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Abstract

In society today, more renewable energy sources are being introduced as a con-
sequence of a desire to reduce climate emissions. As several of these renewables
cannot be controlled, such as wind power which is dependent on the wind to pro-
duce, it is important that hydropower with stored water is utilized in the best
possible way. For the hydropower producers, this is done by placing a water value
on the stored water, which gives an estimate of the price that can be obtained for
the electricity produced from the water in the future.

Setting the water values is done using a medium-term hydropower scheduling model,
normally built using either stochastic dynamic programming (SDP) or stochastic
dynamic dual programming (SDDP). In this master thesis, the SDP and SDDP
methods are compared to see which of them gives the best usage of the water in the
test case. The best usage is defined by the amount of income and spillage in the two
models and the fulfillment of the minimum discharge constraint in the test case.

The results from this case study show that the SDDP model has the lowest spillage
and the largest income and total value. Total value is the sum of income and the
value of the end reservoir. The results also show that the two models equally fulfill
the minimum discharge constraint. Because of this and the higher income and lower
spillage in SDDP compared to SDP, it can be concluded that the SDDP model gives
the best usage of the water in the test system.
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Sammendrag

I dagens samfunn blir flere fornybare energikilder innført som en konsekvens av et
ønske om å redusere klimautslippene. Ettersom flere av disse ikke kan kontrolleres,
for eksempel er man avhenging av vind for å produsere vindkraft, er det viktig
for samfunnet at vannmagasinene opereres p̊a best mulig måte. For vannkraft-
produsentene gjøres dette ved at en vannverdi settes p̊a det magasinerte vannet.
Vannverdien gir et estimat p̊a hvilken pris man kan oppn̊a for elektrisiteten man
produserer av vannet i magasinet.

For å bestemme vannverdien brukes en mellomlang vannkraftmodel, gjerne bygget
p̊a enten stokastisk dynamisk programmering (SDP) eller stokastisk dynamisk dual
programmering (SDDP). I denne masteroppgaven bli SDP og SDDP metodene sam-
menlignet for å se hvilken av de som gir den beste bruken av vannet i testsystemet.
Den beste bruken blir definert av mengden tapt vann og inntekt i de to modellene
og oppfyllelsen av minstevannføringskravet i testsystemet.

Resultatene fra denne oppgaven viser at SDDP modellen har lavest tapt vann og
størst inntekt og total verdi. Total verdi er summen av inntekt og verdien av sluttma-
gasin. Resultatene viser ogs̊a at de to modellene oppfyller minstevannføringskravet
likt. P̊a grunn av dette og den høyere inntekten og lavere tapt vann i SDDP sam-
menlignet med SDP, kan det bli konkludert med at SDDP modellen gir den beste
bruken av vannet i testsystemet.
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Abbreviations

EER Equivalent energy representation

EMPS Multi-Area Power-market Simulator

EOPS One-area Power-market Simulator

LP Linear Programming

MAD SINTEF project to develop methods for aggregation and

disaggregation

MIP Mixed integer programming

NTE Nord-Trøndelag Elektrisitetsverk

NVE Norwegian of Water Resources and Energy Directorate

SDDP Stochastic Dynamic Dual Programming

SDP Stochastic Dynamic Programming

SINTEF Norwegian research institute

SOS2 Special Ordered Set of Type Two

SSDP Sampling Stochastic Dynamic Programming
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Nomenclature

Index sets

I Set of iterations i

P Set of production plants p

R Set of reservoirs r

S Set of scenarios s for price and inflow

T Set of weeks t (stages)

K Set of discrete reservoir volumes k (states)

V Set of volume scenarios v from forward loop in SDDP

Parameters

αs
t Future income for time step t, given scenario s

cm3/s to Mm3 Conversion factor from m3/s to Mm3

ϵ Accepted error in water value

Er Energy equivalent for each reservoir r

Etot
r Total energy equivalent for each reservoir r

Ft(vt) Future income for time step t, given reservoir level vt

iw Inflow in week w for the whole watercourse

iagg,w Aggregated inflow in week w

irannual Mean annual inflow to reservoir r

ist Inflow in time step t, given scenario s

irt, natural Natural inflow in time step t for reservoir r

Kk Discrete volume section

khigh Parameter for setting initial future value for the high scenario

kmean Parameter for setting initial future value for the mean scenario

klow Parameter for setting initial future value for the low scenario

λs
t Power price in time step t, given scenario s
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λmw Penalty for missing water

λmean Mean price in the price scenarios

µi Mean inflow

mhigh Parameter for setting initial cuts for the high scenario

mmean Parameter for setting initial cuts for the mean scenario

mlow Parameter for setting initial cuts for the low scenario

Pmax Maximum production capacity for the aggregated plant

P p
max Maximum production capacity for each production plant p

P SamløpFunna
min Minimum aggregated production to fulfill the minimum discharge

Qr
max Maximum discharge from reservoir r

QSamløp Funna
min Minimum discharge at Samløp Funna

ρs Probability of scenario s

ρv Probability of volume scenario s

Rr Degree of regulation for reservoir r

sr Share of the total inflow to reservoir r

σi Standard deviation in inflow

vinitt Initial volume for time step t

Vmax Maximum reservoir volume for the aggregated reservoir

V r
max Maximum reservoir volume for reservoir r

ws
t Water value for time step t, given scenario s

W k
t Aggregated water value for time step t and discrete volume k

Wt(vt) Water value in for time step t, given reservoir volume vt

x



Variables

α(vt) Future income for the reservoir level vt.

δvt (i) Future value for reservoir r in time step t and iteration i

δhight=T Initial future value for high scenario in time step t = T

δmean
t=T Initial future value for mean scenario in time step t = T

δlowt=T Initial future value for low scenario in time step t = T

γk SOS2 variable between 0 and 1 for the future income restriction in the
SDP model for each discrete reservoir level k.

it Inflow in time step t

irt Inflow in time step t to reservoir r

µr,k Variable between 0 and 1 for the future income restriction in the
disaggregation model

mwr
t Missing water in time step t to reservoir r

ϕr,v
t (i) Cut for reservoir r in time step t and iteration i

ϕhigh
t=T Initial cut for high scenario in time step t = T

ϕmean
t=T Initial cut for mean scenario in time step t = T

ϕlow
t=T Initial cut for low scenario in time step t = T

pt Aggregated production in time step t

ppt Production in time step t in production plant p

qrt Discharge in time step t from reservoir r

rvt Revenue including the penalty cost in time step t for volume scenario
v

st Aggregated spillage in time step t

srt Spillage in time step t from reservoir r

σ̂ Standard deviation of objective function value

vt Reservoir volume in time step t

vrt Reservoir volume in time step t in reservoir r

vr,vt Reservoir volume in reservoir r for time step t and volume scenario v
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wr,k Water value for reservoir r and discrete volume k

ws,r
t Reservoir volume in reservoir r for time step t and scenario s

Wi,t Water value in iteration i and time step t

z Objective function value

z Lower bound

ẑ Mean objective function value

zit Inflow in time step t without impact of seasonal variations

zv Sum of revenue in the planning horizon
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1 Introduction

Section 1.1 and 1.2 are reused from Section 1.1 and 1.2 in [2].

1.1 Mer̊aker Hydropower System

The water course investigated in this thesis is Mer̊aker hydropower system. The

hydropower system consist of 5 reservoirs and 3 plants and is one of the water

courses owned by NTE. In addition there are several creek inlets in the water course

as well. There is also a measure point for discharge downstream two of the power

plants, that measure the sum of discharge from these two plants. The measure point

is motivated by the minimum discharge constraint in the downstream river. The

system is presented in figure 1.

Figure 1: Mer̊aker Hydropower System

The grey boxes are power plants, the blue triangles are reservoirs and the green boxes

are the name of the reservoirs. The light red boxes are creek inlets, the grey circle is

the measure point for discharge and the purple box is the name of the measure point.
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In addition to the capacity on generation and the reservoirs, there are two main

restrictions in the watercourse that can cause challenges. These restrictions are a

minimum discharge constraint at Samlop Funna, that is a restriction on the sum

of discharge downstream both Funna and Mer̊aker power plants. Second a state-

dependent constraint at Fjergen reservoir. The state-dependent constraint state

that the discharge from Fjergen has to be stopped while the reservoir level is below

512 meters from the first of May, or latest the beginning of the spring flood and

until the first of August.

