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Abstract

Speculation is a widely used optimization implemented in processor cores to im-
prove performance by getting more work done and preventing the pipeline from
being idle. It has however later been discovered that the great performance gains
comes with the cost of being vulnerable to speculative side-channel attacks. This
is a significant security flaw, which enables attackers to read sensitive data, like
passwords and encryption keys, from victims. Almost all newer processors use
speculation, and are thus vulnerable to these attacks. This is a problem since both
the attributes of fast performance and security against speculative side channels
attacks are considered as desired when designing processor cores. However, since
speculation now make the processor vulnerable to these attacks, there is a conflict
between these two attributes and a compromise have to be made.

This report explores different mitigation strategies against the attack, and de-
scribes the implementation of the mitigation strategies Delay-on-Miss (DoM) and
Speculative Taint Tracking (STT) implemented in the Berkeley Out-of-Order Ma-
chine (BOOM) processor core. It additionally explores a new variation of the DoM
implementation, referred to as DoM-RW, which are more restrictive on waking up
the delayed loads when they have missed in the L1 cache. The STT implement-
ation was not completed in time, and is only partially implemented. The results
from the experiments performed on this implementation can therefore not be seen
as representative for the mitigation strategy. They are, however, included in the
report since they can still give insight on the partially implemented solution.

The implemented solutions have been evaluated on an FPGA. When exploring
the implemented mitigations, experiments testing the implementations for per-
formance and security are performed. The test for performance are evaluated by
executing benchmarks from the SPEC2017 benchmark suite. To test for security,
the Spectre attacks Spectre Variant 1 and Spectre Variant 2 have been evaluated.
It is additionally looked at how large the implementation overhead of the imple-
mented mitigation strategies are in regard to physical size by reviewing the FPGA
utilization of the implemented strategies.

Since STT is only partially implemented, it is not tested as comprehensive as the
other implementations. It is not tested for performance, and the test for security
is not performed on the same platform as the other implementations. The Spectre
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attacks performed are also terminated before the attack is finished.

Both the DoM implementations are demonstrated to protect data from being leaked
against the two speculative side-channel attacks. The partially implemented STT
implementation however leaks data. The normal DoM implementation get a slow-
down in performance of 14% and the DoM-RW implementation get a slowdown of
20.9%. The implementation overhead of both the DoM implementations is meas-
ured to be 0.1% increase in the number of look-up-tables (LUTs) used for logic
on the FPGA and 0.02% increase in the number of flip-flops used. The STT im-
plementation have an increase of 1.2% in the number of LUTs used for logic, and
0.49% increase in flip-flops used compared to the baseline implementation.

The key contribution of this report is to bring new insight about how well the
implemented mitigation strategies fulfills the desire for processor cores to be both
fast and secure.



Sammendrag

Spekulasjon er en mye brukt optimalisering i prosessor kjerner og har bidratt til
å forbedre ytelsen ved å utføre mer arbeid og forhindre at pipelinen står stille og
venter. Det er imidlertid i senere tid blitt oppdaget at de den forbedrede ytelsen
kommer med kostnaden av å være sårbar for spekulative sidekanalangrep. Dette
er en betydelig sikkerhetssårbarhet som gjør det mulig for angripere å stjele sens-
itiv informasjon, som passord og krypteringsnøkler fra ofre. Nesten alle nyere
prosessorer bruker spekulasjon og er dermed sårbare for slike angrep. Dette er
et problem siden både rask ytelse og sikkerhet mot spekulative sidekanalangrep
anses som ønskelig når man designer prosessor kjerner, men siden spekulasjon nå
gjør prosessoren sårbar for disse angrepene, oppstår det en konflikt mellom disse
to egenskapene.

Denne rapporten utforsker ulike strategier for å unngå sårbarheten ved å be-
skrive implementasjonen av forsvarsstrategiene Delay-on-Miss (DoM) og Speculat-
ive Taint Tracking (STT) implementert i Berkeley Out-of-Order Machine (BOOM)
prosessor-kjernen. Den utforsker også en ny variant av DoM-implementasjonen,
som i denne rapporten blir omtalt som DoM-RW. Denne er mer restriktiv når det
gjelder å vekke opp de spekulative load instruksjonene som har blitt hindret fra
å kjøre. Implementeringen av STT-strategien ble ikke fullført i tide og er derfor
bare delvis implementert. Resultatene fra eksperimentene utført på denne imple-
mentasjonen kan derfor ikke ansees som representative for strategien. Likevel er
de inkludert fordi de fortsatt kan gi innsikt i den delvis implementerte løsnin-
gen.

De implementerte løsningene er evaluert på en FPGA. For å utforske de ulike
strategiene har det blitt utført eksperimenter for å teste implementasjonene med
hensyn til ytelse og sikkerhet. Ytelsestestene evalueres ved å kjøre benchmarkene
fra SPEC2017-benchmark-suitten. For å teste sikkerheten blir Spectre-angrepene,
Spectre Variant 1 og Spectre Variant 2, evaluert. Det blir også sett på hvor stor
implementasjonsoverhead de implementerte strategiene har med tanke på den
fysiske størrelsen.

Siden STT bare er delvis implementert, er det ikke testet like omfattende som
de andre implementasjonene. Den er ikke testet for ytelse, og sikkerhetstesten er
heller ikke testet på samme plattform som de andre implementasjonene. Spectre-
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angrepene som ble utført terminerer også før angrepet er fullført.

Det viser seg at begge DoM-implementasjonene beskytter mot lekkasje fra begge
de to spekulative sidekanalangrepene. Den delvis implementerte STT-implementasjonen
lekker imidlertid data. Den vanlige DoM-implementasjonen får en reduksjon i
ytelse på 14%, og DoM-RW-implementasjonen får en reduksjon på 20,9%. Im-
plementasjonsoverheaden for begge DoM-implementasjonene måles til å være en
økning på 0,1% i antall oppslagstabeller brukt til logikk på FPGA-en og en økning
på 0,02% i antall vippere brukt. STT-implementasjonen har en økning på 1,2%
i antall oppslagstabeller brukt til logikk og en økning på 0,49% i antall vippere
sammenlignet med utgangsimplementasjonen.

Hovedbidraget fra denne rapporten er å gi ny innsikt i hvor godt de implementerte
løsningene oppfyller ønsket om at prosessorkjerner skal være både raske og sikre.
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Chapter 1

Introduction

In 2018, the discovery of attack strategies exploiting some architectural optimiz-
ations caused fright in the computer architecture community. The reason for this
was that the newly discovered attacks made for a conflicting compromise between
the two desired properties of security and performance. It was discovered that
the optimizations speculation and out-of-order execution could leak data trough
side-channels in the microarchitectural state. Mitigating the attacks by remov-
ing these optimizations would lead to a non-negligible decrease in performance,
which would set the development of fast processor cores several steps back.

After the discovery of the first Spectre attacks, several mitigation strategies have
been suggested. They all try to find a solution which provides security with as
small slowdown of the processor core as possible. This project aims to give new
knowledge about how large of an overhead, in regard to performance and physical
size, it is to secure processor cores against speculative side channel attacks. This is
done by implementing already existing mitigation strategies discovered by other
researchers. The mitigation strategies explored are two variations of Delay-on-
Miss (DoM) [1], in addition to Speculative Taint Tracking (STT) /[2]. These are
implemented on the Berkeley Out-of-Order Machine (BOOM) [3].

1.1 Motivation

As the technology advances, there is an increased demand for fast processors. Over
the last couple of decades, the demand for heavy computations have increased
massively. At the time of writing this report, it is also not expected to decline. To
satisfy this demand, computer architects are constantly looking at new methods
to increase the speed of computer cores in addition to finding new clever ways of
doing more computation in a shorter amount of time. Dennard scaling states that
as transistors gets smaller, the power density stays close to constant. Architects
have until the end of Dennard scaling [4] relied mostly on reducing the size of
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the transistors to increase the clock rate and thus the performance. This was the
case until the mid 2000s. Since then, architects have been required to improve
the efficiency in single cores with other methods. These methods, for example,
include pipelining, out-of-order execution, speculation amongst others. The strive
for more effective processor cores have resulted in an increased complexity in the
cores.

In addition to performance, the demand for security in digital devices have also
increased. It is safe to assume that the more of the facets of the society turn di-
gital, the more enticing is the digital space for criminals and others with mali-
cious motives. Nowadays, almost all money transactions in the most developed
countries are digital. For this to be safe, sensitive data like encryption keys and
passwords cannot be leaked when being processed on the hardware. As processor
cores have become more complex, the discovery of speculative side-channel at-
tacks have proved that some of the optimization employed in processor cores can
be exploited to leak sensitive data. If an attacker is able to trick you into running
malicious code, it can potentially read your entire main memory, which may in-
clude encryption keys and passwords. The code to perform these types of attacks
can easily be hidden within the other code in a normal application.

While it may, for most hardware designs, not be as relevant as having perform-
ance and security, it is also interesting to review the implementations overhead
with regard to the physical size for different the designs. A large implementation
overhead of mitigation strategies could potentially lead to a larger physical size
of the core. Physical size is mostly a concern for devices which are expected to be
lightweight and have a large degree of portability, like for example mobile phones.
Cores in embedded systems are sometimes also desired to be of a small size, de-
pending on the use case of the embedded system. However, for processor cores
designed for desktop machines and warehouse scale computing, physical size is
not a limiting factor in the development.

Knowing the traits desired in computer cores, the motivation of this work is there-
fore to explore some mitigation strategies securing the core against speculative
side-channel attacks and look at the efficiency and security provided. The work
aim to compare relevant solutions in regard to the performance, security provided
and implementation overhead on the same platform to give new knowledge about
how well the implementations provides these desired traits.

1.2 Scope

The project described in this report is the continuation of the author’s specializ-
ation project [5] in the autumn semester in 2022. The specialization project im-
plemented DoM in Verilator to explore the security of the implementation. Some
benchmarks were also run, but as mentioned in the report from the specializa-
tion project, the tests are not credible enough to conclude anything about the
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performance of the modified processor core. As this project is the continuation of
that project, some of the text in that report is reusable for this report, as there
have been a minimal amount of change in the implementation of DoM. With per-
mission from NTNU, the reusable parts are directly copied from the specialization
project’s report and used for this report. As the scope of the specialization project
was much smaller, there is not a lot of copied text, and it is only text regarding
the implementation of DoM, in addition to some background theory.

This project continues exploring the DoM implementation by implementing it on
an FPGA to get more credible data about the performance and also the imple-
mentation overhead. This project additionally aims to implement the strategies
DoM-Restricted Wakeups (DoM-RW) and STT on an FPGA and compare them
with DoM and the baseline implementation. DoM-RW is a modification of DoM,
to the author’s knowledge, first implemented for this research. The difference of
these are described in Section 3.1.4.

Due to the time limit of the project, the scope has to be narrowed down to a
manageable amount of work. The work performed should also be relevant to the
overall goal stated in Section 1.3. Implementing the mitigation strategies DoM,
DoM-RW and STT is part of the scope as it is very important for collecting data
used to accomplish the overall goal. Evaluating the implementations on an FPGA
is also in the scope and is considered as indispensable for this research. While im-
plementing STT initially is part of the scope of this research, it is worth mentioning
that the implementation did not get finished within the time limit of the project,
and is therefore only partly implemented. Any of the planned experiments that
is possible to perform on the partly completed implementation is however per-
formed and evaluated like on the other implementations.

Measuring performance and implementation overhead is also crucial for accom-
plishing the overall goal. The performance is measured in instructions per clock
cycle (IPC) and the implementation overhead measured is measured in the amount
of hardware of the FPGA that is utilized. Any other measurements of the perform-
ance and implementation overhead is considered out of scope.

Running attack code to test the security of the implementations is also considered
a crucial part of accomplishing the goal and are for this reason considered to be
part of the scope. While it would be relevant for giving greater insight to the level
of protection the implementations provide, other Spectre attacks than Spectre
Variant 1 and Variant 2 are not performed. It could be interesting to see if the
implementations additionally are secure against the Meltdown attack and Spectre
Variant 4. However, creating attack code for these attacks would be too time-
consuming to meet the deadline of the delivery. Other attacks than Spectre Variant
1 and Variant 2 are therefore considered out of scope for this project.

It could also be valuable to evaluate the implementations for other traits than per-
formance and implementation overhead in addition to the security against Spectre
Variant 1 and 2. For example, energy efficiency is also a desired trait in processor
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cores. However, it is not considered as part of the scope for this project.

Although evaluating other traits than performance and implementation overhead
in addition to the security against Spectre Variant 1 and 2 like energy efficiency,
could also make for interesting research, it is, however, considered out of scope
for this project.

It is also not considered as part of the scope to try to answer why the perform-
ance and implementation overhead is as it is. Only measuring and comparing the
desired obtained results are considered as part of the scope. There are therefore
not performed any experiments analyzing how the benchmarks are executed on
the hardware to get the measured result, or experiments trying to find out why
the different implementations get the implementation overhead it gets. Although
finding out why the result is what it is being out of scope, it is still discussed as
the report should facilitate for future research.

1.3 Contrubution

The overall goal of the project is to find out how the protection schemes implemen-
ted compare to the baseline and each other in terms of protection, performance,
and implementation overhead. Experiments are set up to quantify and measure
these traits and generate data reflecting how the implementation affects any of
the specific traits.

The main contribution of the project is gaining new knowledge of how the imple-
mented solutions perform with regard to the suggested desired properties. This
knowledge can give useful new insight about which of the implemented solutions
that are the best choice for mitigating speculative side-channel attacks. The insight
can also be useful for further research on the field of speculative side-channel at-
tacks. The contribution is summarized in the list below.

• It is discovered that the DoM and DoM-RW implementation provide security
against the speculative side-channel attacks Spectre Variant 1 and Spectre
Variant 2.
• The solutions are measuered to have a slowdown 14% for DoM and 20.9%

for DoM-RW. The implementation overhead is also measured to be so small
that it can be considered negligible.
• It is discovered that the DoM implementation with a relaxed wakeup policy

may be considered more preferable than the implementation with restricted
wakeups, as it gives better performance on the benchmarks, while having
equal implementation overhead and security provided.



Chapter 2

Background

As the end of Dennard scaling [4] has been reached, architectural optimizations
have become more important to increase performance in processor cores. Manu-
facturers can rely less on getting performance from only shrinking transistors, and
therefore have to improve the processor cores’ design to gain performance [6]. In
this chapter, some technical background information will be provided about fun-
damental computer architecture, optimizations implemented in processor cores,
and how some of these optimizations can be exploited by attackers. This informa-
tion will supply the required knowledge to understand Delay-on-Miss and Specu-
lative Taint Tracking which is implemented for this project. The chapter will also
give some technical background on some of the tools used to implement the se-
curity mechanisms.

2.1 Computer Architecture Fundamentals

This section will present some fundamental concepts within computer architec-
ture. This fundamental knowledge gives insight into the mechanisms employed in
processor cores that makes them vulnerable to transient execution attacks. This
knowledge is necessary to be aware of to understand how the attacks described
in Section 2.2 exploits the hardware, why it is hard to mitigate them, and why the
mitigations affect the performance of the processor core.

2.1.1 Processor Core Pipeline

In most processor cores, instructions are processed in a pipeline. That means that
the cores are implemented with several pipeline stages. When an instruction is
processed, it goes through the stages one by one before its execution is com-
pleted [6]. The classic Reduced Instruction Set Computer (RISC) pipeline has 5
stages, which are shown in Figure 2.1. The stages are instruction fetch, instruc-
tion decode, execution, memory access, and write-back. Although most processor

5
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Instruction

fetch

Write- 
back

Memory

access

ExecuteInstruction

decode

Figure 2.1: RISC five-stage pipeline

cores are more advanced than this pipeline, it is a good example to understand
the fundamental concept of how instructions are processed. This pipeline will be
used as a reference when describing optimizations later in this chapter.

In one clock cycle, each stage gets some input, processes the input, and writes the
output to the next stage. Between each stage in the pipeline, there are registers
that hold the output from the previous stage, and which also is the input in the next
stage. For example, in Figure 2.1, the output from the instruction decode stage, is
written to the registers between the instruction decode and the execute stage. In
the next cycle, the execution stage gets its input from the same register.

By processing instructions in a pipeline with several stages, like the RISC pipeline,
one exploits instruction level parallelism (ILP). Instead of having only one instruc-
tion processed at a time, one can have one instruction in each pipeline stage
concurrently. By having several instructions in the pipeline at a time, each at a
different stage, one can say that the instructions run in parallel.

Pipelining is a cheap optimization that can improve performance by several factors.
If the pipeline for example has five stages, the performance increases five times
with pipelining compared to executing one instruction at a time, if there are no
dependencies between the instructions.

2.1.2 Super-Scalar Processors

Super-scalar pipelines exploit ILP to gain performance. In super-scalar pipelines,
each stage has extended the micro-architecture to be able to handle several in-
structions each cycle. This optimization of the pipeline enables the processor cores
to achieve IPCs higher than 1 [6]. The amount of instructions each step can handle
is called the issue width. Figure 2.2 shows the first 6 cycles of a program with 12
instructions running on a processor core with an issue width of two. As the fig-
ure shows, all twelve instructions have been issued after six cycles, doubling the
throughput, compared to what the same program would have taken on a pro-
cessor core with the reference single-issue RISC pipeline. It also gives an IPC of
1.2, on the condition that instruction 11 and 12 only use one cycle on their last
four stages.
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2.1.3 Out-of-Order Execution

Out-of-order execution improves the ILP, and thus the processor cores’ perform-
ance, compared to the in-order RISC pipeline which is used as a reference. Fig-
ure 2.3 shows a simple example of an implementation of a pipeline with out-of-
order execution, similar to the RISC pipeline. The sketch is just an example of
how an out-of-order pipeline can be implemented, and only tries to illustrate the
most common structures and concepts employed to support out-of-order execu-
tion.

A reason why executing instructions out-of-order may be useful is because some-
times the execution time on certain execution units may vary and cause the pipeline
to stop fetching instructions. If one instruction stops at a stage in the pipeline,
it blocks younger instructions from moving further in the pipeline, despite the
younger instructions being ready to move to the next stage [6]. If for example a
load is issued and misses in the cache, it may take a lot more cycles to execute it.
The data have to be loaded from lower levels in the memory hierarchy, which are
further away from the core, thus giving larger latencies. In a pipeline executing
all instructions in-order like the RISC pipeline, all younger instructions have to
wait before continuing to the next stage until the load has finished the memory
access. In that case, fetching new instructions also stops.

