
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Ulrik Bernhardt Danielsen

A step toward model selection in
unsupervised clustering of animal
behavior

Master’s thesis in Applied Physics and Mathematics
Supervisor: Benjamin Adric Dunn
Co-supervisor: Ingeborg Gullikstad Hem
June 2023

Ulrik Bernhardt Danielsen

A step toward model selection in
unsupervised clustering of animal
behavior

Master’s thesis in Applied Physics and Mathematics
Supervisor: Benjamin Adric Dunn
Co-supervisor: Ingeborg Gullikstad Hem
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Previous work . 8
1.3 Overview . 9

2 Theory 11
2.1 Time series analysis . 11

2.1.1 Stationarity . 12
2.1.2 Detrending . 12

2.2 Fourier analysis . 13
2.2.1 Discrete-time Fourier transform 15

2.3 Spectral density estimation . 16
2.3.1 Periodogram . 17
2.3.2 Sample spectrum . 17
2.3.3 Spectral window . 18
2.3.4 Lag window . 19

2.4 Time-frequency analysis . 20
2.4.1 Short-time Fourier transform 20
2.4.2 Wavelet transform . 21

2.5 Piecewise polynomials . 23
2.5.1 Splines . 23
2.5.2 Regression splines . 24

2.6 Dimensionality reduction . 24
2.6.1 Principal component analysis 24
2.6.2 t-Stochastic Neighbor Embedding 25

2.7 Kernel density estimation . 27

Page 1 of 80

CONTENTS CONTENTS

2.8 Watershed segmentation . 27
2.9 Applied topology . 29

2.9.1 Directed graph . 29
2.9.2 Simplicial complexes . 29
2.9.3 Flag complexes . 29

2.10 Homology . 30
2.10.1 Persistent homology . 30

3 Methodology 33
3.1 Feature extraction . 33

3.1.1 Detrending . 33
3.1.2 Time-frequency analysis . 35

3.2 Manifold embedding . 35
3.3 Clustering . 36
3.4 Feature frequency . 37
3.5 Model selection . 38

3.5.1 Partial labeling . 38
3.5.2 Spectral power averaging 38
3.5.3 Comparing probability transition matrices 39

4 Data 41
4.1 Data . 42
4.2 Partial labels . 42
4.3 Graphical user interface . 43

5 Exploratory data analysis 47
5.1 Postural features only . 47
5.2 Facial tracking features only . 49
5.3 Initial combined model . 49
5.4 Model variations . 51

5.4.1 Changing the frequency range 52
5.4.2 Manually selecting principal components 52
5.4.3 Choosing between the models 52

5.5 Hyperparameter tuning . 54

6 Results 57
6.1 Models . 57

6.1.1 Postural features . 57
6.1.2 Including facial tracking features 59

6.2 Clustering rearing behavior . 60
6.3 Persistent homology . 61

6.3.1 Toy example . 62

Page 2 of 80

CONTENTS CONTENTS

6.3.2 Application on real data . 65

7 Discussion and conclusions 71
7.1 Model selection . 71
7.2 Facial tracking features . 72
7.3 Further work . 72

A Code 75

Bibliography 77

Page 3 of 80

Abstract

Animal movements are commonly divided into distinct behaviors char-
acterized by a set of body movements. Using time-frequency analysis to
extract information about repeating movement patterns, followed by di-
mensionality reduction techniques such as principal component analysis and
t-distributed stochastic neighbor embedding, we can separate and visualize
such behaviors in a two-dimensional space. Applying this methodology to
sensor data, we cluster the behavior of freely behaving rats. We investigate
ways of performing model selection and use the results to show how includ-
ing facial tracking recordings in addition to postural sensor data changes
behavioral segmentation. Additionally, we investigate the use of topologi-
cal data analysis as a tool for comparing behavioral mappings, by viewing
transitions between behaviors as edges in a weighted directed graph. In
doing so, we aim at an increasingly quantitative model selection phase.

Sammendrag

Dyrs bevegelsesmønster deles ofte inn i distinkte atferder, karakterisert
av et sett kroppsbevegelser. Ved bruk av tidsfrekvensanalyse til å nyttegjøre
informasjon om gjentakende bevegelsesmønstre, etterfulgt av dimensjonre-
duksjonmetoder som ”principal component analysis” og ”t-stochastic neigh-
bor embedding”, kan vi separere og visualisere ulike atferder i et todimen-
sjonalt rom. Denne metoden bruker vi p̊a ekte sensordata, og grupperer
atferden til fritt romsterende rotter. Vi undersøker m̊ater å gjennomføre
modellselektering og bruker resultatene til å vise hvordan å inkludere sen-
sordata fra værh̊arene i tillegg til sensordata fra kroppsdeler endrer atferd-
grupperingen. Videre undersøker vi bruken av topologisk dataanalyse som
et verktøy for å sammenligne modeller, ved å se p̊a overganger mellom atfer-
der som rettede kanter i en vektet graf. Slik sikter vi p̊a en mer kvantitativ
modellselekteringsfase.

Page 4 of 80

Acknowledgements

Many thanks to Associate Professor Benjamin A. Dunn for supervis-
ing this thesis, and introducing me to the group of people I am about to
mention. His academic curiosity and eagerness to investigate new ideas
were motivating and inspirational. My co-supervisor Postdoctoral Fellow
Ingeborg G. Hem deserves special thanks. Our weekly conversations have
been invaluable, and I am very grateful for the time she invested in guid-
ing me through this process. I also wish to thank the Whitlock Group at
Kavli Institute for Systems Neuroscience, in particular Associate Professor
Jonathan Whitlock, Postdoctoral Fellow Jerneja Rudolf, and the outstand-
ing lab rat Petulia. Always inviting, helpful, and interested in my progress,
they made this thesis feel like a team effort. I’d also like to thank PhD
Candidate Melvin Vaupel for a crash course in persistent homology, it is
difficult stuff.

Lastly, I need to thank my daughter Ebba Margrethe and her amazing
mother Vilde. Having you both in my life have brought calm and reassur-
ance to a sometimes stressful and difficult process. Thank you for a special
and memorable year.

Page 5 of 80

Chapter 1

Introduction

1.1 Motivation

Studying behavior is the aim of ethology, and has been researched for many
decades. Describing animal behavior is useful in many research situations. Among
early studies, ornithologists documented behavior in great detail, comparing tame
and wild birds [1]. Medical researchers could be interested in observing change
in behavior as an animal is introduced to a specific drug or stimuli [2]. In animal
welfare science, we may wish to detect abnormal behavior as a way of diagnosing
diseases. Behaviorism is concerned with how behaviors are learned by environ-
mental stimuli. In every case, the ability to link behavior to other factors is based
on information about the behaviors themselves.

Unfortunately, this information is very inaccessible. Looking through animal
video recordings with the aim of determining the animals behavior, has two severe
problems. First, there does not exist a set of known behaviors which the animal
selects from. The results would therefore be restricted to the predefined behaviors
chosen by the researcher. Second, it is very time consuming. Given a substantial
amount of data material, manual labeling is not feasible. These issues create the
need to describe the behavior automatically and unsupervised.

A clustering algorithm, taking recorded motion data as input, and mapping
each time point to an enumerated behavior, is from this point on referred to as a
behavioral model. It is uniquely defined by the steps themselves, along with any
chosen hyperparameters. Training the model then refers to performing all the
steps in the clustering algorithm, resulting in an ethogram that describes how the

Page 7 of 80

1.2. PREVIOUS WORK CHAPTER 1. INTRODUCTION

animal moves between the detected clusters. If we do not specify the behaviors
we look for, prior to training the behavioral model, the model is unsupervised.

One immediate question becomes: How to determine the performance of such
a behavioral model? When presented with several ethograms, it is hard to choose
between them. Again, the easy answer, to manually look back at the record-
ings, remains very inefficient and time-consuming. Depending on the nature of
the clustering algorithm, some theoretical results can guide us toward a good
model. However, these results are often only that, guidelines, providing a start-
ing point. In this thesis, we explore the available model selection toolbox, i.e.,
several methods aiding in selecting the best model are tested on real data sam-
ples. Furthermore, we aim to extend the toolbox, exploring how we could provide
some quantitative measurements to the model selection phase, using topological
data analysis.

1.2 Previous work

A clustering pipeline, using time-frequency analysis, followed by clustering mapped
time points in two-dimensional space, was first developed by researchers at Prince-
ton University [3], mapping the actions of fruit flies and comparing results be-
tween sexes. There, theoretical guidelines were used to choose hyperparameters.
The same team of researchers later extended the analysis of this data set, explor-
ing the hierarchical structure in the clustered behaviors, using the information
bottleneck algorithm [4]. This technique has also been applied to data from freely
behaving rats [5]-[6], using postural tracking data from 3D motion capture, link-
ing behavior to disease and neural recordings. In the mentioned studies, the
specific parameters are chosen based on theoretical guidelines. The choices were
evaluated, based on a posteriori evaluation of the clustered time points in the raw
data material. Other approaches to measuring behavior exists, fitting models di-
rectly on the raw data [7]. An overview of approaches and challenges is given in
a paper by Gordon J. Berman [8].

The mentioned research supports the idea that behavior is structured hierar-
chically. If a behavior is defined as an action sequence, we can always divide it
into smaller segments. In other words, how we define behavior is dependent on
the choice of time scale. Based on this assumption, it is reasonable to assume
the existence of an underlying structure in the transitions between behaviors. Al-
though this has been studied as a means to understanding the nature of behavior,
it has not been utilized in testing the robustness of clustering algorithms. If we
can show such an invariant structure when varying parameters in the model, we
are able to make more informed parameter choices.

Page 8 of 80

1.3. OVERVIEW CHAPTER 1. INTRODUCTION

1.3 Overview

This thesis builds on a specialization project, which was aimed at developing the
necessary code and methodological understanding [9]. The clustering algorithm
was developed step by step, discussing how each choice affects the behavioral
clustering. Sections 2.1 to 2.8 and Sections 3.1 to 3.3 are restated from the
specialization project to illustrate how the clustering algorithm works, and the
foundational theory underlying it.

Chapter 2 states the mathematical theory on which the clustering algorithm is
based. The necessary foundation for time-frequency analysis is included, viewing
the wavelet transform as an extension of the ideas behind the Fourier transform.
Dimensionality reduction through principal component analysis and t-stochastic
neighbor embedding is explained. Kernel density estimation and watershed seg-
mentation—necessary for clustering in the two-dimensional plane—are also in-
cluded. Lastly, some key concepts in topological data analysis is developed.

Chapter 3 explains the clustering algorithm. Each step is motivated in detail,
indicating where we make parameter choices. A section on model selection is
included, stating some tools available to us.

Chapter 4 gives a description of the data used in the analysis in this thesis. It
includes details about the data collection, data quality, sample size and structure.
A brief description of a visualization tool used for visualizing clustered behaviors
is also given.

In Chapter 5, we explore how the procedure changes when introducing data
from facial tracking as well as postural tracking. Several models, aimed at dealing
with two different data characteristics, are trained and tested against each other.
Using the tools available to us, two models are chosen, one trained on only the
postural data, and the other trained on all available data.

Chapter 6 investigates the behaviors detected by the models found in Chapter
5. Through investigating the raw data, we show how the detected behaviors
differ, and how some behaviors become divided into smaller action sequences
with the addition of facial tracking data.We also use topological data analysis in
this framework, both on a toy example and on the real data.

Finally, chapter 7 discusses our findings, and summarizes the results.

Page 9 of 80

Chapter 2

Theory

The clustering algorithm consists of many sequential steps, combining elements
from different fields of mathematics. Sections 2.1 to 2.4.2 motivates the wavelet
transform as an extension of the Fourier transform on time series data, commonly
used in signal processing. Dimensionality reduction, probability density estima-
tion, and watershed segmentation are explained in Sections 2.6 to 2.8. These
methods serve as the building blocks for the clustering procedure.

Sections 2.1 to 2.8 are restated from the specialization project [9].

2.1 Time series analysis

We define time series as a realization yt = {yt1 , yt2 , . . . , ytn} of a stochastic process
Y (ω, t), where ω ∈ Ω, Ω being the sample space, and t ∈ Z, Z being the chosen
index set [10]. It is an ordered series of random variables which can be described
completely by its joint probability function

Ft1,...,tn
(x1, . . . , xn) = Pr{yt1 ≤ x1, . . . , ytn

≤ xn}.

The mean and variance functions of a time series y are defined as

µt = E(yt) (2.1)

and
σ2

t = E(yt − µt)2.