1.2 Nord-Trondelag Elektrisitetsverk (NTE)

NTE are considering replacing the medium-term hydropower scheduling model they

are currently using, which is a model that is based on SDP to calculate water values.

One of the other options is a model using SDDP, and there is also a third option

that uses a scenario tree to calculate the water values.

The advantages with the SDP model they are currently using are the fast com-

putation time, and the possibility to implement state-dependent restrictions. The

disadvantage is that in a SDP model the watercourse has to be aggregated, and

therefore might lose some details of the hydropower system or overestimate the

flexibility in the system.

The SDDPmodel, on the other hand, does not aggregate the hydropower system, but

solves the problem with representation of all reservoirs and plants. The computation

time of the SDDP model is, however, somewhat higher. In addition, the SDDP

model does not handle state-dependent restrictions as well as the SDP model.

1.3 Research question

In [2] a SDP model for the Mer̊aker hydropower system is investigated, and it is there

argued that the aggregated model of the watercourse overestimates the flexibility in

the system and the ability to hold inflow. This leads to an overestimation of the

income from the watercourse. To get more correct water values and expectations of

income, a SDDP model for the watercourse can be further investigated. This means

building a SDDP model for the watercourse and compare the result from this model

with the result for the SDP model developed in [2].
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This master thesis looks closer at the SDDP model for one of NTE’s water courses,

the Mer̊aker hydropower system, and the aim is to evaluate if the SDDP model de-

livers better production plans and more income for the producer than the aggregated

SDP model. More specific the research question can be formulated as:

• Which of the two methods SDP and SDDP for a medium-term hydropower

scheduling problem provides the best usage of the water in Mer̊aker hydro-

power system?

To figure out which of the models that give the best usage, the amount of income

will be investigated in addition to the amount of spillage. The income represents

the revenue for the power producer, while the spillage represents the water that is

lost and that could have contributed to an even larger income. In addition, the

reservoir trajectories and the fulfillment of the minimum discharge constraint will

be presented.

1.4 Contribution

Both SDP and SDDP are methods that are used for hydropower scheduling for many

years, both in Norway and else in the world where there exist hydropower. A lot of

companies use one of these techniques in their daily or weekly hydropower planning

to calculate water values or production plans for several months or up to a few years.

Because of this, there exists a good amount of research on both methods.

[3] and [4] studies SDP in long-term hydropower scheduling for larger hydropower

systems using aggregation and disaggregation. [3] consider an aggregation-disaggregation

of the Lower Caroni hydropower system in Venezuela both in time and space, while

[4] presents the method that has been implemented for Hydro Quebec’s hydro sys-

tem.

As examples of applications of SDDP are [5], [6] and [7]. [5] studies the trade-offs and

risks associated with a large hydropower system with flow requirements and inflow

modeling. In [6] the importance of detailed hydropower scheduling modeling when

including sales of capacity is investigated, and in [7] a combined method using both

SDP and SDDP is presented to optimal schedule a hydropower system considering

both markets for energy and reserve capacity.
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Since there is no need for aggregation in SDDP, the claim is that the method gives

better and more precise results for larger hydropower systems [7]. Despite this, there

is not much research comparing the two methods to my knowledge. Especially on

watercourses that have state-dependent and minimum discharge constraints.

[8] is an example of an article comparing SDP and SDDP. The paper studies a

medium-term hydro problem and is taking into consideration risk-aware operation,

short-term production flexibility and provision of spinning reserves. The article

shows that both methods produce similar results for a relatively small test system.

Since the test system is relatively simple the disadvantages with aggregation and

disaggregation in the SDP method do not appear.

In this master thesis, the aim is to compare the two methods SDP and SDDP for

hydropower scheduling on a multi-reservoir test system. The main contribution of

this thesis is the comparison of the two methods SDP and SDDP for a medium-term

hydropower scheduling problem for a test system, the Mer̊aker hydropower system,

to see which of them provides the best solution.

4



2 Theory

Section 2.1 and 2.2 are reused from Section 2.1 and 2.2 in [2].

2.1 Introduction to Hydropower Scheduling

Hydropower scheduling is an optimization problem, where the objective is to max-

imize the expected profit over the planning horizon with the given weather and price

forecast while satisfying all relevant constraints [9]. The constraints that have to

be satisfied are typically constraints on generation, reservoir balance, minimum dis-

charge and other environmental constraints. In a hydropower system, water can be

seen as a free resource, and the variable cost of operating a hydropower plant is very

low. On the other side, the availability of the water is limited and the future avail-

ability is uncertain and dependent on the inflow. The inflow again is dependent on

the temperature, the amount of rain and the amount of snow storage. This gives a

dilemma; generating one unit of electricity today limits the opportunity to generate

electricity tomorrow. Also if you do not generate electricity today the risk of spillage

tomorrow might increase if inflow is high. Out of this the term opportunity cost or

expected marginal value of the hydro is defined [10]. In this thesis, the expected

marginal value of one extra storage unit in a reservoir is referred to as the water

value.

When deciding for which hydropower scheduling model to use we distinguish between

short, medium and long-term scheduling models. Short-term scheduling has a time

horizon of 1-2 weeks normally and the weather forecast is assumed to be ”per-

fect”. This is therefore a deterministic problem, often solved by using a mixed

integer problem (MIP) and a more detailed physical system description [11]. For

the medium and long-term models, the weather is an uncertain factor, and the plan-

ning horizon is respectively 1-5 years and longer than that. This gives a stochastic

problem and is usually solved by using stochastic dynamic programming (SDP)

or stochastic dynamic dual programming (SDDP), and often also in combination

with aggregation/disaggregation, especially for larger systems. This makes a rather

coarse description of the technical system.

5



In a medium or long-term scheduling problem, the uncertainty in inflow and price

is handled by creating inflow and/or price scenarios. The inflow scenarios are often

generated based on historical time series for inflow for the particular hydropower

system[12]. For a medium-term model, these time series will often have weekly

resolution and a duration of 30-80 years. The price scenarios are instead often

generated by simulating the price when the historical weather is applied to the

current power system.

6



2.2 Stochastic Dynamic Programming (SDP)

SDP has been the main procedure for calculating water values in a medium-term

hydropower scheduling problem for many years, and to some extent still is. SDP

is a stochastic optimization method with a dynamic structure, meaning that the

problem can be divided into a number of sequential stages. For each stage, typically

a week, there are defined a set of states. In a hydropower scheduling problem these

states are typically reservoir levels of 100 %, 90 %, ..., 0 % [13]. The storage level,

initial state, at the beginning of the first stage is assumed to be known.

The structure of the problem is formulated to start with the last stage, and for each

stage, state and scenario for inflow and price the one-stage problem is solved. The

structure of the problem is shown in figure 2, where the box for each week solves

one-stage problems for all scenarios and states. The expected future income function

is assumed to be zero in the last stage of the first iteration. The one-stage problem

is in most cases a LP problem and calculates the expected future income and the

water values for the given state and scenario.

Figure 2: Structure of SDP problem

7



The expected future income for a state is the mean value over the different scenarios.

Out of this, the expected future income function is created for each stage dependent

of each state. This is seen in figure 3 where the calculation of the future income

function for stage T-1 is shown. For each state the model gives a future income value,

which again is used to calculate the future income function. When calculating the

next stage the future income function is used to get a future value of the stored

water using interpolation over the end reservoir level of that stage. The process is

then repeated for all selected stages and the objective is to maximize income [13].

Figure 3: Calculation of Future Income Function for Stage T-1

When all stages are calculated the water values at the start and end are compared

to see if the convergence criteria is reached or not. If not the algorithm is repeated

starting at the last stage, now with the future income function from the first stage.

This algorithm continues until the convergence criteria is reached. In the end, the

water values of the reservoir for each stage and state are returned.

