

• Improving adversarial learning. Chaotic wind patterns in turbulent regions might
pose a fundamental challenge for adversarial learning with 3D atmospheric flow,
and the results of this work are somewhat discouraging for adversarial approaches
as opposed to informed content loss. Working with adversarial training is also more
demanding both computationally and conceptually. Still, improvement by better
design of the adversarial process is not ruled out, and remains a possible avenue
for further research. Using the feature extractor of a pre-trained discriminator, or
for the discriminator saved at some interval during training, to add a feature loss
might for instance give better granularity to the adversarial feedback. The code has
support for this loss, but it has not been tested properly. Experimenting with such
a feature loss can be combined with experimenting with the dropout probability of
the discriminator.

Also, the model requires further modifications and testing before actually being usable in
wind farm development. In this thesis the model was trained with 3D data 2-40 meters
above ground. Wind farms operate in the domain ∼ 50-250 meters above ground, so the
model will need to be calibrated for a different height domain. Predicting at these heights
should be much easier, as wind fields are less complex further away from the ground.
Furthermoere, despite the slicing augmentation technique, the model has not experienced
much variation in the terrain, and has not been tested on terrain not present in the training
dataset. The model might therefore be significantly overfitted to the terrain in the dataset.
It should either be trained for many different terrain shapes, or specialised for predicting
wind flow in a particular area.

For the model to be useful it also needs to be tailored to the datasets available and the
scale one is interested in. Much of available wind data is only available in 2D, or only
available in limited geographical domains. Given that the loss function focuses mainly on
horizontal derivatives, and that the code already has 2D support, it might be fruitful to test
the model on 2D super-resolution. Finally, in the scheme of downscaling, a 4x4 increase
in resolution is relatively small, but Chapter 5.2.3 gives us reason to believe that the model
can easily be adapted to other scales, provided the requisite terrain and wind field training
data.

All in all, the proposed model should be considered a proof-of-concept for CNN driven
super-resolution of 3D microscale atmospheric wind flow.
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Appendix A
Standard Hyperparameters

Table A.1: Full list of standard hyperparameters with explanation

Overall
Parameter Value Meaning/Comments
include_pressure True G input channel
include_z_channel True G input channel
included_z_layers 1-10 10 of the 11 layers closest to the ground

(dropping the one furthest down)
conv_mode 3D Alternatives: 3D, 2D, Horizontal3D

(separate kernel for each horizontal
layer)

interpolate_z False Interpolate as specified in section 3.1.3
include_altitude_channel False include zalt as G input channel
load_G_from_save False Initialise G with a model trained with-

out adversarial cost
Data

Parameter Value Meaning/Comments
enable_slicing True Slice 64x64 slices as specified in sec-

tion 3.1.3
scale 4 xy dimension scale difference between

LR and SR, e.g. 16x16→ 64x64
batch_size 32
data_augmentation_flipping True
data_augmentation_rotation True

Architecture
Parameter Value Meaning/Comments
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G/both D G/both D
num_features 128 32 D features double for every DownConv

block except the last
terrain_number_of_features 16 Number of features in the terrain fea-

ture extractor part of G
num_RRDB 16
num_RDB_convs 5 RDBs per RRDB
RDB_res_scaling 0.2 Residual scaling, α in the pink part of

Figure 3.6
RRDB_res_scaling 0.2 Residual scaling, α in the green part of

Figure 3.6
hr_kern_size 5 Kernel size after upscaling in the gen-

erator (5x5x5)
kern_size kern_size 3 3 Standard kernel size (3x3x3)
weight_init_scale 0.1 0.2 Smaller kaiming weight initialization
lff_kern_size 1 local feature fusion layer of RDB
dropout_probability 0.1 0.2
G_max_norm 1.0 Max norm for gradient clipping, func-

tions as C in equation (2.35)
Training

Parameter Value Meaning/Comments
G/both D G/both D
learning_rate 1e-5 1e-5
adam_weight_decay_G 0 0
adam_beta1_G 0.9 0.9
adam_beta2_G 0.999 0.999
multistep_lr True Reduce learning rate during training
multistep_lr_steps [10k, 30k,

50k, 70k,
100k]

schedule for reducing learning rate dur-
ing training

lr_gamma 0.5 factor of reduction when lr is adjusted
gan_type relativisticavg section 2.3
adversarial_loss_weight 0.005 η6 (3.15)
gradient_xy_loss_weight 1.0 η2 (3.15)
gradient_z_loss_weight 0.2 η3 (3.15)
xy_divergence_loss_weight 0.25 η5 (3.15)
divergence_loss_weight 0.25 η4 (3.15)
pixel_loss_weight 0.15 η1 (3.15)
d_g_train_ratio 1 How often D is trained relative to G
use_noisy_labels False Add noise to labels when training D
use_label_smoothing True Set HR labels to 0.9+0.1 it

itmax
instead

of 1.0 when training D
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flip_labels False Randomly flip (set HR_label=false,
SR_label=True) some labels when
training D

use_instance_noise True Add instance noise when training D,
D(x)→ D(x+ ε)
εi ∼ N

(
0, 2.0

(
1− it

niter

))
niter 90k Number of training iterations
train_eval_test_ratio 0.8 Ratio for training, remaining fraction

split equally between validation and
testing
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