Page 11 of 80

2.1. TIME SERIES ANALYSIS CHAPTER 2. THEORY

Given two random variables in a series, yt1 and yt2 , we define the covariance
function and correlation function as

γ(t1, t2) = E[(yt1 − µt1)(yt2 − µt2)] (2.2)

and
ρ(t1, t2) = γ(t1, t2)√

σ2
t1

√
σ2

t2

. (2.3)

2.1.1 Stationarity
A time series yt is nth-order stationary if for any shift h and indexes t1, t2, . . . , tn
if

Fyt1 ,...,ytn
(x1, . . . , xn) = Fyt1+h,...,ytn+h

(x1, . . . , xn). (2.4)
If (2.4) holds for all n, the time series is called strictly stationary. We also define
a nth-order weakly stationary time series yt if the first n joint moments are finite
and time-invariant. Specifically, we define the second-order weakly stationary, i.e.
with constant and time-invariant mean function (2.1), and where the covariance
function (2.2) is solely a function of the time difference, as covariance stationary.
When the covariance function between t1, t2 can be written as a function of the
time difference h = |t1−t2|, i.e. γ(t1, t2) = γ(h) = γh, we call it an autocovariance
function. The same is true for the correlation function (2.3), which when is a
function of the time difference is called an autocorrelation function (ACF). Figure
2.1 shows an example of a time series. As the mean seems to increase with t it is
non-stationary.

We also define the common estimates for the mean and covariance functions.
They are called the sample mean and sample covariance and are written as

ȳt = 1
n

n∑
i=1

yti , (2.5)

γ̂h = 1
n

n−h∑
i=1

(yti
− ȳt)(yti+h − ȳt), (2.6)

respectively.

2.1.2 Detrending
Many methods for analyzing and processing time series require stationarity [11].
If the series is non-stationary, we can split it into a stationary and a non-
stationary part, the latter is called the trend. Mathematically we write it as

yt = µt + xt,

Page 12 of 80

2.2. FOURIER ANALYSIS CHAPTER 2. THEORY

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t time series example

−1

0

1

2

3

Figure 2.1: Example of a non-stationary time series with t0 = 0, tn = 4. The
discrete data points are connected to better visualize the movement through time.

where xt denotes the stationary part and µt the trend. The process of finding µt

and then computing xt = yt − µt is called detrending. Detecting the trend can
be done in many ways, for instance using regression techniques or smoothing.
The simplest way is to assume a linear trend, µt = β0 + β1t and estimate the
parameters using least squares. In Figure 2.2 the linear regression fit is shown,
showing an upward trend in the time series.

2.2 Fourier analysis

Let Z1, Z2, . . . , Zn be a sequence of numbers. For simplicity in notation we assume
n to be an odd number. It can be shown that the sequence can be represented
as a linear combination of complex exponentials

Zt =
n−1

2∑
k=− n−1

2

cke
i2πkt

n . (2.7)

This comes from the fact that the set{
e

i2πkt
n

∣∣∣k ∈
[
−n− 1

2 ,
n− 1

2

]}
Page 13 of 80

2.2. FOURIER ANALYSIS CHAPTER 2. THEORY

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t

−1

0

1

2

3

Figure 2.2: Time series from Figure 2.1 with an estimated linear trend shown in
blue. Clearly, there exists an upward trend in the data.

consists of n orthogonal functions [10]. I.e., that

n∑
i=1

e
i2πkt

n e− i2πjt
n =

{
n, k = j

0, k ̸= j
.

The coefficients ck are given by

ck = 1
n

n∑
t=1

Zte
− i2πkt

n .

It is clear that (2.7) is periodic with period n, meaning Zt+jn = Zt, j = 0,±1,±2,
Thus the Fourier series can capture periodic sequences. The smallest positive in-
teger n for which Zt+n = Zt is called the fundamental period, with corresponding
fundamental frequency 2π/n. For the components k = ±j, j = 1, 2, . . . , (n− 1)/2
the frequencies are multiples of the fundamental frequency, ωk = k(2π/n). The
set of frequencies making up the series is called the spectrum. As a consequence,
the coefficients ck can be viewed as weighting the importance of the contributions
for the different frequencies making up the full sequence. This is formalized by

Page 14 of 80

2.2. FOURIER ANALYSIS CHAPTER 2. THEORY

the definitions of energy and power,

energy =
n∑

t=2
Z2

t = n

n−1
2∑

k=− n−1
2

|ck|2, (2.8)

power = energy
n

=
n−1

2∑
k=− n−1

2

|ck|2. (2.9)

Let pk be the contribution to the power from frequency k = 0, 1, . . . , (n − 1)/2.
As ωk and ω−k corresponds to the same frequency the contribution is given as
p0 = c2

0, pk = 2|ck|2, k = 1, . . . , (n − 1)/2. The values pk are called the power
spectrum of the series.

2.2.1 Discrete-time Fourier transform
We have seen that all sequences of length n can be viewed and parameterized
as Fourier series with period n. Moving to non-periodic sequences essentially
amounts to taking the limit of the series as n approaches infinity. Formally we
now let Zt be a finite discrete function of t, where Zt = 0 when |t| > M for some
integer M . Choosing n = 2M + 1 the function

Yt+jn = Zt, t ∈
[
−n− 1

2 ,
n− 1

2

]
, j ∈ Z

is periodic with period n. Its Fourier series is

Yt =
n−1

2∑
k=− n−1

2

cke
i2πkt

n .

As Yt = Zt when t ∈ [−(n − 1)/2, (n − 1)/2], and Zt = 0 when |t| > (n − 1)/2,
the coefficients ck can be written as the infinite sum

ck = 1
n

∞∑
t=−∞

Zte
−i2πkt

n

= 2π
n
f

(
2πk
n

)
,

where

f(ω) = 1
2π

∞∑
t=−∞

Zte
−iωt.

Page 15 of 80

2.3. SPECTRAL DENSITY ESTIMATION CHAPTER 2. THEORY

If we now take the limit Zt = limn→∞ Yt the summation becomes an integral
over the length 2π [10]. This gives the relation

Zt =
∫ π

−π

f(ω)eiωtdω, t ∈ Z (2.10)

f(ω) = 1
2π

∞∑
t=−∞

Zte
−iωt, −π ≤ ω ≤ π, (2.11)

where f(ω) in (2.11) is called the discrete-time Fourier transform of Zt. As
opposed to the periodic case (2.7) where the periodic sequence was made up
of a finite number of frequencies, the non-periodic sequence is an integral over a
continuum of frequencies ω. We call |f(ω)| the spectrum of the sequence, and the
function g(ω) = 2π|f(ω)|2 the energy spectrum. The energy spectrum definition
comes from Parseval’s relation

∞∑
t=−∞

|Zt|2 = 2π
∫ π

−π

|f(ω)|2dω. (2.12)

It is worth noting that the relation in (2.12) only holds when the sequence Zt is
absolutely summable, i.e., that

∞∑
t=−∞

|Zt| < ∞. (2.13)

2.3 Spectral density estimation

Let yt be a stationary time series where the autocovariance function γh from (2.2)
is absolutely summable. Then we can write γh as a Fourier transform pair

f(ω) = 1
2π

∞∑
h=−∞

γhe
−iωh, (2.14)

γh =
∫ π

−π

f(ω)eiωhdω. (2.15)

It can be shown [11] that the spectrum f(ω) in (2.14) is real-valued and non-
negative. Furthermore, as Var(yt) = γ0, we get the interpretation

Var(yt) =
∫ π

−π

f(ω)dω,

i.e., that f(ω) is the contribution to the variance for frequency ω. We often want
to locate these important frequencies, and thus an important task is to estimate
this spectrum.

Page 16 of 80

2.3. SPECTRAL DENSITY ESTIMATION CHAPTER 2. THEORY

2.3.1 Periodogram
Again we consider a time series sample y1, y2, . . . , yn where n is chosen to be odd
for simplicity. It can be written as a real Fourier representation

yt = a0 +
n−1

2∑
k=1

(ak cos(ωkt) + bk sin(ωkt)),

where ωk = 2πk/n, k = 0, 1, . . . , (n− 1)/2 and the coefficients are given as

a0 = ȳt, ak = 2
n

n∑
t=1

yt cos(ωkt), bk = 2
n

n∑
t=1

yt sin(ωkt).

We then define the periodogram as

I(ωk) =
{
na2

0, k = 0
n
2 (a2

k + b2
k), k = 1, . . . , (n− 1)/2.

(2.16)

The periodogram is of interest as it has a large value if the frequency ωk is of
importance in the series. A scaled periodogram 2

nI(ωk) estimates the sample
variance of the sinusoid component at frequency ωk [11]. A periodogram for the
time series example in Figure 2.1 is shown in Figure 2.3. Note that the time
series is linearly detrended for the periodogram is computed. The two highest
peaks match the underlying generating function which can be revealed to be
sin(2πt) + 1

4 cos(6πt) + t/3.

2.3.2 Sample spectrum
One intuitive way of estimating the spectrum is to replace the autocovariance
with the sample autocovariance from Equation (2.6). I.e., we define the sample
spectrum for a realization y1, y2, . . . , yn

f̂(ω) = 1
2π

n−1∑
k=−(n−1)

γ̂ke
−iωk. (2.17)

At the Fourier frequencies ωk, it is related to the periodogram through [10]

f̂(ωk) = I(ωk)
4π .

Although f̂(ωk) is asymptotically unbiased, meaning limn→∞ E(f̂(ω)) = f(ω), it
lacks consistency in the variance as n tends to infinity, i.e.,

lim
n→∞

Var(f̂(ωk)) ̸= 0.

Page 17 of 80

2.3. SPECTRAL DENSITY ESTIMATION CHAPTER 2. THEORY

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Frequency [Hz]

10−5

10−3

10−1

101

P
ow

er
sp

ec
tr

u
m

Figure 2.3: Periodogram for the time series shown in Figure 2.1. The time series
is detrended assuming a linear trend. Observe that the two highest peaks in the
periodogram are at the underlying frequencies 1Hz and 3Hz shown with dashed
red lines.

2.3.3 Spectral window
The fact that the variance does not decrease with the sample size produces quite
jagged and noisy spectrum estimations [11]. To account for this we introduce
the spectral window which smooths the spectrum. Mathematically the smoothed
spectrum is written as

f̂W(ωk) =
m∑

j=−m

Wn(ωj)f̂(ωk − ωj), (2.18)

where ωk = 2πk/n, k = 0, 1, . . . , (n − 1)/2 and m is a function of n, typically
m ≪ n. The value of m decides how many points in the neighborhood of ωk

should be included in the smoothing. Furthermore, the function Wn(ωj) is chosen
to have the following properties,

m∑
j=−m

Wn(ωj) = 1,

Wn(ωj) = Wn(−ωj),

lim
n→∞

m∑
j=−m

W2
n(ωj) = 0. (2.19)

Page 18 of 80

2.3. SPECTRAL DENSITY ESTIMATION CHAPTER 2. THEORY

We view the smoothed spectrum as a weighted average of the sample spectrum
(2.17) in a window around the target frequency ωk. How the weights are dis-
tributed in the window is governed by Wn(ωj), giving it the name spectral win-
dow. Because of the property in (2.19) we have

Var(f̂W(ωk)) ≈
m∑

j=−m

W2
n(ωj)(f(ωk))2

= (f(ωk))2
m∑

j=−m

W2
n(ωj) n→∞= 0,

assuming f(ω) is approximately constant in the window. We can thus reduce the
variance by increasing the points included in the window. However, when doing
so we introduce bias.

2.3.4 Lag window
It can be shown [10] that the spectral window forms a Fourier transform pair
with a lag window Wn(k), i.e,

Wn(k) =
∫ π

−π

Wn(ω)eiωkdω, k = 0,±1, . . . ,±M.

The lag window is a weighting function applied to the sample autocovariance

f̂W = 1
2π

M∑
k=−M

Wn(k)γ̂ke
−iωk,

with Wn = W (k/M), W being a bounded even continuous function

|W (t)| ≤ 1,
W (0) = 1,
W (t) = W (−t),
W (t) = 0, |t| > 1.

Figure 2.4 shows the popular hanning window given by

WH
n =

{
1
2 (1 + cos(πk

M)), |k| ≤ M

0, |k| > M,
(2.20)

with M = 5.

Page 19 of 80

2.4. TIME-FREQUENCY ANALYSIS CHAPTER 2. THEORY

−5 0 5

k

0.0

0.2

0.4

0.6

0.8

1.0
WH
n (k)

−2.5 0.0 2.5

ω

0.0

0.2

0.4

0.6

0.8
WH
n (ω)

Figure 2.4: Left: The hanning window given by Equation (2.20). Right The
corresponding spectral window, i.e., its Fourier transform.

2.4 Time-frequency analysis

The methods mentioned so far are only suitable for extracting information about
the frequencies of a signal. If the process is stationary this is often all we need.
However, if the process is non-stationary and the frequencies change over time,
the periodogram is unable to capture this. The original time series contains all
the information in the time scale, and the Fourier transform contains all the
information in the frequency scale. We need something in-between.

2.4.1 Short-time Fourier transform

A simple and intuitive way to gain information about the changes in frequency
is to divide the time interval into sections and compute the Fourier transform
on each section. Then we can plot how the periodogram changes over time. If
we divide the time interval using a window function this method is called the
short-time Fourier transform (STFT). Mathematically we define it for a discrete
sequence y = y1, y2, . . . , yn, which is windowed by Wn(t) around time τ , as

Sy(ω, τ) = 1
2π

∞∑
t=−∞

ytWn(t− τ)e−iωt. (2.21)

Page 20 of 80

2.4. TIME-FREQUENCY ANALYSIS CHAPTER 2. THEORY

Figure 2.5: Left/middle: The figures illustrate the tradeoff in resolution for time
and frequency for the short-time Fourier transform from Equation (2.21), increas-
ing the resolution in time decreases the resolution in frequency and vice versa.
Right: Illustrates the corresponding resolution for the continuous wavelet trans-
form from Equation (2.22).