The problem with instructions making the pipeline stall can be solved by allowing
instructions to be executed in a different order than the correct program order in
part of the pipeline. An out-of-order processor core allows younger instructions
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to bypass the stalling instructions if they are ready to execute. The problem with
variation in execution time almost always occurs at the stages where the instruc-
tions’ operation is done. In the RISC example, that would be in the execute and
memory access stages. Fetching, decoding, and writing the result back to the out-
put register is the same for every instruction. Because of this, in out-of-order cores,
these stages are still done in-order, and only the stages where difference in exe-
cution times occurs are done out of order, as shown in Figure 2.3. It is actually
also necessary for getting the correct result to have fetching and write-back done
in order [6]. While out-of-order execution succeeds in keeping the processor busy
with more work, the benefits from this are limited unless the new work is relev-
ant to program execution. Out-of-order processors, therefore, need mechanisms
to handle data dependencies and also make sure that the instructions commit in
program order.

Instruction
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Figure 2.3: Out-of-order pipeline

To maintain correctness when executing out of order, some new hardware struc-
tures have to be introduced. The pipeline is additionally extended with some ex-
tra stages. These changes are shown in Figure 2.3. The new stages in the example
pipeline are register renaming, operand fetch, and dispatch, at the frontend. At the
backend of the pipeline, the write-back stage in the RISC pipeline is replaced by
the two stages complete and retire. The two most important structures are the re-
order buffer (ROB) and a reservation station [7] for each functional unit. The ROB
is used to make sure the instructions commit in order, and the reservation stations
prevent the instructions from executing unless its operands are ready.

Although the frontend of the pipeline is executed in-order and has some of the
same stages as the RISC pipeline, it is still a little different. Register renaming
maps logical registers with physical registers. The logical registers are available
to the programmer or compiler, while the physical is hidden. It is necessary that
there are more physical registers than logical ones. The purpose of having both lo-
gical and physical registers is to remove output and anti-dependencies [6]. Output
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Figure 2.4: Hazardous program renamed to remove output and anti-depenencies

dependencies are instructions writing to the same register, and anti-dependencies
are write-after-read dependencies. These dependencies are not a problem in in-
order pipelines, since all execution is in program order. In an out-of-order pipeline,
on the other hand, instructions may overwrite each other registers, and cause an
incorrect result.

Figure 2.4 is an example of how register renaming can remove anti-dependencies
and output dependencies. The first instruction is a load and writes its output to the
logical register r1. A load can potentially miss in the cache, and it may take many
clock cycles before the value is loaded to register r1. The second and third are
both arithmetic instructions, which are often executed in very few cycles. The last
instruction is also a load with a real data dependency with the third instruction.
If the first load misses in the cache, and the add instruction having an output
dependency on the load bypasses it, the add instruction will write its result to
the output register before the load has loaded the value. That will lead to the
load overwriting the result from the add when it is finished. The same would
happen with the anti-dependency between instruction two and three if the third
instruction bypasses the second.

The right side of the figure shows that the anti-dependency and output depend-
ency have been removed by assigning another physical register to instruction three
and four. The example also demonstrates that the real data dependency is remain-
ing.

When the registers rename is finished and the logical registers have been mapped
to physical registers, the input operands can be fetched from the physical registers
in the operand fetch stage. In the dispatch stage, information about incoming
instructions is written into an entry in the ROB and as an entry in the reservation
station of the functional unit the instruction is going to execute on. Both the ROB
and an execution unit’s reservation station are structured as a queue, with each
entry holding information about a dispatched instruction.

To maintain program order, entries in the ROB are retired in a FIFO order. The old-
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est instruction is at the head of the ROB ready to commit, and no younger instruc-
tion is allowed to commit before the oldest have been retired. Each entry in the
reservation station also contains information about its register dependencies and
prevents the instructions from executing unless their operands are ready.

2.1.4 Speculative Execution and Branch Prediction

Speculative execution is one optimization architects have employed in processors
to keep the pipeline busy. Speculation involves fetching instructions by taking an
educated guess on what instruction address is correct to fetch, while speculative
execution is the execution of these speculatively fetched instructions. Speculation
is needed when the fetch unit doesn’t know the correct future instruction stream
of a program. A common example of when speculation is needed is on condi-
tional branches. Branch instructions are created, for example, when there is an
if-sentence in a program. These instructions have a condition deciding whether the
fetch unit should start to fetch instructions from the branch target or continue to
increase the program counter. It may take a lot of cycles before the outcome of the
condition in a conditional branch is known. Instead of waiting until it is known,
wasting cycles, predictors speculate on which instructions should be executed and
fetch instructions instead of making the pipeline stall. If the speculation turns out
to be wrong, the pipeline rolls back to where the speculative fetching of instruc-
tions started.

As mentioned in Section 2.1.1, some instruction may cause other instructions to
stall because it has a long execution, forcing the younger instructions to wait, but
another reason the pipeline may stall is because the instruction fetch unit may not
know where to continue fetching instructions. This happens for example at condi-
tional branches, where the branch instruction has to wait for its dependencies to
resolve before the outcome of the branch is known. To overcome this, the pipeline
speculates where the execution is going to continue. The speculation is however
not random. A mechanism called branch predictor and branch target buffer is im-
plemented to take an educated decision on where the execution will continue.
The branch predictor speculates on both which direction the branch takes, and
also at which address to continue on if the branch is taken, also called the branch
target.

There are various different methods used for speculatively deciding if a branch is
taken or not taken. Two types of branch predictors exist; static and dynamic. Static
predictors always predict the same outcome each time a specific branch is pre-
dicted, and the outcome is decided at compile-time based on profile information
from previous runs. Dynamic predictors, on the other hand, learn the patterns dur-
ing run-time from the previously executed branches. Static predictors are easier
to implement and require less hardware structures than dynamic predictors, but
in return, they perform worse than dynamic predictors. Dynamic predictors are
the most used in modern processors. These can get very good accuracy, and many
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use both global branch history and the history local to a specific branch to make
a decision on taking the branch or not.

To continue execution at the correct instruction, in addition to the direction of
the branch, the fetch unit also needs to know the target instruction’s address.
Most processors use a structure called the branch target buffer (BTB) [8]. The
BTB works as a cache for branch targets, where the program counter (PC) of the
branch is used as a tag. The BTB entry with a matching tag stores information
about the previous target address for that branch instruction.

As mentioned, speculation may sometimes lead to execution of instructions that
turns out to be fetched from the wrong destination. If the speculation turns out
to be incorrect when the branch resolves, the traces of the instructions executed
speculatively have to be removed. Since the ROB makes the instructions commit
in program order, none of the speculatively executed instructions are committed
before the branch is resolved. The pipeline gets squashed, to remove these traces.
Squashing reverts the architectural state of the pipeline back to the state it was in
before the speculative execution was performed. Squashing involves removing all
younger instructions from the ROB, in addition to setting the register values back
to their old values.

2.2 Transient Execution Attacks

Execution of instructions that are incorrectly fetched speculatively, and bound to
be squashed, are called transient execution. These instructions are executed on
their respective functional unit, but never committed [9]. Transient execution is
not visible in the architectural state, since the squash reverts the architectural state
back to what it was before the transient execution started. However, there may still
be traces left in the microarchitectural state. The microarchitectural state involves
the state in structures that are not directly visible to the programmer. Microarchi-
tectural state, for example, includes structures like the cache, branch predictor,
etc. Since traces of the transient execution are not removed in the microarchitec-
tural state, it may be used as a side channel to give an attacker information about
the transient execution [10].

Figure 2.5 shows how the state in some architectural and micro-architectural
structures is affected when squashing the pipeline after mispredicting the branch’s
outcome and executing some transient instructions. Micro-architectural state is
the state of the structures which are not visible to the programmer, like the cache
or branch predictor. The architectural state is the state of the structures which are
visible to the programmer, like for example the registers.

The program in the figure starts at the main tag. The bne instruction is a branch
instruction that branches to br_target if the value in register r1 is not equal to
zero. It is not known if the condition is true or not before the load instruction has
loaded the value into the register. In the example in the figure, the load misses
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in all cache levels, and the branch is speculatively taken by the branch predictor.
In the branch, a value is loaded into register r2. The result from the execution
of the transient instructions is visible in the architectural state, by observing the
ROB and the register file, and in the microarchitectural state by observing the
L1 cache. When the load after the main tag has loaded the value from the main
memory, it is known that the branch was mispredicted. The pipeline is flushed to
start the execution of the correct instructions. Now, there are no traces left of the
speculative execution in the architectural state. The ROB and registers only hold
values from the correct execution, and no one can know that speculation ever
happened by observing the state of these structures. On the other hand, the mi-
croarchitectural state is unaffected by the pipeline squash. The microarchitectural
state is, as mentioned, not directly observable to the programmer, so to actually
exploit this behavior one needs to find a way to be able to observe the changes in
these structures. One way of observing the transient execution can, for example,
be to use the secret value to index an array in the transient execution. The secret
value can later be observed by accessing each element in the array and timing
the accesses to know which of the array indexes hit in the cache. Only the index
is equal to the secret value should hit in the cache, given that none of the array
elements was already present in the cache. This example has demonstrated how
the architectural and micro-architectural state are affected by speculation. How to
be able to observe the micro-architectural state to read secret data will be further
explained later in this chapter.

Most of the transient execution attacks follow the same five phases. The first phase
is to prepare the microarchitecture to behave a certain way. This can for example
be to train the branch predictor to speculate in a certain way. The second is to ex-
ecute a trigger instruction, which triggers the transient execution of instructions.
This would be the execution of the branch instruction in the example in Figure 2.5
The third is the transient execution of instructions loading unauthorized data into
a microarchitectural side channel. In the example, that is done with the load in-
struction in the branch. The fourth is when the trigger instruction retires and the
pipeline is squashed. As mentioned, when describing the example in Figure 2.5,
the architectural state is reverted to what it was before executing the transient in-
structions, while the micro-architectural state is left unchanged. The fifth is when
the attacker recovers the secret from the microarchitectural side-channel [10].
This step is not demonstrated in the previous example but will be explained when
looking at the specific attacks. There are different ways of doing this, depending
on the attack performed, but it could for example be to time memory access laten-
cies to observe cache side-channels. All these phases will be explained further with
a code example of a Spectre attack in Section 2.2.1.

Although most of the transient execution attacks follow the same five phases, they
can be classified into two main categories, with several subcategories. The two
main categories are Meltdown [11] and Spectre [9] types. Classification of the at-
tacks is based on the cause of transient execution. Spectre attacks exploit mispre-
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array[10]

a[11]

Illegal address

Figure 2.6: Memory layout of an array of 10. Gray elements represent addresses
that are allocated to the array, and the white element at the end represents a
memory address outside the allocated memory space

diction in control or data flow. Meltdown types exploit transient execution being
squashed by a faulting instruction, like for example by an exception [10].

2.2.1 Spectre Variant 1

Spectre Variant 1 exploits conditional branches to leak secrets [9]. Figure 2.6
shows the memory layout of array from the pseudocode of the attack in Code
listing 2.1. It has ten elements, making the 11th element seemingly inaccessible.
This is however only if it is accessed directly. The Spectre attack makes it possible
to read this value by exploiting transient execution. The attack can actually be per-
formed many times to read the entire main memory, leaking sensitive information
like cryptographic keys.

The phases presented in Section 2.2 can also be found in Code listing 2.1. The enu-
meration below explains how the five phases are implemented in Spectre Variant
1.
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Code listing 2.1: Pseudo code of the Spectre Variant 1 attack

1 uint8_t array[10];
2 uint8_t probe[256*4096];
3 int secret;
4
5 uint8_t dummy; // Used to do accesses, but its value is never used.
6
7 int acces_array(int index)
8 {
9 if (index < 10)

10 dummy = array[index];
11 }
12
13 void main()
14 {
15 // Train branch predictor
16 for (int i = 0; i < 1000; i++)
17 {
18 acces_array(i % 10);
19 }
20
21 // Removes all the elements in probe from the cache,
22 // to make sure it is empty
23 clflush(probe);
24
25 // Do access of illegal index
26 uint8_t illegal_access = acces_array(11);
27 dummy = probe[illegal_access*4096];
28
29 // Find the illegal access value by finding out which
30 // element in the probe array which is in the cache
31 for (int i = 0; i < 256*4096; i+=4096)
32 {
33 int start = time();
34 dummy = probe[i];
35 int stop = time();
36
37 if ((stop - start) < cache_time_treshold)
38 secret = i;
39 }
40 }

1. First microarchitectural state is prepared. This is done by training the branch
predictor to mispridict the branch when the trigger instruction is executed.
The cache is also cleared so that none of the elements in the probe array are
present there at the point where the transient execution starts.

2. The trigger instruction is the branch instruction from the if statement in the
access_array function. The trigger instruction ensures that the transient
execution will start, since the branch predictor has been trained to take the
branch, despite the condition being false.

3. In the transient execution, an access is done to an illegal memory address,
which in this case is array[11]. This is later in the transient execution used
to index the array called probe, which is within the legal address space. A
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side effect of the transient load of the element in probe is that it will be
loaded into the cache before the pipeline is squashed.

4. When the trigger instruction resolves, the pipeline squashes, and the archi-
tectural state is removed. However, the probe[array[11]*4096] is however
still present in the cache.

5. The last phase involves retrieving the value from the side-channel. In this
attack, this is done by checking which of the elements in probe are present
in the cache. This is done by making an access to each element and time the
latency of the load. Since the probe array has been flushed with clflush,
the cache does not contain any of the array elements when the attack starts.
Therefore, only the element indexed by the secret value should be present
at the end of the attack. When the cached element in probe is identified, its
index reveals the secret to the attacker.

2.2.2 Other Spectre Variants

In addition to Spectre Variant 1, the original Spectre article [9] also introduced
two other variants of Spectre attacks. It additionally introduces Variant 2 and
Variant 4, in addition to other minor variations. The Spectre Variants presented
in the original article all use the cache as its side channel, the difference is how
they initiate the transient execution to load the secret into the probe array. It has
however later been discovered attacks which also uses other side-channels than
the cache.

Variant 2 works similarly to Return-Oriented Programming (ROP), which is a pre-
viously discovered attack. ROP tries to manipulate the return stack by performing
a stack buffer overflow to overwrite the values already present in the return stack.
With this, it can dictate the control flow and decide what instructions should be
run. ROP analyzes instructions of, for example, the C standard library or some
other code already present in executable memory regions to find suitable instruc-
tions to be able to achieve the wanted behavior. ROP then points control flow
to these instructions to create a sequence of transient execution. The sequence
doesn’t necessarily have to be on adjacent addresses, but can be at arbitrary loc-
ations of the executable memory regions [12]. Like ROP, Spectre Variant 2 also
uses instructions already present in the executable memory regions to create se-
quences of transient execution. The difference between ROP and Spectre Variant
2 is how it directs the control flow. While ROP performs a stack buffer overflow
to overwrite the return stack, Spectre Variant 2 exploits misprediction by the BTB
to dictate the control flow. Variant 2 exploits indirect branches. By flushing the
cache line containing the indirect branch’s target address, one has ensured that
speculation starts, and the correct execution will not continue before the branch’s
target is loaded from main memory.

Spectre Variant 4 [13] exploit an optimization called memory disambiguation. If a
load instruction follows a store instruction in some program, one can not be sure
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if there is a true data dependency if the destination of the store is not known. If
it is a dependency, the data from the store should be forwarded to the load, and
if not the load should execute as normal. Normally processors would wait with
performing the load until it is known whether there is a dependency or not, but
with memory disambiguation loads are executed speculatively, and the correct
value is chosen when the outcome of the dependency is ready. By exploiting this
speculation, one can perform a transient load while waiting for the dependency
to resolve, and later retrieve the value through a cache side-channel.

The Meltdown attack doesn’t exploit speculation like the Spectre attacks. This at-
tack exploits faulting instructions together with out-of-order execution. As men-
tioned in the original Meltdown paper [11], the Meltdown attack only works on
Intel processors. This is because the attack exploits Intel’s exceptions handling.
Since all the processors tested are commercial designs, the details about the micro-
architecture is disclosed. It is however assumed that the processors from AMD and
ARM, which were also tested, handle exceptions differently, and thus are vulner-
able to the attack. The attack has also later been patched by Intel, and are now
considered a less serious threat than the Spectre attacks.

2.3 Transient Execution Attack Defense Mechanisms

Several measures have been taken to mitigate both these attack types, but since
speculation and out-of-order execution is very important to achieve performance
in modern processors, complete mitigation is a tradeoff between security and per-
formance. Also, since the attacks exploit hardware mechanisms, they can’t be fully
mitigated only with software patches. Software strategies can make it harder to
perform the attack, but the way speculation and out-of-order execution are done
in hardware has to be changed to completely stop it from leaking data.

2.3.1 Software Mitigations

Although software mitigation strategies against Spectre attacks exist, it does not
provide the level of security that you get from hardware mitigation strategies. A
lot of the software strategies are also tailored to fit a specific attack, and does not
provide a general security. To the author’s knowledge, there are also no software
mitigation strategies providing security against Spectre Variant 1.

Retpoline [14] is a software mitigation strategy introduced by Google to mitigate
Spectre Variant 2. Retpoline stands for Return trampoline. This strategy replaces
indirect branches with new instructions, which makes sure that the speculation is
not controlled by the attacker when finding the branch target.
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2.3.2 Delay-on-Miss

The Delay-on-Miss (DoM) [1] mitigation strategy delays the execution of loads
that miss in the L1 cache until they are no longer speculative. Since loading data
from the highest cache level, doesn’t load new elements into the cache and thus
don’t change the microarchitectural state, it is safe to do even speculatively. Loads
on lower cache levels and main memory will however change the microarchitec-
tural state by loading the address into higher cache levels, and are thus not safe
to issue. To delay speculative loads, the processor needs some way of knowing if
a load is speculative or not. That is done by giving the loads executed speculat-
ively a property called a speculative shadow. The shadowed property is assigned
to load instructions executed in the shadow of an instruction that has triggered
speculation. The shadow is not removed until the instruction causing speculation
has been resolved. Loads with the shadowed property will not be issued to levels
below the L1 cache, but rather delayed on an L1 cache miss until they are safe
to issue. This means that missing load instructions will not be part of the transi-
ent execution required to perform a Spectre attack, but rather delayed until the
speculation is resolved [1].