A disadvantage of the SDP method is that the computation times will increase

drastically when the system consists of more than one reservoir and can become

insoluble when considering a multi-reservoir system. This is because the SDP re-

cursion requires the enumeration of all combinations of initial storage values and

inflows [13]. Meaning that the number of states increases exponentially with the

number of reservoirs in the system.

The SDP algorithm is, therefore, best suited for a system with relatively few reser-

voirs, or else the system will suffer from extreme computation times when consid-

ering realistic multi-reservoir systems [14]. To avoid the curse of dimensionality,

the multi-reservoir system can be aggregated to an equivalent energy representation

(EER) [15] instead. The inflow, generation capacity and storage capacity are then

aggregated to an EER using the energy equivalent, that is a conversion factor from

m3 to kWh based on the efficiency of the system.

8



The SDP problem will then first be solved for the aggregated system to calculate

the aggregated water values. Then a disaggregation algorithm will disaggregate the

water values and generate production plans for each reservoir and plant. This is a

forward iteration, starting at week 1 with the initial reservoir levels and the water

values from the SDP problem as inputs.

9



2.3 Stochastic Dynamic Dual Programming (SDDP)

Due to the need of aggregation in the SDP method, the SDDP approach is an

alternative for medium- and long-term scheduling problems. The SDDP algorithm

is a sampling-based variant of multi-stage Benders decomposition and does not need

to fully discretize the state variables. This reduces the solution time and therefore

allows a more detailed formulation of the hydropower scheduling problem [14]. The

drawback of the SDDP method is that it cannot handle non-convexities, which might

appear when adding a state-dependent constraint. A state-dependent constraint is

a constraint that is dependent on the state of the system.

The SDDP algorithm is based on dual values and does not have a direct estimation

of the future value, as in SDP. Instead, the SDDP algorithm is an approximation

using dual values. This is shown in figure 4 by looking at the calculation of the

piecewise future cost function for stage T-1 [13] for a minimisation problem. Each

cut is determined by the expected cost and the dual values which give the slope.

Together all cuts for a given stage make the piecewise future cost surface.

Figure 4: Calculation of Piecewise Future Cost Function for Stage T-1

The structure of the method is that it has a backward and a forward loop, and the

method iterates between these two loops until convergence is reached, as shown in

figure 5. The backward loop iterates over all price and inflow scenarios, volume

scenarios and stages, beginning with the last. For each of these, it solves a one-stage

problem with input price, inflow, a start volume from the volume scenarios and cuts

generated from earlier iterations. The one-stage problem in the backward loop then

returns the water values and the objective function value. These again are used

to calculate the cuts for the next iteration and the lower bound in a minimizing

problem[13]. In most commercial SDDP models the inflow and/or the price are

sampled from a statistical model in the backward loop, and sometimes also in the

forward loop as well [16].

10



Figure 5: Structure of SDDP problem

The forward loop iterates over a random set of scenarios and all stages, starting at

the first. The random set of scenarios is called the volume scenarios. The reason

for not using the whole set is to keep the computation time low. For each stage and

scenario, it solves a one-stage problem with input price, inflow, start volume and cuts

generated from earlier iterations. The start volume is the actual start volume for the

first week, afterwards the start volume is equal to the end volume in the previous

week. The one-stage problem in the forward loop returns the end volumes and the

income. The end volumes are used as input to the backward loop for the different

volume scenarios, while the income is used to calculate the confidence interval of the

upper bound. The confidence interval consists of the mean revenue over the volume

scenarios plus/minus 1.96 times the standard deviation [13].

The method converges when the lower bound is inside the confidence interval of

the upper bound. One problem with this is that if the standard deviation is high,

you get a very large confidence interval, which again can turn to fast convergence.

Other convergence criterias that can be used are a minimum or maximum number

of iterations or a limit for the weighted deviation in all reservoirs in all weeks for all

simulated scenarios [17]. Some models also use the stabilisation of the lower bound

for a minimisation problem and the upper bound for a maximisation problem as a

convergence criteria as well [15], [18].
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2.3.1 End value setting in SDDP

In the SDDP model, the end value setting is important and can influence the results,

especially when running only for 1 year. At the end of the planning horizon, the

reservoirs will still have some water stored and hence a value. This value is reflected

in the initial cuts for the final stage. If this value is set too high, the model will save

more water than convenient. Opposite, if the end value is set too low the model

will use more water, and for the next year, you will have less water to produce

from. When running for more years this end value will have less influence on what

is happening in the first year. This will be a trade-off between running time and

accuracy in results.
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2.4 Autocorrelation

In a hydropower problem both the price and the inflow in one week are normally

strongly correlated to the price and inflow in the previous week [16]. This means

that if the price or the inflow is high in one week it is more likely high in the

next week and opposite. In a complex hydropower model, the autocorrelation in

price and inflow are taken into account, meaning that the model will give a higher

probability to scenarios close to the previous week than others. While a model

without autocorrelation taking into account will produce more if the price gets high,

a model with autocorrelation might not produce that much since it knows it is a

high probability the price is high also next week.

Taking the autocorrelation in inflow into account is especially important in a SDDP

problem, where you will not visit all states compared to the SDP. As presented

in section 2.2, in SDP the states visited are from 0% up to 100% of the reservoir

maximum volume for all stages. While in the SDDP method, the states that are

visited are determined by the forward loop and the randomly picked scenarios in

that loop. To guarantee that more of the solution space is visited in SDDP, a inflow

model often are used to generate the inflow scenarios, instead of using the historical

inflow series. This is done in [16], where the inflow model generates the inflow

scenarios by taking into account the autocorrelation and adding some random noise

to ensure that more states are visited.

The autocorrelation in price is not possible to handle in SDDP due to giving a non-

convex objective function. In the SINTEF model called ProdRisk, this is dealt with

in an outer SDP loop to retain the convexity in the problem [16].
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3 Literature Review

This chapter presents an overview of existing research comparing the two methods

SDP and SDDP for medium-term hydropower scheduling. The two methods have

been used for hydropower scheduling for decades, but there does not exist that much

research on comparing those two methods although.

One of the articles comparing the two methods is [8]. In the article the SDDP al-

gorithm is used to solve a medium-term hydropower optimization while considering

risk-averse operation, provision of spinning reserves and short-term production flex-

ibility. The SDDP algorithm used is compared to a SDP algorithm to see which one

of the two methods gives the best result. The hydropower system considered in this

article is quite small with one seasonal storage and one daily storage with two tur-

bines and pumps between them, and two turbines downstream the daily storage as

well. The authors of the article conclude that for this small reservoir both SDP and

SDDP give similar results, but that there is a need for research on more complicated

systems where SDP would not be applicable.

Article [19] also presents a comparison of the two methods to schedule energy storage

units, such as batteries, providing multiple services. The article shows that SDDP

outperforms SDP when storage efficiency is high, but when short computation times

are required SDP may be preferred. Storage efficiency is the efficiency of charging

and discharging the energy storage unit. Since the article looks at energy storage

and not hydro problems the result is not directly transferable, but the problems

have large similarities and therefore give good insight to the performance of the two

methods.

[7] presents a method for optimal scheduling of hydropower systems using a combin-

ation of SDP and SDDP. This is the same methodology that is used in the SINTEF

model called ProdRisk. The method is applied in a case study for a Norwegian

watercourse to see the changes in water values when going from an energy market

to an energy and reserve capacity market. The method that combines the SDP and

SDDP algorithms uses the benefits of each algorithm to create a better methodo-

logy to solve hydropower problems. This is for example that the price forecasts are

treated in the SDP, while reservoir levels and inflows are continuously approximated

in the SDDP [7].
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Based on the findings in [8], it is in this thesis also expected similar results for the

SDP and SDDP models. This is due to the watercourse studied consisting of only a

few reservoirs and plants, similar to the watercourse studied in [8]. In addition, the

watercourse studied in this thesis includes a minimum discharge constraint which

the watercourse in [8] does not have. In return the watercourse in [8] has some

constraints for spinning reserves that this model does not have.
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4 Presentation of the Case

In this section, a presentation of the case is done. First, the details of the Mer̊aker

hydropower system are presented. This information is gathered from NTE. Next,

a presentation of how the price and inflow scenarios are generated, and lastly a

presentation of the main restrictions in the system are done. Section 4.1, first part

of 4.2 and 4.3 are reused from Section 4.1, 4.2 and 4.3 in [2].