The estimated spectrum |Sy(ω, τ)|2 is now a function of both time and frequency
and is commonly called the spectrogram [12], which can be plotted to show the
changes in frequencies over time.

Unfortunately, the STFT has some severe drawbacks. It can be shown that
there exists a limit to the possible precision achieved when measuring both fre-
quency and time simultaneously [13]. There exists a tradeoff in time and fre-
quency resolution, as shown in Figure 2.5. This is very intuitive as frequency has
to be measured over a certain time period. Decreasing the width of the window
function makes detecting smaller frequencies harder, and vice versa. Thus we
need to know the approximate frequency scales in the data before performing
the STFT, or we can try several window widths. In the case where frequencies
exist in the data on several different scales, the STFT in Equation (2.21) becomes
unsuitable.

2.4.2 Wavelet transform

The wavelet transform works in a very similar way to the STFT, but circumvents
the problem of choosing a fixed width of the window by introducing scaling.
Let ψ(t) be a window function (possibly complex-valued) which we will call the
mother wavelet. One way of scaling the mother wavelet by a factor s is

ψs(t) = 1
s1/2ψ

(
t

s

)
.

Page 21 of 80

2.4. TIME-FREQUENCY ANALYSIS CHAPTER 2. THEORY

If we also allow a time shift around τ we arrive at the wavelets

ψs,τ (t) = 1
s1/2

(
t− τ

s

)
.

This culminates in the definition of the continuous wavelet transform (CWT) of
a function f ,

f̃(s, τ) =
∫ ∞

−∞
ψ∗

s,τ (t)f(t)dt, (2.22)

where ψ∗
s,τ is the complex conjugate of the function ψs,τ [13].

Again considering the discrete sample y1, y2, . . . , yn with δt = yt+1 − yt, t =
1, . . . , n, its continuous wavelet transform is given by [14]

f̃n(s, τ) =
n∑

t=1
ytψ

∗
(
δt

s
(t− τ)

)
, (2.23)

where τ now is a time index τ ∈ {1, 2, . . . , n}. It is computationally efficient [14]
to represent the CWT as the inverse Fourier transform

f̃n(s, τ)
n∑

t=1
ŷkψ̂

∗(sωk)eiωknδt,

ŷk = 1
n

n∑
t=1

yte
− i2πkt

n ,

ωk =
{

2πk
nδt , k ≤ n

2
− 2πk

nδt , k > n
2
.

As always we are interested in the power spectrum, which for the CWT is defined
as |f̃n(s, τ)|2.

There exist many choices for the mother wavelet, and certain important cri-
teria it must satisfy [13]. One popular wavelet is the Morlet wavelet defined
as

ψ0(η) = π−1/4eiω0ηe−η2/2, (2.24)

where ω0 is a parameter chosen to fit the criteria.
In Figure 2.6 a scaleogram is shown for the function

f(t) =
{

3 sin(2.4 · 2πt) + 2 sin(4.7 · 2πt) + sin(17 · 2πt), t < 30
sin(0.7 · 2πt) + 2 sin(1.4 · 2πt) + 3 sin(6.4 · 2πt), t ≥ 30,

(2.25)

with added Gaussian noise. The continuous wavelet transform is computed at 18
frequencies between 0.5Hz and 20 Hz.

Page 22 of 80

2.5. PIECEWISE POLYNOMIALS CHAPTER 2. THEORY

0 10 20 30 40 50 60

Time [s]

0.5

1.0

2.0

4.0

8.0

16.0

F
re

q
u
en

cy
[H

z]

8.1e-04

2.7e-03

9.1e-03

3.0e-02

1.0e-01

3.4e-01

1.2e+00

3.9e+00

1.3e+01

4.4e+01

1.5e+02

Figure 2.6: An example of a scaleogram of the continuous wavelet transform of
function (2.25) with added Gaussian noise.

2.5 Piecewise polynomials

Suppose we have an interval [a, b] divided into M contiguous subintervals. The
connecting edges of the subintervals a = ξ0, ξ1, . . . , ξM−1, ξM = b are called knots.
On each of the intervals [ξi, ξi+1], i = 0, . . . ,M − 1 we define a polynomial pi(t).
The function

f(t) =

p0(t), t ∈ [ξ0, ξ1)
p1(t), t ∈ [ξ1, ξ2)

...
pM−1(t), t ∈ [ξM−1, ξM]

is called a piecewise polynomial.

2.5.1 Splines

In the definition of piecewise polynomials no restrictions are made on the poly-
nomials, they are allowed to take any form. As in [15] we define a spline sk(t) of
order k on the interval [a, b] as a piecewise polynomial where

sk(t) ∈ Pk, t ∈ [ξi, ξi+1], i = 0, 1, . . . ,M − 1
sk(t) ∈ Ck−1[a, b].

Page 23 of 80

2.6. DIMENSIONALITY REDUCTION CHAPTER 2. THEORY

The spline consists of piecewise polynomials of order k and has continuous deriva-
tives up to order k − 1. A common choice is letting k = 3, providing continuous
second derivatives over the interval. These are called cubic splines and are often
considered sufficiently smooth for function approximations. It is also common to
add curvature constraints at the endpoints, s′′

3(a) = s′′
3(b), arriving at the natural

cubic splines.

2.5.2 Regression splines
Suppose now we have data points yt1 , yt2 , . . . , ytn

on [a = t1, b = tn]. A spline of
order k with chosen knots at a = t1 = ξ0, ξ1, . . . , ξM = tn = b can be parameter-
ized as

sk(t) =
M+k∑
i=1

βihi(t), (2.26)

where the functions hi are the truncated-power basis set

hj(t) = tj−1, j = 1, . . . , k + 1,
hk+1+l(t) = (t− ξl)k

+, l = 1, . . . ,M − 1,

with (t)+ = max{t, 0} [16]. The parameters βi can be found using least squares.
An example of cubic spline regression is shown in Figure 2.7.

2.6 Dimensionality reduction

Suppose we have n data points, each having p numerical features. Mathematically
we represent them as the vectors xi = (xi1, xi2, . . . , xin) ∈ Rp, i = 1, 2, . . . , n,
often represented in the n × p data matrix X, Xij = xij , i = 1, 2, . . . , n, j =
1, 2, . . . , p. Dimensionality reduction is about finding a low-dimensional represen-
tation of the data containing most of its properties. There can be many reasons
for performing dimensionality reduction, and often it is performed as a form of
feature extraction used before predictive modeling or clustering [16]. If the data
is sparse or the features highly correlated, reducing the dimensionality could im-
prove computation speed and remove noise. Reducing the data to two dimensions
often allows for easier visualization and interpretability of the data.

2.6.1 Principal component analysis
One of the most commonly used dimensionality reduction methods is called prin-
cipal component analysis (PCA). There are multiple ways to both derive and
interpret the method. Given the n×p data matrix X we find a sequence of q ≤ p
orthogonal p× 1 unit vectors v1, v2, . . . , vq, each one chosen such that Zj = Xvj

Page 24 of 80

2.6. DIMENSIONALITY REDUCTION CHAPTER 2. THEORY

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t

−1

0

1

2

3

Observed series

Cubic spline: n =500,m =50

Cubic spline: n =500,m =10

Figure 2.7: Two cubic splines fitted using least square regression on the time
series from Figure 2.1. Observe that the red spline with 50 knots (including
endpoints) fits the data closer than the green spline with 10 knots.

has maximum variance. In matrix form, we write it as Z = XVq, where the
columns of Vq are vj , j = 1, 2, . . . , q. The principal components scores—which
represent our new features when applying dimensionality reduction—is given by
the q columns in Z. Let S be the sample covariance matrix of X. It can be
shown [17] that the vectors vj that maximizes the variance while subject to the
mentioned constraints are the eigenvectors of S, with the corresponding eigen-
value λj . Note that λi > λi+1, i = 1, 2, . . . , p − 1. For this reason, we need to
standardize the columns of X to have mean zero and variance one before apply-
ing PCA. The proportion of the total variance explained by the first q principal
components is given by ∑q

i=1 λi∑p
j=1 λj

.

When using PCA for dimensionality reduction we set a variance threshold, and
keep the number of principal components maintaining sufficient variance.

2.6.2 t-Stochastic Neighbor Embedding
Another dimensionality reduction method especially suited for visualizing data
in two dimensions is called t-Stochastic Neighbor Embedding (t-SNE). Again, we
start with the n×p data matrix and wish to embed it into a low-dimensional space

Page 25 of 80

2.6. DIMENSIONALITY REDUCTION CHAPTER 2. THEORY

preserving as much of the original structure in the data as possible. Instead of
trying to emulate the Euclidian distances between the data points x1, x2, . . . , xn,
we convert them into conditional probabilities

pj|i =
exp

{
−||xi−xj ||2

2σi

}
∑

k ̸=i exp
{

−||xi−xk||2

2σ2
i

} , i ̸= j, pi|i = 0. (2.27)

For a point xi, pj|i is large for nearby points xj , with magnitude proportional
to a Gaussian distribution centered at xi with variance σ2

i [18]. The individual
variance σ2

i is a tuning parameter to be chosen by the user.
In the low-dimensional representation, we model the similarities as joint prob-

abilities based on the Student t-distribution with one degree of freedom

qij = (1 + ||yi − yj ||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1 , i ̸= j, qii = 0. (2.28)

It is beneficial to define a joint probability distribution in the high dimensional
space as with pij = pj|i+pi|j

2n [18]. To find the low dimensional embedding Y ,
t-SNE minimizes the total Kullback-Leibler divergence between the discrete joint
probability distributions

KL(P ||Q) =
n∑

i=1

n∑
j=1

pij log
(
pij

qij

)
. (2.29)

The choice of using the Student-t distribution in Equation (2.28) as opposed to a
Gaussian (as in the high dimensional space (2.27)), stems from its heavier tails.
This allows data points that are relatively dissimilar in the original data, but still
close enough to make a difference in the cost function, to be modeled far apart
in the low dimensional embedding. I.e., t-SNE focuses on the local structures in
the data and allows clusters to be well separated in the embedding.

Furthermore, we need to choose the tuning parameters σi. They relate to the
Gaussian distribution modeling the neighbors of xi. For points with many close-
by neighbors it makes sense to keep σi small, while increasing it is beneficial when
there are few neighbors. The algorithm solves this by letting the user choose a
perplexity parameter

Perp(Pi) = 2H(Pi), (2.30)
where

H(Pi) = −
n∑

j=1
pj|i log2(pj|i)

is the Shannon entropy. Then it finds σi such that the perplexity satisfies our
choice. Van der Maaten and Hinton [18] suggest values between 5 and 50, roughly
reflecting the number of neighbors in the algorithm.

Page 26 of 80

2.7. KERNEL DENSITY ESTIMATION CHAPTER 2. THEORY

2.7 Kernel density estimation

Let x1, x2, . . . , xn, xi ∈ Rp be a random sample from a random variable, with
an underlying unknown density function f(x) which we want to estimate. The
general expression for the multivariate kernel density estimator is [19]

f̂(x) = 1
n

n∑
i=1

Kp

[
H−1(x− xi)

]
, (2.31)

where |H| = |det(H)|, H being the p × p non-singular bandwidth matrix. The
function Kp : Rp → R in (2.31) is called the kernel function, and must satisfy∫

Rp

Kp[u]du = 1,
∫
Rp

uKp[u]du = 0 ∈ Rp,

∫
Rp

uuTKp[u]du = Ip,

Ip being the p×p identity matrix [19]. We can view f̂(x) as a mixture of densities
centered at the observations x1, x2, . . . , xn. The bandwidth matrix H needs to
be selected by the user. Changing the bandwidth matrix has a large impact on
the resulting estimated density, and is often chosen to suit the problem at hand.
An example of kernel density estimation is shown in Figure 2.8.

One common way to select the bandwidth matrix is to minimize the asymp-
totic mean integrated squared error

AMISS = 1
nhp

∫
K(u)2du+ h4

4

∫
{tr[AAT ∇2]f(u)}du, (2.32)

where H = hA, with A having a unit determinant [19]. There is no closed-
form solution, but (2.32) shows that the bandwidth h should be O(n−4/(p+4)).
When using a Gaussian kernel on a multivariate normal distribution, the optimal
bandwidth matrix is diagonal with elements

H =
(

4
p+ 2

)1/(p+4)
Σ 1

2n−1/(p+4).

For p = 2, the estimated bandwidth matrix

Ĥ = Σ̂ 1
2n−1/6 (2.33)

is known as Scott’s rule of thumb [20].

2.8 Watershed segmentation

Watershed segmentation is an image processing technique commonly used to
separate objects in an image. Assuming a greyscale image it treats it like a

Page 27 of 80

2.8. WATERSHED SEGMENTATION CHAPTER 2. THEORY

Figure 2.8: Clustering the two-dimensional t-SNE embedding. Top left: t-SNE
embedding of simulated data, color-coded by actual behavior. Top right: Kernel
density estimation of the t-SNE embedding. Bottom left: Watershed segmen-
tation applied to the kernel density estimation. Bottom right: Contours of the
watershed segmentation with the t-SNE clusters shown inside.

topological map where intense areas are considered to have large altitude [21].
Using an estimated gradient the algorithm finds the local minima in the image,
gradually ”floods” the topography with water, and marks the lines where the filled
basins meet. The watershed segmentation applied to an estimated probability
density function is shown in Figure 2.8.