There are four different types of shadows [15]; E-shadow, C-shadow, D-shadow,
and M-shadow. The E-shadow is cast by instructions that may cause exceptions.
The C-shadow is caused by instructions that predict control flow and is cast over
instructions speculatively executed. D-shadows are caused by memory dependen-
cies, for example, stores cast shadows over younger instructions depending on the
stored value. The M-shadows are only present in systems where the memory con-
sistency models which respect load-load order. If a load is delayed, then younger
loads also will have to be delayed to respect the memory model. The most im-
portant one for Spectre variant 1 is the C-shadow, since it exploits control flow
speculation.

An improvement of this technique also provides value prediction on L1 cache
misses. The value prediction logic tries to predict the value of the requested data,
and uses this prediction in the computations performed, without loading data into
the cache. DoM is estimated, by its inventors, to have a slowdown of only 11% with
value prediction, and 19% performance loss without value prediction [1].

2.3.3 Speculative Taint Tracking

Speculative Taint Tracking (STT) [2] is a mitigation strategy to mitigate transi-
ent execution attacks. STT is claimed by its authors to have a slowdown of only
8.5%. Like DoM, STT is implemented in the microarchitecture, making it a hard-
ware mitigation strategy. Some important terms to understand Speculative Taint
Tracking are access instructions and transmit instructions. These terms are used to
classify instructions that have certain attributes which can be exploited to do a
transient execution attack. An instruction is classified as an access instruction if
the instruction is executed speculatively and therefore may depend on unauthor-
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ized secret data. In the example in Code listing 2.1 the access instruction would
be the instruction created by the code in line 26. Transmit instruction is the in-
structions transmitting the unauthorized accessed, potentially secret, data from
the access instructions through a side channel. In Code listing 2.1 the transmit
instruction would be the instruction generated from the code in line 27.

The inventors of STT have found that accessing the secret data speculatively is
not the dangerous part of a speculative side-channel attack. The data is not vis-
ible to the attacker unless it is transmitted through a side channel. STT tries to
improve the performance over previous strategies by executing the speculative ac-
cess instruction and rather delay the transmit instruction depending on the access
instruction until the access instruction is safe. This is different from Delay-on-
Miss which is explained in Section 2.3.2, which delays the access instruction. STT
is therefore less strict than DoM and should in theory give a greater throughput
of instructions compared to DoM. By allowing the access instruction to execute,
one can continue the execution of dependent instructions which are not transmit
instructions. It is for example safe to execute arithmetic instructions like add since
the execution of this instruction does not leak data by manipulating the microar-
chitectural state. The output register of the add however has to be tainted if any
of the input registers are tainted. Even though the add instruction does not leak
data, an instruction depending on the result from the add could be used to leak
the data from the access instruction.

To know if a transmit instruction depends on an access instruction, the registers
written to by an access instruction are tainted. The taint is propagated to the
output registers of instructions having tainted input registers. Loads may be used
to transmit secrets to the cache, and therefore if a load has a tainted register as
its input register, one knows that this depends on a value obtained by speculative
execution. Because of this, the instruction is classified as a transmit instruction and
is delayed until the access instruction is no longer speculative. The visibility point
of an access instruction is when it goes from being speculative to non-speculative.
When an access instruction is past the visibility points its registers get untainted,
and the untainting also has to be propagated to the registers which have been
tainted by younger instructions depending on the access instruction. This also
untaints the input registers of potential transmit instructions. When a transmit
instruction gets its input register untainted, it is no longer delayed and can be
executed.

2.3.4 Other Hardware Defence Mechanisms

InvisiSpec [16] is a mitigation strategy reading speculative data into a buffer, in-
stead of loading it into the cache. The authors claim to have a slowdown of 21%.
Another defense mechanism is InvarSpec [17]. This is intended to be used to get
better performance out of other strategies like InvisiSpec or DoM, by identifying
if it is safe to execute loads before the speculation has resolved. This technique
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has, however, later shown to be insecure [18].

2.4 Tools

Several resources, frameworks, and other tools have been used when design-
ing, simulating, and evaluating the speculative side-channel mitigation strategies
Delay-on-Miss and Speculative Taint Tracking. Many of these tools are provided by
the Electrical Engineering and Computer Science (EECS) department at the Uni-
versity of California, Berkeley. This section will present the technical background
of the tools used for this project.

2.4.1 FPGA

A Field Programmable Gate Array (FPGA) is a circuit that can be configured to
model hardware specified in a design. FPGAs are re-programmable, and the cir-
cuit is configured by a hardware description language (HDL), like for example
Chisel or Verilog. If the hardware designer wishes to do changes in the design, the
designer can simply change the implementation in the HDL, and then create a new
circuit on the same hardware device from the new specification. This makes FP-
GAs well-suited for prototyping since the designs are tested on something which
is closer to what the finished physical realization of the design would be, rather
than what software simulations can provide. The process of creating something
that can run on the FPGA is called synthesis. This involves transforming the HDL
program into something called register transfer level (RTL). This can be compared
to a computer program being compiled into an assembly program. The building
blocks of FPGAs are configurable logic blocks (CLBs). The CLB also consists of
smaller components like a lookup table (LUT) and a flip-flop.

2.4.2 Chipyard

Chipyard [19] is a framework that integrates various parts of hardware design. It
provides various open-source designs like the BOOM [3] and Rocket [20] cores. It
also provides simulation and evaluation tools like Verilator [21] and Firesim [22].
The framework, in other words, provides several independently developed build-
ing blocks and puts them together to build and simulate a complete SoC design.
Chipyard is an open-source project started by researchers at Berkeley. That is also
the case for BOOM, Rocket, and Firesim.

2.4.3 Firesim

Firesim [22] is a hardware simulation platform for evaluating hardware designs
on FPGAs. Firesim enables hardware designers to create a bitstream of their design
which can be flashed to the FPGA. This is also possible to do with other tools
like Vivado, but this often requires a lot of manual configuration. Firesim works
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as an abstraction layer, simplifying the process of building and deploying FPGA
simulations. The platform is intended to run on Amazon EC2 F1 in the public
cloud. It is also intended to be used to simulate entire clusters, but can also be
used to simulate single processor cores on private FPGA cards as well.

Firesim uses the terms target and host to differentiate between the simulated core
and the hardware used to run the simulation. The target platform refers to the sim-
ulated environment. If an implementation of the BOOM core would be simulated
on an FPGA, the BOOM core would be the target platform. The host platform
is the physical CPU needed to execute the Firesim simulation, in addition to the
FPGAs.

Firemarshal [23] is a tool that can be used together with Firesim to build work-
loads that can run on the FPGA. Running workloads on the FPGA simulation can be
useful to, for example, testing the design’s performance by running benchmarks.
Out-of-the-box, Firemarshal offers some basic workloads which the user can either
build and run on their FPGA simulation or use as a base to create their own cus-
tom workloads. These workloads include, for example, Build-Root Linux [24] and
Fedora Linux [25]. Custom workloads are configured with a configuration file,
which has to be either JSON or YAML. In this file, the base workload is specified,
in addition to the startup scripts that should run. It can also be included a path
to a folder with files that should be copied into the root file system on the FPGA
simulation.

2.5 Boom Core

The Berkeley Out-of-Order Machine (BOOM) [3] is an out-of-order processor core.
It is an open-source project initially created at the University of California, Berke-
ley [26]. The core is developed to be a platform for research in high-performance
core design. According to its main contributors, it was the fastest available open-
source core at the time the last version came out, measured in IPC. At the time this
report is written, there are three releases of BOOM. The second version has also
been physically realized [27]. All versions are written in the hardware description
language Chisel [28], and the core is integrated with the chipyard [19] framework
for hardware simulation, which is also developed by Berkeley.

BOOM is designed to execute instructions from the RISC-V [29] instruction set ar-
chitecture. This ISA was also developed at Berkeley and is an attempt to provide a
free and open ISA. The fact that it is free makes it suitable for academic purposes,
since proprietary ISAs require licenses which can cost several millions of dollars.
RISC is an acronym for Redused Instruction Set Computer, which is also discussed
in Section 2.1. A feature of this type of instruction sets are that they have a smaller
amount of instructions, and the instructions are also less complex, compared to
the Complex instruction set computers (CISC) which may be seen as the opposite
alternative. An advantage of RISC ISAs is that due to their low complexity instruc-
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Figure 2.7: Overview of the BOOM pipeline [30]

tions, the design of the processor core also needs to be less complex to support all
the instructions in the ISA.

Figure 2.7 shows an overview of the stages and components in the BOOM pipeline.
The figure is acquired from the BOOM documentation [30], and published by Ab-
raham Gonzalez, one of the PhD students at Berkeley. The pipeline has 10 stages,
which are Fetch, Decode, Register Rename, Dispatch, Issue, Register Read, Ex-
ecute, Memory, Writeback and Commit. Many of these stages are similar to what
have already been presented in the example out-of-order core in Section 2.1.

In addition to be out of order, BOOM can also be configured to be super-scalar.
In the BOOM documentation, it is stated the BOOM is a “parameterizeable core”.
What this refers to is that several attributes of the core are decided by parameters.
This means that it is easy to make different configurations of the core by changing
these parameters. Some of these parameters are, for example, fetchWidth and
decodeWidth. As presented in Section 2.1.2, a condition for a pipeline to be super-
scalar is that it is able to issue more than one instruction at a time. Since the issue
width is decided by the parameter fetchWidth, the core can be configured to be
either only issue a single instruction per clock cycle or be able to issue multiple,
depending on what the hardware designer wants.

In the front-end, the instructions are first fetched from the instruction memory. In
the next stage, they are decoded, which involves transforming them into micro-
ops. Programmatically, a micro-op is an instance of the Micro-Op chisel class,
which contains all the necessary information relevant to that micro-op as vari-
ables. Once the instruction is decoded, the micro-ops generated get allocated an
entry in the ROB. In the register renaming stage, the decoded micro-ops have their
logical registers mapped to physical register to get their dependencies resolved.
Lastly, the micro-ops when the micro-ops reach the dispatch stage, which means
that they are ready to execute on the functional unit. In the dispatch stage, the
micro-ops are therefore written into the reservation station.
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The structures required to perform branch prediction also remain in the front-
end of the pipeline. BOOM implements two levels of branch predictors: a Next-
Line-Predictor (NLP) and a Backing Predictor (BPD). The NLP is a combination
of a Branch Target Buffer (BTB), Bi-Modal Table (BIM), and Return Address Stack
(RAS). These structure predicts the branch target if the incoming branch instruc-
tions. The BPD makes prediction on whether branch instructions are taken, or not
taken.

As mentioned, dispatched micro-ops have already been assigned an entry in the
ROB. The micro-ops are also given a branch-mask. This is a mask over the unex-
ecuted branches. BOOM has a maximum number of allowed branch instructions
in the pipeline concurrently. This is decided by a parameter in the configuration
and also sets the width of the branch-masks. Each bit in the mask represents one
older branch micro-op, and it is set to 1 if the branch is unresolved and 0 if the
branch is resolved, or the slot is unused. This mask can be used as to know which
branched the current micro-op speculate under. This mask becomes useful when
a mispredict occurs, and the micro-ops depending on the mispredicted branch
should be flushed.

After the micro-ops have been dispatched, they wait in the queue in the reserva-
tion station, or issue queue as it is called in BOOM, at their respective functional
unit. For load and store micro-ops, the address is first calculated on the ALU, and
then the micro-op is put in the load queue or store queue in the Load-Store Unit
(LSU). The LSU resides in the memory stage. This is also where the actual memory
operation happens. The Translation Lookaside Buffer (TLB) also resides in the LSU.
The TLB is a cache for translation of virtual memory addresses to physical memory
addresses. If an address has its address translated, a bit in the load queue and store
queue entry is set.

The load queue and store queue are designed as circular buffers. They both have
pointers pointing to the head and the tail of the queue. The queues always commit
at the head, and add new entries to the tail. The head is the oldest entry, and when
it leaves the queue, the pointer increases with one. The tail works similarly, only
that it points to the next available entry in the queue, and increases every time an
in-flight memory micro-op arrives. That means that at any point in time, all the
valid entries in the queue reside between the head and the tail. Another feature of
circular buffers is that they wrap once the end of the buffer is reached. Wrapping
involves starting at the beginning of the buffer. Figure 2.8 is an example of a
circular buffer. When the tail is on the last index, and increases by one, it gets
index 0 again and start increasing from there.

In the memory system, only the L1 cache is integrated in the BOOM core. The
lower levels in the memory hierarchy are maintained outside BOOM. If a load is
issued to the cache, and the cache for some reason is not able to issue the requests
to lower memory hierarchy levels, a not acknowledged (NACK) signal is returned
to the LSU. This signal informs the LSU that the memory request was not accepted,
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Figure 2.8: A circular buffer before and after the tail is increased by one when it
is at the end of the buffer

and have to be re-issued later. The wakeup logic ensures that loads returning in
a NACK signal gets issued again later. Not acknowledged loads sleeps for three
cycles, before they is waken-up again. Each cycle, the oldest woken up load is
selected as a candidate to be re-issued.

As mentioned in Section 2.1, it is necessary for correctness to commit and retire
instructions in order. The ROB is designed similar to the load and store queue, as
a circular buffer. Also here, the head is the oldest micro-op in the pipeline, and
the tail is where new in-flights micro-ops arrive. Since the instructions are alloc-
ated in the ROB when the pipeline is still in-order, the ROB will always commit
instructions in order.

The pipeline stages are for the most part described in separate modules and im-
plemented in the file core.scala. To communicate, chisel uses bundles to de-
scribe the wires used for communication between the connected components. The
bundles contain the signals sent between the components, as variables.
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Implementation

The modifications done to the BOOM core made for this project can be found in
the GitHub repository master-project [31]. The Delay-on-Miss (DoM) implement-
ation is localized in the branch dom and the STT design is in the branch stt. This
chapter will present and explain the design choices and the outcome of these will
be discussed in Chapter 6.

3.1 Delay On Miss

Two versions of DoM are implemented for this project. They are mostly similar,
but one of the versions try to optimize DoM by restricting the wakeup policy to
not check the L1 cache until the load has lost its shadow. The implementation of
DoM with the restricted wakeup policy is referred to as Delay-on-Miss—Restricted
Wakeups (DoM-RW) in this thesis. The RW optimization implemented will be de-
scribed in more detail later in this chapter.

The modules modified to implement DoM are the Load Store Unit (LSU) and the
L1 cache. There are three main steps the loads go through to secure the pro-
cessor core in this implementation. These are explained in more detail in separate
subchapters, but will be introduced with the illustration in Figure 3.1. The para-
graphs below will refer to the numbers in the figure to explain the figure step by
step, starting at one and counting upwards.

The loads are first inserted into the load queue in the LSU (1). When the load
arrives, it is checked if it is speculative. Each entry in the load queue has a bit
called shadowed, which is set if the load is speculative (2). When the load is ready
to be issued, a memory request is may be issued (3).

In the cache, a cache lookup is done. If the address is present in the L1 cache, it
is safe to load the value despite it having a shadow (4). The cache may not be
used as a side channel if the address is already present. If the requested address is

25

https://github.com/johnal18/master-project


26 J.A. Lauvdal: Investigating Speculative Side-Channel Protection

not present in the cache and the load also has a shadow, it is not safe to continue
issuing the load (5). The load’s micro-op may be squashed at a later point and
leave changes in the microarchitectural state.

To make sure that the load is not issued, the cache returns a not acknowledged
(NACK) signal to the LSU (6). When the LSU receives the NACK signal, it knows
that the load have to be re-issued to the cache at some later point (7). At that
point, it hopefully has lost its shadow, and are thus no longer speculative.
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Figure 3.1: Flow of the DoM implementation

3.1.1 Detecting Speculative Loads

The first step is to mark the loads as shadowed. With every clock tick, the im-
plementation checks every element in the load queue and marks the elements as
either shadowed or not shadowed. The entries can either have a data shadow (D-
shadow) or a control shadow (C-shadow). If it has any of the two, the shadowed-
bit is set to true. Revisiting the attacks from Section 2.2, the C-shadows pro-
tect from Spectre Variant 1 and Variant 2, and D-shadows protect against Variant
4.

The load has a C-shadow if the execution of the instruction depends on a spec-
ulated branch instruction, which not yet has been resolved. The MicroOp class,
has a field called br_mask. This is a mask over all the entries in the ROB. A bit
is set to one if the ROB entry is an unresolved branch instruction. This makes it
easy to detect C-shadows by simply looking at the micro-op of each element in the
load queue and checking whether any of the bits in the branch mask is set. If it
is, the micro-op depends on an unresolved branch, which casts a C-shadow over
that instruction.

A load has a D-shadow if an older store has an unresolved address. Information
about two things is needed to decide if a load has a D-shadow. That is, which
elements in the store queue are older than the load, and also which of the store
queue entries have not yet calculated their address. Two bit-masks over the store
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queue is used to track the information about older stores and stores with unre-
solved addresses. The baseline BOOM implementation already has a field in each
load queue entry called st_dep_mask specifying which of the entries in the store
queue that are older than that specific load. The modified implementation also has
a mask that keeps track of stores with unresolved addresses implemented. There
is already a field in each store queue entry indicating if the entry’s address is valid
or not. The chisel map() function [32] is used to read the valid-value from each
entry in the store queue and set the value on the corresponding bit in the bit-mask
based on that value. To check for D-shadows, the mask for unresolved stores is
bitwise ANDed with the store dependency mask, which keeps track of which of the
entries in the store queue that are older. The result of the AND operation is a new
mask over load queue. If any of the bits in the result after the AND operation is
set, it means that there exists a store entry that is both older than the load and
has not yet calculated its address. That implies that there is a D-shadow.

3.1.2 Sending Memory Request

The second step in the algorithm comes when the loads in the load queue are
issued with a memory request. The cache module needs to have information
about whether a load is shadowed to know if it should return a acknowledged
(NACK) signal or not. A shadowed field is therefore added is to the BoomDCache-
Req bundle, which holds the information about wires connecting the LSU with the
cache. Since information about shoadows are already present in the load queue
entry, a load that becomes issued can drive the field in the BoomDCacheReq bundle
from this.