4.1 Details of the Mer̊aker Hydropower System

Mer̊aker hydropower system consists of three power plants; Tevla, Mer̊aker and

Funna. Tevla and Mer̊aker are two cascaded power plants connected to Funna

power plant only through a minimum discharge of 9.5 m3/s constraint in the upper

part of Stjørdalselva. Tevla power plant has, in addition to two generators, two

pumps. These pumps were originally built to reduce the spring flood, but are now

both used for seasonal and day-night pumping. The installed capacities and head

for each power plant are presented in table 1. To simplify the problem, the pumps

are not included in this master’s thesis case study.

Table 1: Power Plant Information

Power Plant G1 [MW] G2 [MW] P1 [MW] P2 [MW] Head [m]

Tevla 20.0 20.0 21.0 21.0 164.5

Mer̊aker 61.0 26.0 - - 263.7

Funna 21.5 - - - 336.2
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The reservoirs in the system are Skurdalssjøen, Hallsjøen, Fjergen, Tevla Dam and

Funnsjøen. Fjergen, Tevla Dam and Funnsjøen delivers water to the power plants

Tevla, Mer̊aker and Funna respectively, while Skurdalssjøen and Hallsjøen do not

have any power plant on their own, but delivers water to Fjergen. The regulating

heights and volume of the reservoirs are presented in table 2.

Table 2: Reservoir Information

Reservoir HRV [m] LRV [m]
Regulating height

[m]

Volume

[Mm3]

Skurdalssjø 694.25 687.75 6.5 12.87

Hallsjø 613.00 605.80 7.2 25.00

Fjergen 514.00 498.00 16.0 207.00

Tevla Dam 358.50 350 8.5 4.50

Funnsjøen 442.00 430.50 11.5 64.00

The gates at Skurdalsjøen and Hallsjøen are normally closed before the beginning

of the spring flood and held closed through the summer and autumn. Then in the

early winter, the gates are gradually opened, and at the beginning of the next year,

they are fully opened. This means that the inflow to Fjergen from these reservoirs

mostly happens during the winter. In the summer the only potential inflow is if the

reservoirs are full and the spillage will then flow to Fjergen.

In this watercourse, there are several catchments that give inflow to the reservoirs.

In table 3 each catchment is listed, as well as information about which reservoir the

water flows to, the area of the catchment and the yearly average inflow.
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Table 3: Inflow Information

Inflows
Flows to

Reservoir

Area of Catchment

[km2]

Yearly Inflow

[Mm3]

Hallsjøen Hallsjøen 33.4 47.3

Skurdalsjøen Skurdalsjøen 24.5 34.7

Skurdals̊aa Fjergen 4 5.7

Storbekken Fjergen 4.2 6

Storkjerring̊aa Fjergen 11.8 16.1

Litlkjerring̊aa Fjergen 13.1 18.6

Litl̊aa Fjergen 12.2 16.4

Fjergen Fjergen 169.7 115.7

Torsbjørka Tevla Dam 69.9 83.9

Fossvatna Tevla Dam 28 33.4

Dal̊aa Tevla Dam 161.8 193.9

Tevla Dam Tevla Dam 19.2 14.5

Funnsjøen Funnsjøen 80.1 41

Storbekken Funnsjøen 3.4 4.8

The degree of regulation is a term used in hydropower to see the relationship between

the reservoir volume and the mean annual inflow to the catchment. Equation 1 shows

the formula for calculating the degree of regulation, Rr, where V r
Max is the reservoir

volume and irannual is the mean annual inflow. In table 4 the degree of regulation for

the two main reservoirs, Fjergen and Funnsjøen are shown.

Rr =
V r
Max

irannual
(1)

Table 4: Degree of Regulation

Reservoir
Reservoir Volume

[Mm3]

Mean Annual Inflow

[Mm3]

Degree of

Regulation

Fjergen 207 178.5 1.16

Funnsjøen 64 45.8 1.40
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4.2 Price and Inflow Scenarios

The inflow scenarios used in this case are generated from historical time series for

inflow for each of the years from 1930 to 2000. The time series is based on a water

mark series from that area collected from NVE and then scaled to each reservoir

and creek inlet. Since the reservoirs and creek inlets in this watercourse are located

inside a small geographical area, the method would only give minor or negligible

faults. In the historical data, the inflows are sampled with an average value for

each day, each year. Through Python code, these series are converted to weekly

resolutions for the given years.

The price scenarios are generated using a NTE model, where the intention is to

maintain the correlation between price and inflow, like in the EMPS scenarios. The

price scenarios have a weekly resolution for four price sections for the years from

1930 to 2000. In a week the different sections are having respectively 33, 57, 30 and

48 hours. Out of this, a Python code is developed to create a time series with one

average price for each week for the desired years, based on the number of hours for

each price section. This gives in total 70 scenarios for both price and inflow that

are used in the SDP and SDDP algorithms for this master thesis.

In figure 6 and 7 the autocorrelation lag plot for the price and inflow series are

shown. To calculate the autocorrelation for the inflow series without the impact of

seasonal variation, equation 2 [16] is used, where it is the inflow for timestep t, µi is

the mean inflow and σi is the standard deviation in inflow. The figures show that

both the inflow and the price have a high degree of autocorrelation. The horizontal

line in the autocorrelation lag plot for the price series, comes from the transition

from one scenario year to the next.

zit =
it − µi

σi
(2)
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Figure 6: Autocorrelation Lag Plot for Price Series

Figure 7: Autocorrelation Lag Plot for Inflow Series

In figure 8 and 9 the partial autocorrelation plot for the price and inflow series are

shown. They show that for the price in the first lag, the autocorrelation factor

is around 0.9, while for the inflow the autocorrelation factor is around 0.7. This

again shows that both price and inflow are highly autocorrelated. This means that

if the price is high today, it is a large probability that the price is high tomorrow

also. The same applies to the opposite and for inflow. A model that has not taken

autocorrelation into account does not see this and will therefore produce more today

than a model that has taken autocorrelation into account.
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Figure 8: Partial Autocorrelation Plot for Price Series

Figure 9: Partial Autocorrelation Plot for Inflow Series

4.3 Main Restrictions of the Water Course

One of the main restrictions in the Mer̊aker water course is the minimum discharge

at Samløp Funna. This is a measuring point downstream of both Mer̊aker and Funna

power stations. The discharge at this point has to be larger than 9.5 m3/s at all

times. The discharge is determined by the production at Mer̊aker and Funna, in

addition to the spillage from Fjergen, Funnsjøen and Tevla Dam.
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To keep Fjergen over a certain minimum reservoir level during summer, a state-

dependent environmental summer restriction is applied. The constraint states that

the discharge from Fjergen has to be zero as long as the water level in Fjergen is

below 512 meters. This yields from the first of May or at the latest the beginning

of the spring flood to the first of August.

These constraints are stated in the concession for the watercourse, given by the regu-

lator NVE [20]. In this master thesis, only the minimum discharge will be simulated

in the algorithms. This is due to difficulties with state-dependent constraints in the

SDDP algorithm due to non-convexity, and not enough time to look into it.

Some previous and ongoing work that has looked into handling state-dependent

constraints in the SDDP algorithm is the HydroCen project at SINTEF [21]. In [16]

a state-dependent maximum discharge constraint is presented and how it is possible

to include it in a SDDP algorithm.
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5 Methodology and Model Description

This section presents the medium-term hydropower scheduling model for the Mer̊aker

watercourse, both the SDP and the SDDP model. The models aim to maxim-

ize profit from the power producers’ perspective while the constraints in the water

course are held. The SDP solution process consists of two main steps. A strategy

part, where the water values are calculated for an aggregated watercourse, and a

simulation part, where the detailed dispatch of the disaggregated watercourse is done

[22]. The SDDP algorithm consists of a forward and backward loop that calculates

both the water values and the production plans at the same time. In this thesis the

Python optimization package called Pyomo is used to build and run the problems

[23]. Section 5.1.1, 5.1.2, 5.1.3 and 5.1.4 are reused from Section 5.1, 5.2, 5.3 and

5.4 in [2].