Page 28 of 80

2.9. APPLIED TOPOLOGY CHAPTER 2. THEORY

Figure 2.9: Example of a directed graph with four vertices and six edges.

2.9 Applied topology

2.9.1 Directed graph
A graph G = (V,E) is a collection of vertices V and edges E, where both V and
E are finite non-empty sets [22]. When E is ordered pairs of vertices we call G
a directed graph. Figure 2.9 shows a directed graph with vertices {v1, v2, v3, v4}
and edges {(v1, v2), (v2, v1), (v2, v3), (v4, v2), (v1, v4)}.

2.9.2 Simplicial complexes
Let S be a discrete set. A collection of finite subsets of S, X, is called an abstract
simplicial complex if for all finite subsets σ ∈ X, its subsets τ are also subsets
of X [23]. We call σ k-simplices, where |σ| = k + 1, and the simplices τ ⊂ σ
its corresponding faces. If X and σ are ordered sets, we call call X an abstract
directed simplicial complex. Xk is defined as the set of all k-simplices of X.

The simplicial complex X is turned into a topological space by what is called
a geometric realization [23]. For a given k, we find all k-simplices of and attach
them along their common faces. The k-skeleton is defined as X(k) = Xk ∪Xk−1 ∪
. . . ∪ X0, with the dimension of X being defined as the smallest k such that
X = X(k) [24].

2.9.3 Flag complexes
We now wish to construct an abstract simplicial complex from a graph. To
achieve this, we define the flag complex of a graph as the maximal simpli-
cial complex having the graph as its 1-skeleton [23]. In the specific case of
a directed graph G = (V,E), the directed flag complex F (G) has 0-simplices
F0 = V , and all other k-simplices Fk, k ≥ 1 are k + 1 tuples (v0, v1, . . . , vk)
such that vi ∈ V and (vi, vj) ∈ E, 0 ≤ i < j ≤ k. For such a simplex
(v0, . . . , vk), v0 is called the source, and vk the sink. The flag complex of

Page 29 of 80

2.10. HOMOLOGY CHAPTER 2. THEORY

the graph shown in Figure 2.9 has 0-simplices {v1}, {v2}, {v3}, {v4}, 1-simplices
{v1, v2}, {v2, v1}, {v1, v4}, {v2, v3}, {v3, v4}, {v4, v2} and one 2-simplex {v1, v4, v2}.

2.10 Homology

To describe high-level features of simplicial complexes we use homology. Again,
let X be an ordered simplicial complex and F a field. Then, for k ≥ 0 we let
Ck(X) be a vector space with basis elements being the k-simplices of X, Xk. If
σ = {v0, v1, . . . , vk} is a k-simplex in X, we denote the face where vi is removed
σi(σ) = {v0, . . . , v̂i, . . . , vk}. We extend this notion in the k-th boundary map
∂k : Ck(X) → Ck−1(X)

∂k(σ)
k∑

i=0
(−1)i∂i(σ),

for k ≥ 1 [25]. It can easily be checked that ∂k ◦ ∂k+1 = 0, k ≥ 1. Using this fact
we can define the important k-th homology group as

Hk(X) = Hk(X;F) = Zk/Bk,

where Zk = Ker(∂k) ⊆ Ck is called the k-cycles and Bk = Im(∂k+1) ⊆ Ck the
k-boundaries. The rank of Hk(X) is called the k-th Betti number and represents
the number of holes in X.

2.10.1 Persistent homology
Where homology deals with finding topological features in structures, persistent
homology aims at finding the important features by varying the spacial scale. To
achieve this we need some sort of distance metric on the simplicial complexes.
First we define a filter function f : X → R which has the property that if τ is
a face of a simplex σ in X, then f(τ) ≤ f(σ) holds. We call X together with
f a filtered simplicial complex. A sublevel complex is then defined as X[b] =
f−1((−∞, b]) for a given b ∈ R∪ {∞}. For a simplicial complex X we can obtain
a nested sequence of subcomplexes

X[1] ⊆ X[2] ⊆ · · · ⊆ X[n] = X,

which is also known as a filtration. For this filtration we have a homomorphism

hi,j
k : Hk(X[i]) → Hk(X[j]), i ≤ j, k ≥ 0,

induced by the inclusion map X[i] → X[j] [25]. The image Im(hi,j
k) is the k-th

persistent homology group corresponding to the given filtration. We call its rank

Page 30 of 80

2.10. HOMOLOGY CHAPTER 2. THEORY

a persistent Betti number, which represents the number of homology classes that
exist in X[i] and still exists in X[j]. Let α be a homology class. We say that
it is born at X[i] if it is not in the image of the map induced by the inclusion
X[i − 1] ⊂ X[i] [26]. Similarly, we say α dies at X[j] if the image of the map
induced by X[i − 1] ⊂ X[j] contains α, while the image of the map induced by
X[i− 1] ⊂ X[j − 1] does not, given that α is born at X[i]. The persistence j − i
is a measure of how long the homology class lives within the filtration.

We can visualize the persistence in a filtered simplicial complex X with its
persistence diagram, Dgmp(f). The persistence diagram is a multiset of points
in R̄2, where a point u = (i, j) is included if there exists a homology which is
born at X[i], and dies at X[j].

It is also possible to compare such persistence diagrams. First, we state the
L∞ norm, ||p− q||∞ = max{|p1 − q1|, |p2 − q2|}. Let Dgmp(f) and Dgmp(g) be
two persistence diagrams. They are defined by their multisets of points P and Q,
respectively. The bottleneck distance between Dgmp(f) and Dgmp(g) is defined
as

dB(P,Q) = inf
γ

sup
p

||p− γ(p)||∞, (2.34)

where p ∈ P and γ is a bijection from P to Q [27]. An example of two persistence
diagrams plotted together with their bottleneck distance marked is shown in
Figure 2.10. The bottleneck distance has nice stability properties, as shown in
[27]. Summarized, small perturbations in the input space give small changes in
the bottleneck distance between the persistence diagrams.

Page 31 of 80

2.10. HOMOLOGY CHAPTER 2. THEORY

Figure 2.10: Example of two persistence diagrams, representing the multisets
of points {(0.6, 0.9), (0.53, 0.8), (0.5, 0.54)} and {(0.55, 0.92), (0.7, 0.8)}. The red
line is the bottleneck distance, and the green stapled lines illustrates the corre-
sponding optimal bijection.

Page 32 of 80

Chapter 3

Methodology

The starting point of the analysis is a set Y = {Yd : d = 1, 2, . . . , D}, where
Yd is again a set of independent time series, Yd = {yd

1(t), yd
2(t), . . . , yd

n(t) : t ∈
{t1, t2, . . . , tmd

}}. Each Yd represents an animal for which n time series are col-
lected tracking parts of its movements. Recording frequency is the same across
animals. The goal of the analysis is to cluster these time points into distinct
distinguishable actions. Looking at detrended motion recordings as periodic sig-
nals, we extract information about the periodicity in the movements at a range
of frequencies through time-frequency analysis. These extracted features are em-
bedded into two dimensions, where we can use image segmentation techniques
on an estimated two-dimensional probability distribution.

Sections 3.1 to 3.3 are restated from the specialization project [9].

3.1 Feature extraction

3.1.1 Detrending

The first step is to analyze each time series separately, modifying them and thus
creating D × n features which we will extract the behavioral information from.
Let yt = {y1, y2, . . . , ym} = yd

i (t) for some d ∈ {1, 2, . . . , D} and i ∈ {1, 2, . . . , n}
be one such series.

We detrend the data as yt = s3(t) + xt, s3(t) being the non-linear trend and
xt the detrended time series. The cubic spline s3(t) is found using least square
regression as in Equation (2.26) with equally spaced internal knots ξ1, ξ2, . . . , ξM .

Page 33 of 80

3.1. FEATURE EXTRACTION CHAPTER 3. METHODOLOGY

−60

−40

−20

0

y(t)

s3(t)

0 120 240 360 480 600 720 840 960

Time [s]

−6

−4

−2

0

2

4

6
x(t)

Figure 3.1: Detrended time series using cubic spline regression. The top figure
shows the original time series in black with the fitted trend in red. The bottom
figure shows the detrended time series.

We choose the knots to have a fixed frequency, i.e., we choose ∆ξ = ξi+1 − ξi, i =
2, . . . ,M . Figure 3.1 shows an example of a detrended time series using cubic
splines with interior knots every 240th-time point.

Page 34 of 80

3.2. MANIFOLD EMBEDDING CHAPTER 3. METHODOLOGY

3.1.2 Time-frequency analysis
To make the extracted features comparable, we normalize the time series by
dividing it by its standard deviation

σx = 1
m

m∑
t=1

(
xt − 1

m

m∑
i=1

xi

)2

.

The detrended time series contain information about how the movements vary
around the trend. We assume this movement is repetitive in nature and can be
interpreted as a signal. By applying time-frequency analysis to the detrended
time series, we obtain additional information about how the frequencies of these
movements vary over time. In turn, this can contribute to detecting behavioral
clusters.

As we are unaware of at which scales these movements occur beforehand,
we opt for a continuous wavelet transform as opposed to the short-time Fourier
transform. Let J be the number of predefined frequency scales, ranging from
ωmin to ωmax. The scales s1, s2, . . . , sJ in Equation (2.23) are chosen as fractional
powers of two—as suggested in [14]—e.g.,

sj = 2(j−1)δj

ωmax
, j = 1, 2, . . . , J, (3.1)

δj = 1
J − 1 log2

(
ωmax

ωmin

)
. (3.2)

The choice of mother wavelet can for instance be based on expected features in
the time series [14]. Using Equation (2.23) we compute the discrete continuous
wavelet transform f̃m(s, τ), and in turn the scaled scaleogram

1
sj

∣∣f̃m(sj , t)
∣∣2 , j = 1, 2, . . . , J, t = 1, 2, . . . ,m. (3.3)

The scaling is done to keep the power comparable across the varying scales [28].
An example plot of such a scaleogram is shown in Figure 3.2. To make the
estimated power comparable we take the square root before proceeding

3.2 Manifold embedding

After performing the time-frequency analysis on every time series for all animals,
we concatenate the results into a new feature vector. For animal d, we have md

time points, each containing information about the n trend values, together with
the n · J frequency powers. The concatenated feature vector thus has dimension

Page 35 of 80

3.3. CLUSTERING CHAPTER 3. METHODOLOGY

180 182 184 186 188 190

Time [s]

0.5

1.0

2.0

4.0

8.0

16.0
F

re
q
u
en

cy
[H

z]

9.3e-03

3.4e-02

1.2e-01

4.5e-01

1.7e+00

6.0e+00

2.2e+01

8.0e+01

2.9e+02

1.1e+03

Figure 3.2: Scaleogram of the continuous wavelet transform performed on the
detrended time series shown in Figure 3.1. The figure shows how the power at
different frequency scales changes over time.

(m1 + m2 + · · · + mD) × (n · (J + 1)). To cluster these time points into behav-
iors, we first reduce the feature dimension. Logically, there should exist strong
correlations between the various frequencies.

As a first step in dimensionality reduction, we use principal component anal-
ysis, keeping features explaining at least 95% of the variance. This both reduces
further computational complexity and removes noise. To embed the data into
two dimensions, we apply t-distributed stochastic neighbor embedding. It has
one hyperparameter, the perplexity (2.30), which is chosen by inspecting some
embeddings with values between 10 and 200. As t-SNE has quadratic memory
complexity, we only embed a subset of the data. The subset is chosen through
downsampling at a predefined frequency such that the number of training points
is below 50000.

3.3 Clustering

We cluster the time points by dividing up the two-dimensional embedding into
regions. First, we embed all points by giving each point the two-dimensional
coordinates to the training point (used for t-SNE) with the smallest euclidean
distance in the principal component space. Aiming to find regions with large
clusters of points, we compute an estimated probability density through Gaus-
sian kernel density estimation (2.31). Finally, we apply watershed segmentation

Page 36 of 80

3.4. FEATURE FREQUENCY CHAPTER 3. METHODOLOGY

Figure 3.3: Methodology structure. Top left: Raw time series input data, de-
trended using spline regression. Top right: Scaleogram showing the power at
various frequencies found via wavelet transformation. Bottom left: t-stochastic
neighbor embedding of the principal components explaining 95% of the variance
in the extracted features. Bottom right: Watershed segmentation of the kernel
density estimation of the t-SNE embedding.

on the kernel density estimation, dividing the t-SNE plane into regions. The
methodology structure is shown in Figure 3.3.

3.4 Feature frequency

Suppose that some of the feature recordings were captured at different frame
rates while covering the same time interval. As PCA needs all input features
to have the same dimension, the features need to be manipulated prior to the

Page 37 of 80

3.5. MODEL SELECTION CHAPTER 3. METHODOLOGY

dimensionality reduction. A simple solution is to downsample all features onto the
one with the lowest frequency. We can achieve this in multiple ways depending on
the situation. One general approach is to interpolate the high-frequency features
and compute the values at the low-frequency time points. This approach is also
quite robust to missing values, given that the frequencies are sufficiently large.