3.1.3 Check if Memory Request Can Be Issued

If a speculative load is issued to the cache and not present in the cache, the cache
module should return a not acknowledged (NACK) signal to the LSU. In the cache,
there is already code present for returning a NACK signal for other cases like, for
example, if the MSHR is full. The information needed to know that the request
result in a NACK because it is speculative is; if the request is not a cache hit, and
the request is shadowed. If both of these conditions are true, a NACK signal should
be returned to the LSU.

Between the LSU and the L1 cache, there are several memory channels, all of
which can have shadowed requests coming in to the cache. To keep track of the
channels, a mask is used to track which of the channels have requests that are
shadowed. This is done with the chisel map() function, similar to how the mask
over unresolved store is created. A mask indicating if a channel has a request
which hits in the cache already exist in the baseline implementation, since it is
needed for the other cases where requests could result in a NACK. To know which
channels have memory requests where the two conditions are met, a new mask
over the memory channels is created. In the new mask, the channels with requests
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which should return NACK signals because of speculation have the bit in this mask
set. The mask is created by performing a bitwise AND of the two other masks. If
a memory requests results in a NACK signal because of speculation, no MSHR are
allocated.

When the LSU receives the NACK signal, the load continues to reside in the load
queue in the LSU and are later issued again. The LSU have wakeup logic that
delays the load for three cycles, and then makes it available again to be issued. In
the normal DoM implementation, the woken-up load can be re-issued independ-
ently of whether it still has a shadow or not.

3.1.4 Restricting Wakeups

One hypothesis for this project is that DoM can perform better if it restricts the
wakeup policy after a NACK has been returned for a load. The wakeup logic for
waking up loads which previously have been not acknowledged by the cache is ex-
plained in Section 2.5. If the wakeup candidate still has a shadow after it has been
wakened up, it is in the DoM-RW implementation, not issued to the L1 cache. The
hypothesis made before performing any experiments on any of the implementa-
tions is that it is not likely that the load’s address is present in the cache at the time
a load is wakened up. The reason the load resulted in a NACK signal in the first
place is that the load was not in the cache when it first was issued. It is therefore
assumed that it is not likely that it have arrived there in the meantime when the
load has been sleeping.

If the hypothesis is true, one could also assume that the performance would in-
crease since less unnecessary cache lookups are performed. One reason for assum-
ing that less cache lookups increases the performance is because when less NACK
signals are returned, less loads are put to sleep. For example, if a load is issued
with a shadow-bit in the memory request, the load would return with a NACK
signal and sleep for three cycles if it is not in the cache. If the shadow is lost in the
cycle after the memory request is issued, an unshadowed load is unnecessarily put
to sleep for three cycles. It can also take several cycles before the load is issued
again after it has been wakened up. This can potentially lead to some loads being
delayed for several cycles more than necessary. What DoM-RW would do different
is that it would wait until the shadow is lost before load is issued again. With this,
one can ensure that the load is not sleeping when the shadow is lost, and the load
is ready to be issued right away. If a large enough amount of loads lose its shadow
when it is sleeping in the normal DoM implementation, the hypothesis is that this
may have a measurable impact on the overall performance.

3.2 Speculative Taint Tracking

Some new microarchitectural structures are introduced to implement Speculative
Taint Tracking in the BOOM Core. This section will explain these structures, which
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Figure 3.2: Main overview of the microarchitectural changes needed to imple-
ment STT in BOOM

are also illustrated in Figure 3.2. Some structures are independent of the existing
microarchitecture, and some are extensions of already existing structures. The
microarchitectural changes are mainly in the LSU.

One of the key features of STT is to track taints on physical registers. To track tain-
ted registers, a bit-mask over the physical register file is created. This is illustrated
in Figure 3.2a. Entries, where the bit is one, indicate that the register on the same
index in the register file is tainted. The ones that are not tainted have the value
zero. In addition to the taint mask, a map over the register file is also made to
map physical registers with the load queue entry from the access instruction that
caused the taint.

The load queue has also been extended with several new fields. These are dis-
played in Figure 3.2b. A boolean field in the load queue entry is set if the instruc-
tion is an access instruction. This is called shadowed and operates identically to
how loads are marked as shadowed in DoM, which is explained in Section 3.1.1.
The fields taint_dependency, and delay apply to transmit instructions. Taint de-
pendency notes which access instruction, with regard to the index in the load
queue, the transmit instruction depends on. The delay field states whether the
access instruction the transmit instruction depends on is still speculative or not.
If it is no longer speculative, the transmit instruction is safe to issue. Otherwise,
the transmit instruction should be delayed. In a register outside the load queue,
there is also a value called visibility_point which is a pointer to the oldest specu-
lative load in the load queue. This is similar to the head and the tail of the load
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queue. All entries which are younger than the visibility point are known to be
non-speculative. The register holds the integer value pointing to an index in the
load queue and is shown in Figure 3.2b.

The implementation of Speculative Taint Tracking can be described in four parts
with different responsibilities. An instruction first gets classified as an access in-
struction if it is a load. The output register of this instruction gets tainted. An-
other part of the pipeline makes sure that the taint gets propagated to registers
used by instructions depending on the output from an access instruction. As will
be explained later in this report, this part is not yet completed when the thesis
is submitted. A third part of the algorithm classifies loads with tainted inputs as
transmit instructions and makes sure that these get delayed until the speculat-
ive instruction it depends on no longer is speculative. Lastly, when the visibility
point goes past an access instruction, it is known to be non-speculative and the
registers which have taints springing from that access instruction have to be un-
tainted.

Due to the time limit of the project, the complete STT implementation is not fully
finished. A further description of what part of the core is lacking is presented in
Section 3.2.2. The most notable limitation is that, since the microarchitectural
changes are implemented in the LSU, the taints are not propagated to other in-
structions than memory instructions.

3.2.1 Check if a Load is an Access Instruction

This STT implementation has a stricter policy for classifying instructions as access
instructions than what is actually necessary. In this implementation, the output
register of all loads gets tainted. The reason for that is because it is not yet known
whether a load is speculative or not at the time micro-ops are classified as ac-
cess instructions. However, non-speculative loads get their registers untainted as
soon as the visibility point has gone past the load in the load queue. The mod-
ule MicroOP, which contains the decoded information about an instruction, has
information about whether an instruction is a load or not. The module also has in-
formation about which registers the micro-op uses and its load queue index. Once
it is detected that an instruction is a load and hence also an access instruction, the
entry at the load’s output register in the taint mask is set to one. The map over
the load queue indexes (root of taint) also gets set to the load queue index of the
access instruction. If, for example, a load enters the pipeline. It writes its output
to physical register 16 and has a load queue index of 2. In this example, the bit at
position 16 in the taint mask would be flipped to 1 and the value at position 16
in the map of load queue indexes would be set to 2.

3.2.2 Propagate Taints

To fully implement STT, one should be able to propagate taint to every incom-
ing instruction. As mentioned, this implementation has some limited function-
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ality compared to what was originally planned. One of the problems has been
that, since all different types of instructions can have taint propagated to it, taint
propagation is required to be in a part of the pipeline which all instructions go
through. And at the same time, it would also have to be late enough in the pipeline,
for the shadow to be known. One possible alternative would be to have it in the
dispatch stage. The logic for detecting shadows and transmit instructions, in addi-
tion to the logic involved with moving the visibility point and the logic for delaying
loads, all need to read or write or both to the load queue. These parts, therefore,
need to be in the LSU, since that is where the store queue resides. The situation
is therefore that the propagation needs to be done outside the LSU, but most of
the other parts need to be inside the LSU, and both the propagation and the other
parts need to read and write from the same taint mask and load queue index
map.

The implementation of STT implemented for this project has taint propagation im-
plemented, but it is located in the LSU. This means that taints only get propagated
to other loads. The implementation therefore only blocks direct load-load depend-
encies. An example of this kind of dependency is shown in Code listing 3.1. If the
dependency is a load-add-load dependency, like in Code listing 3.2, the taint is not
propagated to the add’s output register, register r3. The load in line 3 is therefore
not delayed, since its input is not tainted. To fully implement STT, the implement-
ation should propagate the taint, so the load in line 3 gets delayed until the load in
line 1 is no longer speculative. The rest of this subchapter will be used to discuss
how taint propagation could be done correctly.

Code listing 3.1: Load-Load de-
pendency
1 LD r1, r2
2 LD r3, r1

Code listing 3.2: Load-Add-
Load Dependency
1 LD r1, r2
2 ADDI r3, r1, #45
3 LD r4, r3

To be able to propagate other instructions than loads, the logic for propagation
should be in another module than the LSU, like for example located at the dispatch
stage, in the core.scala file. Since most of the other parts of STT need to access
the load queue, it should be in the LSU. It is possible to send information about
the taint mask and load queue index map between the different components in
the core. Figure 3.3 shows an out-of-order pipeline communicating the taint mask
and load queue index map between the dispatch stage and the LSU. Since both the
taint mask and load queue index map, have one entry for each physical register,
the number of wires required between the components would have to be two
times the number of physical registers. Although sharing information like this
between components is possible, it comes with some challenges. One challenge
is that it can be difficult to get the timing correct. The information about which
register has been tainted from an access instruction needs to be transmitted to the
part where the propagation logic resides before the next micro-op after the access
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Figure 3.3: Communication between components in a core with taint propaga-
tion in the dispatch stage, and all the other taint logic in the LSU

instruction has gone through that stage. The logic for checking if an instruction
is a transmit instruction also has to be done after the taint has been propagated,
and this would also require transmitting information about the tainted register,
from the part where register renaming happens to the LSU. Also, the logic for
untainting registers would have to be synchronized.

When a micro-op gets dispatched, its input registers should be used to index the
taint mask, coming from the LSU, to see if the bit indicates that the register is tain-
ted. If it is, it means that this instruction depends on an access instruction. On that
occasion, the bit in the taint mask at the position of the micro-op’s output register
should also be set to one. The value in the load queue index map at the position of
the output register also has to be set to the same value as the position of the input
register, indicating that they are coming from the same access instruction.

In some cases, it may however happen that an instruction has more than one
tainted input register. If that is the case, only one of the registers has to be chosen
as the root of taint. The rule for this is that the taint coming from the youngest
access instruction is chosen as the root. This makes sure that the output register
for that instruction gets untainted as late as possible. If the youngest root is not
chosen, the register might be untainted too early when the older access instruction
has reached its visibility point. In that event, the instructions’ destination register
would be untainted, even though the input register from the younger access in-
struction would still be tainted.

The map of physical registers to load queue indexes can be used to find the young-
est root of taint. Since the load queue is a circular buffer, it is not as simple as
choosing the lowest load queue index as the youngest root of taint. Figure 3.4
shows three different possible states the load queue can have with regard to the
head, the youngest root of taint, an older root of taint, and the tail. When the tail
have wrapped, but the head have not, the oldest value may have a higher index
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Figure 3.4: Three different states the load queue can be in when taint propagation
is calculated

than the youngest, like in Figure 3.4 b). By looking at the figure, it can be found
that the suggested algorithm of taking the tainted register pointing to the lowest
index in the load queue works for the states shown in a) and c), but would fail
to choose the youngest in example b). In this example, the load queue tail has
wrapped and is at position 2, and the head is at position 5. An arriving micro-op
with its input register tainted by the loads at position 1, and 8 in the load queue,
would choose the older taint of 1, instead of 8 which is actually the youngest
root of taint. The suggested algorithm of choosing the lowest load queue index
has, with this example, proven to be inadequate with the task of choosing the
youngest root of taint.

A solution to select the youngest root of taint in a future implementation could
therefore be to observe the pointer positions to get select different algorithms
based on whether any of the pointers have wrapped. For example, it could be
something like in the pseudocode in Code listing 3.3. Here it is first checked if the
load queue is in the special case of b). That is done by checking if the tail is less
than the head indicating that it has wrapped, and also if any of the tainted inputs
are greater than the head, indicating that the oldest root of taint is not necessarily
at the lowest index. In that case, the youngest root has to be chosen by finding
the lowest index, but still assuring that it is greater than the head. As seen in the
code example the logic for choosing the youngest input register larger than the
head is not yet implemented as it is not needed for the load-load dependencies
which only have one input register. It however, would need to be implemented in
the finished implementations.
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Code listing 3.3: Calculate the youngest root of taint
1 if ((tail < head) && ((head < prs1) || (head < prs2) || (head < prs3))))
2 {
3 // Find the lowest index which is larger than the head
4 }
5 else
6 {
7 yrot := Mux(prs1 < prs2,
8 Mux(prs1 < prs3, prs1, prs3),
9 Mux(prs2 < prs3, prs2, prs3)

10 )
11 }

3.2.3 Check if a Micro-Op is a Transmit Instruction

If a load’s input value is tainted, it is classified as a transmit instruction. To find
out if it input register is tainted, the taint mask is indexed with input register
prs1. Because loads only have one input in BOOM, there is no need to check the
other registers. If a microp-op is a transmit instruction, the taint dependency in
the load queue entry is set to point to the index of the access instruction in the load
queue. The transmit instruction can not be executed until the access instruction
it depends on has lost its taint.

3.2.4 Untaint When Access Instruction is Past the Visibility Point

As mentioned, shadows are used to know whether access instructions are safe to
issue, and their dependencies should be untainted. Figure 3.5 shows the load
queue with the head, visibility point, and tail. The visibility point works as a
pointer to the entry in the load queue which is currently the oldest shadow. It
is used to indicate which entries in the load queue are safe to issue. Speculative
loads older than the entry the visibility point points to are safe, while the younger
ones still have to have their registers tainted. The value of the pointer increases
one position each cycle if the entry it is pointing to is not shadowed. Each time it
increases, it also untaints the registers tainted by the load that the visibility point
moves away from. This means that if a load has been classified as an access in-
struction without being speculative, the registers tainted by that instruction would
be untainted right away when the visibility points reach that entry. If the entry the
visibility point points to is shadowed, the visibility point stays at that position until
it is no longer shadowed. Since no loads can be older than the head in the load
queue, and not younger than the tail, the visibility point always has to be between
the head and the tail, as shown in Figure 3.5.

n...876543210

head visibility point tail

Figure 3.5: Load queue with head, visibility point, and tail
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(a) A load initially taint register even if it is shadowed or not

(b) The access instruction gets shadowed after the register depending on it gets untainted

Figure 3.6: The taint is removed before it is detected that the load is shadowed

When untainting registers, the timing has also in here been a challenge. Figure 3.6
shows the output when doing waveform debugging in GTKWave. As can be seen
in Figure 3.6a, register 9 gets tainted in the taint mask by the load with load
queue index 1. Since every load initially is classified as an access instruction, the
register gets tainted despite the load queue entry not being shadowed. Since there
is no shadow, the register’s entry in the bit-mask is untainted. However, as can be
seen in Figure 3.6b, the load queue gets shadowed in the same cycle the register is
untainted. The reason for this delay may be that, when a load arrives, it takes more
than one cycle to detect the shadow. The D-shadow needs to check the store queue,
and the store dependency mask before it can be calculated, and for C-shadows,
the branch mask has to be checked to know if there are any speculative branches.
The shadow is not set in the load queue entry until after these are calculated. It
is not known how long calculating the C- and D-shadows take, but by looking at
Figure 3.6 it can be assumed that it in this case takes one cycle before the shadow
is calculated.

The problem can be fixed by delaying the untainting so that the access instruction
can get time to be marked as shadowed before its dependencies get untainted.
The solution to this delay has not been tested out enough to conclude whether it
solves the problem or not. Therefore, like with taint propagation, the following
paragraph is only a suggested solution to how it can be implemented in the fu-
ture. The suggested solution is to block loads from untainting one cycle. This is
done by implementing a block mask over the physical register file. The values in
the mask are set to one when registers get tainted. Registers that are blocked in
the block mask, should not get untainted before they are no longer blocked. The
implementation of a one-cycle delay involves having two masks. The masks are
initialized as shown in Code listing 3.4.

Each cycle, each of the entries in the block mask is defaulted to 0, except for the
register which get tainted in the same cycle. These registers are set to 1. More
than one register can get tainted in one cycle because the core width may allow
for more than one instruction being processed at a time. There is also a new mask
for the next cycle. Each cycle, the second bit mask has the same registers blocked
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Figure 3.7: Block mask delaying untainting of registers

as the first had the last cycle. An example of this is shown in Figure 3.7. The
figure shows the state of the two block masks in addition to the taint mask in two
consecutive clock cycles. In cycle one, register 3 and 7 gets tainted. To ensure that
they don’t get untainted too early, they have to be blocked for one cycle. The bits
are therefore also set in block mask 1, in addition to the taint mask. In cycle 2 no
new registers are tainted, all the fields in block mask one therefore goes back to 0
which is the default value. In block mask 2 on the other hand, the bits are set to
be the same as block mask 1 was in clock cycle 1. This ensures that the registers
stays tainted for one more cycle and don’t get untainted before the shadow is
detected.

Code listing 3.4: Block mask to ensure that loads don’t get untainted before the
shadow is detected

1 val block_taint_mask = WireInit(VecInit((0 until numIntPhysRegs).map(x=>false.B)))
2 val p1_block_taint_mask = RegNext(block_taint_mask)
3
4 ...
5 // When tainting the destination register of an access instruction
6 block_taint_mask(pdst) := true.B
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Methodology

For this study, implementations to protect against speculative side-channel attacks
have been made. In addition, tests are performed to collect data about the imple-
mentations and be analyzed to get empirical evidence that can be used to accom-
plish the overall goal of finding out how the implementations compares to each
other and the baseline when looking at the attributes, performance, implement-
ation overhead and security provided. This chapter will explain how the data,
which are presented in Chapter 5, are collected and analyzed.

4.1 Experimental setup

The implementations implemented in this project have been evaluated with quant-
itative experiments. To evaluate the different implementations, the attributes per-
formance, and implementation overhead have been quantified and measured.
This has been done by running simulations on an FPGA. Tests to verify the security
have also been performed on FPGA simulations. Since the Speculative Taint Track-
ing implementation is not completed, the tests on this implementation are not as
comprehensive as the other implementations. The test for implementation over-
head is done equally to the other, but since the implementation is not finished, the
overhead measured does not reflect the overhead of the complete product. The
test for security also does not reflect the result of the finished product. In addition,
the test for security is performed in a software simulator, and not on an FPGA like
the other implementations. The tests for performance are not performed at all on
the STT implementation. This will be further discussed in Section 4.3.