5.1 SDP model description

Figure 10 shows the SDP model description, where the aggregated power system

goes into the SDP model. The output from the SDP model is the water values,

which again are fed into the disaggregation model. The disaggregation model gives

the production plan for the system.

Figure 10: SDP Model Description
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5.1.1 Aggregation of the Water Course

The SDP model applies best to a one-reservoir model, and aggregation from a multi-

reservoir system to a single equivalent hydro system is necessary. This is done by

aggregating all values for inflow, reservoir volume and production into one single

value for inflow, reservoir volume and production, given in GWh for this case. To

achieve this an energy equivalent for each reservoir is used to convert from volume

of inflow and water stored to GWh. This energy equivalent is calculated based

on the efficiency of the downstream plants and the average head. The aggregated

maximum reservoir volume, Vmax, is expressed in equation (3) from the sum over all

maximum reservoirs volumes, V r
max, times the total energy equivalent, Etot

r .

Vmax =
R∑

r=1

Etot
r ∗ V r

max (3)

The aggregated maximum plant production, Pmax, is equal to the sum over all

production plants maximum, P p
max, shown in equation (4).

Pmax =
P∑

p=1

P p
max (4)

The aggregated inflows are calculated based on a weekly inflow series for the whole

watercourse. To convert this to an aggregated inflow, the part that flows to each

reservoir in the system has to be known. This can be calculated by using the inflow

share, sr, which is the average yearly inflow for each inlet point divided by the

total yearly inflow to the watercourse. The inflow is normally given i m3/s, so a

conversion factor from m3/s to Mm3 is also needed, cm3/s to Mm3 . The aggregated

inflow each week, iagg,w, is given in equation (5).

iagg,w = iw ∗ cm3/s to Mm3 ∗
R∑

r=1

sr ∗ Etot
r (5)

In addition to this inflow, there is another inflow to the Fjergen reservoir from

Hallsjøen and Skurdalsjøen reservoir, affected by the operation of the gates. These

gates are normally closed at the beginning of the spring flood and then opened partly

again late in the autumn, and opened fully at the beginning of the year. From this,

the inflow from Hallsjøen and Skurdalsjøen are assumed to be zero from week 18-
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47. For week 48-52 and week 1-17, the inflow from Hallsjøen and Skurdalsjøen is

calculated based on the yearly inflow to the two reservoirs. The weekly inflow from

these reservoirs to Fjergen in week 1-17 is twice as high as the weekly inflow in week

48-52, because of the larger gate opening.

5.1.2 Solution Algorithm - SDP

The solution algorithm used to solve the hydropower scheduling problem for Mer̊aker

watercourse is described in this subsection. The large and complex problem is solved

by solving many smaller sub-problems, the one-stage problems. Each one-stage

problem is solved for all scenarios, each discrete reservoir volume and all time steps.

After solving the one-stage problem for all scenarios and volumes in week t, the

future income function for the next step (t-1) is calculated based on the previous

step.

When the problem has been solved for all weeks in the planning horizon the al-

gorithm re-solves, with the future income of week 1 as the end-value of the reservoir

in week 52, until the convergence criteria is obtained. Convergence is obtained when

the water values in one week are the same for two subsequent iterations. When the

SDP model has converged, the calculated water values can be used for a final for-

ward linear simulation in order to obtain detailed production plans for each plant

each week and the reservoir lanes for each reservoir.

The scenarios used in this case are scenarios for income and price for each of the

years from 1930 to 2000. In total, there are in this thesis used 70 scenarios in the

SDP algorithm. These are gathered from NTE.

Algorithm 1 SDP algorithm

while Wi−1,t=1 ̸= Wi,t=1 ± ϵ do
for t ∈ {52, 51, . . . , 1} do

for k ∈ {0, 10, . . . , K} do
for s ∈ {1, . . . , S} do

Solve one-stage problem with inputs λs
t , ist , vt−1, Ft+1(k),

that returns ωs
t and αs

t (5.1.3)
end for
Ft(k) =

∑
s∈S

1
ρs

∗ αs
t

Wt(k) =
∑

s∈S
1
ρs

∗ ωs
t

end for
end for

end while
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5.1.3 One-stage Problem

In a medium-term hydropower scheduling problem a one-stage problem is solved

one time for each scenario, start volume and week, as described in Algorithm 1,

to calculate the water values that later can be used to find the production plans.

The one-stage problem determines how much of the stored water that is used for

production of electricity each week.

If hydro is produced in one week, the opportunity to produce hydro at a later time

decreases with the amount of water used. At the same time, the risk of spillage in-

creases with increasing reservoir levels. The optimal decision each week is dependent

on electricity price, the amount of inflow, the initial reservoir level and the expected

future profit of the stored hydro. In the one-stage problem, these quantities are

assumed known. Therefore the one-stage problem is deterministic, meaning that all

uncertainties are known.

The one-stage problem consists of one objective function that aims to maximize

profit for the producer. In addition, the problem consists of multiple constraints

that reflect the limitations of the water course. This can be constraints on reservoir

capacity, production capacity, restrictions on discharge, etc. The objective function

and constraints are explained in more detail in the following subsections.

SDP Model Formulation

In equation (6) the model formulation for the one-stage problem is presented. The

objective function is described in equation (6a). The objective function maximizes

the income in the present week in addition to the future income as a function of the

end reservoir level. The price is given in EUR/GWh, the production in GWh and

the future income in EUR.
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max z = λs
t ∗ pt + α(vt) (6a)

0 ≤ vt ≤ Vmax (6b)

0 ≤ pt ≤ Pmax (6c)

vt = vt−1 − pt − st + ist (ωs
t ) (6d)

α(vt) =
∑
k∈V

γk ∗ Ft+1(k) (6e)

vt =
∑
k∈K

γk ∗Kk (6f)

∑
k∈V

γk = 1 (6g)

pt + st ≥ P Samlop Funna
min (6h)

In a hydropower system, there are several physical constraints. The purpose of

the physical constraints is to ensure that the physics in the watercourse is held.

One of these physical constraints is the maximum reservoir capacity, described in

equation (6b). This constraint states that the reservoir volume in one stage has to

be higher than zero and lower than the maximum reservoir volume permitted. For

the aggregated case the unit of the reservoir volume is GWh.

Another physical constraint is the maximum production capacity. This constraint

ensures that the production plants are operated safely and legally. The maximum

production constraint is described in equation (6c). This constraint states that the

production has to be greater than zero and lower than the upper production limit.

For the aggregated case, the unit of production is GWh. In this master’s thesis, no

efficiency effects nor head effects are included.

For the aggregated watercourse there are one waterway into the system and two

waterways out of the system. The inflow, ist , is the water coming into the system

and the production pt is the water converted to electricity. There is assumed to be

no bypass discharge in this system, so therefore the second outflow from the system

is the spillage, st. The spillage is the water that flows out of the system when the

stored water exceeds the reservoir capacity. For that reason, the spillage is wasted

energy, because it cannot be used for electricity production. The reservoir balance

is presented in equation (6d).
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The future income in week t is calculated based on an interpolation between the

values is the future vector from week t + 1, Ft+1(k), and the volume vector with

the discrete volumes, V . To do this a so-called SOS2-variable, γk, is used. This is

a variable that has to be between 0 and 1, and where at most two variables can be

non-zero. These variables also have to be adjacent to each other. Equation (6e)-(6g)

is the equations used to describe the future income. Since the problem is convex,

there is no need to have an extra constraint to ensure that the SOS2-variable behaves

as intended in the model.

In equation (6h) a constraint representing the minimum discharge is presented. The

constraints state that the sum of the production and spillage has to be larger than

a minimum level to fulfill the minimum discharge at Samløp Funna. The minimum

discharge is 9.5 m3/s, but are in the SDP model converted to GWh. This is done

by using the energy equivalents for the two upstream plants, Meraker and Funna.