3.5 Model selection

When performing the behavioral clustering we make a lot of choices affecting the
resulting t-SNE embedding. Already when performing the wavelet transform,
we choose both the number of frequency scales and the range. Then we choose
the number of principal components used, how to downsample the features, the
perplexity parameter for t-SNE, etc. Each selection produces a number of clusters
representing animal behavior. How to choose between them is unfortunately
not straightforward. The obvious metric would be how well the clusters each
represent an actual behavior (if that even makes sense), and how well these
behaviors are separated in the t-SNE plane. To do this, we would have to look
at video recordings for every possible model, and manually decide the best one.
In addition to being extremely time consuming, it defeats the purpose of this
automatic clustering algorithm—that it is unsupervised. For this reason, it is
common to choose sensible parameters, then be content if the clustering makes
sense by inspecting the video material. If any of the behaviors are similar, we
can then manually group them together into larger behavioral regions where the
included behaviors share characteristic traits [5].

3.5.1 Partial labeling

Although we are not able to manually label the entire dataset, it is possible to
label some easily identifiable assumed behaviors. After training the models we
then observe how well they cluster these behaviors together. While still a manual
task, it can give some insight into how the models differ. Using partial labels as
an initial evaluation of a model, we can often rule out poorly performing models,
before moving on with hyperparameter tuning on the more promising ones.

3.5.2 Spectral power averaging

Looking through the important features of each detected cluster is a common way
to explore their meaning and properties in unsupervised clustering. As we expand
the feature space with time-frequency analysis, there will easily be too many
features for this to be a feasible approach. However, if we average the spectral
power found by wavelet analysis over frequency ranges—either all of them or

Page 38 of 80

3.5. MODEL SELECTION CHAPTER 3. METHODOLOGY

Figure 3.4: Averaged spectral power for a specific feature, computed for each
detected behavioral cluster.

a subset—we obtain some indication of which features play an important role
in the various detected behaviors. The averaged spectral power is plotted over
the t-SNE plane like in Figure 3.4. In this example the plotted feature is more
active in the behaviors found on the right side of the t-SNE plane. Together with
partial labeling, this could provide stronger evidence that the model performing
well. This is because some features are known to be active in the predefined
behaviors. For instance, if an animal is looking around while standing still, the
features measuring the neck movement should be active.

3.5.3 Comparing probability transition matrices
When tuning the hyperparameters using the partially labeled data, it is hard to
compare the results just by looking at the plots. How can we determine the best
one when we do not know what the behaviors represent, and if they make sense?
This is commonly solved by selecting a set of parameters that seem reasonable,
and checking a posteriori by looking at the behaviors in the recordings. If we

Page 39 of 80

3.5. MODEL SELECTION CHAPTER 3. METHODOLOGY

had a way of comparing two models mathematically, we could justify selecting a
model in a range of hyperparameters where the models are similar.

Two immediate difficulties when considering similarity metrics between clus-
terings are that the number of clusters differs between models, and the behavioral
labels 1, 2, 3, . . . varies. Behavior 23 in one model is not the same behavior as
behavior 23 in another. We thus need to convert the models into structures that
can be compared despite these differences.

The probability transition matrix describes contains the probabilities for mov-
ing from one behavior to another. It is estimated by taking the number of moves
between two behaviors and dividing by the total number of time points. These
matrices contain information about how the different behaviors act together.
Shuffling the behavioral labels correspond to shuffling rows in the matrix. How-
ever, there is no apparent way of comparing such matrices of different sizes and
order.

The next step is to view the probability transition matrices as weighed di-
rected graphs. Each behavior corresponds to a node in the graph, and the tran-
sition probabilities to the weighted edges. We can then compare two such graphs
using persistent homology. Either we compare their persistence diagrams visually,
or by computing similarity metrics, e.g., the bottleneck distance (2.34).

Page 40 of 80

Chapter 4

Data

To investigate the inclusion of facial tracking recordings as input features, we use
data collected by the Whitlock group at Kavli Institute for Systems Neuroscience
at NTNU. A Long Evans rat was recorded in 20 separate sessions during six
days, each session lasting approximately ten minutes. In eleven of the sessions,
two objects were present in the arena for the rat to interact with. The light
conditions also varied across sessions, where 13 of them being light and seven
dark. Seven postural features were recorded during each session, with a capture
frame rate of 120 Hz. Together they record the head and back positioning, and
the neck angle and forward speed. A more detailed description of the 3D postural
motion recording can be found in [6].

Facial tracking has not been implemented in behavioral models by the group
previously. To obtain the data, an open-source pose estimation tool on high-
frequency facial video recordings is used to extract a series of individual whisker
angles. The group provided this concise summary of the data collection proce-
dure:

The animal’s whisker and eye movements are tracked using minia-
ture cameras. A head-mounted set-up was custom-designed in the
lab in collaboration with a local company (Inventas AS, Trondheim,
NO) to combine the reflective markers for posture tracking with the
facial tracking cameras and housing for a neural probe. The two
facial tracking cameras (CMT, China; model: CMT-1MP-OV9281-
C520 with 8464B-C Lens) record at 210 frames/s and each capture
one eye and one whisker pad in their field of view.

Page 41 of 80

4.1. DATA CHAPTER 4. DATA

The recorded videos are subsequently analyzed using the DeepLab-
Cut platform [29] to extract the position of points of interest from all
video frames. Those are used to finally extract the angles of deflection
of whiskers (10 whiskers on each side, from the 2nd and 3rd row in
the whisker pad).

[. . .] To allow for precise alignment of data from all three recording
systems (Neuropixels neural recordings, 3D posture recording using
the Optitrack system and the two facial tracking cameras) unique
sequences of TTL pulses (250ms pulse duration, with inter-pulse in-
tervals in the range of 250 - 1500ms) were produced using an Arduino
Microcontroller and sent to all system to be recorded as a continuous
synchronization signal (as a digital channel trace on the Nero pixels
recording, and as a IR LED light recorded in the facial and posture
tracking systems).

Of the 20 tracked whiskers, four of them are of poor quality due to the posi-
tioning of the camera and are excluded from the analysis. In total, this leaves us
with seven postural features and 16 facial tracking features, recorded at 120 Hz
and 210 Hz, respectively.

4.1 Data

The 20 recording sessions provide us with 1399722 postural samples recorded
at 120 Hz, each containing seven features, and 2460083 facial tracking samples
recorded at 210 HZ, each containing 16 features. Table 4.1 describes how the
samples are distributed across the sessions, along with information about the
light conditions and whether or not objects were present in the arena. Each of
the 16 facial tracking features represents a unique whisker at either the left or
right side of the rat’s face. For various reasons, the postural tracking can at times
be quite poor, resulting in one or more of the features containing missing values.
Such samples, containing one or more missing values, were removed prior to the
analysis. After removing the poor samples, we are left with 957941 postural
samples. That the number of missing values is this high is not particularly
concerning, as we know in which sessions the tracking is bad, and since the
missing values are grouped together on intervals, leaving them out does not affect
the time-frequency analysis negatively.

4.2 Partial labels

In addition to the data, the Whitlock group also provided partial labels to some
sessions. Six easily identifiable rat behaviors were chosen and labeled across eight

Page 42 of 80

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. DATA

Session Postural samples Facial samples Lighting Objects present
C4 1 71462 125597 Light No
C4 2 71220 125137 Dark No
C4 3 71002 124789 Dark Yes
C5 1 71767 126134 Light No
C6 1 71709 126033 Light No
C6 2 61676 108398 Dark No
C7 1 71182 125107 Light No
C7 2 67453 118553 Dark Yes
C8 2 71715 126043 Light No
C8 3 71328 125361 Dark Yes
C8 4 57756 101509 Light Yes
C9 2 71712 126038 Light Yes
C9 3 71701 126017 Light Yes
C10 1 71708 126032 Light No
C10 2 71509 125680 Dark No
C10 3 71806 126203 Light Yes
C11 1 71101 124964 Light Yes
C11 2 71001 124788 Light Yes
C11 3 71628 125891 Dark Yes
C12 1 69286 121773 Light Yes

Table 4.1: Recording session information for the 20 sessions used in the analysis.
The number of recorded samples is stated, both from the postural and facial
tracking sensors, along with the conditions in the arena.

of the sessions. Then the behaviors were divided into subcategories, described in
Table 4.2.

4.3 Graphical user interface

An important tool for post hoc labeling of the behaviors is a graphical user
interface (GUI) developed by the group. It is a custom plugin for the open-
source image processing software Fiji [30], and has been employed in previous
research [6] [31]. We use it as a visualization tool, where an animation of the
rat is created using the features from OptiTrack. An example of the animation
is shown in Figure 4.1. After training the model, and classifying the recording
time points into a set of unknown behaviors, we can use the GUI to visualize
the behaviors, and in turn label them a posteriori. Using csv-files containing
start and end frames for the behaviors, the GUI can jump to the corresponding

Page 43 of 80

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. DATA

Name Description
Rearing wall 1 Rearing (standing on the hind legs) against the wall

with simple whisking.
Rearing wall 2 Rearing against the wall with more complex whisking.
Rearing open Rearing in the arena (not against the wall).
Eating Eating snacks with the front paws.
Grooming face Either scratching the face with font paws, or belly

with front or back paws.
Freeze 1 Short freeze with whiskers being still.
Freeze 2 Longer freeze including some whisker movement.
Touching object 1 Interacting with objects with left whisker engaged.
Touching object 2 Interacting with objects with both whiskers engaged.
Touching object 3 Interacting with objects with both whiskers engaged,

and the rat is climbing on the objects.
Running across 1 Casually paced trot across the arena.
Running across 2 Faster jumpy run across the arena.

Table 4.2: Partial labeling behavior descriptions.

parts of the recordings automatically. It is also possible to include synced video
recordings in the analysis, side by side with the animation.

Page 44 of 80

4.3. GRAPHICAL USER INTERFACE CHAPTER 4. DATA

Figure 4.1: An example screenshot of the animated rat visualization obtained
using the open-source image processing software Fiji [30].

Page 45 of 80

Chapter 5

Exploratory data analysis

The clustering algorithm involves several hyperparameters—perplexity, band-
width, etc—while also being open to tweaking several steps. Hence, we need
to explore some options and do model selection, both with and without including
the facial tracking features.

5.1 Postural features only

Our main goal is to show how including facial features changes the behavioral
clustering output. To compare results, we need a benchmark using only the 7
postural features, recorded at 120 Hz. After detrending using cubic spline regres-
sion and normalizing across samples, we apply a continuous wavelet transform on
each of the seven time series. We use a Morlet mother wavelet on 18 frequencies
between 0.5 Hz and 20 Hz, chosen as in Equations (3.1) and (3.2). Adding each
power spectrum to the feature space leaves us with a total of 133 features before
performing the dimensionality reduction. First, these features are reduced to 66
dimensions by principal component analysis, the threshold chosen as the mini-
mum number of components explaining at least 95% of the variance. The samples
were subsampled at 3.758 Hz, resulting in 30902 training samples to be used in
the t-SNE embedding. Finally, all samples are embedded in two dimensions using
t-SNE with perplexity parameter 30. To estimate a probability density in the
t-SNE plane, we apply kernel density estimation with the bandwidth chosen auto-
matically by Scott’s rule (2.33). Finally, we cluster the t-SNE embeddings using

Page 47 of 80

5.1. POSTURAL FEATURES ONLY CHAPTER 5. EDA

Figure 5.1: Visualization of trained model using only postural features. Top left:
Heat map showing the estimated probability density in the t-SNE plane, divided
into 61 behavioral regions. Top right: Intensity plot showing relative time spent
in each of the behaviors. More intense color corresponds to large amount of time
spent in behavior. Bottom left: Behavioral labels given to the various regions.
Bottom right: Partial labels assigned to parts of the training data, based on
visual inspection of video recordings.

a watershed segmentation on a 500 × 500 grid, yielding 61 distinct behaviors. A
visualization of the model is shown in Figure 5.1.

Looking at the partial label plot at the bottom right, we observe that the
model performs quite well in terms of clustering several of the predefined behav-
iors. It is able to distinguish between the two running behaviors in behavior 8
and 18. Furthermore, rearing behavior, eating, and grooming are all somewhat
separated in the t-SNE plane, to the right, left, and bottom, respectively. Freez-
ing and interacting with the objects seem to be more spread out. An interesting
observation is that while it seems to separate rearing against the wall from rear-
ing in the open arena, it does not differentiate between the two subcategories
for rearing against the wall. What separated these two behaviors in the labeling
was the whisker movement. Showing a better separation of these behaviors when

Page 48 of 80

5.2. FACIAL TRACKING FEATURES ONLY CHAPTER 5. EDA

including the facial tracking features could suggest an improvement to the model.

5.2 Facial tracking features only

Next, we try to train a model using only the whisker angles from the facial
tracking as input features. Intuitively, this should not make for a great model. It
seems ambitious to think that this alone is enough to cluster complex behaviors.
However, it may help to understand the input data, and for which behaviors we
can hope to get better segmentation when we use all available features.