To test for performance, the SPEC2017 benchmark suite is run. The number of in-
structions per clock cycle (IPC) is measured for each benchmark and implement-
ation. To find the normalized IPC, the geometric mean of these measurements is
calculated for each implementation. A geometric mean is a suitable measurement
in this case, as the implementations are compared to the baseline implementation.

37
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It also ensures that the result is more representative, by reducing bias towards
outliers, like, for example, one benchmark performing significantly better than
the rest.

To test the security of the implementations, Spectre attacks of Variant 1 and Vari-
ant 2 have been performed. These attacks verify that the implementations are
secure against control flow speculation combined with cache timing attacks. It is
however not tested in this project if the implementations are secure against all
the discovered Spectre attacks. One can also not be sure if there are undiscovered
attacks, which still are able to bypass the security of the implemented solutions.
Section 4.3 will discuss some of these concerns.

To find the implementation overhead, information about the bitstream generated
when simulating the implementations on the FPGA has been analyzed. Since the
FPGAs use CLBs to physically implement the design, one can analyze the utiliza-
tion of these to get an estimation of how large the physical realization would be.
This information is generated in an output file by Vivado, which is the software
created by Xilinx to generate the bitstream. It is hard to know anything about
the size of the physical realization from only looking at the utilization of CLBs,
therefore the modified implementations are compared to the baseline implement-
ation to give information about the increase in hardware, rather than the actual
number.

The data generated from Vivado contains information about the different sub-
components of the CLB. This is, for example, the number of LUTs used and CLB
flip-flops. It also gives information about how many of the LUTs which is used for
logic, and how many which is used as memory. Since none of the changes imple-
mented are part of the memory module, the number of LUTs used as memory is
expected to be the same for all of the implementations. This number is thus not
used when evaluating the designs in Chapter 5. The implementation overhead is
only measured in the number of LUTs used for logic, and the number of CLB flip-
flops as these are the attributes expected to be affected by the modifications to
the BOOM core.

4.1.1 FPGA Evaluation

The FPGA evaluation has been done on the EPIC [33] research infrastructure,
which is available through the IDUN cluster [34]. EPIC has four Xilinx Alveo
U250 FPGA cards [35], which master students and researchers can use to sim-
ulate hardware designs. The software simulations performed have also used the
IDUN cluster, only that these are performed on CPU nodes.

To evaluate the designs on the FPGA, the Firesim [22] platform and the Chipyard
framework [19] have been used. The tool’s official GitHub repositories [36] [37]
have been forked by the NTNU EECS research initiative. These forked repositories
have been installed on the IDUN cluster, to be used for the experiments in this
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project. To use the FPGAs on the IDUN cluster, the description on the EECS u250
wiki-page on GitHub [38] has been followed. This provides information on how
to install the correct version of Chipyard, build the bitstream for the design, flash
the bitstream to the FPGA, and run the FireSim simulation.

The FireSim images used on the FPGA simulation come from NTNU EECS’s fork of
the official FireMarshal GitHub repository [39]. The FireSim images can provide
a RISC-V Linux distribution that runs on the target platform. The images are built
from a configuration file and may also be configured to provide a root file system
copied to the target platform. To be able to run the benchmarks and Spectre soft-
ware, the necessary binaries and other files are copied into the root file system, to
make it available at the target platform.

When testing for the performance of the implementation, the image ntnu-base has
been used. This image builds on the Build-Root Linux base image, which provides
a Linux environment for embedded systems [24]. The ntnu-base image provides
tools used to run the SPEC 2017 benchmarks on the target platform. These tools
involve a Python program created by Björn Gottschall at NTNU called invoke [40].
This program is used to invoke SPEC 2017 binaries. Another tool is perf [41]which
is a profiler tool for Linux. Within perf, perf-stat can be used to sample the state
of certain attributes in the processor core and count events like the number of
clock cycles and the number of instructions when a binary is executing. These can
be used to calculate the IPC, which gives an indication of the performance of the
implementation.

To test the security, a custom image has been used. The fedora-base image is used
as the base for this image. The image consists of only an installation of the Fe-
dora RISC-V Linux distribution [25], in addition to RISC-V binaries of Spectre
Variant 1 and 2. The implementation of the Spectre attack is further described in
Section 4.1.3.

4.1.2 SPEC2017 Benchmark Suite

The performance of the implementations has been evaluated by running the SPEC2017
benchmark suite [42]. SPEC2017 is a collection of various workloads which are ex-
ecuted to test the design. It is intended to be diverse, but still a representative col-
lection of workloads commonly executed at processors. The suite consists of both
floating point benchmarks, which are programs with a higher rate of floating point
operations, and integer benchmarks, which are benchmarks mostly using integer
operations. Table 4.1 shows some information about the integer benchmarks ex-
ecuted, and Table 4.2 gives some insight to the floating point benchmarks.

The binaries for the benchmarks were acquired from NTNU EECS. They were ex-
ecuted with the invoke Python program. The execution of the benchmarks can be
configured through a JSON file. The configuration file can be used to specify input
sets, wrappers, and instruction set. Since the tests are run on BOOM, the RISC-V
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Table 4.1: List of SPEC2017 integer benchmarks and a description of the pro-
grams [42]

Benchmark Language Description
500.perlbench C Perl interpreter
502.gcc C GNU C compiler
505.mcf C Route planning
520.omnetpp C++ Discrete Event simulation
523.xalancbmk C++ XML to HTML conversion via XSLT
525.x264 C Video compression
531.deepsjeng C++ Alpha-beta tree search (Chess)
541.leela C++ Monte Carlo tree search (Go)
548.exchange2 Fortran Recursive solution generator (Sudoku)
557.xz C General data compression

Table 4.2: List of SPEC2017 floating point benchmarks and a description of the
programs [42]

Benchmark Language Description
503.bwaves Fortran Explosion modeling
507.cactuBSSN C++, C, Fortran Physics: relativity
508.namd C++ Molecular dynamics
510.parest C++ Biomedical imaging
511.povray C++, C Ray tracing
519.lbm C Fluid dynamics
521.wrf Fortran, C Weather forecasting
527.cam4 Fortran, C Atmosphere modeling
538.imagick C Image manipulation
544.nab C Molecular dynamics
549.fotonik3d Fortran Computational Electromagnetics
554.roms Fortran Regional ocean modeling
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64-bit instruction set is chosen. Wrappers, in the context of the invoke program,
are software that are run together with the benchmarks. This may, for example,
be profiling the execution with perf, or time the execution with the time program.
As mentioned, the perf-stat wrapper is used to find the IPC of the benchmarks.
When it comes to the input set, the set called test is chosen. This is the smallest
of the available input sets, which in return makes for a faster execution time of
the benchmarks. The ref input set is larger and was first tried out. But since one
benchmark ran for 3 days with the ref input set, a smaller one was chosen instead.
With the test set, the whole suite finishes in a couple of days on the FPGA. If the in-
put test were going to run on a fully realized processor core, a larger input set may
be more adequate, since FPGA simulation is slower than real hardware.

4.1.3 Spectre Attack

To verify that the DoM, DoM-RW, and STT implementations work as expected,
Spectre attacks have been performed on the different versions, in addition to the
baseline BOOM implementation. The attack software comes from the public Git-
Hub repository boom-attacks [43]. This is made by two of the main contributors
to the BOOM core from Berkeley University. It has implementations of Spectre
Variant 1 and 2. This repository is not maintained and is designed for an older
version of the BOOM core. Later commits to the BOOM repository have made
the attack unable to retrieve the secret data through the cache side channel. The
attack, however, works as intended with some changes in the attack code. The
details about the changes in the attack code needed, and why they are needed,
will be further explained after the attack code is explained.

The attack code for both Spectre Variant 1 and 2 tests if the characters in the
string !”#ThisIsTheBabyBoomerTest can be retrieved through a speculative side-
channel. It iterates over the characters in the string and performs the attack on
each character, one by one. For each character, the attack is performed 10 times to
get a more accurate result. The attack sets a threshold of 50 cycles to determine
if a load is present in the cache or not. Yet, a latency of less than 50 cycles is not
a guarantee that the data is present in the L1 cache. This is why the attack is run
several times for each character. For each attack round, a counter is increased on
the cache lines which have a latency below the threshold. The higher the counter
is for a cache line, the more rounds, that cache line have a low latency. By looking
at how many rounds the latency is below the threshold, one can be more certain
that the test actually has resulted in a cache hit, and not randomly had a short
latency.

As mentioned, the attack code needs a minor change to work every round. One of
the changes in BOOM, which is implemented after the attack code was created,
is a new branch predictor called the loop predictor. Since the attack code works
after removing this predictor, it is assumed that this predictor is the cause of the
trouble. Since the attack also still work for Variant 2 which exploits the branch

https://github.com/riscv-boom/boom-attacks
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target predictor, not the predictor predicting the direction like the loop predictor,
it makes the assumption more probable. A suggestion as to why the loop predictor
makes the attack not work is that it learns the branch pattern after the first round,
and because of this does not make the misprediction that is crucial for executing
the transient instructions. The reason is probably that the loop predictor learns
the branch pattern for constant-length loops when training the branch predictor
in the setup phase of the attack. The attack works as expected on the baseline
implementation when the loops in the setup phase are not constant-length. With
this knowledge, the only change needed is making the loop in the training phase
increase the number of iterations by one each training round.

4.2 BOOM Configuration

The CPU pipeline in BOOM is parameterized, which means that it makes it pos-
sible to build it with various configurations. As previously mentioned, the config-
urations decide several parameters like the core width, and number of entries in
the different data structures like the ROB, store queue, and load queue. The core
comes with some predefined configurations, but hardware designers could also
build their own custom configurations. For the experiments done on the FPGA,
the Firechip configuration FireSimLargeBoomConfig is used. This implements the
LargeBoomConfig from Chipyard and has been run on a 30Mhz clock frequency.
Table 4.3 lists some of the parameters in LargeBoomConfig.

Since the Speculative Taint Tracking was unable to run on the FPGA, it was run
on the software simulator Verilator. The implementation has, with Verilator, been
tested for security with both the SmallBoomConfig and the LargeBoomConfig. Since
the Spectre programs run for the longest time without terminating on the Small-
BoomConfig, these results are the ones presented and discussed later in this re-
port.

4.3 Limitations

This section will present the factors of the methodology that can make the data
produced inaccurate. In general, the more data produced and the more different
variations in the experiment setup, the more accurate the result would be. For
example, having data about more different Spectre attacks, and having the mit-
igation strategies being implemented on more platforms would give more data
to analyze. Also having data about more configurations of BOOM, in addition to
more frequencies than 30MHz, could maybe also be valuable. To get more precise
results, testing the physical realization of the designs would also be better than
testing a simulation of the designs. However, the time limit and the resources
available for the project are limited. With this, the scope, which is presented in
Chapter 1, also has to be scaled down to be suitable for the circumstances. Having
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Table 4.3: Parameters in the LargeBoomConfig

Parameter Value
Fetch width 8

Decode width 3
No. ROB entries 96

Memory issue width 1
Int issue width 2
FP issue width 1

No. physical int registers 100
No. physical FP registers 96

No. LDQ/STQ entries 24
Max branch count 16

L1 cache size 32 KB

the designs on the FPGA at least gives more certain results than when only testing
on software simulators.

As previously mentioned, the implementation of STT was not completed. As a
consequence of this, the simulation of this implementation has some unwanted
behavior. Some bare-metal programs tested on the Verilator simulation of STT
make the simulation terminate on an assertion in the BOOM code saying “Pipeline
has hung”. It is not known why this assertion is triggered, since after looking at
the waveform generated, signals associated with the code specific for STT have
the expected values when the assertion triggers. No loads are also not delayed
when the assertion is triggered. The implementation also fails to be simulated on
the FPGA. A bitstream is generated, but as with the software simulation, the soft-
ware executed at the simulated system also here seems to hang. For this reason,
the tests done on STT are only run in software simulation with Verilator. Since
Verilator only executes bare-metal binaries on the simulation, a lot of extra work
is needed to be able to run the benchmarks on Verilator. The results are anyway
not valuable when the benchmarks have been run on a different platform than the
other implementations. For this reason, the implemented STT simulation doesn’t
get tested for performance.

The implementations are only tested for Spectre Variant 1 and Variant 2. To fully
verify that the mitigation strategies are secure against speculative side-channel
attacks, more variants of the attack should be performed. It is, however, time-
consuming to implement these attacks from scratch, and the resources on other
attacks are also limited. Most of the attacks are likely to have to be tailored to fit
the BOOM core, as with the Spectre Variant 1, where the loop predictor learns the
behavior of the setup phase in the attack from the resource used. Due to the time
limit of the project, there was no time to implement more attacks. It is however a
limitation of the research, since it is with this not proven that the implementations
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are secure against other attacks than this type of side-channel attacks. It would
for example be interesting to see the result from Spectre Variant 4 since the D-
shadows implemented in DoM should protect against these.



Chapter 5

Result

This chapter will present the data collected from the experiments described in
Chapter 4. The experiments measure the performance, and implementation over-
head, in addition to verifying the security for the Baseline, DoM, DoM-RW, and
STT implementations. The result will only be presented in this chapter and fur-
ther discussed in Chapter 6. First, the results from the performance measurement
will be presented. Then the implementation overhead will be shown. Lastly, it is
shown how secure the implementations are against speculative side-channel at-
tacks.

5.1 Performance

As mentioned, the SPEC2017 benchmark suite has both integer workloads and
floating-point workloads. Table 5.1 and Table 5.2 present the IPC measured for
all of the integer, and floating point benchmarks respectively. In each of the cells,
next to the IPC, it is also presented how much of a slowdown the implementation
has compared to the baseline BOOM implementation. Figure 5.1 and Figure 5.2
shows the data from the two tables presented as a bar chart. The tables and figures
also shows the normalized performance for the implementations. Table 5.1 and
Figure 5.1 shows the normalized IPC for the integer benchmarks, and Table 5.2
and Figure 5.2 shows the normalized IPC for the floating point benchmarks. Both
tables and bar charts also shows the performance normalized for all benchmarks.
For the DoM implementations, the slowdown across all benchmarks is 14%, and
for the DoM-RW implementation it is 20.9%. For the integer benchmarks, the
normalized slowdown is 11.3% for DoM and 16.5% for DoM-RW. For the floating
point benchmarks, it is 16.7% for DoM and 34.4% for DoM-RW.

As expected, implementing the DoM and DoM-RW security mechanisms gives a
slowdown for almost all benchmarks. This can also be deducted by reviewing
the normalized slowdown. This confirms the assumption about the mitigation
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strategies giving a slowdown. With a total slowdown of 14% and 20.9% across
all benchmarks, the slowdown can be said to be non-negligible.

One of the most interesting things to get from the result is comparing the DoM
and DoM-RW performance. The hypothesis made before performing any of the
experiments was that by restricting the wakepus the implementation would get a
better performance. The results presented shows that across all benchmarks, DoM
gets a slowdown of 14% and DoM-RW gets a performance slowdown of 20.9%.
This tells that the hypothesis made is disproved. Why this is the case can not be
determined with the result from the performed experiments, but the issue will be
further discussed in Section 6.1 in Chapter 6.

The result presented in the tables and figures shows that the performance is gen-
erally slower for floating point benchmarks than integer benchmarks. This is ex-
pected, as it is a known fact that floating point instructions are more complex to
calculate than integer instructions. It was however not as obvious that the slow-
down for floating point benchmarks also turned out to be significantly larger than
for the integer benchmarks. Why this may be the case can not be determined from
the acquired result, but a hypothesis about it is discussed in Section 6.1.