These are again weighted by 50 % each, meaning that it is assumed that Samløp

Funna will get half of the water to fulfill the restriction from each plant.
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5.1.4 Disaggregation Based on Obtained Water Values

After the SDP problem is solved for the aggregated water course and the water

values for each week and scenario are calculated, a disaggregation has to be done

to find the production plans for each reservoir and plant. This is done by creating

restrictions for each reservoir and plant, and the connections between them. In

addition, restrictions for minimum discharge are created.

The problem is then solved for every week and scenario, starting at week one and

going forward. The input to the problem is the start reservoir in week 1 for all

reservoirs. The start reservoirs are found by looking at the average reservoir levels

at the beginning of the year for the last 10 years. In addition, the water values from

the SDP model are input to the disaggregation model.

Algorithm 2 Disaggregation algorithm

for s ∈ {1, . . . , S} do
for t ∈ {1, 2, . . . , 52} do

Solve weekly problem with inputs λs
t , ist , vt−1, ωs

t

that returns ppt , vrt and srt
end for

end for

The algorithm for the disaggregation is shown in algorithm 2. The weekly problem

returns production, reservoir volumes and spillage for each unit, each scenario and

each week. This is used to print results from the model, which is shown in section 6.

In the next sub-sections, the objective function and the constraints for the weekly

problem are presented.
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Weekly Problem Formulation

The weekly problem is formulated in equation (7). The objective function for the

weekly problem aims to maximize the price times the production for each unit plus

the future income minus the penalty cost for missing water. Equation (7a) shows

the objective function.

max z =
∑
p∈P

λs
t ∗ p

p
t −

∑
r∈R

λmw ∗mwr
t ∗ Er + Ft+1(vt) (7a)

0 ≤ vrt ≤ V r
max r = r1, . . . , R (7b)

0 ≤ ppt ≤ P p
max p = p1, . . . , P (7c)

vrt = vrt−1 + cm3/s to Mm3 ∗ (−qrt − srt + irt ) r = r1, . . . , R (7d)

irt = qr−1
t + sr−1

t + irt, natural r = r1, . . . , R (7e)

ppt = Er ∗ cm3/s to Mm3 ∗ qrt r = Fjergen, Tevla Dam,Funnsjøen (7f)

wr,k = W k
t ∗ Etot

r r = r1, . . . , R k = k1, . . . , K (7g)

Ft+1 ≤
∑
r∈R

∑
k∈K

µr,k ∗ wr,k ∗Kk (7h)

vrt =
∑
k∈K

µr,k ∗Kk r = r1, . . . , R (7i)

qrt ≤ Qr
max r = Hallsjøen, Skurdalsjøen t = 1, . . . , 17 (7j)

qrt ≤ 0 r = Hallsjøen, Skurdalsjøen t = 18, . . . , 47 (7k)

qrt ≤ 0.5 ∗Qr
max r = Hallsjøen, Skurdalsjøen t = 48, . . . , 52 (7l)

qFunnsjoen
t + qMer̊aker

t + sFjergen
t + sFunnsjøen

t + sTevla Dam
t ≥ QSamløp Funna

min (7m)

Also in this model, constraints on maximum generation and production are needed.

The difference is that the constraint now applies to each reservoir and production

plant instead for the aggregated unit. The constraint are presented in equation (7b)

and (7c).
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A constraint for reservoir balance is also needed in this model. In this model, there

is one reservoir balance constraint for each reservoir. Since discharge, spillage and

inflow has the unit m3/s, while the reservoir volume has a unit of Mm3, a conversion

factor, cm3/s to Mm3 , is added in the equation. The reservoir balance constraint is

shown in equation (7d).

To formulate the connections between the different reservoirs, a constraint for inflow

and discharge is formulated. These constraints state that the inflow in one reservoir

is equal to the discharge and spillage from the upper reservoirs together with the

natural inflow to the reservoir. The natural inflow is calculated using a share of the

average yearly inflow times the inflow in scenario s for the whole watercourse. The

constraint for inflow and discharge is presented in equation (7e).

In this case, all discharge from a reservoir is assumed to be discharge to produce

electricity. Therefore, a constraint showing the relationship between discharge and

production is needed. Since the discharge has the unit m3/s and production has

the unit GWh the conversion factor from m3/s to Mm3 in combination with the

local energy equivalent, Er, has to be used. Equation (7f) shows this constraint.

Mark that this constraint only applies for the reservoirs r with a production unit p

directly downstream.

From the SDP model a water value for the aggregated water course is calculated.

For the disaggregation model, this water value has to be converted to a water value

that applies to each reservoir. This is done by using the total energy equivalent for

each reservoir. Equation (7g) shows the constraint for converting the water value to

apply for each reservoir.

The water value is again used to calculate the future income. Since the water values

are used to calculate the future income now, some sort of integral is utilized. The

future income is then equal to the sum of the water values times the discrete volume

section times the µ-variable over the reservoirs and the discrete volumes. The µ-

variable is a variable between 0 and 1, that is 1 up to the present volume, 0 over

the present volume, and a value between 0 and 1 at the present volume. Since

the problem is convex the variable wants to take the value 1 for the lowest volume

first since the water value there is the largest. Equation (7h) and (7i) are the two

constraints used to describe the future income and volume.

31



The discharge from Hallsjøen and Skurdalsjøen reservoirs is determined by the op-

eration of the gates at Hallsjøen and Skurdalsjøen. These are normally closed from

the beginning of the spring flood until about the first of December. Then they are

opened partly, and then fully opened after Christmas. In this model, the gate open-

ing is set to fully open in week 1 to 17, closed in week 18 to 47 and half-open from

week 48 to 52, as an approximation of the normal operation. Equation (7j), (7k)

and (7l) describes this relationship.

One additional constraint in the Mer̊aker water course is the minimum discharge at

Samløp Funna. This is a measuring point downstream of both Mer̊aker and Funna

power stations. The discharge at this point has to be larger than 9.5 m3/s at all

times. The discharge is determined by the production at Mer̊aker and Funna, in

addition to the spillage from Fjergen, Funnsjøen and Tevla Dam. The minimum

discharge constraint is shown in equation (7m).
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5.2 Solution Algorithm - SDDP

The solution algorithm used to solve the hydropower scheduling problem for the

Mer̊aker watercourse using SDDP is described in this subsection. Also here the

complex problem is solved by solving many smaller sub-problems, but now using

both a forward and a backward pass. The solution algorithm is shown in algorithm

3.

Algorithm 3 SDDP algorithm

vr
t initially set to the mean reservoir volume values from NTE ′s historical data

Set initial values for ϕr,v
t=T and δvt=T

i=1

while z /∈ [ẑ − 1.96 ∗ σ̂, ẑ + 1.96 ∗ σ̂] & i ≤ I do

for t ∈ {T, . . . , 1} do
for v ∈ {1, 2, . . . , V } do

for s ∈ {1, 2, . . . , S} do
Solve backward one-stage problem with inputs λs

t , i
s
t , v

r,v
t , ϕr,v

t+1(i),
δvt+1(i), that returns ωs,r,v

t and zs,vt (9)
end for
ϕr,v
t (i = last) =

∑
s∈S ρs ∗ ω

s,r,v
t

δvt (i = last) =
∑

s∈S ρs ∗ z
s,v
t −

∑
r∈R ϕr,v

t (i = last) ∗ vr,vt

end for
end for

z = ρs ∗ ρv ∗
∑

v∈V
∑

s∈S z
s,v
t=1

Pick V random scenarios
for v ∈ {1, . . . , V } do

vv0 = vinit
for t ∈ {1, 2, . . . , T} do

Solve forward one-stage problem with inputs λv
t , i

v
t , v

r,v
t , ϕr,v

t+1, δ
v
t+1,

that returns rvt and vvt+1 (9)
end for
zv =

∑
t∈T rvt

end for

ẑ =
∑

v∈V ρv ∗ zv σ̂ = ( 1
V−1

∗
∑

v∈V (z
v − ẑ)2)

1
2

i = i+ 1

end while
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The backward pass optimizes the backward one-stage problem for each week, each

volume scenario from the forward pass and each inflow scenario. The backward pass

starts at the last week in the planning horizon. The input is the price and the inflow

from the current inflow scenario, the start volume for the current week from the

forward pass and the future value and cuts from the earlier iterations.