The hyperparameters are chosen as before. Now we have 16 original features,
which are expanded through the time-frequency analysis to 304. As the facial
tracking is recorded in 210 Hz, with no missing values, we have a 2460083 × 304
sized input matrix, which we reduce to 145 dimensions through the initial PCA.
The reduced data where downsampled at 2.56 Hz, producing 30002 training sam-
ples for t-SNE. Ultimately, the data where clustered into 62 distinct behaviors.

Figure 5.2 shows a visualization of the model trained only on facial tracking
features, i.e., 16 whisker angles. Although the partial labels generally seem more
spread out compared to the model trained on postural features only, we observe
some segmentation, especially on the rearing, grooming, and eating behaviors.
As expected, running across the arena is hard to distinguish using only whisker
movements. At least, this suggests that the features obtained through facial
tracking contain information to aid the separation of behaviors.

5.3 Initial combined model

Using all available features, i.e. combining postural and facial tracking data, to
train the model creates some immediate challenges. As the postural recordings
and facial tracking samples data at different frequencies, we need to modify the
features prior to the principal component step. Different ways of doing this are
discussed in Section 3.4. To utilize all samples to the best effect, we perform
the time-frequency analysis prior to downsampling. Using the same parameter
choices as in previous sections, we are left with 957941 samples containing 133
frequencies, and 2460083 samples containing 304 features. Each of the 304 facial
tracking features is linearly interpolated, and computed at the 957941 time points
containing postural features without missing values. This is thought to be suffi-
cient, as both 120 Hz and 210 Hz are high frequencies compared to actual postural
and whisker movements. Principal component analysis reduces the feature space
from 437 to 212 dimensions. Again, the data is further subsampled to 30902
samples and reduced to two dimensions using t-SNE with perplexity parameter
30. Watershed segmentation on the estimated probability density clusters the
data into 39 behaviors.

Page 49 of 80

5.3. INITIAL COMBINED MODEL CHAPTER 5. EDA

Figure 5.2: Visualization of trained model using only features from the facial
tracking Top left: Heat map showing the estimated probability density in the t-
SNE plane, divided into 62 behavioral regions. Top right: Intensity plot showing
relative time spent in each of the behaviors. More intense color corresponds to
large amount of time spent in behavior. Bottom left: Behavioral labels given to
the various regions. Bottom right: Partial labels assigned to parts of the training
data, based on visual inspection of video recordings.

A visualization is shown in Figure 5.3. Comparing this partial label plot to
the one from the model using only postural features in Figure 5.1, there does
not seem to be an immediate improvement. You could instead argue that some
of the partially labeled behaviors, such as the rat grooming its face and running
across the arena, now are more poorly separated in the t-SNE plane. The poor
separation of grooming behaviors is especially surprising, as the facial tracking
data alone seemed to contain information about these behaviors, as shown in
Figure 5.2.

Continuing from here, we note that the number of principal components ex-
plaining at least 95% of the variance in the data is high relative to the number
of features. A natural assumption about the whiskers is that they often move
together. If this is true, then PCA should be an effective tool for reducing the
dimensionality substantially. When this does not happen, and we go from 437 to

Page 50 of 80

5.4. MODEL VARIATIONS CHAPTER 5. EDA

Figure 5.3: Visualization of the initial trained model using both postural features
and features from the facial tracking Top left: Heat map showing the estimated
probability density in the t-SNE plane, divided into 39 behavioral regions. Top
right: Intensity plot showing relative time spent in each of the behaviors. More
intense color corresponds to large amount of time spent in behavior. Bottom
left: Behavioral labels given to the various regions. Bottom right: Partial labels
assigned to parts of the training data, based on visual inspection of video record-
ings.

212 features, it could suggest that the facial tracking data is very noisy. Another
theory is that the frequency range in which we look for spectral power should be
different for the facial tracking data. Before going further in-depth on the specific
models, doing hyperparameter tuning, and looking into the behaviors in detail,
we want to test whether or not some more substantial changes to the model could
improve the results.

5.4 Model variations

Figure 5.4a shows the partial labels for the model trained on postural features
only, while Figure 5.4b shows the partial labels for the initial combined model.

Page 51 of 80

5.4. MODEL VARIATIONS CHAPTER 5. EDA

5.4.1 Changing the frequency range
The first instinct when discussing adjusting the frequencies, is to increase the
frequencies for which we compute the continuous wavelet transform. For the
postural features, we still use 18 frequencies between 0.5 Hz and 20 Hz, while for
the facial tracking features, we increase the range to 1-30 Hz. Keeping the other
hyperparameters as before, the model finds 48 distinct behaviors. The partial
labels plotted over the segmented density estimation are shown at the top right
in Figure 5.4c.

If we assume whisker movements in general to have a higher frequency than
other body parts, such as the neck and back, we would need the frequencies
to cover the expected range better. In other words, we make the frequency
range narrower to better differentiate between whisker movements. Changing the
minimum and maximum frequency to 1 Hz and 10 Hz, respectively, results in the
model shown at the bottom left in Figure 5.4d, leaving all other hyperparameter
choices as before.

5.4.2 Manually selecting principal components
Again, supposing the facial tracking data contains a lot of noise, a way of remov-
ing this is to include fewer principal components as t-SNE input. We test two
approaches. Firstly, we simply use the 50 first principal components. Figure 5.5
shows how the explained variance increases as a function of included principal
components for both the model trained on postural features only, and includ-
ing facial tracking features. It shows that including 50 principal components
explained somewhere between 70% and 80% of the variance in the data. This
model is shown in Figure 5.4e.

Secondly, we try computing the principal components separately for the pos-
tural features and facial tracking features. Then we add together the 50 first
components from the postural data, and ten first from the facial tracking data.
Since the model trained on postural features only showed very promising ini-
tial results, we want to keep much of this information. The facial tracking data
should give a slight edge in detecting certain behaviors, but must not introduce
too much new noise to the training data. This model is shown in Figure 5.4f.

5.4.3 Choosing between the models
With the exception of the model trained only on postural features, the plots
in Figure 5.4 are very similar. The partial labels are grouped very similar but
with some differences in how much some behaviors spread out. E.g., the rearing
behaviors are more spread out in 5.4c, 5.4e, and 5.4f, than in 5.4a, 5.4b and 5.4d.
Of the three models which separate rearing best, the model computing principal

Page 52 of 80

5.4. MODEL VARIATIONS CHAPTER 5. EDA

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Partial labels assigned to parts of the training data, based on visual
inspection of video recordings. (a): Model trained only on the postural data. (b):
Model trained on all data. Equal frequency range for all features. (c): Model
trained on all data. Frequency range where CWT is computed set higher for the
facial tracking features. (d): Model trained on all data. Frequency range where
CWT is computed set narrower for the facial tracking features. (e): Model trained
on all data. Only the 50 first principal components are used as training data for
the t-SNE embedding. (f): Model trained on all data. Principal component
analysis performed separately on the postural data and the facial tracking data.
The 50 first principal components from the postural data, together with the ten
first principal components from the facial tracking data, are used as training data
in the t-SNE embedding.

components separately also separate the two ways of running across the arena
quite well. Based on this, we move forward with hyperparameter tuning on this
one.

Page 53 of 80

5.5. HYPERPARAMETER TUNING CHAPTER 5. EDA

Figure 5.5: Explained variance in the data as a function of principal components
included in the dimensionality reduction. Stapled red line indicates number of
principal components needed to explain at least 95% of the variance in the data.
Left: Model trained using only the postural data. Right: Model trained using all
the data.

5.5 Hyperparameter tuning

In all the behavioral models we have discussed, there are two hyperparameters
that greatly affect the final behavioral clustering. The perplexity parameter
(2.30) which was originally set to 30, and the bandwidth parameter h used in the
kernel density estimation (2.31), which was computed using Scott’s rule (2.33).
Instead of using Scott’s rule, we can manually select the bandwidth, controlling
the smoothness of the density estimation. A lower bandwidth results in many
segmented behaviors, while a large bandwidth results in fewer segmented behav-
iors.

Training the models is computationally intensive. For this reason, we first
tune the parameters separately to find good intervals, before we do a grid search.
The results suggest a range between 20 and 80 for the perplexity parameter,
and between 0.1 and 0.15 for the bandwidth. We train the chosen models—one
using only postural features, and one with facial tracking features and separate
principal component computations—using seven equidistant values for both the
perplexity and bandwidth in selected regions. For each model we manually look
through the 49 partial label plots, selecting the ones which seem to best segregate
the partially labeled data. This is not an exact science, and we need to prioritize

Page 54 of 80

5.5. HYPERPARAMETER TUNING CHAPTER 5. EDA

between the behaviors. Furthermore, there could be equally good behavioral
representations that do not coincide with our partially labeled data. For the
model with postural features only, we choose perplexity 50 and bandwidth 0.117.
For the model with facial tracking features included, we choose perplexity 50 and
bandwidth 0.108. All the figures used in the hyperparameter tuning can be found
at http://www.folk.ntnu.no/ulrikbd [32].

Page 55 of 80

http://www.folk.ntnu.no/ulrikbd

Chapter 6

Results

Now that we have chosen one model trained on postural data and one trained on
postural and facial tracking data combined, we are ready to compare them. We
are interested in how behavioral segmentation changes when introducing facial
tracking data. Thus, we need to investigate the detected behaviors in the raw
data, using the GUI described in Section 4.3. Additionally, topological data
analysis is tested on these models, varying the bandwidth hyperparameter in the
kernel density estimation.

6.1 Models

6.1.1 Postural features

In Section 5.5 we finished the model selection by selecting the hyperparameters
through a grid search. For the model trained only on postural features, the
optimal perplexity parameter used in t-SNE was found to be 50. The optimal
bandwidth parameter, used in the Gaussian kernel density estimation, was found
to be 0.117. A visualization of this model is shown in Figure 6.1. Looking at the
partial labels shown at the bottom right, some of the manually labeled behaviors
are well separated. The two ways of running across the arena are grouped in
behaviors 6 and 12. All of the rearing behaviors are clustered in behavior 23, in
which the animal spends a lot of time judging by the relative time plot on the
top right. Eating and Grooming face are slightly overlapping in the bottom left
corner of the t-SNE mapping. Freeze behaviors seem clustered to the left, but

Page 57 of 80

6.1. MODELS CHAPTER 6. RESULTS

Figure 6.1: Visualization of the best model using only postural features. Top
left: Heat map showing the estimated probability density in the t-SNE plane,
divided into 41 behavioral regions. Top right: Intensity plot showing relative
time spent in each of the behaviors. More intense color corresponds to a large
amount of time spent in behavior. Bottom left: Behavioral labels given to the
various regions. Bottom right: Partial labels assigned to parts of the training
data, based on visual inspection of video recordings.

overlapping quite a bit with the touching object labels. Behavior 5 seems to be
a mix of everything.

As an aid in determining the nature of the behavioral clusters, we look at the
averaged spectral power for the various features, as discussed in Section 3.5.2.
Figure 6.2 shows how the behaviors clustered to the right in the t-SNE plane
have above-average power in the speed feature. Similar arguments can be made
for every feature, both at high and low frequencies. In total, this gives some indi-
cation of the movements adding up to the detected behaviors. Spectral averaging
plots for all the features can be found at http://www.folk.ntnu.no/ulrikbd
[32].

Page 58 of 80

http://www.folk.ntnu.no/ulrikbd

6.1. MODELS CHAPTER 6. RESULTS

Figure 6.2: Averaged spectral power for high frequencies. Computed for the speed
feature in the model trained on postural features, visualized in Figure 6.1.

6.1.2 Including facial tracking features

The model trained on all the data best segmenting the partial labels was found
in Section 5.5. It computes the principal components separately for the postural
and facial tracking features, including the 50 and 10 features explaining the most
variance, respectively. These are concatenated and reduced to two dimensions
using t-SNE with perplexity parameter 80. When estimating the probability
density over the t-SNE plane, we use a Gaussian kernel density estimator with
bandwidth parameter 0.117. A visualization of the model is shown in Figure 6.3.
The immediate impression from the partial label plot is that this model divides
the various forms of pre-labeled rearing behaviors into multiple behaviors, where
the clustering based only on postural features groups them into one.

Page 59 of 80

6.2. CLUSTERING REARING BEHAVIOR CHAPTER 6. RESULTS

Figure 6.3: Visualization of the best model using all available features. Top
left: Heat map showing the estimated probability density in the t-SNE plane,
divided into 41 behavioral regions. Top right: Intensity plot showing relative
time spent in each of the behaviors. More intense color corresponds to a large
amount of time spent in the region. Bottom left: Behavioral labels given to the
various regions. Bottom right: Partial labels assigned to parts of the training
data, based on visual inspection of video recordings.

6.2 Clustering rearing behavior

When clustering using only postural features, all partially labeled rearing behav-
iors are mapped to behavior 23. However, when using the facial tracking data,
the behaviors are spread out across several behaviors to the right in the t-SNE
plane 6.3. This could provide insight into how the inclusion of facial tracking
data affects the clustering.