As shown in the tables and bar charts, there are some variations on the slow-
down for the different applications. For example, the perlbench benchmark have
no slowdown for the normal DoM implementation, and only 1.6% on the DoM-
RW implementation. The integer benchmark called exchange2 are also almost the
same. It, however, surprisingly gives a greater IPC with DoM than the baseline
implementation. It is yet such a small increase that it can be considered negli-
gible. On the other contrary, the integer benchmark mcf and the floating point
benchmark cactuBSSN gives larger slowdown with 47.7% and 36.8% for DoM re-
spectively and 50% and 40.8% for DoM-RW respectively. The standard deviation
presented in Table 5.3 also indicates that the data varies. Across all benchmarks
the IPC for the baseline implementation is measured to be 0.86 and as shown in
Table 5.3 the standard deviation for this is 0.43. For the DoM implementation, the
IPC is 0.74 and the standard deviation is 0.45 and for DoM-RW the IPC is 0.68 and
the standard deviation is 0.44. As it is not part of the scope, experiments trying to
deduct why the variation is this large is not performed. However, the proportion
of instructions creating speculation combined with the proportion of instructions
being loads in a program are factors that can influence the performance of the
program when DoM is implemented.
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Table 5.1: Performance in measured in IPC and the slowdown in percentage com-
pared to baseline, for every INT benchmark

Benchmark Baseline DoM DoM-RW
Geometric mean TOT 0.86 0.74 / 14.0% 0.68 / 20.9%
Geometric mean INT 0.97 0.86 / 11.3% 0.81 / 16.5%

500.perlbench 0.64 0.64 / 0.0% 0.63 / 1.6%
502.gcc 0.68 0.65 / 4.4% 0.63 / 7.4%
505.mcf 0.44 0.23 / 47.7% 0.22 / 50.0%

520.omnetpp 0.65 0.55 / 15.4% 0.53 / 18.5%
523.xalancbmk 0.75 0.65 / 13.3% 0.56 / 25.3%

525.x264 2.04 1.98 / 2.9% 1.82 / 10.8%
531.deepsjeng 1.40 1.37 / 2.1% 1.24 / 11.4%

541.leela 1.30 1.18 / 9.2% 1.13 / 13.1%
548.exchange2 1.97 1.99 / -1.0% 1.98 / -0.5%

557.xz 1.09 1.04 / 4.6% 0.96 / 11.9%

ge
o m

ea
n t

ota
l

ge
o m

ea
n I

NT

pe
rlb

en
ch gcc mcf

om
ne

tpp

xa
lan

cbm
k

x2
64

de
ep

sje
ng lee

la

exc
ha

ng
e2 xz

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

IP
C

Baseline
DoM
DoM-RW

Figure 5.1: Performance measured in IPC with SPEC2017 INT benchmarks
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Table 5.2: Performance in measured in IPC and the slowdown in percentage com-
pared to baseline, for every floating point benchmark

Benchmark Baseline DoM DoM-RW
Geometric mean TOT 0.86 0.74 / 14.0% 0.68 / 20.9%
Geometric mean FP 0.78 0.65 / 16.7% 0.59 / 34.4%

503.bwaves 0.42 0.39 / 7.1% 0.38 / 9.5%
507.cactuBSSN 0.76 0.48 / 36.8% 0.45 / 40.8%

508.namd 1.22 1.05 / 13.9% 1.04 / 14.8%
510.parest 0.91 0.75 / 17.6% 0.65 / 28.6%
511.povray 0.68 0.59 / 13.2% 0.55 / 19.1%

519.lbm 0.68 0.50 / 16.5% 0.46 / 32.4%
521.wrf 0.79 0.66 / 16.5% 0.56 / 29.1%

527.cam4 0.85 0.73 / 14.1% 0.63 / 25.9%
538.imagick 1.21 1.08 / 10.7% 0.91 / 24.8%

544.nab 0.53 0.52 / 2.9% 0.51 / 3.8%
549.fotonik3d 1.04 0.96 / 7.7% 0.96 / 7.7%

554.roms 0.66 0.50 / 24.2% 0.41 / 37.9%
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Figure 5.2: Performance measured in IPC with SPEC2017 FP benchmarks

Table 5.3: Standard deviation of the measured IPC for across all benchmarks,
and integer and floating point benchmarks separately

Design Total σ INT σ FP σ
Baseline 0.43 0.54 0.24

DoM 0.45 0.57 0.23
DoM-RW 0.44 0.30 0.22
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5.2 Implementation Overhead

The implementations’ overhead is measured with the hardware utilization of the
FPGA. As mentioned in Section 4.1, the utilization is measured in number of look-
up tables used as logic and the number of CLB flip-flops used. Table 5.4 shows the
number of LUTs and the number of flip-flops (FFs) used for each implementation.
In addition, the increase as percentage of the baseline implementation are also
included for both. As the table shows, the increase in implementation overhead
is minimal, with a 0.1% increase in number of LUTs as logic and 0.02% increase
in number of flip-flops for both the DoM implementation and DoM-RW. This can
be considered negligible. However, it is surprising that the DoM-RW implement-
ation don’t get any overhead when implementing the restricted wakeup policy.
Deducting why these are the same is, as defined in Chapter 1, not considered as
part of the scope for this project, and can thus not be observed by the experiments
performed.

The STT implementation is also included in the table, but as previously men-
tioned, this implementation is not completed. This likely gives the STT imple-
mentation a lower overhead than what would have been if the implementation
would also include taint propagation for all instructions. As shown in the table,
the STT implementation gets a 1.2% increase in number of LUTs, and 0.49% in-
crease in number of flip-flops used. It is hard to set the limit of when the increase
in implementation overhead is non-negligible or not. Although the increase of the
STT implementation is not considerably large, it is for sure considerably larger
than the for the DoM implementations, especially when considering the fact that
the overhead probably is larger on the finished STT implementation. For most
systems, however, the overhead would probably be said to be negligible.

The entire table over the subcomponents of the CLB can be found for each of the
implementations in Appendix C. As expected, there is no change in the number of
LUTs used as memory in any of the implementations. The main differences are,
also as expected, in the number of LUT used for logic and the number of CLB
flip-flops.

Table 5.4: Implementation overhead in the different designs, measured in num-
bers of LUTs as logic, and number of flip-flops used

Implementation
No. LUT
as Logic

No. CLB FF
LUT

Increase
FF

Increase
Baseline 321053 LUTs 202235 FFs - -

DoM 321374 LUTs 202266 FFs 0.10% 0.02%
DoM-RW 321374 LUTs 202266 FFs 0.10% 0.02%

STT 324913 LUTs 203216 FFs 1.20% 0.49%
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5.3 Secutity

Code listing 5.1 and Code listing 5.2 shows the output after running the Spectre
Variant 1 attack described in Section 4.1.3 for the baseline implementations and
the DoM implementation respectively. All the other results from Spectre Variant
1 and Variant 2 run for this project are available in Appendix A and Appendix B.
Each line in the output text comes from a Spectre attack performed on the address
to the left. The secret character expected to be found at the address is stated in
the parentheses in want(). As explained in Section 4.1.3, the attack is performed
10 times on each address, and the two most likely values are selected. The line
continues to show both the best values, with the number of attack rounds the
character has given a cache hit, and also the value as both a decimal and character.
The character value can then be compared to the value which are expected, to see
if the attack works or not.

The result is summarized in Table 5.5a and Table 5.5b showing the summary of
Spectre Variant 1 and Variant 2 respectively. For each implementation, the table
tells whether the attack performed on the implementation have leaked any data
or not. For the answer to be “No”, the attack has to be unable to guess any of
the characters. If only one of the characters is leaked, it is classified as a leak-
ing implementation. As shown in the table, both DoM and DoM-RW succeeds to
secure the processor core against both Spectre Variant 1 and Variant 2, while the
Baseline implementation leaks data. This as expected before the experiments were
performed.

As explained with the asterisk symbol in the table, the STT implementation is not
finished and thus does not reflect the true security of the STT mitigation strategy.
The implemented solution is, as explained in Section 3.2, only implemented with
taint propagation on load-load dependencies. As mentioned in Section 4.1, the
test for security is also only implemented on the Verilator software simulation for
the STT implementation, and not on an FPGA like the other implementations. The
attack code run on the STT implementation on the software simulator also termin-
ates before it is finished. The data analyzed for the STT therefore less complete
than for the other implementations, as there are less attack rounds to analyze.
The data generated however reveal that the STT implementation with load-load
taint propagation is not secure against the tested attacks.
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Code listing 5.1: Output from a Spectre Variant 1 attack on an unsecure core

m[0x0x1c450] = want(!) =?= guess(hits,dec,char) 1.(10, 33, !) 2.(1, 1, )
m[0x0x1c451] = want(") =?= guess(hits,dec,char) 1.(9, 34, ") 2.(2, 1, )
m[0x0x1c452] = want(#) =?= guess(hits,dec,char) 1.(10, 35, #) 2.(3, 90, Z)
m[0x0x1c453] = want(T) =?= guess(hits,dec,char) 1.(10, 84, T) 2.(3, 7, )
m[0x0x1c454] = want(h) =?= guess(hits,dec,char) 1.(9, 104, h) 2.(2, 8,)
m[0x0x1c455] = want(i) =?= guess(hits,dec,char) 1.(8, 105, i) 2.(3, 252, |)
m[0x0x1c456] = want(s) =?= guess(hits,dec,char) 1.(9, 115, s) 2.(2, 10,
)
m[0x0x1c457] = want(I) =?= guess(hits,dec,char) 1.(7, 73, I) 2.(2, 83, S)
m[0x0x1c458] = want(s) =?= guess(hits,dec,char) 1.(7, 115, s) 2.(4, 7, )
m[0x0x1c459] = want(T) =?= guess(hits,dec,char) 1.(9, 84, T) 2.(2, 10,
)
m[0x0x1c45a] = want(h) =?= guess(hits,dec,char) 1.(9, 104, h) 2.(2, 3, )
m[0x0x1c45b] = want(e) =?= guess(hits,dec,char) 1.(9, 101, e) 2.(2, 1, )
m[0x0x1c45c] = want(B) =?= guess(hits,dec,char) 1.(7, 66, B) 2.(2, 122, z)
m[0x0x1c45d] = want(a) =?= guess(hits,dec,char) 1.(7, 97, a) 2.(3, 75, K)
m[0x0x1c45e] = want(b) =?= guess(hits,dec,char) 1.(9, 98, b) 2.(2, 7, )
m[0x0x1c45f] = want(y) =?= guess(hits,dec,char) 1.(8, 121, y) 2.(2, 7, )
m[0x0x1c460] = want(B) =?= guess(hits,dec,char) 1.(10, 66, B) 2.(2, 7, )
m[0x0x1c461] = want(o) =?= guess(hits,dec,char) 1.(9, 111, o) 2.(3, 83, S)
m[0x0x1c462] = want(o) =?= guess(hits,dec,char) 1.(10, 111, o) 2.(2, 28, )
m[0x0x1c463] = want(m) =?= guess(hits,dec,char) 1.(7, 109, m) 2.(2, 6, )
m[0x0x1c464] = want(e) =?= guess(hits,dec,char) 1.(7, 101, e) 2.(2, 3, )
m[0x0x1c465] = want(r) =?= guess(hits,dec,char) 1.(10, 114, r) 2.(2, 5, )
m[0x0x1c466] = want(T) =?= guess(hits,dec,char) 1.(8, 84, T) 2.(2, 3, )
m[0x0x1c467] = want(e) =?= guess(hits,dec,char) 1.(8, 101, e) 2.(2, 204, L)
m[0x0x1c468] = want(s) =?= guess(hits,dec,char) 1.(8, 115, s) 2.(2, 1, )
m[0x0x1c469] = want(t) =?= guess(hits,dec,char) 1.(9, 116, t) 2.(2, 0, )

(a) Security against Spectre Variant 1 of
each implementation

Implementation Leaks data
Baseline Yes

DoM No
DoM-RW No

STT Yes*

(b) Security against Spectre Variant 2 of
each implementation

Implementation Leaks data
Baseline Yes

DoM No
DoM-RW No

STT Yes*

*The STT implementation is not complete and does therefore not reflect the true security of the
mitigation strategy
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Code listing 5.2: Output from a Spectre Variant 1 attack on the DoM implement-
ation

m[0x0x1c450] = want(!) =?= guess(hits,dec,char) 1.(2, 7, ) 2.(2, 10,
)
m[0x0x1c451] = want(") =?= guess(hits,dec,char) 1.(3, 252, |) 2.(2, 97, a)
m[0x0x1c452] = want(#) =?= guess(hits,dec,char) 1.(2, 62, >) 2.(2, 91, [)
m[0x0x1c453] = want(T) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 7, )
m[0x0x1c454] = want(h) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 46, .)
m[0x0x1c455] = want(i) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 19, )
m[0x0x1c456] = want(s) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 12,

)
m[0x0x1c457] = want(I) =?= guess(hits,dec,char) 1.(2, 67, C) 2.(2, 176, 0)
m[0x0x1c458] = want(s) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 157, )
m[0x0x1c459] = want(T) =?= guess(hits,dec,char) 1.(2, 3, ) 2.(2, 144, )
m[0x0x1c45a] = want(h) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 100, d)
m[0x0x1c45b] = want(e) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 6, )
m[0x0x1c45c] = want(B) =?= guess(hits,dec,char) 1.(2, 111, o) 2.(2, 124, |)
m[0x0x1c45d] = want(a) =?= guess(hits,dec,char) 1.(2, 7, ) 2.(2, 10,
)
m[0x0x1c45e] = want(b) =?= guess(hits,dec,char) 1.(2, 7, ) 2.(2, 60, <)
m[0x0x1c45f] = want(y) =?= guess(hits,dec,char) 1.(3, 5, ) 2.(2, 3, )
m[0x0x1c460] = want(B) =?= guess(hits,dec,char) 1.(2, 26, ) 2.(1, 1, )
m[0x0x1c461] = want(o) =?= guess(hits,dec,char) 1.(2, 112, p) 2.(2, 153, )
m[0x0x1c462] = want(o) =?= guess(hits,dec,char) 1.(3, 7, ) 2.(3, 180, 4)
m[0x0x1c463] = want(m) =?= guess(hits,dec,char) 1.(2, 60, <) 2.(2, 110, n)
m[0x0x1c464] = want(e) =?= guess(hits,dec,char) 1.(1, 1, ) 2.(1, 2, )
m[0x0x1c465] = want(r) =?= guess(hits,dec,char) 1.(3, 3, ) 2.(2, 8,)
m[0x0x1c466] = want(T) =?= guess(hits,dec,char) 1.(3, 100, d) 2.(2, 7, )
m[0x0x1c467] = want(e) =?= guess(hits,dec,char) 1.(2, 7, ) 2.(2, 36, \$)
m[0x0x1c468] = want(s) =?= guess(hits,dec,char) 1.(1, 1, ) 2.(1, 2, )
m[0x0x1c469] = want(t) =?= guess(hits,dec,char) 1.(2, 163, #) 2.(2, 172, ,)



Chapter 6

Discussion

This chapter will use the sections Section 6.1, Section 6.2 and Section 6.3 to dis-
cuss the results in Chapter 5. The rest of the chapter will be used to discuss the
outcome of the design choices made for the implementations of the mitigation
strategies and other circumstances regarding the project.

6.1 Performance

One hypothesis made before performing any of the experiments, was that restrict-
ing wakeups would give better performance since fewer unnecessary cache look-
ups would be done when the loads are still shadowed. The reason why the hypo-
thesis in this report was that issuing shadowed loads was unnecessary is that it
was assumed that if the loads were not present in the cache the first time it was
issued, the possibility of it being there when the load is reissued was low. The
reasoning for the hypothesis is further explained in Section 3.1.4.

The performance decrease however shows that optimistically continuing to do
cache lookups despite the load still being shadowed is actually not as unnecessary
as anticipated. It can not be determined from the experiments performed why
optimistically issuing shadowed loads to the cache yields a better performance,
and it is also not part of the scope of the project. However, this section will present
some new hypotheses about why the result is what it is, which can be used for
later research.

One reason for why the hypothesis is disproved may be that loops have many
branch instructions in addition to having many strided loads from the same cache
line. The branch instructions create shadows on the successive loads, which also
entails that the loads should be delayed if not present in the cache.

An assembly pseudocode example of a for-loop is shown in Code listing 6.1. The
code starts on the tag START in line 8. Register r2 is the register which holds the
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value counting the number of iterations. The register is initially set to zero with
the MV instruction before the loop starts. The BLE instruction is a branch instruction
which directs the control flow to the address of the first instruction after the LOOP
tag in line 1 to start the loop. In the loop, the first iteration loads a value from the
address in register r3 into register r1. It then increases the value of register r3 to
be ready to load the adjacent data element in the next iteration. It lastly increases
the counter of the loop with one before it branches back to the start of the loop.
This is done for a hundred iterations before the value in register r2 is finally one
hundred and the branch is not taken. The loop is then ended by jumping to the
END tag.

The example in Code listing 6.1 is an example of a code snippet which is con-
stantly encounters the reoccurring pattern of creating shadows and loops altern-
ately. Each loop iteration the branch instruction in line 5 creates a shadow, which is
cast over the load in line 2. The new hypothesis is that when the shadow cast over
the first element in a cache line disappears, the entire cache line will be loaded
into the L1 cache and thus making the addresses of the loads in the consecut-
ive iterations available in the cache despite the load still being shadowed. In the
DoM-RW implementation, these are delayed until the shadow disappears, which
is unnecessarily late compared to the DoM implementations which optimistically
issues shadowed loads and are able to hit in the cache for the elements which are
in the same cache-line as an unshadowed load.

Code listing 6.1: Pseudo code of a loop in assembly
1 LOOP:
2 LD r1, r3 // Load the data element from the adress on register e3
3 ADDI r3, r3, #4 // Increase the index of the data element to be loaded
4 ADDI r2, r2, #1 // Increase the loop counter
5 BLT r2, #100, LOOP // Loop one more time if the conter is less than 100
6 J END
7
8 START:
9 MV r2, #0 // Set the iteration counter to zero

10 BLT r2, #100, LOOP // Branch to the start of the loop, since r2 < 100

As presented in Chapter 5, the benchmarks have some variation in the slowdown
of the DoM implementation. It is not known why this is the case, but the amount
of speculative loads may be a key factor. The slowdown also seems to be greater
for the floating point benchmarks. One reason for this may be that since floating
point instructions often take longer time to execute than integer instructions, the
speculative execution may as a consequence of this last longer, as the resolution
of the speculation takes longer time.

6.2 Implementation Overhead

For this project, only the LUTs used as logic is analyzed, in addition to the number
of flip-flops used for registers. As expected, the LUTs as memory stays constant. It is
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hard to know exactly how good of an estimate the number of LUTs is of the imple-
mentation overhead. While looking at the relative implementation overhead gives
a good comparison between the implementations, further verifications are needed
to determine how the overhead would actually be on a physical chip.

One part of accomplishing the overall goal was to answer how large of an im-
plementation overhead the implemented mitigation strategies would make. As
described in Chapter 5, the implementations show a relatively small overhead.
While the measured overhead for the baseline, DoM and DoM-RW implementa-
tions are considered as a relatively good estimate, the STT implementations, as
mentioned, does not reflect the overhead of the finished implementation. It can
not be determined how large of an overhead the finished implementation will
have. However, as the only part remaining is the logic for the taint propagation, it
is likely that the implementation overhead does not get a massive increase. There
can also be done changes in the current implementation of STT to reduce the im-
plementation overhead, like for example synchronizing the timing, so that there
is no longer a need for the block masks used for delaying the untaint mechan-
ism.

6.3 Security

One of the goal for this project was to give an answer to whether the implemented
defense strategies provide security against speculative side-channels or not. For
the experiments performed, the DoM and DoM-RW implementations does not leak
data. While Spectre Variant 1 and Variant 2 may be seen as the two most important
attacks to be secured against, there are still other speculative side-channel attacks
which the implementations have not been tested against. It could for example be
interesting to test the implementations against Spectre Variant 4 and a Meltdown
attack. It is not determined by any of the experiments performed for this research
if the exception handling in BOOM can be exploited to leak data. It can also not
be determined by any of the experiments if the baseline BOOM implementation
speculatively allows loads to execute despite store values still waiting for their
destination to be resolved. It would especially be interesting to look at Spectre
Variant 4, since DoM has implemented D-shadows, which should mitigate this
attack. The researchers behind STT also claims that STT is the first mitigation
strategy to be secure against implicit side-channels. Implicit side-channels is when
secret data implicitly dictates control-flow and executes transient instructions. An
example of this is when the target of a branch instruction is decided by the secret
data. The branch predictor will guess a direction, and the secret will be revealed by
observing if the transient instructions have been in execution and the pipeline has
been squashed when the branch resolves. In these side-channel attacks, it is not
interesting to see the result of the transient execution, the secret is rather revealed
simply by observing that the transient execution happened. Although executing
more attacks would be a great contribution to the research as there would be more
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data about the security of the different implementations, the scope of the project
had to be narrowed down for the project to be finished within the time limit.
Writing attack code is a time-consuming task, as most attacks have to be tailored to
the microarchitecture to some degree. Different processor cores may for example
have different branch predictors which have to be trained a certain way. Spectre
Variant 1 and Variant 2 were also the attacks with the most resources and available
attack code for BOOM. The consequence of this is having less data to analyze and
thus being less certain about the actual security of the implementations.