The initial cut and future value for the last week are set to three different values

based on the mean price and the mean price times the initial start volume, respect-

ively. The reason for this is to create a more realistic end value that depends on

the end reservoir level. In equation 8 the initial cuts, ϕ, and future values, δ, for

the three different scenarios can be seen, and in table 5 the choice of values for the

parameters in the equation are shown.

δhight=T = khigh ∗ λmean ∗ vinitt=T (8a)

ϕhigh
t=T = mhigh ∗ λmean (8b)

δmean
t=T = kmean ∗ λmean ∗ vinitt=T (8c)

ϕmean
t=T = mhigh ∗ λmean (8d)

δlowt=T = klow ∗ λmean ∗ vinitt=T (8e)

ϕlow
t=T = mlow ∗ λmean (8f)

Table 5: Value of Parameters for End Value

Parameter for End Value Value

khigh 6
5

mhigh 1
2

kmean 1

mmean 1

klow 2
5

mlow 2
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The initial volume scenario is equal to a mean reservoir volume slope over the 10

last years, from NTE’s historical data. The backward problem returns the water

values or cuts for each reservoir and the future value. The average future value in

week one for all scenarios and initial reservoir volumes is used to calculate the lower

bound.

The forward pass optimizes a forward one-stage problem for each volume scenario

and week. The volume scenarios are the randomly picked scenarios that give the

initial reservoir volumes for the backward loop. For the forward pass, 40 out of 70

scenarios are randomly picked to represent the uncertainty in the future. If all 70

scenarios are used, the computational time gets significantly high. Because of this,

only 40 scenarios are picked to get the best possible solution in a reasonable time.

The input to the forward loop is the price and the inflow from the current scenario,

the start reservoir volume for the current week and the cuts and the future values

from earlier iterations. The start reservoir volumes in the first week of every iteration

are set to an average value for the beginning of the year for the last 10 years. The

model returns values for reservoir volumes each week and the objective function

value without the future value. The objective function value without the future

value is used to calculate the convergence interval.

When the problem has been solved for all weeks in the planning horizon for both the

forward and backward pass the algorithm re-solves, with new values for start volumes

each week, until the convergence criteria is obtained. Convergence is obtained when

the lower bound from the backward pass is inside the confidence interval from the

forward pass and the minimum number of iterations is reached. When the SDDP

model has converged, the obtained water values and the detailed production plans

for each plant each week are returned and plotted.
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5.2.1 Forward and Backward One-Stage Problem

In this section, the forward and backward one-stage problems are presented. The

forward and backward one-stage problem are the same, but have different inputs,

as earlier described. The one-stage problem is shown in equation (9).

min z =
∑
p∈P

−λs
t ∗ p

p
t +

∑
r∈R

λmw ∗mwr
t ∗ Er + αt+1 (9a)

0 ≤ vrt ≤ V r
max r ∈ R (9b)

0 ≤ ppt ≤ P p
max p ∈ P (9c)

vrt = vr−1
t−1 − qrt − srt + is,rt +mwr

t r ∈ R (ωr) (9d)

αt+1 ≥
∑
r∈R

ϕr
t+1(i) ∗ vrt + δt+1(i) i = 1, . . . , I (9e)

qFunnsjøen
t + qTevla Dam

t + sFjergen
t + sFunnsjøen

t + sTevla Dam
t ≥ QSamløp Funna

min (9f)

The forward and backward one-stage problems have many similarities with the one-

stage problem from SDP. Equation (9a) is the objective function, which aims to

minimize the negative of the income plus the penalty cost and the future value. This

is the same as maximizing the income, as done in the SDP one-stage problem. The

constraints for the maximum generation and production are presented in equation

(9b) and (9c). The reservoir balance constraint is given in equation (9d). The dual

value of this constraint is the water value which gives the cuts for the next iterations.

In equation (9e) the constraint for the future value is shown. This is a bit different

from the future income constraint in SDP. The future value in SDDP is limited

by the cuts and future values from earlier iterations. This means that for each

iteration the one-stage problem has one more constraint. Lastly, the constraint for

the minimum discharge is shown in equation (9f).
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6 Results

In this section the results from the SDP and SDDP model will be presented and

compared. First the reservoir trajectories for the two large reservoirs Fjergen and

Funnsjøen will be presented, then the fulfillment of the minimum discharge con-

straint, the total spillage in the watercourse, the accumulated production and the

total income. At the end the water values are presented for the two models.

6.1 Reservoir Trajectories

In this section the reservoir trajectories for Fjergen and Funnsjøen are presented

using both SDP and SDDP.

6.1.1 Fjergen

In figure 11 the reservoir trajectories for Fjergen using SDP are shown, and figure

12 shows the reservoir trajectory for Fjergen using SDDP.

Figure 11: Reservoir Trajectory for
Fjergen - SDP

Figure 12: Reservoir Trajectory for
Fjergen - SDDP

The main differences in these figures are that when using SDDP the reservoir volume

for Fjergen generally are lower, and the two lowest percentiles often gives empty

reservoir. Unlike, in SDP where the volume are higher and the reservoir are more

often full in the higher percentiles, leading to more spillage.
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6.1.2 Funnsjøen

In figure 13 the reservoir trajectories for Funnsjøen using SDP are shown, and figure

14 shows the reservoir trajectory for Funnsjøen using SDDP.

Figure 13: Reservoir Trajectory for
Funnsjøen - SDP

Figure 14: Reservoir Trajectory for
Funnsjøen - SDDP

For Funnsjøen the reservoir trajectories from SDP generally gives lower reservoir

volumes and more empty reservoir, while SDDP gives generally higher reservoir

volumes, more full reservoir and hence more spillage. This is the opposite of what

happens for Fjergen.
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6.2 Missing water to fulfill the minimum discharge con-

straint

To see whether the minimum discharge constraint is equally well fulfilled in both

models the missing water in the model is presented in table 6. The table shows

the total number of scenarios in the two models. Since the results in SDDP are

gathered from the forward loop, the total number of scenarios in SDDP is 40 and

not 70. The table also shows the number of scenarios that are missing water in one

or more weeks and the total amount of missing water over all scenarios.

Table 6: Missing water to fulfill the minimum discharge

Method
Number

of scenarios

Scenarios

missing water

Scenarios

missing water [%]

Total amount

[Mm3]

SDP 70 3 4.3 24.91

SDDP 40 3 7.5 24.33

These results show that the number of scenarios missing water in the two models

is the same, but the share of scenarios missing water is a bit larger in SDDP. The

total amount of missing water in the two models is about the same.
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6.3 Total Spillage

In figure 15 the total spillage for Fjergen, Funnsjøen and Tevla Dam using SDP are

shown, and figure 16 shows the total spillage for Fjergen, Funnsjøen and Tevla Dam

using SDDP. The figures shows that the spillage from the SDP model are generally

higher than from the SDDP model most of the planning horizon.

Figure 15: Total Spillage for Fjergen,
Funnsjøen and Tevla Dam - SDP

Figure 16: Total Spillage for Fjergen,
Funnsjøen and Tevla Dam - SDDP

In table 7 the total accumulated spillage for SDP and SDDP are presented. It shows

that all the percentiles and the average are higher when using SDP. This means that

when using SDP, the model are not able to save as much of the inflow as the SDDP

model does. This leads to lost production opportunities, and possible lower income.

Table 7: Total Accumulated Spillage

Percentile 0 25 50 75 100 Average

Total Spillage [Mm3]

SDP
0 10.9 25.3 40.8 134.8 29.8

Total Spillage [Mm3]

SDDP
0 1.5 9.2 21.1 57.6 13.0
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6.4 Accumulated Production

In figure 17 the total accumulated production for Tevla, Mer̊aker and Funna power

stations using SDP are shown, and figure 18 shows the total accumulated production

using SDDP. The figures shows that the production are somewhat higher in the

SDDP model compared to the SDP model.