Using the graphical user interface discussed in Section 4.3, we can look back at
the time intervals mapped to each behavior. This provides a lot of information
about which movements the clusters represent, which in turn is useful when
labeling the behaviors a posteriori.

Such an analysis is performed on the behaviors which are indicated as rear-
ing behaviors by the partially labeled data. The results are summarised in Ta-
ble 6.1. Using the facial tracking data, the model maps the partially labeled

Page 60 of 80

6.3. PERSISTENT HOMOLOGY CHAPTER 6. RESULTS

data into multiple clusters to the right in the t-SNE plane. Some of these clus-
ters—specifically behavior 4, 10, and 15—are specific forms of rearing. These are
not detected when only using the postural data. The partially labeled samples
are also mapped to other behaviors, which are harder to label using the graphical
user interface. Examples of such behaviors are 2, 7, 25, and 26.

Model Behavior Description
PF 23 Very clearly a rearing behavior, where the rat is

stretching its body upwards, both against the wall
and towards the open arena. Also includes the time
leading up to the rearing—and sometimes also af-
ter—when the rat is walking.

FTF 10 Touching the walls with its head before or during rear-
ing. The head is moving back and forth at a high
frequency.

FTF 4 Rat is stretched out upwards. Mostly towards a wall,
but could also be in the open arena. Jumps upwards
from this stretched-out position.

FTF 15 Rat is stretched out, rearing against a wall. Moving
its head looking around to the sides.

FTF 7 Behavior varies. Some rearing, but also some quick
dashing.

FTF 2 Behavior varies. The head is moving, sometimes while
rearing.

FTF 25 Rat is rearing or sitting still next to the wall.

Table 6.1: Clustered behaviors labeled a posteriori using the graphical user in-
terface discussed in Section 4.3. The PF model refers to the model trained using
only postural features, visualized in Figure 6.1. The FTF model refers to the
model trained on all the data, including the facial tracking, visualized in Figure
6.3.

6.3 Persistent homology

We also want to see whether computing the persistent homology of the transition
probability matrices, as described in Section 3.5.3, can tell us something about
the clustering. To exemplify the reasoning behind the procedure, we create a toy
example where the same situation is described with two different sets of behaviors.

Page 61 of 80

6.3. PERSISTENT HOMOLOGY CHAPTER 6. RESULTS

6.3.1 Toy example

We imagine a situation where someone is sitting at their desk, writing their thesis.
Then they stand up and walk to the kitchen to get some coffee, before going back.
Dividing this scenario into consecutive behaviors, we get a transition probability
matrix which we can represent as a graph, and compute its persistent homology.
Though both the number of behaviors and what they represent differ, we hope
that the underlying cyclic structure will be picked up.

Simulation

In the Scenario 1, we divide the act of getting coffee into four smaller behaviors.
In the second, we divide the act into seven smaller behaviors. They are shown in
Table 6.2. Then, we simulate 170 seconds, where each second is labeled as one

Behavior Scenario 1 Scenario 2
1 Write thesis Write thesis
2 Walk through the hallway Open the door
3 Get coffee Walk through the hallway
4 Speak to family Get a cup from the cupboard
5 Pour coffee
6 Speak to family
7 Stare out the window

Table 6.2: Two different behavioral segmentations, corresponding to the same
act of getting coffee.

of the behaviors. Noise is added by selecting a random behavior at every 20th
second.

Computation

The transition probability matrix for Scenario 1 and 2 are

0.95 0.02 0.03 0
0.25 0.58 0.17 0
0.03 0.09 0.83 0.06

0 0 0.33 0.67

 and

0.95 0.02 0.03 0 0 0 0
0.5 0.17 0.17 0 0.17 0 0
0.12 0.25 0.5 0.12 0 0 0

0 0 0 0.5 0.25 0 0.25
0 0.06 0.06 0 0.82 0 0.06
0 0 0 0 0.2 0.8 0
0 0 0 0.08 0 0.08 0.85

,

Page 62 of 80

6.3. PERSISTENT HOMOLOGY CHAPTER 6. RESULTS

respectively, rounded to the second decimal point. As we only care about the
transitions from one behavior to another, we do not need to consider the diagonal.
Additionally, when considering real data, the diagonal will often contain values
close to 1. Thus, we set all values on the diagonal to 0, and standardize the rows.

When including the transition probabilities p as weighted edges in the graph,
it is useful to instead take 1 − p. The algorithm starts with no edges included,
and will then include the edges with the highest original transition probability
first. After doing the adjustments, the transition matrices for Scenario 1 and 2
becomes

0 0.67 0.33 1

0.4 0 0.6 1
0.83 0.5 0 0.67

1 1 0 0

 and

0 0.67 0.33 1 1 1 1
0.4 0 0.8 1 0.8 1 1
0.75 0.5 0 0.75 1 1 1

1 1 1 0 0.5 1 0.5
1 0.67 0.67 1 0 1 0.67
1 1 1 1 0 0 1
1 1 1 0.5 1 0.5 0

,

respectively, rounded to the second decimal point. The resulting graph for Sce-
nario 1 is shown in Figure 6.4. Notice how when a behavior always moves to the
same behavior, as behavior four does in Scenario 1 and behavior six in Scenario 2,
the edge between the corresponding nodes in the graph will always be included.

Results

By viewing the modified transition matrices as weighted graphs, we now compute
the persistence pairs for each scenario. The persistence diagram comparing these
persistence pairs is shown in Figure 6.5. To the left, with birth at 0, are the H0

Figure 6.4: Weighted directed graph, corresponding to the first example scenario
discussed in Section 6.3.1. Each node represents a behavior, and the edges rep-
resent a modified transition probability between the behaviors.

Page 63 of 80

6.3. PERSISTENT HOMOLOGY CHAPTER 6. RESULTS

Figure 6.5: Persistence diagrams for each of the two behavioral scenarios com-
pared in the toy example discussed in Section 6.3.1.

homology classes. Some of them are overlapping in the figure. Scenario 1 also
has zero-dimensional homology classes dying at 0.33 and 0.4.

It is more interesting to look at the H1 homology classes. For Scenario 1,
two such topological features appear. The first one appears at 0.5 and dies at
0.67. If we look at the transition matrix, this feature represents the cycle between
behaviors 1, 2, and 3. At 0.67, all edges between these behaviors are filled in, and
the cycle disappears. Another cycle appears at 0.67 between behaviors 3 and 4,
which does not die before all edges are filled in.

The bottleneck distance between the two persistence diagrams (2.34) is 0.267.
The bijection is represented by matching pairs of points. As the number of points
is different, some points are matched with the diagonal. The optimal matching
is shown in Figure 6.6.

Based on the example scenarios alone, it is hard to determine the benefit of
this approach. The interpretations of the topological features in this space are
still quite abstract. By comparing persistence diagrams and bottleneck distances
on actual transition probability matrices with a larger number of behaviors, we
will better know if this approach serves a purpose in model selection.

Page 64 of 80

6.3. PERSISTENT HOMOLOGY CHAPTER 6. RESULTS

Figure 6.6: Persistence diagrams for each of the two behavioral scenarios com-
pared in the toy example discussed in Section 6.3.1. The bottleneck distance is
shown as a red line, with dashed green lines indicating the matched points in the
chosen bijection.

6.3.2 Application on real data

To show how the persistence diagrams compare between models change with
the different hyperparameters, we use the two selected models found in Section
6.1. For both the model trained on postural features only and the one using all
available data, we retrain the models with 50 equidistant bandwidth parameter
values ranging from 0.1 to 0.15. The bandwidth parameter is a natural first
choice. It does not change the t-SNE mapping itself, only the segmentation
in the t-SNE plane. When increasing the bandwidth parameter we effectively
increase the size of the regions, and in turn, decrease the number of behaviors.
Smaller regions will gradually combine into larger ones, hopefully resulting in a
hierarchical structure we can detect.

Some of the persistence diagrams for the models trained on postural features
are shown in Figure 6.7. Similar persistence diagrams for the models trained
on the facial tracing data included are shown in Figure 6.8. The rest can be

Page 65 of 80

6.3. PERSISTENT HOMOLOGY CHAPTER 6. RESULTS

Figure 6.7: Persistence diagrams computed by transforming the transition prob-
ability matrices to directed graphs, with edges weighted by the transition prob-
abilities. The diagrams shown are computed on the model trained on postural
features only, discussed in Section 6.1, varying the bandwidth parameter in the
kernel density estimation.

found at http://www.folk.ntnu.no/ulrikbd [32]. As the bandwidth parameter
moves from 0.1 to 0.15, some topological features appear and disappear from the
persistence diagrams. By visual inspection, it seems like persistence diagrams for
models trained with similar bandwidth parameter, also appear more similar.

Page 66 of 80

http://www.folk.ntnu.no/ulrikbd

6.3. PERSISTENT HOMOLOGY CHAPTER 6. RESULTS

Figure 6.8: Persistence diagrams computed by transforming the transition prob-
ability matrices to directed graphs, with edges weighted by the transition proba-
bilities. The diagrams shown are computed on the model trained on all the data,
discussed in Section 6.1, varying the bandwidth parameter in the kernel density
estimation.

Computing bottleneck distances

To compare models using the bottleneck distance (2.34), we choose a reference
model with bandwidth parameter in the middle of the interval. We then compute
the bottleneck distance to each of the other 49 models, allowing us to see how it

Page 67 of 80

6.3. PERSISTENT HOMOLOGY CHAPTER 6. RESULTS

evolves as a function of the bandwidth difference. The results are visualised in
Figure 6.9 As expected, when the models have similar bandwidth parameter, the
bottleneck distance is small.

Page 68 of 80

6.3. PERSISTENT HOMOLOGY CHAPTER 6. RESULTS

Figure 6.9: Bottleneck distance as a function of bandwidth difference. The bot-
tleneck distance is computed relative to a model trained using bandwidth 0.126,
close to the middle of the parameter tuning interval. Top: Model trained only on
the postural data. Bottom: Model trained on the combined postural and facial
tracking data.

Page 69 of 80

Chapter 7

Discussion and conclusions

The original aim of the thesis was to investigate topological data analysis as a
tool for detecting structural patterns in animal behavior, invariant over a range
of hyperparameters. Additionally, as I had implemented a behavioral cluster-
ing algorithm during my specialization project [9], the Whitlock group at Kavli
Institute for Systems Neuroscience asked if I could assist them with testing the
clustering on newly available data. This data included recorded angles from sev-
eral of the rat’s whiskers. Exploring new models and implementing tests for these
was, although time-consuming, very useful and instructive. It illustrated the chal-
lenges related to model selection in behavioral clustering, and why quantitative
measures comparing models are useful.

7.1 Model selection

Model selection in behavioral clustering is difficult. It is hard to tell by the
two-dimensional mappings how models differ, and which one to prefer. Partial
labeling has proved a very useful tool, both for tuning the hyperparameters and
for understanding how the models work. Regions in the two-dimensional t-SNE
plane correspond to different body movements and action sequences. The partial
labels provide insight about these regions, and work as a starting point for further
analysis. They can also help to rule out poor-performing models quickly.

Investigating clusters through video recordings a posteriori remains inefficient
but necessary to confirm beliefs about the final clusters. Therefore, a way of doing
this as efficiently as possible is necessary. In this thesis, we used a graphical

Page 71 of 80

CHAPTER 7. DISCUSSION AND CONCLUSIONS

user interface developed in-house at Kavli Institute of Systems Neuroscience 4.3.
Being able to look through the raw material corresponding to individual behaviors
one at a time, proved invaluable. It eases the workload and speeds up the process.

We investigated the use of topological data analysis as a model selection
tool. By transforming the estimated transition probability matrix into a weighted
directed graph, we can use homology to find high-level topological features in the
behavioral structure, such as cycles. Persistent homology measures how long such
topological features exist in the graphs as edges are included gradually according
to the corresponding transition probability. The resulting persistence diagrams
can then be used to visualize similarities between two models, possibly with
different numbers of clustered behaviors. The bottleneck distance, a similarity
metric between two such persistence diagrams, is also available in this theoretical
framework. It is useful for visualizing how clusterings result from models trained
with hyperparameters close to each other, all represent a similar structure when
looking at the transitions between them.

7.2 Facial tracking features

In this thesis, we clustered real data from a Long-Evans rat roaming around in
an arena, with and without including facial tracking recordings. For both data
sets, several models were tested, and corresponding hyperparameters were tuned.
As the facial tracking was performed at a higher capture frequency rate, the
features from the facial tracking were downsampled after computing the wavelet
transform. The facial tracking data contained a lot of information, and we were
able to separate some behaviors from this data alone. Several changes to the
algorithm were explored, aiming to include the useful information contained in
the facial tracking data, but without much of the added noise. Finally, we selected
a model computing the principal components separately, before concatenating
them when performing t-stochastic neighbor embedding.

Certain differences between the models stood out. Partial labeling indicated
that the rearing behaviors, which were clustered into one single behavior when
only using postural features, spread out into several behaviors when including
the facial tracking data. This was confirmed by looking back at the behaviors in
the raw data, using the graphical user interface.