As seen in Chapter 5, the STT implementation is not secure against any of the
performed attack. As mentioned before, the STT implementation is not complete
and for now only implements taint propagation for load-load dependencies. The
test, as mentioned, also terminates before it is finished. However, it can not be
determined by any of the tests why STT leaks data. One could maybe think that
securing the processor against load-load dependencies would result in some sort
of security. Code listing 6.2 shows a snippet of the C-code from the attack code
for Spectre Variant 1. One could maybe think that the access instruction load-
ing array1 would be done to a certain register, and that the transmit instruction
loading array2 would read it from the same register. In that case, the taint should
be propagated to the transmit instruction even with only load-load propagation,
since the second load has a direct dependency to the first load.

Code listing 6.3 shows the same snippet as in Code listing 6.2, only taht it is RISC-V
assembly generated with the gcc compiler. It is not straight forward to understand
the generated assembly, and it is therefore taken some assumptions by the author
when explaining the code. The explanation must be read with the caveat that
the interpretation of the assembly code may be wrong. The bgeu instruction in
line 1 is a branch instruction. This instruction takes the control-flow to label L14
if the value in register a4 is greater or equal to the value in register a5. This is
probably generated by the if-sentence and moves the control flow to L14 if the
expression in the if-sentence is false, i.e., the control-flow is moved away from the
if-sentence. However, if the if-sentence is true or the branch predictor predicts that
the branch is not taken, the assembly code continues. The instructions in line 2 to 5
is probably calculation of the address of array[idx]. It is assumed that the actual
load of array[idx] is done in line 6. This load instruction is in STT considered as
an access instruction. This instruction should taint the physical register mapped to
register a5. Continuing in the code, it is assumed that the instructions in line 7 to
12 is the address calculation of the second load accessing the element in array2.
The second load is considered as a transmit instruction in STT. What is interesting
here is that this instruction actually uses logical register a5 as an input register,
which is the same register as the output register from the first load.

After having observed that the generated assembly code from the Spectre Variant
1 attack performed on the STT implementation, it looks like the dependencies of
the access and transmit instructions are actually a load-load dependency when
looking at the logical register. If they both map to the same physical register, the
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implemented version of STT should actually have secured the implementation
against Spectre Variant 1. However, by reviewing the result obtained in Chapter 5,
it does not. None of the experiments or code analysis can explain why that is the
case, but some assumptions can be made. One possibility is that even though the
loads use the same logical register, it is not the same physical register after the
registers have been renamed. Since there are several of the instructions after the
first load writing to register a5, the register-rename logic could detect that it is
a write-after-write hazard and assign another physical output register to any of
the instructions for calculating the address. This would result in the second load
getting another register as the input register, and it would no longer have a direct
load-load dependency with the first load.

Code listing 6.2: C code of the attack
function
1 if (idx < array1_sz){
2 dummy = array2[array1[idx] * L1_BLOCK_SZ_BYTES];
3 }

Code listing 6.3: Assembly
code of the attack function
1 bgeu a4,a5,.L14
2 lui a5,%hi(array1)
3 addi a4,a5,%lo(array1)
4 ld a5,-40(s0)
5 add a5,a4,a5
6 lbu a5,0(a5)
7 sext.w a5,a5
8 slliw a5,a5,6
9 sext.w a5,a5

10 lui a4,%hi(array2)
11 addi a4,a4,%lo(array2)
12 add a5,a4,a5
13 lbu a5,0(a5)
14 sb a5,-17(s0)

6.4 DoM Implementation

As can be reviewed by the results acquired, both DoM implementation provides
security against the performed attacks. However, as mentioned in Section 6.3, the
security testing could be more comprehensive and test for more attacks. It would,
as mentioned, be useful to test against the Meltdown attack. The inventors of the
DoM mitigation strategy have also described E-shadows and M-shadows, which
are not implemented for this project. However, as the result shows, these shadow
types are most likely not necessary to secure the processor core against Spectre
Variant 1 and Variant 2. Since Meltdown exploits the exception handling, it would
in future research be interesting to review whether the DoM implementation is
secure against the Meltdown attack, both with and without the E-shadows imple-
mented.

6.5 STT Implementation

This project fails to give good insight in the performance and security of the STT
mitigation strategy. This section will however discuss why the STT implementation
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was so hard to implement, and explain what measures that can be taken to succeed
in implementing the mitigation strategy in the future.

In general, the STT implementation is more complex and require more hardware
structures than the DoM implementations. STT is also in the original paper [2]
only implemented on the O3 processor in the gem5 software simulator and not
in BOOM processor core. The creators may because of this not have met on the
same challenges as when it is to be implemented on the BOOM core, and had an
easier time implementing it. This is of course not known, can therefore only be
considered as speculation.

6.5.1 Synchronization

One of the challenges when implementing STT has been to synchronize the differ-
ent parts. As discussed in Section 3.2.4, the untainting mechanism is not synchron-
ized with the shadow detection mechanism, resulting in too early untainting of
some registers. The synchronization issue is in this case solved by delaying the un-
tainting for one cycle. This is of course not an optimal solution and may contribute
to poorer performance as every load instruction is blocked for one cycle.

The synchronization is also one of the challenges when it comes to taint propaga-
tion on other instructions than memory instructions. The taint have to be propag-
ated to the Core module, and when doing this, it is hard to propagate the taint to
the correct instruction.

6.5.2 Lacking STT Description

The lack of proper description of how the STT mechanism should be implemented
has also been a challenge. The STT article [2] explain many of the most important
concepts of taint tracking, like for example what access and transmit instructions
are and how taints should be propagated to the youngest root of taint. It however
don’t have any detailed description of how instructions are classified as access
instructions, and how it is detected that the access instruction is past the visibility
point. For the STT implementation implemented for this project, it is chosen to
use the shadows [15] from the DoM implementation to track the speculation of
the access instruction. This is however a design choice made by the author of this
report, and not something that is described by the inventors of STT. STTs untaint
mechanism is also not described very well, resulting in the implemented solution
for the untaint mechanism to a large degree is based on assumptions of how it
should be performed made by the author.

6.6 Time Management

Most of the frameworks and tools used for this project were not familiar to the
author at the start of the project. Therefore, in the start of the project period, a lot
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of time were spent on becoming familiar with the necessary tools. This gave less
time for the actual implementation and time to write the report.

6.7 Future Work

The DoM mitigation strategy can also be extended with value prediction for the
delayed loads. This is an optimization described by the inventors of the DoM mit-
igation strategy [1]. It would be interesting to implement this and perform the
same experiments as for the other implementations in this project and compare
the result with the other DoM implementation in addition to a finished STT im-
plementation.

The mitigation strategies could also be implemented on other cores to give more
insight on a general slowdown of the mitigation strategies and not only the slow-
down in the BOOM core.

It is also as mentioned not part of the scope to conclude about why the result
acquired is what it is, but this is something that future research can perform ex-
periments to find out. It would for example be interesting to find out why the
performance of the DoM-RW implementation is poorer than the DoM implement-
ation.





Chapter 7

Conclusion

This work has evaluated the speculative side-channel attack mitigation strategies
Delay-on-Miss (DoM), Delay-on-Miss with restricted wakeups (DoM-RW), and Spec-
ulative Taint Tracking (STT), implemented in the Berkeley Out-of-Order Machine
(BOOM) processor core.

Experiments have been performed on an FPGA to test the mitigation strategies for
performance, implementation overhead, and protection against speculative side-
channel attacks. The performance is tested by running the SPEC2017 benchmark
suite. The security is tested by performing attacks of Spectre Variant 1 and Variant
2. The implementation overhead is measured by looking at the utilization of the
FPGA.

Although the DoM and DoM-RW implementation are completed, the STT imple-
mentation did not get fully completed before the deadline of the project. Most
of the parts needed for the strategy are finished, but the taint propagation is not
yet completed. This is on the contrary an important part for the strategy to work
as expected. The result obtained for this implementation are thus not represent-
ative for a finished STT implementation. The experiments, where result can be
obtained for the STT implementation implemented, are however still included in
the report as it may be interesting to see how STT perform without the complete
propagation logic competed.

The DoM and DoM-RW are proven to be secure against the speculative side-
channel attacks Spectre Variant 1 and Spectre Variant 2. The partially implemen-
ted STT implementation however is not proven to be secure against these attacks.
Both the DoM attacks also get a slowdown compared to the baseline implement-
ation. For the normal DoM implementation, this slowdown is 14%, and for DoM-
RW it is 20.9%. STT are not tested for performance, as it is unable to run on the
FPGA. The implementation overhead of both the DoM implementations are 0.1%
increase in number of look-up-tables (LUTs) used for logic, and 0.02% increase
in number of flip-flops used, compared to the baseline implementation. For STT,
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the partially implemented solution have an implementation overhead of 1.2% in-
crease in number of LUTs used for logic, and 0.49% in the number of flip-flops
used.

It can be concluded that the DoM and DoM-RW succeeds in mitigating attacks of
Spectre Variant 1 and 2, but more tests have to be performed to conclude whether
it succeeds to mitigate other than these. It is not enough valid data to conclude
anything about STT. It can also be concluded that the implementation overhead
is small for all the mitigation strategies, and can be considered negligible. The
slowdown on the other hand are not negligible for the DoM and DoM-RW imple-
mentations. There are also not enough valid data to conclude anything regarding
STT when it comes to performance. Lastly, it can be concluded that the imple-
mentation of DoM with relaxed wakeups is preferred over the implementation
with restricted wakeups.
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Appendix A

Spectre Variant 1 Results

A.1 Baseline

m[0x0x1c450] = want(!) =?= guess(hits,dec,char) 1.(10, 33, !) 2.(1, 1, )
m[0x0x1c451] = want(") =?= guess(hits,dec,char) 1.(9, 34, ") 2.(2, 1, )
m[0x0x1c452] = want(#) =?= guess(hits,dec,char) 1.(10, 35, #) 2.(3, 90, Z)
m[0x0x1c453] = want(T) =?= guess(hits,dec,char) 1.(10, 84, T) 2.(3, 7, )
m[0x0x1c454] = want(h) =?= guess(hits,dec,char) 1.(9, 104, h) 2.(2, 8,)
m[0x0x1c455] = want(i) =?= guess(hits,dec,char) 1.(8, 105, i) 2.(3, 252, |)
m[0x0x1c456] = want(s) =?= guess(hits,dec,char) 1.(9, 115, s) 2.(2, 10,
)
m[0x0x1c457] = want(I) =?= guess(hits,dec,char) 1.(7, 73, I) 2.(2, 83, S)
m[0x0x1c458] = want(s) =?= guess(hits,dec,char) 1.(7, 115, s) 2.(4, 7, )
m[0x0x1c459] = want(T) =?= guess(hits,dec,char) 1.(9, 84, T) 2.(2, 10,
)
m[0x0x1c45a] = want(h) =?= guess(hits,dec,char) 1.(9, 104, h) 2.(2, 3, )
m[0x0x1c45b] = want(e) =?= guess(hits,dec,char) 1.(9, 101, e) 2.(2, 1, )
m[0x0x1c45c] = want(B) =?= guess(hits,dec,char) 1.(7, 66, B) 2.(2, 122, z)
m[0x0x1c45d] = want(a) =?= guess(hits,dec,char) 1.(7, 97, a) 2.(3, 75, K)
m[0x0x1c45e] = want(b) =?= guess(hits,dec,char) 1.(9, 98, b) 2.(2, 7, )
m[0x0x1c45f] = want(y) =?= guess(hits,dec,char) 1.(8, 121, y) 2.(2, 7, )
m[0x0x1c460] = want(B) =?= guess(hits,dec,char) 1.(10, 66, B) 2.(2, 7, )
m[0x0x1c461] = want(o) =?= guess(hits,dec,char) 1.(9, 111, o) 2.(3, 83, S)
m[0x0x1c462] = want(o) =?= guess(hits,dec,char) 1.(10, 111, o) 2.(2, 28, )
m[0x0x1c463] = want(m) =?= guess(hits,dec,char) 1.(7, 109, m) 2.(2, 6, )
m[0x0x1c464] = want(e) =?= guess(hits,dec,char) 1.(7, 101, e) 2.(2, 3, )
m[0x0x1c465] = want(r) =?= guess(hits,dec,char) 1.(10, 114, r) 2.(2, 5, )
m[0x0x1c466] = want(T) =?= guess(hits,dec,char) 1.(8, 84, T) 2.(2, 3, )
m[0x0x1c467] = want(e) =?= guess(hits,dec,char) 1.(8, 101, e) 2.(2, 204, L)
m[0x0x1c468] = want(s) =?= guess(hits,dec,char) 1.(8, 115, s) 2.(2, 1, )
m[0x0x1c469] = want(t) =?= guess(hits,dec,char) 1.(9, 116, t) 2.(2, 0, )

67



68 J.A. Lauvdal: Investigating Speculative Side-Channel Protection

A.2 Delay-on-Miss

m[0x0x1c450] = want(!) =?= guess(hits,dec,char) 1.(2, 7, ) 2.(2, 10,
)
m[0x0x1c451] = want(") =?= guess(hits,dec,char) 1.(3, 252, |) 2.(2, 97, a)
m[0x0x1c452] = want(#) =?= guess(hits,dec,char) 1.(2, 62, >) 2.(2, 91, [)
m[0x0x1c453] = want(T) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 7, )
m[0x0x1c454] = want(h) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 46, .)
m[0x0x1c455] = want(i) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 19, )
m[0x0x1c456] = want(s) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 12,

)
m[0x0x1c457] = want(I) =?= guess(hits,dec,char) 1.(2, 67, C) 2.(2, 176, 0)
m[0x0x1c458] = want(s) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 157, )
m[0x0x1c459] = want(T) =?= guess(hits,dec,char) 1.(2, 3, ) 2.(2, 144, )
m[0x0x1c45a] = want(h) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 100, d)
m[0x0x1c45b] = want(e) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 6, )
m[0x0x1c45c] = want(B) =?= guess(hits,dec,char) 1.(2, 111, o) 2.(2, 124, |)
m[0x0x1c45d] = want(a) =?= guess(hits,dec,char) 1.(2, 7, ) 2.(2, 10,
)
m[0x0x1c45e] = want(b) =?= guess(hits,dec,char) 1.(2, 7, ) 2.(2, 60, <)
m[0x0x1c45f] = want(y) =?= guess(hits,dec,char) 1.(3, 5, ) 2.(2, 3, )
m[0x0x1c460] = want(B) =?= guess(hits,dec,char) 1.(2, 26, ) 2.(1, 1, )
m[0x0x1c461] = want(o) =?= guess(hits,dec,char) 1.(2, 112, p) 2.(2, 153, )
m[0x0x1c462] = want(o) =?= guess(hits,dec,char) 1.(3, 7, ) 2.(3, 180, 4)
m[0x0x1c463] = want(m) =?= guess(hits,dec,char) 1.(2, 60, <) 2.(2, 110, n)
m[0x0x1c464] = want(e) =?= guess(hits,dec,char) 1.(1, 1, ) 2.(1, 2, )
m[0x0x1c465] = want(r) =?= guess(hits,dec,char) 1.(3, 3, ) 2.(2, 8,)
m[0x0x1c466] = want(T) =?= guess(hits,dec,char) 1.(3, 100, d) 2.(2, 7, )
m[0x0x1c467] = want(e) =?= guess(hits,dec,char) 1.(2, 7, ) 2.(2, 36, \$)
m[0x0x1c468] = want(s) =?= guess(hits,dec,char) 1.(1, 1, ) 2.(1, 2, )
m[0x0x1c469] = want(t) =?= guess(hits,dec,char) 1.(2, 163, #) 2.(2, 172, ,)
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A.3 Delay-on-Miss Restricted Wakeups

m[0x0x1c450] = want(!) =?= guess(hits,dec,char) 1.(2, 2, ) 2.(2, 6, )
m[0x0x1c451] = want(") =?= guess(hits,dec,char) 1.(2, 157, ) 2.(1, 1, )
m[0x0x1c452] = want(#) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 6, )
m[0x0x1c453] = want(T) =?= guess(hits,dec,char) 1.(2, 110, n) 2.(2, 206, N)
m[0x0x1c454] = want(h) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 10,
)
m[0x0x1c455] = want(i) =?= guess(hits,dec,char) 1.(2, 9, ) 2.(2, 193, A)
m[0x0x1c456] = want(s) =?= guess(hits,dec,char) 1.(2, 3, ) 2.(2, 62, >)
m[0x0x1c457] = want(I) =?= guess(hits,dec,char) 1.(2, 9, ) 2.(2, 232, h)
m[0x0x1c458] = want(s) =?= guess(hits,dec,char) 1.(2, 4, ) 2.(2, 5, )
m[0x0x1c459] = want(T) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 165, \%)
m[0x0x1c45a] = want(h) =?= guess(hits,dec,char) 1.(2, 3, ) 2.(2, 29, )
m[0x0x1c45b] = want(e) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 18, )
m[0x0x1c45c] = want(B) =?= guess(hits,dec,char) 1.(2, 150, ) 2.(2, 252, |)
m[0x0x1c45d] = want(a) =?= guess(hits,dec,char) 1.(2, 6, ) 2.(2, 49, 1)
m[0x0x1c45e] = want(b) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 4, )
m[0x0x1c45f] = want(y) =?= guess(hits,dec,char) 1.(2, 8,) 2.(1, 1, )
m[0x0x1c460] = want(B) =?= guess(hits,dec,char) 1.(4, 2, ) 2.(2, 5, )
m[0x0x1c461] = want(o) =?= guess(hits,dec,char) 1.(2, 2, ) 2.(2, 10,
)
m[0x0x1c462] = want(o) =?= guess(hits,dec,char) 1.(3, 193, A) 2.(2, 14, )
m[0x0x1c463] = want(m) =?= guess(hits,dec,char) 1.(2, 4, ) 2.(2, 8,)
m[0x0x1c464] = want(e) =?= guess(hits,dec,char) 1.(2, 60, <) 2.(1, 1, )
m[0x0x1c465] = want(r) =?= guess(hits,dec,char) 1.(2, 2, ) 2.(2, 3, )
m[0x0x1c466] = want(T) =?= guess(hits,dec,char) 1.(2, 8,) 2.(2, 77, M)
m[0x0x1c467] = want(e) =?= guess(hits,dec,char) 1.(2, 9, ) 2.(2, 14, )
m[0x0x1c468] = want(s) =?= guess(hits,dec,char) 1.(2, 9, ) 2.(2, 161, !)
m[0x0x1c469] = want(t) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 6, )