Figure 17: Total Accumulated Pro-
duction - SDP

Figure 18: Total Accumulated Pro-
duction - SDDP

In table 8 the total accumulated production for the planning horizon are shown. The

total accumulated production are higher for SDDP than for SDP for all percentiles

and for the average. For the average the production are 25 % higher in SDDP com-

pared to SDP. This difference is mostly because of the SDDP model using more of

the water in Fjergen. In addition the greater spillage in the SDP model contributes

as well. For the average about 90 % of the difference comes from the lower end

reservoir in SDDP, while about 10 % comes from higher spillage in the SDP model.

Table 8: Total Accumulated Production

Percentile 0 25 50 75 100 Average

Total Production [GWh]

SDP
289.4 405.4 504.6 618.5 797.0 516.5

Total Production [GWh]

SDDP
395.8 557.8 654.5 719.0 830.7 646.1
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6.5 Total Income

In table 9 the average values for end reservoir for Fjergen and Funnsjøen for both

SDP and SDDP are presented. In addition the average income including the penalty

for not having enough water to fulfill the minimum discharge are presented. The

penalty is set to 700 000 EUR/GWh. In the end of the table the average total value

for both SDP and SDDP are presented. The total value are the accumulated income

including the penalty cost plus the value of the end reservoirs. The value of the end

reservoirs are calculated using the total energy equivalent to convert from Mm3 to

GWh, and then multiplying with the average price in the price scenarios, which is

28 283.9 EUR/GWh.

Table 9: Average End Reservoir, Income Including Penalty and Total Value

Method
End Reservoir

Fjergen [Mm3]

End Reservoir

Funnsjøen [Mm3]

Income

[MEUR]

Total Value

[MEUR]

SDP 131.3 30.6 16.8 21.3

SDDP 54.8 44.1 19.6 22.2

The table shows that the end reservoir in Fjergen is higher in SDP than in SDDP,

while for Funnsjøen the end reservoir is higher in SDDP. The accumulated income

including the penalty cost are higher for SDDP. The total value, which is the sum

of accumulated income and the value of the end reservoir, is also higher for the

average in SDDP. The average total value is 4 % higher in SDDP compared to the

SDP model.

In table 10 the total value for all percentiles are presented. The table shows that

for all percentiles except the 75-percentile the SDDP model gives higher total value

compared to the SDP model.

Table 10: Total Value

Percentile 0 25 50 75 100

Total Value [MEUR] - SDP 5.9 13.4 21.0 27.8 41.6

Total Value [MEUR] - SDDP 6.1 15.9 21.4 26.4 43.8

42



6.6 Water Values

In figure 19 the aggregated water values for the different start reservoir levels in

SDP are presented. The start reservoir levels that are shown are 0, 10, 20, 50, 80

and 100 % of reservoir capacity. In the lower start reservoir levels, it can be seen a

peak in the water value around week 20. This peak corresponds to the beginning of

the spring flood. This means that there might be a shortage of water just before the

spring flood, which leads to high water values. For the higher start reservoir levels,

the water values are a bit higher than the average price in the autumn and winter

and lower during summer.

Figure 19: Water Values - SDP
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In figure 20 and 22 the water values using SDDP for Fjergen and Funnsjøen are

shown respectively. Figure 21 and 23 show the same water values zoomed in. Dif-

ferent from the SDP, the water values from SDDP are presented for each reservoir

in percentiles and the average.

Figure 20: Water Values, Fjergen -
SDDP

Figure 21: Water Values Zoomed in,
Fjergen - SDDP

Figure 22: Water Values, Funnsjøen -
SDDP

Figure 23: Water Values Zoomed in,
Funnsjøen - SDDP

The figures show that the water values in Fjergen and Funnsjøen are somewhat

similar. In the highest percentile, the SDDP model also gives a high peak around

week 20 like in the SDP model. The level of the peak is between the peak from the

0 and the 10 % start reservoir level in SDP.

In the other percentiles, the water values vary around the average price, without

any clear pattern. The reason for this can be the percentiles that do not follow one

scenario.
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7 Discussion

The results in section 6 have shown that the reservoir volume in Fjergen is lower

using the SDDP model, while in Funnsjøen the reservoir volume is higher using

SDDP. The reason for this could be that in SDP you have production plans based

on the aggregated water values for the whole water course. This means that the SDP

model will plan both Funnsjøen and Fjergen based on the aggregated water values.

However, in SDDP the model will give individual water values and production plans

for each plant and reservoir. Since the degree of regulation is higher in Funnsjøen

than in Fjergen, the SDDP model will tend to discharge more from Fjergen than

from Funnsjøen to have more available capacity for the inflow.

The results also show lower total spillage when using SDDP compared to when using

SDP. The reason for this can again be the more customized production plans. The

SDDP model will give lower reservoir volumes where the degree of regulation is

lowest giving more space for the inflow in the right places. This will lead to better

handling of inflow and less spillage.

Another outcome of this is that the production is also higher in SDDP. This is

mostly because of the lower end reservoir level in SDDP, but about 10 % comes

from better utilization of inflow. This again gives a higher accumulated income,

also when taking the penalty cost into account. Since the end reservoir levels are

different in the two models, the total value has been calculated, using the average

price to value the water left in the reservoir at the end of the planning horizon. This

has shown that the SDDP model gives the highest total value for all percentiles

and the average, except the 75-percentile. This can be explained by the better

production plans giving better handling of inflow, more production and hence more

income, but still leaving some water left in the reservoir.

One of the disadvantages of using the SDDP model is the low reservoir volumes in

the lowest percentiles for Fjergen. In large parts of the planning horizon, both the

0 and the 25-percentile give empty reservoir. Despite this difference, the results for

the missing water show that the two models are missing water somewhat equally.

They are both missing water in only 3 scenarios and the total amount is about 24

Mm3. The missing water can possibly lead to breaking the minimum discharge, and

give a high fee for the power producer. In the worst case, the power producer can

lose the right to produce hydropower in that area. The risk of this happening is, as

shown, equal in the two methods.
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8 Conclusion and Further Work

8.1 Conclusion

This thesis has studied which of the two models, stochastic dynamic programming

(SDP) and stochastic dynamic dual programming (SDDP), that provides the best

usage of the water for the test case. This has been done by examining the reservoir

trajectories, amount of missing water to fulfill the constraints, the total spillage, the

production and income, as well as the total value for both models. The total value

are the sum of the accumulated income, including the penalty cost for breaking the

constraints, and the value of the end reservoirs.

The results has shown that the SDDP model give lower reservoir volumes for Fjergen

and higher for Funnsjøen compared to the SDP model. The SDDP model has also

given less spillage and higher production and income than the SDP model has. The

total value has also been larger for SDDP than SDP for all percentiles except the

75-percentile.

The reason for these results are the better production plans in SDDP that comes

from individual watervalues for each reservoir, leading to better handling of inflow.

This again gives lower spillage, higher production, income and total value.

One disadvantage with the SDDP model are the low reservoir levels for Fjergen.

The lowest percentiles gives empty reservoir during many weeks in the planning

horizon. This can lead to not having enough water to fulfill the minimum discharge

and possibly high costs for the power producer. Despite this, the results for missing

water shows that the number of scenarios missing water and the total amount of

missing water are about the same for the two models.

This shows that the SDDP model gives the best usage of the water for the test

case, meaning that the production, the income and the total value are higher for

the SDDP model, compared to the SDP model. Since both models give about the

same amount of missing water, it can be concluded that the SDDP model gives the

best results.

46



8.2 Further Work

This thesis has shown that the SDDP model gives less spillage, higher income and

total value than the SDP model does for the test case, and the two models equally

fulfill the minimum discharge constraint. Because of this, the thesis can conclude

that the SDDP model gives the best usage of the water in the test system.

Since there are done some simplifications in this thesis there is a need for more

research on comparing the two models for more complex hydropower systems. This

can be systems including pumps and state-dependent constraints.

In addition the autocorrelation in price and inflow is not taken into account in this

thesis. Including autocorrelation in income can lead to more states being visited in

the SDDP algorithm, and give a more realistic picture of the uncertainty in inflow.

Including the autocorrelation in price will possibly lead to better price expectations

and production plans, and therefore better operation of the hydropower plants. This

can also be further investigated to see if it will influence the problem.
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