7.3 Further work

Not all of the behaviors found using the facial tracking data were investigated
in the raw material. There is more information to be extracted and analyzed,
which proved too time-consuming for this thesis. Making use of actual footage

Page 72 of 80

CHAPTER 7. DISCUSSION AND CONCLUSIONS

of the whiskers for the individual behaviors could also provide more insight into
how the rearing behaviors are separated.

Although we investigated several models combining the postural and facial
tracking data, we likely did not find the best one. A lot of choices are made
during the model training phase, and the best one might not be the one we
landed on. Having an open mind to new alternatives in the clustering algorithm
is important.

The idea of using topological data analysis to compare ethograms from trained
models still requires more investigation. We showed that the computation is pos-
sible using existing software for Python, and explored some simple cases. More
testing should however be done. Further work includes visualizing the bottleneck
distance as a function of other parameters, e.g., the perplexity parameter. Visu-
alizing the bottleneck distance as a two-dimensional heat map would be useful for
detecting intervals for hyperparameters resulting in a similar clustering structure.
A way to extract information about what the topological features we compare
represent in terms of behavioral structures would be a great step forward. Other
ways of visualizing the persistence diagrams could also be tested, as more ways of
visualizing persistence pairs exist. In which dimensions to search for and compare
topological features could also be explored in more detail.

Page 73 of 80

Appendix A

Code

All data analysis were performed using the Python programming language [33].
General scientific programming was aided by NumPy [34] and Scipy [35]. Figures
was created using Matplotlib [36] and seaborn [37]. For computing the wavelet
transform we used PyCWT [14]. The dimensionality reduction was performed
using modules from scikit-learn [38]. Both Giotto-tda [39] and Scikit-TDA [40]
was used to compute and visualize the persistent homology.

Due to high-dimensional input data, the analysis in this thesis would not be
possible without using the high-performance computing research infrastructure
IDUN [41].

All the code for training and analyzing the models used in this thesis can be
found at https://github.com/ulrikbd/master_thesis_code [42].

Page 75 of 80

https://github.com/ulrikbd/master_thesis_code

Bibliography

[1] K. Schulze-Hagen and T. R. Birkhead, “The ethology and life history of
birds: The forgotten contributions of oskar, magdalena and katharina hein-
roth,” Journal of Ornithology, vol. 156, no. 1, pp. 9–18, 2015. doi: 10.
1007/s10336-014-1091-3.

[2] J. Klaminder, G. Hellström, J. Fahlman, et al., “Drug-induced behavioral
changes: Using laboratory observations to predict field observations,” Fron-
tiers in Environmental Science, vol. 4, 2016. doi: 10.3389/fenvs.2016.
00081.

[3] G. J. Berman, D. M. Choi, W. Bialek, and J. W. Shaevitz, “Mapping the
stereotyped behaviour of freely moving fruit flies,” Journal of The Royal
Society Interface, vol. 11, no. 99, p. 20 140 672, 2014. doi: 10.1098/rsif.
2014.0672.

[4] G. J. Berman, W. Bialek, and J. W. Shaevitz, Predictability and hierarchy
in drosophila behavior, 2016. doi: 10.1101/052928.

[5] J. D. Marshall, D. E. Aldarondo, T. W. Dunn, W. L. Wang, G. J. Berman,
and B. P. Ölveczky, “Continuous whole-body 3d kinematic recordings across
the rodent behavioral repertoire,” Neuron, vol. 109, no. 3, 2021. doi: 10.
1016/j.neuron.2020.11.016.

[6] “Behavioral decomposition reveals rich encoding structure employed across
neocortex,” bioRxiv, 2022. doi: 10.1101/2022.02.08.479515. eprint:
https://www.biorxiv.org/content/early/2022/02/10/2022.02.
08.479515.full.pdf. [Online]. Available: https://www.biorxiv.org/
content/early/2022/02/10/2022.02.08.479515.

Page 77 of 80

https://doi.org/10.1007/s10336-014-1091-3
https://doi.org/10.1007/s10336-014-1091-3
https://doi.org/10.3389/fenvs.2016.00081
https://doi.org/10.3389/fenvs.2016.00081
https://doi.org/10.1098/rsif.2014.0672
https://doi.org/10.1098/rsif.2014.0672
https://doi.org/10.1101/052928
https://doi.org/10.1016/j.neuron.2020.11.016
https://doi.org/10.1016/j.neuron.2020.11.016
https://doi.org/10.1101/2022.02.08.479515
https://www.biorxiv.org/content/early/2022/02/10/2022.02.08.479515.full.pdf
https://www.biorxiv.org/content/early/2022/02/10/2022.02.08.479515.full.pdf
https://www.biorxiv.org/content/early/2022/02/10/2022.02.08.479515
https://www.biorxiv.org/content/early/2022/02/10/2022.02.08.479515

BIBLIOGRAPHY

[7] A. Wiltschko, M. Johnson, G. Iurilli, et al., “Mapping sub-second structure
in mouse behavior,” Neuron, vol. 88, no. 6, pp. 1121–1135, 2015. doi: 10.
1016/j.neuron.2015.11.031.

[8] G. J. Berman, “Measuring behavior across scales,” BMC Biology, vol. 16,
no. 1, 2018. doi: 10.1186/s12915-018-0494-7.

[9] U. B. Danielsen, “Clustering animal behavior,” 2022. [Online]. Available:
https://github.com/ulrikbd/specialization_project.

[10] W. W. Wei, Time series analysis univariate and multivariate methods,
2nd ed. Pearson, 2006.

[11] R. H. Shumway and D. S. Stoffer, Time series analysis and its applications:
With R examples, 4th ed. Springer International Publishing, 2017.

[12] L. Cohen, “Time-frequency distributions-a review,” Proceedings of the IEEE,
vol. 77, no. 7, pp. 941–981, 1989. doi: 10.1109/5.30749.

[13] G. Kaiser, A friendly guide to wavelets. Birkhäuser, 1994.
[14] C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,”

Bulletin of the American Meteorological Society, vol. 79, no. 1, pp. 61–78,
1998. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

[15] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics. Springer,
2010.

[16] T. Hastie, J. Friedman, and R. Tisbshirani, The elements of Statistical
Learning: Data Mining, Inference, and prediction, 2nd ed. Springer, 2017.

[17] I. T. Jolliffe, Principal component analysis. 2nd ed. Springer-Verlag, 2002.
[18] L. van der Maaten and G. E. Hinton, “Visualizing data using t-sne,” Journal

of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.
[19] J. S. Simonoff, Smoothing methods in statistics. Springer, 1998.
[20] D. Scott, Multivariate Density Estimation: Theory, Practice, and Visual-

ization. Mar. 2015, isbn: 9781118575536.
[21] L. Najman and M. Schmitt, “Geodesic saliency of watershed contours and

hierarchical segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 12, pp. 1163–1173, 1996. doi: 10.1109/
34.546254.

[22] J. Bang-Jensen and G. Z. Gutin, Digraphs theory, algorithms and applica-
tions. Springer, 2002.

[23] R. W. Ghrist, Elementary applied topology. Createspace, 2014.

Page 78 of 80

https://doi.org/10.1016/j.neuron.2015.11.031
https://doi.org/10.1016/j.neuron.2015.11.031
https://doi.org/10.1186/s12915-018-0494-7
https://github.com/ulrikbd/specialization_project
https://doi.org/10.1109/5.30749
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
https://doi.org/10.1109/34.546254
https://doi.org/10.1109/34.546254

BIBLIOGRAPHY

[24] M. W. Reimann, M. Nolte, M. Scolamiero, et al., “Cliques of neurons bound
into cavities provide a missing link between structure and function,” Fron-
tiers in Computational Neuroscience, vol. 11, 2017. doi: 10.3389/fncom.
2017.00048.

[25] D. Lütgehetmann, D. Govc, J. P. Smith, and R. Levi, “Computing persis-
tent homology of directed flag complexes,” Algorithms, vol. 13, no. 1, p. 19,
2020. doi: 10.3390/a13010019.

[26] H. Edelsbrunner and J. Harer, “Persistent homology—a survey,” Surveys
on Discrete and Computational Geometry, pp. 257–282, 2008. doi: 10 .
1090/conm/453/08802.

[27] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence
diagrams,” Proceedings of the twenty-first annual symposium on Computa-
tional geometry, 2005. doi: 10.1145/1064092.1064133.

[28] Y. Liu, X. San Liang, and R. H. Weisberg, “Rectification of the bias in the
wavelet power spectrum,” Journal of Atmospheric and Oceanic Technology,
vol. 24, no. 12, pp. 2093–2102, 2007. doi: 10.1175/2007jtecho511.1.

[29] A. Mathis, P. Mamidanna, K. M. Cury, et al., “Deeplabcut: Markerless
pose estimation of user-defined body parts with deep learning,” Nature
Neuroscience, vol. 21, no. 9, pp. 1281–1289, 2018. doi: 10.1038/s41593-
018-0209-y.

[30] J. Schindelin, I. Arganda-Carreras, E. Frise, et al., “Fiji: An open-source
platform for biological-image analysis,” Nature Methods, vol. 9, no. 7, pp. 676–
682, 2012. doi: 10.1038/nmeth.2019.

[31] B. Mimica, B. A. Dunn, T. Tombaz, V. S. Bojja, and J. R. Whitlock,
“Efficient cortical coding of 3d posture in freely behaving rats,” 2018. doi:
10.1101/307785.

[32] U. B. Danielsen. (2023), [Online]. Available: http://www.folk.ntnu.no/
ulrikbd (visited on 05/24/2023).

[33] G. van Rossum, “Python tutorial,” Centrum voor Wiskunde en Informatica
(CWI), Amsterdam, Tech. Rep. CS-R9526, May 1995.

[34] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. doi:
10.1038/s41586-020-2649-2. [Online]. Available: https://doi.org/10.
1038/s41586-020-2649-2.

[35] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17,
pp. 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Page 79 of 80

https://doi.org/10.3389/fncom.2017.00048
https://doi.org/10.3389/fncom.2017.00048
https://doi.org/10.3390/a13010019
https://doi.org/10.1090/conm/453/08802
https://doi.org/10.1090/conm/453/08802
https://doi.org/10.1145/1064092.1064133
https://doi.org/10.1175/2007jtecho511.1
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1101/307785
http://www.folk.ntnu.no/ulrikbd
http://www.folk.ntnu.no/ulrikbd
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2

BIBLIOGRAPHY

[36] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Sci-
ence & Engineering, vol. 9, no. 3, pp. 90–95, 2007. doi: 10.1109/MCSE.
2007.55.

[37] M. L. Waskom, “Seaborn: Statistical data visualization,” Journal of Open
Source Software, vol. 6, no. 60, p. 3021, 2021. doi: 10.21105/joss.03021.
[Online]. Available: https://doi.org/10.21105/joss.03021.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[39] G. Tauzin, U. Lupo, L. Tunstall, et al., “Giotto-tda: A topological data
analysis toolkit for machine learning and data exploration,” Journal of Ma-
chine Learning Research, vol. 22, no. 39, pp. 1–6, 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-325.html.

[40] N. Saul and C. Tralie, Scikit-tda: Topological data analysis for python, 2019.
doi: 10.5281/zenodo.2533369. [Online]. Available: https://doi.org/
10.5281/zenodo.2533369.

[41] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, Epic: An energy-
efficient, high-performance gpgpu computing research infrastructure, 2022.
arXiv: 1912.05848 [cs.DC].

[42] U. Danielsen, Master thesis code, https://github.com/ulrikbd/master_
thesis_code, 2023.

Page 80 of 80

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
http://jmlr.org/papers/v22/20-325.html
https://doi.org/10.5281/zenodo.2533369
https://doi.org/10.5281/zenodo.2533369
https://doi.org/10.5281/zenodo.2533369
https://arxiv.org/abs/1912.05848
https://github.com/ulrikbd/master_thesis_code
https://github.com/ulrikbd/master_thesis_code

	Introduction
	Motivation
	Previous work
	Overview

	Theory
	Time series analysis
	Stationarity
	Detrending

	Fourier analysis
	Discrete-time Fourier transform

	Spectral density estimation
	Periodogram
	Sample spectrum
	Spectral window
	Lag window

	Time-frequency analysis
	Short-time Fourier transform
	Wavelet transform

	Piecewise polynomials
	Splines
	Regression splines

	Dimensionality reduction
	Principal component analysis
	t-Stochastic Neighbor Embedding

	Kernel density estimation
	Watershed segmentation
	Applied topology
	Directed graph
	Simplicial complexes
	Flag complexes

	Homology
	Persistent homology

	Methodology
	Feature extraction
	Detrending
	Time-frequency analysis

	Manifold embedding
	Clustering
	Feature frequency
	Model selection
	Partial labeling
	Spectral power averaging
	Comparing probability transition matrices

	Data
	Data
	Partial labels
	Graphical user interface

	Exploratory data analysis
	Postural features only
	Facial tracking features only
	Initial combined model
	Model variations
	Changing the frequency range
	Manually selecting principal components
	Choosing between the models

	Hyperparameter tuning

	Results
	Models
	Postural features
	Including facial tracking features

	Clustering rearing behavior
	Persistent homology
	Toy example
	Application on real data

	Discussion and conclusions
	Model selection
	Facial tracking features
	Further work

	Code
	Bibliography