A.4 Speculative Taint Tracking

This is the result from Speculative Taint Tracking with only load-load dependen-
cies implemented. The result is not complete since the program terminates.

m[0x0x80002750] = want(!) =?= guess(hits,dec,char) 1.(10, 33, !) 2.(1, 1, )
m[0x0x80002751] = want(") =?= guess(hits,dec,char) 1.(10, 34, ") 2.(1, 1, )
m[0x0x80002752] = want(#) =?= guess(hits,dec,char) 1.(10, 35, #) 2.(1, 1, )
m[0x0x80002753] = want(T) =?= guess(hits,dec,char) 1.(7, 84, T) 2.(1, 1, )
m[0x0x80002754] = want(h) =?= guess(hits,dec,char) 1.(6, 104, h) 2.(1, 1, )
m[0x0x80002755] = want(i) =?= guess(hits,dec,char) 1.(8, 105, i) 2.(1, 1, )
m[0x0x80002756] = want(s) =?= guess(hits,dec,char) 1.(9, 115, s) 2.(1, 1, )
m[0x0x80002757] = want(I) =?= guess(hits,dec,char) 1.(8, 73, I) 2.(1, 1, )
make: *** [/lhome/johnala/chipyard/common.mk:206: run-binary] Error 2
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Spectre Variant 2 Results

B.1 Baseline

m[0x0x1c480] = want(!) =?= guess(hits,dec,char) 1.(10, 33, !) 2.(3, 178, 2)
m[0x0x1c481] = want(") =?= guess(hits,dec,char) 1.(8, 34, ") 2.(2, 2, )
m[0x0x1c482] = want(#) =?= guess(hits,dec,char) 1.(10, 35, #) 2.(2, 3, )
m[0x0x1c483] = want(T) =?= guess(hits,dec,char) 1.(9, 84, T) 2.(2, 231, g)
m[0x0x1c484] = want(h) =?= guess(hits,dec,char) 1.(9, 104, h) 2.(3, 51, 3)
m[0x0x1c485] = want(i) =?= guess(hits,dec,char) 1.(7, 105, i) 2.(2, 8,)
m[0x0x1c486] = want(s) =?= guess(hits,dec,char) 1.(10, 115, s) 2.(2, 52, 4)
m[0x0x1c487] = want(I) =?= guess(hits,dec,char) 1.(9, 73, I) 2.(2, 5, )
m[0x0x1c488] = want(s) =?= guess(hits,dec,char) 1.(8, 115, s) 2.(2, 4, )
m[0x0x1c489] = want(T) =?= guess(hits,dec,char) 1.(8, 84, T) 2.(2, 8,)
m[0x0x1c48a] = want(h) =?= guess(hits,dec,char) 1.(6, 104, h) 2.(1, 0, )
m[0x0x1c48b] = want(e) =?= guess(hits,dec,char) 1.(9, 101, e) 2.(2, 0, )
m[0x0x1c48c] = want(B) =?= guess(hits,dec,char) 1.(10, 66, B) 2.(2, 1, )
m[0x0x1c48d] = want(a) =?= guess(hits,dec,char) 1.(7, 97, a) 2.(2, 35, #)
m[0x0x1c48e] = want(b) =?= guess(hits,dec,char) 1.(8, 98, b) 2.(2, 4, )
m[0x0x1c48f] = want(y) =?= guess(hits,dec,char) 1.(7, 121, y) 2.(2, 8,)
m[0x0x1c490] = want(B) =?= guess(hits,dec,char) 1.(10, 66, B) 2.(2, 6, )
m[0x0x1c491] = want(o) =?= guess(hits,dec,char) 1.(8, 111, o) 2.(2, 1, )
m[0x0x1c492] = want(o) =?= guess(hits,dec,char) 1.(9, 111, o) 2.(2, 1, )
m[0x0x1c493] = want(m) =?= guess(hits,dec,char) 1.(10, 109, m) 2.(2, 159, )
m[0x0x1c494] = want(e) =?= guess(hits,dec,char) 1.(9, 101, e) 2.(3, 169, ))
m[0x0x1c495] = want(r) =?= guess(hits,dec,char) 1.(10, 114, r) 2.(2, 1, )
m[0x0x1c496] = want(T) =?= guess(hits,dec,char) 1.(9, 84, T) 2.(2, 6, )
m[0x0x1c497] = want(e) =?= guess(hits,dec,char) 1.(10, 101, e) 2.(2, 15, )
m[0x0x1c498] = want(s) =?= guess(hits,dec,char) 1.(7, 115, s) 2.(2, 63, ?)
m[0x0x1c499] = want(t) =?= guess(hits,dec,char) 1.(10, 116, t) 2.(2, 8,)

71



72 J.A. Lauvdal: Investigating Speculative Side-Channel Protection

B.2 Delay-on-Miss

m[0x0x1c480] = want(!) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 142, )
m[0x0x1c481] = want(") =?= guess(hits,dec,char) 1.(2, 2, ) 2.(1, 1, )
m[0x0x1c482] = want(#) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 6, )
m[0x0x1c483] = want(T) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 2, )
m[0x0x1c484] = want(h) =?= guess(hits,dec,char) 1.(2, 4, ) 2.(2, 53, 5)
m[0x0x1c485] = want(i) =?= guess(hits,dec,char) 1.(2, 30, ) 2.(2, 142, )
m[0x0x1c486] = want(s) =?= guess(hits,dec,char) 1.(2, 0, ) 2.(2, 22, )
m[0x0x1c487] = want(I) =?= guess(hits,dec,char) 1.(2, 66, B) 2.(2, 179, 3)
m[0x0x1c488] = want(s) =?= guess(hits,dec,char) 1.(2, 8,) 2.(2, 58, :)
m[0x0x1c489] = want(T) =?= guess(hits,dec,char) 1.(2, 4, ) 2.(2, 104, h)
m[0x0x1c48a] = want(h) =?= guess(hits,dec,char) 1.(3, 88, X) 2.(3, 111, o)
m[0x0x1c48b] = want(e) =?= guess(hits,dec,char) 1.(2, 2, ) 2.(2, 47, /)
m[0x0x1c48c] = want(B) =?= guess(hits,dec,char) 1.(3, 70, F) 2.(2, 1, )
m[0x0x1c48d] = want(a) =?= guess(hits,dec,char) 1.(3, 155, .(2, 9, )
m[0x0x1c48e] = want(b) =?= guess(hits,dec,char) 1.(2, 27, .(1, 1, )
m[0x0x1c48f] = want(y) =?= guess(hits,dec,char) 1.(2, 2, ) 2.(2, 30, )
m[0x0x1c490] = want(B) =?= guess(hits,dec,char) 1.(2, 5, ) 2.(2, 47, /)
m[0x0x1c491] = want(o) =?= guess(hits,dec,char) 1.(2, 7, ) 2.(2, 48, 0)
m[0x0x1c492] = want(o) =?= guess(hits,dec,char) 1.(2, 3, ) 2.(2, 6, )
m[0x0x1c493] = want(m) =?= guess(hits,dec,char) 1.(1, 1, ) 2.(1, 2, )
m[0x0x1c494] = want(e) =?= guess(hits,dec,char) 1.(2, 7, ) 2.(2, 21, )
m[0x0x1c495] = want(r) =?= guess(hits,dec,char) 1.(3, 124, |) 2.(3, 201, I)
m[0x0x1c496] = want(T) =?= guess(hits,dec,char) 1.(2, 137, ) 2.(2, 142, )
m[0x0x1c497] = want(e) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 46, .)
m[0x0x1c498] = want(s) =?= guess(hits,dec,char) 1.(2, 63, ?) 2.(2, 69, E)
m[0x0x1c499] = want(t) =?= guess(hits,dec,char) 1.(2, 4, ) 2.(2, 166, &)
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B.3 Delay-on-Miss Restricted Wakeups

m[0x0x1c480] = want(!) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 9, )
m[0x0x1c481] = want(") =?= guess(hits,dec,char) 1.(2, 69, E) 2.(2, 193, A)
m[0x0x1c482] = want(#) =?= guess(hits,dec,char) 1.(2, 8,) 2.(2, 84, T)
m[0x0x1c483] = want(T) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 5, )
m[0x0x1c484] = want(h) =?= guess(hits,dec,char) 1.(3, 164, \$) 2.(2, 2, )
m[0x0x1c485] = want(i) =?= guess(hits,dec,char) 1.(2, 170, *) 2.(1, 1, )
m[0x0x1c486] = want(s) =?= guess(hits,dec,char) 1.(2, 6, ) 2.(2, 227, c)
m[0x0x1c487] = want(I) =?= guess(hits,dec,char) 1.(2, 1, ) 2.(2, 2, )
m[0x0x1c488] = want(s) =?= guess(hits,dec,char) 1.(2, 17, ) 2.(2, 23, )
m[0x0x1c489] = want(T) =?= guess(hits,dec,char) 1.(2, 2, ) 2.(2, 48, 0)
m[0x0x1c48a] = want(h) =?= guess(hits,dec,char) 1.(3, 4, ) 2.(3, 219, [)
m[0x0x1c48b] = want(e) =?= guess(hits,dec,char) 1.(1, 1, ) 2.(1, 2, )
m[0x0x1c48c] = want(B) =?= guess(hits,dec,char) 1.(1, 0, ) 2.(1, 1, )
m[0x0x1c48d] = want(a) =?= guess(hits,dec,char) 1.(3, 29, ) 2.(2, 4, )
m[0x0x1c48e] = want(b) =?= guess(hits,dec,char) 1.(3, 132, ) 2.(2, 5, )
m[0x0x1c48f] = want(y) =?= guess(hits,dec,char) 1.(3, 97, a) 2.(2, 6, )
m[0x0x1c490] = want(B) =?= guess(hits,dec,char) 1.(2, 2, ) 2.(2, 4, )
m[0x0x1c491] = want(o) =?= guess(hits,dec,char) 1.(2, 3, ) 2.(2, 7, )
m[0x0x1c492] = want(o) =?= guess(hits,dec,char) 1.(2, 29, ) 2.(2, 163, #)
m[0x0x1c493] = want(m) =?= guess(hits,dec,char) 1.(2, 8,) 2.(2, 10,
)
m[0x0x1c494] = want(e) =?= guess(hits,dec,char) 1.(2, 9, ) 2.(2, 48, 0)
m[0x0x1c495] = want(r) =?= guess(hits,dec,char) 1.(2, 20, ) 2.(2, 34, ")
m[0x0x1c496] = want(T) =?= guess(hits,dec,char) 1.(2, 9, ) 2.(2, 171, +)
m[0x0x1c497] = want(e) =?= guess(hits,dec,char) 1.(2, 4, ) 2.(2, 33, !)
m[0x0x1c498] = want(s) =?= guess(hits,dec,char) 1.(2, 17, ) 2.(2, 66, B)
m[0x0x1c499] = want(t) =?= guess(hits,dec,char) 1.(2, 88, X) 2.(2, 138,
)

B.4 Speculative Taint Tracking

This is the result from Speculative Taint Tracking with only load-load dependen-
cies implemented. The result is not complete since the program terminates.

m[0x0x80002770] = want(!) =?= guess(hits,dec,char) 1.(10, 33, !) 2.(1, 1, )
m[0x0x80002771] = want(") =?= guess(hits,dec,char) 1.(10, 34, ") 2.(1, 1, )
m[0x0x80002772] = want(#) =?= guess(hits,dec,char) 1.(10, 35, #) 2.(1, 1, )
m[0x0x80002773] = want(T) =?= guess(hits,dec,char) 1.(7, 84, T) 2.(1, 1, )
m[0x0x80002774] = want(h) =?= guess(hits,dec,char) 1.(6, 104, h) 2.(1, 1, )
m[0x0x80002775] = want(i) =?= guess(hits,dec,char) 1.(6, 105, i) 2.(1, 1, )
m[0x0x80002776] = want(s) =?= guess(hits,dec,char) 1.(8, 115, s) 2.(1, 1, )
m[0x0x80002777] = want(I) =?= guess(hits,dec,char) 1.(7, 73, I) 2.(1, 1, )
make: *** [/lhome/johnala/chipyard/common.mk:206: run-binary] Error 2





Appendix C

Implementation Overhead
Result

C.1 Baseline

+----------------------------+--------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+----------------------------+--------+-------+------------+-----------+-------+
| CLB LUTs | 338268 | 0 | 0 | 1728000 | 19.58 |
| LUT as Logic | 321053 | 0 | 0 | 1728000 | 18.58 |
| LUT as Memory | 17215 | 0 | 0 | 791040 | 2.18 |
| LUT as Distributed RAM | 15415 | 0 | | | |
| LUT as Shift Register | 1800 | 0 | | | |
| CLB Registers | 202236 | 2 | 0 | 3456000 | 5.85 |
| Register as Flip Flop | 202235 | 2 | 0 | 3456000 | 5.85 |
| Register as Latch | 0 | 0 | 0 | 3456000 | 0.00 |
| Register as AND/OR | 1 | 0 | 0 | 3456000 | <0.01 |
| CARRY8 | 2817 | 0 | 0 | 216000 | 1.30 |
| F7 Muxes | 21120 | 0 | 0 | 864000 | 2.44 |
| F8 Muxes | 6667 | 0 | 0 | 432000 | 1.54 |
| F9 Muxes | 0 | 0 | 0 | 216000 | 0.00 |
+----------------------------+--------+-------+------------+-----------+-------+
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C.2 Delay-on-Miss

+----------------------------+--------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+----------------------------+--------+-------+------------+-----------+-------+
| CLB LUTs | 338589 | 0 | 0 | 1728000 | 19.59 |
| LUT as Logic | 321374 | 0 | 0 | 1728000 | 18.60 |
| LUT as Memory | 17215 | 0 | 0 | 791040 | 2.18 |
| LUT as Distributed RAM | 15415 | 0 | | | |
| LUT as Shift Register | 1800 | 0 | | | |
| CLB Registers | 202267 | 2 | 0 | 3456000 | 5.85 |
| Register as Flip Flop | 202266 | 2 | 0 | 3456000 | 5.85 |
| Register as Latch | 0 | 0 | 0 | 3456000 | 0.00 |
| Register as AND/OR | 1 | 0 | 0 | 3456000 | <0.01 |
| CARRY8 | 2817 | 0 | 0 | 216000 | 1.30 |
| F7 Muxes | 20992 | 0 | 0 | 864000 | 2.43 |
| F8 Muxes | 6645 | 0 | 0 | 432000 | 1.54 |
| F9 Muxes | 0 | 0 | 0 | 216000 | 0.00 |
+----------------------------+--------+-------+------------+-----------+-------+

C.3 Delay-on-Miss Restricted Wakeups

+----------------------------+--------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+----------------------------+--------+-------+------------+-----------+-------+
| CLB LUTs | 338589 | 0 | 0 | 1728000 | 19.59 |
| LUT as Logic | 321374 | 0 | 0 | 1728000 | 18.60 |
| LUT as Memory | 17215 | 0 | 0 | 791040 | 2.18 |
| LUT as Distributed RAM | 15415 | 0 | | | |
| LUT as Shift Register | 1800 | 0 | | | |
| CLB Registers | 202267 | 2 | 0 | 3456000 | 5.85 |
| Register as Flip Flop | 202266 | 2 | 0 | 3456000 | 5.85 |
| Register as Latch | 0 | 0 | 0 | 3456000 | 0.00 |
| Register as AND/OR | 1 | 0 | 0 | 3456000 | <0.01 |
| CARRY8 | 2817 | 0 | 0 | 216000 | 1.30 |
| F7 Muxes | 20992 | 0 | 0 | 864000 | 2.43 |
| F8 Muxes | 6645 | 0 | 0 | 432000 | 1.54 |
| F9 Muxes | 0 | 0 | 0 | 216000 | 0.00 |
+----------------------------+--------+-------+------------+-----------+-------+
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C.4 Speculative Taint Tracking

+----------------------------+--------+-------+------------+-----------+-------+
| Site Type | Used | Fixed | Prohibited | Available | Util% |
+----------------------------+--------+-------+------------+-----------+-------+
| CLB LUTs | 342128 | 0 | 0 | 1728000 | 19.80 |
| LUT as Logic | 324913 | 0 | 0 | 1728000 | 18.80 |
| LUT as Memory | 17215 | 0 | 0 | 791040 | 2.18 |
| LUT as Distributed RAM | 15415 | 0 | | | |
| LUT as Shift Register | 1800 | 0 | | | |
| CLB Registers | 203217 | 2 | 0 | 3456000 | 5.88 |
| Register as Flip Flop | 203216 | 2 | 0 | 3456000 | 5.88 |
| Register as Latch | 0 | 0 | 0 | 3456000 | 0.00 |
| Register as AND/OR | 1 | 0 | 0 | 3456000 | <0.01 |
| CARRY8 | 2831 | 0 | 0 | 216000 | 1.31 |
| F7 Muxes | 21377 | 0 | 0 | 864000 | 2.47 |
| F8 Muxes | 6772 | 0 | 0 | 432000 | 1.57 |
| F9 Muxes | 0 | 0 | 0 | 216000 | 0.00 |
+----------------------------+--------+-------+------------+-----------+-------+
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